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KNIZHNIK–ZAMOLODCHIKOV FUNCTOR FOR DEGENERATE

DOUBLE AFFINE HECKE ALGEBRAS: ALGEBRAIC THEORY

WILLE LIU

Abstract. In this article, we define an algebraic version of the Knizhnik–
Zamolodchikov (KZ) functor for the degenerate double affine Hecke algebras
(a.k.a. trigonometric Cherednik algebras). We compare it with the KZ mono-
dromy functor constructed by Varagnolo–Vasserot. We prove the double cent-
raliser property for our functor and give a characterisation of its kernel. We
establish these results for a family of algebras, called quiver double Hecke al-
gebras, which includes the degenerate double affine Hecke algebras as special
cases.

Introduction

Degenerate double affine Hecke algebras. The degenerate double affine Hecke
algebras (dDAHA), also known as trigonometric Cherednik algebras, were intro-
duced by I. Cherednik in his study of integration of the trigonometric form of the
Knizhnik–Zamolodchikov equations (KZ) [7].

The degenerate double affine Hecke algebras, unlike their non-degenerate version
and its rational degeneration, are not “symmetric”: they contain a polynomial
subalgebra and a Laurent polynomial subalgebra. Due to this asymmetry, one can
adopt two different points of view to study the dDAHA: either viewing it

(i) as the algebra generated by regular functions on a torus T∨ attached to
a root system R, the Weyl group of R acting on the torus T∨ and the
trigonometric Dunkl operators on it, or

(ii) as the algebra generated by Demazure-like difference operators on E, where
E is an affine space which carries an affine root system; this is the affine
version of the graded affine Hecke algebras of G. Lusztig [25].

The former approach allows one to apply various techniques of D-modules, sym-
plectic geometry and is closer to the theory of rational Cherednik algebras [1,14]; the
latter approach allows one to apply cohomological, K-theoretic or sheaf-theoretic
methods [10,35], and is closer to the (non-degenerate) double affine Hecke algebras.

In the present work, we will adopt the second approach most of the time. We
show that with this point of view, the dDAHAs can be easily generalised and
are quite flexible in the choice of parameters. We show also that some of the
features from first approach can be recovered with the second approach, namely
the integration of the KZ equations.

Quiver Hecke algebras. The quiver Hecke algebras, also known as Khovanov–
Lauda–Rouquier algebras, were introduced in [21] and [29]. They were introduced in
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the purpose of categorifying the Drinfel’d–Jimbo quantum groups for Kac–Moody
algebras as well as their integrable representations.

It was proven by Brundan–Kleshchev–McNamara [6] and Kato [20] that quiver
Hecke algebras for Dynkin quivers of finite ADE types have pretty nice homological
properties. Retrospectively speaking, they proved that the categories of graded
modules over these algebras carry an affine highest weight structure in the sense
of [22]. As a consequence, these algebras have finite global dimension. However,
once one goes beyond the family of finite type, the quiver Hecke algebras often
have infinite global dimension. The simplest example would be the cyclic quivers of
length ≥ 2. According to the result of Brundan–Kleshchev [5] and Rouquier [29],
the quiver Hecke algebras of cyclic quivers are equivalent to affine Hecke algebras
for GLn with parameter at roots of unity. The representation theory of affine
Hecke algebras at roots of unity is known to share several features of the modular
representation theory finite groups. Notably, there are fewer simple modules in the
modular case than there are in the ordinary case.

One approach to the modular representation theory is to resolve this lack of
simple objects by finding a larger, but better behaved category, of which the modu-
lar category is a quotient. In the case of modular representation theory of symmetric
groups, one uses the Schur algebras as resolution via the Schur–Weyl duality. In the
same spirit, for Hecke algebras of complex reflection groups, the rational Cherednik
algebras provide resolution, as it was first established in [16]. For affine Hecke al-
gebras, the resolution would be the degenerate double affine Hecke algebras. This
perspective appeared in [33], where degenerate DAHAs are viewed as replacement
for affine q-Schur algebras in relation with affine Hecke algebras, cf. Section 2.2
and Section 4. We will introduce a new family of algebras, called quiver double
Hecke algebras, which we believe to play the role of “resolution” for quiver Hecke
algebras.

Results of the present article. Let (V,R) be an irreducible finite root system
and let (E, S) be its affinisation (the definition is recalled in Section 1.1). In par-
ticular, E ∼= V is a euclidean affine space. We fix a basis Δ0 ⊂ R, which extends in
a standard way to an affine basis Δ ⊂ S. The affine Weyl group WS is generated
by affine simple reflections sa for a ∈ Δ and the finite Weyl group WR ⊂ WS is the
subgroup generated by sa for a ∈ Δ0. The extended affine Weyl group W̃S acts on
S.

The degenerate double affine Hecke algebra attached to (E, S) is given by H =
CWS ⊗ C[E] as vector space. The multiplication of H depends on a function h :
S −→ C, called parameters, see Section 2 for the precise definition. For λ ∈ E, let
Oλ(H) denote the category of finitely generated H-modules on which the subalgebra
C[E] acts locally finitely with eigenvalues lying in the orbit WS · λ ⊂ E.

The affine Hecke algebra attached to (V,R) is given by K = HR⊗C[T ], whereHR

is the Iwahori-Hecke algebra of type (WR,Δ0) and C[T ], the group algebra of the
weight lattice of the root system (V,R). See Section 3.1 for the precise definition.
For � ∈ V , let O�(K) denote the category of finite-dimensional K-modules on which
the subalgebra C[T ] acts with eigenvalues lying in the orbit WR · � ⊂ T .

There is an exponential map exp : E −→ T . Fix λ0 ∈ E and let �0 = exp(λ0) ∈
T . Denote by V : Oλ0

(H) −→ O�0(K) the monodromy functor for the Knizhnik–
Zamolodchikov equations introduced by Varagnolo–Vasserot in [33]. We show in
Proposition 27 that M is a quotient functor. The first main result is the following:
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Theorem A (=Definition 96+Proposition 29). There is a quotient functor V :
Oλ0

(H) −→ O�0(K) defined in algebraic terms such that

kerV = kerV.

We expect that there exists an isomorphism V ∼= V. In order to construct V, we
introduce in Section 2.5 and Section 3.4 two auxiliary algebras Hλ0

and K�0 and
show in Proposition 12 and Proposition 17 that Hλ0

and K�0 are Morita-equivalent
respectively to Oλ0

(H) and O�0(K). By analysing the structure of the quiver-Hecke-
like algebras Hλ0

and K�0 , we show in Theorem 82 that there exists an idempotent
eγ ∈ Hλ0

such that the idempotent subalgebra eγHλ0
eγ is isomorphic to K�0 . This

allows us to define the functor V as the idempotent truncation by eγ .
The second main result concerns V:

Theorem B (=Theorem 105+Theorem 108). The following statements hold:

(i) The functor V satisfies the double centraliser property (i.e. fully faithful
on projective objects) after passing to a suitable completion of Oλ0

(H) and
O�0(K).

(ii) The kernel kerV is the Serre subcategory generated by simple objects L ∈
Oλ0

(H) such that the projective envelope of L in the completion of Oλ0
(H)

is not relatively injective with respect to the categorical centre Z(Oλ0
(H)).

Notice that by the comparison result Theorem A, the statements of Theorem B
also hold for V. The second statement of Theorem B implies in particular that the
subcategory kerV is an invariant of the category Oλ0

(H). In fact, we construct
V and establish Theorem B for a greater family of algebras, quiver double Hecke
algebras, which are introduced in Section 6.3. This family of algebras seems to be
related to a localised Iwahori version of Coulomb branch algebras of Braverman–
Finkelberg–Nakajima [3] for semisimple groups.

Related works. As mentioned above, the algebra Aω that we introduce in Part 2
is expected to be related to Iwahori version of the quantised Coulomb branch al-
gebras. There exist in the literature some works on the representation theory of
such algebras with an approach similar to ours.

In [37], B. Webster studied a module category of the rational Cherednik algebra
for the complex reflection group G(�, 1, n) whose objects admit a weight decom-
position for the action of a polynomial subalgebra defined by Dunkl–Opdam [13].
He introduced an algebraic version of the KZ functor and he classified the simple
objects of that category. The results were later generalised in [23], to the rational
Cherednik algebra for G(�, d, n).

Our construction of KZ functor V can be regarded as a variant of theirs. One
can expect that their functor also satisfies the properties listed in Theorem B.

Organisation. This paper is composed of two parts. The first part serves mainly
as preliminary materials and motivation for the second part. The proof of most of
the statements in the first part can be found in the literature [8, 25, 28, 33, 34].

We review briefly the affine root systems in Section 1.1, the dDAHAs in Section 2
and the affine Hecke algebras (AHA) in Section 3.1. We introduce the idempotent
form of these algebras, each controlling a block of the category O of both algebras.
The definition of idempotent forms is a straightforward generalisation of the result
of Brundan–Kleshchev [5] and Rouquier [29] on the equivalence between affine Hecke
algebras for GLn and quiver Hecke algebras for linear and cyclic quivers.
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We recall in Section 4 the monodromy functor V introduced in [33] as the tri-
gonometric counterpart of the KZ functor of [16]. We prove that it is a quotient
functor in the sense of Gabriel.

We discuss in Section 5 the relations between the monodromy functor V and the
functor V, which will be defined in algebraic terms in Section 10.6.

In the second part we introduce quiver double Hecke algebras (QDHA). They can
be viewed as a generalisation of degenerate double affine Hecke algebras (dDAHA)
or as an affinisation of quiver Hecke algebras (QHA).

In Section 6, we introduce the quiver double Hecke algebras Aω attached to an
affine root system (E, S) with spectrum being a WS-orbit in E and with parameter
ω. We define the filtration by length on Aω in Section 6.4 and prove the basis
theorem in Section 6.5 with this filtration. We study the associated graded grF Aω

of the filtration by length in Section 6.6.
In Section 7, we study the categories of graded and ungraded Aω-modules. We

introduce in Section 7.6 a functor of induction from the quiver Hecke algebras
attached to the finite root system (V,R) underlying (E, S).

In Section 8, we study good filtrations on Aω-modules and use it to define
the Gelfand–Kirillov dimension of an Aω-module. We prove that “induced Aω-
modules” are of maximal Gelfand–Kirillov dimension.

In Section 9, we introduce the quiver Hecke algebra Bω attached to a finite root
system (V,R) and with parameter ω. We prove a basis theorem for Bω and we
introduce a Frobenius form on Bω.

In Section 10, we prove that the algebra Bω is isomorphic to an idempotent
subalgebra of Aω. We use this isomorphism to define the Knizhnik–Zamolodchikov
functor V, which is a quotient functor. We give characterisations for the kernel of
V in Section 10.7 and Section 10.9. The double centraliser property for V is proven
in Section 10.8.

In Appendix A, we collect some basic facts about the category of pro-objects
of abelian categories, which are used to construct completions of the categories
Oλ0

(H) and O�0(K).

Part 1. Degenerate double affine Hecke algebras

1. Reminder on affine root systems

We review the notion of affine root systems. The reference is [27].

1.1. Affine reflections on euclidean spaces. Let E be an affine euclidean space
of dimension n > 0 and let V be its vector space of translations. In particular, V
is equipped with a positive definite scalar product 〈−,−〉 : V × V −→ R. The
dual space V ∗ is identified with V via the scalar product 〈−,−〉. Let R[E]≤1 be
the space of affine functions on E. We have a map of differential ∂ : R[E]≤1 −→
V ∗ whose kernel is the set of constant functions. The space R[E]≤1 is equipped
with a symmetric bilinear form 〈f, g〉 = 〈∂f, ∂g〉. For any non-constant function
f ∈ R[E]≤1, let f∨ = 2f/|f |2 and define the reflection with respect to the zero
hyperplane of f :

sf : E −→ E, sf (x) = x− f∨(x)∂f

and

sf : R[E]≤1 −→ R[E]≤1, sf (g) = g − 〈f∨, g〉f.
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It extends to an automorphism of the ring of C-valued polynomial functions sf :
C[E] −→ C[E].

1.2. Affine root systems. An affine root system on E is the pair (E, S), where
S ⊂ R[E]≤1 is a subset satisfying the following conditions:

(i) S spans R[E]≤1 and the elements of S are non-constant functions on E;
(ii) sa(b) ∈ S for all a, b ∈ S;
(iii) 〈a∨, b〉 ∈ Z for all a, b ∈ S;
(iv) the group WS of autoisometries on E generated by {sa ; a ∈ S} acts

properly on E.

The group WS is called the affine Weyl group (or simply the Weyl group of S). An
affine root system (E, S) is called irreducible if there is no partition S = S1 
 S2

with 〈−,−〉 |S1×S2
= 0 and S1 �= ∅ and S2 �= ∅; it is called reduced if a ∈ S implies

2a /∈ S.
Let (E, S) be an affine root system. The set R = ∂(S) ⊂ V ∗ is a finite root

system on V . Let P = PR ⊂ V denote the weight lattice, QR = ZR the root
lattice, P∨ = P∨

R the coweight lattice and Q∨ = Q∨
R = ZR∨ the coroot lattice.

Conversely, let (V,R) be an irreducible finite root system, reduced or not. Define
Rred = R \ 2R to be the set of indivisible roots. Let P = PR be the weight lattice
and Q = QR the root lattice; we define the affinisation of (V,R) to be the affine
root system (E, S) with E = V and

S = 〈α+ n ; n ∈ Z, α ∈ Rred〉 
 〈α+ 2m+ 1 ; m ∈ Z, α ∈ R ∩ 2R〉.
Given a basis Δ0 ⊂ R, we form Δ = Δ0 ∪ {a0}, where a0 = 1− θ with θ ∈ R being
the highest root with respect to the basis Δ0.

1.3. Affine Weyl group. Let (E, S) be the affinisation of (V,R), which is an
irreducible reduced affine root system. A basis of S is an R-linearly independent
subset Δ ⊂ S such that the following conditions are satisfied:

(i) S ⊂ NΔ ∪ −NΔ;
(ii) the set

⋂
a∈Δ {x ∈ E ; a(x) > 0} is non-empty.

The WS-action on S induces a simple transitive WS-action on the set of bases of
S. Upon fixing a basis Δ of S, let S+ = S ∩NΔ and S− = S ∩ −NΔ denote the
sets of positive and negative roots.

The parabolic Coxeter subgroup WR = 〈sa ; a ∈ Δ0〉 of WS can be identified
with the Weyl group of the finite root system (V,R) and there is an isomorphism

Q∨
R �WR

∼= WS ,

(μ,w) �→ Xμw,

where the element Xμ acts on S by a �→ a − 〈∂a, μ〉. The extended affine Weyl

group is defined to be W̃S = P∨ �WR. It acts on S by extending the WS-action
by the same formula Xμa = a− 〈∂a, μ〉 for μ ∈ P∨.

The length function is defined to be

� : W̃S −→ N, �(w) = #
(
S+ ∩ w−1S−) .

It extends the usual length function on the Coxeter group WS with respect to
the set of generators {sa}a∈Δ. We will need the following formula for the length
function.
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Proposition 1. For μ ∈ P∨ and w ∈ WR, we have

�(wXμ) =
∑

α∈R+
red∩w−1R−

red

|〈α, μ〉+ 1|+
∑

α∈R+
red∩w−1R+

red

|〈α, μ〉|+
∑

α∈R+∩2R

|〈α, μ〉|
2

.

�(Xμw) =
∑

α∈R+
red∩wR−

red

|〈α, μ〉 − 1|+
∑

α∈R+
red∩wR+

red

|〈α, μ〉|+
∑

α∈R+∩2R

|〈α, μ〉|
2

.

These formulae can be obtained by counting the set S+∩w−1S− along the fibres
of the differential map ∂ : S → R.

1.4. Alcoves. For each affine root a ∈ S, let Ha = {λ ∈ E ; a(λ) = 0} be the
vanishing locus of a. The affine hyperplanes {Ha}a∈S yield a simplicial cellular
decomposition of E. The open cells are called alcoves. Thus the set of connected
components

π0

(
E \
⋃
a∈S

Ha

)
is the set of alcoves. The affine Weyl group WS acts simply transitively on it.
When a basis Δ ⊂ S is given, the fundamental alcove is defined to be ν0 =⋂

a∈Δ {x ∈ E ; a(x) > 0}.

2. Reminder on degenerate double affine Hecke algebra

Let (E, S,Δ) be an irreducible reduced affine root system with a basis. We define
in this section the degenerate double affine Hecke algebra H attached to (E, S,Δ)
and its idempotent form Hλ0

, which is a block algebra for the category O of H.

2.1. Degenerate double affine Hecke algebra H. Let h = {ha}a∈S be a W̃S-
invariant family of complex numbers. The degenerate double affine Hecke algebra
with parameters h attached to the affine root system S is the associative unital
C-algebra on the vector space H = CWS ⊗ C[E] whose multiplication satisfies
following properties:

• Each of the subspaces CWS and C[E] is given the usual ring structure, so
that they are subalgebras of H.

• w ∈ CWS and f ∈ C[E] multiply by juxtaposition: (w⊗1)(1⊗f) = w⊗f .
• a ∈ Δ and f ∈ C[E] satisfy the equation:

(sa ⊗ 1) (1⊗ f)− (1⊗ sa(f)) (sa ⊗ 1) = 1⊗ ha
f − sa(f)

a
.

2.2. Global dimension of H. Put a filtration F on H as follows:

F≤−1H = 0, F≤0H = CWS , F≤1H = (F≤0H)C[E]≤1,

F≤nH = (F≤1H)n, n ≥ 2.

Namely, H is filtered by its polynomial part C[E]. The filtration F is compatible
with the multiplication and its associated graded ring is given by the skew tensor
product grF H ∼= CWR�(CQ∨ ⊗C[V ]). Since dim. glH ≤ dim. gl grF H [18, D.2.6]
and since dim. glCWR � (CQ∨ ⊗C[V ]) = 2r, where r = rkS = dimE, we have
the following:

Proposition 2. The global dimension of H is at most 2r.
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2.3. Category O. For each λ ∈ EC, let mλ ⊂ C[E] be the defining ideal of the
closed point λ ∈ E. Given any module M ∈ H -Mod, for each λ ∈ EC consider the
generalised λ-weight space in M :

Mλ =
⋃
N≥0

{
a ∈ M ; mN

λ a = 0
}
.

For any λ0 ∈ EC, we define Oλ0
(H) to be the full subcategory of finitely generated

left H-modules H -mod consisting of those M such that

M =
⊕

λ∈WS λ0

Mλ.

In other words, the polynomial subalgebra C[E] acts locally finitely on M with
eigenvalues in the WS-orbit of λ0 ∈ EC.

From the triangular decomposition H = CQ∨ ⊗ CWR ⊗ C[E], we deduce the
following:

Proposition 3. For every λ0 ∈ E, every object of Oλ0
(H) is a coherent CQ∨-

module.

2.4. Block algebra H∧
λ0
. In order to study the category Oλ0

(H), it is often useful
to consider a certain completion of the polynomial part C[E] at the orbit WSλ0 ⊂
E. The completion of H that we will consider is similar to the one from [12] in
the context of Gelfand–Zetlin algebras. A similar construction has been employed
in [34] for double affine Hecke algebras.

Fix once and for all λ0 ∈ EC. Define for each λ ∈ WSλ0 a polynomial ring
Polλ = C[V ] and let Pol =

⊕
λ∈WSλ0

Polλ. Define the completion

P̂olλ = lim←−
N

Polλ /m
N
0 Polλ = C�V �, P̂ol =

⊕
λ∈WSλ0

P̂olλ,

where m0 ⊂ Polλ is the defining ideal of 0 ∈ V . The completion P̂olλ is equipped

with the m0-adic topology and P̂ol is equipped with the colimit topology.

For λ ∈ WSλ0, the translation λ∗ : VC
λ+−−→ EC yields an isomorphism

λ∗ : C[E] ∼= C[V ] = Polλ .

We define an action of H on Pol:

ψ = (ψλ)λ : H −→ Endcont(P̂ol), ψλ : H −→ Homcont(P̂olλ, P̂ol),

by setting, for f ∈ C[E] and a ∈ Δ,

ψλ(f) = λ∗f,(4)

ψλ(sa − 1)(5)

=

{
−λ∗(a−ha)

λ∗a (s∂a − 1) ∈ Homcont(P̂olλ, P̂olλ) a(λ) = 0
λ∗(ha−a)

λ∗a − (saλ)
∗(a−ha)

(saλ)∗a
s∂a ∈ Homcont(P̂olλ, P̂olλ + P̂olsaλ) a(λ) �= 0

.

Lemma 6. The map ψ defines a faithful continuous action of H on P̂ol.

Let H∧
λ0

⊂ Endcont(P̂ol) be the closure of the image of ψ. It has a set of topo-
logical generators which reflects better than H the weight-space decomposition of
objects of Oλ0

(H). For λ ∈ WSλ0, we define a function ordλ : S+ −→ Z≥−1 by

(7) ordλ(a) = ordz=a(λ)(z − ha)z
−1.
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Lemma 8. The topological algebra H∧
λ0

is topologically generated by the following
elements:

(i) for each λ ∈ WSλ0, the projector e(λ) : P̂ol −→ P̂olλ ⊂ P̂ol,

(ii) the polynomial ring C[V ], which acts diagonally on P̂ol by multiplication

on each factor P̂olλ = C�V �,

(iii) for each a ∈ Δ an operator τa =
∑

λ∈WSλ0
τae(λ) : P̂ol −→ P̂ol, where

τae(λ) : P̂olλ −→ P̂olsaλ, τaf =

{
(∂a)−1(s∂a(f)− f) ordλ(a) = −1,

(∂a)ordλ(a)s∂a(f) ordλ(a) ≥ 0
(9)

for f ∈ P̂olλ = C�V �, where ∂a ∈ R is the differential of a ∈ S and
s∂a : C�V � −→ C�V � is the reflection with respect to the finite root ∂a ∈ R,
see Section 1.1.

Proof. Let A ⊂ Endcont(P̂ol) denote the closure of the subalgebra generated by the
three sets of operators e(λ), C[V ] and τa. We need to show that A = H∧

λ0
.

Consider the restriction ψ |C[E]. It factorises as

C[E] −→
∏

λ∈WSλ0

lim←−
k

C[E]/mk
λ

∼=−→
∏
λ

P̂olλ,

where mλ ⊂ C[E] is the defining ideal of the closed point λ ∈ E. The Chinese
remainder theorem implies that the map has dense image. In particular, e(λ) ∈
P̂olλ ⊂ P̂ol lies in the closure of image for each λ ∈ WSλ0. Therefore, H

∧
λ0

contains

the closure of ψ(C[E])e(λ) in Homcont(P̂ol, P̂ol); the latter is equal to the algebra

C�V �e(λ) which acts on P̂olλ by multiplication. Thus we have P̂ol ⊂ A and P̂ol ⊂
H∧

λ0
. It remains to show that {ψ(sa)}a∈Δ lies in A and {τa}a∈Δ lies in H∧

λ0
.

For each a ∈ Δ and λ ∈ WSλ0, by comparison of the formulae (4) and (9), we
see that the elements e(saλ)ψ(sa − 1)e(λ) and τae(λ) generate the same cyclic left

C�V �-submodule of Homcont(P̂olλ, P̂olsaλ). In particular, τae(λ) lies in H∧
λ0

and
conversely, e(saλ)ψ(sa − 1)e(λ) lies in A. For λ ∈ WSλ0 such that saλ = λ, we
have ψ(sa− 1)e(λ) = e(λ)ψ(sa− 1)e(λ) ∈ A. For λ ∈ WSλ0 such that saλ �= λ, we
have

ψ(sa − 1)e(λ) = e(λ)ψ(sa − 1)e(λ) + e(saλ)ψ(sa − 1)e(λ),

e(λ)ψ(sa − 1)e(λ) =
λ∗(ha − a)

λ∗a
, e(saλ)ψ(sa − 1)e(λ) = − (saλ)

∗(a− ha)

(saλ)∗a
s∂a;

since λ∗(ha−a)/λ∗a ∈ C�V �e(λ) ⊂ A, it follows that ψ(sa−1)e(λ) ∈ A. Summing
over the idempotents, we obtain

ψ(sa − 1) =
∑

λ∈WSλ0

ψ(sa − 1)e(λ) ∈ A, τa =
∑

λ∈WSλ0

τae(λ) ∈ H
∧
λ0
.

The result follows. �

Let H∧
λ0

-modsm be the category of finitely generated H
∧
λ0
-modules M such that

for each element m ∈ M , the annihilator annH∧
λ0
(m) is an open left ideal of H∧

λ0
.

Notice that these conditions imply

M =
⊕

λ∈WSλ0

e(λ)M and dim e(λ)M < ∞, for M ∈ H
∧
λ0

-modsm.
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Lemma 10. The restriction ψ∗ yields an equivalence of categories

H
∧
λ0

-modsm ∼= Oλ0
(H).

2.5. Idempotent form Hλ0
. In view of Lemma 10 and Lemma 8, in order to

study the block Oλ0
(H), it is convenient to consider the subalgebra generated by

the generators given in Lemma 8.
Observe that the operators {e(λ)}λ∈WSλ0

, C[V ] and {τa}a∈Δ preserve the dense

submodule Pol ⊂ P̂ol. Let Hλ0
be the associative (non-unital) subalgebra of

EndC(Pol) generated by these operators. Let Hλ0
-mod0 be the category of fi-

nitely generated Hλ0
-mod0-modules M such that M =

⊕
λ∈WSλ0

e(λ)M and such

that the subspace V ∗ ⊂ C[V ] acts locally nilpotently on M .

Lemma 11. There is a natural inclusion Hλ0
↪→ H∧

λ0
with dense image, which

induces an equivalence of categories by pulling back the module-structure:

H
∧
λ0

-modsm
∼=−→ Hλ0

-mod0 .

Proof. By the density of the submodule Pol ⊂ P̂ol and Lemma 8, there is a unique
inclusion Hλ0

↪→ H∧
λ0

with dense image which fixes the generators {e(λ)}λ∈WSλ0
,

C[V ] and {τa}a∈Δ. The assertion on the equivalence of category follows straight-
forward from the density. �

Combining the equivalences of Lemma 10 and Lemma 11, we obtain the following
result:

Proposition 12. There is an equivalence of categories

Oλ0
(H) ∼= Hλ0

-mod0 .

Remark 13. In Section 6, we will attach to each family of functions {ωλ}λ∈WSλ0

an algebra Aω. We will study them in a larger generality. The algebra Hλ0
is the

special case where ωλ = ordλ for λ ∈ WSλ0.

2.6. Central subalgebra Z∧. For λ ∈ WSλ0, let Wλ denote the stabiliser of λ
in WS . The stabiliser Wλ is a finite parabolic subgroup of the Coxeter group WS .
The affine Weyl group WS acts on the vector space VC via the finite quotient1

∂W : WS −→ WS/Q
∨ ∼= WR. Let Z∧ = C�V �Wλ0 be the ring of Wλ0

-invariant
formal power series. Since Wλ0

acts by reflections on V , the ring Z∧ is a complete
regular local ring. Let mZ ⊂ Z∧ be the maximal ideal.

For each λ ∈ WSλ0, we define a homomorphism Z∧ −→ P̂olλ: choosing a

w ∈ WS such that wλ0 = λ, we let f �→ w(f) ∈ C�V �Wwλ ⊂ P̂olλ. This map
is clearly independent of the choice of w and it identifies Z∧ with the invariant

subspace C�V �Wwλ . The space P̂ol is regarded as a Z∧-module via the diagonal
action. It is easy to observe that Z∧ lies in the centre of H∧

λ0
.

Remark 14. One can show that Z∧ coincides with the centre of H∧
λ0
; however, we

do not need this fact.

3. Reminder on affine Hecke algebra

We keep the notation (V,R,Δ0), (E, S,Δ) and h = {ha}a∈S as above.

1The notation is chosen so that (∂Ww)(∂a) = ∂(wa) for a ∈ S and w ∈ WS as well as
∂W sa = s∂a for a ∈ S.
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3.1. Extended affine Hecke algebras. Put

v = {vα}α∈R , vα =

{
exp(πihα) α ∈ Rred

exp(πihα+1) α ∈ R ∩ 2R
.

Recall that W̃∨
S = P � WR is the dual extended affine Weyl group (we identify

WR with WR∨ via the correspondence sα ↔ sα∨). Define the extended affine braid
group BS for the dual root system (V ∗, R∨) to be the group generated by Tw for

w ∈ W̃∨
S with the following relation for each y, w ∈ W̃∨

S :

TyTw = Tyw, if �(yw) = �(y) + �(w).

The extended affine Hecke algebra in parameters v, denoted by K, is the quotient
of the group algebra CBS by the following relations for α ∈ Δ0, in the case where
R is reduced:

(Tsα − v2α)(Tsθ∨ + 1) = 0, (Ts0 − v2θ)(Ts0 + 1) = 0,

where s0 ∈ W̃∨
S is the reflection with respect to the affine simple root and θ ∈ R+

is the highest root. In the case where R is non-reduced, let β ∈ Δ0 be the simple
root such that 2β ∈ R. Let K be the quotient of CBS by the following relations
for α ∈ Δ0 \ {β}:

(Tsα − v2α)(Tsα + 1) = 0,

(Tsβ − v2βvθ)(Tsβ + 1) = 0,

(Ts0 − v2βv
−1
θ )(Ts0 + 1) = 0.

3.2. Bernstein–Lusztig presentation. Choose a square root v
1/2
θ of vθ. Define

a group homomorphism v : BS −→ C× by setting v(sα) = vα for α ∈ Δ0 and

v(s0) = vθ in the case where R is reduced; v(sα) = vα, v(sβ) = vβv
1/2
θ and

v(s0) = vβv
−1/2
θ in the case where R is non-reduced and β ∈ Δ0 with 2β ∈ R and

α ∈ Δ0 \ {β}.
There is a subalgebra CP ⊂ K given by μ �→ v(μ)Tμ for μ ∈ P ⊂ W̃∨

S dominant
with respect to the basis Δ0. For β ∈ P in general, we decompose it into β = β′−β′′

with β′ and β′′ dominant and set Y β = Tβ′T−1
β′′ . Then there is a decomposition

K = HR ⊗CP,

where HR is the subalgebra generated by {Tsα}a∈Δ0
and CP is the subalgebra

generated by
{
Y β
}
β∈P

, with the following commutation relations: for each f ∈ CP ,

Tsαf − sα(f)Tsα = (v2α − 1)
f − sα(f)

1− Y −α
, α ∈ Δ0, 2α /∈ R,

(15)

Tsβf − sβ(f)Tsβ =
(
(v2βvθ − 1) +

(
v2β − vθ

)
Y −β
) f − sβ(f)

1− Y −2β
, β ∈ Δ0, 2β ∈ R.

(16)
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3.3. Finite dimensional modules. Let T be the torus defined by T = Q∨ ⊗C×

so that Q∨ = X∗(T ) is its group of cocharacters and P = X∗(T ) is its group of
characters. We view C[T ] = CP as a subalgebra of K.

For each � ∈ T , let m� ⊂ CP denote the defining ideal of the closed point �, which
is generated by Y β − Y β(�) ∈ CP for all β ∈ P . Given any module M ∈ K -Mod,
consider for each � ∈ T the generalised �-weight space in M of the action of the
subalgebra CP ⊂ K:

M� =
⋃
N≥0

{
a ∈ M ; mN

� a = 0
}
.

For any �0 ∈ T , we define O�0 (K) to be the full subcategory of K -mod consisting
of those M ∈ K -mod which admit a decomposition by weight:

M =
⊕

�∈W�0

M�.

3.4. Idempotent form K�0. Fix �0 ∈ T . As in the case of H, we define an algebra
which is more adapted to the study of the block O�0(K). Define for each � ∈ WR�0
a polynomial ring Pol� = C[V ] and let Pol =

⊕
�∈WR�0

Pol�. For each �, define
e(�) : Pol −→ Pol to be the idempotent linear endomorphism of projection onto
the factor Pol�. Let R+

red = R+ \ 2R+ denote the set of indivisible positive roots.

In view of (15), for � ∈ WR�0, we define a function ord� : R
+
red −→ Z:

ord�(α) =

{
ordz=Y α(�)(z − v2α)(z − 1)−1 2α /∈ R,

ordz=Y α(�)(z − v2α)(z + vθ)(z
2 − 1)−1 2α ∈ R.

For each α ∈ Δ0 and � ∈ WR�0, we define an operator ταe(�) : Pol� −→ Polsα�

by

ταe(�) =

{
α−1(sα − 1) ord�(α) = −1

αord�(α)sα ord�(α) ≥ 0
.

Here sα : C[V ] −→ C[V ] is the reflection with respect to α.
Let K�0 be the associative subalgebra of

EndC(Pol) generated by fe(�) and ταe(�) for f ∈ C[V ], α ∈ Δ0 and � ∈ WR�0.
Let K�0 -mod0 be the category of finitely generated Kλ0

-mod0-modules M such
that the subspace V ∗ ⊂ C[V ] acts locally nilpotently on M . Same arguments as
Lemma 10 and Lemma 11 show that:

Proposition 17. There is an equivalence of categories

O�0 (K) ∼= K�0 -mod0 .

Remark 18. In Section 9, we will attach to each family of functions {ω�}�∈WR�0
an

algebra Bω. The algebra Kλ0
is the special case of Bω with ω� = ord� for � ∈ WR�0.

4. The monodromy functor V

In this section, we review the construction of the monodromy functor of [33],
which is a trigonometric analogue of the Knizhnik–Zamolodchikov functor intro-
duced in [16] for rational Cherednik algebras. We prove in Proposition 27 that this
functor is a quotient functor.
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Keep the notation (E, S,Δ) and a0 ∈ Δ as above. In addition, we fix λ0 ∈ EC.
Consider the following exponential map

EC
∼= VC = Q∨ ⊗C

exp−−→ Q∨ ⊗C× = T,(19)

μ⊗ r �→ μ⊗ e2πir.

Put �0 = exp(λ0). For simplifying the notation, denote C0 = Oλ0
(H) and B0 =

O�0 (K).

4.1. Dunkl operators. Consider the dual torus T∨ = P⊗C×. The ring of regular
functions C[T∨] is isomorphic to the group algebra of the coroot lattice CQ∨:

CQ∨ ∼=−→ C[T∨],

Q∨ � μ �→ Xμ.

For each ξ ∈ V ∗, let ∂ξ ∈ Γ (T∨, TT∨)T
∨
be the translation-invariant vector field

on T∨ such that ∂ξ |e= ξ under the isomorphism TT∨ |e∼= V . We view ∂ξ as a linear
differential operator on T∨, so that ∂ξ(X

μ) = 〈ξ, μ〉Xμ for each μ ∈ Q∨.

The regular part of T∨ is defined as T∨
◦ =

⋂
α∈R+

{
Xα∨ �= 1

}
⊂ T∨. Let

D(T∨
◦ ) denote the ring of algebraic differential operators on T∨

◦ .
For ξ ∈ V ∗, the trigonometric Dunkl operator Dξ : C[T∨] −→ C[T∨] is the

C-linear operator defined as follows:

Dξ(f) = ∂ξ(f)−
∑

α∈R+

hα〈ξ, α∨〉 f − sα(f)

1−X−α∨ + 〈ξ, ρ∨h〉f, ρ∨h =
1

2

∑
α∈Δ+

hαα
∨ ∈ VC.

We consider Dξ as an element of D(T∨
◦ )�WR.

According to [33, 4.1], the following homomorphism of C-algebras

C[T∨]⊗CWR ⊗C[V ] = H −→ D(T∨
◦ )�WR,

Xμ ⊗ w ⊗ 1 �→ Xμ ⊗ w,

1⊗ 1⊗ ξ �→ Dξ

extends to an isomorphism C[T∨
◦ ]⊗C[T∨] H

∼= D(T∨
◦ )�WR.

4.2. Monodromy functor V. Let [T∨
◦ /WR] be the quotient stack. According

to [17, 2.5], there is an isomorphism between the orbifold fundamental group
π1([T

∨
◦ /WR]) and the extended affine braid group BS from Section 3.1.

If M ∈ Oλ0
(H), then

M◦ = C[T∨
◦ ]⊗C[T∨] M

is a W -equivariant D(T∨
◦ )-module, which is in fact an integrable connection with

regular singularities. Therefore the monodromy representation on the vector space
of flat sections of M on (the universal covering of) the orbifold [T∨

◦ /W ] defines a
BS-module, which is denoted by V(M). It is shown in [33, 5.1] that the BS-action
on V(M) factorises through the surjective algebra homomorphism CBS −→ K and
yields an exact functor

V : Oλ0
(H) −→ O�0(K).
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4.3. Central actions of Z∧ intertwined by V. For convenience, we denote
C0 = Oλ0

(H) and B0 = O�0(K). Recall the central subalgebra Z∧ = C�V �Wλ0

defined in Section 2.6. Let Z(C0) = End(idC0
) and Z(B0) = End(idB0

) denote the
categorical centres.

Let Wλ0
be the stabiliser of λ0 ∈ EC in WS and let W�0 be the stabiliser of

�0 ∈ T in WR. Let λ̄0 be the image of λ0 in EC/Wλ0
and let �̄0 be the image of �0

in T/W�0 . The exponential map (19) induces an analytic map

expλ0 : EC/Wλ0
−→ T/W�0 ,

which is locally biholomorphic near λ̄0. The push-forward along expλ0 at λ̄0 yields
an isomorphism of complete local rings

expλ0
∗ : O∧

EC/Wλ0
,λ̄0

∼−→ O∧
T/W�0

,�̄0
.

Note that Z∧ ∼= O∧
EC/Wλ0

,λ̄0
. For each w ∈ WS , the action of w on EC and on T

(the latter via the quotient map ∂W from Section 2.6) induces

w∗ : O∧
EC/Wλ0

,λ̄0

∼−→ OEC/Wwλ0
,wλ̄0

, w∗ : O∧
T/W�0

,�̄0
∼= O∧

T/Ww�0
,w�̄0

.

We define homomorphisms Z∧ −→ Z (C0) and Z∧ −→ Z (B0) as follows: for any
M ∈ C0, we decompose M =

⊕
λ∈WS λ0

Mλ and for each λ = wλ0, an element

f ∈ Z∧ acts by w∗f on Mλ. This depends only on the weight λ but not on the
choice of w. Similarly, for any N ∈ B0, we decompose N =

⊕
�∈WR �0

N�. For each

� = w�0, an element f ∈ Z∧ acts by multiplication by w∗ exp
λ0
∗ f on N�.

Lemma 20. The functor V : C0 −→ B0 intertwines the Z∧-actions on C0 and B0.

Proof. Recall that the graded affine Hecke algebra is the subalgebra

H = CWR ⊗ SymV ∗
C ⊂ H.

For each weight λ ∈ VC, let Oλ(H) be the category of finite-dimensional H-modules
on which the action of the polynomial part SymVC has weights lying in the orbit
WSλ ⊂ VC.

There is a functor of induction

IndH
H
: H -mod −→ H -mod, IndH

H
M = H⊗H M

and for each weight λ ∈ EC, it restricts to

IndH
H
: Oλ(H) −→ Oλ(H).

Let I ⊂ C0 denote the essential image of IndH
H
. It is known that I generates C0 —

indeed, the module P (λ)n = H/H ·mn
λ lies in I and the family {P (λ)n}n∈N, λ∈WSλ0

generate C0. Therefore, it suffices to show that the restriction V |I intertwines the
actions of Z∧. We shall apply the deformation argument from [33, 5.1] to check
this statement.

Let O = C��� and let K = C((�)). Let ε ∈ V ∗
C be any regular coweight and put

λ0,O = λ0 +�ε ∈ V ∗
O. Put HO = H⊗O and KO = K⊗O. For each λO ∈ WSλ0,O

and for n ∈ Z≥1, let

mλO = 〈βO − 〈βO, λO〉 ; β ∈ VO〉 ⊂ SymO V ∗
O, mλK = mλO [�

−1],

Sλn
O
= SymO V ∗

O/m
n
λO , Sλn

K
= Sλn

O
[�−1],

P (λO)n = HO ⊗SymO V ∗
O
Sλn

O
, P (λK)n = HK[�

−1].
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Note that all these objects are flat over O. Let P (λO)
∇
n be the space of flat sec-

tions of the affine Knizhnik–Zamolodchikov equation (AKZ) on the constant vector
bundle on T∨

◦ of fibre P (λO)n. The monodromy representation yields a KO = K⊗O
action on P (λO)

∇
n .

Since the stabiliser of λO in WS is trivial, there is an eigenspace decomposition

P (λK)n =
⊕

w∈WR

(P (λK)n)wλK
, (P (λK)n)wλK

= bwSλn
K
,

where each bwSλn
K
is a free Sλn

K
-module of rank 1. Consider the boundary point of

T∨:

lim
n→+∞

exp(niρ) =
(
Xα∨

= 0
)
α∈R+

, where ρ = (1/2)
∑

α∈R+

α.

Applying the Frobenius method around this point, we obtain a fundamental solution{
b∇w
}
w∈WR

of the AKZ equation on T∨
◦ which satisfies

b∇w (exp(μ)) = e−2πi(〈μ,ρ∨
h 〉+μ) · (bw +G(μ))

for μ ∈ V ∗
C such that Im 〈μ, α∨〉 � 0, ∀α ∈ Δ+,

where G(μ) is a P (λK)n-valued analytic function in μ such that

G(μ) −→ 0 when Im 〈α, μ〉 −→ +∞, ∀α ∈ Δ+.

The fundamental solution induces an Sλn
K
-linear isomorphism

(21) P (λK)n
∼−→ P (λK)

∇
n , bw �→ b∇w .

Under this isomorphism, the monodromy operator on the right-hand side corres-
ponding to β ∈ X is identified with e2πiβ on the left-hand side. Put

Z∧
O =
(
(SymV ∗

O)
Wλ0

)∧
λ̄0,O

, Z∧
K = Z∧

O[�
−1] ∼= (SymV ∗

K)
∧
λ̄0,O

.

We define the action of Z∧
O and Z∧

K on HO-modules and HK-modules in a similar
way.

Since the action of Z∧
K on P (λK)n coincides with the action of the polynomial

part SymV ∗
K ⊂ H up to twists by elements of WR, the induced action of Z∧

K on the
KK-module P (λK)

∇
n is identified with the exponentiation of the action of Z∧

K on
the P (λK)n under (21).

Since the O-lattices P (λO)n ⊂ P (λK)n and P (λO)
∇
n ⊂ P (λK)

∇
n are stable under

the action of the subring Z∧
O ⊂ Z∧

K, the functor M �→ M∇ also intertwines the
two Z∧

O-actions. Put P (λ)n = P (λO)n ⊗O C. Then P (λ)n �→ P (λ)∇n = V(P (λ)n)
also intertwines the two Z∧-actions. Finally, since the family of modules P (λ)n for
λ ∈ WSλ0 and n ≥ 1 generates the category Oλ0

(H), the functor V restricted to I
intertwine the Z∧-actions as asserted. �

4.4. Completion of categories. Since the affine Hecke algebra K is of finite rank
over its centre, namely (CP )W , B0 = O�0(K) is equivalent to the category of
modules of finite length over some semiperfect algebra. It is also the case for C0 =
Oλ0

(H). In particular, they are both noetherian-artinian. Consider the category
of pro-objects2 Pro(C0) and Pro(B0). We have two central actions introduced in

2The basic properties of categories of pro-objects are reviewed in Appendix A.
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Section 4.3

Z∧ −→ End(idC0
) ∼= End(idPro(C0)),

Z∧ −→ End (idB0
) ∼= End(idPro(B0)).

By Lemma 20, the functor V : C0 −→ B0 intertwines these Z∧-actions. The exten-
sion V : Pro(C0) −→ Pro(B0) still intertwines the Z∧-actions.

Define C ⊂ Pro(C0) to be the subcategory consisting of objects M ∈ Pro(C0)
such that M/mk

ZM ∈ C0 for all k ≥ 0. Similarly we define B ⊂ Pro(B0) to be
the subcategory consisting of objects N ∈ Pro(B0) such that M/mk

ZM ∈ C0 for all
k ≥ 0.

Lemma 22. For each simple object L ∈ C0 (resp. L ∈ B0), its projective cover
P(L) ∈ Pro(C0) (resp. P(L) ∈ Pro(B0)) lies in C (resp. B).

Proof. Notice that by the general result Proposition 114, the objects of C0 (resp. B0)
admit projective covers in Pro(C0) (resp. Pro(B0)). The statement holds obviously
for B0 because K is of finite rank over its centre. For C0, by Proposition 12, there
is an equivalence C0 ∼= Hλ0

and the algebra Hλ0
is Morita-equivalent to an algebra

of finite rank over its centre, cf. Section 7.4. �

Lemma 23. The functor V : Pro(C0) −→ Pro(B0) restricts to V : C −→ B.

Proof. If M ∈ C, then M/mk
ZM ∈ C0 and by Lemma 20, V(M)/mk

ZV(M) ∼=
V(M/mk

ZM) ∈ B0. It follows that V(M) ∈ B. �

4.5. Right adjoint of V. Recall that B0 = O�0(K) and C0 = Oλ0
(H).

Lemma 24. The functor V : C0 −→ B0 admits a right adjoint functor V� : B0 −→
C0.

Proof. We first define a functor V� : B0 −→ Ind(C0) with natural isomorphisms

(25) HomB0
(V(M), N) ∼= HomInd(C0)

(
M,V�(N)

)
for M ∈ C0 and N ∈ B0. For any N ∈ B0, let

FN : Cop
0 −→ C -Mod, FN : M �→ HomB0

(V(M), N)

and let

FN (M)min = FN (M) \
⋃

0�=M ′⊂M

FN (M/M ′).

Here, we regard FN (M/M ′) as a subspace of FN (M) by the right exactness of
FN . Let IN be the category whose objects are pairs (M,a), where M ∈ C0 and
a ∈ FN (M)min, and whose morphisms are defined by

HomIN
((M,a), (M ′, a′)) = {f ∈ HomC0

(M,M ′) ; FN (f)(a′) = a} .
We set

V
�(N) = “lim−→”

(M,a)∈IN

M ∈ Ind(C0).

According to [32, 3.5, Lemma 6], V�(N) represents the functor FN , so V� satisfies
the desired adjoint property (25).

Now we show that in fact the object V�(N) in Ind(C0) lies in the subcategory C0.
Let PC ∈ C be the sum of all projective indecomposable objects (up to isomorph-
ism) of C so that for any M ∈ C0, the dimension of HomC(PC ,M) is equal to the
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length of M . Since V(PC) ∈ B is a finitely generated K-module, the vector space
HomB (V(PC), N) is finite-dimensional. On the other hand, there are isomorphisms

lim−→
M⊂V

�(N)
M∈C0

HomC (PC ,M) ∼= lim−→
M⊂V

�(N)
M∈C0

lim−→
Q⊂PC

PC/Q∈C0

HomC0
(PC/Q,M)(26)

∼= lim−→
Q⊂PC

PC/Q∈C0

HomInd(C0)

(
PC/Q,V�(N)

)
∼= lim−→

Q⊂PC
PC/Q∈C0

HomB0
(V(PC/Q), N)

∼= HomPro(B0)

(
“lim←−”
Q⊂PC

PC/Q∈C0

V(PC/Q), N

)
∼= HomB (V(PC), N) .

The first and the fourth isomorphisms are due to (110) of Appendix A; the second
one is exchanging the order of the two colimits and it holds due to the definition of
morphisms between ind-objects; the third one is due to (25); the last one is due to
Lemma 23.

Since N ∈ B0, there is some integer n such that mn
ZN = 0. Since V(PC) ∈ B,

the quotient V(PC)/m
n
ZV(PC) lies in B0. Thus the Hom-space

HomB(V(PC), N) ∼= HomB0
(V(PC)/m

n
ZV(PC), N)

is finite-dimensional. The above isomorphisms (26) imply that the length of the
subobjects M ⊂ V�(N) such that M ∈ C0 is bounded. It follows that V�(N) lies
in C0 by Proposition 112(iii). Thus V� : B0 −→ C0 is a right adjoint to V. �

4.6. V is a quotient functor.

Proposition 27. The monodromy functor V : C0 −→ B0 is a quotient functor.

Proof. Recall that D(T∨
◦ ) is the ring of algebraic linear differential operators on the

regular part T∨
◦ of the dual torus T∨ = P ⊗C×. By construction, the functor V

factorises into the following

H -Mod D (T∨
◦ )�WR -Mod

C0 connrsWR
(T∨

◦ ) CBS -modfini

B0

loc

V

RH

where connrsWR
(T∨

◦ ) is the subcategory of D (T∨
◦ ) � WR -mod consisting of WR-

equivariant integrable connections on T∨
◦ which have regular singularities along the

boundary. The arrow in the first line is the localisation functor loc=C[T∨
◦ ]⊗C[T∨]−,

whose right adjoint loc� is the restriction of the action of H◦ = D (T∨
◦ ) � WR to

H. The restriction of loc to C0 factorises through the inclusion of subcategory

connrsWR
(T∨

◦ ) ↪→ D (T∨
◦ )�WR -Mod
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and gives the first arrow of the second line. The functor RH is the Riemann–Hilbert
correspondence (the Knizhnik–Zamolodchikov equations have regular singularit-
ies [28]), due to Deligne [11, 2.17+5.9], between algebraic connections with reg-
ular singularities and finite-dimensional representations of the fundamental group
π1 ([T

∨
◦ /WR]) ∼= BS .

We show that V admits a section functor in the sense of Gabriel [15]. We have
shown in Lemma 24 that V admits a right adjoint functor V�. The functor V� can
be described as follows:

B0 ↪→ CBS -modfini ∼= connrsWR
(T∨

◦ ) −→ C0,

where the last arrow is the functor which sends an object M ∈ connrsWR
(T∨

◦ ) to the
biggest H-submodule of M which lies in C0, denoted by M |C0

⊂ M . We show that
the adjunction counit V ◦ V� −→ idB0

is an isomorphism. We first show that it
is a monomorphism: for any M ∈ connrsWR

(T∨
◦ ), we have C[T∨

◦ ] ⊗C[T∨] M ∼= M ;
by the flatness of C[T∨

◦ ] over C[T∨], the inclusion M |C0
↪→ M gives rise to a

monomorphism

C[T∨
◦ ]⊗C[T∨] (M |C0

) −→ C[T∨
◦ ]⊗C[T∨] M ∼= M ;

composing it with the Riemann–Hilbert correspondence, we see that V◦V� −→ idB0

is a monomorphism.
Let N ∈ B0. By the exactness of V, to show that the adjunction counit

VV�N ↪→ N is an isomorphism, it suffices to find an H-submodule of RH−1(N)
whose localisation to T∨

◦ is equal to RH−1(N). There exists a surjection⊕
i∈I

P (�i)ni
−→ N,

where I is an index set and P (�i)ni
= K/K · mni

�i
. By [33, 5.1(i)], for each i ∈ I

there is an induced module P (λi)ni
= H/H · mni

λi
∈ C0 such that exp(λi) = �i

and V
(
P (λi)ni

) ∼= P (�i)ni
. Hence the image of P (λi)ni

in RH−1(N) is an H-

submodule which satisfies the requirement. We conclude that V ◦ V� ∼= idB0
;

therefore V� is a section functor for V.
By the criterion of Gabriel [15, 3.2, Prop 5], V is a quotient functor. �

5. Comparison of V and V

5.1. The functors V and V. In Part 2, we will study the idempotent forms
Hλ0

and K�0 in a broader context, cf. Remark 13 and Remark 18. Specific-
ally, in Section 10.6, we will introduce a quotient functor for graded modules
V : Hλ0

-gmod −→ K�0 -gmod. It has an ungraded version V : Hλ0
-mod0 −→

Kλ0
-mod0. On the other hand, by Proposition 12 and Proposition 17, we have

equivalences of categories Oλ0
(H) ∼= Hλ0

-mod0 and O�0(K) ∼= Kλ0
-mod0. The

situation can be depicted in a diagram:

Oλ0
(H) O�0(K)

Hλ0
-mod0 K�0 -mod0

V

∼= ∼=
V

Conjecture 28. There is an isomorphism of functors V ∼= V.
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In the rest of this section, we use results from Part 2 to prove a weaker version
of this statement.

5.2. Comparison of the kernels. By Proposition 27 and Section 10.6, the func-
tors V and V are already known to be quotient functors. Proposition 29 generalises
a result from [24], where the geometric construction of the dDAHA was used.

Proposition 29. The kernels kerV and kerV are identified via the equivalence
Oλ0

(H) ∼= Hλ0
-mod0.

Proof. Let F : Oλ0
(H)

∼−→ Hλ0
-mod0 denote the equivalence from Proposition 12.

We show that for every object M ∈ Oλ0
(H), the condition Theorem 97(iii) for FM

implies VM = 0. Let M =
⊕

λ∈WSλ0
Mλ be the decomposition into generalised

weight spaces of C[E] and let

M≤t =
⊕

λ∈WSλ0
‖λ‖≤t

Mλ, for t ∈ R≥0.

Note that under the equivalence F , the generalised weight space Mλ is identi-
fied with e(λ)F (Mλ). Following the same arguments as in the proof (iii)⇒(iv)
of Theorem 97, we have saMt ≤ Mt+δ for every t ∈ R≥0 and a ∈ Δ. Let
U = C[E]≤1 +

∑
a∈Δ C · sa ⊂ H so that U generates H as C-algebra. Then,

by the assumption (iii), we see that for each finite-dimensional subspace L ⊂ M
and each ε > 0,

lim
n−→∞

dim (UnL) /nr−1+ε = 0, r = rkR.

Hence we obtain dimGK,H M ≤ r − 1, and in particular dimGK,C[T∨] M ≤ r − 1
for the subalgebra C[T∨] = CQ∨ ⊂ H. As the algebra C[T∨] is commutative and
by Proposition 3, M is coherent over C[T∨], the Gelfand–Kirillov dimension of
M coincides with the Krull dimension of the subvariety SuppT∨ M ⊂ T∨. As the
localisation of M on the regular part T∨

◦ must be locally free, we see that it must
be zero since dimT∨

◦ = r > dimSuppM . Hence VM = 0 by the definition of V.
We see that kerV ⊂ F (kerV).

Since V and V are both quotient functors on noetherian-artinian categories, by
comparison of the rank of the Grothendieck groups

rkK0 (kerV) = rkK0 (Oλ0
(H))− rkK0 (O�0(K))

= rkK0 (Hλ0
-mod0)− rkK0 (K�0 -mod0) = rkK0 (kerV) ,

we see that kerV = F (kerV). �

Part 2. Quiver Hecke algebras

6. Quiver double Hecke algebra

Fix an irreducible based finite root system (V,R,Δ0) and let (E, S,Δ) be its
affinisation. In this section we will also abbreviate P = PR, Q = QR, P

∨ = P∨
R

and Q∨ = Q∨
R.
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6.1. The polynomial matrix algebra Ao. Fix once and for all λ0 ∈ E. Define
for each λ∈WSλ0 a polynomial ring Polλ=C[V ] and let PolWSλ0

=
⊕

λ∈WSλ0
Polλ.

For each λ, define e(λ) : PolWSλ0
� Polλ ⊂ PolWSλ0

to be the projection onto the
factor Polλ.

For each a ∈ Δ, define an operator τoa : PolWSλ0
−→ PolWSλ0

by

τoa =
∑

λ∈WSλ0

τoae(λ), τoae(λ) : Polλ0
−→ Polsaλ0

,

τoae(λ) =

{
(∂a)−1(s∂a − 1) a(λ) = 0

s∂a a(λ) �= 0
.

Here ∂a ∈ R is the differential of a ∈ S, cf. Section 1.1.
Let Ao = Ao(E, S,Δ, λ0) be the associative (non-unital) subalgebra of

EndC(PolWSλ0
) generated by fe(λ) and τoae(λ) for f ∈ C[V ], a ∈ Δ and λ ∈ WSλ0.

6.2. Centre Z. For λ ∈ WSλ0, let Wλ be the stabiliser of λ in WS . The stabiliser
Wλ is a finite parabolic subgroup of the Coxeter group WS . The affine Weyl group
WS acts on the vector space V via the finite quotient ∂W : WS −→ WS/Q

∨ ∼= WR.
Let Z = C[V ]Wλ0 be the ring of Wλ0

-invariant polynomials, graded by the degree of
monomials. Since Wλ0

acts by reflections on V , the ring Z is a graded polynomial
ring. Let mZ ⊂ Z be the unique homogeneous maximal ideal.

For each λ ∈ WSλ0, we define a homomorphism Z −→ Polλ: choosing a w ∈ WS

such that wλ0 = λ, we let f �→ w(f) ∈ C[V ]Wλ ⊂ Polλ. This map is clearly
independent of the choice of w and it identifies Z with the invariant subspace
C[V ]Wλ . The infinite sum PolWSλ0

is regarded as a Z-module via the diagonal
action.

The following are standard results from the invariant theory for reflection groups:

Proposition 30. The following statements hold:

(i) For each λ ∈ WSλ0, the Z-module Polλ is free of rank #Wλ = #Wλ0
.

(ii) For any w ∈ WS, choose a reduced expression w = sal
· · · sa1

and put
τowe(λ) = τoal

· · · τoa1
e(λ) for each λ ∈ WSλ0. Then the element τowe(λ) is

independent of the choice of the reduced expression for w and, moreover,
there is a decomposition

HomZ (Polλ,PolWSλ0
) =
⊕

w∈WS

τowC[V ]e(λ).

(iii) The Ao-action on PolWSλ0
commutes with Z and yields an isomorphism

Ao ∼−→
⊕

λ∈WSλ0

HomZ(Polλ,PolWSλ0
).

6.3. Subalgebras Aω of Ao. Let ω = {ωλ}λ∈WSλ0
be a family of functions ωλ :

S+ −→ Z≥−1 satisfying the following properties:

(i) ωλ(a) = −1 implies a(λ) = 0;
(ii) for w ∈ WS and b ∈ S+ ∩ w−1S+ we have ωλ(b) = ωwλ(wb).

One may extend ωλ to a function ω̃λ : S −→ Z≥−1 by choosing w ∈ WS such
that wa ∈ S+ and setting ω̃λ(a) = ωwλ(wa). We require ω to satisfy the following
property:

(iii) For some (thus every) λ ∈ WSλ0, the extended function ω̃λ : S −→ Z≥−1

has finite support.
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We call the family {ωλ}λ∈WSλ0
a family of order functions. The order functions

can be characterised as follows:

Lemma 31. Every family of order functions {ωλ}λ∈WSλ0
is determined by the

Wλ0
-invariant finitely supported function ω̃λ0

: S −→ Z≥−1 satisfying

ω̃λ0
(a) = −1 ⇒ a(λ0) = 0 ∀a ∈ S.

Define an operator τωa =
∑

λ∈WSλ0
τωa e(λ) ∈ EndZ(PolWSλ0

) with τωa e(λ) :
Polλ −→ Polsaλ by setting

τωa e(λ) =

{
(∂α)−1(s∂a − 1) ωλ(a) = −1,

(∂α)ωλ(a)s∂a ωλ(a) ≥ 0.

so that τωa e(λ) ∈ Ao.

Definition 32. The quiver double Hecke algebra3 Aω = A(E, S,Δ, λ0, ω) is defined
to be the subalgebra of Ao generated by C[V ]e(λ) and τωa e(λ) for λ ∈ WS and
a ∈ Δ.

We also introduce the rational function field and its matrix algebra:

Ratλ = FracPolλ = Polλ ⊗Z FracZ, Rat =
⊕

λ∈WSλ0

Ratλ,

A−∞ =
⊕

λ∈WSλ0

HomFracZ(Ratλ,Rat) = Ao ⊗Z FracZ, τ−∞
a = sa,

where Frac means the field of fractions.

Example 33.

(i) Let o =
{
a �→ −δa(λ)=0

}
λ∈WSλ0

denote the smallest family of order func-

tions. We recover the matrix algebra Ao.
(ii) Let ω={0}λ∈WSλ0

be the zero constant function. Then Aω=PolWSλ0
�WS

is the skew tensor product. If Wλ0
= 1, then Aω = C[V ] �WS is the wreath

product.
(iii) Let E = R, let ε be the coordinate function on R and let S = {±2ε}+ Z,

so that (E, S) is the affine root system of type A
(1)
1 . Choose the basis

Δ = {a1 = 2ε, a0 = 1 − 2ε}. The affine Weyl group WS is generated by
s0 and s1, where s1 (resp. s0) is the orthogonal reflection with respect to
0 ∈ E (resp. 1/2 ∈ E). Set λ0 = 1/4 ∈ E, so that WSλ0 = 1/4 + (1/2)Z
and Wλ0

= 1. It follows that Polλ = C[ε] for all λ ∈ WSλ0 and Ao is the
matrix algebra over C[ε] of rank WSλ0.

Set

ω̃λ0
(a) =

{
1 a ∈ Δ,

0 a ∈ S \Δ
and define the family of order functions ω = {ωλ}λ∈WSλ0

by ωwλ0
(a) =

ω̃λ0
(w−1a). It follows that Aω is equal to the idempotent form of the

3In this definition, the assumption that λ0 ∈ E plays no essential role. We could have asked
λ0 to belong to some set on which WS acts transitively with finite parabolic stabiliser subgroups.
However, the euclidean geometry of E will facilitate some arguments.
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dDAHA Hλ0
introduced in Section 2.5 with parameter ha = 1/2 for all

a ∈ S. We can depict the algebra Aω with the following diagram:

· · · Pol−3/4 Pol3/4 Pol1/4 Pol−1/4 Pol5/4 · · · ,

s

τ1

s

s

τ0

−ε s

ε s

τ1

s

s

τ0

s

where s : C[ε] −→ C[ε] is given by the substitution ε �→ −ε.

Remark 34. We may view Aω as an affinisation of the quiver Hecke algebra Rβ(Γ)
attached to a certain quiver Γ = (I,H) and a dimension vector β ∈ NI, cf. Remark
73. The parameter ω is an analogue of the polynomials Qi,j(u, v) in Rouquier’s
definition of quiver Hecke algebras.

Remark 35. Following [36, §2.3], one can write down a complete list of relations
between the generators τωa e(λ), C[V ]e(λ) for the algebra Aω in the manner of
Khovanov–Lauda–Rouquier. The most sophisticated is the braid relation between
pairs of generators from {τωa e(λ)}a∈Δ,λ∈WSλ0

. We will only prove a weaker version
of it in Lemma 39, which is enough for our needs.

6.4. Filtration by length.

Definition 36. We define the filtration by length {F≤nA
ω}n∈N on Aω by

F≤nA
ω =

∑
λ∈WSλ0

n∑
k=0

∑
(a1,...,ak)∈Δk

C[V ]τωa1
· · · τωak

e(λ).

In general, it is hard to express the operators τωa1
· · · τωak

; however, the leading
term is easy to describe.

Lemma 37. Let w = sal
· · · sa1

be a reduced expression and let λ ∈ WSλ0. Then

(i) For any f ∈ C[V ], and any family of order functions ω there is a commut-
ation relation:

fτωal
· · · τωa1

e(λ) ≡ τωal
· · · τωa1

w−1(f)e(λ) mod F≤l−1A
ω.

(ii) For any pair of families of order functions ω and ω′ such that ω ≤ ω′

(pointwise), there is a congruence relation:

τω
′

al
· · · τω′

a1
e(λ) ≡ τωal

· · · τωa1

( ∏
b∈S+∩w−1S−

(−∂b)ω
′
λ(b)−ωλ(b)

)
e(λ) mod F≤l−1A

ω.

Proof. We prove the statement (i) by induction on the length l = �(w). It is trivial
for l = 0. For l = 1:

(fτωa − τωa s∂a(f))e(λ) =

{
(∂a)−1(s∂a(f)− f)e(λ) ωλ(a) = −1,

0 ωλ(a) ≥ 0.
(38)

It belongs to F≤0A
ωe(λ) = C[V ]e(λ) in both cases.

For l > 1, by the induction hypothesis, we get

(fτωal
· · · τωa1

− τωal
· · · τωa1

w−1(f))e(λ)

= (fτωal
− τωal

sal
(f))τωal−1

· · · τωa1
e(λ)

+ τωal
(sal

(f)τωal−1
· · · τωa1

− τωal−1
· · · τωa1

w−1(f))e(λ) ∈ F≤l−1A
ω,



KZ FUNCTOR FOR DDAHAS 927

whence (i).
We prove (ii) by induction on l = �(w). Put w′ = sal−1

· · · sa1
and λ′ = w′λ.

Then

τω
′

al
· · · τω′

a1
e(λ) = (∂al)

ω′
λ′(al)−ωλ′ (al)τωal

τω
′

al−1
· · · τω′

a1
e(λ)

=
(
(∂al)

ω′
λ′(al)−ωλ′ (al)τωal

− τωal
(−∂al)

ω′
λ′(al)−ωλ′(al)

)
τω

′

al−1
· · · τω′

a1
e(λ)

+ τωal
(−∂al)

ω′
λ′(al)−ωλ′(al)τω

′

al−1
· · · τω′

a1
e(λ).

By (38), the first term belongs to F≤l−1A
ω; the second term, by the statement (i)

for w′ = ail−1
· · · ai1 , satisfies

τωal
(−∂al)

ω′
λ′ (al)−ωλ′(al)τω

′

al−1
· · · τω′

a1
e(λ)

≡ τωal
τω

′

al−1
· · · τω′

a1
w′−1
(
(−∂al)

ω′
λ′ (al)−ωλ′(al)

)
e(λ)

= τωal
τω

′

al−1
· · · τω′

a1

(
−∂(w′−1al)

)ω′
λ(w

′−1al)−ωλ(w
′−1al)

e(λ).

Here we have used the hypothesis that ωλ(w
′−1al) = ωλ′(al). Using the induction

hypothesis, we obtain

τω
′

al
· · · τω′

a1
e(λ) ≡ τωal

τω
′

al−1
· · · τω′

a1

(
(−∂(w′−1al))

ω′
λ(w

′−1al)−ωλ(w
′−1al)

)
e(λ)

≡ τωal
· · · τωa1

( ∏
b∈S+∩w−1S−

(−∂b)ω
′
λ(b)−ωλ(b)

)
e(λ).

The last equation is due to the relation S+ ∩ w−1S− = S+ ∩ w′−1S− ∪
{
w′−1al

}
.

This proves (ii). �

6.5. Basis theorem. We aim to prove an analogue of Proposition 30 for the sub-
algebra Aω ⊂ Ao.

Lemma 39 (Braid relation). For any family of ordered functions {ωλ}λ∈WSλ0
, the

images of the operators τωa e(λ) in grFAω satisfy the braid relations: for a, b ∈ Δ
with a �= b, let ma,b be the order of sasb in WS. If ma,b �= ∞, then

τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

ma,b

e(λ) ≡ τωb τ
ω
a τ

ω
b · · ·︸ ︷︷ ︸

ma,b

e(λ) mod F≤ma,b−1A
ω.

Proof. The statement is empty for ma,b = ∞, so we assume ma,b �= ∞. Let
Wa,b ⊂ WS be the parabolic subgroup generated by sa and sb, let w0 ∈ Wa,b be
the longest element and let Sa,b ⊂ S be the subroot system spanned by a and b.
Let Aω

a,b be the subalgebra of Aω generated by C[V ]e(λ), τωa e(λ) and τωb e(λ) for
λ ∈ WSλ0 and let F≤nA

ω
a,b be the filtration by length defined as in Definition 36.

It suffices to show the following

τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

ma,b

e(λ) ≡ τωb τ
ω
a τ

ω
b · · ·︸ ︷︷ ︸

ma,b

e(λ) mod F≤ma,b−1A
ω
a,b,

because there is an inclusion F≤ma,b−1A
ω
a,b⊂F≤ma,b−1A

ω. An analogue of Lemma 37
is valid for this subalgebra with the filtration F≤nA

ω
a,b.

We first prove the braid relation for the family ω′ = {ω′
λ}λ∈WSλ0

, where ω′
λ(c) =

max{ωλ(c), 0}. Since ω′
λ(c) ≥ 0 for all c ∈ S+

a,b, the braid relation for τω
′

a and τω
′

b
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follows from the following formula (with similar proof as Lemma 37(ii)):

τω
′

a τω
′

b τω
′

a · · ·︸ ︷︷ ︸
ma,b

e(λ) = s∂as∂bs∂b · · ·︸ ︷︷ ︸
ma,b

∏
c∈S+

a,b

(−∂c)ω
′
λ(c)e(λ).

Let d =
∏

c∈S+
a,b

ωc(λ)=−1

(∂c). By Lemma 37(ii), we have

τω
′

a τω
′

b τω
′

a · · ·︸ ︷︷ ︸
ma,b

e(λ) ≡ τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

ma,b

d e(λ) mod F≤ma,b−1A
ω
a,b.

Write X=(τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

ma,b

−τωb τ
ω
a τ

ω
b · · ·︸ ︷︷ ︸

ma,b

)e(λ), so that X·d∈e(w0λ)
(
F≤ma,b−1A

ω
a,b

)
e(λ).

Moreover, by Lemma 37(ii), we have

X ≡ (τoaτ
o
b τ

o
a · · ·︸ ︷︷ ︸

ma,b

− τob τ
o
aτ

o
b · · ·︸ ︷︷ ︸

ma,b

)
∏

c∈S+
a,b

(−∂c)ωλ(c)−oλ(c)e(λ) mod F≤ma,b−1A
o
a,b.

However, the elements τoae(λ) satisfy the braid relations inAo
a,b by Proposition 30(ii).

It follows that X ∈ F≤ma,b−1A
o
a,b (notice that Aω

a,b ⊆ Ao
a,b). We claim that for

0 ≤ j ≤ ma,b − 1, the quotient F≤jA
o
a,be(λ)/F≤jA

ω
a,be(λ) is right d-torsion-free.

This will imply that X ∈ F≤ma,b−1A
ω
a,b and complete the proof.

We prove the claim by induction on j. For j = 0, this is obvious since F≤0A
o
a,b =

F≤0A
ω
a,b. Assume j ∈ [1,ma,b − 1]. The quotient grFj A

ω
a,be(λ) is spanned over

C[V ] by τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

j

e(λ) and τωb τ
ω
a τ

ω
b · · ·︸ ︷︷ ︸

j

e(λ) since any non-reduced word in a, b of

length ≤ j contains consecutive letters aa or bb and since (τωa )
2, (τωb )

2 ∈ F≤1A
ω
a,b.

Similarly, grFj A
o
a,be(λ) is spanned over C[V ] by τoaτ

o
b τ

o
a · · ·︸ ︷︷ ︸

j

e(λ) and τob τ
o
aτ

o
b · · ·︸ ︷︷ ︸

j

e(λ).

Moreover, by Proposition 30, grFj A
o
a,be(λ) is free of rank 2 over C[V ]. Denote

w = sasbsa · · ·︸ ︷︷ ︸
j

. Since ω ≥ o, by Lemma 37(ii), we have

τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

j

≡ τoaτ
o
b τ

o
a · · ·︸ ︷︷ ︸

j

⎛⎜⎝ ∏
c∈S+

a,b∩w−1S−
a,b

(−∂c)ωλ(c)−oλ(c)

⎞⎟⎠ mod F≤j−1A
o
a,b.

The prime factors of d are ∂c for c ∈ S+
a,b such that ωλ(c) = −1. Therefore d and

the product ∏
c∈S+

a,b∩w−1S−
a,b

(−∂c)ωλ(c)−oλ(c)

are relatively prime. The same argument applies to the other product τωb τ
ω
a τ

ω
b · · ·.

It follows that grFj A
ω
a,be(λ) and grFj A

o
a,be(λ) are both free over C[V ] of rank 2,

and the matrix representing the C[V ]-linear map ϕ : grFj A
ω
a,be(λ) −→ grFj A

o
a,be(λ)

(which is induced from the inclusion Aω
a,be(λ) ⊂ Ao

a,be(λ)) is diagonal with entries
prime to d. Hence cokerϕ is d-torsion free. The snake lemma yields a short exact
sequence

0 −→
F≤j−1A

o
a,be(λ)

F≤j−1Aω
a,be(λ)

−→
F≤jA

o
a,be(λ)

F≤jAω
a,be(λ)

−→ cokerϕ −→ 0,
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in which the first term is also d-torsion-free by induction hypothesis, and so is the
middle term d-torsion-free, whence the claim is proven. �

Theorem 40. For each w ∈ WS, choose a reduced expression w = sal
· · · sa1

and
put τωw = τωal

· · · τωa1
. Then there is a decomposition

Aω =
⊕

λ∈WSλ0

⊕
w∈WS

C[V ]τωwe(λ).

Proof. By dévissage, it suffices to show that for each n ∈ N,

grFn Aω =
⊕

λ∈WSλ0

⊕
w∈WS

�(w)=n

C[V ]τωwe(λ).

It follows from the braid relations for τωa in grFAω proven in Lemma 39 and the fact
that (τωa )

2e(λ) ∈ F≤1A
ω, that these elements τωw span grFnA

ω. By the invariant
theory of reflection groups, the family {τowe(λ)}w is free over C[V ] and forms a
basis for EndZ (Polλ). In view of Lemma 37(ii), the matrix of transition between
the families {τowe(λ)}w and {τωwe(λ)}w is diagonal with non-zero entries; therefore
the latter is also free over C[V ]. �

Define the filtration F≤nA
−∞ = (F≤nA

−o)⊗Z FracZ ⊂ A−∞.

Corollary 41. For each n, we have

F≤nA
ω = F≤nA

−∞ ∩Aω.

Proof. Let F ′
≤nA

ω = F≤nA
−∞ ∩ Aω. We have F≤nA

ω ⊂ F ′
≤nA

ω. Fix λ, λ′ ∈
WSλ0 and denote A = e(λ′)Aωe(λ). Put N = # {w ∈ WS ; wλ = λ′}, then we
have F≤nA = A = F≤nA

′ for n ≥ N by Theorem 40. We prove by induction on
k ∈ [0, N ] that F≤N−kA = F ′

≤N−kA. It is already clear for k = 0. Suppose k ≥ 1.
Then we have the obvious diagram:

0 F≤N−kA F≤N−k+1A grFN−k+1A 0

0 F ′
≤N−kA F ′

≤N−k+1A grF
′

N−k+1A 0.

ϕ ψ η

The morphism ψ is an isomorphism by the induction hypothesis and ϕ is injective.
By the snake lemma, we have ker η ∼= cokerϕ. Theorem 40 implies that grFN−k+1A is
C[V ]-torsion-free whereas cokerϕ is a C[V ]-torsion module. Therefore cokerϕ = 0
and ϕ is an isomorphism. Summing over λ, λ′ ∈ WSλ0, we obtain F≤nA

ω = F ′
≤nA

ω

for all n ∈ N. �

Remark 42. In view of (the proof of) Lemma 39, one can define a “Bruhat filtration”
{FI}I indexed by the order ideals I of the affine Weyl group WS with respect to
the Bruhat order, so that FIA

ω is spanned by C[V ]τωwe(λ) for λ ∈ WSλ0 and
w ∈ I. Our filtration by length {F≤nA

ω}n∈N can be viewed as part of the Bruhat
filtration because we have FnA

ω = FIn
Aω for In = {w ∈ WS ; �(w) ≤ n}.
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6.6. The associated graded grFAω. We describe in greater detail the structure
of the associated graded grFAω. We establish in Proposition 48 a triangular de-
composition for grFAω, which will be used in the proof of Proposition 69. The
proof of Lemma 44 is technical. The reader is advised to skip this subsection in the
first reading.

Recall the extended affine Weyl group W̃S = P∨ � WR defined in Section 1.3.
For μ ∈ P∨, let wμ ∈ WR be such that Xμwμ is the minimal element of the coset
XμWR. Define the following map of minimal representatives:

θ : P∨ −→ W̃S , θ(μ) = Xμwμ.

In particular, θ(Q∨) ⊂ WS coincide with the set of minimal representatives for the
quotient WS/WR.

Lemma 43. For each μ ∈ P∨, the element wμ is characterised by the following
property: every positive root α ∈ R+ satisfies wμα ∈ R− if and only if 〈α, μ〉 > 0.

Proof. See [9, Proof of 1.4] �

We consider the nil-Hecke algebra C[W̃S ]
nil for W̃S : it is the C-vector space span

by the basis
{
[w]nil

}
w∈W̃S

equipped with the following multiplication law

[w]nil · [y]nil =
{
[wy]nil if �(wy) = �(w) + �(y),

0 otherwise.

Let C[WS ]
nil and C[WR]

nil be the subspace of C[W̃S ]
nil spanned by

{
[w]nil

}
w∈WS

and
{
[w]nil

}
w∈WR

respectively. These are the nil-Hecke algebras for WS and WR.

Let C0 ⊂ V ∗ denote the fundamental Weyl chamber and C0 its closure in V ∗.
Let P∨

+ = P∨ ∩ C0 (resp. Q∨
+ = Q∨ ∩ C0) be the submonoid of P∨ consisting

of dominant coweights (resp. dominant coroots). Let CP∨
+ (resp. CQ∨

+) denote
the monoid algebra of P∨

+ (resp. Q∨
+). For μ ∈ P∨

+ , let Xμ ∈ CP∨
+ denote the

corresponding element.
We define a map

ζ : CP∨
+ −→ C[W̃S ]

nil, ζ(Xμ) =
∑

μ′∈WRμ

[Xμ′
]nil.

Lemma 44. The following statements hold:

(i) The map ζ is a ring homomorphism and yields a left CP∨
+ -module struc-

ture on C[W̃S ]
nil by left multiplication; moreover, C[W̃S ]

nil is a free (CP∨
+ ,

C[WR]
nil)-bimodule of rank #W and a basis of which is given by{

[θ(bw)]
nil
}
w∈WR

with

bw =
∑
α∈Δ0
sαw<w

w−1w0ω
∨
α ∈ P∨.

(ii) The ring CQ∨
+ is Cohen–Macaulay and the CP∨

+ -module structure on

C[W̃S ]
nil restricts to a CQ∨

+-module structure on C[WS ]
nil; moreover, there

is a decomposition

C[WS ]
nil = E ⊗C[WR]

nil,

where E ⊂ C[WS ]
nil is a CQ∨

+-direct factor and is a Cohen-Macaulay CQ∨
+-

module of maximal dimension.
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Proof. In view of the length formula Proposition 1 for W̃S , the condition �(Xμ+ν) =
�(Xμ) + �(Xν) is equivalent to that μ′ and ν lie in the closure of the same Weyl
chamber. Therefore the map ζ is a ring homomorphism. Define a decreasing
filtration G•W̃S by

GkW̃S =
⋃

y∈WR

�(y)≥k

{
v ∈ W̃S ; �(vy−1) = �(v)− �(y)

}
.

Since C[W̃S ]
nil has a canonical basis

{
[w]nil

}
w∈W̃S

, the filtration G•W̃S induces a

filtration on C[W̃S ]
nil, denoted by G•C[W̃S ]

nil.

Step 1. We prove that the map

P∨
+×
{
(w, y)∈(WR)

2 ; �(y)=k
} ∼−→ GkW̃S\Gk−1W̃S , (μ,w, y) �→ Xbw+w−1w0μwy

is a bijection.
For μ ∈ P∨, let wμ ∈ WR be the element from Lemma 43. We may

partition P∨ into sub-semigroups:

P∨ =
⊔

w∈WR

P∨
w , P∨

w = {μ ∈ P∨ ; wμ = w} .

For w ∈ WR, we have bw ∈ P∨
w and there is a bijection

P∨
+

∼−→ P∨
w , μ �→ bw + w−1w0μ;

we can thus express the set GkW̃S \Gk−1W̃S as

GkW̃S\Gk−1W̃S=
⊔

w,y∈WR

�(y)=k

{Xμwy ; μ ∈ P∨
w}=

⊔
w,y∈WR

�(y)=k

{
Xbw+w−1w0μwy ; μ ∈ P∨

+

}
.

Step 2. We prove that for each μ ∈ P∨ and w, y ∈ WR, we have ζ(X
μ)[Xbwwy]nil ∈

G�(y)C[W̃S ]
nil and

(45) ζ(Xμ)[Xbwwy]nil ≡ [Xbw+w−1w0μwy]nil mod G�(y)+1C[W̃S ]
nil.

Indeed, the defining relations of the nil-Hecke algebra C[W̃S ]
nil yield

ζ(Xμ)[Xbwwy]nil =
∑

μ′∈WRμ

�(Xbw+μ′
wy)=�(Xbwwy)+�(Xμ′

)

[Xbw+μ′
wy]nil

in C[W̃S ]
nil. Since

�(Xbw+μ′
wy) ≤ �(Xbw+μ′

w)+�(y) ≤ �(Xbww)+�(Xμ′
)+�(y) = �(Xbwwy)+�(Xμ′

)

(the last equality due to Lemma 43), the condition

(46) �(Xbw+μ′
wy) = �(Xbwwy) + �(Xμ′

)

implies that �(Xbw+μ′
wy) = �(Xbw+μ′

w) + �(y) and hence Xbw+μ′
wy ∈

G�(y)W̃S . It follows that [Xbw+μ′
wy]nil ∈ G�(y)C[W̃S ]

nil for μ′ ∈ WRμ

satisfying (46) and [Xbw+μ′
wy]nil ∈ G�(w)+1C[W̃S ]

nil unless wbw+μ′ = w;
the latter case happens for the unique element μ′ = w−1w0μ in the orbit
WRμ; therefore (45) holds.
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Step 3. By Step 1 and Step 2, we see that GkC[W̃S ] is a CP∨
+ -submodule and the

successive quotient GkC[W̃S ]
nil/Gk+1C[W̃S ]

nil is a free CP∨
+ -module with

a basis formed by the congruence classes of
{
[Xbwwy]nil

}
y,w∈WR, �(y)=k

. It

follows that
{
[Xbwwy]nil

}
y,w∈WR

forms a CP∨
+ -basis for C[W̃S ]

nil. Since

Xbww is minimal in the coset XbwWR, we have

[Xbwwy]nil = [Xbww]nil · [y]nil, for y ∈ WR;

thus
{
[Xbww]nil

}
w∈WR

forms a (CP∨
+ ,C[WR]

nil)-bimodule basis for

C[W̃S ]
nil, whence (i).

Step 4. Let E ′ ⊂ C[W̃S ]
nil be the (free) CP∨

+ -submodule generated by{
[θ(bw)]

nil
}
w∈WR

so that, by (i), there is a decomposition C[W̃S ]
nil ∼=

E ′⊗C[WR]
nil. Let Ω = P/Q. Define a C-linear action of Ω on C[W̃S ]

nil by

Ω×C[W̃S ]
nil −→ C[W̃S ]

nil,

(β, [Xμw]nil) �→ e2πi〈β,μ〉[Xμw]nil, β ∈ Ω, μ ∈ P∨, w ∈ WR.

This action preserves the subspace E ′ ⊂ C[W̃S ]
nil and fixes C[WR]

nil point-
wise; hence there is a decomposition of the Ω-fixed subspace

C[WS ]
nil = (C[W̃S]

nil)Ω ∼= E ⊗C[WR]
nil, where E = (E ′)Ω.

It remains to show that E is a Cohen–Macaulay CQ∨
+-module of maximal

dimension.
Since CQ∨

+ is integrally closed and CP∨
+ is regular and an integral ring

extension of it, by [2, X.2.6,coro 2], CP∨
+ is a Cohen–Macaulay CQ∨

+-
module. Thus E ′, being a free CP∨

+ -module, is Cohen–Macaulay of max-
imal dimension over CQ∨

+. Since E is a direct factor of E ′, so it is Cohen–
Macaulay of maximal dimension over CQ∨

+, whence (ii).

�
Below, we will work with grF Aω and view the elements τωa e(λ) as in grF Aω

for the sake of notational simplicity. View Aω as (Aω)op-module via the right
regular representation. The ring End(grF Aω)op(gr

F Aω) can be viewed as a unital
completion of Aω. Define a C-linear map

Θ : C[WS ]
nil −→ End(grF Aω)op(gr

F Aω) =
∏

λ∈WSλ0

grF Aωe(λ),(47)

Θ([w]nil) = τωw =
∑

λ∈WSλ0

τωwe(λ), w ∈ WS .

Proposition 48. There is a triangular decomposition

grFAω ∼= E ⊗C

( ⊕
w∈WR

Cτωw

)
⊗C

( ⊕
λ∈WSλ0

C[V ]e(λ)

)
,

where E ⊂ C[WS ]
nil is the CQ∨

+-submodule from Lemma 44(ii).

Proof. From Theorem 40, we see that the C[WS ]
nil-action on grF Aω via Θ yields

a decomposition

C[WS ]
nil ⊗
( ⊕

λ∈WSλ0

C[V ]e(λ)

)
∼−→ grF Aω, f ⊗ b �→ Θ(f)(b).
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By Lemma 44(ii), we can further decompose C[WS ]
nil = E ⊗C[WR]

nil. Finally, we
have Θ(C[WR]

nil) =
⊕

w∈WR
Cτωw . �

7. Module categories of Aω

We keep the notation of Section 6. We put a Z-grading on Aω as follows:
the generators are homogeneous: degα e(λ) = 2 for α ∈ V ∗ and deg τωa e(λ) =
ωλ(a) + ωsaλ(a). If M =

⊕
n Mn is a graded vector space, denote by M〈m〉 the

grading shift given byM〈m〉n = Mm+n. For two graded vector spaces M and N , we
denote by Hom(M,N) the space of C-linear maps of degree 0 and gHom(M,N) =⊕

k∈Z Hom(M,N〈k〉).
Below, by “modules” we mean left modules. All statements can be turned into

those for right modules by means of the anti-involution Aω ∼= (Aω)op defined by
τωa e(λ) �→ τωa e(saλ).

7.1. Graded Aω-modules. An Aω-module M is called a weight module if there
is a decomposition

M =
⊕

λ∈WSλ0

e(λ)M.

Let Aω -gMod denote the category of graded weight modules of Aω. Let Aω -gmod
⊂ Aω -gMod be the subcategory of compact objects (i.e. M ∈ Aω -gmod if
HomAω -gMod(M,−) commutes with filtered colimits) and letAω -gmod0⊂Aω -gmod
be the subcategory of mZ -nilpotent objects. Lemma 49 is obvious.

Lemma 49. For every object M ∈ Aω -gMod there exists an index set J and two
families of integers {aj}j∈J and {λj}j∈J such that there exists an epimorphism in

Aω -gMod
r⊕

j=1

Aωe(λj)〈aj〉 � M.

We define a homomorphism of graded rings

(50) Z −→ gEnd (idAω -gMod)

as follows: For every f ∈ C[V ]Wλ0 and w ∈ WS , let f act on e(wλ0)M by multi-
plication with (∂w)(f) ∈ C[V ]Wwλ0 .

7.2. Intertwiners. For each λ ∈ WSλ0 and a ∈ Δ, introduce the following element
in Aω:

ϕae(λ) =

{
((∂a)τωa + 1)e(λ) ωλ(a) = −1

τωa e(λ) ωλ(a) ≥ 0
.

It satisfies the following relations:

ϕ2
ae(λ) =

{
e(λ) ωλ(a) = −1,

±(∂a)nλ,ae(λ) ωλ(a) ≥ 0,

ϕafe(λ) = sa(f)ϕae(λ) f ∈ C[V ],

where nλ,a = max(ωλ(a) + ωsaλ(−a), 0). These elements satisfy the usual braid
relations. Thus, we may write ϕwe(λ) = ϕal

· · ·ϕa1
e(λ) by choosing any reduced

expression w = sal
· · · sa1

.
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Lemma 51. Let w ∈ WS and a ∈ Δ. Then the right multiplication by the inter-
twiner ϕa induces an isomorphism of Aω-modules

Aωe(λ) ∼= Aωe(saλ)

if ωλ(a) + ωsaλ(−a) ≤ 0.

Proof. The right multiplication by the element ϕae(saλ) = e(λ)ϕae(saλ) yields

Aωe(λ)
∼−→ Aωϕae(saλ)

∼−→ Aωϕ2
ae(saλ). Hence if ϕ2

ae(λ) = fe(λ) ∈ C[V ]e(λ)
for f ∈ C[V ] invertible, then ϕ2

ae(λ) is an isomorphism. The condition that f be
invertible is exactly as stated. Clearly, if ϕ2

ae(λ) and ϕ2
ae(saλ) are isomorphisms,

then so are ϕae(λ) and ϕae(saλ). The statement follows. �

7.3. Clan decomposition. As in Section 6.5, we extend ωλ0
to a WS-invariant

function ω̃λ0
: S −→ Z≥−1 and we suppose that the extension ω̃λ0

has finite support.
Consider the following subfamily of hyperplanes

Dω = {Ha ⊂ E ; a ∈ S, ω̃λ0
(a) ≥ 1} .

The connected components of the following space

Eω
◦ = E \

⋃
H∈Dω

H

are called clans. Since ω̃λ0
is supposed to be finitely supported, the family Dω is

finite, the set of connected components π0 (E
ω
◦ ) is finite and there are only a finite

number of clans.
Let C ⊂ Eω

◦ be a clan. Since Eω
◦ is the complement of a finite hyperplane

arrangement, C is a convex polytope. The salient cone of C is defined to be the
convex polyhedral cone κ ⊂ V whose dual cone κ∨ is the cone of linear functions
which are bounded from below on C:

κ∨ =

{
v ∈ V ∗ ; inf

x∈C
〈v, x〉 > −∞

}
, κ = κ∨∨ = {x ∈ V ; 〈v, x〉 ≥ 0, ∀v ∈ κ∨} .

Then κ is a convex polyhedral generated by a finite subset of P∨. We say that clan
C ⊂ Eω

◦ is generic if its salient cone is of maximal dimension.
Denote by ν0 ∈ E the fundamental alcove associated with the basis Δ.

Lemma 52. Let w ∈ WS and a ∈ Δ. Then w−1ν0 and w−1saν0 are in the same
clan if and only if the intertwiner ϕa induces an isomorphism of Aω-modules

Aωe(wλ0) ∼= Aωe(sawλ0).

Proof. Using Lemma 51, we have

ϕ2
ae(wλ0) = e(wλ0) ⇔ ωwλ0

(a) + ωsawλ0
(−a) ≤ 0,

⇔ ω̃λ0
(w−1a) + ω̃λ0

(−w−1a) ≤ 0 ⇔ Hwa /∈ D
ω.

The last condition is equivalent to that w−1ν0 and w−1saν0 belong to the same
clan. �

Proposition 53 follows immediately from Lemma 52.

Proposition 53. If w,w′ ∈ WS are such that w−1ν0 and w′−1ν0 lie in the same
clan, then right multiplication by the intertwiner ϕw′w−1e(wλ) yields an isomorph-
ism Aωe(w′λ) −→ Aωe(wλ).
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Corollary 54. Let M ∈ Aω -gmod. If w,w′ ∈ WS are such that wν−1
0 and w′ν−1

0

lie in the same clan, then multiplication by the intertwiner ϕw′w−1e(wλ) yields an
isomorphism of graded Z-modules e(wλ0)M ∼= e(w′λ0)M . In particular, in this
case there is an equality of graded dimensions

gdim e(wλ0)M = gdim e(w′λ0)M.

Proof. Indeed, we have

e(wλ0)M ∼= HomAω (Aωe(wλ0),M)
−◦ϕw′w−1−−−−−−−→ HomAω (Aωe(w′λ0),M)

∼= e(wλ0)M.

�

Example 55. In the setting of Example 33(iii), the alcoves in E are of the form
]n, n+ 1/2[ for n ∈ (1/2)Z and the fundamental alcove is ν0 = ]0, 1/2[. We have
Dω = {Ha0

, Ha1
}, with {a0 = 1− 2ε, a1 = 2ε} = Δ. The clan decomposition is

depicted as follows:

C−

Ha1

0 C0

Ha0

1/2 C+

The clans C− = ]−∞, 0[ and C+ = ]1/2,+∞[ are generic whereas the clan C0 =
]0, 1/2[ = ν0 is not generic. To each alcove ν = w−1ν0 with w ∈ WS , we attach the
element λν = wλ0 ∈ E

5/4

−1/2

−1/4

0

1/4

1/2

−3/4

3/2

5/4 λν

ε

In particular, the alcoves ν = ]1/2, 3/2[ and ν′ = ]3/2, 5/2[ lie in the same clan C+

with λν = −3/4 and λν′ = s0λν = 5/4. In this case Proposition 53 amounts to
the fact that the intertwiners ϕa0

e(λν′) : Aωe(λν) −→ Aωe(λν′) and ϕa0
e(λν) :

Aωe(λν′) −→ Aωe(λν) are isomorphisms and inverse to each other.
The projective Aω-modules Aωe(λν) are indecomposable and they are non-

isomorphic for alcoves ν in the three different clans C−,C0 and C+. Choose any
alcoves ν+ ⊂ C+, ν− ⊂ C− and denote λ+ = λν+

, λ− = λν− , P+ = Aωe(λ+),
P0 = Aωe(λ0) and P− = Aωe(λ−). Their simple quotients, denoted by L+, L0

and L−, form a complete collection of simple objects of Aω -gmod up to grading
shifts. The graded dimension is given by

gdim e(λν)L∗ =

{
1 ν ⊆ C∗

0 ν �⊆ C∗
, ∗ ∈ {+, 0,−}.
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In particular, L+ and L− are infinite-dimensional and L0 is finite-dimensional. The
cosocle filtrations of P+, P0 and P− are described as follows:

P+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L+

L0〈−1〉
L+〈−2〉 L−〈−2〉

L0〈−3〉
L+〈−4〉 L−〈−4〉

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, P0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L0

L+〈−1〉 L−〈−1〉
L0〈−2〉

L+〈−3〉 L−〈−3〉
L0〈−2〉

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

P− =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L−
L0〈−1〉

L+〈−2〉 L−〈−2〉
L0〈−3〉

L+〈−4〉 L−〈−4〉
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

7.4. Basic properties of graded modules of Aω. We choose a finite subset
Σ ⊂ WS such that for every clan C ⊂ Eω

◦ , there exists w ∈ Σ with w−1ν0 ⊂ C. Set
eΣ =

∑
w∈Σ e(wλ0) and PΣ = AωeΣ.

Lemma 56. The module PΣ is a graded compact projective generator of Aω -gMod.

Proof. For any y ∈ WS , we can find w ∈ Σ such that y−1ν0 and w−1ν0 are in the
same clan. By Proposition 53, there exists an isomorphism

Aωe(wλ0) ∼= Aωe(yλ0).

Since the former is a direct factor of PΣ, the above isomorphism yields a surjection
PΣ � Aωe(yλ0). Combining this with Lemma 49, we see that PΣ is a graded
generator, which is clearly compact projective. �

Put AΣ = (gEndAω -gModPΣ)
op = eΣA

ωeΣ. It follows from Lemma 56 and the
Morita theory that there is a graded equivalence

(57) gHomAω -gMod(PΣ,−) : Aω -gMod
∼−→ AΣ -gMod,

which restricts to an equivalence on the subcategories of compact objects Aω -gmod
∼−→ AΣ -gmod.

Proposition 58. The following statements hold:

(i) The category Aω -gmod is noetherian and the subcategory Aω -gmod0 con-
sists of objects of finite length.

(ii) For each M ∈ Aω -gmod and each λ ∈ WSλ0, the graded dimension
gdim e(λ)M is in N((v)). Moreover, M ∈ Aω -gmod0 if and only if
gdim e(λ)M ∈ N[v±1] for all λ ∈ WSλ0.

(iii) Every object of Aω -gmod admits a projective cover in the same category.
(iv) We have Irr(Aω -gmod0)

∼= Irr(Aω -gmod).
(v) The map (50) is an isomorphism Z ∼= gEnd (idAω -gmod).

Proof. By the graded Morita equivalence (57), it suffices to show the corresponding
statements for AΣ -gmod.

Since AΣ is of finite rank over the graded polynomial ring C[V ]Wλ0 , it is Lauren-
tian (i.e. its graded dimension is in N((v))) and thus graded semiperfect. The
statements (i), (ii), (iii), (iv) result from the Laurentian property.
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We prove (v). Consider the Aω-module PolWSλ0
∈ Aω -gmod. Since each factor

Polλ = C[V ] is a free Z-module of finite rank, the sum PolWSλ0
is a free Z-module

of infinite rank. Taking base-change to the rational function field FracZ, we get a
homomorphism

ρ : A−∞ −→
⊕

λ,λ′∈WSλ0

HomFracZ (Ratλ,Ratλ′) .

We claim that ρ is an isomorphism. It is injective since PolWSλ0
is a faithful Aω-

module by definition and it remains faithful after localisation. It is easy to see from
the definition of Aω that for λ ∈ WSλ0 and a ∈ Δ, the operator sae(λ) : Ratλ −→
Ratsaλ is in the image of ρ. For any λ, λ′ ∈ WSλ0, letWλ,λ′ = {w ∈ WS ; wλ = λ′}.
The family {e(λ′)we(λ)}w∈Wλ,λ′ is in the image of ρ. The rational function field
Ratλ is a Galois extension of FracZ with Galois group Wλ. It follows from the
Galois theory that

EndFracZ(Ratλ) ∼= Ratλ �CWλ.

We have already seen that {w e(λ)}w∈Wλ
is in im ρ and Ratλ is also in the image

of ρ. It follows that EndFracZ(Ratλ) ⊂ im ρ. Let λ, λ′ ∈ WSλ0 and choose w ∈
Wλ,λ′ . Then w e(λ) ∈ im ρ is an isomorphism w e(λ) : Ratλ ∼= Ratλ′ and the
pre-composition yields

− ◦we(λ) : EndFracZ(Ratλ) ∼= HomFracZ (Ratλ,Ratλ′) .

Thus HomFracZ (Ratλ,Ratλ′) ⊂ im ρ. We see that ρ is surjective and the claim is
proven.

There is an isomorphism

AΣ ⊗Z FracZ = eΣA
−∞eΣ ∼= EndFracZ

(⊕
w∈Σ

Ratwλ0

)
induced by ρ. Since the right-hand side is a matrix algebra over a field FracZ, its
centre is FracZ. It follows that Z(AΣ) = FracZ. Hence

gEnd (idAω -gmod) ∼= gEnd (idAΣ -gmod) = Z (AΣ) = Z (AΣ ⊗Z FracZ) ∩ AΣ

= FracZ ∩ AΣ = Z,

where the last equation follows from the basis theorem, Theorem 40. �
7.5. Basic properties of ungraded Aω-modules. Let U : Aω -gmod0 −→
Aω -mod0 be the grading-forgetting functor. We extend it to U : Aω -gmod −→
Pro(Aω -mod0) by requiring U to preserve filtered inverse limits. The extended
functor is exact. Define the subcategory Aω -mod∧ ⊂ Pro(Aω -mod0) to be the
essential image of this functor. Let Z∧ = lim←−N→∞ Z/mN

Z .

Proposition 59. Then the following properties are satisfied:

(i) The functor forgetting the grading U : Aω -gmod −→ Aω -mod is exact and
it induces Irr(Aω -gmod)/〈Z〉 ∼= Irr(Aω -mod∧). Moreover, for all M,N ∈
Aω -gmod and n ∈ N we have∏

k∈Z

Extn(M,N〈k〉) ∼= Extn(UM,UN).

(ii) The category Aω -mod∧ is noetherian and the subcategory Aω -mod0 con-
sists of objects of finite length.

(iii) Every object of Aω -mod∧ admits a projective cover in the same category.
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(iv) We have Irr(Aω -mod0) ∼= Irr(Aω -mod∧).
(v) The ungraded analogue of the map (50) induces an isomorphism Z∧ ∼=

End (idAω -mod∧).

These statements follow from Proposition 58.

7.6. Induction and restriction. Let Aω
R ⊂ Aω be the subalgebra generated by

fe(λ) and τωa e(λ) for λ ∈ WSλ0, f ∈ C[V ] and a ∈ Δ0. For λ1 ∈ WSλ0, denote
eR,λ1

=
∑

λ∈WRλ1
e(λ) and define Aω

R,λ1
= eR,λ1

Aω
ReR,λ1

to be the idempotent

subalgebra. In other words, Aω
R,λ1

is the subalgebra of Aω generated by fe(λ) and

τωa e(λ) for λ ∈ WRλ1, f ∈ C[V ] and a ∈ Δ0.
For each λ1 ∈ WSλ0, we define the induction, restriction and coinduction func-

tors

indSR,λ1
: Aω

R,λ1
-gmod −→ Aω -gmod, N �→ AωeR,λ1

⊗Aω
R,λ1

N,

resSR,λ1
: Aω -gmod −→ Aω

R,λ1
-gmod, M �→ eR,λ1

M ∼= gHomAω (AωeR,λ1
,M) ,

coindSR,λ1
: Aω

R,λ1
-gmod −→ Aω -gmod,

N �→
⊕

λ∈WSλ0

gHomAω
R,λ1

(eR,λ1
Aωe(λ), N) .

They form a triplet of adjoint functors
(
indSR,λ1

, resSR,λ1
, coindSR,λ1

)
.

Proposition 60. The functors indSR,λ1
, resSR,λ1

and coindSR,λ1
are exact.

Proof. The functor resSR,λ1
is clearly exact. By Theorem 40, we have a decomposi-

tion of right Aω
R,λ1

-module

(61) AωeR,λ1
∼=
⊕

w∈WR

τωwA
ω
R,λ1

,

where WR ⊂ WS is the set of shortest representatives of the elements in WS/WR

and τωw =
⊕

λ∈WRλ1
τωal

· · · τωa1
e (λ) for any reduced expression w = sal

· · · sa1
.

Therefore AωeR,λ1
is a free right Aω

R,λ1
-module, so indSR,λ1

is exact. Similarly,

coindSR,λ1
is also exact. �

8. Filtered Aω
-modules

We considerAω-modules equipped with filtrations which are compatible with the
filtration by length F on Aω. Most results in this section are non-unital version of
the classical theory of filtered rings and filtered modules which one can find in [18].
The goal of this section is to introduce (Section 8.3) the support and the Gelfand–
Kirillov dimension of an object M ∈ Aω -gmod0 and show (Proposition 69) that
“induced modules” have the full support.

8.1. Good filtrations on Aω-modules. Let M ∈ Aω -gmod.

Definition 62. A good filtration F on M is a sequence {F≤nM}n∈Z of graded
C[V ]-submodules of M satisfying the following properties:

(i) F≤n−1 ⊆ F≤n for all n ∈ Z;
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(ii) for each n ∈ Z, there exists a finite subset Σn ⊂ WSλ0 such that4

F≤nM =
⊕
λ∈Σn

e(λ)F≤nM ;

(iii) FnM = 0 for n � 0;
(iv)
⋃

n∈Z FnM = M ;
(v)

(F≤nA
ω) (F≤mM) ⊆ F≤n+mM, ∀n,m ∈ N;

(vi) there exists m0 � 0 satisfying

(F≤nA
ω) (F≤mM) = F≤n+mM, ∀n ≥ 0, ∀m ≥ m0.

The following result is standard, see [18, D.1.3]

Proposition 63. Good filtrations exist for the objects of Aω -gmod. If F and F ′

are two good filtrations on M ∈ Aω -gmod, then there exists i0 � 0 such that

F ′
≤n−i0M ≤ F≤nM ≤ F ′

≤n+i0M, ∀n ∈ Z.

Corollary 64 is a direct consequence of Proposition 63.

Corollary 64. If F and F ′ are good filtrations on M , then there exist

(i) a finite filtration of grF Aω-submodules F ′ on grF M ,

(ii) a finite filtration of grF Aω-submodules F on grF
′
M and

(iii) an isomorphism of grF Aω-modules grF
′
grF M ∼= grF grF

′
M .

Proof. By Proposition 63, there exists i0 � 0 such that F≤n−i0M ≤ F ′
≤nM ≤

F≤n+i0M for all n ∈ Z. For m ∈ [−i0, i0], define F
′
≤n,≤mM =

(
F ′
≤nM ∩ F≤n+mM

)
+ F ′

≤n−1M . Then the quotient grF
′
M acquires a filtration

F≤m grF
′

n M = F ′
≤n,mM/F ′

≤n−1M ⊆ F ′
≤nM/F ′

≤n−1M = grF
′

n M,

which satisfies
(
grFl Aω

) (
F≤m grF

′

n M
)

⊆ F≤m grF
′

n+l M . Hence for each m ∈
[−i0, i0], the quotient grFmgrF

′
M = F≤mgrF

′
M/F≤m−1gr

F ′
M is itself a grAω-

module. Similarly, we put F≤m,≤nM =
(
F≤mM ∩ F ′

≤m+nM
)
+ F≤m−1M so that

grF M acquires a filtration by grF Aω-modules. Zassenhaus lemma yields

grFm−n gr
F ′

n M ∼= grF
′

n−m grFm M.

Therefore,

i0⊕
n=−i0

grF
′

n grF M ∼=
i0⊕

m=−i0

grFm grF
′
M.

�

4We require this condition because we work with a non-unital associative algebra.
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8.2. Associated graded of good filtrations. Recall the monoid algebra CQ∨
+

from Section 6.6. Given a good filtration F on an object M ∈ Aω -gmod, the as-
sociated graded grFM =

⊕
k∈Z F≤kM/F≤k−1M is a grFAω-module. The grF Aω-

action on grF M extends to an action of the unital completion introduced in Sec-
tion 6.6 via the natural inclusion

grF Aω ↪→ End(grF Aω)op(gr
F Aω) ∼=

∏
λ∈WSλ0

grF Aωe(λ).

We obtain a CQ∨
+-module structure on grFM via the map (47).

Proposition 65. Let M ∈ Aω -gmod and F a good filtration on M . Then grFM
is a coherent CQ∨

+ ⊗C[V ]-module. Moreover, if M ∈ Aω -gmod0, then grFM is a
coherent CQ∨

+-module.

Proof. We observe that the coherence for grF M is independent of the choice of
the good filtration F . Indeed, if F ′ is another good filtration on M , then by
Corollary 64,

grF M coherent ⇔
i0⊕

n=−i0

grF
′

n grF M

∼=
i0⊕

m=−i0

grFm grF
′
M coherent ⇔ grF

′
M coherent.

We prove the first assertion. By Lemma 49 and the compactness of M , there is
a surjection of the form

p :
r⊕

j=1

Aωe(λj)〈aj〉 � M.

Equip the source of p with the length filtration and the target of p with the induced
filtration, denoted by F , so that p induces a surjection on the associated graded
grF Aω-module. The coherence on the source of grF p implies that of grF M . Thus
we may suppose that M is of the form M = Aωe(λj) and equipped with the length
filtration. It follows from Proposition 48 that

grFAωe(λj) ∼= E ⊗C

( ⊕
w∈WR

τωwC[V ]

)
e(λj).

Since E is coherent over CQ∨
+ by Lemma 44(ii) and

⊕
w∈WR

C[V ]τωw is free of finite

rank over Z, it follows that grFAωe(λj) is coherent over CQ∨
+ ⊗Z.

Suppose now M ∈ Aω -gmod0 so that Z acts via the quotient Z/mn
Z for some

n ∈ N. Since Z/mn
Z is finite-dimensional, M must be coherent over CQ∨

+. �

8.3. Support of Aω-modules of finite length. Let M ∈ Aω -gmod0. In view
of Proposition 65, we can make Definition 66:

Definition 66. The support ofM , denoted by SuppM , is defined to be the support
of grFM as coherent CQ∨

+-module, for any choice of good filtration F on M .

By Lemma 64, the definition of SuppM is independent of the choice of a good
filtration.
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We define the Gelfand–Kirillov dimension of a weight module M of Aω to be
the following number: upon choosing a good filtration F on M ,

dimGK M = lim sup
n−→∞

log dimF≤nM

log n
.

By Proposition 63, this number does not depend on the choice of F .

Proposition 67. Let M ∈ Aω -gmod0. Then the Gelfand–Kirillov dimension
dimGK M coincides with the Krull dimension of SuppM .

Proof. Taking the associated graded, we have

dimF≤nM = dim
n⊕

k=−∞
grFk M.

Notice that CQ∨
+ is finitely generated graded ring, where degXμ = �(Xμ), and

grF M is a finitely generated graded module over it. Hence dimGK M is nothing
but the degree of the Hilbert polynomial of grF M , which is equal to the Krull
dimension of SuppM . �

8.4. Induction of filtered modules. Recall the subalgebra Aω
R,λ1

⊂ Aω from
Section 7.6. Good filtrations on objects of Aω

R,λ1
-gmod are defined in a similar

manner.
Suppose N ∈ Aω

R,λ1
-gmod is equipped with a good filtration F which satisfies

F≤kN =
(
F≤kA

ω
R,λ1

)
(F≤0N) for k ≥ 0 and F≤−1N = 0.

Let M = indSR,λ1
N . The adjunction unit yields an inclusion of Z-modules

N ↪→ M . Define a filtration F≤nM = (F≤nA
ω) (F≤0N).

Lemma 68. The filtration F on M is good and satisfies

grFM ∼=
(
grFAωeR,λ1

)
⊗grFAω

R,λ1

(
grFN

)
.

Proof. By the hypothesis on F≤nN , we have grFnN =
(
grFnA

ω
R,λ1

) (
grF0 N

)
and

grFnM =
(
grFnA

ω
) (

grF0 N
)
. By the decomposition (61), we deduce

grFk A
ωeR,λ1

=

k⊕
j=0

⊕
w∈WR

�(w)=j

τωwgr
F
k−jA

ω
R,λ1

,

from which((
grFAωeR,λ1

)
⊗grFAω

R,λ1

(
grFN

))
n
=

n⊕
j=0

⊕
w∈WR

�(w)=j

τωw
(
grFn−jA

ω
R,λ1

)
(grF0 N)

=
(
grFnA

ω
n

) (
grF0 N

)
= grFnM.

�

Proposition 69. For any N ∈ Aω -gmod0 and 0 �= M ′ ⊂ indSR,λ1
N , we have

SuppM ′ = SpecCQ∨
+.
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Proof. Let F be a good filtration on N as above and denote M = indSR,λ1
N , so

that grFM ∼= grF (AωeR,λ1
)⊗grFAω

R,λ1

(
grFN

)
by Lemma 68. By Proposition 48,

we have grFAωeR,λ1
∼= E ⊗C grF Aω

R,λ1
; hence

grFM ∼= E ⊗C grFN.

By Lemma 44(ii), E and thus grF M are a Cohen–Macaulay module of maximal
dimension over CQ∨

+, so it is torsion-free. For any 0 �= M ′ ⊂ M , the restriction to

M ′ of F is a good filtration and grFM ′ ⊂ grFM . Hence SuppM ′ = CQ∨
+. �

Remark 70. Proposition 69 is an analogue of the following basic property for a
double affine Hecke algebra H: the induced module H ⊗H M is free over the poly-
nomial part C[E] ⊂ H for every module M over the graded affine Hecke algebra
H ⊂ H. A similar property for rational Cherednik algebras was used in [16] in the
proof of the double centraliser property of the KZ functor. Our proof of the double
centraliser property Theorem 105 also relies on it.

9. Quiver Hecke algebras

We keep the notation of root systems (E, S,Δ) and (V,R,Δ0). In this section, we
introduce an algebra BΩ, which can be viewed as a variant of quiver Hecke algebras.
The relation between the quiver Hecke algebras and BΩ in the case where the root
system (V,R) is of type A is explained in Remark 73.

9.1. The algebra BΩ. Define the torus T = Q∨ ⊗C× so that the ring of regular
functions C[T ] is isomorphic to the group algebra CP . For any α ∈ P , we denote
by Y α ∈ C[T ] the corresponding element.

Fix �0 ∈ T . Define for each � ∈ WR�0 a polynomial ring Pol� = C[V ] and let
PolWR�0 =

⊕
�∈WR�0

Pol�. For each �, define e(�) : PolWR�0 −→ Pol� to be the
idempotent linear endomorphism of projection onto the factor Pol�. Recall that
Rred = R+ \ 2R and R+

red = Rred ∩R+.
Choose any λ0 ∈ exp−1(�0). Then the algebra Z from Section 6.2 acts on Pol�:

for any w ∈ WR, the element f ∈ Z = C[V ]Wλ0 acts on Polw�0 by multiplication
by w(f).

Let Ω = {Ω�}�∈WR�0
be a family of functions Ω� : R

+
red −→ Z≥−1 satisfying the

properties:

(i) If 2α /∈ R, then Ω�(α) = −1 implies Y α(�) = 1.
(ii) If 2α ∈ R, then Ω�(α) = −1 implies Y α(�) ∈ {1,−1}.
(iii) For w ∈ WR and α ∈ R+

red ∩ w−1R+
red we have Ω�(α) = Ωw�(wα).

For each α ∈ Δ0 and � ∈ WR�0, we define an operator τΩα e(�) : Pol� −→ Polsα� by

τΩα e(�) =

{
α−1(sα − 1) Ω�(α) = −1

αΩ�(α)sα Ω�(α) ≥ 0
.

Here sα : C[V ] −→ C[V ] is the reflection with respect to α.

Definition 71. We define BΩ = B(R, V,Δ,WR�0,Ω) to be the subalgebra of
EndZ (PolWR�0) generated by C[V ]e(�) and τΩα e(�).

All the statements of Proposition 58 for Aω hold equally for BΩ. In particular,
the centre of BΩ is equal to Z.

Example 72.
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(i) If �0 = 1 ∈ T and Ω = {−1}�=�0
is the −1 constant function, then BΩ

is the affine nil-Hecke algebra of type WR and is isomorphic to a matrix
algebra over its centre.

(ii) If �0 = 1 ∈ T and Ω = {0}�=�0
is the zero constant function, then BΩ =

C[V ]�WR is the skew tensor product.

Remark 73. In the case where the finite root system (V,R) is of type An−1, the
algebra BΩ recovers the notion of quiver Hecke algebras.

For any quiver Γ = (I,H) with I ⊂ C× and a dimension vector β ∈ NI with
|β| = n, the quiver Hecke algebra, denoted by Rβ(Γ) according to [31], is generated

by three sets: idempotents {e(�)}�∈Iβ , Hecke operators {τi}n−1
i=1 , polynomial part

{xi}ni=1. By translating suitably the set I ⊂ C×, we may assume that
∏

r∈I r
βr = 1,

so that each sequence ν = (ν1, · · · , νn) ∈ Iβ ⊂ (C×)n lies in the maximal torus
T ⊂ (C×)n of SLn(C). We put Ων(αi,j) = #{(h : i −→ j) ∈ H} − δνi=νj

. Then
there is a surjective homomorphism

Rβ(Γ) −→ BΩ,

e(ν) �→ e(ν),

τi �→ ταi
, i ∈ {1, . . . , n− 1} ,

xk �→ 1

n

⎛⎝− ∑
1≤j<k

jαj +
∑

k≤j<n

(n− j)αj

⎞⎠ eR, k ∈ {1, . . . , n}

whose kernel is the ideal generated by x1 + · · ·+ xn.

9.2. Basis theorem.

Theorem 74. For any w ∈ WR, choose a reduced expression w = sa1
· · · sal

and
put τΩw = τΩαl

· · · τΩα1
. Then there is a decomposition

BΩ =
⊕

�∈WR�0

⊕
w∈WR

�(w)=n

C[V ]τΩwe(�).

Proof. To prove it, we shall apply the results Theorem 94 and Theorem 82 whose
proofs do not rely on this theorem. By Lemma 75, we can choose ω = {ωλ}λ∈WSλ0

such that ∫ω = Ω. Then Theorem 82 implies that upon choosing a good γ ∈ Q∨,
there is an isomorphism BΩ ∼= eγA

ωeγ identifying τΩα e(�) with σαe(
γ
�) and by

Theorem 94, the idempotent subalgebra eγA
ωeγ has a decomposition in terms of

σαe(
γ
�). Hence BΩ also has a decomposition as in the statement. �

Lemma 75. Given any family of order functions Ω = {Ω�}�∈WR�0
for BΩ, there

exists a family of order functions ω = {ωλ}λ∈WSλ0
satisfying the conditions from

Section 6.3 such that ∫ω = Ω, where ∫ω is defined in Section 10.2.

Proof. We choose a point λ0 ∈ exp−1(�0) ⊂ V . Such a family ω = {ωλ}λ∈WSλ0
is

determined by a Wλ0
-invariant function ω̃λ0

: S −→ Z≥−1 and it suffices to con-
struct it. However, one needs to be careful about the condition (i) from Section 6.3.

We first define a function Ω̃�0 : R −→ Z≥−1 as follows:

(i) For any α ∈ R+
red such that 2α /∈ R, we set Ω̃�0(α) = Ω�0(α) and Ω̃�0(−α) =

Ωw0�0(−w0α).
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(ii) For any α ∈ R+
red such that 2α ∈ R, if Y α(�0) = −1, then we set Ω̃�0(2α) =

Ω�0(α), Ω̃�0(−2α) = Ωw0�0(−w0α) and Ω̃�0(α) = Ω̃�0(−α) = 0; other-

wise, we set Ω̃�0(α) = Ω�0(α), Ω̃�0(−α) = Ωw0�0(−w0α) and Ω̃�0(2α) =

Ω̃�0(−2α) = 0.

The function Ω̃�0 is W�0-invariant by the assumption (iii) from Section 9.1 and
has image in Z≥−1. We choose a section of the projection Wλ0

\S −→ W�0\R,
denoted f : W�0\R −→ Wλ0

\S, in such a way that for each α ∈ Rred, the condition

f(α)(λ0) = 0 holds whenever α(�0) = 0 . We set ω̃λ0
= f∗Ω̃�0 so that ω̃λ0

: S −→
Z≥−1 is a Wλ0

-invariant function of finite support. The family {ωλ}λ∈WSλ0
is then

defined by ωwλ0
(a) = ω̃λ0

(w−1a) for all w ∈ WS and a ∈ S+. �

9.3. Frobenius form on BΩ. As observed in [4], the basis theorem Theorem 74
implies that the algebra BΩ is Frobenius over its centre Z.

Lemma 76. BΩ is a Frobenius algebra over Z.

Proof. Consider the filtration by length

F≤nB
Ω =

∑
�∈WR�0

n∑
k=0

∑
(α1,...,αk)∈Δk

0

C[V ]τΩα1
· · · τΩαk

e(�).

We set N = #R+ = �(w0) and let w0 = sαN
· · · sα1

be any reduced expression for
the longest element w0 ∈ WR and set τΩw0

e(�) = τΩαN
· · · τΩα1

e(�). By Theorem 74,

we have F≤NBΩ = BΩ and

grFNBΩ ∼=
⊕

�∈WR�0

C[V ]τΩw0
e(�).

Let Rλ0
= {α ∈ R ; α(λ0) = 0} be the subroot system associated with λ0 and let

Δλ0
⊂ Rλ0

be any basis, which determines a set of positive roots R+
λ0

⊂ Rλ0
and

a set of Coxeter generators {sa}a∈Δλ0
⊂ Wλ0

. It is well known that C[V ] is a

symmetric algebra over Z with the trace map f �→ ϑw0(Wλ0
)(f), where ϑw0(Wλ0

)

is a composition of Demazure operators for the longest element w0(Wλ0
) of the

Coxeter group (Wλ0
,Δλ0

). Let tr be the composition

BΩ −→ grFNBΩ =
⊕
�

C[V ]τw0
e(�)

τw0
e(�) �→1

−−−−−−−→
⊕
�

C[V ]

ϑw0(W�)−−−−−→
⊕
�

C[V ]W� ∼=
⊕
�

Z
∑

�∈WR�0−−−−−−→ Z.

Then tr is a Frobenius form. �

10. Knizhnik–Zamolodchikov functor V

We resume to the assumptions of Section 6.
In this section, we introduce a functor V : Aω -gmod −→ BΩ -gmod, which is

a quotient functor satisfying the double centraliser property. It can be viewed as
a generalisation of the monodromy functor of [33] for dDAHAs (which has been
reviewed in Section 4) to the family of algebras Aω. It is thus expected to satisfy
some properties of the monodromy functor. The main results of this article Theor-
ems 105 and 108 provide some evidence. We constructV by choosing an idempotent
element eγ ∈ Aω and establish an isomorphism BΩ ∼= eγA

ωeγ in Theorem 82.



KZ FUNCTOR FOR DDAHAS 945

10.1. The idempotent construction. Consider the following exponential map

E ∼= V = Q∨ ⊗R
exp−−→ Q∨ ⊗C× = T,

μ⊗ r �→ μ⊗ e2πir

and put �0 = exp(λ0) ∈ T . Choose an element γ ∈ Q∨ such that

(77) 〈γ, α〉 � 0 for all α ∈ R+.

We define a section of the projection ∂W : WS −→ WS/Q
∨ = WR by

γ• : WR −→ WS ,

w �→ Xγ wX−γ = wXw−1γ−γ

and a section of the exponential map WSλ0
exp−−→ WR�0 by

γ• : WR�0 −→ WSλ0,

w�0 �→ Xγ wλ0.

It is clear that γw γ� = γ(w�). The choice of γ implies that

(78) α(γ�) � 0 for all α ∈ R+ and � ∈ WR�0.

Given a family of order functions {ωλ : S+ −→ Z≥−1}λ∈WSλ0
satisfying the ax-

ioms of Section 6.3, we can associate a family of order functions

∫ω =
{
∫ω� : R

+
red −→ Z≥−1

}
�∈WR�0

,

called the integral of ω along ∂W , by setting for each � ∈ WR�0

(79) ∫ω�(α) =
∑
a∈S+

∂a∈{α,2α}

ωγ�(a).

The definition of ∫ω is independent of the choice of γ. Denote Ω =
∫
ω. This family

of order functions gives rise to an algebra BΩ as defined in Section 9.1.
For any � and α ∈ Δ0, we define an operator σαe(

γ�) : Polγ� −→ Polγ(sα�) by

(80) σαe(
γ�) =

{
α−1(sα − 1) ∫ω�(α) = −1

αΩ�(α)sα ∫ω�(α) ≥ 0
.

Define the idempotent

(81) eγ =
∑

λ∈γ(WR�0)

e(λ) ∈ Aω.

The main result is the following, which will be proven in Section 10.5:

Theorem 82. Upon choosing γ ∈ Q∨ satisfying (77), there is an isomorphism of
graded Z-algebras

iγ : BΩ ∼= eγA
ωeγ ,

fe(�) �→ fe(γ�),

τΩα e(�) �→ σαe(
γ�).

Moreover, for any other choice γ′, the intertwiner

ϕγ,γ′ :=
∑

w∈WR/W�0

e(γ(w�0))τ
ω
Xw(γ−γ′)e(

γ′
(w�0)) ∈ eγA

ωeγ′
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yields a factorisation iγ(f) = ϕγ,γ′ · iγ′(f) · ϕγ′,γ for each f ∈ BΩ.

Example 83. Resume to the setting of Examples 33(iii) and 55. The coroot lattice
is given by Q∨ = Z, which acts by translation on E = R. Recall that λ0 = 1/4 ∈ E.
We may take γ = s1s0 = −1 so that γ(WR�0) = {λ+, λ−}, where λ+ = s1s0λ0 =
−3/4 and λ− = s1s0s1λ0 = −5/4. It follows that λ− = s1s0s1s0s1λ+ and

e(λ−)A
ωe(λ+) = C[ε]τωa1

τωa0
τωa1

τωa0
τωa1

e(λ+),

e(λ+)A
ωe(λ−) = C[ε]τωa1

τωa0
τωa1

τωa0
τωa1

e(λ−).

Denote by s : C[ε] −→ C[ε] the automorphism ε �→ −ε. Calculate the products:

τωa1
τωa0

τωa1
τωa0

τωa1
e(λ+) = τωa1

e(5/4)τωa0
e(−1/4)τωa1

e(1/4)τωa0
e(3/4)τωa1

e(−3/4)

= s · s · (εs) · s · s = εs,

τωa1
τωa0

τωa1
τωa0

τωa1
e(λ−) = τωa1

e(3/4)τωa0
e(1/4)τωa1

e(−1/4)τωa0
e(5/4)τωa1

e(−5/4)

= s · (−εs) · s · s · s = εs.

Let α = ∂a1 ∈ Δ0 be the simple root for (V,R) = A1. Denote �+ = exp(2πiλ+) = i
and �− = exp(2πiλ−) = −i. The family of order functions Ω = ∫ω for BΩ is given
by

Ω�+(α) =
∑
k∈N

ωλ+
(α+ k) = 1, Ω�−(α) =

∑
k∈N

ωλ−(α+ k) = 1.

It follows that

σαe(λ+) = αΩ�+
(α)s = τωa1

τωa0
τωa1

τωa0
τωa1

e(λ+)

σαe(λ−) = αΩ�− (α)s = τωa1
τωa0

τωa1
τωa0

τωa1
e(λ−)

and therefore there is an isomorphism

BΩ ∼−→ eγA
ωeγ ,

e(�+) �→ e(λ+),

e(�−) �→ e(λ−),

τΩα �→ τωa1
τωa0

τωa1
τωa0

τωa1
eγ .

Remark 84. As we will see in Lemma 90, the idempotent eγ corresponds to generic
clans (Section 7.3). The choice of eγ is inspired from the sheaf-theoretic study of
extension algebras over a cyclically graded simple Lie algebra g∗ in [24] and the
sheaf-theoretic construction of the KZ functor. In the language of op. cit. and [26],
each eigenvalue λ ∈ WSλ0 corresponds to the spiral induction of a cuspidal local
system C through one spiral of g∗. On the other hand, affine Hecke algebras arise
as extension algebra of parabolic inductions of C through parabolic subalgebras of
g∗, which appear also as spiral induction of C through “generic spirals”. Therefore,
the definition of the sheaf-theoretic KZ functor is nothing but picking idempotents
of the extension algebra corresponding to those “generic spirals”. In the algebraic
and combinatorial language, they correspond to alcoves lying in the generic clans,
as introduced in Section 7.3.

10.2. A formula for order functions. By the hypothesis of finite support for
ω̃λ0

: S −→ Z≥−1, there exists M � 0 such that ω̃λ0
(α+ k) = 0 for all α ∈ R and

|k| ≥ M . Let γ ∈ Q∨ be an element satisfying (77). More specifically, we require
that

(85) 〈α, γ〉 ≤ −M, ∀α ∈ R+.
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We prove a relation between the family ω = {ωλ}λ∈WSλ0
for Aω and its integral

Ω = {Ω�}�∈WR�0
for BΩ defined in (79).

Lemma 86. For any � ∈ WR�0 and w ∈ WR, following formula holds in C(V ):∏
b∈S+∩γw−1S−

(−∂b)ωλ(b) = ε ·
∏

β∈R+
red∩w−1R−

red

(−β)Ω�(β),

where λ = γ� and ε ∈ C× is constant (which is a power of 2).

Proof. We divide the index set of the product on the left-hand side into two

S+ ∩ γw−1S− = {b ∈ S+ ∩ γw−1S− ; ∂b /∈ R+ ∩ w−1R−}

 {b ∈ S+ ∩ γw−1S− ; ∂b ∈ R+ ∩ w−1R−}

and treat the two subproducts separately.

Step 1. We prove that ωλ(b) = 0 when b ∈ S+ ∩ γw−1S− and β := ∂b /∈ R+ ∩
w−1R−.

Write b = β + k for k ∈ Z. We deduce

ωλ(b) = ωλ(β + k) = ω̃λ0
(yβ + k + 〈β, γ〉), where y ∈ WR is such that y� = �0.

Since γw = wXw−1γ−γ , the condition b ∈ S+ ∩ γw−1S− implies that 0 ≤
k < 〈wβ − β, γ〉. There are two cases: β ∈ R− or β ∈ w−1R+. In the case
where β ∈ w−1R+, since k + 〈β, γ〉 < 〈wβ, γ〉 ≤ −M , the hypothesis (85)
implies that ωλ(b) = 0. In the case where β ∈ R−, we have k + 〈β, γ〉 ≥
〈β, γ〉 ≥ M , whence ωλ(b) = 0 as well.

Step 2. We prove that

(87)
∏

b∈S+∩γw−1S−

∂b∈R+∩w−1R−

(−∂b)ωλ(b) = ε ·
∏

β∈R+
red∩w−1R−

red

(−β)Ω�(β),

for some ε ∈ C× which is a power of 2. We rewrite the left-hand side
according to ∂b:

(88)
∏

b∈S+∩γw−1S−

∂b∈R+∩w−1R−

(−∂b)ωλ(b) = ε ·
∏

β∈R+
red∩w−1R−

red

∏
b∈S+∩γw−1S−

∂b∈{β,2β}

(−β)ωλ(b).

Let β ∈ R+
red ∩ w−1R−

red. Let N := 〈wβ − β, γ〉. It follows by the same
arguments as Step 1 that b = β + k ∈ S+ ∩ γw−1S− for 0 ≤ k ≤ N .
For k ≥ N , we obtain k + 〈β, γ〉 ≥ 〈wβ, γ〉 ≥ M , thus ωλ(β + k) =
ω̃λ0

(yβ + k + 〈β, γ〉) = 0 and hence∑
b∈S+∩γw−1S−

∂b=β

ωλ(b) =
N∑

k=0

ωλ(β + k) =
∑
k∈N

ωλ(β + k) =
∑
b∈S+

∂b=β

ωλ(b).

In the case where 2β ∈ R, we obtain similarly∑
b∈S+∩γw−1S−

∂b=2β

ωλ(b)=

N−1∑
k=0

ωλ(2β + (2k + 1))=
∑
k∈N

ωλ(2β + (2k + 1))=
∑
b∈S+

∂b=2β

ωλ(b).
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Hence

(89)
∑

b∈S+∩γw−1S−

∂b∈{β,2β}

ωλ(b) = Ω�(β).

Equation (87) follows from (88) and (89).

Combining the two steps, we obtain the product formula. �

10.3. Preparatory lemmas. Let γ ∈ Q∨ be an element satisfying (77). Recall
the notion of clans and generic clans from Section 7.3 and the fundamental alcove
ν0 ⊂ E.

Lemma 90. For w ∈ WR, the alcove w−1X−γν0 is in a generic clan and every
generic clan contains at least one such alcove. Moreover, for a different choice
γ′ ∈ Q∨, the alcoves w−1X−γν0 and w−1X−γ′

ν0 are in the same clan.

Proof. Since the clans are connected components of the complement Eω
◦ of the

hyperplanes in Dω = {Ha ⊂ E ; a ∈ S, ω̃λ0
(a) ≥ 1}, any two points x, y ∈ Eω

◦ are
in the same clan if a(x)a(y) > 0 for all a ∈ S with Ha ∈ Dω. Let Cw ⊂ Eω

◦
be the clan such that w−1X−γν0 ⊂ Cw. Take any point x ∈ ν0. Set xw(t) =
w−1(x − (1 + t)γ) for t ∈ R≥0 so that in particular xw(0) ∈ Cw. Let a ∈ S such
that Ha ∈ Dω. Suppose that w∂a ∈ R+ (resp. w∂a ∈ R−); then 〈w∂a, γ〉 � 0
(resp. 〈w∂a, γ〉 � 0), so we have

a(xw(t)) = (wa)(x)− 〈w∂a, (1 + t)γ〉 � 0, ∀t ∈ R≥0

(resp. a(xw(t)) � 0). Hence xw(t) ∈ Cw for all t ≥ 0. Moreover, we see that the
value a(xw(t)) is unbounded when t −→ +∞. Hence every affine root is unbounded
on the Cw, and the genericity of Cw follows.

Conversely, let C be a generic clan, consider the salient cone κ defined in Sec-
tion 7.3. The genericity of C means that κ is of full dimension dimV . Let C0 ⊂ V
be the fundamental Weyl chamber and let w−1C0 ⊂ V be a Weyl chamber with
w ∈ WR such that Int(κ) ∩ w−1C0 �= ∅. It is obvious that w−1X−γν0 ⊂ C. �

Recall the element σα from (80).

Lemma 91. We have σαe(
γ�) ∈ Aω.

Proof. Denote λ = γ�. Let γsα = sal
· · · sa1

be any reduced decomposition and
denote σ′

αe(λ) = τωal
· · · τωa1

e(λ). Applying Lemma 37(ii), we see that

(92) σ′
αe(λ) ≡ sal

· · · sa1

⎛⎝ ∏
c∈S+∩γsαS−

(−∂c)ωλ(c)

⎞⎠ e(λ) mod F≤l−1A
−∞

and Lemma 86 yields∏
c∈S+∩γsαS−

(−∂c)ωλ(c) = ε · (−α)ω�(α), ε ∈ C×.

Thus the right-hand side of (92) is congruent to εσαe(λ) modulo F≤l−1A
−∞. Notice

that σαe(λ) ∈ Ao by Proposition 30(iii) and σ′
αe(λ) ∈ Aω ⊂ Ao. Hence by the

compatibility of the filtrations by length Corollary 41, we have

(σ′
α − εσα)e(λ) ∈ e(γsαλ)

(
F≤l−1A

−∞ ∩Ao
)
e(λ) = e(γsαλ) (F≤l−1A

o) e(λ).
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We show that in fact (σ′
α − εσα)e(λ) ∈ Aω. For any different choice γ′ satis-

fying (77), Lemma 90 implies that the intertwiner ϕγ,γ′ defined in Theorem 82
satisfies ϕγ,γ′ϕγ′,γ = eγ , ϕγ′,γϕγ,γ′ = eγ′ and

ϕγ,γ′σαe(
γ′
�)ϕγ′,γ = σαe(

γ�), ϕγ,γ′σ′
αe(

γ′
�)ϕγ′,γ = σ′

αe(
γ�);

thus the validity of the statement is independent of the choice of γ. We claim that
if we choose γ in such a way that |〈α, γ〉| � |〈β, γ〉| for all β ∈ Δ0 \ {α}, then there
is an inequality of lengths

(93) l = �(γsα) ≤ �(γw), ∀w ∈ WR \ {1}.

We complete the proof provided in (93). Note that the stabilisers satisfy γW � = Wλ.
There are two cases to be discussed:

(i) If sα� �= �, then by (93) we have �(w) ≥ l for all w ∈ WS such that
wλ = γsαλ. It follows from Theorem 40 that e(γsαλ) (F≤l−1A

o) e(λ) = 0.
Hence σαe(λ) = εσ′

αe(λ) ∈ Aω.
(ii) If sα� = �, then by (93) we have �(w) ≥ l for all 1 �= w ∈ Wλ and

thus by Theorem 40, we see that e(λ) (F≤l−1A
o) e(λ) = C[V ]e(λ) =

e(λ) (F≤l−1A
ω) e(λ). Thus (σα − ε−1σ′

α)e (λ) ∈ Aω and consequently
σαe(λ) ∈ Aω. Hence the proof is completed.

We prove (93). Indeed by Proposition 1,

l = �(γsα) ≤ 1 + �(X−〈α,γ〉α∨
) ≤ 1 + |〈2ρ, α∨〉〈α, γ〉| � |〈β, γ〉|,

while for any w ∈ WR \ {1, sα}, there exists β ∈ R+
red ∩ w−1R−

red with β �= α, so

�(γw) ≥
∣∣〈β,w−1γ − γ〉

∣∣− �(w) = |〈wβ − β, γ〉| − �(w) ≥ |〈β, γ〉| − �(w) � l;

here, the second-to-last inequality is due to (77). �

10.4. Basis theorem for generic clans. Let γ ∈ Q∨ be an element satisfy-
ing (77). Recall the idempotent of generic clans eγ from (81) and the elements
σαe(

γ�) from (80).

Theorem 94. The idempotent subalgebra eγA
ωeγ is generated by C[V ]e(λ) and

σαe(λ) for α ∈ Δ0 and λ ∈ γ
(WR�0). Moreover, if for any w ∈ WR we set

σw = σαn
· · ·σα1

by choosing any reduced expression w = sαn
· · · sα1

, then there is
a decomposition

eγA
ωe(λ) =

⊕
λ∈γ(WR�0)

⊕
w∈WR

C[V ]σwe(λ).

Proof. Let � ∈ WR�0 and w ∈ WR. Denote λ = γ�. Choose any reduced expressions
w = sαn

· · · sα1
and γw = sal

· · · sa1
for α1, · · · , αn ∈ Δ0 and a1, · · · , al ∈ Δ and

set

σ′
we(λ) = τωal

· · · τωa1
e(λ) ∈ Aω, σwe(λ) = σαn

· · ·σα1
e(λ).

By Lemma 91, we see that σwe(λ) ∈ Aω. We claim that

(95) σ′
we(λ) ≡ εσwe(λ) mod F≤l−1A

ω,



950 WILLE LIU

for some ε ∈ C×. Recall the rational function matrix algebra A−∞ = FracZ⊗ZAo.
By Lemma 37(ii) and Lemma 86, we have

σ′
we(λ) ≡ s∂al

· · · s∂a1

⎛⎝ ∏
b∈S+∩γw−1S−

(−∂b)ωλ(b)

⎞⎠ e(λ) mod F≤l−1A
−∞

≡ εσwe(λ) mod F≤l−1A
−∞,

for some ε ∈ C×. As n ≤ l, the above congruences yield (σ′
w − εσw)e(λ) ∈

Aω ∩ F≤l−1A
−∞. By Corollary 41, we have Aω ∩ F≤l−1A

−∞ = F≤l−1A
ω, so

the claim (95) is proven.
According to Theorem 40, the family {σ′

we(λ)}w∈WR
form a basis for eγA

ωe(λ).
The decomposition of eγA

ωe(λ) follows from the triangularity (95) of the transition
matrix between the basis {σ′

we(λ)}w∈WR
and the family {σwe(λ)}w∈WR

. �

10.5. Proof of Theorem 82.

Proof. We define an isomorphism of Z-modules PolWR�0
∼= eγ PolWSλ0

straightfor-
wardly by the identification:

Pol� = C[V ] = Polγ�, � ∈ WR�0.

It yields a faithful representation of BΩ on eγ PolWSλ0
, which by definition of BΩ

is described by the formula

fe(�) · g = fe(γ�)g, τΩα e(�) · g = σαe(
γ�)g.

By Theorem 94, the image of BΩ in EndZ (eγ PolWSλ0
) coincides with eγA

ωeγ
and the map BΩ −→ eγA

ωeγ must be an isomorphism since both sides are free
C[V ]-modules of same rank. Notice that deg τΩα e(�) = Ω�(α) = deg σαe(

γ�). Hence
the map iγ is an isomorphism of graded Z-algebras.

For any other choice γ′, since by Lemma 90, w−1Xγ and w−1Xγ′
lie in the

same generic clan for each w ∈ WR, by Proposition 53, the intertwiner ϕγ′,γ yields
isomorphisms of Aω-modules Aωeγ′ ∼= Aωeγ by right multiplication and hence
isomorphisms of algebras

eγ′Aωeγ′ ∼= EndAω (Aωeγ′) ∼= EndAω (Aωeγ) ∼= eγA
ωeγ .

The factorisation iγ = ϕXγ′−γ ◦ iγ′ follows from the observation that ∂(Xγ′−γ) =
1 ∈ WR. �

10.6. The functor V. Choose a γ ∈ Q∨ satisfying (77) as in Section 10.2. With
Theorem 82, we can make Definition 96:

Definition 96. The Knizhnik–Zamolodchikov (KZ) functor V is defined by

V : Aω -gmod −→ eγA
ωeγ -gmod

i∗γ
GGGGGGA

∼=
BΩ -gmod,

M �→ eγM.

By the second assertion of Theorem 82, the definition of V is independent of the
choice of γ up to canonical isomorphism (provided by the intertwiner ϕγ,γ′).
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Since V is defined as an idempotent truncation, it admits left and right adjoint
functors

V� : N �→
⊕

λ∈WSλ0

gHomBΩ (eγA
ωe(λ), N) and �V : N �→ Aωeγ ⊗BΩ N

and V is a quotient functor in the sense that the adjoint counit V ◦V� −→ idBΩ

is an isomorphism.

10.7. Support characterisation of V. For M ∈ Aω -gmod, define the following
subset of E:

SpecE M = {λ ∈ WSλ0 ; e(λ)M �= 0} .
For each alcove ν ⊂ E, there is a unique w ∈ WS such that ν = w−1ν0; we
denote λν = wλ0. Recall the Gelfand–Kirillov dimension dimGK M and the support
SuppM from Section 8.3.

Theorem 97. Let M ∈ Aω -gmod0. The following conditions are equivalent:

(i) VM = 0;
(ii) for every alcove ν lying in a generic clan, we have e(λν)M = 0;
(iii) the set SpecE M is contained in a finite union of (not-necessarily root)

affine hyperplanes of E;
(iv) dimGK M ≤ rkR− 1;
(v) SuppM �= SpecCQ∨

+.

Proof. Since every object of the category Aω -gmod is of finite length and all the
conditions (i), (ii), (iii), (iv), (v) are stable under extensions, we may suppose that
M is simple.

(i)⇔ (ii) follows from the definitionVM = eγM and the invariance of dimension
of e(λ)M for λ’s in the same clan Corollary 54.

We prove (ii) ⇒ (iii). By the finiteness of the clan decomposition, it suffices to
show that for each non-generic clan C, the set {λν ; ν ⊆ C} lies in a finite union
of affine hyperplanes of E. By the non-genericity of C, there exists α ∈ R which
is bounded on C. Let Λ = kerα ∩ Q∨. Notice that Q∨ is a free Z-module of
rank rkR − 1. Let AC be the set of alcoves contained in C. For ν, ν′ ∈ AC, we
write ν ∼Λ ν′ if there exists μ ∈ Λ such that ν + μ = ν′. For any ν ∈ AC, since
Xμλν = λν +μ, the set {λν′ ; ν′ ∼Λ ν} is contained in the hyperplane w (λ0 + ΛR)
for any w ∈ WS such that ν = w−1ν0. Since α is bounded on C, the quotient
AC/ ∼Λ is a finite set and thus the set

{λν ; ν ⊂ C} ⊂
⋃

ν∈AC/∼Λ

{λν′ ; ν′ ∼Λ ν}

is contained in a finite union of hyperplanes, whence (iii).
We prove (iii) ⇒ (iv). Suppose that SpecE M is contained in a finite number

of hyperplanes. Choose any λ1 ∈ SpecE M . Let r = rkR = dimE. Via the
identification E ∼= V induced by Δ0 ⊂ Δ, we view E as a euclidean vector space.
Since

SpecE M ⊂
⋃

w∈WR

(wλ1 +Q∨)

is contained in a finite union of the intersection of lattices and hyperplanes, we have

lim
n−→∞

# {λ ∈ SpecE M ; ‖λ‖ < n}
nr−1+ε

= 0, ∀ε > 0.
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For every affine simple root a ∈ Δ, we have τωa e(λ)M ⊆ e(saλ)M . Moreover,
we have ‖saλ‖ ≤ ‖λ‖+ δ for some constant δ which depends only on the affine root
system (E, S). It follows that if we define for t ∈ R≥0 the subspace

M≤t =
∑

λ∈SpecE M
‖λ‖≤t

e(λ)M,

then τωa M≤t ⊂ M≤t+δ, so F≤1A
ωM≤t ⊂ M≤t+δ. By induction on n ∈ N, we see

that (F≤nA
ω)M≤t ⊂ M≤t+nδ. Since there is only a finite number of clans and since

the dimension of e(wλ0)Mλ for w−1ν0 in a fixed clan is constant by Corollary 54,
the set {dim e(λ)M ; λ ∈ WSλ0} is bounded. Hence for any finite-dimensional
subspaces L ⊂ M , we have

(98) lim
n−→∞

dim (F≤nA
ω · L)

nr−1+ε
= 0, ∀ε > 0.

Indeed, let t0 ∈ R be such that L ⊂ M≤t0 , then dim (F≤nA
ω · L) ≤ dimM≤t0+nδ =

o
(
nr−1+ε

)
. The estimate (98) implies (iv). The equivalence (iv) ⇔ (v) results from

Proposition 67.
We prove ¬(ii)⇒¬(iv). Suppose there exists a generic clan C and an alcove ν ⊂ C

such that e (λν)M �= 0. Let κ ⊂ V be the salient cone of C (cf. Section 7.3). For any
μ ∈ κ∩Q∨, we have Xμν ∈ C and by Proposition 53, e(X−μλν)M ∼= e(λν)M �= 0.
It follows that

dim (F≤nA
ω) (e(λν)M)

≥ dim
∑

μ∈κ∩Q∨

�(Xμ)≤n

e(X−μλν)M = #{μ ∈ κ ∩Q∨ ; �(Xμ) ≤ n} dim e(λν)M.

By the genericity of C, the salient cone κ contains an open subset of V , so its
intersection with a full-ranked lattice Q∨ satisfies

lim
n−→∞

#{μ ∈ κ ∩Q∨ ; �(Xμ) ≤ n}
nr

= c, c > 0.

Hence

dimGK M ≥ lim
n−→∞

log dim(F≤nA
ω)e(λν)M

log n
≥ lim

n−→∞

log cnr

log n
= r,

whence (iv) is not satisfied. �
10.8. Double centraliser property. Recall the parabolic subalgebra Aω

R,λ1
from

Section 7.6.

Lemma 99. Let λ1 ∈ WSλ0, N ∈ Aω
R,λ1

-gmod and L ∈ Aω -gmod. Suppose that

VL = 0, then gHom
(
L, indSR,λ1

N
)
= 0.

Proof. It follows from Theorem 97 (i)⇒(v) and Proposition 69. �
Remark 100. We shall establish in Theorem 105 the double centraliser property
for the functor V. The strategy is close to the case of rational Cherednik algebras
in [16, 5.3]: the first step consists of showing that “induced modules” are torsion-
free for the KZ functor. In the case of the dDAHA H discussed in Part 1, the
parabolic subalgebra Aω

R,λ1
plays the role of graded affine Hecke subalgebra H =

CWR⊗C[E] ⊂ H, whereas BΩ plays the role of the affine Hecke algebra K. In this
sense, Lemma 99 is an analogue of the first step in the proof of loc. cit.



KZ FUNCTOR FOR DDAHAS 953

Let (Aω/mZ) -gmod be the full subcategory of Aω -gmod consisting of objects
M such that mZM = 0. The inclusion (Aω/mZ) -gmod ↪→ Aω -gmod has a left
adjoint functor − ⊗ZC, which is right exact. We denote by − ⊗L

ZC its derived
functor. Lemma 101 is the method of lifting faithfulness borrowed from [30, 4.42].

Lemma 101. Let M ∈ Aω -gmod be an object satisfying the following properties:

(i) M is free over the centre Z;
(ii) there exists λ1 ∈ WSλ0 and N ∈ Aω

R,λ1
-gmod0 such that M/mZM ∼=

indSR,λ1
N .

Then for any L ∈ Aω -gmod such that VL = 0, we have gHom(L,M) = 0 and
gExt1(L,M) = 0.

Proof. We suppose that M �= 0. Let K = RgHom(L,M) be in the derived category
D+(Z -gMod). We suppose that K is a minimal projective resolution. Since

K ⊗Z C ∼= RgHom
(
L⊗L

Z C,M ⊗L
Z C
) ∼= RgHom

(
L⊗L

Z C,M/mZM
)

by the flatness of M over Z, we have K⊗ZC ∈ D≥0 (C). By the second assumption
and Lemma 99, we have

H0(K ⊗Z C) = Hom (L⊗Z C,M/mZM) = 0.

Consequently H≤0(K) = 0 by Nakayama’s lemma.
Suppose that H1(K) �= 0. Since the localisation FracZ⊗Z M is a weight module

over A−∞, which is semisimple, H1(K) must be a torsion module over Z so K0 �= 0.
However, the minimality of K would imply H0(K⊗Z C) �= 0, contradiction. Hence
H≤1(K) = 0 and so gHom(L,M) = 0 and gExt1(L,M) = 0 as asserted. �
Lemma 102. Let M ∈ Aω -gmod be an object satisfying Lemma 101. Then the
adjoint unit yields an isomorphism M ∼= (V� ◦V)M .

Proof. Set X = Cone
(
M −→ (RV� ◦V)M

)
∈ D+(Aω -gmod), so that there is a

distinguished triangle

(103) M −→ (RV� ◦V)M −→ X −→ M [1].

By the adjunction and the exactness of V, we have VX ∼= Cone(VM −→ (V ◦
RV� ◦V)M) = 0 and hence

VHk(X) ∼= Hk(VX) = 0, k ∈ Z.

Applying Lemma 101 with L = H0(X) and L = H−1(X), we deduce

gHom
(
H0(X),M

)
= 0, gHom

(
H0(X)[−1],M

)
= gExt1

(
H0(X),M

)
= 0,

gHom
(
H−1(X),M

)
= 0,

whence

(104) gHom(τ≤0X,M) = 0, gHom(τ≤0X,M [1]) = gHom(τ≤0X[−1],M) = 0.

Applying R gHom(τ≤0X,−) to the distinguished triangle (103), we obtain the
long exact sequence

gHom (τ≤0X,M) −→ gHom
(
τ≤0X, (RV� ◦V)M

)
−→ gHom(τ≤0X,X) −→ gHom(τ≤0X,M [1]) .

By (104), the first and the last term of the sequence vanish. Hence,

gHom(τ≤0X,X) ∼= gHom
(
τ≤0X, (RV� ◦V)M

) ∼= gHom (τ≤0VX,VM) = 0,
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which implies that τ≤0X = 0. Applying H0 to the distinguished triangle (103), we
deduce that the adjunction unit M −→ (V� ◦V)M is an isomorphism. �
Theorem 105 (Double centraliser property5). The canonical map

Aω −→
⊕

λ,λ′∈WSλ0

gHomBΩ (VAωe (λ) ,VAωe (λ′))

is an isomorphism.

Proof. Observe that for each λ ∈ WSλ0, the module Aωe(λ) ∈ Aω -gmod satisfies
the conditions of Lemma 101. Indeed, Aωe(λ) is flat over Z by Theorem 40.

For the second condition, we have Aωe(λ) ∼= indSR,λ1
Aω

R,λe(λ), so Aωe(λ)/mZ ∼=
indSR,λ1

(
Aω

R,λe(λ)/mZ
)
. Applying Lemma 102, we obtain

Aω ∼=
⊕

λ,λ′∈WSλ0

gHomAω (Aωe (λ) ,Aωe (λ′))

∼=−→
⊕

λ,λ′∈WSλ0

gHomAω (VAωe (λ) ,VAωe (λ′)) .

�
10.9. Categorical characterisation of V. We shall exploit the Frobenius struc-
ture on BΩ introduced in Lemma 76. Consider the anti-involution Aω ∼= (Aω)op

which fixes pointwise C[V ]e(λ) for λ ∈ WS and sends τωa e(λ) �→ τωa e(saλ). The
duality

(106) M �→ M∗ :=
⊕

λ∈WSλ0

HomC(e(λ)M,C)

yields an equivalence

Aω -gmod0
∼= ((Aω)op -gmod0)

op ∼= (Aω -gmod0)
op.

Similarly, the anti-involution BΩ ∼= (BΩ)op given by τΩα e(�) �→ τΩα e(sα�) yields

BΩ -gmod0
∼= (BΩ -gmod0)

op.

Denote A
ω
= Aω/AωmZ and B

Ω
= BΩ/BΩmZ . Notice that the pairing

eγA
ω ×A

ω
eγ

(a,b) �→ab−−−−−−→ eγA
ω
eγ = B

Ω

composed with the Frobenius form B
Ω tr−→ Z/mZ = C yields an isomorphism

(A
ω
eγ)

∗ ∼= A
ω
eγ .

Lemma 107. There are canonical isomorphisms �VB
Ω ∼= A

ω
eγ ∼= V�B

Ω
.

Proof. The first isomorphism is obvious: �VB
Ω
= Aωeγ ⊗BΩ B

Ω
= A

ω
eγ .

Observe that (A
ω
eγ)

∗ ∼= A
ω
eγ implies VM∗ ∼= (VM)∗ for M ∈ A

ω
-gmod0 and

hence V�N∗ ∼= (�VN)∗ for N ∈ B
Ω
-gmod0. Therefore

V�B
Ω ∼= (�V(B

Ω
)∗)∗ ∼= (�VB

Ω
)∗ ∼= (A

ω
eγ)

∗ ∼= A
ω
eγ .

5Let A and B be unital associative rings. Usually, one says that an (A,B)-bimodule P satisfies
the double centraliser property if the structural maps A −→ EndBop(P ) and B −→ EndA(P )op

are isomorphisms. Theorem 105 provides a graded, non-unital version of this property for the
(Aω,BΩ)-bimodule Aωeγ .
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�

Theorem 108. Let L ∈ Aω -gmod0 be a simple object. Then the following condi-
tions are equivalent:

(i) VL �= 0;

(ii) the injective hull of L in the subcategory A
ω
-gmod is projective;

(iii) the projective cover of L in the subcategory A
ω
-gmod is injective.

Proof. Since V� preserves injective objects, we see that by Lemma 107, A
ω
eγ is

injective-projective in A
ω
-gmod.

We prove (i)⇔ (ii). Let L ∈ Aω -gmod0 be any simple object. IfVL = 0, then by

Lemma 99, we have gHom(L,A
ω
) = 0; hence (ii) fails for L. If VL �= 0, since V is a

quotient functor, VL ∈ BΩ -gmod0 must be simple. We have mZVL = 0, so we may

view L as a B
Ω
-module. By the self-injectivity of B

Ω
, there exists a non-zero map

ι : VL ↪→ B
Ω
and the adjunction yields an injective map L −→ V�B

ω ∼= A
ω
eγ ,

whence (ii) holds for L.
Finally, since the duality (106) exchanges the projective and injective objects in

A
ω
-gmod and preserves kerV, we deduce

(iii) for L ⇔ (ii) for L∗ ⇔ (i) for L∗ ⇔ (i) for L.

�

Example 109. Resume to the setting of Examples 33(iii), 55 and 83. We have
Aωeγ = P+ ⊕ P− so VL0 = 0, while VL+ �= 0 and VL− �= 0 are simple objects
in Bω -gmod. In regard of Theorem 97, we have dimGK L+ = dimGK L− = 1 while
dimGK L0 = 0. The cosocle filtration of VP+, VP0 and VP− are described by the
following:

VP+ =

⎡⎢⎢⎢⎢⎢⎣
VL+

VL+〈−2〉 VL−〈−2〉
VL+〈−4〉 VL−〈−4〉
VL+〈−6〉 VL−〈−6〉

...

⎤⎥⎥⎥⎥⎥⎦ , VP0 =

⎡⎢⎢⎢⎣
VL+〈−1〉 VL−〈−1〉
VL+〈−3〉 VL−〈−3〉
VL+〈−5〉 VL−〈−5〉

...

⎤⎥⎥⎥⎦ ,

VP− =

⎡⎢⎢⎢⎢⎢⎣
VL−

VL+〈−2〉 VL−〈−2〉
VL+〈−4〉 VL−〈−4〉
VL+〈−6〉 VL−〈−6〉

...

⎤⎥⎥⎥⎥⎥⎦ .
From this description it is obvious that the functor V is fully faithful on the pro-
jective objects, so V satisfies the double centraliser property Theorem 105.

Consider the quotients

P+/mZ =

⎡⎣ L+

L0〈−1〉
L−〈−2〉

⎤⎦ , P0/mZ =

[
L0

L+〈−1〉 L−〈−1〉

]
, P−/mZ =

⎡⎣ L−
L0〈−1〉
L+〈−2〉

⎤⎦ .
It follows that P+/mZ (resp. P−/mZ) is the injective hull of L−〈−2〉 (resp. L+〈−2〉)
in the category (Aω/mZ) -gmod while P0/mZ is not injective. Hence L+ and L−
satisfy the equivalent conditions of Theorem 108.



956 WILLE LIU

Appendix A. Category of pro-objects

A.1. Let A be an abelian category. We denote by Pro(A) and Ind(A) the category
of pro-objects and ind-objects. The basic reference for these is [19, 8.6]. All the
results below are stated for Pro(A) while they all have a dual version for Ind(A).
An object of Pro(A) is a filtered “projective limit” of objects of A. If

M (i) = “lim←−”
j∈I(i)

M
(i)
j , M

(i)
j ∈ A, i ∈ {1, 2}

are two objects of Pro(A), where I(i)’s are filtrant diagram categories and M (i) :
I(i)op −→ A’s are functors, then the Hom-space between them is given by

(110) HomPro(A)

(
M (1),M (2)

)
= lim←−

j∈I(2)

lim−→
i∈I(1)

HomA

(
M

(1)
i ,M

(2)
j

)
.

A.2. For every M ∈ Pro(A), let AM denote the category whose objects are pairs
(M ′, a) where M ′ ∈ A and a ∈ HomPro(A)(M,M ′), and whose morphisms are given
by

HomAM ((M1, a1), (M2, a2)) = {b ∈ HomA(M1,M2) ; a2 = b ◦ a1} .
Every object M ∈ Pro(A) can be expressed as the following filtered limit:

(111) M ∼= “lim←−”
(M ′,a)∈AM

M ′.

Let AM
epi ⊂ AM be the full subcategory whose objects are the pairs (M ′, q) with

q being an epimorphism.

Proposition 112. Let A be an artinian abelian category. Then the following state-
ments hold:

(i) A is a Serre subcategory of Pro(A).
(ii) Every object M ∈ Pro(A) can be written as the following filtered projective

limit
M ∼= “lim←−”

(M ′,a)∈AM
epi

M ′.

(iii) A is the full subcategory of artinian objects in Pro(A).
(iv) If ϕ : N −→ M is a morphism in Pro(A) such that for every (M ′, q) in

AM
epi, the composite q ◦ ϕ is an epimorphism, then ϕ is an epimorphism.

Proof. We first prove that A ⊂ Pro(A) is closed under taking subobjects.

Let M ∈ Pro(A). Suppose that there exists M̃ ∈ A and a monomorph-

ism ι : M � M̃ . We can consider the full subcategory AM
1 ⊂ AM of pairs

(M ′, a) with a being monomorphism. The subcategory AM
1 is cofinal. Indeed, if

(M ′, a) ∈ AM , then
(
M ′ × M̃, (a, ι)

)
∈ AM

1 . Let AM
2 ⊂ AM

1 be the full subcat-

egory of objects which are minimal, in the sense that if there is (M ′′, b) ∈ AM
1

with a monomorphism ϕ ∈ HomA(M
′′,M ′) such that ϕ ◦ b = a, then ϕ is an

isomorphism. By the minimality of the objects of AM
2 , it is easy to see that

the Hom-space HomAM
2
((M ′, a), (M ′′, b)) consists of exactly one element for every

(M ′, a), (M ′′, b) ∈ AM
2 . It follows that any object (M ′, a) ∈ AM

2 yields an iso-
morphism a : M ∼= M ′. As A is artinian, AM

2 cannot be empty, whence M ∈ A.
To prove (ii), in view of (111), it suffices to show thatAM

epi is cofinal. The previous

paragraph shows that for (M ′, a) ∈ AM , the image im(a) is in A. Consider the
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factorisation M
πa−→ im(a)

ā−→ M ′. Then (im(a), πa) ∈ AM
epi and there is a morphism

ā : (im(a), πa) −→ (M ′, a) in AM . Thus AM
epi is cofinal in AM .

We prove (iii). Let M ∈ A. Since A ⊂ Pro(A) is closed under taking subobjects,
every descending chain of subobjects of M is in the subcategory A, which by as-
sumption must stabilise. Thus M is artinian in Pro(A). Suppose that M ∈ Pro(A)
is artinian. There must be a minimal subobject M ′ ⊂ M such that M/M ′ lies
in A, meaning that the category AM

epi has an initial object. By (ii), M being the

projective limit over AM
epi must lie in A, whence (iii). The assertion (i) follows

immediately from (iii).
We prove (iv). Let c : M −→ cokerϕ = C be the cokernel. Suppose that C �= 0.

Since C ∈ Pro(A), there exists an epimorphism p : C −→ C ′ with 0 �= C ′ ∈ A.
Since p◦c : M −→ C ′ is epimorphism, the composite p◦c◦ϕ is also an epimorphism
by hypothesis. However, as c ◦ ϕ = 0, we see that C ′ = 0, contradiction. Thus
C = 0 and ϕ is an epimorphism. �

A.3. Let A and B be abelian categories and F : A −→ B an additive functor. We
define the extension of F :

F : Pro(A) −→ Pro(B), F (M) = “lim←−”
(M ′,a)∈AM

F (M ′).

According to [19, 8.6.8], if F is exact, then the extended functor F : Pro(A) −→
Pro(B) is also exact.

A.4. Suppose that A is noetherian-artinian. We define an endo-functor

hd : Pro(A) −→ Pro(A), hd(M) = “lim←−”
(M ′,q)∈AM

epi

hd(M ′),

where hd(M ′) is the largest semisimple quotient ofM ′ in A. For everyM ∈ Pro(A),
there is a canonical map πM : M −→ hd(M).

Proposition 113 (Nakayama’s lemma). Let A be a noetherian-artinian abelian
category. Let ϕ : N −→ M be a morphism in Pro(A). Suppose that the composite

N
ϕ−→ M

πM−−→ hd(M) is an epimorphism. Then ϕ is an epimorphism.

Proof. We first prove the statement in the case where M ∈ A. In this case, since
cokerϕ is a quotient of M , we have an epimorphism hd(M) � hd(cokerϕ). As
the composite N −→ hd(M) −→ hd(cokerϕ) is zero and is an epimorphism, it
implies that hd(cokerϕ) = 0. As A is noetherian, it follows that cokerϕ = 0, so ϕ
is surjective.

In general, let M ∈ Pro(A). Let (M ′, q) be any object of AM
epi. Then πM ′ ◦ q ◦ϕ

is an epimorphism. By the previous paragraph, q ◦ϕ is also an epimorphism. Then
Lemma 112(iv) implies that ϕ is an epimorphism. �

A.5.

Proposition 114. Suppose A is an essentially small noetherian-artinian abelian
category. Let M ∈ A be a simple object. Then there exists a projective cover
PM ∈ Pro(A).



Proof. We construct an object P (n) ∈ Pro(A) for n ∈ N by induction. Let P (0) =
M . For n > 0, let

0 −→ “
∏

”
L∈Irr(A)/∼

γ∈Ext1A(P (n−1),L)

L −→ P (n) −→ P (n−1) −→ 0

be the short exact sequence corresponding to the tautological class

Δ = (γ)L,γ ∈
∏

L∈Irr(A)/∼
γ∈Ext1A(P

(n−1),L)

Ext1A

(
P (n−1), L

)
.

Put P = “lim←−”
n−→∞ P (n). Then P is a projective since we have

Ext1Pro(A)(P,L) = 0

by construction and since A is noetherian-artinian. Let p : P −→ M be the obvious
epimorphism.

Now, let AP
M be the category whose objects are triples (π,Q, π′), where

• Q ∈ A
• π ∈ HomPro(A)(P,Q) is an epimorphism and
• π′ ∈ HomA(Q,M)

such that

• π′ ◦ π = p ∈ HomPro(A)(P,M) and
• π′ induces an isomorphism hd(Q) ∼= M .

The morphisms are defined by

HomAP
M
((π1, Q1, π

′
1), (π2, Q2, π

′
2)) = {ϕ ∈ HomA (Q1, Q2) ; ϕ ◦ π1 = π2} .

Put
PM = “lim←−”

(π,Q,π′)∈AP
M

Q.

Then the obvious morphism PM −→ M is a projective cover. �
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[11] Pierre Deligne, Équations différentielles à points singuliers réguliers (French), Lecture Notes
in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970. MR0417174

959

https://www.ams.org/mathscinet-getitem?mr=3281133
https://www.ams.org/mathscinet-getitem?mr=2284892
https://www.ams.org/mathscinet-getitem?mr=3952347
https://www.ams.org/mathscinet-getitem?mr=2379091
https://www.ams.org/mathscinet-getitem?mr=2551762
https://www.ams.org/mathscinet-getitem?mr=3205728
https://www.ams.org/mathscinet-getitem?mr=1185831
https://www.ams.org/mathscinet-getitem?mr=1275866
https://www.ams.org/mathscinet-getitem?mr=1314036
https://www.ams.org/mathscinet-getitem?mr=1433132
https://www.ams.org/mathscinet-getitem?mr=0417174


960 INDEX

[12] Yu. A. Drozd, V. M. Futorny, and S. A. Ovsienko, Harish-Chandra subalgebras and Gel′fand-
Zetlin modules, Finite-dimensional algebras and related topics (Ottawa, ON, 1992), NATO
Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994,
pp. 79–93, DOI 10.1007/978-94-017-1556-0 5. MR1308982

[13] C. F. Dunkl and E. M. Opdam, Dunkl operators for complex reflection groups, Proc. London
Math. Soc. (3) 86 (2003), no. 1, 70–108, DOI 10.1112/S0024611502013825. MR1971464

[14] Pavel Etingof and Xiaoguang Ma, Lecture notes on Cherednik algebras, 2010.
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