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THE INTEGRAL GEOMETRIC SATAKE EQUIVALENCE

IN MIXED CHARACTERISTIC

JIZE YU

Abstract. Let k be an algebraically closed field of characteristic p. Denote by
W (k) the ring of Witt vectors of k. Let F denote a totally ramified finite exten-
sion of W (k)[1/p] and O its ring of integers. For a connected reductive group
scheme G over O, we study the category PL+G(GrG,Λ) of L+G-equivariant
perverse sheaves in Λ-coefficient on the Witt vector affine Grassmannian GrG
where Λ = Z� and F� (� �= p), and prove that it is equivalent as a tensor cat-
egory to the category of finitely generated Λ-representations of the Langlands
dual group of G.
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1. Introduction

The geometric Satake equivalence establishes an equivalence between two sym-
metric monoidal categories which are of great importance in algebraic geometry,
number theory, and representation theory. The first category is RepΛ(Ĝ), the cate-

gory of finitely generated Ĝ-modules over Λ, where Ĝ is the Langlands dual group of
a connected reductive group G; and the second category is PL+G(GrG,Λ), the cate-
gory of Λ-coefficient L+G-equivariant perverse sheaves on the affine Grassmannian
GrG of G. This equivalence may be regarded as a categorification of the classical
Satake isomorphism for connected reductive groups.
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In both equal characteristic (cf. [9], [7], [2], [11]) and mixed characteristic setting
with Q̄�-coefficient (cf. [17]), the geometric Satake equivalence has found many sig-
nificant applications. For example, the equal characteristic geometric Satake equiv-
alence is used in Lafforgue’s proof of the “automorphic to Galois” direction of the
Langlands correspondence over global function fields [8]. Another noticeable exam-
ple is a recent work of Xiao-Zhu [15], in which they use the Q̄�-coefficient geometric
Satake equivalence in mixed characteristic to prove the “generic” cases of Tate con-
jecture for the mod p fibers of many Shimura varieties. In the present paper, we
prove the integral coefficient geometric Satake equivalence in mixed characteristic
setting.

1.1. Main result. Let k be an algebraically closed field of characteristic p > 0,
and denote by W (k) its ring of Witt vectors. Let F denote a totally ramified finite
extension of W (k)[1/p] and O the ring of integers of F . For a connected reductive
group scheme G over O, denote by GrG the Witt vector affine Grassmannian of
G. In this paper, we consider the category PL+G(GrG,Λ) of L+G-equivariant
perverse sheaves in Λ-coefficient on the affine Grassmannian GrG for Λ = F� and
Z�, where � is a prime number different from p. We call this category the Satake
category and sometimes write it as SatG,Λ for simplicity. The convolution product

of sheaves equips the Satake category with a monoidal structure. Let ĜΛ denote the
Langlands dual group of G, i.e. the canonical pinned split reductive group scheme
over Λ whose root datum is dual to that of G. Our main theorem is the geometric
Satake equivalence in the current setting.

Theorem 1.1. There is an equivalence of monoidal categories between

PL+G(GrG,Λ)

and the category of representations of the Langlands dual group ĜΛ on finitely
generated Λ-modules.

We mention that Scholze has announced a global version of Theorem 1.1 as part
of his work on the local Langlands conjecture for p-adic groups using his beautiful
theory of diamonds, cf. [6].

In the equal characteristic case, the Beilinson-Drinfeld Grassmannians play a
crucial role in establishing the geometric Satake equivalence. In fact, they can be
used to construct the monoidal structure of the hypercohomology functor

H∗ : PL+G(GrG,Λ) −→ ModΛ

and the commutativity constraint in the Satake category by interpreting the con-
volution product as fusion product. In mixed characteristic, Scholze’s theory of
diamonds allows him to construct an analogue of the Beilinson-Drinfeld Grassman-
nian and prove the geometric Satake equivalence in this setting in a similar way as
in [11]. We pursue a different strategy to construct the geometric Satake equiva-
lence which makes use of some ideas in [17]. However, our situation is different from
loc.cit and new difficulties arise. One of the most significant differences, the Satake
category in Q̄�-coefficient is semisimple, while, in our case, the semisimplicity of the
Satake category fails. In addition, the monoidal structure of the hypercohomology
functor was constructed by studying the equivariant cohomology of (convolutions
of) irreducible objects in the Satake category in [17]. Nevertheless, in our situation,
the equivariant cohomology may have torsion. Thus the method in loc.cit does not



876 JIZE YU

apply to our case directly. To deal with these difficulties, we give a new approach
to construct the monoidal structure of the hypercohomology functor and the com-
mutativity constraint in the Satake category. We briefly discuss our strategy as
follows.

The first key ingredient of the proof is Proposition 1.2 (cf. Proposition 6.4).

Proposition 1.2. The hypercohomology functor H∗ : PL+G(GrG,Λ) −→ ModΛ is
a monoidal functor.

We study the Gm-action (in fact, we consider the action of the perfection of
the group scheme Gm) on the convolution Grassmannian GrG×̃GrG. Applying the
Mirković-Vilonen theory for mixed characteristic affine Grassmannians established
in [17] and Braden’s hyperbolic localization functor [5], we can decompose the
hypercohomology functor H∗ : PL+G(GrG×̃GrG,Λ) → Mod(Λ) into a direct sum of
compactly supported cohomologies. Each direct summand can be further realized
as the tensor product of two compactly supported cohomologies on GrG by the
Künneth formula. Putting these together completes the proof of Proposition 1.2.
In particular, the monoidal structure constructed by our approach is compatible
with that obtained in [17].

We further notice that as in the cases discussed in [11] and [17], the hyperco-
homology functor is representable by projective objects when restricted to certain
full subcategories of the Satake category. In addition, these projective objects are
isomorphic to the projective objects studied in [17] after base change to Q̄�. This,
together with Proposition 1.2, allows us to directly construct a Λ-algebra B(Λ)
as in [11]. The compatibility of the monoidal structure of H∗ and the projective
objects constructed in our case with those obtained in [17] enable us to inherit a
commutative multiplication map of B(Λ) from that of B(Q̄�), where the later comes
from the commutativity constraint of SatG,Q̄�

constructed in loc.cit. In other words,
the Λ-algebra B(Λ) admits the structure of a commutative Hopf algebra with an
antipode.

The general Tannakian construction (cf. [11]) yields an equivalence of tensor
categories

PL+G(GrG,Λ) � RepΛ(G̃Λ),

where G̃Λ := SpecB(Λ) is an affine flat group scheme and RepΛ(G̃Λ) denotes

the category of G̃Λ-modules which are finitely generated over Λ. We give two

approaches identifying G̃Λ with ĜΛ and conclude the proof of the theorem by a
result of Prasad-Yu [13] on quasi-reductive group schemes (cf. Theorem 8.2).

1.2. Organization of the paper. We briefly discuss the organization of this pa-
per. In §2, we give a quick review of the construction of affine Grassmannians in
mixed characteristic. Section 3 is devoted to the construction of the Satake cat-
egory and its monoidal structure. We study the hyperbolic localization functors
on the affine Grassmannian and define the weight functors in §4. In §5, we prove
that the weight functors are representable and study the structure of the projective
objects. In §6, we prove that the hypercohomology functor H∗ can be endowed
with a monoidal structure. We apply a generalized Tannakian formalism in §7. In
§8, we identify the group scheme constructed in §7 with the Langlands dual group
and conclude the main theorem of this paper.
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1.3. Notations. We fix an algebraically closed field k of characteristic p > 0. For
any k-algebra R, its ring of Witt vectors is denoted by

W (R) = {(r0, r1, · · · ) | ri ∈ R}.
We denote by Wh(R) the ring of truncated Witt vectors of length h. For any perfect
k-algebra R, we know that Wh(R) = W (R)/phW (R).

Let O0 = W (k), and F0 = W (k)[1/p]. We denote by F a totally ramified finite
extension of F0 and O the ring of integers of F . We also fix a uniformizer � in O.
For any k-algebra R, we define ring of Witt vectors in R with coefficient in O as

WO(R) := W (R)⊗̂W (k)O := lim←−
n

WO,n(R), and WO,n(R) = W (R)⊗W (k) O/�n.

We define the formal unit disk and formal punctured unit disk to be

DF,R := SpecWO(R), and D×
F,R := SpecWO(R)[1/p]

respectively. When F is clear from the context, we omit it from the subscripts in
DF,R and D×

F,R. We will assume G to be a smooth affine group scheme over O with
connected geometric fibers. Also, we denote by E0 the trivial G-torsor.

In the case G is a split reductive group, we will choose a Borel subgroup B ⊂ G
over O and a split maximal torus T ⊂ B. For the choice of (B, T ) we denote
by U ⊂ B the unipotent radical of B. We also let T ⊂ B ⊂ G be the fibres of
T ⊂ B ⊂ G at O/�, respectively. We write Δ(G, T ) for the root system of G with
respect to T . We denote by Δ+(G,B, T ) the subset of positive roots determined
by B and Δs(G,B, T ) the subset of simple roots, and 2ρ∨ the sum of all positive
coroots. Similarly, we let Δ∨(G, T ) denote the coroot system of G respect to T .
We write Δ∨

+(G,B, T ) for the subset of positive coroots determined by B and
Δ∨

s (G,B, T ) the subset of simple coroot.
Let X• and X• denote the coweight lattice and the weight lattice of T , respec-

tively. Let X+
• denote the semi-group of dominant coweights with respect to the

chosen Borel. Let 2ρ ∈ X• be the sum of all positive roots. Define the partial order
“≤” on X• such that λ ≤ μ, if and only if μ − λ equals a non-negative integral
linear combination of positive coroots. For any μ ∈ X•, denote �μ by the image of
μ under the composition of maps

Gm → T ⊂ G.

The Langlands dual group of G is denoted by Ĝ.

We will write Gp−∞

m , the perfection of the group scheme Gm, simply as Gm for
convenience. We let

∧
be Z� on F� for � 	= p unless otherwise stated.

2. Mixed characteristic affine Grassmannians

In this section, we review the construction of affine Grassmannians in mixed
characteristic and summarize their geometric properties which will be used later
following [17]. Most properties appearing in this section have analogies in the equal
characteristic setting, and we refer to [11] for a detailed discussion.

Let X be a finite type O-scheme. We consider the following two presheaves on
the category of perfect k-algebras defined as follows

L+
p X (R) := X (WO(R)), and Lh

pX (R) := X(WO,h(R)),

which are represented by schemes over k. Their perfections are denoted by

L+X := (L+
p X )p

−∞
, and LhX := (Lh

pX )p
−∞
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respectively, and we call them p-adic jet spaces.
Let X be an affine scheme over F . We define the p-adic loop space LX of X as

the perfect space by assigning a perfect k-algebra R to the set

LX(R) = X(WO(R)[1/p]).

Now, let X = G be a smooth affine group scheme over O. We write G(0) = G
and define the h-th congruence group scheme of G over O, denoted by G(h), as
the dilatation of G(h−1) along the unit. The group L+G(h) can be identified with
ker(L+G → LhG) via the natural map G(h) → G. Then L+G acts on LG by
multiplication on the right. We define the affine Grassmannian GrG of G to be the
perfect space

GrG := [LG/L+G]

on the category of perfect k-algebras.
In the work of Bhatt-Scholze [3], the functor GrG is proved to be representable

by an inductive limit of perfections of projective varieties.
We recall Proposition 2.1 in [17] for later use.

Proposition 2.1. Let ρ : G → GLn be a linear representation such that GLn/G
is quasi-affine. Then ρ induces a locally closed embedding GrG → GrGLn

. If in
addition GLn/G is affine, then GrG → GrGLn

is in fact a closed embedding.

Explicitly, the affine Grassmannian GrG can be described as assigning a perfect
k-algebra R the set of pairs (P, φ), where P is an L+G-torsor over SpecR and
φ : P → LG is an L+G-equivariant morphism. It is clear from the definition that
LG → GrG is an L+G-torsor and L+G naturally acts on GrG. Then we can form
the twisted product which we also call the convolution product in the current setting

GrG×̃GrG := LG×L+G GrG := [LG×GrG/L
+G],

where L+G acts on LG×GrG anti-diagonally as g+·([g1], [g2]) :=([g1(g
+)−1], [g+g2]).

As in the equal characteristic case, the affine Grassmannians can be interpreted
as the moduli stack of G-torsors on the formal unit disk with trivialization away
from the origin. More precisely, for each perfect k-algebra R,

GrG(R) =

{
(E , β)

∣∣∣∣E → DR is a G-torsor, and

β : E |D×
R
� E0 |D×

R

}
.

Let E1 and E2 be two G-torsors over DR, and let β : E1 |D×
R
� E2 |D×

R
be an

isomorphism. For any x ∈ SpecR, one can define the relative position Inv(βx) of
βx, the base change of β to x, as an element in X+

• as in [17]. For any μ ∈ X+
• ,

define

(SpecR)μ := {x ∈ SpecR | Inv(βx) = μ}
⊂ (SpecR)≤μ := {x ∈ SpecR | Inv(βx) ≤ μ}.

It is well known that (SpecR)≤μ is a closed subset of SpecR, and (SpecR)μ ⊂
(SpecR)≤μ is an open subset (cf. [17, Lemma 1.22]). The affine Grassmannian
admits a stratification of nice subspaces indexed by X+

• .

Definition 2.2. For each μ ∈ X+
• , we define functors on the opposite category of

perfect k-algebras

(1) the (spherical) Schubert variety

Gr≤μ(R) := {(E , β) ∈ GrG(R) | (SpecR)≤μ = SpecR},
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(2) the (spherical) Schubert cell

Grμ(R) := {(E , β) ∈ GrG(R) | (SpecR)μ = SpecR},
for each perfect k-algebra R.

We recall the following basic properties of Schubert cells and Schubert varieties
(cf. [17, Proposition 1.23]).

Proposition 2.3.

(1) Let μ ∈ X+
• , and �μ ∈ GrG be the corresponding point in the affine Grass-

mannian. Then the map

iμ : L+G/(L+G ∩�μL+G�−μ) −→ [LG/L+G], such that g �−→ g�μ

induces an isomorphism

L+G/(L+G ∩�μL+G�−μ) � Grμ.

(2) Grμ is the perfection of a quasi-projective smooth variety of dimension
(2ρ, μ).

(3) Gr≤μ is the Zariski closure of Grμ in GrG, and therefore is perfectly proper
of dimension (2ρ, μ).

The convolution Grassmannian GrG×̃GrG admits a moduli interpretation as
follows

GrG×̃GrG(R) =

{
(E1, E2, β1, β2)

∣∣∣∣E1, E2 are G− torsors on DR, and

β1 : E1 |D×
R
� E0 |D×

R
, β2 : E2 |D∗

R
� E1 |D×

R

}
.

Via this interpretation, we define the convolution morphism as in the equal char-
acteristic case

m : GrG×̃GrG −→ GrG,

such that

(E1, E2, β1, β2) �−→ (E2, β1β2).

Note that there is also the natural projection morphism

pr1 : GrG×̃GrG −→ GrG,

such that

(E1, E2, β1, β2) �−→ (E1, β1).

It is clear to see that (pr1,m) : GrG×̃GrG � GrG ×GrG is an isomorphism.
One can define the i-fold convolution Grassmannian GrG×̃ · · · ×̃GrG in a similar

manner as follows

GrG×̃ · · · ×̃GrG(R) :=

{
(Ek, βk)

i
k=1

∣∣∣∣Ek is a G-torsor over DR, and

βk : Ek |D×
R
� Ek−1 |D×

R

}
.

For i = 1, 2, · · ·n, we also define the i-fold convolution morphism

mi : GrG×̃ · · · ×̃GrG −→ GrG

such that

(Ek, βk)
i
k=1 �−→ (Ei, β1β2 · · ·βi : Ei |D×

R
� E0 |D×

R
).

As for the 2-fold convolution Grassmannian, we have an isomorphism

(m1,m2, · · · ,mn) : GrG×̃ · · · ×̃GrG � GrG × · · · ×GrG.
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Given a sequence of dominant coweights μ• = (μ1, · · · , μn) of G, we define the
following closed subspace of GrG×̃ · · · ×̃GrG,

Gr≤μ• := Gr≤μ1
×̃ · · · ×̃Gr≤μn

.

For a perfect k-algebra R, Gr≤μ•(R) classifies isomorphism classes of modifications
of G-torsors over DR

En En−1 · · · E0,
β1 βn−1 β1

where Inv(βi,x) ≤ μi for any x ∈ SpecR.
As in [17], we let |μ•| :=

∑
μi. Then the convolution map induces the following

morphism
m : Gr≤μ• −→ Gr≤|μ•|,

such that
(Ei, βi)i �−→ (En, β1 · · ·βn).

Replacing Gr≤μi
by Grμi

, we can similarly define Grμ• := Grμ1
×̃ · · · ×̃Grμn

. By
Proposition 2.3, we have

(2.1) Gr≤μ• = ∪μ′
•≤μ•Grμ′

• ,

where μ′
• ≤ μ• means μ′

i ≤ μi for each i. This gives a stratification of Grμ≤• .

3. The Satake category

In this section, we first define the Satake category SatG,Λ as the category of L+G-
equivariant Λ-coefficient perverse sheaves on GrG. We then define the convolution
map which enables us to equip the Satake category with a monoidal structure.

Recall that GrG can be written as a limit of L+G-invariant closed spaces

GrG = lim
→μ

Gr≤μ.

For each μ ∈ X+
• , the Schubert variety is perfectly proper, and the action of L+G

on Gr≤μ factors through some perfectly of finite type quotient LhG. Therefore, it
makes sense to define the category of L+G-equivariant perverse sheaves on Gr≤μ

as in [17, §2.1.1], which we denote by PL+G(Gr≤μ,Λ). Then we define the Satake
category as

PL+G(GrG,Λ) := lim
→μ

PL+G(Gr≤μ,Λ).

We denote by ICμ for each μ ∈ X+
• the intersection cohomology sheaf on Gr≤μ.

Its restriction to each open strata Grμ is constant and in particular, ICμ |Grμ�
Λ[(2ρ, μ)].

With the above preparation, we can define the monoidal structure in SatG,Λ by
Lusztig’s convolution of sheaves as in the equal characteristic counterpart. Consider
the following diagram

GrG ×GrG
p←− LG×GrG

q−→ GrG×̃GrG
m−→ GrG,

where p and q are projection maps. We define for any A1,A2 ∈ PL+G(GrG,Λ),

A �A2 := Rm!(A1�̃A2),

where A1�̃A2 ∈ PL+G(GrG×̃GrG,Λ) is the unique sheaf such that

q∗(A1�̃A2) � p∗(p H0(A1 �A2)).

Unlike the construction in PL+G(GrG, Q̄�), we emphasize that taking the 0-th per-
verse cohomology p H(•) in the above definition is necessary. This is because when
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we work with Z�-sheaves, the external tensor product A1�A2 may not be perverse.
In fact, A1 �A2 is perverse if one of H∗(Ai) is a flat Z�-module. For more details,
we refer to [11, Lemma 4.1] for a detailed explanation.

Proposition 3.1 is mentioned as a “miraculous theorem” of the Satake category
in equal characteristic (cf. [2]).

Proposition 3.1. For any A1,A2 ∈ PL+G(GrG,Λ), the convolution product A1 �
A2 is perverse.

Proof. Note by [17, Proposition 2.3] that the convolution morphism m is a stratified
semi-small morphism with respect to the stratification (2.1). Then the proposition
follows from the argument of [11, Lemma 4.3]. �

We can also define the n-fold convolution product in SatG,Λ

A1 � · · · �An := Rm!(A1�̃ · · · �̃An),

where A1�̃ · · · �̃An is defined in a similar way as A1�̃A2. By considering the
following isomorphism:

p H0(A1 � (p H0(A2 �A3)) � p H0(A1 �A2 �A3) � p H0(p H0(A1 �A2)�A3),

we conclude that the convolution product is associative:

(A1 �A2) �A3 � Rm!(A1�̃A2�̃A3) � A1 � (A2 �A3).

Thus, the category (SatG,Λ, �) is a monoidal category.

4. Semi-infinite orbits and weight functors

In this section, we review the construction and geometry of semi-infinite orbits
of GrG. By studying a Gm-action on the affine Grassmannian GrG, we realize
the semi-infinite orbits as the attracting loci of the Gm-action in the sense of [5].
We also define the weight functors and relate them to the hyperbolic localization
functors and study their properties.

We follow notions introduced in §1.3. Since U\G is quasi-affine, Proposition 2.1
shows that i : GrU ↪→ GrG is a locally closed embedding. For any λ ∈ X•, define
the semi-infinite orbit to be the locally closed subspace

Sλ := �λi(GrU )

in GrG. On the level of k-points, Sλ equals the orbit of �λ in GrG under the
LU -action. By the Iwasawa decomposition for p-adic groups, we know that

GrG = ∪λ∈X•Sλ.

Similarly, consider the opposite Borel B− and let U− be its unipotent radical. We
also define the opposite semi-infinite orbits

S−
λ := �λi(GrU−).

On the level of k-points, S−
λ is the LU−-orbit of �λ in GrG.

Recall the following closure relations as in [17, Proposition 2.5] (the equal char-
acteristic analogue of this statement is proved in [11, Proposition 3.1]).

Proposition 4.1. Let λ ∈ X•, then S≤λ := Sλ = ∪λ′≤λSλ′ and S−
≤λ := S−

λ =

∪λ′≤λS
−
λ′ .
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Base change the L+G-torsor LG → GrG along Sμ ↪→ GrG, we obtain an L+U -
torsor LU → Sμ. This allows us to construct the convolution of semi-infinite
orbits Sμ1

×̃Sμ2
×̃ · · · ×̃Sμn

. Let μ• = (μ1, · · · , μn) be a sequence of (not necessarily
dominant) coweights of G. We define

Sμ• := Sμ1
×̃Sμ2

×̃ · · · ×̃Sμn
⊂ GrG×̃GrG×̃ · · · ×̃GrG.

The morphism

m : Sμ• −→ Sμ1
× Sμ1+μ2

× · · · × S|μ•|

given by

(�μ1x1, �
μ2x2, · · ·�μ1nxn)

�−→ (�μ1x1, �
μ1+μ2(�−μ2x1�

μ2x2), · · · , �|μ•|(�−|μ•|+μ1x1 · · ·�μnxn))

is an isomorphism. The morphism m fits into the following commutative diagram

S≤μ• Sμ1
× Sμ1+μ2

× · · · × S|μn|

GrG×̃GrG×̃ · · · ×̃GrG GrG ×GrG × · · · ×GrG.

m

(m1,...,mn)

We also note that there is a canonical isomorphism

(4.1) (Sν1
∩Gr≤μ1

)×̃(Sν2
∩Gr≤μ2

)×̃ · · · ×̃(Sνn
∩Gr≤μn

) ∼= Sν• ∩Gr≤μ• .

Similar to the equal characteristic situation (cf. [11] (3.16), (3.17)), the semi-
infinite orbits may be interpreted as the attracting loci of certain torus action which
we describe here.

Recall the notation 2ρ∨ as in §1.3 and regard it as a cocharacter of G. The pro-
jection map L+

p Gm → Gm admits a unique section Gm → L+
p Gm which identifies

Gm as the maximal torus of L+
p Gm. This section allows us to define a cocharacter

Gm −→ L+Gm
L+(2ρ∨)−→ L+T ⊂ L+G.

Then the Gm-action on GrG is induced by the action of L+G on GrG. Under this
action by Gm, the set of fixed points are precisely R := {�λ | λ ∈ X•}. The
attracting loci of this action are semi-infinite orbits i.e.

Sλ = {g ∈ GrG | lim
t→0

L+(2ρ∨(t)) · (g) = �λ for t ∈ Gm}.

The repelling loci are the opposite semi-infinite orbits i.e.

S−
λ = {g ∈ GrG | lim

t→∞
L+(2ρ∨(t)) · (g) = �λ for t ∈ Gm}.

Recall that if X is a scheme and i : Y ↪→ X is an inclusion of a locally closed
subscheme, then for any F ∈ Db

c(X,Λ), the local cohomology group is defined as

Hk
Y (F) := Hk(Y, i!F).

Proposition 4.2. For any F ∈ PL+G(GrG,Λ), there is an isomorphism

Hk
c (Sμ,F) � Hk

S−
μ
(F),

and both sides vanish if k 	= (2ρ, μ).
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Proof. The proof is similar to the equal characteristic case (cf. [11, Theorem 3.5])
as the dimension estimation of the intersections of the semi-infinite orbits with
Schubert varieties is established in [17, Corollary 2.8]. Since F is perverse, for any
ν ∈ X+

• , we know that F |Grν∈ D≤− dim(Grν) = D≤−(2ρ,ν). By [17, Corollary 2.8],

we know that Hk
c (Sμ∩Gr≤ν ,F) = 0 if k > 2 dim(Sμ∩Gr≤ν) = (2ρ, μ+ν). Filtering

GrG by Gr≤μ, we apply a dévissage argument and conclude that

Hk
c (Sμ,F) = 0 if k > (2ρ, μ).

An analogous argument proves that

Hk
S−
μ
(F) = 0

if k < (2ρ, μ).
Now by regarding Sμ and S−

μ as the attracting and repelling loci of the Gm-
action, we apply the hyperbolic localization as in [5] and obtain

Hk
c (Sμ,F) � Hk

S−
μ
(F).

The proposition is thus proved. �
Let ModΛ denote the category of finitely generated Λ-modules and ModΛ(X•)

denote the category of X•-graded finitely generated Λ-modules.

Definition 4.3. For any μ ∈ X•, we define

(1) the weight functor

CTμ : PL+G(GrG,Λ) −→ ModΛ(X•),

by

CTμ(F) := H(2ρ,μ)
c (Sμ,F),

(2) the total weight functor

CT :=
⊕
μ

CTμ : PL+G(GrG,Λ) −→ ModΛ(X•),

by

CT(F) :=
⊕
μ

CTμ(F) :=
⊕
μ

H(2ρ,μ)
c (Sμ,F).

We denote by F the forgetful functor from ModΛ(X•) to ModΛ.

Proposition 4.4. There is a canonical isomorphism of functors

H∗(GrG, •) ∼= F ◦ CT : PL+G(GrG,Λ) −→ ModΛ .

In addition, both functors are exact and faithful.

Proof. By the definition of the semi-infinite orbits and the Iwasawa decomposition,
we obtain two stratifications of GrG by {Sμ | μ ∈ X•} and {S−

μ | μ ∈ X•},
respectively. The first stratification induces a spectral sequence with E1-terms
Hk

c (Sμ,F) and abutment H∗(GrG,F). This spectral sequence degenerates on the
E1-page by Proposition 4.2. Thus, there is a filtration of H∗(GrG,F) indexed by
(X•,≤) defined as

Fil≥μ H
∗(GrG,F) := ker(H∗(GrG,F) −→ H∗(S<μ,F)),

where S<μ := ∪μ′<μSμ′ . Direct computation yields that the associated graded of

the above filtration is
⊕

μ H
(2ρ,μ)
c (Sμ,F).
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Consider the second stratification ofGrG. It also induces a filtration of H∗(GrG,F)
as

Fil′<μ H
k(GrG,F) := Im(H∗

S−
≤μ

(F) −→ H∗(GrG,F)),

where S−
<μ := ∪μ′<μS

−
μ′ .

Now, by Proposition 4.2, the two filtrations are complementary to each other

and together define the decomposition H∗(GrG, •) �
⊕

μ H
(2ρ,μ)
c (Sμ, •).

Next, we prove that the total weight functor CT is exact. To do so, it suffices to
show that the weight functor CTμ is exact for each μ ∈ X•. Let

0 −→ F1 −→ F2 −→ F3 −→ 0

be an exact sequence in PL+G(GrG,Λ). It is given by a distinguished triangle

F1 −→ F2 −→ F3
+1−→

in Db
c(GrG,Λ). We thus have a long exact sequence of cohomology

· · · −→ Hk
c (Sμ,F1) −→ Hk

c (Sμ,F2) −→ Hk
c (Sμ,F3) −→ Hk+1

c (Sμ,F1) −→ · · · .
Then Proposition 4.2 gives the desired exact sequence

0 −→ CTμ(F1) −→ CTμ(F2) −→ CTμ(F3) −→ 0.

We conclude the proof by showing that CT is faithful. Since CT is exact, it
suffices to prove that CT maps non-zero objects to non-zero objects. Let F ∈ SatG,Λ

be a non-zero object. Then supp(F) is a finite union of Schubert cells Grν . Choose
ν to be maximal for this property. Then F |Grν� Λ⊕n[(2ρ, ν)] for some positive
integer n and it follows that CTν(F) 	= 0. Thus the functor H∗ is faithful. �

Remark 4.5. The weight functor is in fact independent of the choice of the maximal
torus T . The proof for this is analogous to the equal characteristic case (cf. [11,
Theorem 3.6]), and we omit it here.

We note that the analogue of [17, Corollary 2.9] also holds in our setting. In
particular, H∗(ICμ) is a free Λ-module for any μ ∈ X+

• .
We end this section by proving a weaker statement of [11, Proposition 2.1] which

will be used in the process of identification of group schemes in §8.

Lemma 4.6. There is a natural equivalence of tensor categories

α : PL+G(GrG,Λ) ∼= PL+(G/Z)(GrG,Λ),

where Z is the center of G.

Proof. We first note that the category PL+(G/Z)(GrG,Λ) can be identified as a full

subcategory of PL+G(GrG,Λ). Let X ⊂ GrG be a finite union of L+G-orbits. Since
L+Z acts on GrG trivially, the action of L+G on GrG factors through the quotient
L+(G/Z). In other words, the following diagram commutes

L+G×X X

L+(G/Z)×X

a1

q
a2
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where a1 and a2 are the action maps and q is the natural projection map. In
addition, the following diagram is clearly commutative.

L+G×X X

L+(G/Z)×X

p1

q
p2

It follows that if F ∈ PL+(G/Z)(GrG,Λ), then F is automatically L+G-equivariant.
Thus it suffices to prove the reverse direction. We prove by induction on the

number of L+G-orbits in X following the idea in the proof of [11, Proposition A.1].
First, we assume that X contains exactly one L+G-orbit. Write X = Grμ for some
μ ∈ X+

• . Recall Proposition 2.2.3.(1) and [17, 1.4.4]. There is a natural projection
with fibres isomorphic to the perfection of affine spaces

πμ : Grμ � L+G/(L+G ∩�μL+G�−μ) −→ (G/Pμ)
p−∞

(gtμ mod L+G) �−→ (ḡ mod P
p−∞

μ ),

where Pμ denotes the parabolic subgroup of G generated by T and the root sub-

groups Uα of G corresponding to those roots α satisfying
〈
α, μ

〉
≤ 0, and Pμ

denotes the fibre of Pμ at O/�. Assume that L+G acts on (G/Pμ)
p−∞

by a finite
type quotient LnG. Since the stabilizer of this action of L+G is connected, we

have a canonical equivalence of categories (cf. [17, A.3.4]) PL+G((G/Pμ)
p−∞

,Λ) �
PLnG((G/Pμ)

p−∞
,Λ). Finally, we note that PLnG((G/Pμ)

p−∞
,Λ) is equivalent

to ModΛ(BLnG), we conclude that PL+G(Grμ,Λ) � ModΛ(BLnG). A completely
similar argument implies that PL+(G/Z)(Grμ,Λ) � ModΛ(BLnG) which concludes
the proof in the case X = Grμ.

Now we treat the general X. The machinery we will use here is the gluing
construction for perverse sheaves established in [10], [14]. Assume that L+G and
L+(G/Z) act on X through finite type quotient LmG and Lm(G/Z) respectively.
Choose μ ∈ X+

• such that Grμ ⊂ X is a closed subspace, and let U := X\Grμ. By
induction hypothesis, we know that PL+G(U,Λ) is equivalent to PL+(G/Z)(U,Λ).
Denote by i : Grμ ↪→ X and j : U ↪→ X the closed and open embeddings, respec-

tively. Let G̃rμ := Lm(G/Z)×Grμ, X̃ := Lm(G/Z)×X, and Ũ := Lm(G/Z)×U .

Denote by j̃ : Ũ ↪→ X̃ the open embedding. The stratification on X induces a

stratification on X̃ which has strata equal to products of Lm(G/Z) with strata in

X. Restricting to Ũ , we get a stratification of Ũ . Considering the action of LmG

on X̃ and Ũ by left multiplication on the second factor, we can define categories

PL+G(X̃,Λ) and PL+G(Ũ ,Λ). Define the functor

C̃Tμ : PLmG(X̃,Λ) −→ LocΛ(L
m(G/Z))

C̃Tμ(F) := H(2ρ,μ)+dimLm(G/Z)(π!ĩ
∗(F))

for any F ∈ PL+G(X̃,Λ), where ĩ : Lm(G/Z)× (Sμ ∩X) ↪→ X̃ is the locally closed
embedding, π : Lm(G/Z) × (Sμ ∩ X) → Lm(G/Z) is the natural projection, and
LocΛ(L

m(G/Z)) denotes the category of Λ-local systems on Lm(G/Z). A com-

pletely similar argument as in Proposition 4.2 shows that C̃Tμ is an exact functor.

Let F̃1 := C̃Tμ ◦ pj̃!, F̃2 := C̃Tμ ◦ pj∗ : PL+G(Ũ ,Λ) → LocΛ(L
m(G/Z)). Finally
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let T̃ := C̃Tμ(
pj̃! → pj̃∗). Then as in [11, Appendix A], we get an equivalence of

abelian categories

Ẽ : PL+G(X̃,Λ) � C(F̃1, F̃2, T̃ ),

where the second category in the above is defined in loc.cit. The same argument in
[11, Proposition A.1] applies here and gives

Ẽ(a∗2F) � Ẽ(p∗2F).

Then we deduce an isomorphism a∗2F � p∗2F and the lemma is thus proved. �

5. Representability of weight functors and the structure of

representing objects

In §4, we construct the weight functors and the total weight functor

CTμ,CT : PL+G(GrG,Λ) → ModΛ .

We will prove in this section that both functors are (pro)representable, so that we
can apply the (generalized) Deligne and Milne’s Tannakian formalism as in [11, §11].
In the following, we will recall the induction functor (cf. [11]) to explicitly construct
the representing object of each weight functor and use the representability of the
total weight functor to prove that the Satake category has enough projective objects.
At the end of this section, we give a few propositions of the representing objects
which will be used to apply the (generalized) Tannakian formalism.

Let Z ⊂ GrG be a closed subspace which is a union of finitely many L+G-orbits.
Choose n ∈ Z large enough so that L+G acts on Z via the quotient LnG. Let
ν ∈ X•. As in [11, §9], we consider the following commutative diagram

S−
ν ∩ Z LnG× (S−

ν ∩ Z) Z

Z LnG× Z Z

i

ã

p
a

where i is the locally closed embedding, a and ã are the action maps, and p is the
projection map. Then we define

PZ(ν,Λ) :=
p H0(a!p

!i!ΛS−
ν ∩Z [−(2ρ, ν)]).

Most results appear in this section can be proved similar to the equal characteristic
case. Thus, we will briefly discuss the main ideas in the proofs and refer readers to
relevant references for details.

Proposition 5.1. The restriction of the weight functor CTν to PL+G(Z,Λ) is
represented by the projective object PZ(ν,Λ) in PL+G(Z,Λ).

Proof. The proof uses the idea in [11, Proposition 9.1] and we sketch it here.
For any F ∈ PL+G(Z,Λ), by adjunction we have

CTν(F) = Ext0DLnG(Z,Λ)(a!p
!i!ΛS−

ν ∩Z [−(2ρ, ν)],F).

Then it suffices to prove that a!p
!i!ΛS−

ν ∩Z [−(2ρ, ν)] ∈ pD≤0(Z,Λ). This can be
shown by Proposition 4.2.

�
Corollary 5.2. The category PL+G(Z,Λ) has enough projectives.
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Proof. For any F ∈ PL+G(Z,Λ), choose a finitely generated Λ-projective covers
Pν → CT(F). Then in fact, ⊕ν∈X(Pν ⊗Λ PZ(ν,Λ)) → F is a projective cover. For
details, see [11, Corollary 9.2]. �

Let PZ(Λ) := ⊕ν∈XPZ(ν,Λ). We have the following properties of projective
objects.

Proposition 5.3.

(1) Let Y ⊂ Z be a closed subset which is a union of L+G-orbits. Then

PY (Λ) =
p H0(PZ(Λ) |Y ),

and there is a canonical surjective morphism

pZY : PZ(Λ) −→ PY (Λ).

(2) For each L+G-orbit Grλ, denote by jλ : Grλ ↪→ GrG the open embedding.
The projective object PZ(Λ) has a filtration with associated graded

gr(PZ(Λ)) �
⊕

Grλ⊂Z

CT(pjλ,∗ΛGrλ
[(2ρ, λ)])∗ ⊗ pjλ,!ΛGrλ

[(2ρ, λ)].

In particular, H∗(PZ(Λ)) is a free Λ-module of finite rank.
(3) For Λ = Q̄� and F�, there is a canonical isomorphism

PZ(Λ) ∼= PZ(Z�)⊗L
Z�

Λ.

Proof. The proof is similar to that of [11, Proposition.10.1], and we sketch it here.
Let i : Y ↪→ Z be a closed embedding of L+G-orbits. Then Hom(PZ(Λ), i∗F) =

Hom(PZ(Λ)|Y ,F) for any F ∈ PL+G(Y,Λ). Since PZ(Λ)|Y ∈ pD≤0(Y,Λ), we
have PY (Λ) =

p H0(PZ(Λ)|Y ). The isomorphism of functors Hom(PZ(Λ), i∗(•)) �
Hom(PZ(Λ), i∗(•)) induces the desired canonical surjective morphism in (1).

We apply induction on the number of L+G-orbits in Z to prove part (2). Let
Grλ ⊂ Z is open and Y := Z\Grλ be the closed complement. By (1), we have a
short exact sequence
(5.1) 0 → K → PZ(Λ) → PY (Λ) → 0,

where K denotes the kernel. Let M be a finitely generated Λ-module. Apply the
functor RHom(•, pjλ,∗M) to (5.1), we get by adjunction an isomorphism

(5.2) Hom(K|Grλ ,MGrλ
[(2ρ, λ)] � CT(pjλ,∗M [(2ρ, λ)]).

The study of standard and co-standard sheaves (cf. [11, §8]) implies that the functor

F : ModΛ → ModΛ, M �→ CT(pjλ,∗M [(2ρ, λ)])

is represented by the free Λ-module CT(pjλ,∗Λ[(2ρ, λ)])
∗. Then (5.2) implies that

(5.3) K|Grλ � CT(pjλ,∗Λ[(2ρ, λ)])
∗ ⊗ ΛGrλ

[(2ρ, λ)].

By adjunction, (5.3) gives rise to the following exact sequence

(5.4) 0 → K ′ → CT(pjλ,∗Λ)
∗ ⊗ pjλ,!Λ[(2ρ, λ)] → K → C → 0,

where K ′ and C denote the kernel and cokernel. Applying the functor RHom(•, C)
to (5.1), we conclude that C = 0 since it is supported on Y . Let Λ = Z�, [11,
Proposition 8.2] implies that K ′ = 0. Thus, we deduce from (5.4) that

(5.5) K � CT(pjλ,∗Λ)
∗ ⊗ pjλ,!Λ[(2ρ, λ)].

Then (5.1), (5.5), together with the induction hypothesis prove (b) for Λ = Z�.
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Since Λ ⊗Z�
pjλ,!Z�[(2ρ, λ)] � pjλ,!Λ[(2ρ, λ)] (cf. [11, Proposition 8.1.(a)]), our

proof for (b) in the case of Λ = Z� shows that Λ ⊗Z�
PZ(Z�) is perverse. By

adjunction, we have (cf. [11, (10.9)])

Hom(Λ⊗Z�

pjλ,!Z�[(2ρ, λ)], •) � CT(•) : PL+G(Z,Λ) → ModΛ .

We thus have Λ⊗Z�
PZ(Z�) � PZ(Λ). Statement (c) and statement (b) for Λ = Z�

imply the general case of (b). �

For the rest of this section, we set Λ = Z�.

Proposition 5.4. Let F ∈ PL+G(Z,Λ) be a projective object. Then H∗(F) is a
projective Λ-module. In particular, H∗(F) is torsion-free.

Proof. Since Hom(PZ(Λ), •) is exact and faithful, the object PZ(Λ) is a projec-
tive generator of PL+G(Z,Λ). Then each object in the Satake category admits a
resolution by direct sums of PZ(Λ). Choose such a resolution for F
(5.6) PZ(Λ)

⊕m −→ F −→ 0.

In this way, F can be realized as a direct summand of PZ(Λ)
⊕m. By Proposition

5.3(2), we notice that H∗(PZ(Λ)
⊕m) is a finitely generated free Λ-module. Finally,

by the exactness of the global cohomology functor H∗(•), we conclude that H∗(F)
is a direct summand of H∗(PZ(Λ)

⊕m) and is thus a projective Λ-module. �

Remark 5.5. Proposition 5.4 becomes immediate once the geometric Satake equiv-
alence is established.

6. The monoidal structure of H∗

In this section, we study the Gm-action on GrG×̃GrG and apply the hyperbolic
localization theorem to prove that the hypercohomology functor H∗ : PL+G(GrG,Λ)
→ Mod(Λ) is a monoidal functor. Then we study the relation between the total
weight functor CT and the hypercohomology functor H∗. At the end of this section,
we prove that the monoidal structure on H∗ we constructed is compatible with the
one constructed in [17].

We recall the action of Gm on GrG defined in §4, and let Gm act on GrG ×GrG
diagonally. Then,

R× R := {(g1, g2) ∈ GrG ×GrG | L+(2ρ∨(t)) · (g1, g2) = (g1, g2)},

Sμ1
× Sμ2

= {(g1, g2) ∈ GrG ×GrG | lim
t→0

L+(2ρ∨(t)) · (g1, g2) = (�μ1 , �μ2)},

and

S−
μ1

× S−
μ2

= {(g1, g2) ∈ GrG ×GrG | lim
t→∞

L+(2ρ∨(t)) · (g1, g2) = (�μ1 , �μ2)}

are the stable, attracting, and repelling loci of the Gm-action, respectively. Recall
that there is an isomorphism (m1,m2) : GrG×̃GrG � GrG×GrG (cf. §2). Then the
diagonal action of Gm on GrG ×GrG induces an action on GrG×̃GrG. Explicitly,
write (g1×̃g2) = (m1,m2)

−1(g1, g1g2) ∈ GrG×̃GrG, then t(g1×̃g2) := (tg1×̃g−1
1 g2)

for any t ∈ Gm, (g1 g2) ∈ GrG. The stable, attracting, and repelling loci of the
Gm-action on GrG×̃GrG are

R×̃R = {(�μ1×̃�μ2−μ1) | μ1, μ2 ∈ X+
• },



THE INTEGRAL GEOMETRIC SATAKE EQUIVALENCE 889

Sμ1
×̃Sμ2−μ1

= {(g1×̃g2) ∈ GrG×̃GrG | lim
t→0

L+(2ρ∨(t))·(g1×̃g2) = (�μ1×̃�μ2−μ1)},

and

S−
μ1
×̃S−

μ2−μ1
= {((g1×̃g2) ∈ GrG×̃GrG | lim

t→∞
L+(2ρ∨(t)) · (g1×̃g2)

= (�μ1×̃�μ2−μ1)},

respectively.

Lemma 6.1. For any F ,G ∈ SatG,Λ, we have the following isomorphisms

H∗
S−
μ1

×̃S−
μ2−μ1

(GrG×̃GrG,F�̃G) � H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G)

� H∗
c(Sμ1

,F)⊗H∗
c(Sμ2−μ1

,G).
(6.1)

In addition, the above cohomology groups vanish outside degree (2ρ, μ2).

Proof. By our discussion on the Gm-action on GrG×̃GrG above, the first isomor-
phism can be obtained by applying Braden’s hyperbolic localization theorem [5].
Therefore, we are left to prove the second isomorphism and the vanishing property
of the cohomology. We first establish a canonical isomorphism

H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G) ∼= H∗

c(Sμ1
× Sμ2−μ1

, p H0(F�G)).

The idea of constructing this isomorphism is completely similar to the one that
appears in [17, Corollary 2.17], and we sketch it here.

Assume LU acts on Sμ1
via the quotient LnU for some positive integer n. Denote

by S
(n)
μ1 the pushout of the L+U -torsor LU → Sμ1

along L+U → LnU . Then

π : S
(n)
μ1 → Sμ1

is an LnU -torsor. Denote by π∗F the pullback of F along π. Then
we have the following projection morphisms

Sμ1
× Sμ2−μ1

π×id←− S(n)
μ1

× Sμ2−μ1

q−→ Sμ1
×̃Sμ2−μ1

.

Since LnU is isomorphic to the perfection of an affine space of dimension n dimU ,
we have the following canonical isomorphisms

H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G)

∼= H∗
c(S

(n)
μ1

× Sμ2−μ1
, q∗(F�̃G))

∼= H∗
c(S

(n)
μ1

× Sμ2−μ1
, (π × id)∗(p H0(F � G)))

∼= H∗
c(Sμ1

× Sμ2−μ1
, p H0(F � G)).

Next, we prove that there is a natural isomorphism

(6.2) H∗
c(Sμ1

× Sμ2−μ1
, p H0(F � G)) ∼= H∗

c(Sμ1
,F)⊗H∗

c(Sμ2−μ1
,G).

Assume that G is a projective object in the Satake category. Then by Proposition
5.4 and discussion in §2, we have p H0(F � G) = F � G and (6.2) thus holds. Now
we come back to the general situation. Since F � G ∈ pD≤0(GrG ×GrG,Λ), there
is a natural morphism F � G → p H0(F � G). It then induces a map

H∗
c(Sμ1

,F)⊗H∗
c(Sμ2−μ1

,G)
� H∗

c(Sμ1
× Sμ2−μ1

,F � G) → H∗
c(Sμ1

× Sμ2−μ1
, p H0(F � G)).
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By Corollary 5.2, we can find a projective resolution F2 → F1 → F → 0 for F .
Since the functor p H0(•� G) is right exact, we get the following exact sequence

(6.3) p H0(F2 � G) −→ p H0(F1 � G) −→ p H0(F � G) −→ 0.

Applying Proposition 4.2 to G × G, we get from the previous discussion the long
exact sequence

H∗
c(Sμ1

,F2)⊗H∗
c(Sμ2−μ1

,G) → H∗
c(Sμ1

,F1)⊗H∗
c(Sμ2−μ1

,G)
→ H∗

c(Sμ1
× Sμ2−μ1

, p H0(F � G)) → 0.

Comparing the above exact sequence with the one obtained from tensoring the
following exact sequence

H∗
c(Sμ1

,F2) −→ H∗
c(Sμ1

,F1) −→ H∗
c(Sμ1

,F) −→ 0

with H∗
c(Sμ2−μ1

,G), we complete the proof of (6.2).
Finally, consider Proposition 4.2 together with (6.2), and we conclude the proof

of the lemma. �

The previous lemma motivates us to study the analogue of the total weight
functor

CT′ :PL+G(GrG,Λ)× PL+G(GrG,Λ) −→ ModΛ(X•).

(F ,G) �→
⊕

μ1, μ2∈X

H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G)′′

Recall that we denote F : ModΛ(X•) → ModΛ to be the forgetful functor.

Proposition 6.2. There is a canonical isomorphism
(6.4)

H∗(GrG×̃GrG,F�̃G) ∼= F ◦CT′(F�̃G) : PL+G(GrG,Λ)×PL+G(GrG,Λ) → ModΛ,

for all F , G ∈ PL+G(GrG,Λ).

Proof. The convolution Grassmannian GrG×̃GrG admits a stratification by the
convolution of semi-infinite orbits

{Sμ1
×̃Sμ2−μ1

| μ1, μ2 ∈ X•}.
For any F ,G ∈ PL+G(GrG,Λ), there is a spectral sequence with E1-terms

H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G) and abutment H∗(GrG×̃GrG,F�̃G). By the Lemma 6.1,

this spectral sequence degenerates on the E1 page. Hence, there exists a filtration

Fil≥μ1,μ2
H∗(F�̃G) := ker(H∗(F�̃G) → H∗

c(S<μ1,<μ2
,F�̃G)),

where S<μ1,<μ2
:= ∪ν1<μ1,ν1+ν2<μ2

Sν1
×̃Sν2−ν1

. It is clear that the associated

graded of this filtration is ⊕μ1,μ2∈X• H
∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G).

Similarly, consider the stratification {S−
μ1
×̃S−

μ2−μ1
|, μ1, μ2 ∈ X•} of GrG×̃GrG.

It also induces a filtration

Fil′<μ1,μ2
H∗(F�̃G) := Im(H∗

T<μ1,<μ2
(F�̃G) → H∗(F�̃G))

on H∗(GrG×̃GrG,F�̃G) where T<μ1,<μ2
:= ∪ν1<μ1,ν1+ν2<μ2

Tν1
×̃Tν2−ν1

. The two
filtrations are complementary to each other by Lemma 6.1 and the proposition is
proved. �
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Proposition 6.3. Under the canonical isomorphism

H∗(GrG,F � G) ∼= H∗(GrG×̃GrG,F�̃G),

the weight functor decomposition of the hypercohomology functor obtained in Propo-
sition 4.2 and the analogous decomposition given by Proposition 6.2 are compatible.
More precisely, for any F ,G ∈ PL+G(GrG,Λ) and any μ2 ∈ X•, we have the fol-
lowing isomorphism

(6.5) H∗
c(Sμ2

,F � G) �
⊕
μ1

H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G),

which identifies both sides as direct summands of the direct sum decomposition of
H∗(GrG,F � G) and H∗(GrG×̃GrG,F�̃G), respectively.

Proof. Consider the following commutative diagram

m−1(Sμ2
) GrG×̃GrG

Sμ2
GrG.

m1

f̃+

m

f+

Here, f and f̃+ are the natural locally closed embeddings. The morphism m1 is
the convolution morphism m restricted to m−1(Sμ2

).
Consider the Gm-equivariant isomorphism (pr1,m) : GrG×̃GrG � GrG × GrG.

The preimage of Sμ2
along m can be described as

(pr1,m) : m−1(Sμ2
) � GrG × Sμ2

.

As before, the diagonal action of Gm on GrG × Sμ2
induces a Gm- action

on m−1(Sμ2
) with invariant loci {(�μ1 , �μ2) | μ1 ∈ X•}. Via the isomorphism

(pr1,m)−1, the attracting and repelling loci for (�μ1×̃�μ2−μ1) in m−1(Sμ2
) are

Sμ1
×̃Sμ2−μ1

,

and

Tμ1,μ2
:= (pr1,m)−1(S−

μ1
× {�μ2}),

respectively. Applying the hyperbolic localization theorem to m−1(Sμ2
), we have

the following isomorphism

(6.6) H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G) � H∗

Tμ1,μ2
(F�̃G).

By Lemma 6.1, the above cohomology groups concentrate in a single degree.
Filtering the space m−1(Sμ2

) by {Sμ1
×̃Sμ2−μ1

| μ1 ∈ X•}, we get a spectral

sequence with E1-terms H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G). As noticed in Lemma 6.1, this

spectral sequence degenerates on the E1-page. Then, there exists a filtration

Filμ1,μ′
2
:= ker(H∗(m−1(Sμ2

),F�̃G) → H∗(∪μ′
1<μ1

Sμ′
1
×̃Sμ2−μ′

1
,F�̃G))

with associated graded ⊕
μ1

H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G).
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Similarly, filtering m−1(Sμ2
) by {Tμ1,μ2

| μ1 ∈ X•}, we get an induced spectral

sequence with E1-terms H∗
Tμ1,μ2

(F�̃G). This spectral sequence also degenerates on

the E1-page and there is an induced filtration

Fil′μ1,μ2
:= Im(H∗

T<μ1,μ2
(F�̃G) → H∗(F�̃G)),

where T<μ1,μ2
:= ∪μ′

1<μ1
Tμ′

1,μ2
. The two filtrations are complementary to each

other by (6.6) and together define the decomposition

H∗
c(Sμ2

,F � G) �
⊕
μ1

H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G).

�

Proposition 6.4. The hypercohomology functor H∗(GrG, •) : PL+G(GrG,Λ) →
ModΛ is a monoidal functor. In addition, the obtained monoidal structure is com-
patible with the weight functor decomposition established in Proposition 4.2

Proof. Recall for F ,G ∈ PL+G(GrG,Λ), the convolution product F �G is defined as

F � G = Rm!(F�̃G). Then by Lemma 6.1 and Proposition 6.2, there are canonical
isomorphisms

H∗(GrG,F � G)
∼= H∗(GrG×̃GrG,F�̃G)
∼=

⊕
μ1,μ2

H∗
c(Sμ1

×̃Sμ2−μ1
,F�̃G)

∼=
⊕
μ1,μ2

(
H∗

c(Sμ1
,F)⊗H∗

c(Sμ2−μ1
,G)

)
∼=

(⊕
μ1

H∗
c(Sμ1

,F)
)
⊗
(⊕

μ2

H∗
c(Sμ2

,G)
)

∼= H∗(F)⊗H∗(G).
Note that by Proposition 4.2, we have the decomposition of the total weight functor
into direct sum of weight functors H∗(GrG,F �G) � ⊕λ H

∗
c(Sλ,F �G). Proposition

6.3 then shows that the monoidal structure obtained above is compatible with
the weight functor decomposition. Finally, we need to show that the monoidal
structure of H∗ is compatible with the associativity constraint. This can be proved
by considering the Gm- action on GrG×̃GrG×̃GrG induced by the diagonal action
of Gm on GrG ×GrG ×GrG via the isomorphism

(m1,m2,m3)
−1 : GrG ×GrG ×GrG � GrG×̃GrG×̃GrG.

Note that in this case we can still split the intersection (Sν1
×̃Sν2

×̃Sν3
) ∩

(Gr≤μ1
×̃Gr≤μ2

×̃Gr≤μ3
) by (4.1). This allows us to apply the hyperbolic local-

ization theorem and a similar spectral sequence argument as before. We obtain the
desired compatibility property and the proposition is thus proved. �

With the monoidal structure of H∗ established above, we are now ready to prove
the following results.

Proposition 6.5. For any F ∈ SatG,Λ, the functors (•) � F and F � (•) are both
right exact. If in addition F is a projective object, then these functors are exact.
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Proof. Let

(6.7) 0 → G′ → G → G′′ → 0

be an exact sequence in SatG,Λ. By Proposition 4.2, taking global cohomology gives
an exact sequence

(6.8) H∗(G′) −→ H∗(G) −→ H∗(G′′) −→ 0.

Tensoring (6.8) with H∗(F) gives the exact sequence

(6.9) H∗(G′)⊗H∗(F) −→ H∗(G)⊗H∗(F) −→ H∗(G′′)⊗H∗(F) −→ 0.

By Proposition 6.3, (6.9) is canonically isomorphic to the following sequence

(6.10) H∗(G′ � F) −→ H∗(G � F) −→ H∗(G′′ � F) −→ 0.

Notice that by Proposition 4.2, the global cohomology functor H∗(•) is faithful,
then the exactness of (6.9) implies that the sequence

G′ � F −→ G � F −→ G′′ � F −→ 0

is also exact. The right exactness for F � (•) can be proved similarly.
Now, assume F to be a projective object in the Satake category. By Proposition

5.4, we know that the functors H∗(•)⊗H∗(F) and H∗(F)⊗H∗(•) are both exact.
Then arguing as before and using the monoidal structure and the faithfulness of
the functor H∗(•), we conclude the proof. �

Again, Proposition 6.5 becomes obvious once Theorem 1.1 is proved.
We conclude the discussion on the monoidal structure of H∗ by identifying it with

the one constructed in [17]. For this purpose, we briefly recall the construction in
loc.cit.

Let F ,G ∈ PL+G(GrG, Q̄�). Assume that L+G acts on supp(G) via the quotient
L+G → LmG. Define supp(F)×̃ supp(G) := supp(F)(m)×LmG supp(G) and denote
by π the projection morphism supp(F)(m) → supp(F). Then we have an L+G ×
LmG-equivariant projection morphism

p : supp(F)(m) × supp(G) −→ supp(F)×̃ supp(G),
the L+G action on supp(F)(m) is by multiplication on the left and the LmG ac-
tion on supp(F)(m) × supp(G) is the one used in constructing the twisted prod-
uct supp(F)×̃ supp(G). Then p induces a canonical isomorphism of the L+G-
equivariant cohomology (cf. [17, A.3.5])
(6.11)

H∗
L+G(supp(F)×̃ supp(G),F�̃G) ∼= H∗

L+G×LmG(supp(F)(m) × supp(G), π∗F � G).
By the equivariant Künneth formula (cf. [16, A.1.15] ), there is a canonical isomor-
phism

H∗
L+G×LmG(supp(F)(m) × supp(G), π∗F � G)
∼= H∗

L+G×LmG(supp(F)(m),F)⊗H∗
L+G×LmG(supp(G),G).

(6.12)

Combine (6.11) with (6.12), and we conclude a canonical isomorphism
(6.13)

H∗
L+G(supp(F)×̃ supp(G),F�̃G) ∼= H∗

L+G(supp(F),F)⊗H∗
L+G(supp(G),G).

We denote by GQ̄�
the base change of G to Q̄�. Let RG,� := Sym(gQ̄�

(−1))GQ̄�

denote the algebra of invariant polynomials on the Lie algebra gQ̄�
(−1). Then
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(6.13) induces an isomorphism of RG,�-bimodules. In addition, the two RG,�-module

structures coincide ([17, Lemma 2.19]) and the base change of (6.13) along the
augmentation map RG,� → Q̄�, the canonical isomorphism

(6.14) H∗
L+G(F)⊗RG,�

Q̄�
∼= H∗(F)

gives the monoidal structure of H∗ in the Q̄�-case ([17, Proposition 2.20]).
Then to identify the monoidal structures, it suffices to prove Proposition 6.6.

Proposition 6.6. Let F ,G ∈ PL+G(GrG,Z�) be two projective objects. We denote
F⊗Q̄� and G⊗Q̄� by F ′ and G′, respectively. Then the following diagram commutes
(6.15)

H∗
L+G(supp(F ′)×̃ supp(G′),F ′�̃G′)⊗RG,�

Q̄� H∗(F ′�̃G′)

(H∗
L+G(F ′)⊗RG,�

H∗
L+G(G′))⊗RG,�

Q̄�

⊕
μ1,μ2

H∗
c(Sμ1

×̃Sμ2−μ1
,F ′�̃G′)

(H∗
L+G(F ′)⊗RG,�

Q̄�)⊗Q̄�
(H∗

L+G(G′)⊗RG,�
Q̄�) (

⊕
μ1

H∗
c(Sμ1

,F ′))⊗Q̄�
(
⊕

μ2
H∗

c(Sμ2−μ1
,G′))

(6.14)

(6.13) α

∼= β

�

where the morphisms α and β are the base change of isomorphisms (6.4) and (6.1)
to Q̄�, respectively.

Proof. Consider the filtrations

Fil≥μ1,μ2
H∗(F ′�̃G′),Fil≥μ H

∗(F ′), and Fil≥μ H
∗(G′)

defined as in Proposition 6.2 and Proposition 4.2. To prove the proposition, it
suffices to prove that these filtrations respect (6.13). Then taking the Verdier dual

(note now H∗(F ′�̃G′), H∗(F ′), and H∗(G′) are all Q̄�-vector spaces) implies that
the complementary filtrations Fil′<μ1,μ2

and Fil′<μ also respect (6.13). This will
provide the commutativity of (6.15).

The approach we will use is similar to the one given in [16, Proposition 5.3.14],
and we sketch it here. Although the semi-infinite orbit Sμ does not admit an
L+G-action, it is stable under the action of the constant torus T ⊂ L+T ⊂ L+G.
Then so is the convolution product of semi-infinite orbits Sμ1

×̃Sμ2−μ1
. Stratifying

GrG×̃GrG by {Sμ1
×̃Sμ2−μ1

| μ1, μ2 ∈ X•}, we get a spectral sequence with E1-

terms H∗
T,c(Sμ1

×̃Sμ2−μ1
,F ′�̃G′) which abuts to H∗

T (F ′�̃G′). By [17, Proposition
2.7], the spectral sequence degenerates on the E1-page and the filtration Fil≥μ1,μ2

thus lifts to a new filtration of H∗
T

Fil≥μ1,μ2
H∗

T (F ′�̃G′) := ker(H∗
T (F ′�̃G′) → H∗

T (S<μ1
×̃S<μ2−μ1

,F ′�̃G′)).

Using a similar argument as in the proof of Proposition 6.2, the associated graded
of this filtration equals

⊕
μ1,μ2

H∗
T,c(Sμ1

×̃Sμ2−μ1
,F ′�̃G′). Note that all the terms

in this filtration and the associated graded are in fact free RT ,�-modules, then base

change to Q̄� along the augmentation map RT ,� → Q̄� recovers our original filtration

Fil≥μ1,μ2
. Similarly, we can define the filtrations Fil≥μ H

∗
T (F ′) and Fil≥μ H

∗
T (G′)

which recover the original filtrations Fil≥μ H
∗(F ′) and Fil≥μ H

∗(G′) in the same
way.

Since

H∗
T (•) � H∗

L+G(•)⊗RG,�
RT ,� : PL+G(GrG, Q̄�) −→ VectQ̄�

,
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then (6.13) induces a monoidal structure on the T -equivariant cohomology

(6.16) H∗
T (F ′ � G′) � H∗

T (F ′)⊗H∗
T (G′).

Then we are left to show that (6.16) is compatible with the filtrations Fil≥μ1,μ2

and Fil≥μ. It suffices to check the compatibility with filtrations Fil≥μ1,μ2
H∗

T and
Fil≥μ H

∗
T over the generic point of SpecRT ,�. Denote

Hλ := H∗
T ⊗RT,�

Q,

where Q is the fraction filed of RT ,�. By the equivariant localization theorem, we
have isomorphisms

Hλ(F ′�̃G′) �
⊕
μ1,μ2

Hλ(F ′�̃G′ |(	μ1 ×̃	μ2−μ1))

and

H∗
λ(S<μ1,<μ2

F ′�̃G′) �
⊕

ν1<μ1,ν2<μ2

Hλ(F ′�̃G′ |(	ν1 ×̃	ν2−ν1 )).

Then it follows that

Fil≥μ1,μ2
Hλ(F ′�̃G′)

:= Fil≥μ1,μ2
H∗

T (F ′�̃G′)⊗RT,�
Q �

⊕
ν1≥μ1,ν2≥μ2

Hλ(F ′�̃G′ |(	ν1 ×̃	ν2−ν1 )).

Applying the equivariant localization theorem again gives isomorphisms

Hλ(F ′) �
⊕
μ

Hλ(F ′ |	μ)

and

Hλ(S<μ,F ′) �
⊕
ν<μ

Hλ(F ′ |	ν ).

Similarly, we get a filtration Fil≥μ Hλ(F ′) � ⊕ν≥μ Hλ(F ′ |	ν ) induced by
Fil≥μ H

∗
T (F).

Notice that as for H∗
L+G(•), the monoidal structure (6.16) is defined via the

composition of the following isomorphisms

Fil≥μ1,μ2
Hλ(F ′�̃G′)

�
⊕

ν1≥μ1,ν2≥μ2

Hλ(F ′�̃G′ |(	ν1 ×̃	ν2−ν1 ))

�
⊕

ν1≥μ1,ν2≥μ2

Hλ(F ′ |	ν1 )⊗Hλ(G′ |	ν2−ν1 )

�
⊕

ν1≥μ1

Hλ(F ′ |	ν1 )⊗
⊕

ν2≥μ2−μ1

Hλ(G′ |	ν2 )

� Fil≥μ1
Hλ(F ′)

⊗
Fil≥μ2−μ1

Hλ(G′)

where the second isomorphism is obtained by an analogue of (6.13) for T -equivariant
cohomology and the equivariant Künneth formula. Note that the monoidal struc-
ture of the total weight functor CT is compatible with that of the hypercohomology
functor H∗ by Proposition 6.3. We thus conclude the proof. �



896 JIZE YU

7. Tannakian construction

The monoidal structure of the hypercohomology functor H∗ allows us to perform
a generalized Tannakian formalism which we discuss below.

Let Z ⊂ GrG denote a closed subspace consisting of a finite union of L+G-orbits.
Then any F ∈ PL+G(Z,Λ) admits a presentation

P1 −→ P0 −→ F −→ 0,

where P1 and P0 are finite direct sums of PZ(Λ).
Write AZ(Λ) for EndPL+G(Z,Λ)(PZ(Λ))

op. By Proposition 5.3(2), AZ(Λ) is a

finite free Λ-module, and any finitely generated AZ(Λ)-module is also finitely pre-
sented. Now we recall the following version of Gabriel and Mitchell’s theorem as
formulated in [1, Theorem 9.1].

Theorem 7.1. Let C be an abelian category. Let P be a projective object and write
A = EndC(P )op. Denote M to be the full subcategory of C consisting of objects M
which admits a presentation

P1 −→ P0 −→ M −→ 0,

where P1 and P0 are finite direct sums of P . Let M′
A be the category of finitely

presented right A-modules. Then

(1) there is an equivalence of abelian categories M � M′
A induced by the func-

tor HomC(P, •),
(2) there is a canonical isomorphism between the endomorphism ring of the

functor HomC(P, •) and Aop.

Theorem 7.1 and the discussion before it enable us to deduce an equivalence of
abelian categories

EZ : PL+G(Z,Λ) � M′
AZ(Λ).

Let i : Y ↪→ Z be an inclusion of closed subsets consisting of L+G-orbits, then
we have the functor i∗ : PL+G(Y,Λ) → PL+G(Z,Λ). In addition, i∗ induces a
functor (iZY )

∗ : M′
AY (Λ) → M′

AZ(Λ) which in turn gives a ring homomorphism

iZY : AZ(Λ) → AY (Λ). Note for any a ∈ AZ(Λ) and F ∈ PL+G(Y,Λ), we have
isomorphisms a · EZ(i∗F)

� a ·Hom(PZ(Λ), i∗F)

� a · (iZY )∗(Hom(PZ(Λ), i∗F)

� iZY (a) ·Hom(PY (Λ),F)

� iZY (a) · EY (F).

Define BZ(Λ) := Hom(AZ(Λ),Λ). Since AZ(Λ) is a finite free Λ-module, then
so is BZ(Λ) and we have the following canonical equivalence of abelian categories

M′
AZ(Λ)

∼= ComodBZ(Λ).

The dual map of iZY gives a map ιYZ : BY (Λ) → BZ(Λ). Let B(Λ) = lim−→BZ(Λ), we
conclude that SatG,Λ � ComodB(Λ) as abelian categories. Moreover, by Proposition
5.3(3) we know that

(7.1) B(Λ) � B(Z�)⊗Z�
Λ

for Λ = Q̄� and F�.
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Take any μ ∈ X+
• , and write Aμ(Λ) and Bμ(Λ) for AGr≤μ

(Λ) and BGr≤μ
(Λ),

respectively. For any μ, ν ∈ X+
• such that μ ≤ ν, use notations iνμ and ιμν for i

Gr≤ν

Gr≤μ

and ι
Gr≤μ

Gr≤ν
, respectively. Also, we denote by Pθ(Λ) the projective object PGr≤θ(Λ) for

any θ ∈ X+
• . Note the following canonoical isomorphism obtained by the monoidal

structure of H∗ established by Proposition 6.4.

Hom(Pμ+ν(Λ), Pμ � Pν)

� H∗(Pμ � Pν)

� H∗(Pμ)⊗H∗(Pν)

� Hom(Pμ(Λ), Pμ(Λ))⊗Hom(Pν(Λ), Pν(Λ)).

Then, the element idPμ(Λ) ⊗ idPν(Λ) ∈ Hom(Pμ(Λ), Pμ(Λ)) ⊗ Hom(Pν(Λ), Pν(Λ))
gives rise to a morphism

fμ,ν : Pμ+ν(Λ) −→ Pμ(Λ) � Pν(Λ).

Applying the functor H∗ and dualizing, we get a morphism

gμ,ν : Bμ(Λ)⊗Bν(Λ) → Bμ+ν(Λ).

We check that the multiplication maps g•,• are compatible with the maps ι•• i.e.
for any μ ≤ μ′, ν ≤ ν′ ∈ X+

• , the following diagram commutes

(7.2)

Bμ(Λ)⊗Bν(Λ), Bμ+ν(Λ)

Bμ′(Λ)⊗Bν′(Λ) Bμ′+ν′(Λ).

gμ,ν

ιμ
μ′⊗ιν

ν′ ιμ+ν

μ′+ν′

gμ′,ν′

By the constructions of g’s and ι’s, it suffices to check the commutativity for

(7.3)

Pμ′+ν′(Λ) Pμ′(Λ) � Pν′(Λ)

Pμ+ν(Λ) Pμ(Λ) � Pν(Λ).

fμ′,ν′

pμ′+ν′
μ+ν pμ′

μ �pν′
ν

fμ,ν

Here, maps p•• appearing in the above diagram are the maps p•• in Proposition
5.3(1). The construction of f ’s implies that we are left to show that the following
diagram commutes

H∗(Pμ′(Λ) � Pν′(Λ)) H∗(Pμ′(Λ))⊗H∗(Pν′(Λ))

H∗(Pμ(Λ) � Pν(Λ)) H∗(Pμ(Λ))⊗H∗(Pν(Λ))

H∗(pμ′
μ �pν

ν′ )

∼=

H∗(pμ′
μ )⊗H∗(pν′

ν )

∼=

The monoidal structure of H∗ implies that the above diagram commutes and so is
diagram (7.2). Taking direct limit, the morphisms gμ,ν give a multiplication map
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on B(Λ) by the above discussion. Our observation at the end of §3 ensures that
the multiplication on B(Λ) is associative.

Note clearly that B0(Λ) = Λ and the canonical map B0(Λ) → B(Λ) gives the
unit map for B(Λ). Now to endow B(Λ) with a bialgebra structure in the sense
of [4, §2], it suffices to prove that the multiplication on B(Λ) is commutative and
B(Λ) admits an antipode. The later statement can be proved in a completely
similar manner as in [1, Proposition 13.4] once the former statement is proved.
Thus it suffices to construct the commutativity of the multiplication of B(Λ), for
Λ = Z�.

By the compatibility of morphisms g•,• with ι••, it suffices to prove for each
μ ∈ X+

• that the multiplication on Bμ(Λ) is commutative. For Λ = Z�, consider
the following diagram

(7.4)

Bμ(Λ)⊗Bμ(Λ) B2μ(Λ)

Bμ(Q̄�)⊗Bμ(Q̄�) B2μ(Q̄�).

d

d
′

The vertical arrows are inclusions by noting (7.1) and the fact that Bμ(Λ) is a finite
free Λ-module. The map d is defined to map b1⊗ b2 to gμ,μ(b1⊗ b2)− gμ,μ(b2⊗ b1),
and the map d′ is defined similarly. By Proposition 6.6 and isomorphism (7.1),
diagram (7.4) is commutative. The construction of the commutativity constraint
in PL+G(GrG, Q̄�) in [17] allows us to conclude that d is the zero map and the
multiplication map in B(Λ) is thus commutative. Thus, by a completely similar
argument as in [4, Proposition 2.16], the category ComodB(Λ) can be equipped
with a commutativity constraint. This commutativity constraint then induces that
of SatG,Λ. Thus we have endowed SatG,Λ with a tensor category structure via an
analogous argument as in [1, Proposition 13.4] which shows that B(Λ) admits an
antipode.

8. Identification of group schemes

With the work in previous sections, we have constructed the category
PL+G(GrG,Λ), and equipped it with

(1) the convolution product � and an associativity constraint,
(2) the hypercohomology functor H∗ : PL+G(GrG,Λ) → ModΛ which is Λ-

linear, exact, and faithful,
(3) a commutativity constraint which makes SatG,Λ a tensor category,
(4) a unit object IC0,
(5) a bialgebra B(Λ) such that SatG,Λ is equivalent to ComodB(Λ) as tensor

categories.

Note that by Proposition 5.3(2), H∗(PZ(Z�)) is a free Z�-module for any closed
subspace Z ⊂ GrG consisting of a finite union of L+G-orbits. We also know that the
representing object PZ(Z�) is compatible with base change by Proposition 5.3(3).

Let G̃Λ := Spec(B(Λ)), for Λ = Z�,F�, F̄�. By our discussion in the previous section,
we have the following generalized Tannakian construction similar to [11, Proposition
11.1]
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Proposition 8.1. The category of representations of the group scheme G̃Z�
which

are finitely generated over Z� is equivalent to PL+G(GrG,Z�) as tensor categories.

Furthermore, the coordinate ring of G̃Z�
is free over Z� and G̃F�

= Spec(F�)×Z�
G̃Z�

.

We are left to identify the group scheme G̃Z�
with the Langlands dual group ĜZ�

.
Note that split reductive group schemes over Z� are uniquely determined by their

root data. Then it suffices to prove the following for our purpose

(1) G̃Z�
is smooth over Z�,

(2) the group scheme G̃F�
is reductive,

(3) the dual split torus T̂Z�
is a maximal torus of G̃Z�

.

In §7, we showed that B(Z�) is a free Z�-modules. As a result, the group scheme

G̃Z�
is affine flat over Z�. Then the affineness of G̃Z�

together with the statements
(1) and (2) in this paragraph amount to the definition of a reductive group over Z�.
Recall in [13], a group scheme G over a discrete valuation ring R with uniformizer
π, field of fractions K, and residue field κ is said to be quasi-reductive if

(1) G is affine flat over R,
(2) GK := G ⊗R K is connected and smooth over K,
(3) Gκ := G ⊗R κ is of finite type over κ and the neutral component (Gκ̄)

◦
red of

the reduced geometric fibre is a reductive group of dimension equals dimGK .

We will make use of Theorem 8.2 for quasi-reductive group schemes proved in loc.cit.

Theorem 8.2. Let G be a quasi-reductive group scheme over R. Then

(1) G is of finite type over R
(2) GK is reductive
(3) Gκ is connected.

In addition, if

(4) the type of GK̄ is of the same type as that of (Gκ̄)
◦
red,

then G is reductive.

As noted above, the requirement (1) of quasi-reductiveness is satisfied by G̃Z�
.

In addition, by [17], the group scheme G̃Q�
is connected reductive with root datum

dual to that of G and condition (2) of quasi-reductiveness is met.

Lemma 8.3. The group scheme G̃F̄�
is connected.

Proof. Note that the same proof as in [11, §12] and [1, Lemma 9.3] applies in our
setting to show that the Satake category PL+G(GrG, F̄�) has no object F such that
the subcategory 〈F〉, which is the strictly full subcategory of PL+G(GrG, F̄�) whose
objects are those isomorphic to a subquotient of F�n for some n ∈ N, is stable under
�. This is equivalent to the fact that there does not exist an object X ∈ RepF̄�

(G̃F̄�
)

such that 〈X〉 is stable under
⊗

via Proposition 8.1. Then by [1, Corollary 2.11.2],
we conclude our proof. �

From now on, let κ = F̄�. We have proved in Proposition 6.6 that the monoidal
structure of H∗ is compatible with the weight functor decomposition. In other
words, we get a monoidal functor

CT : SatG,Z�
−→ ModZ�

(X•) � SatT,Z�
.

Base change to κ, the same reasoning yields a monoidal functor

CT : SatG,κ −→ Modκ(X•) � SatT,κ.
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Applying the construction in §7 to the above two Satake categories, we get a natural

homomorphism T̂ → G̃. Note that by [17, Corollary 2.8] and Proposition 5.3(2),
any M ∈ Modκ(X•) can be realized as a subquotient of some projective object
in SatG,κ. It then follows from [4, Proposition 2.21(b)] that the homomorphism

T̂ → G̃ is in fact a closed embedding, which realizes the dual torus T̂κ as a subtorus

of G̃κ. In addition, since G̃Z�
is flat, the same argument in [11, §12] applies to give

the following dimension estimate

(8.1) dimG = dim G̃Q�
≥ dim(G̃κ)red.

We can write G̃κ = lim←− G̃∗
κ where G̃∗

κ satisfies the following conditions

(1) G̃∗
κ is of finite type,

(2) the canonical map Irr
˜G∗
κ
→ Irr

˜Gκ
is a bijection, where Irr denotes the set

of irreducible representations.

In addition, we require that the transition morphisms are surjective. The first
requirement may be satisfied since any group scheme is a projective limit of group
schemes of finite type. To ensure that condition (2) can be satisfied, it is enough to

choose G̃∗
κ sufficiently large so that the irreducible representations L(η) associated

to a finite set of generators η of the semigroup of dominant cocharacters X+
• , are

pullbacks of representations of G̃∗
κ. For any μ, ν ∈ X+

• , the sheaf ICμ+ν supports on
Gr≤μ+ν and hence is a subquotient of ICμ�ICν . Thus all irreducible representations

of G̃κ come from G̃∗
κ. By our choice of the finite type quotients, we have (G̃κ)red =

lim←−(G̃∗
κ)red. In addition, the composition of maps T̂κ → G̃κ → G̃∗

κ is a closed
embedding.

We claim that
(8.2)

Each finite type quotient G̃∗
κ is connected, reductive, and isomorphic to Ĝκ.

If (8.2) holds, then the arguments in [12] apply and yield G̃∗
κ = Ĝκ. Thus we deduce

that condition (3) of the quasi-reductiveness and condition (4) in Theorem 8.2 are

satisfied by G̃κ, and we complete the identification of group schemes by Theorem
8.2. Next, we prove (8.2) following the approach given in [11, §12].

Write H for the reductive quotient of (G̃∗
κ)red, and we have that T̂κ → H is a

closed embedding. Note that any irreducible representation of (G̃∗
κ)red is trivial on

the unipotent radical. We then have:

(8.3) The canonical map IrrH → Irr( ˜G∗
κ)red

is a bijection.

We first note Lemma 8.4.

Lemma 8.4. The subtorus T̂κ is a maximal subtorus of H.

Proof. Choose a maximal torus TH for H and denote its Weyl group WH . Then
the irreducible representations of H are parametrized by X•(TH)/WH . On the
other hand, write the Weyl group for G by WG, then Proposition 2.3 implies that
X•(Tκ)/WG parametrizes Schubert cells in GrGκ

. The IC-sheaf attached to each
Schubert cell is an irreducible object in the Satake category, and thus gives rise to an

irreducible representation of G̃κ. By our choice of G̃∗
κ and (8.3), we get a bijection

X•(TH)/WH � X•(T )/WG. Hence, TH/WH � T̂κ/WG. Note that the Weyl group
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acts faithfully on the maximal torus, and we conclude that X•(TH) = X•(T ) and

T̂κ is a maximal torus in H.
�

From now on, we write WH for the Weyl group of H with respect to T̂κ. Recall
that a (co)character of a reductive group is called regular if the cardinality of its
orbit under the Weyl group action attains the maximum. Then 2ρ is a regular
character in G with respect to T . By the proof of Lemma 8.4, it is a cocharacter
in H with respect to T̂κ. In addition, the proof of Lemma 8.4 also shows that
WH · 2ρ = WG · 2ρ and thus the Weyl group orbit WH · 2ρ has maximal cardinality
and it follows that 2ρ is a regular cocharacter in H. Thus 2ρ fixes a Borel BH

which only depends on the Weyl chamber containing 2ρ. It also fixes a set of
positive roots.

From the proof of Lemma 8.4, we deduce the followings

the (dominant) weights of (H,BH , T̂κ) coincide with (dominant) coweights of G.

(8.4)

WH coincides with WG together with their subsets of simple reflections identified.
(8.5)

To show (8.2), we hope to prove the following:

(8.6) Δ(H,BH , T̂κ) = Δ∨(G,B, T ) and Δ∨(H,BH , T̂κ) = Δ(G,B, T ).

We first prove a weaker version of (8.6).

Lemma 8.5. Statement (8.6) holds if G is semisimple,

Proof. Since G is assumed to be semisimple, then Q · X+
• (T ) = Q · Δ∨(G,B, T ).

Hence,

(8.7) Z≥0 ·Δs(G,B, T ) = {α ∈ X•(T ) |
〈
α, λ

〉
≥ 0 for all λ ∈ X+

• (T )}.
On the other hand, it follows from (8.5) thatWH andWG have the same cardinality.
Together with (8.4), we conclude that H is also semisimple. Thus,

(8.8) Z≥0 ·Δ∨
s (H,BH , T̂κ) = {α∨ ∈ X•(T̂κ) |

〈
α, λ

〉
≥ 0 for all λ ∈ X•

+(T̂κ)}.
Comparing (8.7) and (8.8), we have

Z≥0 ·Δs(G,B, T ) = Z≥0 ·Δ∨
s (H,BH , T̂κ).

Thus, Δs(G,B, T ) = Δ∨
s (H,BH , T̂κ) and we conclude that

Δ(G,B, T ) = Δ∨(H,BH , T̂κ)

by noting (8.5). Finally, since for a semisimple reductive group, the coroots are
uniquely determined by roots and vice versa, we also conclude that Δ∨(G,B, T ) =

Δ(H,BH , T̂κ). �

In fact, Lemma 8.5 may be proved following the idea of [1, §14]1 and [11, §12]
and, we sketch this approach here.

1We note that the situation considered in [1, §14] is slightly different from ours. In the equal

characteristic case, the group scheme ˜Gκ is proved to be algebraic by directly exhibiting a tensor

generator in the Satake category. Thus, there is no need to pass to finite type quotient ˜G∗
κ as we

do in this section.
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Lemma 8.6. We have the following inclusion of lattices

(8.9) Z ·Δ(H, T̂κ) ⊆ Z ·Δ∨(G, T )

for general G.

Proof. The proof is similar to that for [11, (12.21)] and we sketch it here. Note
that the Satake category SatG,κ is equipped with a grading by π0(GrG) � π1(G) =
X•(T )/Z·Δ∨(G, T ) by [17, Proposition 1.21]. In addition, this grading is compatible
with the tensor structure in SatG,κ. Write Z for the center of G, then it can be
identified with the group scheme

(8.10) Hom(X•(T )/Z ·Δ∨(G, T ),Gm,κ).

Our previous observation implies that the forgetful functor

SatG,κ � Repκ(G̃κ) −→ Repκ(Z)

is compatible with the grading considered above. In this way, Z is realized as a

central subgroup of G̃κ. Since T̂κ → H is a closed embedding, Z is also contained
in the center of H. Finally, note that the center of H can be identified with the
group scheme

(8.11) Hom(X•(T̂κ)/Z ·Δ∨(H, T̂κ),Gm,κ).

Our discussion together with (8.10) and (8.11) completes the proof of the lemma.
�

Lemma 8.7. The set of dominant weights of (H, T̂κ) is equal to X+
• (T ) ⊂ X•(T ) =

X•(T̂κ).

Proof. By our construction, we have a bijection between the set of irreducible repre-

sentations of G̃κ and that of G̃∗
κ. Since irreducible representations restrict trivially

to the unipotent radical, we get a bijection between the set of irreducible represen-

tations of G̃κ and that of H. Thus, the dominant weights of (H, T̂κ) equal that of

(G̃κ, T̂κ).

Let λ ∈ X•(T ) be a dominant weight of (G̃κ, T̂κ) and write the L
˜Gκ(λ) for

the irreducible representation of G̃κ associated to λ. Assume μ ∈ X+
• (T ) to be

a dominant coweight of G such that the simple perverse sheaf corresponding to

L
˜Gκ(λ) is ICμ. Note that in the Grothendieck group of SatG,κ, we have

[ICμ] =
[
pjμ,∗κGrμ

[(2ρ, μ)]
]
+

∑
ν∈X

+
• (T ),ν<μ

aμν

[
pjν,!κGrν

[(2ρ, ν)]
]
.

Then we conclude that λ = μ ∈ X+
• (T ).

On the other hand, if μ ∈ X+
• (T ), then the weights of the G̃κ-representation

which correspond to pjμ,!κGrμ are independent of the coefficient κ by [11, Proposi-

tion 8.1]. Hence, they are weights of the irreducible ĜQ̄�
-representation of highest

weight μ. Thus μ is a dominant weight of (G̃κ, T̂κ). �

Lemma 8.8. The Weyl groups WG and WH coincide when considered as automor-
phism groups of X•(T ), and their subsets of simple reflections SG and SH coincide.
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Proof. The proof of this lemma is completely similar to the proof of [1, Lemma 14.9]
and we sketch it here. For any λ ∈ X+

• (T ), we consider it as a dominant weight of

(H, T̂κ). Then the orbit WH ·λ is the set of extremal points of the convex polytope
consisting of the convex hull of weights of the irreducible H-representation LH(λ).

Since the set of irreducible representations of H are bijective to that of G̃κ, we
conclude that

(8.12) WH · λ = WG · λ.
Then for a regular λ ∈ X+

• (T ), the orbit SG · λ ⊂ W · λ is the subset of WG · λ
consisting of elements μ such that the line segment connecting λ and μ is extremal
in the convex hull of WG · λ. By (8.12), we have the same description for the orbit
SH · λ. Thus,
(8.13) SG · λ = SH · λ.

Choose an arbitrary sG ∈ SG. For any λ ∈ X+
• (T ) regular, by (8.13) there exists

sH ∈ SH such that sG · λ = sH · λ. In addition, the direction of the line segment
connecting λ with sG · λ is determined by the line segment joining the coroot of
G associated with sG with the root of H associated with sH . Thus for any other
λ′ ∈ X+

• (T ) regular, we also have sG · λ′ = sH · λ′. It follows that sG = sH and
thus SG = SH . Thus, we deduce that WG = WH . �

Lemma 8.9. We have the following inclusion of lattices

Z ·Δ(G, T ) ⊆ Z ·Δ∨(H, T̂κ).

Proof. We adapt the idea in the proof of [1, Lemma 14.10]. Firstly, we observe that
Lemma 8.7 gives rise to the following equality

(8.14) Q+ ·Δ∨
s (H,BH , T̂κ) = Q+ ·Δs(G,B, T ).

This is because both sets consist of extremal rays of the rational convex polyhedral
cone determined by {λ ∈ Q ⊗Z X•(T ) | for any μ ∈ X+

• (T ),
〈
λ, μ

〉
≥ 0}. For

μ ∈ Δs(G,B, T ), it follows from (8.14) that there exists a ∈ Q+\{0} such that

aμ ∈ Δ∨
s (H,BH , T̂κ). Lemma 8.8 then implies that

id−
〈
μ∨, •

〉
= id−

〈
(aμ)∨, •

〉
(aμ)

as an automorphism of X•(T ) = X•(T̂κ). Thus, (aμ)∨ = 1
aμ

∨. Note that Lemma

8.6 shows that aμ ∈ Z ·Δ∨(G, T ). Thus, 1
a ∈ Z and μ = 1

a (aμ) ∈ Z ·Δ∨(H, T̂κ). �

The arguments above prepare us for a second proof of Lemma 8.5 as follows.

Proof. If G is in particular semisimple of adjoint type, then Z ·Δ(G, T ) = X∗(T ).

Lemma 8.9 then implies that Z·Δ(G, T ) = Z·Δ∨(H, T̂κ). Then the arguments in the

proof of Lemma 8.9 imply that Δs(G, T ) = Δ∨
s (H, T̂κ). In addition, Δ∨

s (G,B, T ) =

Δs(H,BH , T̂κ), and the canonical bijections between the roots and coroots of H

and G coincide. It then follows from Lemma 8.8 that Δ(H,BH , T̂κ) = Δ∨(G, T )

and Δ∨(H, T̂κ) = Δ(G, T ). Thus, the root datum of H with respect to T̂κ is dual
to that of (G, T ). Then the dimension estimate (8.1) concludes the proof of the
lemma in the semisimple of adjoint type case.

Assume G is a general semisimple reductive group scheme. Recall notations in
§1.3. We denote by Gad the adjoint quotient of G and by Tad the quotient of the
maximal torus T . The construction in §7 goes through and we get the group scheme
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(G̃ad)κ. As noted in the proof of Lemma 8.6, the Satake category SatGad,κ admits
a grading by the finite group π1(Gad)/π1(G) which is compatible with the tensor
structure of SatGad,κ. By Lemma 4.6, the category SatG,κ can be realized as a
tensor subcategory of SatGad,κ corresponding to the identity coset of π1(G). Thus,
we have a surjective quotient

(G̃)ad,κ � G̃κ

with finite central kernel given by Hom(π1(Gad)/π1(G),Gm,κ). Hence, G̃κ is re-
ductive and in particular semisimple. The result for G being semisimple of adjoint
type applies here to complete the proof. �

Now, we complete the final step of identifying the group schemes.

Lemma 8.10. Let G be a general connected reductive group, then the same result
as in Lemma 8.5 holds.

Proof. We sketch a proof similar to the arguments for [11, §12] and [1, Lemma
14.13]. Denote by Z(G) the center of G and let A = Z(G)◦. Then A is a torus and
G/A is semisimple. As in loc.cit, the exact sequence

1 → A → G → G/A −→ 1

induces maps

GrA
i−→ GrG

π−→ GrG/A

which exhibit GrG as a trivial GrA-cover over GrG/A. This induces an exact se-
quence of functors

(8.15) PL+A(GrA, κ)
i∗−→ PL+G(GrG, κ)

π∗−→ PL+G/A(GrG/A, κ).

Note that (GrA)red is a set of discrete points indexed by X+
• (A), then taking push-

forward along i gives a fully faithful functor i∗ : PL+A(GrA, κ) → PL+G(GrG, κ).
The functor π∗ makes sense because of Lemma 4.6 and is essentially surjective.

Applying the Tannakian construction as in §7, we get flat affine group schemes

Ãκ and (̃G/A)κ. Lemma 8.5 implies that Ãκ and (̃G/A)κ are isomorphic to the dual
groups of H and G/A respectively. The same arguments in [11, §12] and [1, §14]
apply here to deduce that the sequence

1 −→ G̃/Aκ −→ G̃κ −→ Ãκ −→ 1

induced by (8.15) is exact. Then G̃κ is identified as the extension of smooth group

schemes Ãκ and G̃/Aκ, and is thus also smooth. Moreover, the unipotent radical of

G̃κ has trivial image in the torus Ãκ. Hence it is included in G̃/Aκ. Since the latter

group is semisimple, it follows that G̃κ is also reductive. Arguing as in [1, Lemma
14.14], we complete the proof of the lemma. �

Thus we identify the group scheme G̃Z�
which arises from the general Tannakian

construction with the Langlands dual group ĜZ�
. We have our main theorem.

Theorem 8.11. There is an equivalence of tensor categories between PL+G(GrG,Λ)

and the category of Λ-representations of the Langlands dual group ĜΛ of G which
are finitely generated over Λ for Λ = F�, and Z� (� 	= p).
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