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KNIZHNIK-ZAMOLODCHIKOV FUNCTOR FOR DEGENERATE
DOUBLE AFFINE HECKE ALGEBRAS: ALGEBRAIC THEORY

WILLE LIU

ABSTRACT. In this article, we define an algebraic version of the Knizhnik—
Zamolodchikov (KZ) functor for the degenerate double affine Hecke algebras
(a.k.a. trigonometric Cherednik algebras). We compare it with the KZ mono-
dromy functor constructed by Varagnolo—Vasserot. We prove the double cent-
raliser property for our functor and give a characterisation of its kernel. We
establish these results for a family of algebras, called quiver double Hecke al-
gebras, which includes the degenerate double affine Hecke algebras as special
cases.

INTRODUCTION

Degenerate double affine Hecke algebras. The degenerate double affine Hecke
algebras (dADAHA), also known as trigonometric Cherednik algebras, were intro-
duced by I. Cherednik in his study of integration of the trigonometric form of the
Knizhnik—Zamolodchikov equations (KZ) [7].

The degenerate double affine Hecke algebras, unlike their non-degenerate version
and its rational degeneration, are not “symmetric’: they contain a polynomial
subalgebra and a Laurent polynomial subalgebra. Due to this asymmetry, one can
adopt two different points of view to study the dDAHA: either viewing it

(i) as the algebra generated by regular functions on a torus TV attached to
a root system R, the Weyl group of R acting on the torus TV and the
trigonometric Dunkl operators on it, or

(ii) as the algebra generated by Demazure-like difference operators on E, where
E is an affine space which carries an affine root system; this is the affine
version of the graded affine Hecke algebras of G. Lusztig [25].

The former approach allows one to apply various techniques of D-modules, sym-
plectic geometry and is closer to the theory of rational Cherednik algebras [Il[14]; the
latter approach allows one to apply cohomological, K-theoretic or sheaf-theoretic
methods [I0,35], and is closer to the (non-degenerate) double affine Hecke algebras.

In the present work, we will adopt the second approach most of the time. We
show that with this point of view, the dDAHAs can be easily generalised and
are quite flexible in the choice of parameters. We show also that some of the
features from first approach can be recovered with the second approach, namely
the integration of the KZ equations.

Quiver Hecke algebras. The quiver Hecke algebras, also known as Khovanov—
Lauda-Rouquier algebras, were introduced in [2I] and [29]. They were introduced in
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the purpose of categorifying the Drinfel’d-Jimbo quantum groups for Kac—Moody
algebras as well as their integrable representations.

It was proven by Brundan—Kleshchev—McNamara [6] and Kato [20] that quiver
Hecke algebras for Dynkin quivers of finite ADE types have pretty nice homological
properties. Retrospectively speaking, they proved that the categories of graded
modules over these algebras carry an affine highest weight structure in the sense
of [22]. As a consequence, these algebras have finite global dimension. However,
once one goes beyond the family of finite type, the quiver Hecke algebras often
have infinite global dimension. The simplest example would be the cyclic quivers of
length > 2. According to the result of Brundan—Kleshchev [5] and Rouquier [29],
the quiver Hecke algebras of cyclic quivers are equivalent to affine Hecke algebras
for GL, with parameter at roots of unity. The representation theory of affine
Hecke algebras at roots of unity is known to share several features of the modular
representation theory finite groups. Notably, there are fewer simple modules in the
modular case than there are in the ordinary case.

One approach to the modular representation theory is to resolve this lack of
simple objects by finding a larger, but better behaved category, of which the modu-
lar category is a quotient. In the case of modular representation theory of symmetric
groups, one uses the Schur algebras as resolution via the Schur—Weyl duality. In the
same spirit, for Hecke algebras of complex reflection groups, the rational Cherednik
algebras provide resolution, as it was first established in [I6]. For affine Hecke al-
gebras, the resolution would be the degenerate double affine Hecke algebras. This
perspective appeared in [33], where degenerate DAHAs are viewed as replacement
for affine g-Schur algebras in relation with affine Hecke algebras, cf. Section
and Section @l We will introduce a new family of algebras, called quiver double
Hecke algebras, which we believe to play the role of “resolution” for quiver Hecke
algebras.

Results of the present article. Let (V, R) be an irreducible finite root system
and let (E,S) be its affinisation (the definition is recalled in Section [[T]). In par-
ticular, F = V is a euclidean affine space. We fix a basis Ay C R, which extends in
a standard way to an affine basis A C S. The affine Weyl group Wy is generated
by affine simple reflections s, for a € A and the finite Weyl group Wr C Wy is the
subgroup generated by s, for a € Ag. The extended affine Weyl group Wy acts on
S.

The degenerate double affine Hecke algebra attached to (F,S) is given by H =
CWs ® C[E] as vector space. The multiplication of H depends on a function A :
S — C, called parameters, see Section 2l for the precise definition. For A € E, let
O, (H) denote the category of finitely generated H-modules on which the subalgebra
C[E] acts locally finitely with eigenvalues lying in the orbit Wg - A C E.

The affine Hecke algebra attached to (V, R) is given by K = Hr®C|[T], where Hp
is the Iwahori-Hecke algebra of type (Wg, Ag) and C[T], the group algebra of the
weight lattice of the root system (V, R). See Section Bl for the precise definition.
For ¢ € V, let O;(K) denote the category of finite-dimensional K-modules on which
the subalgebra C[T] acts with eigenvalues lying in the orbit Wg - ¢ C T.

There is an exponential map exp : E — T. Fix A\g € F and let £y = exp(X\o) €
T. Denote by V : Oy, (H) — Oy, (K) the monodromy functor for the Knizhnik-
Zamolodchikov equations introduced by Varagnolo—Vasserot in [33]. We show in
Proposition 27 that M is a quotient functor. The first main result is the following:
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Theorem A (=Definition @6HProposition R9)). There is a quotient functor V :
Ox, (H) — Oy, (K) defined in algebraic terms such that

kerV = kerV.

We expect that there exists an isomorphism V =2 V. In order to construct V, we
introduce in Section and Section B4l two auxiliary algebras Hy, and K, and
show in Proposition [[2] and Proposition [Tlthat Hy, and K, are Morita-equivalent
respectively to Oy, (H) and Oy, (K). By analysing the structure of the quiver-Hecke-
like algebras Hy, and Ky, we show in Theorem [82 that there exists an idempotent
e, € H), such that the idempotent subalgebra e,H,e, is isomorphic to Ky,. This
allows us to define the functor V as the idempotent truncation by e,.

The second main result concerns V:

Theorem B (=Theorem [[05HTheorem [[08). The following statements hold:

(i) The functor V satisfies the double centraliser property (i.e. fully faithful
on projective objects) after passing to a suitable completion of Oy, (H) and
Oy, (K).

(ii) The kernel ker'V is the Serre subcategory generated by simple objects L €
Oy, (H) such that the projective envelope of L in the completion of O, (H)
is not relatively injective with respect to the categorical centre Z(O),(H)).

Notice that by the comparison result Theorem [A] the statements of Theorem [Bl
also hold for V. The second statement of Theorem [Blimplies in particular that the
subcategory ker V is an invariant of the category O,,(H). In fact, we construct
V and establish Theorem [Bl for a greater family of algebras, quiver double Hecke
algebras, which are introduced in Section [6.3] This family of algebras seems to be
related to a localised Iwahori version of Coulomb branch algebras of Braverman—
Finkelberg—Nakajima [3] for semisimple groups.

Related works. As mentioned above, the algebra A“ that we introduce in Part
is expected to be related to Iwahori version of the quantised Coulomb branch al-
gebras. There exist in the literature some works on the representation theory of
such algebras with an approach similar to ours.

In [37], B. Webster studied a module category of the rational Cherednik algebra
for the complex reflection group G(¢,1,n) whose objects admit a weight decom-
position for the action of a polynomial subalgebra defined by Dunkl-Opdam [I3].
He introduced an algebraic version of the KZ functor and he classified the simple
objects of that category. The results were later generalised in [23], to the rational
Cherednik algebra for G(¢,d, n).

Our construction of KZ functor V can be regarded as a variant of theirs. One
can expect that their functor also satisfies the properties listed in Theorem [Bl

Organisation. This paper is composed of two parts. The first part serves mainly
as preliminary materials and motivation for the second part. The proof of most of
the statements in the first part can be found in the literature [812528]331[34].

We review briefly the affine root systems in Section [Tl the dDAHAs in Section 2]
and the affine Hecke algebras (AHA) in Section Bl We introduce the idempotent
form of these algebras, each controlling a block of the category O of both algebras.
The definition of idempotent forms is a straightforward generalisation of the result
of Brundan-Kleshchev [5] and Rouquier [29] on the equivalence between affine Hecke
algebras for GL,, and quiver Hecke algebras for linear and cyclic quivers.
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We recall in Section @ the monodromy functor V introduced in [33] as the tri-
gonometric counterpart of the KZ functor of [16]. We prove that it is a quotient
functor in the sense of Gabriel.

We discuss in Section 3 the relations between the monodromy functor V and the
functor V, which will be defined in algebraic terms in Section

In the second part we introduce quiver double Hecke algebras (QDHA). They can
be viewed as a generalisation of degenerate double affine Hecke algebras (dIDAHA)
or as an affinisation of quiver Hecke algebras (QHA).

In Section [G] we introduce the quiver double Hecke algebras A“ attached to an
affine root system (FE, S) with spectrum being a Wg-orbit in E and with parameter
w. We define the filtration by length on A“ in Section [6.4] and prove the basis
theorem in Section [6.5] with this filtration. We study the associated graded gr’” A%
of the filtration by length in Section

In Section [ we study the categories of graded and ungraded A“-modules. We
introduce in Section a functor of induction from the quiver Hecke algebras
attached to the finite root system (V, R) underlying (F, S).

In Section B we study good filtrations on A“-modules and use it to define
the Gelfand—Kirillov dimension of an A“-module. We prove that “induced A“-
modules” are of maximal Gelfand—Kirillov dimension.

In Section [@ we introduce the quiver Hecke algebra B% attached to a finite root
system (V, R) and with parameter w. We prove a basis theorem for B and we
introduce a Frobenius form on B*.

In Section [0, we prove that the algebra B“ is isomorphic to an idempotent
subalgebra of A“. We use this isomorphism to define the Knizhnik—Zamolodchikov
functor V, which is a quotient functor. We give characterisations for the kernel of
V in Section [I0.7 and Section The double centraliser property for V is proven
in Section [T0.8]

In Appendix [A] we collect some basic facts about the category of pro-objects
of abelian categories, which are used to construct completions of the categories
Oy, (H) and Oy, (K).

Part 1. Degenerate double affine Hecke algebras
1. REMINDER ON AFFINE ROOT SYSTEMS

We review the notion of affine root systems. The reference is [27].

1.1. Affine reflections on euclidean spaces. Let E be an affine euclidean space
of dimension n > 0 and let V be its vector space of translations. In particular, V'
is equipped with a positive definite scalar product (—, =) : V. x V — R. The
dual space V* is identified with V via the scalar product (—, —). Let R[E]<! be
the space of affine functions on E. We have a map of differential 9 : R[E]S! —
V* whose kernel is the set of constant functions. The space R[E]|<! is equipped
with a symmetric bilinear form (f, g) = (9f,dg). For any non-constant function
f € R[E]SY, let f¥ = 2f/|f|? and define the reflection with respect to the zero
hyperplane of f:
sgt BE—E, six)=x— f'(z)0f
and
spRIE]S — R[E]SY, sp(g)=g—(f",0)f
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It extends to an automorphism of the ring of C-valued polynomial functions sy :
C[E] — CIE].

1.2. Affine root systems. An affine root system on E is the pair (F,S), where
S C R[E]=! is a subset satisfying the following conditions:

(i) S spans R[E]=! and the elements of S are non-constant functions on F;
(i) s4(b) € S for all a,b € S;

(iii) (av,b) € Z for all a,b € S;

(iv) the group Wgs of autoisometries on E generated by {s, ; a € S} acts

properly on FE.

The group Wy is called the affine Weyl group (or simply the Weyl group of S). An
affine root system (FE,S) is called irreducible if there is no partition S = Sy U Sy
with (—, =) |s,xs,= 0 and Sy # 0 and Sy # 0; it is called reduced if a € S implies
2a ¢ S.

Let (E,S) be an affine root system. The set R = 9(S) C V* is a finite root
system on V. Let P = Prp C V denote the weight lattice, Qr = ZR the root
lattice, PV = Py the coweight lattice and Q¥ = QY = ZR" the coroot lattice.

Conversely, let (V, R) be an irreducible finite root system, reduced or not. Define
Riea = R\ 2R to be the set of indivisible roots. Let P = Pgr be the weight lattice
and @ = Qg the root lattice; we define the affinisation of (V, R) to be the affine
root system (F,S) with E =V and

S={(a+n;ne€Z,a€ Req){(a+2m+1; meZ ac RN2R).

Given a basis Ay C R, we form A = AgU {ag}, where ag =1 — 60 with 6 € R being
the highest root with respect to the basis Ag.

1.3. Affine Weyl group. Let (E,S) be the affinisation of (V, R), which is an
irreducible reduced affine root system. A basis of S is an R-linearly independent
subset A C S such that the following conditions are satisfied:

(i) S C NAU-NA;

(ii) the set (,ca {7 € E'; a(x) > 0} is non-empty.
The Wg-action on S induces a simple transitive Wg-action on the set of bases of
S. Upon fixing a basis A of S, let ST = SNNA and S~ = SN —NA denote the
sets of positive and negative roots.

The parabolic Coxeter subgroup Wr = (s, ; a € Ag) of Wg can be identified

with the Weyl group of the finite root system (V, R) and there is an isomorphism

Q% X WR = WSa
(u, w) — X w,
where the element X* acts on S by a — a — (Ja, ). The extended affine Weyl
group is defined to be Wg = PV x Wg. It acts on S by extending the Wg-action

by the same formula X#a = a — (9a, u) for p € PV.
The length function is defined to be

0:Ws — N, L(w)=#(STnw'S).

It extends the usual length function on the Coxeter group Wg with respect to
the set of generators {s,} We will need the following formula for the length
function.

aceA”
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Proposition 1. For p € PV and w € Wg, we have

fwXxry= 3 fem+l+ Y e+ Y ‘<a72m|'

a€RT NwtR, a€R} ,nw—tR}, aERTN2R
a, Y
(xro)= S e -1+ 3 lewml+ Y “’2”-
a€Rf NwR_, a€RL NwRY, aERTN2R

These formulae can be obtained by counting the set ST Nw ™15~ along the fibres
of the differential map 0 : S — R.

1.4. Alcoves. For each affine root a € S, let H, = {A € E; a(\) =0} be the
vanishing locus of a. The affine hyperplanes {H,}.cs yield a simplicial cellular
decomposition of E. The open cells are called alcoves. Thus the set of connected

components
o <E\ U Ha>

a€sS
is the set of alcoves. The affine Weyl group Wg acts simply transitively on it.
When a basis A C S is given, the fundamental alcove is defined to be vy =

Noea 1z € £ a(z) > 0}.
2. REMINDER ON DEGENERATE DOUBLE AFFINE HECKE ALGEBRA

Let (E, S, A) be an irreducible reduced affine root system with a basis. We define
in this section the degenerate double affine Hecke algebra H attached to (E, S, A)
and its idempotent form Hj,, which is a block algebra for the category O of H.

2.1. Degenerate double affine Hecke algebra H. Let h = {hg}qcs be a We-
invariant family of complex numbers. The degenerate double affine Hecke algebra
with parameters h attached to the affine root system S is the associative unital
C-algebra on the vector space H = CWg ® C[E] whose multiplication satisfies
following properties:

e Each of the subspaces CWg and C[E] is given the usual ring structure, so
that they are subalgebras of H.

e w € CWy and f € C[E] multiply by juxtaposition: (w®1)(1® f) =w® f.

e a € A and f € C[E] satisty the equation:

(501 (10 f) ~ (1@ sa(f) (501 =10 hf_—(f)

2.2. Global dimension of H. Put a filtration F' on H as follows:
Fe H=0, F<H=CWs, FoH=(F<H)C[E]~,
anH = (Fng)n, n Z 2.

Namely, H is filtered by its polynomial part C[E]. The filtration F' is compatible
with the multiplication and its associated graded ring is given by the skew tensor
product grf’ H 2 CWx x (CQV @ C[V]). Since dim. gl H < dim. gl gr’ H [I8, D.2.6]
and since dim. gl CWg x (CQY ® C[V]) = 2r, where r = 1k S = dim E, we have
the following;:

Proposition 2. The global dimension of H is at most 2r.
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2.3. Category O. For each A € Eg, let m) C C[E] be the defining ideal of the
closed point A € E. Given any module M € H-Mod, for each A € E¢ consider the
generalised A\-weight space in M:
My = U {aeM; mf\va:O}.
N>0
For any A\g € Fc, we define Oy, (H) to be the full subcategory of finitely generated
left H-modules H-mod consisting of those M such that

M= € M.
AeEWs Ao

In other words, the polynomial subalgebra C[E] acts locally finitely on M with
eigenvalues in the Wg-orbit of \g € Ec.

From the triangular decomposition H = CQY ® CWg ® C|FE], we deduce the
following:

Proposition 3. For every \g € E, every object of Ox,(H) is a coherent CQV -
module.

2.4. Block algebra HY . In order to study the category O, (H), it is often useful
to consider a certain completion of the polynomial part C[E] at the orbit WsAg C
E. The completion of H that we will consider is similar to the one from [I2] in
the context of Gelfand—Zetlin algebras. A similar construction has been employed
in [34] for double affine Hecke algebras.

Fix once and for all A\g € Ec. Define for each A € Wg)\y a polynomial ring
Poly = C[V] and let Pol = @, cyy.», Polx. Define the completion

Poly = lim Poly /m{’ Pol, = C[V], Pol= € Pol,,
N AeWs Ao

where my C Poly is the defining ideal of 0 € V. The completion 1551)\ is equipped
with the mg-adic topology and Pol is equipped with the colimit topology.
For A € Wg ), the translation A, : Vg Aty E¢ yields an isomorphism

\* @ C[E] = C[V] = Pol, .
We define an action of H on Pol:
W= (1hx)y : H — End®™(Pol), ) : H — Hom®™ (Pol,, Pol),
by setting, for f € C[E] and a € A,
(4) oa(f) =A"/,
(5) ¥alsa—1)

—Aazha) (5, — 1) € Hom®™(Poly, Poly) a(\) =0
T ) A(ha=a) _ (saM)(azha) Hom®®™ (Pols. Pols + Pal N L0
A*a (saX)*a da € Hom ( oly, Poly + Po sa)\) a( ) 7£

Lemma 6. The map ¢ defines a faithful continuous action of H on Pol.

Let HY C Endcont(lg(;l) be the closure of the image of ¥. It has a set of topo-
logical generators which reflects better than H the weight-space decomposition of
objects of O, (H). For A € Wg)o, we define a function ordy : ST — Z>_; by

(7) ordy(a) = ord,_,(n)(z — ha)2 1.
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Lemma 8. The topological algebra HQO 18 topologically generated by the following
elements:
(i) for each A € Wgg, the projector e(A) : Pol —» Poly, C Pol,
(ii) the polynomial ring C[V], which acts diagonally on Pol by multiplication
on each factor Poly = C[V],
(iii) for each a € A an operator T, = 3 5 cyyan, Ta®(A) Pol —» Pol, where

(0a)~(soa(f) = f) ordx(a) = -1,

9)  7ee()): Pol Poly,x, Tof =
( ) T e( ) oly — Folg a T f {(8a)ord>‘(a)58a(f) Ord/\(a) > 0

for f € Pol, = C[V], where da € R is the differential of a € S and
S04 : C[V] — C[V] is the reflection with respect to the finite root da € R,
see Section [L11.

Proof. Let A C End®"™ (ﬁgl) denote the closure of the subalgebra generated by the
three sets of operators e()), C[V] and 7,. We need to show that A = HY .
Consider the restriction 1 |c(g). It factorises as
ClEl — ][ lmC[E)/mf = []Pol,
AEWsAo K A
where my C C[E] is the defining ideal of the closed point A € E. The Chinese
remainder theorem implies that the map has dense image. In particular, e(\) €
Poly C Pol lies in the closure of image for each A € Wg\y. Therefore, Hf\\o contains

the closure of ¥(C[E])e()) in Homcont(lggl, 1551); the latter is equal to the algebra
C[V]e(\) which acts on Pol,, by multiplication. Thus we have Pol C A and Pol C
HY, . Tt remains to show that {1)(sa)}aea lies in A and {7,}aea lies in HY .

For each a € A and A € Wg)\g, by comparison of the formulae @) and (@), we
see that the elements e(s, )1 (s, — 1)e(A) and 7,e(\) generate the same cyclic left

C[V]-submodule of Homcont(lsglA,lgalSa,\). In particular, 7,e()) lies in HY and
conversely, e(s,A)Y(sq — 1)e(A) lies in A. For A € Wghg such that s,A = A, we
have (s, —1)e(A) = e(A)Y(sq —1)e(A) € A. For A € W) such that s\ # A, we
have

"/J(Sa - 1)9()\) = e()‘)w(sa - 1)9()\) + e(Sa)\W(Sa - 1)9()\),

e(su = el) = 52 em i, — De(y) = - =R,
since A*(hg —a)/A*a € C[V]e(N) C A, it follows that 9 (s, —1)e(\) € A. Summing
over the idempotents, we obtain

Psa—1)= > P(sa—1)eN) €A, 1= Y  7e())eH].
AEWs Ao AEW s Ao

The result follows. O

(Sa)‘)* (a - ha)

Let HY -mod™ be the category of finitely generated HY -modules M such that
for each element m € M, the annihilator anng, (m) is an open left ideal of HY .
0
Notice that these conditions imply
M= EB e(M)M and dime(A)M < oo, for M € Hjy -mod™.
AeWs Ao
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Lemma 10. The restriction ¥* yields an equivalence of categories
HY, -mod®™ = O, (H).

2.5. Idempotent form H),. In view of Lemma [I0] and Lemma [ in order to
study the block O,,(H), it is convenient to consider the subalgebra generated by
the generators given in Lemma 8

Observe that the operators {€(\)},cyy.a,» CIV] and {7, }aea preserve the dense
submodule Pol C Pol. Let H,, be the associative (non-unital) subalgebra of
Endc(Pol) generated by these operators. Let Hy,-mody be the category of fi-
nitely generated Hy, -modo-modules M such that M = @,y .y, €(A)M and such
that the subspace V* C C[V] acts locally nilpotently on M.

Lemma 11. There is a natural inclusion Hy, — HQO with dense image, which
induces an equivalence of categories by pulling back the module-structure:

HY, -mod®™ — H, -mody .

Proof. By the density of the submodule Pol C Pol and Lemma Rl there is a unique
inclusion Hy, — HY  with dense image which fixes the generators {€(\)}\cy.z,»
C[V] and {74}aea. The assertion on the equivalence of category follows straight-
forward from the density. O

Combining the equivalences of Lemma[I0]and Lemma[IT] we obtain the following
result:

Proposition 12. There is an equivalence of categories
0)\0 (H) = H)\o —mOdo .

Remark 13. In Section [6, we will attach to each family of functions {wx}ycygn,
an algebra A“. We will study them in a larger generality. The algebra Hj, is the
special case where wy = ord) for A € Wglg.

2.6. Central subalgebra Z”. For A\ € Wglg, let W, denote the stabiliser of A
in Wg. The stabiliser W), is a finite parabolic subgroup of the Coxeter group Ws.
The affine Weyl group Wg acts on the vector space V¢ via the finite quotien
MW Wsg — Ws/QV = Wg. Let 2 = C[V]"0 be the ring of W), -invariant
formal power series. Since W), acts by reflections on V, the ring Z” is a complete
regular local ring. Let mz C Z” be the maximal ideal.

For each A € Wg)g, we define a homomorphism Z" —s 1551\)\: choosing a
w € Ws such that whg = A\, we let f — w(f) € C[V]"»» C Poly. This map
is clearly independent of the cho/i(\:e of w and it identifies Z” with the invariant
subspace C[V]"«*. The space Pol is regarded as a Z”-module via the diagonal
action. It is easy to observe that Z” lies in the centre of HY, .

Remark 14. One can show that Z” coincides with the centre of Hf\\o; however, we
do not need this fact.

3. REMINDER ON AFFINE HECKE ALGEBRA

We keep the notation (V, R, Ag), (E,S,A) and h = {hg},cg as above.

IThe notation is chosen so that (W w)(da) = O(wa) for a € S and w € Ws as well as
O sy = sgq for a € S.
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3.1. Extended affine Hecke algebras. Put

exp(mihy) @ € Rieq
exp(mihay1) @€ RN2R’

0= {tatacn, o= {

Recall that Wg/ = P x Wg is the dual extended affine Weyl group (we identify
Wg with Wgy via the correspondence s, <+ sov). Define the extended affine braid
group. B for the dual root system (V*, RY) to be the group generated by T, for
w E WS with the following relation for each y,w € WS

The extended affine Hecke algebra in parameters v, denoted by K, is the quotient
of the group algebra CBg by the following relations for oo € Ay, in the case where
R is reduced:

(Tsu )(ngv +1) =0, (TSO - Ug)(TSO + 1) =0,

where sg € V~V§/ is the reflection with respect to the affine simple root and 6§ € R™
is the highest root. In the case where R is non-reduced, let 5 € Aj be the simple
root such that 25 € R. Let K be the quotient of C8g by the following relations

for « € Ag \ {B8}:

(Ts. — 2)(Tsa +1) =0,
(T, vﬁvg)(T 1) =0,
(Ts, 1151)9 Ty, +1) =0.

3.2. Bernstein—Lusztig presentation. Choose a square root vé/Q of vg. Define
a group homomorphism v : Bg — C* by setting v(s,) = v, for a € Ag and
v(sg) = vy in the case where R is reduced; v(sy) = va, v(sg) = ’Uﬁ’l);/ nd
v(sg) = vgv(;l/Q in the case where R is non-reduced and 3 € Ay with 28 € R and

a € Ao\ {8} )

There is a subalgebra CP C K given by p — v(u)T), for p € P C W¢ dominant
with respect to the basis Ag. For 8 € P in general, we decompose it into 8 = 5'— 3"
with 8’ and 3” dominant and set Y# = Tng[;,l . Then there is a decomposition

K = Hr ® CP,

where Hp is the subalgebra generated by {75, }sea, and CP is the subalgebra
generated by {Yﬁ } sep with the following commutation relations: for each f € CP,

(15)
T,.f - salf)Th, = (2 - I =220, o€l 20¢R,
(16)

TSﬁf - Sﬁ(f)T85 = ((U,CQ'EUQ - 1) + (U% - U@) Yﬁﬁ) {%}/ﬁfzfﬁ)a B € A07 26 € R.
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3.3. Finite dimensional modules. Let T be the torus defined by T' = Q¥ @ C*
so that Q¥ = X, (T) is its group of cocharacters and P = X*(T)) is its group of
characters. We view C[T] = CP as a subalgebra of K.

For each ¢ € T, let my C CP denote the defining ideal of the closed point ¢, which
is generated by Y# — Y#(¢) € CP for all 3 € P. Given any module M € K-Mod,
consider for each ¢ € T the generalised f-weight space in M of the action of the
subalgebra CP C K:

M, = U {aEM;mévazo}.
N>0

For any ¢y € T, we define Oy, (K) to be the full subcategory of K-mod consisting
of those M € K-mod which admit a decomposition by weight:

M = @ M,.

LEW L,

3.4. Idempotent form K, . Fix {y € T. Asin the case of H, we define an algebra
which is more adapted to the study of the block O, (K). Define for each £ € Wgrt,
a polynomial ring Pol, = C[V] and let Pol = @y, ,, Pole. For each ¢, define
e(¢) : Pol — Pol to be the idempotent linear endomorphism of projection onto
the factor Pol,. Let R:;d = RT\ 2R" denote the set of indivisible positive roots.
In view of ({3, for £ € Wgrly, we define a function ordy : Rj'ed — Z:

ordy(a) = ord,_ya(z —v3)(z —1)~* 20 ¢ R,
o ord,—yap(z —v3)(z +ve)(2* —1)"' 2a € R.

For each o € Ay and ¢ € Wgr{y, we define an operator 7,e({) : Poly — Pol;_y
by

Tae(l) = {al(sa —1) ordy(a) = -1

aorde(@) g, orde(a) > 0

Here s, : C[V] — CJ[V] is the reflection with respect to a.

Let Ky, be the associative subalgebra of
Endc(Pol) generated by fe(f) and m,e(¢) for f € C[V], a € A and ¢ € Wgy.
Let K, ,-mody be the category of finitely generated K, -mody-modules M such
that the subspace V* C C[V] acts locally nilpotently on M. Same arguments as
Lemma [I0] and Lemma [T show that:

Proposition 17. There is an equivalence of categories
Oy, (K) = Ky, -mody .

Remark 18. In Section [ we will attach to each family of functions {we},cyy,. 0, an
algebra B¥. The algebra K, is the special case of B with wy = ord, for £ € Wrt,.

4. THE MONODROMY FUNCTOR V

In this section, we review the construction of the monodromy functor of [33],
which is a trigonometric analogue of the Knizhnik—Zamolodchikov functor intro-
duced in [16] for rational Cherednik algebras. We prove in Proposition 27 that this
functor is a quotient functor.
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Keep the notation (F,S,A) and ag € A as above. In addition, we fix \g € E¢.
Consider the following exponential map

exp

(19) Ec2Vec=Q"0C —Q"a2C* =T,

2mir

HRr—=puRe

Put ¢y = exp(Ag). For simplifying the notation, denote Cy = O, (H) and By =
Oy, (K).

4.1. Dunkl operators. Consider the dual torus TV = P®C*. The ring of regular
functions C[T"V] is isomorphic to the group algebra of the coroot lattice CQV:

cQY = 1Y),
QY > pu— XM

For each £ € V*, let 9, e ' (T, ’7'Tv)Tv be the translation-invariant vector field
on T such that d¢ |.= & under the isomorphism T7v |2~ V. We view 9 as a linear
differential operator on T, so that d¢(X*) = (&, u) X* for each p € QV.

The regular part of TV is defined as T,) = [\, cp+ {X(yv * 1} C TV. Let

D(T)) denote the ring of algebraic differential operators on T, .
For £ € V*, the trigonometric Dunkl operator D¢ : C[TV] — C[T"] is the
C-linear operator defined as follows:

De(f) - ) hal€ T(af) + (&, p Zhaa € Ve.

a€RT aeA+

We consider D¢ as an element of D(T) x Wg.
According to [33] 4.1], the following homomorphism of C-algebras

C[TY]® CWgr ® C[V] =H — D(T,)) x Wg,
Xrouwel— X*Quw,

;‘<
H

extends to an isomorphism C[Ty'] ®crv) H = D(TY') x Wk.

4.2. Monodromy functor V. Let [T,)/Wg] be the quotient stack. According
to [I7, 2.5], there is an isomorphism between the orbifold fundamental group
m([TY /Wg]) and the extended affine braid group Bgs from Section Bl

If M € Oy,(H), then

= C[T)] @cprv) M

is a W-equivariant D(T,Y )—module, which is in fact an integrable connection with
regular singularities. Therefore the monodromy representation on the vector space
of flat sections of M on (the universal covering of) the orbifold [T /W] defines a
Bs-module, which is denoted by V(M). It is shown in [33] 5.1] that the Bg-action
on V(M) factorises through the surjective algebra homomorphism C8g — K and
yields an exact functor

V : Oy, (H) — Oy, (K).
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4.3. Central actions of Z" intertwined by V. For convenience, we denote
Co = Oy, (H) and By = Oy, (K). Recall the central subalgebra Z* = C[V]"»o
defined in Section Let Z(Co) = End(idc,) and Z(By) = End(idg,) denote the
categorical centres.

Let W, be the stabiliser of \g € Ec in Wgs and let Wy, be the stabiliser of
lo € T in Wg. Let A be the image of Ay in Ec /Wy, and let {o be the image of ¢y
in T/Wy,. The exponential map (I9) induces an analytic map

exp : Eq /Wy, — T/Wh,,

which is locally biholomorphic near \g. The push-forward along exp? at Ag yields
an isomorphism of complete local rings

Ao . A B ~ A _
EXP, - OEC/WAOJ\O - OT/Wemfo'

Note that Z/ = OgC/WAOj\O. For each w € Wg, the action of w on Ec and on T

e latter via € quotient map rom pection mauces
the latter via th tient oW f Secti ind

wy : O =~ O4

. A .~ _ _
ws 2 O — Opg/w T/Weglo — OT/Wopeywio®

EC/W)\[)v)\O wxoij\o’

We define homomorphisms Z" — Z (Cy) and 2" — Z(By) as follows: for any
M € Cy, we decompose M = ®/\€Ws x My and for each A = wo, an element
f € Z" acts by w,f on M,. This depends only on the weight A but not on the
choice of w. Similarly, for any N € By, we decompose N = @ZGWR ¢, Ne- For each

¢ = wly, an element f € Z” acts by multiplication by w, exp}° f on Nj.

Lemma 20. The functor V : Co — By intertwines the Z™-actions on Cy and By.

Proof. Recall that the graded affine Hecke algebra is the subalgebra
H=CWg®SymVs C H.

For each weight A € Vi, let O, (H) be the category of finite-dimensional H-modules
on which the action of the polynomial part Sym V& has weights lying in the orbit
WgA C Ve.

There is a functor of induction

Indy : H-mod — H-mod, Indg M =H®y M
and for each weight A\ € F¢, it restricts to
Indy : Ox(H) — O (H).

Let Z C Cy denote the essential image of Indg. It is known that Z generates Cy —
indeed, the module P(A), = H/H-m} lies in Z and the family {P(A\)n},en. xewsa,
generate Cg. Therefore, it suffices to show that the restriction V |z intertwines the
actions of Z”. We shall apply the deformation argument from [33, 5.1] to check
this statement.

Let O = C[w] and let £ = C((w)). Let ¢ € V& be any regular coweight and put
X,o=X+wee V5 Put Hy =H® O and Kp = K® O. For each Ao € Wgho 0
and for n € Z>q, let

my, = (Bo — (Bo,Ao) ; B € Vo) CSymp Ve, mae =my,[@ ]
S)\% = Sym, Vg/m’/\lo, S)\v}é :g)\vé[wil],
B(AO)’I’L = EO ®Symo \Z:3 S)\%u B()\K)n = ﬂ]c [w_l]'

)
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Note that all these objects are flat over O. Let P(Ao)y be the space of flat sec-
tions of the affine Knizhnik—Zamolodchikov equation (AKZ) on the constant vector
bundle on T} of fibre P(Ap),,. The monodromy representation yields a Ko = KQO
action on P(\o)y .

Since the stabiliser of \p in Wy is trivial, there is an eigenspace decomposition

POx)n= B POOn)ure:  (POK)n)wre = buSxe,
weWr

where each b,,Syy. is a free SA%—module of rank 1. Consider the boundary point of
TV:
1. ] = ( a\/ = ) 5 = .
Jm exp(nip) X 0 et where p = (1/2) Z a
a€ERT
Applying the Frobenius method around this point, we obtain a fundamental solution
{by }w Wn of the AKZ equation on T, which satisfies

bl (exp(p) = e 2P T (b, + G(u))
for u € V& such that Jm (u, ") > 0, Va € AT,
where G(p) is a P(Ax)n-valued analytic function in p such that
G(p) — 0 when Jm (a, u) — +00,Va € AT,

The fundamental solution induces an Syy -linear isomorphism
(21) P(Ac)n = PAc)y s bu = by

Under this isomorphism, the monodromy operator on the right-hand side corres-
ponding to # € X is identified with e>™*# on the left-hand side. Put
A N A Al——11 ~v )\ A
Zp = ((Sym Vo) O)/_\O o’ Zi = Zp[w ] = (Sym V)5, o -
We define the action of Z{5 and Zg on Hy-modules and Hy-modules in a similar
way.

Since the action of Zg on P(A\c), coincides with the action of the polynomial
part Sym V¢ C H up to twists by elements of W, the induced action of Zg on the
Ki-module P(Ac)y is identified with the exponentiation of the action of Zg on
the P(Ax), under (2I)).

Since the O-lattices P(Ao)n C P(Ax)n and P(Ao)y C P(Ax)Y are stable under
the action of the subring Z5 C Zp, the functor M — MV also intertwines the
two Zj-actions. Put P (\),, = P (A\o), ®o C. Then P(A), — P(A\)Y = V(P(\),)
also intertwines the two Z”-actions. Finally, since the family of modules P()),, for
A € WsAo and n > 1 generates the category Oy, (H), the functor V restricted to Z
intertwine the Z”-actions as asserted. |

4.4. Completion of categories. Since the affine Hecke algebra K is of finite rank
over its centre, namely (CP)V, By = O, (K) is equivalent to the category of
modules of finite length over some semiperfect algebra. It is also the case for Cy =
O),(H). In particular, they are both noetherian-artinian. Consider the category
of pro-objects? Pro(Cy) and Pro(By). We have two central actions introduced in

2The basic properties of categories of pro-objects are reviewed in Appendix [Al
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Section [4.3]
2" — End(ide,) = End(idpro(cy))s
Z" — End (idg,) 2 End(idp,o(s,))-

By Lemma 20} the functor V : Cy — By intertwines these Z”-actions. The exten-
sion V : Pro(Cy) — Pro(Bp) still intertwines the Z”-actions.

Define C C Pro(Cp) to be the subcategory consisting of objects M € Pro(Cp)
such that M/m%M € Cp for all kK > 0. Similarly we define B C Pro(By) to be
the subcategory consisting of objects N € Pro(By) such that M/m%iM € Cq for all
k>0.

Lemma 22. For each simple object L € Cy (resp. L € By), its projective cover
P(L) € Pro(Cy) (resp. P(L) € Pro(By)) lies in C (resp. B).

Proof. Notice that by the general result Proposition[I14] the objects of Cy (resp. By)
admit projective covers in Pro(Cp) (resp. Pro(Byp)). The statement holds obviously
for By because K is of finite rank over its centre. For Cy, by Proposition 12} there
is an equivalence Cyp = H), and the algebra H), is Morita-equivalent to an algebra

of finite rank over its centre, cf. Section [(.4l |
Lemma 23. The functor V : Pro(Co) — Pro(By) restricts to V: C — B.

Proof. If M € C, then M/m%M € Cy and by Lemma 20, V(M)/mEV(M) =
V(M /mk M) € By. Tt follows that V(M) € B. O

4.5. Right adjoint of V. Recall that By = Oy, (K) and Cy = Oy, (H).

Lemma 24. The functorV : Co — By admits a right adjoint functor V' : By —
Co.

Proof. We first define a functor V' : By — Ind(Cp) with natural isomorphisms
(25) Homg, (V(M), N) = Homyngc,) (M, V' (N))
for M € Cy and N € By. For any N € By, let
F‘N:Cgp—>C—1\/IOd7 FN:MHHomBO(V(M),N)

and let

Fy(M)™ =Fy(M)\ |J Fv(M/M).

0#£M'CM

Here, we regard Fy(M/M’) as a subspace of Fy(M) by the right exactness of

Fy. Let Iy be the category whose objects are pairs (M, a), where M € Cy and
a € Fx(M)™® and whose morphisms are defined by

Homz, ((M>a)7 (Ml7a/)) = {f € HomCO(M7 M,) ) FN(f)(a/) = a} .

We set
VI(N) = “lim” M € Ind(Co).
(M,a)EZn

According to [32 3.5, Lemma 6], VT (V) represents the functor Fy, so V' satisfies
the desired adjoint property (23).

Now we show that in fact the object V' (V) in Ind(Cp) lies in the subcategory Co.
Let Pc € C be the sum of all projective indecomposable objects (up to isomorph-
ism) of C so that for any M € Cy, the dimension of Home(Pe, M) is equal to the
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length of M. Since V(P¢) € B is a finitely generated K-module, the vector space
Hompg (V(P¢), N) is finite-dimensional. On the other hand, there are isomorphisms

(26) lim  Home (P, M) = lim lim  Homg, (Pe/Q, M)
MV (N) McvV'(N) _QCPc
Mecy Mec,  Pe/QCo
=~ hgn Homlnd(co) (PC/Q; VT (N))
QCPc
Pc/Q€eCo
= lim Homg, (V(Pc/Q),N)
QCPc
Pc/QEeCy
= Hompm(BO) ( “@1’1” V(PC/Q), N)
QCPc
Pc/QeCy

= Hompg (V(P¢), N) .

The first and the fourth isomorphisms are due to (II0) of Appendix [A} the second
one is exchanging the order of the two colimits and it holds due to the definition of
morphisms between ind-objects; the third one is due to (2H]); the last one is due to
Lemma 23]

Since N € By, there is some integer n such that m%Z N = 0. Since V(P¢) € B,
the quotient V(P¢)/m%V(Fc) lies in By. Thus the Hom-space

Hompg(V(FPe), N) = Homgp, (V(Pc)/m%V(Pc), N)

is finite-dimensional. The above isomorphisms (26]) imply that the length of the
subobjects M C VT (N) such that M € Cq is bounded. It follows that VT (V) lies
in Cy by Proposition [I2(iii). Thus V' : By — Cp is a right adjoint to V. |

4.6. V is a quotient functor.
Proposition 27. The monodromy functor V : Co — By is a quotient functor.

Proof. Recall that D(T.') is the ring of algebraic linear differential operators on the
regular part T, of the dual torus TV = P ® C*. By construction, the functor V
factorises into the following

H-Mod —°%5 D (TY) x Wg-Mod

] J

RH
Co ——— connyj,, (TY) ———— CBg-mo

t : T

Bo

dﬁnl

where connjy, (T,)) is the subcategory of D (T,") x Wr-mod consisting of Wg-
equivariant integrable connections on 7)Y which have regular singularities along the
boundary. The arrow in the first line is the localisation functor loc=C[Ty |®c[rv] —,
whose right adjoint loc is the restriction of the action of H, = D (TY) x Wg to
H. The restriction of loc to Cy factorises through the inclusion of subcategory

connt, (TY) — D(TY) x Wg-Mod
WR( o o
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and gives the first arrow of the second line. The functor RH is the Riemann—Hilbert
correspondence (the Knizhnik—Zamolodchikov equations have regular singularit-
ies [28]), due to Deligne [11l 2.1745.9], between algebraic connections with reg-
ular singularities and finite-dimensional representations of the fundamental group
1 ([T W) = B,

We show that V admits a section functor in the sense of Gabriel [I5]. We have
shown in Lemma 24 that V admits a right adjoint functor V. The functor VT can
be described as follows:

By < CBg-mod™ = conn}y, (1) — Co,

where the last arrow is the functor which sends an object M € conn{,?,R(Tov ) to the
biggest H-submodule of M which lies in Cy, denoted by M |¢,C M. We show that
the adjunction counit Vo VT — idg, is an isomorphism. We first show that it
is a monomorphism: for any M € connjy, (77'), we have C[T)] ®@cirv) M = M;
by the flatness of C[TY] over C[TV], the inclusion M |¢,<> M gives rise to a
monomorphism

CIT, ] @cprv) (M |e,) — C[TY] @cprv) M = M;

composing it with the Riemann-Hilbert correspondence, we see that VoV — idg,
is a monomorphism.

Let N € By. By the exactness of V, to show that the adjunction counit
VVTN < N is an isomorphism, it suffices to find an H-submodule of RH™* ()

whose localisation to T\ is equal to RH™'(NN). There exists a surjection

P rw), — N,

i€T
where 7 is an index set and P (¢;),, = K/K-m}". By [33, 5.1(i)], for each i € 7
there is an induced module P()\l)n = H/H - m{’ € Co such that exp(\;) = ¢
and V(P (X\;), ) = P((;), . Hence the image of P()\;),, in RH!(N) is an H-
submodule which satisfies the requirement. We conclude that Vo VT 2 idg,;
therefore VT is a section functor for V.

By the criterion of Gabriel [15, 3.2, Prop 5], V is a quotient functor. |

NG "

5. COMPARISON OF V AND V

5.1. The functors V and V. In Part 2 we will study the idempotent forms
H,, and Ky, in a broader context, cf. Remark [[3] and Remark [[8 Specific-
ally, in Section [0.6, we will introduce a quotient functor for graded modules
V : Hy, -gmod — Ky, -gmod. It has an ungraded version V : Hy,-mody —
K, -modg. On the other hand, by Proposition and Proposition [I[7} we have
equivalences of categories Oy, (H) = Hy,-mody and Oy, (K) = Ky, -modg. The
situation can be depicted in a diagram:

O)\o (H) L Ofo (K)
1= 1=

H),, -mody . AN K/, -modg

Conjecture 28. There is an isomorphism of functors V=V,
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In the rest of this section, we use results from Part [2] to prove a weaker version
of this statement.

5.2. Comparison of the kernels. By Proposition 27l and Section [[0.6] the func-
tors V and V are already known to be quotient functors. Proposition 29 generalises
a result from [24], where the geometric construction of the dDAHA was used.

Proposition 29. The kernels kerV and ker V are identified via the equivalence
Ox, (H) = H), -modyg.

Proof. Let F : O,,(H) = H,, -mody denote the equivalence from Proposition
We show that for every object M € Oy, (H), the condition Theorem [O7(iii) for F M
implies VM = 0. Let M = @AeWs xo M be the decomposition into generalised
weight spaces of C[E] and let

Mgt: @ My, fOI‘tGRzo.
AEWs Ao
A<t
Note that under the equivalence F', the generalised weight space M) is identi-
fied with e(A)F(M)). Following the same arguments as in the proof |(iii)=|(iv)|
of Theorem 07 we have s,M; < M;;s for every t € R>o and a € A. Let
U=CIE]'+3>,.,C"s, C Hso that U generates H as C-algebra. Then,
by the assumption we see that for each finite-dimensional subspace L C M
and each € > 0,
lim dim (U"L) /"' =0, r=r1kR.
n—ro0

Hence we obtain dimgxy M < r — 1, and in particular dimgg cjrv)M < 7 —1
for the subalgebra C[TV] = CQY C H. As the algebra C[T"] is commutative and
by Proposition Bl M is coherent over C[TV], the Gelfand—Kirillov dimension of
M coincides with the Krull dimension of the subvariety Supppv M C TV. As the
localisation of M on the regular part 7Y must be locally free, we see that it must
be zero since dim 7Y = r > dim Supp M. Hence VM = 0 by the definition of V.
We see that ker V C F'(ker V).

Since V and V are both quotient functors on noetherian-artinian categories, by
comparison of the rank of the Grothendieck groups

tk Ko (ker V) = rk K (Oy, (H)) — 1k K¢ (O, (K))
=rk Ko (Hy, -modp) — rk K (K, -modg) = rk Ko (ker V),

we see that ker V. = F(ker V). O

Part 2. Quiver Hecke algebras
6. QUIVER DOUBLE HECKE ALGEBRA

Fix an irreducible based finite root system (V, R, Ag) and let (E,S,A) be its
affinisation. In this section we will also abbreviate P = Pr, Q = Qgr, PY = P}

and Q¥ = QY.



924 WILLE LIU

6.1. The polynomial matrix algebra A°. Fix once and for all \y € E. Define
for each A€ Wg g a polynomial ring Poly =C[V] and let Poly», :®A€W5Ao Pol,.
For each A, define e(\) : Polygy, — Polyx C Poly,, to be the projection onto the
factor Poly.

For each a € A, define an operator 77 : Poly,x, — Polw,a, by

T = Z Toe(A), TJe(N): Poly, — Pols, .,
AEWs Ao

1. _ _
%6()) = (0a) " (soa — 1) a(A)=0 .
Sda (l()\) # 0
Here da € R is the differential of a € S, cf. Section [[1l

Let A° = A°(E,S,A,X) be the associative (non-unital) subalgebra of
Endc(Polyga, ) generated by fe(A) and 2e(A) for f € C[V], a € A and A € Wg .

6.2. Centre Z. For A € Wg)q, let W, be the stabiliser of A in Wg. The stabiliser
W) is a finite parabolic subgroup of the Coxeter group Wg. The affine Weyl group
W acts on the vector space V via the finite quotient 0V : Wg — Ws/QV = Wh.
Let Z = C[V]"0 be the ring of W), -invariant polynomials, graded by the degree of
monomials. Since W), acts by reflections on V', the ring Z is a graded polynomial
ring. Let mz C Z be the unique homogeneous maximal ideal.

For each A € Wg )y, we define a homomorphism Z — Poly: choosing a w € Wy
such that whg = A, we let f — w(f) € C[V]"* C Pol,. This map is clearly
independent of the choice of w and it identifies Z with the invariant subspace
C[V]"A. The infinite sum Poly,,, is regarded as a Z-module via the diagonal
action.

The following are standard results from the invariant theory for reflection groups:

Proposition 30. The following statements hold:

(i) For each A € WgAo, the Z-module Poly is free of rank #Wy = #W,,.

(ii) For any w € Wg, choose a reduced expression w = Sq,---Sq, and put
Toe(A) = 75 -7 e(\) for each X € Ws)o. Then the element T3e(A) is
independent of the choice of the reduced expression for w and, moreover,
there is a decomposition

Homz (Poly, Poly,y,) = EB 7o C[V]e(A).
weWg

(iii) The A°-action on Poly,y, commutes with Z and yields an isomorphism

A° —N—) @ HOIHZ(POI)\,POIWS,\O).
AEWs Ao
6.3. Subalgebras A of A°. Let w = {wx},cyy.», be a family of functions wy :
St — Z>_; satisfying the following properties:
(i) wx(a) = —1 implies a(N) = 0;
(ii) for w € Wg and b € ST Nw™1ST we have wy(b) = wyx(wb).
One may extend wy to a function @y : S — Z>_1 by choosing w € Wg such
that wa € ST and setting @x(a) = wypx(wa). We require w to satisfy the following
property:
(iii) For some (thus every) A € Wgl, the extended function @y : S — Z>_4
has finite support.
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We call the family {wx}ycpy.y, @ family of order functions. The order functions
can be characterised as follows:

Lemma 31. FEvery family of order functions {WA}AGWSAO is determined by the
Wy, -invariant finitely supported function @y, : S — Z>_1 satisfying

Dr(a) =—=1=a(X)=0 VYaes.

Define an operator 75" = > 5 ., 7a€(A) € Endz(Polw,y,) with 7e()) :
Poly — Polg, 5 by setting

re()) = {(c%v)-l(Saa ~1) wala)= -1,

] (Ba)r @ sy, wy(a) > 0.
so that 7e(\) € A°.

Definition 32. The quiver double Hecke algebr&ﬁ AY = A(E, S, A, Mo, w) is defined
to be the subalgebra of A° generated by C[V]e()\) and 7&e(\) for A € Wy and
a € A.

We also introduce the rational function field and its matrix algebra:

Raty = FracPol\ = Poly ®z Frac Z, Rat = @ Raty,
AEWs Ao
A~ — @ Hompyac z(Raty, Rat) = A° @z Frac Z, 7, = s,,
AEWs Ao

where Frac means the field of fractions.

Example 33.

(i) Let 0o = {a — _5‘1(>‘):0}>\ews>\0 denote the smallest family of order func-
tions. We recover the matrix algebra A°.

(ii) Let w={0},cy .z, De the zero constant function. Then A“ =Polyy, xWs
is the skew tensor product. If Wy, = 1, then A = C[V]1 W is the wreath
product.

(ili) Let E' = R, let € be the coordinate function on R and let S = {£2¢} + Z,
so that (F,S) is the affine root system of type Agl). Choose the basis
A = {a; = 2¢,a90 = 1 — 2¢}. The affine Weyl group Wy is generated by
so and s1, where s; (resp. sp) is the orthogonal reflection with respect to
0 € E (resp. 1/2 € E). Set \g = 1/4 € E, so that WgAg = 1/4 + (1/2)Z
and Wy, = 1. It follows that Poly = Cl¢] for all A € WgAg and A° is the
matrix algebra over Cle] of rank Wg,.

Set
on, (@) 1 a€A,
w a) =
Ao 0 acS\A

and define the family of order functions w = {wx}\cor, DY Wwr,(a) =
Oy (w™a). Tt follows that A“ is equal to the idempotent form of the

3In this definition, the assumption that Ao € E plays no essential role. We could have asked
Ao to belong to some set on which Wg acts transitively with finite parabolic stabiliser subgroups.
However, the euclidean geometry of E will facilitate some arguments.
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dDAHA H,, introduced in Section with parameter h, = 1/2 for all
a € S. We can depict the algebra A“ with the following diagram:

«+ Pol_3;y 7™ Polzyy 70 Polyyy 71 Poly,y To Polsy -,
~_ _— ~_ — ~_

s —€s s S

where s : Cle] — ClJe] is given by the substitution € — —e.

Remark 34. We may view A“ as an affinisation of the quiver Hecke algebra Rg(I")
attached to a certain quiver I' = (I, H) and a dimension vector 8 € NI, cf. Remark
[[3l The parameter w is an analogue of the polynomials @; ;(u,v) in Rouquier’s
definition of quiver Hecke algebras.

Remark 35. Following [36, §2.3], one can write down a complete list of relations
between the generators 7&e(\), C[V]e(A) for the algebra A“ in the manner of
Khovanov—Lauda—Rouquier. The most sophisticated is the braid relation between
pairs of generators from {72e(\) faca rxewsr,- We will only prove a weaker version
of it in Lemma [39] which is enough for our needs.

6.4. Filtration by length.
Definition 36. We define the filtration by length {F<,,A“},en on A% by

Fo A= > > > ClVIrs -+ rie(N).

AEWsAo k=0 (a1,...,a)EAF

In general, it is hard to express the operators 7, --- 7, ; however, the leading
term is easy to describe.

Lemma 37. Let w = 5,, -S4, be a reduced expression and let A € Wghg. Then

(i) For any f € C[V], and any family of order functions w there is a commut-
ation relation:

o Toe(\) = T Toy wil(f)e()\) mod F<;_1A%.

(ii) For any pair of families of order functions w and W' such that w < W'
(pointwise), there is a congruence relation:

T T e(N) =T T ( 11 (—8())‘“3“’)‘“*(1’)) e(\) mod Fg_1A%.
beStNw-15-

Proof. We prove the statement [(i)| by induction on the length I = ¢(w). It is trivial

for / =0. For [ = 1:
W w _ J@a)" (s0a(f) = fle(A) wa(a) = —1,
(38) (fTa —Ta Saa(f))e()‘) - {0 W ((l) > 0.

It belongs to F<gA“e(\) = C[V]e()) in both cases.
For [ > 1, by the induction hypothesis, we get
(fran - Ty = Tar Ty w ™ (f))e(N)
= (f7ay = Tay Sa ()7, - Tar€(N)
+ 7 (0, (F)Te o =T, T wTH(f))e(A) € Fo A,
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whence
We prove by induction on ! = f(w). Put w’ = s4,_, -+ Sq, and N = w'A.
Then

il oo () = () e @ ()
_ ((8al)wg/(az)—w,\/(az)7.2; _ TZ-; (_aal)wi\/(az)—ww(az)) 7—(‘;;/_1 7—2’1/9()\)

+ 7 (—ay)en )T (a) pet L gele (),
By B9), the first term belongs to F<;_1 A“; the second term, by the statement

for w’ = a;,_, - a;,, satisfies

T (—Qag) () en (@) e e gy

= qw .Twl’ w1 ((_6al)w;\,(al)7w>\/(al)) e()\)

a;‘a;—1 a
’ /=1 _ 7—1
= il (<0 e gy,

Here we have used the hypothesis that wy(w'~ta;) = wy (a;). Using the induction
hypothesis, we obtain

’ ’ ’ ’

T Toe(N)=ToTE Ty ((—3(10'7104))“);(w,ilal)fw*(w,ilal)) e())

ay ay ap ap—1 ay
=ToTs ( 11 <—ab>w?<b>—w<b>> e(\).
beStNw—15-

The last equation is due to the relation ST Nw=15~ = ST Nw' 1S~ U {w''a}.
This proves ([l

6.5. Basis theorem. We aim to prove an analogue of Proposition B{ for the sub-
algebra A“ C A°.

Lemma 39 (Braid relation). For any family of ordered functions {wx}ycyyo»,» the
images of the operators 7%e(\) in grf’ A¥ satisfy the braid relations: for a,b € A
with a # b, let mqp be the order of sqsp in Wg. If mgyp # 00, then

TETETY e N) =TT - e(N) mod Fc<p,, ,—1AY.
— —
Ma,b Ma,b

Proof. The statement is empty for mq, = 00, so we assume mgp # co. Let
Weap C Wg be the parabolic subgroup generated by s, and sy, let wg € W, be
the longest element and let S,; C S be the subroot system spanned by a and b.
Let Ay, be the subalgebra of A“ generated by C[V]e()), 7’e()) and 7;°e()) for
A € WsAo and let F<, Ay, be the filtration by length defined as in Definition
It suffices to show the following

TETETY e N) =TT - e(N) mod Fep, ,— 1A%,
—_—— —_———

Ma,b Ma,b

because there is an inclusion Fi<p,, , 1A%, C F<pp, ,—1A®. An analogue of Lemmal[37]
is valid for this subalgebra with the filtration Fen Ay,

We first prove the braid relation for the family w’ = {w) }xewsn,, Where w) (c) =
max{wy(c),0}. Since w)(c) > 0 for all c € S;)b, the braid relation for 7 and Tl;‘/
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follows from the following formula (with similar proof as Lemma [37(ii)):

7 (A = 5945050 - - - —9c)“A©e()\).
« T Ta () = soasapson - || (—0c) (A)

+
Ma,b Ma,b ces,,

Let 0 =] cest, (0c). By Lemma B7(ii), we have
we(N)=—1

’

!’ !’
T T e N) =P TY - 0e(N) mod Fem, 1A%,
—_———

Ma,b Ma,b

Write X=(r1r'17 - - =712 - - -)e(N), so that X-0 €e(wpl) (Fgma,b—lAZu,b) e(N).

a

Ma,b Ma,b
Moreover, by Lemma (i), we have

X =(rorgrs - —7ToTg ) H (—86)”*@70*(‘2):3(/\) mod F<pp, ,—1A7 -
Mg b Ma,b CES:b

However, the elements 77e()) satisfy the braid relations in A{ , by Proposition B0ii).
It follows that X € F<p, ,-1Af, (notice that A¥, C A7 ;). We claim that for
0 < j < mgp — 1, the quotient F<;A? je(N)/F<;A¥ je()) is right d-torsion-free.
This will imply that X € F<,,, ,—1A7, and complete the proof.

We prove the claim by induction on j. For j = 0, this is obvious since F<oAj |, =
FeoAy . Assume j € [1,mqp — 1]. The quotient grfA‘;’)be()\) is spanned over
C[V] by 2710718 -+ -e(N) and 77727 - - - e(A) since any non-reduced word in a, b of

J J
length < j contains consecutive letters aa or bb and since (75)?, (13°)* € F<1AY

a

b
Similarly, gri"A¢ je(\) is spanned over C[V] by 777577 - - - e(A) and 77575 - - - ().
’ —_—— —_——

j j
Moreover, by Proposition B0, gri’A¢ e()) is free of rank 2 over C[V]. Denote
W = 848pSq + -+~ Since w > o, by Lemma B7(ii), we have
—_———

<.

TETETY = TOTITE [T (Coe)»@=x | mod Fe;_1AY,.
——— n S
j j cES’a,bﬂw 1Smb
The prime factors of d are dc for ¢ € S, such that wy(c) = —1. Therefore d and

the product
H (—8c) A ()=ox(e)
ceSt,nw-1s_,
are relatively prime. The same argument applies to the other product /77" - - -.
It follows that grfAibe()\) and grfA;be()\) are both free over C[V] of rank 2,
and the matrix representing the C[V]-linear map ¢ : grfA‘gﬁbe()\) — grngybe()\)
(which is induced from the inclusion A¥ e(\) C A7 ;e())) is diagonal with entries
prime to 0. Hence coker ¢ is 0-torsion free. The snake lemma yields a short exact
sequence
FeojiAg () FgAD e())
Foy1A%,e(N) | FoyA%,e(N)

— coker ¢ — 0,
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in which the first term is also d-torsion-free by induction hypothesis, and so is the
middle term d-torsion-free, whence the claim is proven. (Il

Theorem 40. For each w € Wg, choose a reduced expression w = Sq, - - Sq, and
put Ty = Tq -+ T . Then there is a decomposition

A= P P cVirze.

AEWgAg weWg

Proof. By dévissage, it suffices to show that for each n € N,

gh A= P P cCvirse.

AEWsAo weWs
L(w)=n

It follows from the braid relations for 7 in gr” A¥ proven in Lemma B3 and the fact
that (72)%e()\) € F<1A“, that these elements 7 span grf’ A“. By the invariant
theory of reflection groups, the family {7%e(A)},, is free over C[V] and forms a
basis for Endz (Poly). In view of Lemma [7(ii), the matrix of transition between
the families {72e(\)},, and {7%e(A)},, is diagonal with non-zero entries; therefore
the latter is also free over C[V]. O

Define the filtration F<, A~ = (F<,A7°%) ®z Frac Z Cc A=°°.
Corollary 41. For each n, we have
Fep, AY = Fp AT N A",

Proof. Let F. AY = F<,A=° N A“. We have Fc,A¥ C FL A“. Fix \,\ €
WsAo and denote A = e(N)A%e(N). Put N = #{w € Ws; wA = )N}, then we
have F<, A = A = F<, A’ for n > N by Theorem 0l We prove by induction on
k € [0, N] that F<ny_xA = FL_,A. It is already clear for k = 0. Suppose k > 1.
Then we have the obvious diagram:

0—— FSN—kA E— FSN—IH—IA E— grﬁle»lA — 0

R

0 — FLy A —— Fly A —— grh 1A —— 0.

The morphism 1 is an isomorphism by the induction hypothesis and ¢ is injective.
By the snake lemma, we have ker ) = coker ¢. Theorem@0limplies that grf; 1 Als
C[V]-torsion-free whereas coker ¢ is a C[V]-torsion module. Therefore coker p =0
and ¢ is an isomorphism. Summing over A\, \" € Wg)g, we obtain F<, A¥ = F, A%
for all n € N. O

Remark 42. In view of (the proof of ) Lemma[39] one can define a “Bruhat filtration”
{Fz}z indexed by the order ideals Z of the affine Weyl group W with respect to
the Bruhat order, so that FrA“ is spanned by C[V]r¥e(A) for A € WgAo and
w € Z. Our filtration by length {F<, A“},en can be viewed as part of the Bruhat
filtration because we have F, A = Fr A% for Z,, = {w € Wg ; {(w) < n}.
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6.6. The associated graded gr’”A“. We describe in greater detail the structure
of the associated graded grf”A“. We establish in Proposition A8 a triangular de-
composition for grf A¥, which will be used in the proof of Proposition The
proof of Lemma [44] is technical. The reader is advised to skip this subsection in the
first reading.

Recall the extended affine Weyl group Wy = PV x Wg defined in Section [3
For p € PV, let w, € Wg be such that X*w,, is the minimal element of the coset
XH*Wg. Define the following map of minimal representatives:

0:PY — Ws, 0(u)=X"w,.

In particular, 8(QY) C Wg coincide with the set of minimal representatives for the
quotient Wg/Whg.

Lemma 43. For each p € PV, the element w,, is characterised by the following
property: every positive root o € R satisfies w,a € R~ if and only if (v, ) > 0.

Proof. See [9], Proof of 1.4] O

We consider the nil-Hecke algebra C[Ws]“il for Wy: it is the C-vector space span

by the basis {[w]nﬂ}w eWs equipped with the following multiplication law

ail oo ) [wyl™t i L(wy) = £(w) + £(y),
b} B i = {O otherwise.

Let C[Wg]™! and C[Wg]™! be the subspace of C[Ws]™! spanned by {[w]“il}wews
and {[w]““}wewR respectively. These are the nil-Hecke algebras for Wg and Wg.

Let Cy C V* denote the fundamental Weyl chamber and C its closure in V*.
Let PY = PV N Cy (resp. QY = QY N Cp) be the submonoid of PV consisting
of dominant coweights (resp. dominant coroots). Let CP)Y (resp. CQY) denote
the monoid algebra of PY (resp. QY). For p € PY, let X* € CPY denote the
corresponding element.

We define a map

C:CPY — ClWs™, ¢(xmy= Y [x+)i
weEWRrp
Lemma 44. The following statements hold:

(i) The map C~is a Ting homomorphism and yields a leth CPY-module struc-
ture on C[Ws|™! by left multiplication; moreover, C[Wg|"! is a free (CPY,
C[Wg]"Y-bimodule of rank #W and a basis of which is given by
{[H(bw)]n“}wewR with

by = Z w_lwow(\; e PV

aEAg
Sqw<w

(ii) The ring CQY is Cohen-Macaulay and the CPY-module structure on
C[Ws]"! restricts to a CQY.-module structure on C[Ws]™'; moreover, there
is a decomposition

ClWs|™ = & ® C[Wg]™,

where & C C[Wg|"is a CQY -direct factor and is a Cohen-Macaulay CQY -
module of mazximal dimension.
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Proof. In view of the length formula Proposition [l for W, the condition HXHTY) =
L(X™) 4+ £(X7") is equivalent to that u’ and v lie in the closure of the same Weyl
chamber. Therefore the map ( is a ring homomorphism. Define a decreasing
filtration G*Wg by

G*Wg = U {v € Ws; Lloy™) = £(v) — ((y)} .
yeWr
Ly)zk

Since C[Ws]™! has a canonical basis {[w]“”}w ey, the filtration G*Wy induces a
filtration on C[Ws]"!, denoted by G*C[Wg]".

Step 1. We prove that the map

PYx{(w,y)€(Wr)? 5 Uy)=k} = G*W\GF 1 Ws,  (u,w,y) = XPetv " wortapy

is a bijection.
For p € PY, let w, € Wg be the element from Lemma 3l We may
partition PV into sub-semigroups:

PY= || Py, Py={neP";w,=uw}.
weWr

For w € Wg, we have b,, € P,/ and there is a bijection

~

PY S PY, e by +w  wops
we can thus express the set GFWg \ GF1Wy as
GFW\GF Wy = |_| {XHtwy ; pe Ply= |_| {wa+w71w°“wy ;pE PX} .
w,yeEWpr w,yeEWg
Ly)=k (y)=k
Step 2. We prove that for each y € PV and w,y € W, we have (XM [ X bwawy]™t €
G'WCWs]™! and
(45) é'(XH)[wa’wy}nil = [waer_lwouwy]nil mod Gé(y)+1C[W5]nil.
Indeed, the defining relations of the nil-Hecke algebra C[Ws]™! yield
(X [X oyt = > [yt

’ I‘y
b ’ we F;’;Nf ’
X Ty =(X P wy)+L(XH)

in C[Ws]™L. Since

X wy) < X W) +(y) < HX0 )+ +0(y) = (X wy) +XH)
(the last equality due to Lemma (3], the condition

(46) (X wy) = £(X e wy) + (X))

implies that £(Xb»t# wy) = ¢(X P+ w) 4 ((y) and hence X1 wy e
GrWWg. Tt follows that [XPwtr wy"l e GIOICW]™! for 1/ € Wrp
satisfying (@) and [XPetH wy]! € GUOHIC[We]™! unless wy, 4,0 = w;
the latter case happens for the unique element g/ = w~ wgu in the orbit
Wgu; therefore (@) holds.



932

Step 3.

Step 4.

WILLE LIU

By Step [ and Step 2l we see that GkC[WS] is a CPY-submodule and the
successive quotient G*C[Wg]"l /GFF1C[Ws]*! is a free CPY-module with
: buy g pyqy]mil
a basis formed by the c9ngruence classes of {[X v wy] }%weYVR’Z'(y):k. It
follows that {[wawy]ml}y’wewR forms a CPY-basis for C[Wg]"!. Since
XPww is minimal in the coset X’ Wg, we have
[Xb“”wy]ml [Xb“’ ]ml . [y]nil7 for y c WR;
thug {{waw ml}wewR forms a (CPY,C[Wg]"")-bimodule basis for
C[We]™l, Whence@
Let & <C C[Ws]"! be the (free) CPY-submodule generated by
{[Q(bw)]n“}wGWR so that, by there is a decomposition C[I/T/S]nﬂ =
&' @ C[Wg|™!. Let Q = P/Q. Define a C-linear action of Q2 on C[Wg|"! by
Q x CWs]"™! — C[Wg]™,
(B, X w]™t) = TR X M, 5 e Q, pe PV, we W

This action preserves the subspace & ¢ C[Ws]! and fixes C[Wg]™! point-
wise; hence there is a decomposition of the (2-fixed subspace

C[Wg]™! = (C[Wg]MH)? = £ @ C[Wr]™, where £ = (£')%.

It remains to show that £ is a Cohen-Macaulay CQY-module of maximal
dimension.

Since CQY is integrally closed and CPY is regular and an integral ring
extension of it, by [2, X.2.6,coro 2|, CPY is a Cohen-Macaulay CQY-
module. Thus &', being a free CPY-module, is Cohen-Macaulay of max-
imal dimension over CQY. Since £ is a direct factor of £’, so it is Cohen-
Macaulay of maximal dimension over CQY, whence

O

Below, we will work with gr’” A“ and view the elements 7¢e(\) as in grf” A
for the sake of notational simplicity. View A% as (A“)°P-module via the right
regular representation. The ring Endg.r pw)op (grf” A¥) can be viewed as a unital
completion of A¥. Define a C-linear map

(47)

0 : C[Wg]™! — Endgr awyor (g1 FA®) = H grf’ A¥e
AEWs Ao
O([w]l) = 7% = Z Toe(N), w e Ws.
AeEWs Ao

Proposition 48. There is a triangular decomposition

gAY = £ ®c ( . Cﬁ,j) ®c ( D C[V]e(A)> )

weWr AEWs Ao

where & C C[Wg|™! is the CQY -submodule from Lemma EALii).

Proof. From Theorem B, we see that the C[Wg]"!-action on grf” A“ via © yields
a decomposition

ml ( @ C >_N_>ng‘AW7 f®bi—>@(f)(b)

AEWs Ao
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By Lemma [44{ii), we can further decompose C[Wg]"! = £ @ C[Wg]"!. Finally, we
have ©(C[Wg]"!) = Duew, CT- O

7. MODULE CATEGORIES OF AY

We keep the notation of Section We put a Z-grading on A“ as follows:
the generators are homogeneous: degae(A) = 2 for a« € V* and deg7¥e(A) =
wr(a) + wsa(a). If M = @, M, is a graded vector space, denote by M (m) the
grading shift given by M (m),, = M,,+,. For two graded vector spaces M and N, we
denote by Hom(M, N) the space of C-linear maps of degree 0 and gHom (M, N) =
D).cz Hom(M, N (k).

Below, by “modules” we mean left modules. All statements can be turned into
those for right modules by means of the anti-involution A“ = (A“)°? defined by
TYe(N) = TYe(sgN).

7.1. Graded A“-modules. An A“-module M is called a weight module if there
is a decomposition

M= @ eNM
AeWs Ao
Let A“-gMod denote the category of graded weight modules of A¥. Let A“ -gmod
C AY¥-gMod be the subcategory of compact objects (i.e. M € AY“-gmod if
Homaw -gMod (M, —) commutes with filtered colimits) and let A¥ -gmod,CA*“ -gmod
be the subcategory of mz-nilpotent objects. Lemma [49]is obvious.

Lemma 49. For every object M € A“ -gMod there exists an index set J and two
families of integers {a; }jEJ and {; }jEJ such that there exists an epimorphism in
A% -gMod

@Awe(Aj)<aj> — M.

We define a homomorphism of graded rings

(50) Zz — gEI’ld (idAw —gMod)
as follows: For every f € C[V]"* and w € Wg, let f act on e(wg)M by multi-
plication with (Gw)(f) € C[V]Wwo.
7.2. Intertwiners. For each A € WgAg and a € A, introduce the following element
in A“:

((Oa)te +1)e(N) wirla)=-1

pooy) = [ (007 4 De0) wr(a) = 1
Te(N) wx(a) >0

It satisfies the following relations:

vafe(N) = sa(f)pae(N) fe€Cl[V],

where ny , = max(wy(a) + ws,A(—a),0). These elements satisty the usual braid
relations. Thus, we may write p,e(A) = @q, - - - ©q,€(A) by choosing any reduced
expression w = 84, - - - Sq, -
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Lemma 51. Let w € Wg and a € A. Then the right multiplication by the inter-
twiner @, induces an isomorphism of A% -modules

A“e()) =2 A%e(s,))
if wa(a) +ws, r(—a) <0.
Proof. The right multiplication by the element p,e(s,A) = e(N)pq.e(s,\) yields
A¥e(N) = A¥pie(s,\) — A¥p2e(s,)\). Hence if p2e(\) = fe(\) € C[V]e())
for f € C[V] invertible, then p2e()\) is an isomorphism. The condition that f be

invertible is exactly as stated. Clearly, if p2e()\) and p2e(s,\) are isomorphisms,
then so are ¢,e(A) and gqe(s,\). The statement follows. O

7.3. Clan decomposition. As in Section [65] we extend w), to a Wg-invariant
function @y, : S — Z>_; and we suppose that the extension @), has finite support.
Consider the following subfamily of hyperplanes

DY={H, CE;acs dyla)>1}.
The connected components of the following space
EY=E\ |J H
HeDw

are called clans. Since @), is supposed to be finitely supported, the family ©“ is
finite, the set of connected components 7y (E¥) is finite and there are only a finite
number of clans.

Let € C EY be a clan. Since E¥ is the complement of a finite hyperplane
arrangement, € is a convex polytope. The salient cone of € is defined to be the
convex polyhedral cone k C V whose dual cone k" is the cone of linear functions
which are bounded from below on €:

HVZ{UEV*; inf@(v,x>>—oo}, k=r"={xeV; (v,z) >0, Vv er"}.
e

Then & is a convex polyhedral generated by a finite subset of PY. We say that clan
¢ C EY is generic if its salient cone is of maximal dimension.
Denote by vy € E the fundamental alcove associated with the basis A.

Lemma 52. Let w € Wg and a € A. Then w™ vy and w™ s, are in the same
clan if and only if the intertwiner ¢, induces an isomorphism of A“-modules

A%e(wAg) = A¥e(s,wAo).
Proof. Using Lemma BT we have
vZe(who) = e(wo) & W, (@) + ws,wa, (—a) <0,
& Ox(wla) + @y, (—wta) <0< Hyo ¢ D%
The last condition is equivalent to that w™'vy and w™ s, belong to the same
clan. O
Proposition B3] follows immediately from Lemma

Proposition 53. If w,w’ € W are such that w™'vy and w' ‘v lie in the same
clan, then right multiplication by the intertwiner @, ,-1e(w) yields an isomorph-
ism A¥e(w'\) — A¥e(w).
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Corollary 54. Let M € A¥-gmod. If w,w' € Ws are such that wyy " and w'vy *

lie in the same clan, then multiplication by the intertwiner ¢, ,-1e(wA) yields an
isomorphism of graded Z-modules e(wog)M = e(w'Ao)M. In particular, in this
case there is an equality of graded dimensions

gdime(whg)M = gdim e(w'\g) M.

Proof. Indeed, we have

e(wAo)M = Homaw (A¥e(wo), M) —=2""1s Homaw (A%e(w'\o), M)
= e(’UJ}\Q)M

O

Example 55. In the setting of Example B3[iii), the alcoves in E are of the form
In,n+1/2[ for n € (1/2)Z and the fundamental alcove is vy = ]0,1/2[. We have
DY = {H,,,H,, }, with {ap =1—2¢,a1 =2¢} = A. The clan decomposition is
depicted as follows:

H,, H,,
¢ 0 ¢ 1/2 ¢,
The clans €_ = ]—00,0[ and €, = ]1/2,400[ are generic whereas the clan €, =

]0,1/2[ = vp is not generic. To each alcove v = w™ vy with w € W, we attach the
element \, = w\g € F

5/4 -1/4 14 =34 5/ A,

~1/2 0 1/2 3/2 €

In particular, the alcoves v = ]1/2,3/2[ and v/ =]3/2,5/2[ lie in the same clan €
with A, = —3/4 and A\, = spA, = 5/4. In this case Proposition (3] amounts to
the fact that the intertwiners g, e(M,/) : A¥e(\,) — A%e()\,/) and pg.e(N,) :
A%e(\,) — A¥e(),) are isomorphisms and inverse to each other.

The projective A“-modules A¥e()\,) are indecomposable and they are non-
isomorphic for alcoves v in the three different clans €_, €&, and €. Choose any
alcoves vy C €4, v— C €_ and denote Ay = A\, , A = \,_, P = A¥(\}),
Py = A¥e()\g) and P_ = A¥e(A_). Their simple quotients, denoted by Ly, Lo
and L_, form a complete collection of simple objects of A“-gmod up to grading
shifts. The graded dimension is given by

1 vC&¢,

) € 70a_'
0 vge, *eit }

gdime(\, )L, = {
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In particular, Ly and L_ are infinite-dimensional and L is finite-dimensional. The
cosocle filtrations of Py, Py and P_ are described as follows:

L. Lo
L0<—1> L+<_1> L7<_1>
Ly(—2) L_(-2) Lo{=2)
Py = Lo(-3) » Po=L,(-3) L(=3)|"
Lo (—4) L_(-4) Lo(-2)
L _ = - L7 - -
) Lo(-1) 2
Lo (=2 L (=2
P, = " LQ<—3>
Ly (—4) L_(-4)

7.4. Basic properties of graded modules of A“. We choose a finite subset
¥ C W such that for every clan € C E¥, there exists w € ¥ with w™lyy C €. Set
es =) ,ex e(who) and Py = A¥ex.

Lemma 56. The module Py is a graded compact projective generator of A¥ -gMod.

Proof. For any y € Wg, we can find w € ¥ such that y~'vy and w™ vy are in the

same clan. By Proposition (3] there exists an isomorphism
A¥e(wAg) = A¥e(y)o).
Since the former is a direct factor of P, the above isomorphism yields a surjection

Py — A¥e(y\g). Combining this with Lemma F9 we see that Py is a graded
generator, which is clearly compact projective. (I

Put As = (gEndpw gveaPs)® = esA¥ex. It follows from Lemma [56] and the
Morita theory that there is a graded equivalence

(57) gHompw _gvioa(Ps, —) : A¥ -gMod = Ay -gMod,

which restricts to an equivalence on the subcategories of compact objects A“ -gmod
= Ay -gmod.

Proposition 58. The following statements hold:

(i) The category A“ -gmod is noetherian and the subcategory A“ -gmod, con-
sists of objects of finite length.

(ii) For each M € A¥-gmod and each N\ € Wglg, the graded dimension
gdime(A)M is in N((v)). Moreover, M € A¥-gmod, if and only if
gdime(A\)M € N[v*!] for all A € Ws.

(iii) Fwvery object of A“ -gmod admits a projective cover in the same category.

(iv) We have Irr(A¥ -gmod,) = Irr(A“ -gmod).

(v) The map Q) is an isomorphism Z = gEnd (ida« -gmod)-

Proof. By the graded Morita equivalence (&7)), it suffices to show the corresponding
statements for Ay -gmod.

Since Ay is of finite rank over the graded polynomial ring C[V]">o, it is Lauren-
tian (i.e. its graded dimension is in N((v))) and thus graded semiperfect. The

statements result from the Laurentian property.
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We prove Consider the A“-module Polyy,y, € A“-gmod. Since each factor
Poly = C[V] is a free Z-module of finite rank, the sum Poly,,, is a free Z-module
of infinite rank. Taking base-change to the rational function field Frac Z, we get a
homomorphism

p: AT — @ Hompgyae = (Rat)\, Rat)\/) .
AN EWs Ao
We claim that p is an isomorphism. It is injective since Polyy,, is a faithful A“-
module by definition and it remains faithful after localisation. It is easy to see from
the definition of A“ that for A € Wg\g and a € A, the operator s,e(\) : Raty —
Rats, » is in the image of p. For any A, X € Wgg, let Wy x» = {w € Wg ; wA = X'}
The family {e(\)we()\)}wew, ,, is in the image of p. The rational function field
Raty is a Galois extension of Frac Z with Galois group W). It follows from the
Galois theory that
EndFracZ(RatA) = Rat)\ NCW)\.

We have already seen that {we(\)}, ey, is in imp and Raty is also in the image
of p. Tt follows that Endp,e z(Raty) C imp. Let A\, N € WsAg and choose w €
Wi . Then we()) € imp is an isomorphism we()A) : Raty = Raty and the
pre-composition yields

— owe(\) : Endpyac z(Raty) = Hompyae z (Raty, Raty/) .
Thus Hompysc z (Raty, Raty/) C imp. We see that p is surjective and the claim is

proven.
There is an isomorphism

As ®z Frac Z = es A™ex = Endprac 2 (@ Ratwko)
weX

induced by p. Since the right-hand side is a matrix algebra over a field Frac Z, its
centre is Frac Z. It follows that Z(Ax) = Frac Z. Hence
gEnd (idAw —gmod) =~ gEnd (idAE —gmod) =7 (Ag) =7 (Ag ® = Frac Z) N As,
=FracZN Ay = Z,

where the last equation follows from the basis theorem, Theorem [0l O

7.5. Basic properties of ungraded A“-modules. Let U : A“-gmod, —
A“-mody be the grading-forgetting functor. We extend it to U : A“-gmod —
Pro(A%-modg) by requiring U to preserve filtered inverse limits. The extended
functor is exact. Define the subcategory A“-mod”" C Pro(A“-modg) to be the
essential image of this functor. Let Z" = fm Z/m¥.

Proposition 59. Then the following properties are satisfied:

(i) The functor forgetting the grading U : A¥ -gmod — A“ -mod is ezact and
it induces Irr(A% -gmod) /(Z) = Irr(A* -mod”). Moreover, for all M,N €
A% -gmod and n € N we have

[ Ext"(M, N (k) = Ext"(UM, UN).
keZ

(ii) The category A -mod” is noetherian and the subcategory A*-mody con-
sists of objects of finite length.
(iii) Bvery object of A¥ -mod” admits a projective cover in the same category.
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(iv) We have Trr(A® -mody) 2 Irr(A% -mod”).
(v) The ungraded analogue of the map [BQ) induces an isomorphism Z" =
End (idaw -mod» )-
These statements follow from Proposition

7.6. Induction and restriction. Let A% C A“ be the subalgebra generated by
fe(A) and 7&e() for A € Wghg, f € C[V] and a € Ag. For Ay € Wg), denote
er = Z)\EWR/\l e(A\) and define A%\, = erx ARer,, to be the idempotent
subalgebra. In other words, A% , is the subalgebra of A¥ generated by fe(\) and
Te(A) for A € WgAq, f € C[V] and a € A.

For each \; € Wgg, we define the induction, restriction and coinduction func-

tors

indIS;M1 t A%, -gmod —» A¥-gmod, N — A¥epr ), ®ay N\

res%)\1 :AY-gmod — A%y -gmod, M > egr, M = gHomy. (A%epz,, M),

coindIS;M1 : A%\, -gmod — A¥ -gmod,

N — @ gHomAu}%.Al (err, Ae(N),N).
AEWs Ao '

They form a triplet of adjoint functors (indjsi/\l,res%)\l ; coind‘%))\l).

Proposition 60. The functors ind}%’)\l,res}%w\l and coindls%’)\l are ezact.

Proof. The functor res% A, 1s clearly exact. By Theorem H0l we have a decomposi-

tion of right A% \ -module

w ~ w AW
(61) A R\ = @ Tw R,\1>
weWER

where W% C Wy is the set of shortest representatives of the elements in Ws/Wgr
and 75 = Dycwanr, To  Tae (A) for any reduced expression w = sq, - Sq, .-
Therefore A*eg , is a free right A% , -module, so ind}g%,)\l is exact. Similarly,

coind% A, 1s also exact. O

8. FILTERED A“-MODULES

We consider A“-modules equipped with filtrations which are compatible with the
filtration by length F' on A“. Most results in this section are non-unital version of
the classical theory of filtered rings and filtered modules which one can find in [I§].
The goal of this section is to introduce (Section B3]) the support and the Gelfand—
Kirillov dimension of an object M € A“-gmod, and show (Proposition [69]) that
“induced modules” have the full support.

8.1. Good filtrations on A“-modules. Let M € A“-gmod.

Definition 62. A good filtration F' on M is a sequence {F<,M},cz of graded
C[V]-submodules of M satisfying the following properties:

(i) F<p—1 C F<,, for all n € Z;
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(ii) for each n € Z, there exists a finite subset ,, C WgAg such thatl]

FeuM = @ e(\)F<uM
AEX,

(iii) F,M =0 for n < 0;
(iv) Upez FaM = M;
v

(FenA®) (F<uM) C FepimM, Yn,meN;
(vi) there exists mg > 0 satisfying
(F<pAY) (F<pM) = F<pym M, Vn >0,Ym > mg.
The following result is standard, see [I8, D.1.3]

Proposition 63. Good filtrations exist for the objects of A¥ -gmod. If F and F’
are two good filtrations on M € A“ -gmod, then there exists ig > 0 such that

F/Sn—iOM < FSTLM < F/Sn+ioM7 Vn € Z.
Corollary [64] is a direct consequence of Proposition

Corollary 64. If F' and F' are good filtrations on M, then there exist

(i) a finite filtration of grf” A“-submodules F' on grf’ M,
(i) a finite filtration of gr™ A® —submodules F on grf’' M and
(iii) an isomorphism of grf” A¥-modules grt’ ngM = grF gpF "M.

Proof. By Proposition [63] there exists ig > 0 such that F<,_;,M < FlgnM <
FepyioM for alln € Z. For m € [—ig, io], define FL, . M = (FL,M N FepimM)
+ Flgn—lM- Then the quotient ng/ M acquires a filtration

F<mgr M F<an/F<n IMCF<7LM/F<71 1M_gr M

)

which satisfies (grlF A‘*’) (Fgm grff/ M) C Fop grff_'i_l M. Hence for each m €
[—i0,%0], the quotient grferf M = Fepgr /M/F<m 1 M s itself a grA“-
module. Similarly, we put Fep <M = (FgmMﬂ F M) + F<p—1M so that

<m+n
grf” M acquires a filtration by grf” A¥-modules. Zassenhaus lemma yields

grb ol Mgl ok 0

Therefore,

io 720
P ol " M= P wha M

’I’szi() mzfio

4We require this condition because we work with a non-unital associative algebra.
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8.2. Associated graded of good filtrations. Recall the monoid algebra CQY
from Section Given a good filtration I’ on an object M € A®“-gmod, the as-
sociated graded gr’’ M = @, .5 F<ixM/F<,_1M is a gr’ A“-module. The gr’” A“-
action on grf’ M extends to an action of the unital completion introduced in Sec-
tion [6.6] via the natural inclusion

grf’ AY — End g, r Aw)op(ng AY) H grf” A¥e(N).
AeEWs Ao

We obtain a CQY-module structure on gr’”M via the map (@7).

Proposition 65. Let M € A“-gmod and F a good filtration on M. Then gr® M
is a coherent CQY. @ C[V]-module. Moreover, if M € A -gmod,, then gr” M is a
coherent CQY -module.

Proof. We observe that the coherence for grf” M is independent of the choice of
the good filtration F. Indeed, if F’ is another good filtration on M, then by
Corollary [64]

ig
grf” M coherent < @ grfl grf” M

7l=—'i0

10
= @ grfn grf’ " M coherent < grf’ " M coherent.
mzfio
We prove the first assertion. By Lemma [49 and the compactness of M, there is
a surjection of the form

p: @ Ae(N;){a;) - M.
j=1

Equip the source of p with the length filtration and the target of p with the induced
filtration, denoted by F', so that p induces a surjection on the associated graded
gr” A¥-module. The coherence on the source of gr’ p implies that of grf M. Thus
we may suppose that M is of the form M = A¥e(};) and equipped with the length
filtration. It follows from Proposition [4g] that

g’ A¥e()\)) = £ ®c ( @ T&JC[V]> e()j).
weWr
Since £ is coherent over CQY by Lemma@Z(ii) and @, ¢y, C[V]7y is free of finite
rank over Z, it follows that gr” A“e(};) is coherent over CQY ® Z.
Suppose now M € A“-gmod, so that Z acts via the quotient Z/m’% for some
n € N. Since Z/m’, is finite-dimensional, M must be coherent over CQY. O

8.3. Support of A“-modules of finite length. Let M € A“-gmod,. In view
of Proposition 65, we can make Definition

Definition 66. The support of M, denoted by Supp M, is defined to be the support
of gr¥ M as coherent CQY-module, for any choice of good filtration F on M.

By Lemma [64] the definition of Supp M is independent of the choice of a good
filtration.
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We define the Gelfand—Kirillov dimension of a weight module M of A“ to be
the following number: upon choosing a good filtration F' on M,

log dim Fe,, M
dimgg M = limsup 2SR <n
n—soo logn
By Proposition [63], this number does not depend on the choice of F.

Proposition 67. Let M € A¥-gmod,. Then the Gelfand-Kirillov dimension
dimgg M coincides with the Krull dimension of Supp M.

Proof. Taking the associated graded, we have

n
dim F<, M = dim € grf M.
k=—o00
Notice that CQY is finitely generated graded ring, where deg X* = ¢(X*), and
gr” M is a finitely generated graded module over it. Hence dimgx M is nothing

but the degree of the Hilbert polynomial of grf M, which is equal to the Krull
dimension of Supp M. O

8.4. Induction of filtered modules. Recall the subalgebra A%, C A* from
Section Good filtrations on objects of A% \ -gmod are defined in a similar
manner.

Suppose N € A“é x, -8mod is equipped with a good filtration F* which satisfies

FouN = (FSkA‘fml) (F<oN) for k > 0 and F<_;N = 0.

Let M = ind%) A N. The adjunction unit yields an inclusion of Z-modules
N < M. Define a filtration F<,,M = (F<,A%) (F<oN).
Lemma 68. The filtration F' on M is good and satisfies

ngM = (ngA.weR,)\l) ®ngA§,>\1 (gI'FN) .

Proof. By the hypothesis on F<,, N, we have grf’ N = (grfA“éyAl) (gr’N) and
grf’ M = (grf;A“’) (grg ) By the decomposition (61]), we deduce

k
F F
gry A¥eg, = @ EB T 8k—j AR A
J=0 wewhr
L(w)=j

from which

(" A%ern) @gras, (@N) =D P 7 (exh_A%) (EEN)
" =0 wew?
£(w)=j

= (ngAﬁ) (grgN) = grfM.

n

O

Proposition 69. For any N € A“-gmod, and 0 # M’ C ind%,)\l N, we have
Supp M’ = Spec CQY.
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Proof. Let F be a good filtration on N as above and denote M = ind%)\1 N, so
that grf’ M = grf’ (A%eg y,) ®grFAs (gr'N) by Lemma[G8 By Proposition S
AL

we have grf’A¥ep \, 2 € ®c gl A% 5 hence
grf' M = & @c grf N.

By Lemma [F4(ii), £ and thus grf” M are a Cohen-Macaulay module of maximal
dimension over CQY, so it is torsion-free. For any 0 # M’ C M, the restriction to
M’ of F is a good filtration and gr”” M’ C gr M. Hence Supp M’ = CQY. O

Remark 70. Proposition is an analogue of the following basic property for a
double affine Hecke algebra H: the induced module H @y M is free over the poly-
nomial part C[E] C H for every module M over the graded affine Hecke algebra
H C H. A similar property for rational Cherednik algebras was used in [I6] in the
proof of the double centraliser property of the KZ functor. Our proof of the double
centraliser property Theorem also relies on it.

9. QUIVER HECKE ALGEBRAS

We keep the notation of root systems (E, S, A) and (V, R, Ag). In this section, we
introduce an algebra B, which can be viewed as a variant of quiver Hecke algebras.
The relation between the quiver Hecke algebras and B in the case where the root
system (V, R) is of type A is explained in Remark [73

9.1. The algebra Bf.. Define the torus T = QY ® C* so that the ring of regular
functions CIT] is isomorphic to the group algebra CP. For any a € P, we denote
by Y¢ € C[T] the corresponding element.

Fix £y € T. Define for each ¢ € Wgly a polynomial ring Pol, = C[V] and let
Polwge, = @Depye, Pole- For each ¢, define e(¢) : Polw,e, — Pol; to be the
idempotent linear endomorphism of projection onto the factor Pol,. Recall that
Riea = RT\ 2R and R} ; = Riea N RT.

Choose any \g € exp~!({y). Then the algebra Z from Section acts on Poly:
for any w € Wg, the element f € Z = C[V]"»0 acts on Pol,,, by multiplication
by w(f).

Let Q = {Q},cpy,.p, be a family of functions €2 : Rt — Z>_; satisfying the
properties:

(i) If 2a ¢ R, then ¢(a) = —1 implies Y*(¢) = 1.
(ii) If 2a € R, then Qy(a) = —1 implies Y*(¢) € {1, —1}.

(iii) For w € Wg and a € R, Nw ™ RE we have Qy(a) = Que(wa).

For each o € Ag and ¢ € Wg#y, we define an operator 75te(¢) : Pol, — Pol,_, by
r2e(l) = {al(sa —1) fele) =1

afe(@)g, Q(a) >0
Here s, : C[V] — C[V] is the reflection with respect to .

Definition 71. We define B® = B(R,V,A, Wrf, ) to be the subalgebra of
Endz (Polyy,e,) generated by C[V]e(f) and 75le().

All the statements of Proposition (8 for A“ hold equally for B. In particular,
the centre of B% is equal to Z.

Example 72.
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(i) fbp=1€T and Q@ = {-1},_, is the —1 constant function, then B¢
is the affine nil-Hecke algebra of type Wx and is isomorphic to a matrix
algebra over its centre.

(i) If o =1 € T and Q = {0},_, is the zero constant function, then B¢ =
C[V] x W is the skew tensor product.

Remark 73. In the case where the finite root system (V) R) is of type A,_1, the
algebra B recovers the notion of quiver Hecke algebras.

For any quiver I' = (I, H) with I € C* and a dimension vector 8 € NI with
|B] = n, the quiver Hecke algebra, denoted by Rg(T") according to [31], is generated
by three sets: idempotents {e(¢)},.;s, Hecke operators {Ti}?:_ll, polynomial part
{z;},_,. By translating suitably the set I C C*, we may assume that || rhr =1,
so that each sequence v = (v1,--,1,) € I? C (C*)" lies in the maximal torus
T C (C*)" of SL,(C). We put Q, (v ;) = #{(h:i — j) € H} — 0y,=,. Then
there is a surjective homomorphism

Rs(T) — BY,
e(v) — e(v),
Ti > Ty, t€{l,...,n—1},

1 ] ‘
v — | = D0 Jag+ D) (n—j)ag | en, ke{l....n}
1<j<k k<j<n

whose kernel is the ideal generated by x1 + - -+ + z,.
9.2. Basis theorem.

Theorem 74. For any w € Wg, choose a reduced expression w = Sq, -+ Sq, and
§2 Then there is a decomposition

put Tf,} =To " Tay-
B’= P &P civirle.
LeEWRL) wEWR
L(w)=n
Proof. To prove it, we shall apply the results Theorem [94] and Theorem [B2] whose
proofs do not rely on this theorem. By Lemma[75] we can choose w = {wx} ey,
such that fw = Q. Then Theorem B2 implies that upon choosing a good v € QV,
there is an isomorphism B® = e,A%e, identifying 75le(¢) with o.e(}) and by
Theorem [@4] the idempotent subalgebra e,A“e, has a decomposition in terms of
oae(}). Hence B also has a decomposition as in the statement. ]

Lemma 75. Given any family of order functions Q1 = {Qf}éewgéo for B, there
exists a family of order functions w = {WA}AGWSAO satisfying the conditions from
Section such that [w = Q, where [w is defined in Section 102l

Proof. We choose a point Ao € exp™'(fy) C V. Such a family w = {wx},cp,a, 19
determined by a W) -invariant function @y, : § — Z>_; and it suffices to con-
struct it. However, one needs to be careful about the condition (i) from Section [6.3l
We first define a function €, : R — Z>_; as follows:
(i) For any o € R, such that 2a ¢ R, we set () = Q, (@) and Q,(—a) =
Quoto (—wo).
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(ii) For any o € R, such that 2a € R, if Y¥(£y) = —1, then we set Q, (2a) =
Qo (@), Qg (—2a) = Quye,(—woar) and Qy,(a) = Qg (—a) = 0; other-
wise, we set Oy, () = Q (@), Qg (—a) = Qe (—woa) and Oy, (20) =
ng(—Za) =0.

The function €, is Wy,-invariant by the assumption (iii) from Section and

has image in Z>_;. We choose a section of the projection W) \S — W \R,

denoted f : Wy, \R — W), \/S, in such a way that for each o € Ryeq, the condition

f(a)(A\o) = 0 holds whenever a(fy) = 0. We set @y, = f.Qy, so that &y, : S —>

Z>_; is a W),-invariant function of finite support. The family {wx}y .y, 1S then

defined by wyz, (a) = @y, (w™ta) for all w € Wg and a € ST. O

9.3. Frobenius form on Bf. As observed in [4], the basis theorem Theorem [74]
implies that the algebra B is Frobenius over its centre Z.

Lemma 76. B® is a Frobenius algebra over Z.

Proof. Consider the filtration by length

Fo,B?= Y > Y CVrl - rlel0).

CEWRL k=0 (..., ) EAK

We set N = #R" = {(wp) and let wg = Say - - 5o, be any reduced expression for
the longest element wy € Wx and set 75} e(¢) = 75 -+ 75 e(£). By Theorem [}
we have F<yB$ = B% and

ayBY= B CVirle().
LeEWRL
Let Ry, = {a € R; a(Ag) = 0} be the subroot system associated with Ag and let
Ay, C Ry, be any basis, which determines a set of positive roots R;\"O C Ry, and
a set of Coxeter generators {sq}taea,, C Wi, It is well known that C[V] is a
symmetric algebra over Z with the trace map f — 19w0(WA0)(f), where ﬁwo(WAO)
is a composition of Demazure operators for the longest element wo(Wy,) of the
Coxeter group (Wy,,Ay,). Let tr be the composition

B — gy B = P C[Vrue(t) ~27% @]
¢ l

ﬂwo(Wz) @C[V]W@ ~ @Z ZZEWREO z
£ ¢

Then tr is a Frobenius form. O

10. KNIZHNIK—ZAMOLODCHIKOV FUNCTOR V

We resume to the assumptions of Section [6

In this section, we introduce a functor V : A¥-gmod — B* -gmod, which is
a quotient functor satisfying the double centraliser property. It can be viewed as
a generalisation of the monodromy functor of [33] for dDAHAs (which has been
reviewed in Section M) to the family of algebras A“. It is thus expected to satisfy
some properties of the monodromy functor. The main results of this article Theor-
ems[I05and provide some evidence. We construct V by choosing an idempotent
element e, € A“ and establish an isomorphism B¢ ~ e,A%e, in Theorem
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10.1. The idempotent construction. Consider the following exponential map
Ex2V=Q"aRZBQVeC* =T,
PRT = @ e
and put £y = exp(Ag) € T. Choose an element v € QY such that
(77) (v,a) <0 foralla € RT.
We define a section of the projection W : Wg — Ws/QV = Wg by
Te: Wr — Wg,
wis X wX Y = wX® T
and a section of the exponential map Wy — Wrlo by
Yo : Wgrly — Wso,
wly — X7 wlp.
It is clear that Yw ¢ = "(wf). The choice of v implies that
(78) a(M0) <0 foralla € RT and ¢ € Wgly.

Given a family of order functions {wy : S* — Z>_1}, ., satisfying the ax-
ioms of Section [6.3] we can associate a family of order functions

fw= {fo.)g : R:rcd — ZZ*I}ZGWRZO ,
called the integral of w along 0", by setting for each £ € Wgt,

(79) Jwe(a) = Z we(a).

acSt
dae{a,2a}

The definition of [w is independent of the choice of . Denote Q = [ w. This family
of order functions gives rise to an algebra B as defined in Section
For any £ and o € Ao, we define an operator o,e(”¢) : Polvy — Polv(,_¢) by

sy —1 =-1
(80) rae(t) = @ e =) Jwrle) = =1
« Z(Q)Sa wa(Ol) >0
Define the idempotent
(81) ey= Y  e(\)eA”
A€ (Wrlo)

The main result is the following, which will be proven in Section [[0.5]

Theorem 82. Upon choosing v € QV satisfying ([[T), there is an isomorphism of
graded Z-algebras

iy B¢ ~ e, A%e,,
fe(t) = fe("0),
2e(0) = oe(70).
Moreover, for any other choice ', the intertwiner

Py = Z e(" (o)) TRy —ne(” (who)) € e, A¥ey
UIEWR/W[()



946 WILLE LIU

yields a factorisation i (f) = @n =iy (f) - 0y~ for each f € BY.

Example 83. Resume to the setting of ExamplesB3[iii) and B3l The coroot lattice
is given by Q¥ = Z, which acts by translation on £ = R. Recall that \g = 1/4 € E.
We may take v = s189 = —1 so that "(Wgly) = {\;,A_}, where Ay = 5150\ =
—3/4 and A_ = s150s1 A0 = —5/4. Tt follows that A\_ = s150818051 A+ and

e(A)AYe(\;) = Cle|re e r8 8 18 e(A 1),

ai; "apg a1 ag ai
e(Ap)AYe(\_) = Cle|r, 74l To Tar T €(A).

Denote by s : Cle] — Cle] the automorphism e — —e. Calculate the products:
T T T Ta T €(Ay) = 7. e(5/4)1, e(—=1/4)1, e(1/4)1,) e(3/4)7, e(—3/4)

ay ap a1 "ap ax
=s-5-(es)-s-s=c¢es,
Tg’lT(‘;;T(‘l"lT(‘l‘i)T(‘l"le()\,) = T(‘l"le(3/4)7'(‘;i)e(1/4)7'2’1e(—1/4)7'(‘;i)e(5/4)7';"1e(—5/4)
=s-(—€s)-5-5-8=es.
Let o = day € Ap be the simple root for (V, R) = A;. Denote £ = exp(2miAy) =i
and /_ = exp(27mi\_) = —i. The family of order functions 2 = [w for B® is given
by
Q (@)=Y wyla+k)=1, Q (0)=> wr (a+k) =L
keN keN
It follows that

(), L ww W, w W
oae(Ay) =+ Vs =TT TE TR TR e(Ay)

oae(A) = at- (g = Tor Ton Tan Tan Tar €(A-)

and therefore there is an isomorphism
Q w
B* —e,A%e,,

e(ly) —e(Ay),

() e(r)
Tg P T Tan Tay Tan Ty €v-

Remark 84. As we will see in Lemma [0} the idempotent e., corresponds to generic
clans (Section [[3). The choice of e, is inspired from the sheaf-theoretic study of
extension algebras over a cyclically graded simple Lie algebra g, in [24] and the
sheaf-theoretic construction of the KZ functor. In the language of op. cit. and [26],
each eigenvalue A\ € WgAg corresponds to the spiral induction of a cuspidal local
system % through one spiral of g.. On the other hand, affine Hecke algebras arise
as extension algebra of parabolic inductions of ¢ through parabolic subalgebras of
g, which appear also as spiral induction of % through “generic spirals”. Therefore,
the definition of the sheaf-theoretic KZ functor is nothing but picking idempotents
of the extension algebra corresponding to those “generic spirals”. In the algebraic
and combinatorial language, they correspond to alcoves lying in the generic clans,
as introduced in Section [7.3}

10.2. A formula for order functions. By the hypothesis of finite support for
Wxy 1 S — Z>_1, there exists M > 0 such that @y, (e + k) =0 for all & € R and
|k| > M. Let v € QY be an element satisfying (7). More specifically, we require
that

(85) (a,7) < =M, Va € RT.
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We prove a relation between the family w = {wy} AEWs Ao for A“ and its integral
Q= {Q} ey, for B defined in (T9).

Lemma 86. For any ¢ € Wgly and w € Wg, following formula holds in C(V):
H (—(%)“’*(b) —c- H (—ﬁ)m(ﬁ),

beStNrTw-15— ﬁeRjedmw—lR:ed

where A = "¢ and € € C* is constant (which is a power of 2).
Proof. We divide the index set of the product on the left-hand side into two
StNIw S ={heSTNTw S ;9b¢ R Nnw 'R}
U{be StNIw™'sS™; dbe R Nw 'R}
and treat the two subproducts separately.
Step 1. We prove that wy(b) = 0 when b € ST N 7w 'S~ and B := 9b ¢ R™ N
wlR™.
Write b = 8+ k for k € Z. We deduce
wr(b) =wr(B+ k) =ax(yB+k+(B,7)), wherey e Wk is such that y¢ = (.

Since Yw = wX® 77, the condition b € ST N Yw=1S~ implies that 0 <
k < (wB — B,7). There are two cases: € R~ or 3 € w™!RT. In the case
where 8 € w™'R*, since k + (5,7) < (wf,v) < —M, the hypothesis (8]
implies that wy(b) = 0. In the case where 5 € R™, we have k + (3,7) >
(B,7) > M, whence wy(b) =0 as well.

Step 2. We prove that

(87) [ (o»®=c. I e,
glfs;iﬂw*i;* BERL ,nw—1R,,
€RTNw 'R~
for some ¢ € C* which is a power of 2. We rewrite the left-hand side
according to 0b:

(88) H (_ab)wx(b) —€- H H (_ﬂ)w;(b).

beSTNIw™ls~ BERS ,Nw—1R, beSTNTw ™S~

ObeRTNw R~ obe{pB,26}

Let B € R;;d Nw 'R, Let N := (w8 — f,7). It follows by the same
arguments as Step M that b = 84+ k € STNTw 'S~ for 0 < k < N.
For k > N, we obtain k + (8,7) > (wB,7) > M, thus wy(8 + k) =
Wx, (YB + k + (B,7)) =0 and hence

N
Z u»\(b):ZwA(ﬂ-i-k): ZOJ)\(5+/€): Z wa (D).
k=0

beSTNTw=1s~ keN best
9b=0 ab=p

In the case where 25 € R, we obtain similarly

N—-1
S wa®)=)_ wa28+2k+1)=> wA(28+ (2k+1))= > w(b).
beSTN w=ts~ k=0 keN beST

2b=28 ob=28
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Hence

(89) > walb) =(B).
beSTN w18~
abe{B,2p}

Equation (87) follows from (B8)) and (89).
Combining the two steps, we obtain the product formula. O

10.3. Preparatory lemmas. Let v € QY be an element satisfying (77). Recall
the notion of clans and generic clans from Section [[.3] and the fundamental alcove
vy C E.

emma . For w R e alcove w™ X"y is in a generic clan and ever

L 90. Fi € Wg, the al LxX— l d

generic clan contains at least one such alcove. Moreover, for a different choice
’ .

v € QV, the alcoves w™ X Yy and w™'X "V vy are in the same clan.

Proof. Since the clans are connected components of the complement E¥ of the
hyperplanes in ®% = {H, C E; a € S, @),(a) > 1}, any two points z,y € E¥ are
in the same clan if a(z)a(y) > 0 for all @ € S with H, € D“. Let ¢, C E¥
be the clan such that w™'X 7y C €,. Take any point z € 1y. Set z,(t) =
w iz — (1 +t)y) for t € R>p so that in particular z,,(0) € €,. Let a € S such
that H, € ©“. Suppose that wda € R (resp. wda € R™); then (wda,v) < 0
(resp. (wda,v) > 0), so we have

a(xy(t)) = (wa)(z) — (wda, (L +t)y) >0, Vte R

(resp. a(zy(t)) < 0). Hence x,,(t) € €, for all t > 0. Moreover, we see that the
value a(x,(t)) is unbounded when ¢ — +o00. Hence every affine root is unbounded
on the €, and the genericity of €, follows.

Conversely, let € be a generic clan, consider the salient cone x defined in Sec-
tion [[3l The genericity of € means that « is of full dimension dim V. Let Co C V/
be the fundamental Weyl chamber and let w='Cy C V be a Weyl chamber with
w € Wg such that Int(x) Nw~=1Cqy # (). It is obvious that w1 X7y, C €. a

Recall the element o, from (B0).
Lemma 91. We have c,e("f) € A“.

Proof. Denote A = 7¢. Let 7s, = 84, -S4, be any reduced decomposition and
w

denote oj,e(A\) =72 --- 7% e(\). Applying Lemma [37(ii), we see that
(92) ole(N) =sq, - Sa, H (—=9¢)*© | e(\) mod Fep 1 A

cEST M5, S
and Lemma, [8f] yields
H (=9c) ) = ¢ (—a)?@) e C*.
cESTNTs5,S5—

Thus the right-hand side of ([02]) is congruent to eo,e(A) modulo F<;_1A~°°. Notice
that o,e(\) € A° by Proposition Bl(iii) and o/,e(A) € A¥ C A°. Hence by the
compatibility of the filtrations by length Corollary Il we have

(o, — €0a)e(N) € e("sa ) (F<im1A™ N A°%) e(N) = e("sa ) (F<i—1A°%) e(N).
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We show that in fact (o), — €on)e(N) € A“. For any different choice 4" satis-
fying (7)), Lemma [0 implies that the intertwiner ¢. .- defined in Theorem

satisfies ©q,5/ 0y = €y, Py 4Py 5 = €y and

Oy 0a(? O)py = 0ae(7l), 90%7’0;9(7 £)pyr y = one(’l);

thus the validity of the statement is independent of the choice of v. We claim that
if we choose v in such a way that [{a,v)| < [(8,7)| for all 5 € A\ {a}, then there
is an inequality of lengths

(93) [ =L("sq) <l("w), Ywe Wg\{1}.
We complete the proof provided in ([@3]). Note that the stabilisers satisfy "W, = W.
There are two cases to be discussed:

(i) If sof # ¢, then by ([@3) we have ¢(w) > [ for all w € Wg such that
wA = VsaA. It follows from Theorem H0l that e(7s,\) (F<;—1A°) e(A) = 0.
Hence og,e(\) = ecole(X) € Av.

(ii) If sof = ¢, then by ([@3) we have f(w) > [ for all 1 # w € Wy and
thus by Theorem H0l we see that e(A) (F<;—1A°)e(N) = C[V]e(N) =
e(A\) (F<—1A%)e()). Thus (6, — € 'o/)e(\) € A“ and consequently
oa€(A) € A¥. Hence the proof is completed.

We prove ([@3). Indeed by Proposition [I]

[ =0(7s0) < 1T+ LX) <14 (20, 0" ), 7)| < (B,7)],

while for any w € Wg \ {1, s}, there exists 8 € R;;d Nw 'R, with 8 # a, so
(Cw) > [(B,w™ty = )| = l(w) = [(wB = B,7)| = £(w) > [{B,7)] = £(w) > 1;
here, the second-to-last inequality is due to (7). a

10.4. Basis theorem for generic clans. Let v € QV be an element satisfy-
ing (7). Recall the idempotent of generic clans e, from (BI) and the elements

gee(7l) from (B0).

Theorem 94. The idempotent subalgebra e,A%e., is generated by C[V]e(\) and
gae(N) for a € Ag and X € "(Wrly). Moreover, if for any w € Wg we set
Ow = Oa, """ Oa, bY choosing any reduced expression w = sq,, - Sa,, then there is
a decomposition

e, A%e(N)= P P ClViewe).

)\G’Y(WRZ()) weWRr

Proof. Let £ € Wgrly and w € Wg. Denote A = 7£. Choose any reduced expressions
W= Sq, - Say A0d YW = 84, -+ Sq, fOr a1, -+ ,an € Ag and ay1,--- ,a; € A and
set

ole(\) = To - Toe(A) €AY, oye(N) =04, 0o e(N).
By Lemma [@1] we see that o,e(A) € AY. We claim that
(95) ol,e(N) = eope(N) mod Fe 1A%,
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for some € € C*. Recall the rational function matrix algebra A~ = Frac Z® z A°.
By Lemma [37(ii) and Lemma B6] we have

ol e(\) = Sga, - - S0, [T @) e®) mod Fe_ A~
beStNrw—15—
= eope(A) mod Fg_1 AT,

for some ¢ € C*. As n < [, the above congruences yield (o
AY N F<_1A™. By Corollary Al we have A¥ N Fq;_ 1A~
the claim (@3]) is proven.

According to Theorem E0)} the family {o},e()\)}wew, form a basis for e, A“e(\).
The decomposition of e, A“e(\) follows from the triangularity (95]) of the transition
matrix between the basis {o],e(\) }wew, and the family {o,e(N) }wew,- O

—eop)e(N) €
FglflAw, SO

/
w

10.5. Proof of Theorem

Proof. We define an isomorphism of Z-modules Polyy ¢, = e, Poly,,, straightfor-
wardly by the identification:

Pol, = C[V] = POlwg, { e Wgly.

It yields a faithful representation of B on e, Polyy, ., which by definition of B¢
is described by the formula

fe(0)-g=fe("0)g, 7le(t)-g=o0q.e("0)g.

By Theorem 04} the image of B in Endz (e, Poly»,) coincides with e,A%e,
and the map B? — e,A%e, must be an isomorphism since both sides are free
C[V]-modules of same rank. Notice that deg 7!e(¢) = Qy(a) = deg o,e(7¢). Hence
the map ., is an isomorphism of graded Z-algebras.

For any other choice 7/, since by Lemma 00, w~'X"” and w='X"" lie in the
same generic clan for each w € Wg, by Proposition [53] the intertwiner . , yields
isomorphisms of A“-modules A*e,, = A“e, by right multiplication and hence
isomorphisms of algebras

e, A%e, 2 Endae (A¥ey ) =2 Endae (A%e,) = e,A%e,.

The factorisation iy = ¢ y,/—- 0 i, follows from the observation that (X)) =
1 e Wg. O

10.6. The functor V. Choose a v € QV satisfying (1) as in Section With
Theorem B2 we can make Definition

Definition 96. The Knizhnik—Zamolodchikov (KZ) functor V is defined by

,Z:*
5
V :A¥-gmod — e, A%e, -gmod ——>B%-gmod,

M — e, M.

By the second assertion of Theorem [82] the definition of V is independent of the
choice of  up to canonical isomorphism (provided by the intertwiner ¢. ).
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Since V is defined as an idempotent truncation, it admits left and right adjoint
functors

VN~ @ gHomge(e;A%e(M),N) and 'V :N i+ A%, ®pa N
AeEWs Ao

and V is a quotient functor in the sense that the adjoint counit Vo VT — idge
is an isomorphism.

10.7. Support characterisation of V. For M € A% -gmod, define the following
subset of E:

Specy M = {\ € WgAo; e(A)M #0}.
For each alcove v C E, there is a unique w € Wy such that v = w™lyy; we
denote A\, = wAp. Recall the Gelfand—Kirillov dimension dimgg M and the support
Supp M from Section [R:3}

Theorem 97. Let M € A“ -gmod,. The following conditions are equivalent:
(i) VM =0;
(ii) for every alcove v lying in a generic clan, we have e(A,)M = 0;
(i) the set Specy M is contained in a finite union of (not-necessarily root)
affine hyperplanes of E;
(iv) dimgx M <tkR —1;
(v) Supp M # Spec CQY.

Proof. Since every object of the category A“-gmod is of finite length and all the
conditions are stable under extensions, we may suppose that
M is simple.

& follows from the definition VM = e, M and the invariance of dimension
of e(A)M for X’s in the same clan Corollary B4l

We prove = |(ii1)] By the finiteness of the clan decomposition, it suffices to
show that for each non-generic clan €, the set {), ; ¥ C €} lies in a finite union
of affine hyperplanes of E. By the non-genericity of €, there exists @ € R which
is bounded on €. Let A = kera N QV. Notice that QV is a free Z-module of
rank tk R — 1. Let ¢ be the set of alcoves contained in €. For v,/ € g, we
write v ~, v/ if there exists u € A such that v + p = /. For any v € 2, since
XHX\, = A, +p, the set {\,/ ; v/ ~5 v} is contained in the hyperplane w (Ag + ARr)
for any w € Wy such that v = w™'yg. Since a is bounded on €, the quotient
e/ ~4 is a finite set and thus the set

{MwivCe}cC U D Vo ~p v}
velle /~a

is contained in a finite union of hyperplanes, whence
We prove = Suppose that Specy M is contained in a finite number
of hyperplanes. Choose any A\; € Specp M. Let r = tkR = dim E. Via the
identification £ = V induced by Ag C A, we view E as a euclidean vector space.
Since
Specy M C U (w1 + Q)
weWr
is contained in a finite union of the intersection of lattices and hyperplanes, we have
i AN € Specp M s [[A] <nj _

n—> o0 nT_1+5

0, Ve>O0.
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For every affine simple root a € A, we have 7¥e(A\)M C e(sqA)M. Moreover,
we have ||sgAl] < |||+ 6 for some constant 6 which depends only on the affine root
system (E,S). It follows that if we define for ¢ € R> the subspace

MSt = Z e()\)M,
AESpecy M
Ix<t
then 7¢¥M<; C M<i45, so F<1AYM<; C M<i45. By induction on n € N, we see
that (F<, AY) M<; C M<y4ps. Since there is only a finite number of clans and since
the dimension of e(w\g) My for w™lyy in a fixed clan is constant by Corollary 54l
the set {dime(A\)M ; A € WgAg} is bounded. Hence for any finite-dimensional
subspaces L C M, we have
(98) lim dlm(ﬁ; S_’fg D o veso
n—>o00 n

Indeed, let ty € R be such that L C M<y,, then dim (F<,,A“ - L) < dim M<ty4ns =
o (n"71*¢). The estimate ([@8) implies[(iv)] The equivalence[(iv)] < [(v)|results from
Proposition

We prove —(ii)|= —{(iv)l Suppose there exists a generic clan € and an alcove v C €
such that e (A\,) M # 0. Let k C V be the salient cone of € (cf. Section[73]). For any
€ rkNQY, we have X#v € € and by Proposition B3] e(X X, )M = e(\,)M # 0.
It follows that

dim (F<,A%) (e(A,) M)

>dim Y e(XHA)M =#{pernQ"; (X") < n}dime(),)M.

neRNQY
0(XH)<n

By the genericity of €, the salient cone x contains an open subset of V, so its
intersection with a full-ranked lattice Qv satisfies

#u e RNQY 3 (X" <n} _

lim - c, c¢>0.
n—»o00 n
Hence
log dim(F<, A%)e(\, )M . 1 r
dimgg M > lim og dim (F'< Je(A) > lim g _ T,
n—soo logn n—soo logn
whence is not satisfied. O

10.8. Double centraliser property. Recall the parabolic subalgebra AU}%, A, from
Section

Lemma 99. Let Ay € Wgho, N € A} -gmod and L € A¥-gmod. Suppose that
VL =0, then gHom (L, ind, N) =0.

Proof. Tt follows from Theorem [@7|(i)={(v)| and Proposition O

Remark 100. We shall establish in Theorem the double centraliser property
for the functor V. The strategy is close to the case of rational Cherednik algebras
in [I6] 5.3]: the first step consists of showing that “induced modules” are torsion-
free for the KZ functor. In the case of the dDAHA H discussed in Part [Il the
parabolic subalgebra A%  ~plays the role of graded affine Hecke subalgebra H =
CWgr® C[E] C H, whereas B® plays the role of the affine Hecke algebra K. In this
sense, Lemma [Q9 is an analogue of the first step in the proof of loc. cit.
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Let (A“/mz)-gmod be the full subcategory of A¥-gmod consisting of objects
M such that mzM = 0. The inclusion (A¥/mz)-gmod — A% -gmod has a left
adjoint functor — ® zC, which is right exact. We denote by — ®%C its derived
functor. Lemma [[0T] is the method of lifting faithfulness borrowed from [30} 4.42].
Lemma 101. Let M € A¥-gmod be an object satisfying the following properties:

(i) M is free over the centre Z;
(ii) there exists A1 € WsAo and N € A%, -gmod, such that M/mzM =

ind3 5, N.

Then for any L € A“-gmod such that VL = 0, we have gHom(L, M) = 0 and
gBxt! (L, M) = 0.
Proof. We suppose that M # 0. Let K = RgHom(L, M) be in the derived category
D% (Z-gMod). We suppose that K is a minimal projective resolution. Since

K ®z C = RgHom (L ®% C, M ®% C) = RgHom (L ®% C, M/mzM)
by the flatness of M over Z, we have K®zC € DZ° (C). By the second assumption
and Lemma [09] we have

HY(K ®z C) = Hom (L ®z C, M/mzM) = 0.

Consequently HSY(K) = 0 by Nakayama’s lemma.

Suppose that H(K) # 0. Since the localisation Frac Z®z M is a weight module
over A~°° which is semisimple, H! (K) must be a torsion module over Z so K° # 0.
However, the minimality of K would imply HY(K ®z C) # 0, contradiction. Hence
H=!'(K) = 0 and so gHom(L, M) = 0 and gExt' (L, M) = 0 as asserted. O
Lemma 102. Let M € A¥-gmod be an object satisfying Lemma [[0Il Then the
adjoint unit yields an isomorphism M = (V' o V) M.

Proof. Set X = Cone (M — (RV' o V)M) € DT(A“ -gmod), so that there is a
distinguished triangle
(103) M — (RV' o V)M — X — M[1].

By the adjunction and the exactness of V, we have VX = Cone(VM — (Vo
RVT o V)M) = 0 and hence

VHA(X)>=HY(VX)=0, kecZ
Applying Lemma [[01] with L = H°(X) and L = H'(X), we deduce
gHom (H°(X), M) =0, gHom (H°(X)[—1],M) = gExt' (H°(X), M) =0,
gHom (H™'(X), M) =0,
whence
(104) gHom(7<oX, M) =0, gHom(7<oX,M[1]) =gHom(r<oX[-1],M)=0.

Applying R gHom (7<oX, —) to the distinguished triangle (I03]), we obtain the
long exact sequence

gHom (7<oX, M) — gHom (7<oX, (RV ' o V) M)
— gHom (7<0 X, X) — gHom (1< X, M[1]).
By ([04)), the first and the last term of the sequence vanish. Hence,
gHom (1< X, X) = gHom (7<oX, (RV " 0 V)M) = gHom (7<oVX, VM) = 0,
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which implies that 7<oX = 0. Applying HY to the distinguished triangle (I03)), we
deduce that the adjunction unit M — (V' o V)M is an isomorphism. (]

Theorem 105 (Double centraliser propertyﬁ). The canonical map
AY — P gHomge (VA¥e()), VA“e (X))
AN EWsAg

is an tsomorphism.

Proof. Observe that for each A € Wg¢, the module A“e(\) € A“ -gmod satisfies
the conditions of Lemma [I0Il Indeed, A¥e(\) is flat over Z by Theorem [E0
For the second condition, we have A“e(\) = ind%,)\1 A% e(N), so A%e())/mz =

indls;ml (A°§7Ae(A)/mg). Applying Lemma [I02] we obtain

AY =~ @ gHomp. (A¥e ()), A% (X))
AN EWs Ao
= P gHomy. (VA¥e(N), VA¥e (X)).
AN EWs Ao

O

10.9. Categorical characterisation of V. We shall exploit the Frobenius struc-
ture on B introduced in Lemma Consider the anti-involution A® = (A¥)°P
which fixes pointwise C[V]e(A) for A € Wy and sends 7e(\) — 7ve(sqA). The
duality
(106) M~ M*:= @5 Homc(e(A)M,C)

AEWs Ao
yields an equivalence

A® -gmod; = ((A¥)°P -gmod,)°® = (A“ -gmod,)°P.
Similarly, the anti-involution B 22 (B)°P given by 75le(/) — 75le(s,f) yields
B -gmod, = (B®-gmod,)°P.

Denote A” = A¥/A%mz and B' = B?/B%mz. Notice that the pairing

—w W (a,b)—ab —w =0
e, A" xA'e, e,Ae, =B

composed with the Frobenius form B w oz /mz = C yields an isomorphism

(Ae,)* = A%,.

Lemma 107. There are canonical isomorphisms TVEQ > Xwew >~ VTEQ.

Proof. The first isomorphism is obvious: TVvB' = A¥e, ®po B' = Kwew.
Observe that (A”e,)* = A”e, implies VM* = (VM)* for M € A* -gmod,, and
hence VT N* 22 (TVN)* for N € B” -gmod,. Therefore

VIBY = ("v(B")) = (TVB®) = (A%,)" 2 A,

5Let A and B be unital associative rings. Usually, one says that an (A, B)-bimodule P satisfies
the double centraliser property if the structural maps A — Endpgop (P) and B — End 4 (P)°P
are isomorphisms. Theorem provides a graded, non-unital version of this property for the
(A, B%)-bimodule A“e,.
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O

Theorem 108. Let L € A“-gmod, be a simple object. Then the following condi-
tions are equivalent:
(i) VL #£0;
(ii) the injective hull of L in the subcategory A" -gmod is projective;
(iii) the projective cover of L in the subcategory A" -gmod is injective.

Proof. Since VT preserves injective objects, we see that by Lemma [I07] Xwew is
injective-projective in A" -gmod.

We prove@ Let L € A¥ -gmod,, be any simple object. If VL = 0, then by
Lemma[@9 we have gHom(L, Kw) =0; hencefails for L. f VL # 0, since V is a
quotient functor, VL € B -gmod, must be simple. We have mzV L = 0, so we may
view L as a Eﬂ-module. By the self-injectivity of EQ, there exists a non-zero map
t: VL — B” and the adjunction yields an injective map L — VB =~ Kweﬂ77
whence holds for L.

Finally, since the duality (I06]) exchanges the projective and injective objects in
A” -gmod and preserves ker V, we deduce

for L <:>f0r L* <:>f0r L* <:>f0r L.
a

Example 109. Resume to the setting of Examples B3[iii), and B3l We have
A%e, = PL ® P_so VLy = 0, while VL # 0 and VL_ # 0 are simple objects
in B¥-gmod. In regard of Theorem [07 we have dimgk L4+ = dimgg L_ = 1 while
dimgk Lo = 0. The cosocle filtration of VP, , VP, and V P_ are described by the
following:

VL,
VL, (~2) VL_(-2)

vp, = |VLi(=4) VL _(-4)
T | VL{(—6) VL_{—6)

VL (1) VL_{-1)
VL, (-3) VL_{-3)
s VP = |VL, (=5) VL_(=5)|>

VL_
VL, (-2) VL_(-2)
VP — |VLi(—4) VL _(-4)
VL, (—6) VL_(—6)

From this description it is obvious that the functor V is fully faithful on the pro-
jective objects, so V satisfies the double centraliser property Theorem [105]
Consider the quotients

Ly
L
P+/mz = L0<—1> s Po/mz = |:L <_1>(}J <_1>:| s P,/mz = L0<—1>
Lo (-2) =0 - L.(-2)
It follows that Py /mz (resp. P_/mz) is the injective hull of L_(—2) (resp. L1 ({—2))
in the category (A“/mz)-gmod while Py/mz is not injective. Hence Ly and L_
satisfy the equivalent conditions of Theorem
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APPENDIX A. CATEGORY OF PRO-OBJECTS

A.1. Let A be an abelian category. We denote by Pro(A) and Ind(.A) the category
of pro-objects and ind-objects. The basic reference for these is [I9, 8.6]. All the
results below are stated for Pro(.A) while they all have a dual version for Ind(.A).
An object of Pro(.A) is a filtered “projective limit” of objects of A. If
[ I3 TR (1) (l) -
MO = lim” MY, MY e A, ie{l,2}
JET®

are two objects of Pro(A), where Z(V’s are filtrant diagram categories and M) :
Z(op 5 A’s are functors, then the Hom-space between them is given by

(110) Hompyo(4) (M(l),M(2)) = @1 hg Hom 4 (Mi(l),M]@) .
JET@ 4T

A.2. For every M € Pro(A), let AM denote the category whose objects are pairs
(M',a) where M’ € A and a € Homp,o(4)(M, M'), and whose morphisms are given
by

HOIII_AM ((Ml, al), (MQ,G,Q)) = {b c HOH’I_A(Ml, Mg) ;g = bo al} .

Every object M € Pro(A) can be expressed as the following filtered limit:

~ “ls ” /
(111) M= m M
(M’,a)e AM
Let Aé‘gi C AM be the full subcategory whose objects are the pairs (M’, q) with

q being an epimorphism.

Proposition 112. Let A be an artinian abelian category. Then the following state-
ments hold:

(i) A is a Serre subcategory of Pro(A).
(ii) Fvery object M € Pro(A) can be written as the following filtered projective
limit
~ “ls » !
(M',(L)EAi\gi
(iii) A is the full subcategory of artinian objects in Pro(A).
(iv) If ¢ : N — M is a morphism in Pro(A) such that for every (M',q) in

Aé\gi, the composite q o ¢ is an epimorphism, then ¢ is an epimorphism.

Proof. We first prove that A C Pro(.A) is closed under taking subobjects.

Let M € Pro(A). Suppose that there exists M € A and a monomorph-
ism ¢ : M — M. We can consider the full subcategory AM < AM of pairs
(M',a) with a being monomorphism. The subcategory AM is cofinal. Indeed, if

(M',a) € AM | then (M’ x M, (a,L)) € AM. Let AY < A} be the full subcat-

egory of objects which are minimal, in the sense that if there is (M”,b) € AM
with a monomorphism ¢ € Hom4(M"”, M') such that ¢ o b = a, then ¢ is an
isomorphism. By the minimality of the objects of A}, it is easy to see that
the Hom-space Hom qar ((M’, a), (M",b)) consists of exactly one element for every
(M',a),(M",b) € AM. Tt follows that any object (M’ ,a) € A} yields an iso-
morphism a : M = M’. As A is artinian, A}’ cannot be empty, whence M € A.
To prove (ii), in view of (I, it suffices to show that A2 is cofinal. The previous
paragraph shows that for (M’ ,a) € AM, the image im(a) is in A. Consider the
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factorisation M =% im(a) 2 M’. Then (im(a),74) € AM; and there is a morphism

a: (im(a),mq) — (M’,a) in AM. Thus A} is cofinal in AM.

We prove (iii). Let M € A. Since A C Pro(A) is closed under taking subobjects,
every descending chain of subobjects of M is in the subcategory A, which by as-
sumption must stabilise. Thus M is artinian in Pro(.A). Suppose that M € Pro(.A)
is artinian. There must be a minimal subobject M’ C M such that M/M’ lies
in A, meaning that the category A%i has an initial object. By (ii), M being the
projective limit over AM; must lie in A, whence (iii). The assertion (i) follows
immediately from (iii).

We prove (iv). Let ¢ : M — coker ¢ = C' be the cokernel. Suppose that C' # 0.
Since C' € Pro(A), there exists an epimorphism p : ¢ — C’ with 0 # C’ € A.
Since poc : M — C’ is epimorphism, the composite poco is also an epimorphism
by hypothesis. However, as co ¢ = 0, we see that C' = 0, contradiction. Thus
C =0 and ¢ is an epimorphism. O

A.3. Let A and B be abelian categories and F' : A — B an additive functor. We
define the extension of F"

F:Pro(d) — Pro(B), F(M)= “lm F().
(M’,a)e AM

According to [19] 8.6.8], if F' is exact, then the extended functor F' : Pro(A) —
Pro(B) is also exact.

A.4. Suppose that A is noetherian-artinian. We define an endo-functor

hd : Pro(A) — Pro(A), hd(M) = “lim” hd(M"),
(M’,q)e AM

epi

where hd(M”) is the largest semisimple quotient of M’ in A. For every M € Pro(A),
there is a canonical map my : M — hd(M).

Proposition 113 (Nakayama’s lemma). Let A be a noetherian-artinian abelian
category. Let o : N — M be a morphism in Pro(A). Suppose that the composite

N & M Ty hd(M) is an epimorphism. Then ¢ is an epimorphism.

Proof. We first prove the statement in the case where M € A. In this case, since
coker ¢ is a quotient of M, we have an epimorphism hd(M) — hd(coker ). As
the composite N — hd(M) — hd(coker ) is zero and is an epimorphism, it
implies that hd(coker ) = 0. As A is noetherian, it follows that coker ¢ = 0, so ¢
is surjective.

In general, let M € Pro(A). Let (M’, q) be any object of .Aévéi. Then mpp 0qo
is an epimorphism. By the previous paragraph, go ¢ is also an epimorphism. Then
Lemma [[T2(iv) implies that ¢ is an epimorphism. |

A5,

Proposition 114. Suppose A is an essentially small noetherian-artinian abelian
category. Let M € A be a simple object. Then there exists a projective cover
Py € Pro(A).



Proof. We construct an object P € Pro(A) for n € N by induction. Let P() =
M. For n > 0, let
0— ‘1T L—P™ — pn=b

Lelrr(A)/~
y€Extl (P"~1,L)

be the short exact sequence corresponding to the tautological class

A=), € 11 Extly (P9, L).
LeIrr(A)/~
yEExtY (P=1,L)
Put P= ¢ 'm”n*mo P Then P is a projective since we have

Extp,o4)(P, L) =0
by construction and since A is noetherian-artinian. Let p : P — M be the obvious
epimorphism.
Now, let AF; be the category whose objects are triples (m, @, 7’), where
e QcA
o 7 € Homp,q(a)(P, Q) is an epimorphism and
o 7' € Hom4(Q, M)
such that
o 1’ o =p € Homp,o4)(P, M) and

e 7’ induces an isomorphism hd(Q) = M.
The morphisms are defined by

Hom 4, ((m1, Q1,m1), (w2, Qa, ) = {p € Homy (Q1,Q2) ; ¢ om = ma}.

Put
PM — cc@ln Q
(m,Q,m")EAY,
Then the obvious morphism Py; — M is a projective cover. O
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