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REFLEXIVITY OF NEWTON–OKOUNKOV BODIES OF

PARTIAL FLAG VARIETIES

CHRISTIAN STEINERT

Abstract. Assume that the valuation semigroup Γ(λ) of an arbitrary partial
flag variety corresponding to the line bundle Lλ constructed via a full-rank
valuation is finitely generated and saturated. We use Ehrhart theory to prove
that the associated Newton–Okounkov body—which happens to be a rational,
convex polytope—contains exactly one lattice point in its interior if and only
if Lλ is the anticanonical line bundle. Furthermore, we use this unique lattice
point to construct the dual polytope of the Newton–Okounkov body and prove
that this dual is a lattice polytope using a result by Hibi. This leads to an
unexpected, necessary and sufficient condition for the Newton–Okounkov body
to be reflexive.

Introduction

For quite some time researchers from different branches of mathematics have
been interested in associating combinatorial objects (for example polytopes) to
geometric objects (for example varieties). The textbook examples are of course
toric varieties, where polytopes arise quite naturally encoding a lot of geometric
information about the variety. Many people have been and are trying to make
use of this fact by degenerating more complicated varieties into toric varieties—
in particular Gonciulea and Lakshmibai [17], Kogan and Miller [27], Caldero [10],
Alexeev and Brion [2] as well as Feigin, Fourier and Littelmann [14].

All of their approaches used polytopes that were already known to representa-
tion theorists because there has always been a strong interest in finding polytopes
for representations to find new bases of these representations and thus the tools
were already developed. Starting with the polytopes of Gelfand and Tsetlin in
type An in [16], Berenstein and Zelevinsky defined Gelfand–Tsetlin polytopes for all
classical Lie algebras in [8]. This approach leads to the construction of so-called
string polytopes for Lie algebras of arbitrary type, that were studied by Littelmann
in [30] and Berenstein and Zelevinsky in [9]. A different string polytope has been
defined by Nakashima and Zelevinsky in [32]. Other prominent polytopes—usually
called Lusztig polytopes—were defined by Lusztig in [31]. A slightly different ap-
proach based on a conjecture by Vinberg led to the definition of Feigin–Fourier–
Littelmann–Vinberg polytopes in types An [12] and Cn [13] by Feigin, Fourier and
Littelmann. Gornitskii analogously defined Gornitskii polytopes in types Bn and
Dn [19] as well as G2 [18].

The most general approach to toric degenerations has been developed using
Newton–Okounkov bodies, firstly motivated by Okounkov in [33] and [34], and for-
mally introduced by Lazarsfeld and Mustaţă [29], Kaveh and Khovanskii [23] and
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Anderson [3]. The formerly known representation theoretic polytopes can be real-
ized as Newton–Okounkov bodies for some nice valuations, which has been shown
by Kaveh [22], Kiritchenko [26] and Fujita and Naito [15]. Most recently Kaveh and
Manon analyzed the connection between Newton–Okounkov bodies and tropical ge-
ometry in [24]. A generalized method to construct most of the formerly mentioned
polytopes in a representation theoretic setting— including Newton–Okounkov bod-
ies—was developed by Fang, Fourier and Littelmann [11] via so-called birational
sequences.

In the context of this setting, reflexive polytopes appear naturally as Batyrev
showed that they are in one-to-one correspondence to Gorenstein Fano toric vari-
eties (see [4, Proposition 2.2.23]). Hence, finding reflexive polytopes means finding
Gorenstein Fano toric degenerations.

Another viewpoint on polytopes associated to geometric objects arises in the
theory of mirror symmetry. Most notably Batyrev, Ciocan-Fontanie, Kim and van
Straten used reflexive polytopes to construct mirror duality in [6] based on an idea
of Batyrev [4]. This approach was used by Rusinko [36] to construct mirror duals
for type An complete flag varieties using Littelmann’s string polytopes, thereby
recovering mirror families formerly described by Batyrev in [5]. The key point
of his work was to prove that the duals of these polytopes are lattice polytopes
in certain cases by observing that they contained a special lattice point in their
interior. The goal of our paper is to understand this remarkable property in a more
general setting. Our main result is the following.

Theorem. If the valuation semigroup Γ(λ) associated to a partial flag variety G/P
via the P -regular dominant integral weight λ and full-rank valuation v is finitely
generated and saturated, the following properties of the Newton–Okounkov body
Δ(λ) are equivalent.

(i) Lλ is the anticanonical line bundle over G/P .
(ii) Δ(λ) contains exactly one lattice point pλ in its interior.

Furthermore, in this case the polar dual1 of the translated Newton–Okounkov body
Δ(λ)− pλ is a lattice polytope.

Notice that this result applies to many of the formerly mentioned polytopes since
most of them can be realized as Newton–Okounkov bodies of nice valuations.

Our statement bears resemblance to a result by Kaveh and Villella in [25], who
were able to classify anticanonical objects in families of polyhedra associated to flag
varieties purely via combinatorial conditions. However, their result needs stronger
assumptions like Minkowski property of the occurring polytopes, which we do not
need.

This paper is structured as follows. For the definition of the objects in Newton–
Okounkov theory and a collection of known facts see Section 1. The proof of the
Main Theorem uses some results from Ehrhart theory and a result of Hibi [20] that
will be introduced in Section 2. The proof itself is divided into multiple lemmata
that will be stated and proved in Section 3 and unified in the concluding proof of
our Main Theorem in Section 4. An overview over certain applications and many
examples of string polytopes finalize this paper in Section 5. Most notably we will
briefly elaborate on the following reflexivity criterion.

1We always refer to the polar dual defined as S∗ :=
{
y ∈ RN

∣
∣ 〈x, y〉 ≤ 1 for all x ∈ S

}
for an

arbitrary set S ⊆ RN . If S is a polytope with the origin in its interior, then S∗ is a polytope.
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Corollary (Corollary 5.1). Under the assumptions of the Main Theorem, the
Newton–Okounkov body Δ(λ) is a reflexive polytope (after translation by a lattice
vector) if and only if it is a lattice polytope and λ is the weight of the anticanonical
bundle over G/P .

Finally, we will give an example of a non-integral string polytope in type An —
hence disproving a conjecture by Alexeev and Brion—and pose a new conjecture
on the integrality of string polytopes for very special reduced decompositions.

1. Facts from Newton–Okounkov theory

We will recall some important terminology regarding valuations and semigroups.

Definition 1.1. Let A be a C-algebra and assume that A is an integral domain.
Fix a monoidal total ordering ≤ on Zd, i.e. a total ordering such that a ≤ b implies
a+ c ≤ b+ c for all a, b, c ∈ Zd.

A map v : A\{0} → Zd is called a Zd-valuation on A if it satisfies the following
properties.

(i) v(λf) = v(f) for all λ ∈ C× and f ∈ A \ {0}.
(ii) v(fg) = v(f) + v(g) for all f, g ∈ A \ {0}.
(iii) v(f + g) ≥ min{v(f), v(g)} for all f, g ∈ A \ {0} such that f + g �= 0.

By slight abuse of notation we will denote the valuation image of v as Im v :=
v(A \ {0}). We say that v has full rank if the dimension of the R-linear span of
the valuation image Im v ⊆ Rd equals the Krull dimension of A. We say that v has
at most one-dimensional leaves if the vector space

({f ∈ A \ {0} | v(f) ≥ s} ∪ {0}) / ({f ∈ A \ {0} | v(f) > s} ∪ {0})
is one-dimensional for every s ∈ Zd.

Definition 1.2. Let Γ be a semigroup in N× Zd. Γ is called finitely generated
if there exists a finite set of semigroup generators. We say that Γ is finitely
generated in degree 1 if we can choose a finite set of semigroup generators with
first coordinate equal to 1. Γ is called saturated if for every x ∈ N×Zd such that
mx ∈ Γ for some m ∈ Z>0 we have x ∈ Γ.

We can now construct the main object of our studies.
Let X be a normal projective variety of dimension d and let L be an ample line

bundle over X. Let
R(X,L) :=

⊕
m∈N

H0(X,Lm)

denote the associated ring of global sections and let v : R(X,L) \ {0} → Zd be a
valuation with respect to some monoidal order ≤ on Z

d. We consider the graded
monoid

Γ(X,L, v) :=
⋃
m∈N

{(m, v(f)) | f ∈ H0(X,Lm)} ⊆ N× Z
d,

often called the valuation monoid or valuation semigroup with respect to X, L
and v. It is indeed a monoid because for every f ∈ H0(X,Lm) and g ∈ H0(X,Ln)
we have fg ∈ H0(X,Lm+n) and

(m+ n, v(fg)) = (m+ n, v(f) + v(g)) = (m, v(f)) + (n, v(g)).

Let
C(X,L, v) := coneΓ(X,L, v) ⊆ R≥0 × R

d
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denote the closed cone over Γ. The Newton–Okounkov body NO(X,L, v) as-
sociated to X, L and v is then defined as the intersection

{1} ×NO(X,L, v) := {(1, x) | x ∈ R
d} ∩ C(X,L, v).

In the context of flag varieties we will simply write Δ(λ) for the Newton–
Okounkov body NO(G/P,Lλ, v) if the valuation has been fixed.

We will now state some important results about valuations and Newton–Okoun-
kov bodies. The first one can be found in Kaveh and Manon [24, Theorem 2.3]
which is a direct consequence of Abhyankar’s inequality (see [1]). A different proof
for valuations constructed via flags of subvarieties was given by Lazarsfeld and
Mustaţă [29, Lemma 1.4]

Theorem 1. Every full-rank valuation has at most one-dimensional leaves.

Proposition 1.3 is a conglomeration of results from Kaveh–Khovanskii [23] and
Lazarsfeld–Mustaţă [29]. A proof can be found for example in [38, Proposition
3.3.9].

Proposition 1.3. Let X be a normal projective variety of dimension d, let L be an
ample line bundle over X and let v : R(X,L)\{0} → N×Z

d be a full-rank valuation
on the ring of global sections R(X,L) such that the associated semigroup Γ(X,L, v)
is finitely generated and saturated. Then the Newton–Okounkov body NO(X,L, v) is
a d-dimensional rational convex polytope with exactly dimH0(X,L, v) many lattice
points and n ·NO(X,L, v) = NO(X,Ln, v) for every n ∈ N.

Remark 1.4. For the last claim we realize R(X,Ln) as a subring of R(X,L), so v
is a valuation on both rings.

2. Facts from Ehrhart theory

For the purpose of this section let P denote a full-dimensional rational convex
polytope in R

d. Let intP = P \ ∂P denote its interior and P∗ its dual.
From the variety of interesting results that Ehrhart theory yields, we will only

need the following two beautiful theorems. The first one is due to Ehrhart and
Macdonald and can be found for example in [7, Theorem 4.1]. It compares the
number of lattice points of a polytope with the number of lattice points in its
interior intP.

Theorem 2 (Ehrhart–Macdonald reciprocity). There exists a quasi-polynomial LP
of degree d—called the Ehrhart quasi-polynomial—such that

LP(n) = #(nP ∩ Z
d) and (−1)dLP(−n) = #(intnP ∩ Z

d).

Furthermore, if P is a lattice polytope, LP is a polynomial.

Notice that the Ehrhart quasi-polynomial is not unique, but its evaluation on
each integer is. We will also use the notation LS(n) := #(nS ∩ Z

d) for arbitrary
subsets S ⊆ Rd, but this function might not share similar properties.

The second result due to Hibi gives a criterion on the integrality of the vertices
of the dual polytope P∗. It can be found in [20].

Theorem 3 (Hibi). Suppose 0 ∈ intP. Then P∗ is a lattice polytope if and only if

#(nP ∩ Z
d) = #(int(n+ 1)P ∩ Z

d)

for every n ∈ N.
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Remark 2.1. For computational purposes it is useful to notice that the condition
in Hibi’s Theorem 3 can be reformulated as

LP(n) = (−1)dLP(−n− 1) for all n ∈ N

using Ehrhart-Macdonald reciprocity (see Theorem 2).

3. Key lemmata

Let us fix some notation. Let G be a simple algebraic group of rank r with Lie
algebra g. Let T be a maximal torus of G and B a Borel subgroup of G containing
T . Let P be a parabolic subgroup of G containing B and let L be the Levi subgroup
of P containing T . Let W := NG(T )/T denote the Weyl group of G.

Let Φ be the set of roots of G and let Φ+ be the subset of positive roots with
respect to B. Denote the set of simple roots by S = {α1, . . . , αr}. Let N be the
number of positive roots.

Let Λ be the lattice of integral weights of G and Λ+ the subset of dominant
integral weights with respect to B. Let ωi ∈ Λ+ be the fundamental weight corre-
sponding to αi ∈ S and ρ := 1

2

∑
β∈Φ+ β =

∑r
i=1 ωi.

There exists (see [37, Theorem 8.4.3]) a set of simple roots I ⊆ S such that
P =

⋃
w∈WI

Bw̃B, where WI ⊆ W is the Weyl group generated by the simple

reflections {sα |α ∈ I} and {w̃ ∈ NG(T ) |w ∈ W} is a set of representatives.
Let 〈I〉 := Φ ∩ {

∑
α∈I mαα |mα ∈ Z} and 〈I〉+ := 〈I〉 ∩ Φ+. We define ΛP :=

{λ ∈ Λ | 〈λ, α∨〉 = 0 for all α ∈ I} and Λ+
P := ΛP ∩Λ+ as well as Φ+

P := Φ+ \ 〈I〉+.
Let NP be the cardinality of Φ+

P .
A dominant weight λ ∈ Λ extends to a character of P if and only if λ ∈ ΛP . For

every such λ we define the one-dimensional vector space C−λ with P -action given by
p.x := λ(p)−1x. We will consider the line bundle LP,λ := G×P C−λ = (G×C−λ)/P
over G/P , where the P -action on G × C−λ is given by p.(g, x) := (gp, p−1.x). We
know that for a dominant weight λ ∈ Λ+

P the line bundle LP,λ is ample if and only

if λ is P -regular, i.e. λ ∈ Λ+
P and 〈λ, α∨〉 > 0 for all α ∈ S \I. We will just write Lλ

for LP,λ if the parabolic is fixed. We will implicitly exclude the trivial case I = S.
Our whole proof is based on the following computation of the Ehrhart polyno-

mial. Assumptions are as in the Main Theorem.

Lemma 3.1. LΔ(λ)(n) =
∏

β∈Φ+
P

〈nλ+ρ,β∨〉
〈ρ,β∨〉 for all n ∈ Z and λ ∈ Λ+

P .

Before we prove this statement, we want to recall a result by Kostant, that is a
combination of the famous Borel–Weil–Bott theorem and Weyl’s character formula.
It can be found in [28, Corollary 5.14].

Theorem 4 (Kostant). Let λ ∈ Λ+
P . Then

dimH0(G/P,Lλ) =
∏

β∈Φ+
P

〈λ+ ρ, β∨〉
〈ρ, β∨〉 .

Proof of Lemma 3.1. By Proposition 1.3 (or equivalently [29, Proposition 4.1]) we
know that

n ·NO(G/P,Lλ) = NO(G/P,Ln
λ, v)

and hence

LΔ(λ)(n) = dimH0(G/P,Ln
λ)
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for every n ∈ N. We want to show that this is equal to dimV (nλ). The claim then
follows from Kostant’s Theorem 4.

Consider the n-fold product map

H0(G/P,Lλ)× . . .×H0(G/P,Lλ) → H0(G/P,Ln
λ).

Notice that Ln
λ is ample, so H0(G/P,Ln

λ) will be an irreducible g-representation
by Borel–Weil–Bott. Since this product map is g-equivariant, its image must be
a subrepresentation. The image is obviously not empty, so the product map is
surjective.

Let fλ ∈ H0(G/P,Lλ) � V (λ)∗ be the global section corresponding to the lowest
weight. Then the product fn

λ ∈ H0(G/P,Ln
λ) must be the lowest weight vector of

H0(G/P,Ln
λ). Since its weight is −nλ we see that H0(G/P,Ln

λ) is isomorphic to
V (nλ)∗.

Now the claim for positive integers follows from Kostant’s version of Weyl’s
dimension formula in Theorem 4. Notice that the right-hand side of

LΔ(λ)(n) =
∏

β∈Φ+
P

〈nλ+ ρ, β∨〉
〈ρ, β∨〉

can be seen as the evaluation of a polynomial at positive integers. Hence the Ehrhart
quasi-polynomial must be a polynomial and since the two polynomials coincide on
all positive integers, they coincide on all integers. �
Example 3.2. For the full flag variety and the anticanonical weight 2ρ we get

LΔ(λ)(n) = (2n+ 1)N

for every n ∈ Z, where N denotes the number of positive roots.

The following lemmata state important results on the Weyl group WI ⊆ W
corresponding to P . Let wI ∈ WI denote the longest word of WI .

Lemma 3.3. wI(Φ
+
P ) = Φ+

P and wI(〈I〉+) = −〈I〉+.
Proof. Since WI is generated by all simple reflections {sα |α ∈ I}, we know that

wI(〈I〉) = 〈I〉. Since wI ∈ W , we also have wI(Φ) = Φ, thus wI(Φ
+
P ) ⊆ Φ+

P

·
∪ −Φ+

P .

But for every β =
∑

α∈S mαα ∈ Φ+
P there is at least one α ∈ S \ I such that

mα > 0. Since wI ∈ 〈sα |α ∈ I〉, this sign cannot be changed by wI . This yields
wI(Φ

+
P ) = Φ+

P .
The second part follows from the fact that wI is the longest word of the Weyl

group WI corresponding to the Levi LI , so it sends positive roots of LI with respect
to B ∩ LI onto negative roots and vice versa. �
Lemma 3.4. The weight of the anticanonical bundle over G/P is λG/P = ρ+wI(ρ).

Proof. We know that the anticanonical bundle is the dual of the highest wedge
power of the tangent space of G/P whose weight is exactly

∑
β∈Φ+

P
β. On the other

hand we have

ρ+ wI(ρ) =
1

2

∑
β∈Φ+

β +
1

2

⎛
⎝ ∑

β∈〈I〉+
wI(β) +

∑
β∈Φ+

P

wI(β)

⎞
⎠

=
1

2

∑
β∈〈I〉+

β +
1

2

∑
β∈Φ+

P

β − 1

2

∑
β∈〈I〉+

β +
1

2

∑
β∈Φ+

P

β =
∑

β∈Φ+
P

β
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since wI permutes all elements of Φ+
P and sends all the elements of 〈I〉+ onto

elements of −〈I〉+ bijectively as we proved in Lemma 3.3. �
Lemma 3.5 on root systems seems rather technical, but it is crucial to the proof

of our Main Theorem.

Lemma 3.5. Let λ ∈ Λ+
P be P -regular. Suppose there exists β ∈ Φ+

P such that

〈λ− ρ, β∨〉 < 0. Then there exists β̃ ∈ Φ+
P such that 〈λ− ρ, β̃∨〉 = 0.

To prove the lemma we need Lemmata 3.6 and 3.7.

Lemma 3.6. Let β =
∑r

i=1 miαi ∈ Φ+ and ht β > 1. For every i ∈ {1, . . . , r}
such that mi = 1 there exists j �= i such that β − αj ∈ Φ.

Proof. We will prove the lemma by induction on htβ.
For ht β = 2 we have nothing to prove since β = αi+αj for some i, j ∈ {1, . . . , r}.
Now suppose that ht β > 2. Fix an i ∈ {1, . . . , r} such that mi = 1. If 〈β, α∨

i 〉 ≤
0, we again have nothing to prove, because the proof of [21, Lemma A of 10.2]
ensures that there exists at least one j ∈ {1, . . . , r} such that 〈β, α∨

j 〉 > 0 which
cannot be equal to i by assumption. By [21, Lemma 9.4] this j would then possess
the desired property.

So we only have to prove the case where 〈β, α∨
i 〉 > 0. Because of [21, Lemma

9.4] this means that β − αi is a (necessarily positive) root.
Hence we know that the support of β − αi is connected in the Dynkin diagram

of g. But because mi = 1 we know that this support does not contain αi. This
means that there exists only one simple root in the support of β that is adjacent to
αi, because otherwise the removal of αi would result in a disconnected subgraph.
Denote this adjacent simple root by αj . So for every k ∈ {1, . . . , r} \ {i, j} with
mk > 0 we have 〈αk, α

∨
i 〉 = 0. From 〈αj , α

∨
i 〉 ≤ −1 and

0 < 〈β, α∨
i 〉 = mi〈αi, α

∨
i 〉+mj〈αj , α

∨
i 〉 ≤ 2−mj

we conclude that mj < 2 and thus mj = 1. So we can use the induction hypothesis
on β−αi and get a k �= j such that β−αi −αk is a root. Because β −αi does not
contain αi in its support, we know that k �= i. Thus we conclude

〈β − αi − αk, α
∨
i 〉 = mj〈αj , α

∨
i 〉 − 〈αk, α

∨
i 〉 ≤ −mj − 0 = −1 < 0

and [21, Lemma 9.4] shows that β −αk = β −αi −αk +αi is a (positive) root. �
Lemma 3.7. Let β ∈ Φ+

P . There exists a sequence (ij)j∈{1,...,ht β} in {1, . . . , r}
such that β =

∑ht β
j=1 αij and

∑k
j=1 αij ∈ Φ+

P for every k ∈ {1, . . . , ht β}.
Proof. We will prove the lemma by induction on htβ.

If ht β = 1, there is nothing to prove.
So let h ∈ N, h > 1, and suppose the lemma is true for every positive root

β′ ∈ Φ+
P with ht β′ < h. Let us now assume β ∈ Φ+

P with ht β = h. If no such β
exists, we have nothing to prove.

We know that there exists α ∈ S such that β − α ∈ Φ+. If β − α /∈ Φ+
P , then β

must be of the form β = α+
∑

α′∈I mα′α′. In this case Lemma 3.6 assures us that
there exists another α′ ∈ S such that β − α′ ∈ Φ and furthermore this root has to
be in Φ+

P .

So we can always find α ∈ S such that β − α ∈ Φ+
P . By applying the induction

hypothesis on that root we find the correct sequence (ij)j∈{1,...,h−1} in {1, . . . , r}
for β − α. Defining ih by αih = α will yield the desired sequence for β. �
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We can now prove our last lemma and finish our preparations.

Proof of Lemma 3.5. Let β ∈ Φ+
P such that 〈λ− ρ, β∨〉 < 0. Let h := ht β.

Notice that h > 1 since for every simple root α ∈ Φ+
P , i.e. α ∈ S \ I, we have

〈λ− ρ, α∨〉 ≥ 0 because λ is P -regular.
By Lemma 3.7 we find a sequence (ij)j∈{1,...,h} in {1, . . . , r} such that β =∑h
j=1 αij and βk :=

∑k
j=1 αij ∈ Φ+

P for every k ∈ {1, . . . , h}.
Since 〈λ−ρ, α∨

i1
〉 ≥ 0 there exists an index k ∈ {1, . . . , h} such that 〈λ−ρ, β∨

k−1〉 ≥
0 and 〈λ− ρ, β∨

k 〉 < 0. We have

0 ≤ 〈λ− ρ, β∨
k−1〉 = 2 · 〈λ− ρ, βk〉 − 〈λ− ρ, αik〉

〈βk−1, βk−1〉
< − 〈αik , αik〉

〈βk−1, βk−1〉
〈λ− ρ, α∨

ik
〉.

Since λ is P -regular this is only possible if αik ∈ I, i.e. 〈λ, α∨
ik
〉 = 0, and thus

0 ≤ 〈λ− ρ, β∨
k−1〉 <

〈αik , αik〉
〈βk−1, βk−1〉

.

This shows that there are only three possible values for 〈λ − ρ, β∨
k−1〉, since the

fraction on the right side must be an element of { 1
3 ,

1
2 , 1, 2, 3}.

If 〈λ− ρ, β∨
k−1〉 = 0, we have found the desired root β̃ = βk−1.

If 〈λ− ρ, β∨
k−1〉 = 1, we must have

〈αik
,αik

〉
〈βk−1,βk−1〉 ∈ {2, 3}. Set

β̃ := αik +
〈αik , αik〉

〈βk−1, βk−1〉
βk−1

as an element of the root lattice. We have

〈λ− ρ, β̃〉 = 〈λ− ρ, αik〉+
〈αik , αik〉

〈βk−1, βk−1〉
〈λ− ρ, βk−1〉

= −〈αik , αik〉
2

+
〈αik , αik〉

〈βk−1, βk−1〉
· 〈βk−1, βk−1〉

2
= 0.

We still have to show that β̃ is actually a root. Expanding 〈βk − αik , βk − αik〉
yields

〈βk, α
∨
ik
〉 = 1 +

〈βk, βk〉
〈αik , αik〉

− 〈βk−1, βk−1〉
〈αik , αik〉

.

Since the last summand is not an integer, we know that the second summand must
not be an integer, too. But this means that βk and βk−1 must have the same
length because only two root lengths are allowed to occur in any irreducible root
system (see [21, Lemma C of 10.4]). We conclude that 〈βk, α

∨
ik
〉 = 1 and thus

〈βk−1, α
∨
ik
〉 = −1. This yields

〈αik , β
∨
k−1〉 =

〈αik , αik〉
〈βk−1, βk−1〉

〈βk−1, α
∨
ik
〉 = − 〈αik , αik〉

〈βk−1, βk−1〉
,

which implies that β̃ is a root because it is the reflection of αik along the root βk−1.
The last possible case 〈λ− ρ, β∨

k−1〉 = 2 can only occur if the root system is G2,
αik is the long simple root and βk−1 is a short positive root. Since their sum βk is
a root again, we know that βk−1 has to be the short simple root. In that case we
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set β̃ = 2αik + 3βk−1 ∈ Φ+
P and calculate

〈λ− ρ, β̃〉 = 3

2
〈βk−1, βk−1〉〈λ− ρ, β∨

k−1〉+ 〈αik , αik〉〈λ− ρ, α∨
ik
〉

= 3〈βk−1, βk−1〉 − 〈αik , αik〉 = 0,

which concludes the proof. �

4. Proof of the Main Theorem

We are now able to state the proof of our Main Theorem.

Proof of the Main Theorem. Proposition 1.3 tells us that Δ(λ) ⊆ RNP is a full-
dimensional rational polytope and from Lemma 3.1 we know that

LΔ(λ)(n) =
∏

β∈Φ+
P

〈nλ+ ρ, β∨〉
〈ρ, β∨〉

for all n ∈ Z.
Now suppose that Δ(λ) contains one unique lattice point in its interior. By

Ehrhart–Macdonald reciprocity in Theorem 2 we have

1 = LintΔ(λ)(1) = (−1)NPLΔ(λ)(−1) =
∏

β∈Φ+
P

〈λ− ρ, β∨〉
〈ρ, β∨〉 .

This implies that 〈λ− ρ, β∨〉 �= 0 for every β ∈ Φ+
P and by Lemma 3.5 this actually

means that 〈λ − ρ, β∨〉 > 0 for all β ∈ Φ+
P . From Lemma 3.3 we know that the

longest word wI ∈ WI ⊆ W permutes the elements of Φ+
P . Since it is a reflection,

it leaves the scalar product invariant and by reshuffling factors—numerators and
denominators separately—we have

1 =
∏

β∈Φ+
P

〈λ− ρ, β∨〉
〈ρ, β∨〉 =

∏
β∈Φ+

P

〈λ− ρ, (wIβ)
∨〉

〈ρ, β∨〉 =
∏

β∈Φ+
P

〈wI(λ− ρ), β∨〉
〈ρ, β∨〉 .

Consider the integral weight μ =
∑r

i=1 μiωi := wI(λ − ρ). Every coefficient μi is

strictly positive since 〈λ − ρ, (wIβ)
∨〉 > 0 for every β ∈ Φ+

P —especially for every
α ∈ S \ I—and 〈λ − ρ, (wIα)

∨〉 = −〈ρ, (wIα)
∨〉 > 0 for every α ∈ I because

wI(α) ∈ −〈I〉+ by Lemma 3.3.
This observation allows us to use the weighted inequality of arithmetic and geo-

metric means to calculate

1 =
∏

β∈Φ+
P

〈μ, β∨〉
〈ρ, β∨〉 =

∏
β∈Φ+

P

∑r
i=1〈ωi, β

∨〉μi

〈ρ, β∨〉

≥
∏

β∈Φ+
P

(
r∏

i=1

μ
〈ωi,β

∨〉
i

) 1
〈ρ,β∨〉

=

r∏
i=1

(
μ

∑
β∈Φ

+
P

〈ωi,β
∨〉

〈ρ,β∨〉

i

)
.

Since 〈ωi, β
∨〉 ≥ 0 for all β ∈ Φ+

P with strict inequality at least once for every
i ∈ {1, . . . , r}, we have strictly positive coefficients a1, . . . , ar ∈ R>0 such that

1 ≥ μa1
1 · · ·μar

r .

Since all of the μi are strictly positive integers, this inequality can only hold if
μi = 1 for all i ∈ {1, . . . , r} and then it is in fact an equality. But this means that
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wI(λ − ρ) = μ =
∑r

i=1 ωi = ρ and thus λ = ρ + wI(ρ). By Lemma 3.4 this is the
weight of the anticanonical line bundle over G/P , which proves the first direction.

In fact, we also proved the other direction on the way because we noticed that
μ = ρ if λ is the weight of the anticanonical bundle, which yields LintΔ(λ)(1) =∏

β∈Φ+
P

〈μ,β∨〉
〈ρ,β∨〉 = 1 if we apply the above calculations in opposite order.

So what is left to prove is the final implication of the theorem. Let λ = ρ+wI(ρ)
be the weight of the anticanonical line bundle over G/P . We calculate

(−1)NPLΔ(λ)(−n− 1) =
∏

β∈Φ+
P

〈(n+ 1)λ− ρ, β∨〉
〈ρ, β∨〉

=
∏

β∈Φ+
P

〈nρ+ ρ+ nwI(ρ) + wI(ρ)− ρ, β∨〉
〈ρ, β∨〉

=
∏

β∈Φ+
P

〈n(ρ+ wI(ρ)) + wI(ρ), (wIβ)
∨〉

〈ρ, β∨〉

=
∏

β∈Φ+
P

〈n(wI(ρ) + ρ) + ρ, β∨〉
〈ρ, β∨〉

=
∏

β∈Φ+
P

〈nλ+ ρ, β∨〉
〈ρ, β∨〉 = LΔ(λ)(n)

for all n ∈ N. It is clear that the Ehrhart polynomial of a polytope is invariant
under translation of the polytope via a lattice vector. Hence Hibi’s Theorem 3
concludes the proof. �

5. Applications

We have the following two immediate corollaries to our Main Theorem under the
assumptions of the Main Theorem.

Corollary 5.1. The Newton–Okounkov body Δ(λ) is a reflexive polytope (after
translation by a lattice vector) if and only if it is a lattice polytope and λ is the
weight of the anticanonical bundle over G/P .

Let GT (λ) denote the Gelfand–Tsetlin polytope as defined for type An in [16] and
for type Cn in [8]. Let FFLV (λ) denote the Feigin–Fourier–Littelmann–Vinberg
polytope as defined for type An in [12] and for type Cn in [13]. Let G(λ) denote the
Gornitskii polytope as defined for type G2 in [18].

Corollary 5.2. Let G be of type An or Cn, let G/P be a flag variety and let λ ∈ Λ+
P .

Then GT (λ) and FFLV (λ) are reflexive (after translation by a lattice vector) if
and only if λ is the weight of the anticanonical bundle over G/P .

Let G be of type G2, let G/P be an arbitrary partial flag variety and let λ ∈ Λ+
P .

Then G(λ) is reflexive (after translation by a lattice vector) if and only if λ is the
weight of the anticanonical bundle over G/P .

Finally we want to study one of the biggest classes of examples—namely the
string polytopes Qw0

(λ) as defined in [30] using notation from [2]. As a special
case we have the following observation for the full flag variety in type An that has
already been proved directly by Rusinko [36, Theorem 7].
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Corollary 5.3 (Rusinko). Let G = SLn+1. Then the dual of a lattice translation
of the string polytope Qw0

(2ρ) is a lattice polytope for every reduced decomposition
w0.

Of course one would like to give a precise criterion when the string polytope of
a partial flag variety is reflexive. But this is not solvable at the moment because it
is not known when the string polytope is a lattice polytope, even for nice reduced
decompositions and minuscule weights. We want to conclude our paper by illus-
trating this problem in the following three examples and stating a conjecture that
would partially solve this problem.

All calculations in this section have been achieved using SageMath [40]. More
detailed examples are available in my PhD thesis [38, Section 6.3].

Our first example will answer a prominent question regarding string polytopes in
type An by giving a counter-example to Conjecture 5.4 as formulated by Alexeev–
Brion in [2, Conjecture 5.8].

Conjecture 5.4 (Alexeev–Brion). For G = SLn+1 and any reduced decomposition
w0, the string polytope Qw0

(λ) is a lattice polytope for every λ ∈ Λ+.

This conjecture has been verified by Alexeev and Brion for all n ≤ 4 in [2]. We
will see that it does not hold anymore for n = 5.

Example 5.5. Let G = SL6 and consider the Grassmannian Gr(3, 6). Choose
the reduced decomposition w0 = s1s3s2s1s3s2s4s3s2s1s5s4s3s2s1. Notice that this
reduced decomposition arises from the standard reduced decomposition of [30] by
applying two 3-moves (and two 2-moves). Hence we have multiple ways of cal-
culating the string polytopes in addition to the construction by Berenstein and
Zelevinsky in [9, Theorem 3.14]. We find that there exists one non-integral vertex
of Qw0

(ω3). Luckily this non-integral vertex has half-integral coordinates, so the
string polytope for the weight of the anticanonical bundle λGr(3,6) = 6ω3 is again a
lattice polytope.

But this magic trick does not happen every time, since we can enlarge this
example in A5 to a whole class of examples for arbitrary n by using the reduced
decomposition

w0 = (s1s3s2s1s3s2)(s4s3s2s1)(s5s4s3s2s1) · · · (snsn−1 · · · s2s1).

The respective string polytope Qw0
(ω3) will not be a lattice polytope for n ≥ 5.

In particular, for n = 6 we can calculate that Qw0
(ω3) has half-integral vertices.

Thus even for the weight of the anticanonical bundle λGr(3,7) = 7ω3 over Gr(3, 7)
the string polytope Qw0

(7ω3) = 7 · Qw0
(ω3) will not be a lattice polytope.

Remark 5.6. It seems that this observation is connected to the fact that the string
polytopes for the reduced decomposition w0 = s1s3s2s1s3s2 in A3 do not fulfill the
Minkowski property (also called Integral Decomposition Property), i.e. for arbitrary
λ, μ ∈ Λ+ the lattice points in the string polytope Qw0

(λ + μ) cannot be written

as sums of lattice points from Qw0
(λ) and Qw0

(μ). This implies that there exists

λ ∈ Λ+ such that Qw0
(λ) contains lattice points that are not sums of lattice points

of the fundamental string polytopes. And although A3 and A4 are too small to create
non-integral string polytopes, this already foreshadows that something interesting
might happen for higher rank.
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Remark 5.7. Rietsch and Williams constructed Newton-Okounkov bodies for Grass-
mannians in [35] using plabic graphs. In some cases their construction leads to non-
integral polytopes— the first two appearing for the same Grassmannian Gr(3, 6).
Both of these polytopes have a single non-integral vertex as well. I want to thank
Valentin Rappel for pointing out this remarkable similarity.

It is natural to ask whether the string polytope from Example 5.5 and the re-
spective Rietsch-Williams polytopes are actually unimodularly equivalent. Joint
with Lara Bossinger we were able to show that this is in fact true for one of the
two Rietsch Williams polytopes but not true for the other one. It would be very
interesting to understand the reason behind this sporadic equivalence.

So we have seen that in type An only non-standard reduced decomposition can—
and indeed will—give rise to non-integral string polytopes. In other types the
situation is even more challenging since the standard reduced decompositions of
[30] will already provide those as we will see in Example 5.8.

Example 5.8. Let G = SO5 and choose w0 to be the standard reduced decom-
position from [30, Section 6], which is w0 = s2s1s2s1, where α2 denotes the short
root. Let λ = ω2. The corresponding string polytope contains one half-integral
vertex. Even more, the affine hull of its lattice points is two-dimensional while the
polytope itself is three-dimensional.

Since the vertices have at worst half-integral coordinates, we see that the string
polytope for the weight of the anticanonical bundle λG/P (α1) = 4ω2 over G/P (α1)
will be a lattice polytope and by our theorem reflexive after translation by the
lattice vector (1, 2, 3, 0)T .

Remark 5.9. Example 5.8 contradicts [2, Theorem 4.5], which claims that the string
polytope for any (co)minuscule weight and any reduced decomposition must be
a lattice polytope. Peter Littelmann and Michel Brion were able to solve this
contradiction by finding a fault in the proof of said claim. Essentially the problem
arises by applying a result of Caldero and Littelmann on standard monomials. In
the proof of [2, Theorem 4.5], the authors construct a sequence of subwords of the
longest word of the Weyl group of the form

w0 = si1 · · · siN ≥ sij1 · · · siN ≥ . . . ≥ sijn · · · siN
but the result of Caldero and Littelmann would actually require a sequence of the
form

w0 = si1 · · · siN ≥ si1 · · · sik1
≥ . . . ≥ si1 · · · sikn

.

I want to thank Peter Littelmann and Michel Brion for explaining this problem.

From the Examples 5.5 and 5.8 we can already see that sticking to the standard
reduced decompositions of [30] might yield some useful results. Known results and
many calculations for string polytopes in classical types suggest the following.

Theorem 5. Let G be a complex classical group, let λ ∈ Λ+ and let w0
std be

the standard reduced decomposition of the longest word of the Weyl group of G as
stated in [30]. Then Qw0

std(λ) is a lattice polytope if and only if one of the following

conditions hold.

(i) G is of type An,
(ii) G is of type Bn and 〈λ, α∨

n〉 ∈ 2Z,
(iii) G is of type Cn or
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(iv) G is of type Dn and 〈λ, α∨
n−1〉+ 〈λ, α∨

n〉 ∈ 2Z or n < 4.

Together with Corollary 5.1 this implies the following.

Corollary 5.10. Let G be a complex classical group, let G/P be a partial flag
variety and let w0

std be the standard reduced decomposition of the longest word of

the Weyl group of G as stated in [30]. Let λ ∈ Λ+
P . Then Qw0

std(λ) is reflexive (after

translation by a lattice vector) if and only if λ is the weight of the anticanonical
bundle over G/P .

Remark 5.11. The implication is due to the fact that the conditions in Theorem
5 are fulfilled whenever the irreducible highest weight g-representation V (λ) inte-
grates to a representation of the underlying simple algebraic group G.

A proof of both statements can be found in my PhD thesis [38]. A comprehensive
version of the proofs has meanwhile been published in [39].

In the exceptional cases the situation is even more unclear, as can be seen in our
final example.

Example 5.12. Let G be of type G2. Consider the anticanonical bundle over the
full flag variety G/B. We choose w0 = w0

std = s1s2s1s2s1s2 starting with the
short root. Following [30, Section 2] one calculates that the vertices of Qw0

(2ρ) lie

in 1
3Z. Hence Qw0

(2ρ) is not a lattice polytope and thus not reflexive even after

translation by the unique interior lattice point (1, 2, 5, 3, 4, 1)T .
In fact, one can show that for all but one combination of parabolics and reduced

decompositions, the respective anticanonical string polytope will not be a lattice
polytope. The only exception is the lattice polytope Qs2s1s2s1s2s1(2ρ).
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[18] A. A. Gornitskĭı, Essential signatures and canonical bases of irreducible representations of
the group G2 (Russian, with Russian summary), Mat. Zametki 97 (2015), no. 1, 35–47, DOI
10.4213/mzm10384; English transl., Math. Notes 97 (2015), no. 1-2, 30-41. MR3370491

[19] A. Gornitskii, Essential signatures and canonical bases for Bn and Dn, arXiv:1611.07381,

2016.
[20] Takayuki Hibi, Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), no. 2,

237–240, DOI 10.1007/BF01204726. MR1179260
[21] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts

in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR0323842
[22] Kiumars Kaveh, Crystal bases and Newton-Okounkov bodies, Duke Math. J. 164 (2015),

no. 13, 2461–2506, DOI 10.1215/00127094-3146389. MR3405591
[23] Kiumars Kaveh and A. G. Khovanskii, Newton-Okounkov bodies, semigroups of integral

points, graded algebras and intersection theory, Ann. of Math. (2) 176 (2012), no. 2, 925–978,
DOI 10.4007/annals.2012.176.2.5. MR2950767

[24] Kiumars Kaveh and Christopher Manon, Khovanskii bases, higher rank valuations,
and tropical geometry, SIAM J. Appl. Algebra Geom. 3 (2019), no. 2, 292–336, DOI
10.1137/17M1160148. MR3949692

[25] K. Kaveh and E. Villella, On a notion of anticanonical class for families of convex polytopes,
arXiv:1802.06674, 2018.

[26] Valentina Kiritchenko, Newton-Okounkov polytopes of flag varieties, Transform. Groups 22
(2017), no. 2, 387–402, DOI 10.1007/s00031-016-9372-y. MR3649460

[27] Mikhail Kogan and Ezra Miller, Toric degeneration of Schubert varieties and Gelfand-Tsetlin
polytopes, Adv. Math. 193 (2005), no. 1, 1–17, DOI 10.1016/j.aim.2004.03.017. MR2132758

[28] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of
Math. (2) 74 (1961), 329–387, DOI 10.2307/1970237. MR142696
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