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REGULAR FUNCTIONS ON THE K-NILPOTENT CONE

LUCAS MASON-BROWN

Abstract. Let G be a complex reductive algebraic group with Lie algebra g

and letGR be a real form ofG with maximal compact subgroupKR. Associated
toGR is aK×C×-invariant subvarietyNθ of the (usual) nilpotent coneN ⊂ g∗.
In this article, we will derive a formula for the ring of regular functions C[Nθ ]
as a representation of K × C×.

Some motivation comes from Hodge theory. In [Hodge theory and unitary
representations of reductive Lie groups, Frontiers of Mathematical Sciences,

Int. Press, Somerville, MA, 2011, pp. 397–420], Schmid and Vilonen use
ideas from Saito’s theory of mixed Hodge modules to define canonical good
filtrations on many Harish-Chandra modules (including all standard and ir-
reducible Harish-Chandra modules). Using these filtrations, they formulate a
conjectural description of the unitary dual. IfGR is split, andX is the spherical
principal series representation of infinitesimal character 0, then conjecturally
gr(X) � C[Nθ ] as representations of K × C×. So a formula for C[Nθ ] is an
essential ingredient for computing Hodge filtrations.

1. Introduction

Let G be a complex connected reductive algebraic group and let GR be a real
form of G. Choose a maximal compact subgroup KR of GR and let θ : G → G be
the corresponding Cartan involution. Let K be the group of θ-fixed points (i.e. the
complexification of KR). Note that K is a complex reductive algebraic group (it
is often disconnected). Write g,k for the Lie algebras and let p = g−dθ. There is a
Cartan decomposition

(1.0.1) g = k⊕ p.

Using (1.0.1), we can identify p∗ with (g/k)∗, a subspace of g∗.
Let G× C× act on g∗ by the usual formula

(g, z) · ζ = zAd∗(g)ζ, g ∈ G̃, z ∈ C
×, ζ ∈ g∗.

Note that p∗ is stable under K × C
× ⊂ G× C

×. Let N denote the nilpotent cone
in g∗. Recall that G× C× acts on N (with finitely many orbits). The K-nilpotent
cone is the K × C×-invariant subvariety

Nθ = N ∩ p
∗ ⊂ p

∗.

This subvariety (and theK×C×-action on it) is closely related to the representation
theory of GR, see [16]. The main result of this paper is an explicit description of
the ring of regular functions C[Nθ] as a representation of K×C× (in the case when
GR is split modulo center). Some motivation for this problem will be discussed at
the end of Section 2.
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Since K is (in general) a disconnected group, its irreducible representations can-
not be easily parameterized using the theory of highest weights. In [14], Vogan
gives a parameterization of a very different flavor (making essential use of the fact
that K is a symmetric subgroup of G). We will recall some of the details in Section
2.

There are several well-known results regarding the structure of C[Nθ] as a K-
representation. In [7], it is shown that for GR quasi-split, C[Nθ] is isomorphic as a

K-representation to the induced representation IndKM triv, where M is centralizer
in K of a maximal abelian subspace a ⊂ p. Equivalently, C[Nθ] is isomorphic as a
K-representation to a spherical principal series representation of GR. Importantly,
these results do not provide any information about the C×-action on C[Nθ]. To
understand this structure, we must adopt a different approach. First, we relate the
ring of regular functions C[Nθ] (regarded as a representation of K × C×) to the
ring of regular functions C[N ] (regarded as a representation of G × C×). For GR

split modulo center, we prove the following formula in Corollary 6.0.2

(1.0.2) C[Nθ]|K×C× = C[N ]|K×C× ⊗ [∧(k)].
Here [∧(k)] denotes the signed graded exterior algebra associated to k (this formula
takes place in the Grothendieck group of admissible representations ofK×C×). The
proof of this result is not purely formal—we make essential use of the fact that N is
Cohen-Macaulay and that Nθ ⊂ N is a complete intersection of codimension dim(k)
(for the latter assertion, we use that GR is split modulo center). The structure of
C[N ] as a G×C×-representation is well-known (it can be computed using Lusztig’s
q-analog of Kostant’s partition function, see [10]). We then ‘restrict’ this description
to K × C

× to obtain a formula for C[Nθ]. The final result is Theorem 7.0.2.
Along the way, we introduce a restriction map on equivariant K-theory

KG(N ) → KK(Nθ)

(this map is defined and studied in Section 3). In fact, this map arises as the
‘associated graded’ of a map from representations of G (regarded as a real group)
to representations of GR (see Remark 3.0.8 for more details). We will pursue this
point in future work.

1.1. Notation. Let R be an algebraic group. An algebraic R-representation V is
admissible if every irreducible R-representation appears in V with finite multiplicity.
Consider the abelian categories

Rep(R) = algebraic representations of R

Repa(R) = admissible algebraic representations of R

Repf (R) = finite-dimensional algebraic representations of R.

There are obvious embeddings Repf (R) ⊂ Repa(R) ⊂ Rep(R).

Now let R̃ = R × C
×. Then Rep(R̃), Repa(R̃), and Repf (R̃) can be defined as

above. We will also consider the category

Repaa(R̃) = algebraic representations of R̃ which are admissible

as representations of both R and C
×.

There are obvious embeddings Repf (R̃) ⊂ Repaa(R̃) ⊂ Repa(R̃) ⊂ Rep(R̃). We

will denote the Grothendieck groups by K(R),Ka(R),Kf (R),Kaa(R̃), and so on.
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Write Irr(R) for the set of (equivalence classes of) irreducible representations of R.
Then

Irr(R̃) = {τqn | τ ∈ Irr(R), n ∈ Z},
where qn denotes the degree-n character of C× and τqn is shorthand for the irre-

ducible R̃-representation τ ⊗ qn. The group Kf (R) (resp. Kf (R̃)) can be iden-

tified with (finite) integer combinations of τ ∈ Irr(R) (resp. τqn ∈ Irr(R̃)). The

group Ka(R) (resp. Ka(R̃)) can be identified with formal integer combinations of

τ ∈ Irr(R) (resp. τqn ∈ Irr(R̃)). Finally, Kaa(R̃) can be identified with formal
integer combinations of τqn such that for each τ ∈ Irr(R) and for each n ∈ Z only
finitely many τqn appear with nonzero multiplicity. The tensor product of repre-
sentations turns Kf (R) into a commutative ring, Ka(R) into a Kf (R)-module, and

Kaa(R̃) into a Kf (R̃)-module.

If X is a scheme equipped with an algebraic R-action, we write CohR(X) for
the category of (strongly) R-equivariant coherent sheaves on X and KR(X) for its
Grothendieck group.

2. Irreducible representations of K

In this section, we will recall a parameterization of Irr(K) due to Vogan [14].
Suppose H is a θ-stable maximal torus in G. Write Δ = Δ(G,H) for the roots

of H on g. Since H is θ-stable, θ acts on Δ by α 	→ α◦θ. A root α ∈ Δ is imaginary
(resp. real, resp. complex) if θα = α (resp. θα = −α, resp. θα /∈ {±α}). If α
is imaginary, then θ acts on the root space gθ by ±Id. We say that α is compact
(resp. noncompact) if θ|gα

= Id (resp. θ|gα
= −Id). So Δ is partitioned

Δ = ΔiR �ΔR �ΔC

into imaginary, real, and complex roots, and ΔiR is partitioned

ΔiR = Δc �Δn

into compact and noncompact roots. Note that ΔiR is a root system. If we choose
a positive system Φ+ ⊂ ΔiR, we can define the element ρiR = 1

2

∑
Φ+ ∈ h∗.

Definition 2.0.1 (Sec 6, [1]). A continued Langlands parameter for (G,K) is a
triple (H, γ,Φ+) where

(1) H is a θ-stable maximal torus in G.
(2) γ is a formal sum γ0 + ρiR, where γ0 is a one-dimensional (h, Hθ)-module

(we define dγ = dγ0 + ρiR).
(3) Φ+ is a positive system for ΔiR.

There is a K-action on the set of continued Langlands parameters. Two parameters
are equivalent if they are conjugate under K. A continued Langlands parameter is
standard if

(4) For every α ∈ Φ+, 〈dγ, α∨〉 ≥ 0.

A standard Langlands parameter is nonzero if

(5) For every α ∈ Φ+ which is simple and compact, 〈dγ, α∨〉 �= 0.

A nonzero Langlands parameter is final if

(6) If α ∈ ΔR and 〈dγ, α∨〉 = 0, then α does not satisfy the Speh-Vogan parity
condition ([12]).

Write PL(G,K) for the set of equivalence classes of final Langlands parameters.
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To the equivalence class of a continued Langlands parameter Γ, one can associate
a virtual Harish-Chandra module [I(Γ)]. If Γ is standard, then [I(Γ)] is represented
by a distinguished (g,K)-module I(Γ). If Γ is nonzero, then I(Γ) �= 0. If Γ is final,
there is a unique irreducible quotient I(Γ) � J(Γ). The following is a version of
the Langlands classification.

Theorem 2.0.2 (Thm 6.1, [1]). The map Γ 	→ J(Γ) defines a bijection between
PL(G,K) and isomorphism classes of irreducible (g,K)-modules.

For any continued Langlands parameter Γ, the infinitesimal character of the
virtual (g,K)-module [I(Γ)] corresponds, under the Harish-Chandra isomorphism,
to the W -orbit of dγ. If Γ is final, then I(Γ) is tempered if and only if the restriction
of dγ to h−dθ lies in the imaginary span of Δ (i.e. dγ|h−dθ is imaginary). In this
case, I(Γ) is irreducible, i.e. I(Γ) = J(Γ).

Definition 2.0.3. A final Langlands parameter (H, γ,Φ+) is tempered with real

infinitesimal character if dγ|h−dθ = 0. Write Pt,R
L (G,K) for the set of equivalence

classes of such parameters.

Corollary 2.0.4. The map Γ 	→ J(Γ) defines a bijection between Pt,R
L (G,K) and

isomorphism classes of irreducible tempered (g,K)-modules with real infinitesimal
character.

Suppose μ is an irreducible representation of K. Choose a maximal torus T ⊂ K
and a positive system Φ+

c for Δ(K,T ). Let ρc = 1
2

∑
Φ+

c ∈ t∗. Let λ ∈ t∗ be a
highest weight of μ (if K is disconnected, λ need not be unique). The K-norm of
μ is defined by the formula

|μ|2 := 〈λ+ 2ρc, λ+ 2ρc〉.
It is not hard to see that |μ| is independent of Φ+

c and λ.
We say that μ is a lowest K-type in a (g,K)-module X if μ appears in X with

nonzero multiplicity and |μ| is minimal among all irreducible representations of K
with this property.

Theorem 2.0.5 (Thm 11.9, [14]). The following are true:

(i) If Γ ∈ Pt,R
L (G,K), then I(Γ) contains a unique lowest K-type μ(Γ).

(ii) The map Γ 	→ μ(Γ) defines a bijection between Pt,R
L (G,K) and Irr(K).

(iii) There is a total order on Pt,R
L (G,K) such that the (infinite) square matrix

m(Γ,Γ′) defined by the formula

[I(Γ)] =
∑

Γ′∈Pt,R
L

m(Γ,Γ′)μ(Γ′)

is upper triangular with 1’s along the diagonal.
(iv) In particular, this matrix m(Γ,Γ′) is invertible. Write M(Γ,Γ′) for its

inverse (which is also upper triangular).
(v) The entries of the matrices m(Γ,Γ′) and M(Γ,Γ′) can be computed by an

algorithm.

The algorithm in (v) is described in [14].
Now suppose that GR is split modulo center. This means that there is a maximal

torus Hs in G such that Δ(G,Hs) = ΔR(G,Hs) (and so ΔiR(G,Hs) = ∅). Let Γ0

be the parameter

Γ0 := (Hs, 0, ∅) ∈ Pt,R
L (G,K).



REGULAR FUNCTIONS ON THE K-NILPOTENT CONE 1051

By a result of Kostant ([6]) there is an identity in Ka(K)

C[Nθ]|K = I(Γ0)|K .

So by Theorem 2.0.5, we can write C[Nθ] as a formal integer sum of the irreducible
K-representations μ(Γ) (this idea has been implemented in the atlas software). This
is quite useful information, but it does not give us the grading on C[Nθ], which is
part of what we’re after.

In [11], Schmid and Vilonen define canonical good filtrations on all Harish-
Chandra modules of ‘functorial origin’, including all standard and irreducible
Harish-Chandra modules. These canonical good filtrations (and their associated
gradeds) should be closely related to questions of unitarity.

The associated graded of a Harish-Chandra module with respect to a good fil-

tration can be regarded as a representation of K̃ (in fact, as a class in Kaa(K̃)). It
is conjectured in [11] that

C[Nθ]| ˜K = gr I(Γ0)| ˜K .

It is also suggested that the Hodge filtration on an arbitrary standard module (of
an arbitrary group) can be reduced to this case (via cohomological induction and
a deformation argument). So computing the class C[Nθ]| ˜K in the case when GR is
split is central to the program of computing Hodge fitlrations. In Theorem 7.0.2,
we will give a formula for C[Nθ]| ˜K in terms of the classes I(Γ)qn.

3. A restriction map K
˜G(N ) → K

˜K(Nθ)

In this section, we will define a restriction map

K
˜G(N ) → K

˜K(Nθ).

Since N and Nθ are singular, we cannot proceed directly. Instead, we follow the
standard approach outlined (for example) in [3, Sec 5.3]: we first regard N (resp.

Nθ) as a subvariety of g∗ (resp. p∗) and then apply the restriction map K
˜G(g∗) →

K
˜K(p∗) (defined in the usual way, as an alternating sum of Tor functors).

Our first proposition describes the relationship betweenK
˜G(N ),K

˜G(g∗)Kaa(G̃),

and Kf (G̃).

Proposition 3.0.1. The following are true:

(i) If E ∈ Coh
˜G(N ), then Γ(N , E)|

˜G ∈ Repaa(G̃). This defines an exact func-

tor Coh
˜G(N ) → Repaa(G̃), and hence a group homomorphism

Γ(•)|
˜G : K

˜G(N ) → Kaa(G̃).

(ii) The homomorphism in (i) is injective.

(iii) If E ∈ Coh
˜G(g∗), then Γ(g∗, E)|

˜G ∈ Repa(G̃). This defines an exact functor

Coh
˜G(g∗) → Repa(G̃), and hence a group homomorphism

Γ(•)|
˜G : K

˜G(g∗) → Ka(G̃).

(iv) Restriction along {0}⊂g∗ induces an exact functor Coh
˜G(g∗)→Coh

˜G({0})�
Repf (G̃), which in turn induces a group isomorphism

|{0} : K
˜G(g∗)

∼−→ Kf (G̃).
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(v) The direct image along the closed embedding j : N ↪→ g∗ induces an exact

functor Coh
˜G(N ) → Coh

˜G(g∗), and therefore a group homomorphism

j∗ : K
˜G(N ) → K

˜G(g∗).

(vi) If V ∈ Repf (G̃), then V ⊗C[g∗] ∈ Repa(G̃). This defines an exact functor

Repf (G̃) → Repa(G̃), and hence a group homomorphism

φg∗ : Kf (G̃) → Ka(G̃).

(vii) The following diagram commutes:

Ka(G̃) Kf (G̃)

Kaa(G̃)

K
˜G(N ) K

˜G(g∗)

φg∗

Γ(•)|
˜G

j∗

|{0}
Γ(•)|

˜G .

(viii) The homomorphism in (v) is injective.

Proof.

(i) This is [2, (5.4f)] (it is an immediate consequence of the following facts: G̃

is reductive, N is affine, and G̃ acts on N with finitely many orbits).
(ii) This is [2, Cor 7.4].

(iii) Since g∗ is affine, the functor Γ(•)|
˜G : Coh

˜G(g∗) → Rep(G̃) is exact. It

suffices to show that its image is contained in Repa(G̃). Let E ∈ Coh
˜G(g∗).

Since g∗ is smooth, there is a G̃-equivariant vector bundle V on g∗ and a

surjection V � E in Coh
˜G(g∗). Since Γ(•)|

˜G is exact, we get a surjection

Γ(g∗,V)|
˜G � Γ(g∗, E)|

˜G in Rep(G̃). So it suffices to show that Γ(g∗,V)|
˜G ∈

Repa(G̃). Let V = V|{0}. Then V ∈ Repf (G̃) and

V � V ⊗Og∗

in Coh
˜G(g∗). So Γ(g∗,V)|

˜G = V ⊗ C[g∗]|
˜G. Note that each graded compo-

nent of C[g∗], and hence of V ⊗C[g∗], is finite-dimensional. So V ⊗C[g∗]|
˜G ∈

Repa(G̃), as required.
(iv) This is a well-known fact from equivariant K-theory, see [13, Thm 4.1].
(v) This follows from the fact that j is closed, and hence affine.
(vi) See the proof of (iii).
(vii) It suffices to show that the top triangle is commutative (the commutativity

of the bottom triangle is obvious). If V � V ⊗Og∗ ∈ Coh
˜G(g∗) is a vector

bundle, then

Γ(g∗,V)|
˜G � V ⊗ C[g∗]|

˜G � V|{0} ⊗ C[g∗]|
˜G.

But since g∗ is smooth, K
˜G(g∗) is spanned by vector bundles. So the upper

triangle is commutative.
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(viii) By (vii), the map

(3.0.1) K
˜G(N )

Γ(•)|
˜G→ Kaa(G̃) ⊂ Ka(G̃)

coincides with the composition

K
˜G(N )

j∗→ K
˜G(g∗)

Γ(•)|
˜G→ Ka(G̃).

By (ii), (3.0.1) is injective. Hence, j∗ : K
˜G(N ) → K

˜G(g∗) must be injective
as well.

�

Remark 3.0.2. We note that (ii) of Proposition 3.0.1 (and hence (viii), which is a
consequence) is a very deep assertion—the proof of (ii) in [2] makes essential use of
the Langlands classification.

Remark 3.0.3. It is worth considering what happens if we forget about the C
×-

actions. Arguing exactly as in Proposition 3.0.1, we get a commutative diagram

K(G) Kf (G)

Ka(G)

KG(N ) KG(g∗)

φg∗

Γ(•)|G
j∗

|{0}
Γ(•)|G

and Γ : KG(N ) → Ka(G) is injective. However, K(G) = 0 (indeed, every algebraic
G-representation V satisfies V ⊕ V ∞ � V ∞, and therefore has image 0 in K(G)).
So we cannot deduce that j∗ : KG(N ) → KG(g∗) is injective (and in fact, it is not:
the skyscraper sheaf at {0} (with trivial G-action) lies in the kernel of the map
j∗ : KG(N ) → KG(g∗). So, the C×-actions are essential for the proposition above.

If we replace G̃ with K̃, g∗ with p∗, and so on, we can prove a result which is
completely analogous to Proposition 3.0.1 (the only change in the proof is that in
(iii) we use [2, Cor 10.9] instead of [2, Cor 7.4]).

Let i : p∗ ↪→ g∗ be the inclusion. The restriction functor i∗ : Coh
˜G(g∗) →

Coh
˜K(p∗) is not exact in general (if E ∈ Coh

˜G(g∗), then i∗E corresponds to the
C[p∗]-module C[p∗]⊗C[g∗] E . The functor C[p∗]⊗C[g∗] (•) is only right exact). Write

Lni
∗ for its higher derived functors (if E ∈ Coh

˜G(g∗), then Lni
∗E corresponds to

the C[p∗]-module TorC[g
∗]

n (C[p∗], E)). Since g∗ is smooth, Lni
∗E = 0 for n very large

(see e.g. [3, Prop 5.1.28]). So we can define a homomorphism

i∗ : K
˜G(g∗) → K

˜K(p∗), i∗[E ] =
∞∑

n=0

(−1)n[Lni
∗E ].
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If [E ] is supported in N , then i∗[E ] is supported in Nθ. So i∗ : K
˜G(g∗) → K

˜K(p∗)

restricts to a (unique) homomorphism i∗ : K
˜G(N ) → K

˜K(Nθ)

(3.0.2)

K
˜G(N ) K

˜G(g∗)

K
˜K(Nθ) K

˜K(p∗)

j∗

i∗ i∗

j∗

.

We can compute these restriction maps in terms of K̃-representations. The key

ingredient is a graded Koszul identity in Ka(K̃). Consider the class

[∧(k)] :=
∞∑

n=0

(−1)n[∧n(k)] ∈ Kf (K̃).

Here, as usual, we put k in degree 1.

Lemma 3.0.4. There is an identity in Ka(K̃)

C[k∗]|
˜K ⊗ [∧(k)] = triv.

Proof. Consider the Koszul resolution of the trivial C[k∗]-module

(3.0.3) 0 → C[k∗]⊗ ∧dim(k)(k) → · · · → C[k∗]⊗ ∧1(k) → C[k∗]⊗ ∧0(k) → C → 0.

We can regard each term as a representation of K̃, and it is easy to check that

the differentials are K̃-equivariant. Restricting to K̃ we get an exact sequence in

Repa(K̃)

0 → C[k∗]|
˜K ⊗ ∧dim(k)(k) → · · · → C[k∗]|

˜K ⊗ ∧1(k) → C[k∗]|
˜K ⊗ ∧0(k) → triv → 0.

Now the required identity follows from the Euler-Poincare principle

C[k∗]|
˜K ⊗ [∧(k)] =

∑
n

(−1)nC[k∗]|
˜K ⊗ [∧n(k)] = triv.

�

If V ∈ Repa(G̃), then V |
˜K ∈ Repa(K̃). This defines an exact functor Repa(G̃) →

Repa(K̃), and hence a group homomorphism

|
˜K : Ka(G̃) → Ka(K̃).

Tensoring with the class [∧(k)] ∈ Kf (K̃), we obtain a further homomorphism

r : Ka(G̃) → Ka(K̃), r[V ] = [V ]|
˜K ⊗ [∧(k)].

Lemma 3.0.5. The following diagram is commutative

Ka(G̃) Kf (G̃)

Ka(K̃) Kf (K̃)

r |
˜K

φg∗

φp∗

.
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Proof. Let V ∈ Kf (G̃). Then by Lemma 3.0.4 we have

φg∗(V )|
˜K ⊗ [∧(k)] = (V ⊗ C[g∗])|

˜K ⊗ [∧(k)]
= V |

˜K ⊗ C[p∗]|
˜K ⊗ C[k∗]|

˜K ⊗ [∧(k)]
= V |

˜K ⊗ C[p∗]|
˜K

= φp∗(V |
˜K)

as desired. �

Lemma 3.0.6. The following diagram is commutative

K
˜G(g∗) Kf (G̃)

K
˜K(p∗) Kf (K̃)

i∗

|{0}

|
˜K

|{0}

.

Proof. If V � V ⊗Og∗ ∈ Coh
˜G(g∗) is a vector bundle, then Lni

∗V = 0 for n > 0 (V
corresponds to a flat, and hence projective, C[g∗]-module, so all higher Tor groups
vanish). Consequently

(i∗[V ])|{0} = [i∗V ]|{0}
= (V |

˜K ⊗Op∗)|{0}
= V |

˜K

= ([V ]|{0})| ˜K .

So the diagram commutes on vector bundles. But since g∗ is smooth, K
˜G(g∗) is

spanned by vector bundles. This completes the proof. �

The next result gives a method for computing i∗ : K
˜G(N ) → K

˜K(Nθ) on the

level of K̃-representations.

Corollary 3.0.7. The following diagram is commutative

Ka(G̃) Kf (G̃)

K
˜G(N ) K

˜G(g∗)

Ka(K̃) Kf (K̃)

K
˜K(Nθ) K

˜K(p∗)

r

φg∗

|
˜K

j∗

i∗

Γ

|{0}

φp∗
Γ

j∗

i∗

|{0}

.

In particular, for every [E ] ∈ K
˜G(N ), the restriction i∗[E ] is uniquely determined

by the following identity in Ka(K̃)

(3.0.4) Γ(i∗[E ])|
˜K = Γ([E ])|

˜K ⊗ [∧(k)].

Proof. The front face is commutative by the definition of i∗ : K
˜G(N ) → K

˜K(Nθ),
see (3.0.2). The right face is commutative by Lemma 3.0.6. The back face is
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commutative by Lemma 3.0.5. The top face is commutative by Proposition 3.0.1.

The bottom face is commutative by its analog for K̃. The commutativity of the
left face follows as a formal consequence of the commutativity of the others. �

Remark 3.0.8. There are surjective ‘forgetful’ maps

K
˜G(N ) � KG(N ), K

˜K(Nθ) � KK(Nθ).

It is not hard to show that the restriction map i∗ : K
˜G(N ) → K

˜K(Nθ) descends
to a (necessarily unique) homomorphism

i∗ : KG(N ) → KK(Nθ).

Since we will not use this fact, we will not prove it here. Write KM(GR) for the
Grothendieck group of finite-length admissible GR-representations. Similarly, write
KM(G) (here G is regarded as a real reductive group by restriction of scalars).
There are ‘associated graded’ maps

gr : KM(G) → KG(N ), gr : KM(GR) → KK(Nθ)

(see [16] for definitions). An intriguing question, which we will not pursue in this

paper, is whether there is a natural homomorphism KM(G)
?→ KM(GR) such

that the following diagram commutes

KM(G) KM(GR)

KG(N ) KK(Nθ)

?

gr gr

i∗

.

4. Regular functions on N
In this section, we will recall a (well-known) formula for C[N ] as a representation

of G̃. Choose a maximal torus H ⊂ G and a Borel subgroup B ⊂ G containing H.
Let Λ ⊂ h∗ denote the weight lattice, Φ+ ⊂ Λ the positive roots, and Λ+ ⊂ Λ the
dominant weights. Then

Irr(G) = {τλ | λ ∈ Λ+},
where τλ is the irreducible representation of G with highest weight λ. Recall
Kostant’s partition function

P : Λ → Z, P(λ) = #{m : Φ+ → Z | λ =
∑

α∈Φ+

m(α)α}.

Define

M : Λ+ × Λ → Z, M(λ, μ) =
∑
w∈W

(−1)�(w)P(w(λ+ ρ)− (μ+ ρ))

where � : W → Z≥0 is the length function and ρ = 1
2

∑
Φ+. For each λ ∈ Λ+, there

is an identity in Ka(H)

(4.0.1) τλ|H =
∑
μ∈Λ

M(λ, μ)eμ.

This is a version of the Weyl character formula.
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Lusztig has introduced q-analogs of both P and M ([8]). The q-analog of P is
defined by the formula

Pq : Λ → Z[q], Pq(λ) =
∞∑

n=0

Pn
q (λ)q

n

where

Pn
q (λ) = #{m : Φ+ → Z | λ =

∑
α∈Φ+

m(α)α and n =
∑

α∈Φ+

m(α)}.

The q-analog of M is

Mq : Λ+ × Λ → Z[q], Mq(λ, μ) =
∑
w∈W

(−1)ε(w)Pq(w(λ+ ρ)− (μ+ ρ)).

The following can be extracted from [10].

Proposition 4.0.1. There is an identity in Ka(G̃)

C[N ]|
˜G =

∑
λ∈Λ+

τλMq(λ, 0).

Sketch of proof. Consider the Springer resolution η :T ∗(G/B)→N . Since T ∗(G/B)

is symplectic, there is an identification (of G̃-equivariant sheaves)

OT∗(G/B) � ωT∗(G/B)

where ωT∗(G/B) is the canonical sheaf on T ∗(G/B). So by the theorem of Grauert
and Riemenschneider ([4])

Riη∗OT∗(G/B) = 0, ∀i > 0.

On the other hand, R0η∗OT∗(G/B) � ON . Using the Leray spectral sequence (and

the fact that N is affine), we get an identity in Ka(G̃)

(4.0.2) C[N ]|
˜G =

∑
i

(−1)iHi(T ∗(G/B),OT∗(G/B)).

If p : T ∗(G/B) → G/B is the projection, then p∗OT∗(G/B) is identified (as a G̃-

equivariant sheaf) with (the sheaf of local sections of) the G̃-equivariant vector
bundle G×B S(g/b). Since p is affine, the direct image functor p∗ preserves coho-
mology, i.e.

(4.0.3) Hi(T ∗(G/B),OT∗(G/B)) � Hi(G/B, p∗OT∗(G/B)), ∀i ≥ 0.

Combining (4.0.2) and (4.0.3), we get a further identity in Ka(G̃)

C[N ]|
˜G =

∑
i

(−1)iHi(G/B,G×B S(g/b)).

The right hand side can be computed using Borel-Weil-Bott. The result follows. �
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5. Some commutative algebra

Using the results of Section 3, we get a well-defined class i∗[ON ] ∈ K
˜K(Nθ),

which can be regarded as the restriction of ON to p∗. However, it is not at all clear
that i∗[ON ] = [ONθ

]. For groups split modulo center, we will see that this equality
always holds, but the proof will require some commutative algebra.

Lemma 5.0.1. Let R be a Noetherian ring and let M be a finitely-generated R-
module. Suppose x1, . . . , xm ∈ R is an R-regular sequence which is also M -regular.
Consider the ideal I = (x1, . . . , xm) ⊂ R. Then

TorRn (R/I,M) = 0, n > 0.

Proof. Since x1, . . . , xm is R-regular, the Koszul complex K(x1, . . . , xm;R) is a

resolution of R/I. So TorR• (R/I,M) is the homology of K(x1, . . . , xm;M) :=
K(x1, . . . , xm;R)⊗R M

Hn(K(x1, . . . , xm;M)) � TorRn (R/I,M), ∀n.

But since x1, . . . , xm is an M -regular sequence, the complex K(x1, . . . , xm;M) is

acyclic, see [9, Thm 16.5(i)]. So TorRn (R/I,M) = 0 for n > 0. �

Lemma 5.0.2 (Thm 17.4, [9]). Suppose A is Cohen-Macaulay, and let I =
(x1, . . . , xn)
⊂ A be an ideal. If

dim(A/I) = dim(A)− n

then x1, . . . , xn is an A-regular sequence.

Proposition 5.0.3. Suppose X is a smooth Noetherian scheme and let Y , Z be
closed subschemes of X. Write i : Y ↪→ X and j : Z ↪→ X for the inclusions and
form the Cartesian diagram of schemes

Z X

Z ∩ Y Y

j

i .

Assume

(i) Y is smooth.
(ii) Z is Cohen-Macaulay.
(iii) dim(Z ∩ Y ) = dim(Z) + dim(Y )− dim(X).

Then

(5.0.1) Lni
∗(j∗OZ) = 0, n > 0.

Proof. The statement is local in X, so we can assume all schemes are affine. Let
X = Spec(R), Y = Spec(R/I) and Z = Spec(A), so that Z ∩ Y = Spec(A/I).
Since Y is smooth, we can find an R-regular sequence x1, . . . , xm ∈ R such that
I = (x1, . . . , xm), where m = dim(X)−dim(Y ). Now by Lemma 5.0.2, (x1, . . . , xm)
is an A-regular sequence. So by Lemma 5.0.1 (applied to the R-module M = A)

TorRn (R/I,A) = 0, n > 0.

This is equivalent to (5.0.1). �
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6. Regular functions on Nθ

First, we will assume that GR is split. This means that G contains a maximal
torus Hs ⊂ G on which θ acts by inversion. Our first lemma shows that the
codimension of Nθ ⊂ N equals the codimension of p∗ ⊂ g∗.

Lemma 6.0.1. dim(Nθ) = dim(N ) + dim(p)− dim(g).

Proof. By [7, Prop 9]

(6.0.1) dim(Nθ) = dim(p)− dim(hs).

By the Iwasawa decomposition

(6.0.2) dim(g) = dim(k) + dim(hs) + dim(n).

Finally

(6.0.3) dim(N ) = 2 dim(n) = dim(g)− dim(hs).

Combining (6.0.1), (6.0.2), and (6.0.3) proves the lemma. �

Corollary 6.0.2. There is an equality in K
˜K(Nθ)

(6.0.4) [ONθ
] = i∗[ON ]

and hence an equality in Kaa(K̃)

(6.0.5) C[Nθ]| ˜K = C[N ]|
˜K ⊗ [∧(k)].

Proof. For (6.0.4), we will apply Proposition 5.0.3. So let X = g∗, Z = N , and Y =
p∗. Clearly, X and Y are smooth. By [5, Thm 0.1], N is a complete intersection,
and therefore Cohen-Macaulay. Condition (iii) of Proposition 5.0.3 is the content
of Lemma 6.0.1. So by Proposition 5.0.3, we have

Lni
∗(j∗ON ) = 0, n > 0

and therefore

i∗[ON ] =
∑
n

(−1)n[Lni
∗j∗ON ] = [i∗j∗ON ] = [ONθ

].

This proves (6.0.4). Now (6.0.5) follows from (6.0.4) and Corollary 3.0.7. �

Corollary 6.0.2 can be easily extended to the case when GR is split modulo center.

Example 6.0.3. Let G = SL2(C) and let θ(g) = (g−1)t (this is the involution
corresponding to split real form SL2(R)). Then K = SO2(C). Write

Irr(G) = {τm | m = 0, 1, 2, . . . }, Irr(K) = {χn | n ∈ Z}
(here τm is the irreducible with highest weight m and χn is the degree-n character
of SO2(C)). We have the following branching rules

τm|K = χ−2m + χ−2m+2 + · · ·+ χ2m.

From Proposition 4.0.1, we deduce

C[N ]|
˜G =

∞∑
m=0

τ2mqm.

Also

[∧(k)] = χ0 − χ0q.
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So by Corollary 6.0.2

C[Nθ]| ˜K = C[N ]|
˜K ⊗ [∧(k)]

= (

∞∑
m=0

(χ−2m + · · ·+ χ2m)qm)⊗ (χ0 − χ0q)

=

∞∑
m=0

((χ−2m + · · ·+ χ2m)− (χ−2m+2 + · · ·+ χ2m−2))q
m

=

∞∑
m=0

(χ2m + χ−2m)qm.

7. Branching to K

In this section, we will use Corollary 6.0.2 to compute C[Nθ]| ˜K as a formal integer
combination of classes of the form I(Γ)qn.

Suppose (H, γ,Φ+) is a continued Langlands parameter (see Definition 2.0.1)
and let χ ∈ Kf (K). It is easy to compute the tensor product [I(H, γ,Φ+)]|K ⊗ χ
as a representation of K.

Lemma 7.0.1 (Lem 12.13, [14]). Choose a finite multiset SH(χ) in X∗(H) such
that

χ|Hθ =
∑

μ∈SH(χ)

μ|Hθ .

Then there is an identity in Ka(K)

[I(H, γ,Φ+)]|K ⊗ χ =
∑

μ∈SH(χ)

[I(H, γ + μ,Φ+)].

We will use Lemma 7.0.1 (together with Zuckerman’s character formula for the
trivial representation) to compute C[Nθ]| ˜K in terms of the classes I(Γ)qn. For an
arbitrary class χ ∈ Kf (K), it may be difficult to find a multiset SH(χ) as in Lemma
7.0.1. Fortunately, in our setting, χ is not arbitrary. For the problem at hand, we
will need to compute SH(χ) in the following two cases:

(1) χ is the restriction to K of an irreducible representation τλ of G.
(2) χ is the class ∧n(k).

First, suppose χ = τλ|K . By the Weyl character formula (4.0.1), we have

τλ|H =
∑

μ∈X∗(H)

M(λ, μ)eμ.

So we can take

SH(τλ) = {M(λ, μ)eμ | μ ∈ X∗(H)}
(the coefficients M(λ, μ) above denote the multiset multiplicities. We will use
similar notation below).

Next, suppose χ = k. Choose a subset Δ′
C
⊂ ΔC such that for each α ∈ ΔC,

exactly one of {α, θα} appears in Δ′
C
. Then there is a decomposition of k into

weight spaces for Hθ

k �
⊕
α∈Δc

gα ⊕
⊕
α∈Δ′

C

(1 + dθ)gα ⊕
⊕

α∈Δ+
R

(1 + dθ)gα.
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So we can take

SH(k) = {eα | α ∈ Δc} ∪ {eα | α ∈ Δ′
C} ∪ {|Δ+

R
|e0}.

More generally

SH(∧n
k) = {

∑
R | R ⊆ SH(k), |R| = n}.

Zuckerman’s character formula for the trivial representation (see [15, Thm 9.4.16])
can be interpreted as an identity in Ka(K)

triv =
∑
H

∑
Δ+

(−1)�(Δ
+)[I(H, ρiR,Δ

+
iR)]|K .

The outer sum runs over K-conjugacy classes of θ-stable maximal tori H ⊂ G and
the inner sum over W (K,Hθ)-conjugacy classes of positive systems Δ+ ⊂ Δ(G,H).
The integer �(Δ+) is the codimension of the K-orbit on the flag variety containing
the Borel subalgebra b ⊂ g corresponding to the positive system Δ+. Now assume
that GR is split modulo center. Using Corollary 6.0.2, we obtain an identity in

Ka(K̃)

C[Nθ]| ˜K =

(∑
H

∑
Δ+

(−1)�(Δ
+)[I(H, ρiR,Δ

+
iR)]|K

)
⊗ C[N ]|

˜K ⊗ [∧(k)].

Using Proposition 4.0.1 and Lemma 7.0.1, we can rewrite the right hand side in
terms of classes of the form [I(Γ)]qn

Theorem 7.0.2. Assume GR is split modulo center. Then there is an identity in

Ka(K̃)

C[Nθ]| ˜K
=
∑
H

∑
Δ+

∑
λ∈Λ+

∑
μ∈Λ

∑
R⊆SH(k)

(−1)�(Δ
+)+|R|M(λ, μ)Mq(λ, 0)[I(H, ρiR+μ+|R|,Δ+

iR)]q
|R|.

Note that the terms on the right are not final. We can rewrite the sum in terms
of final parameters using the Hecht-Schmid identities (this sort of thing is easy to
do in atlas).
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