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RELATIONS BETWEEN CUSP FORMS SHARING HECKE

EIGENVALUES

DIPENDRA PRASAD AND RAVI RAGHUNATHAN

Abstract. In this paper we consider the question of when the set of Hecke
eigenvalues of a cusp form on GLn(AF ) is contained in the set of Hecke eigen-
values of a cusp form on GLm(AF ) for n ≤ m. This question is closely related
to a question about finite dimensional representations of an abstract group,
which also we consider in this work.
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1. Introduction

Let F be a number field. Each automorphic representation π of GLd(AF ) gives
rise to Hecke eigenvalues (also called the Satake parameter), a d-tuple of (unordered)
nonzero complex numbers H(πv) = (a1v, · · · , adv), at each place v of F where π is
unramified, and thus at almost all finite places of F .

Let π1 and π2 be two irreducible automorphic representations of GLn(AF ) which
are written as isobaric sums:

π1 = π11 � π12 � · · · � π1�,

π2 = π21 � π22 � · · · � π2�′ ,

where π1j and π2k are irreducible cuspidal automorphic representations of GLdj
(AF )

and GLdk
(AF ) respectively. Then by the strong multiplicity one theorem due to

Jacquet and Shalika cf. [JS1], [JS2], if π1 and π2 have the same Hecke eigenvalues
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H(π1,v) = H(π2,v) at almost all finite places v of F where π1, π2 are unramified,
then � = �′, and up to a permutation of indices, π1j = π2j .

In this paper, we will consider a variant of the strong multiplicity one theorem,
identified in the following definition.

Definition. Given automorphic representations π1 on GL(n,AF ) and π2 on
GL(m,AF ), we say that π1 is immersed in π2, written π1 � π2, if the Hecke
eigenvalues of π1 (counted with multiplicity) are contained in the Hecke eigenval-
ues of π2 (counted with multiplicity) for almost all primes of the number field F .
On the other hand, we say that π1 is embedded in π2, written as π1 ⊂ π2 if there
is an automorphic representation π3 such that,

π2 = π1 � π3.

The following is the motivating question for this paper.

Question.

(1) Can it happen for distinct cuspidal representations that π1 � π2?
(2) If yes, can we classify all such pairs of cuspidal representations π1 � π2?

One would have liked to assert that for cuspidal representations π1 � π2 never
happens if n < m, but that is not true. For example, let π be a cuspidal non-
CM automorphic representation of PGL2(AF ). At any unramified place v of F , if
(av, a

−1
v ) are the Hecke eigenvalues of πv, then for the automorphic representation

Sym2(π) of PGL3(AF ), the Hecke eigenvalues at the place v of F , are (a2v, 1, a
−2
v ).

Thus the Hecke eigenvalues of the trivial representation of GL1(AF ) are contained
in the set of Hecke eigenvalues of the cuspidal automorphic representation Sym2(π)
of PGL3(AF ) at each unramified place of π.

This paper is written in the hope that although an automorphic representation
π2 may be immersed in a cuspidal automorphic representation π2, without π1 being
the same as π2, this happens rarely, and only for pairs of representations (π1, π2)
which are related in some well-defined way.

We begin by proving Proposition 1.

Proposition 1. Let π1 (resp. π2) be an irreducible cuspidal automorphic repre-
sentation of GLn(AF ) (resp. GLn+1(AF )). Then π1 cannot be immersed in π2.

Proof. The proof is a simple consequence of the strong multiplicity one theorem of
Jacquet-Shalika recalled at the beginning of this paper. Let ω1 (resp. ω2) be the
central character of π1 (resp. π2); these are Grössencharacters of GL1(AF ). It is
easy to see that, if H(π1,v) is contained in H(π2,v) at almost all places v of F , then,

π1 � (ω2/ω1) = π2,

which is not allowed by the strong multiplicity one theorem since π2 is cuspidal. �
Here is another similarly ‘negative’ result, this time proved with considerably

more effort.

Proposition 2. Let π be an irreducible cuspidal automorphic representation of
GL4(AF ). Then H(πv) cannot contain 1 at almost all finite places v of F where π
is unramified.

Proof. We will prove the proposition by contradiction, so assume that H(πv) con-
tains 1 at almost all places of F where π is unramified. Observe that to say that
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H(πv) contains 1 is equivalent to saying that det(1−H(πv)) = 0, which translates
into the following identity (assuming that H(πv) operates on a 4-dimensional vector
space V ):

1− V + Λ2(V )− Λ3(V ) + Λ4(V ) = 0.

(One way to think of this identity is in the Grothendieck group of representations
of an abstract group G which comes equipped with a 4-dimensional representation
V of G such that the action of any g ∈ G on V has a nonzero fixed vector.)

Thus we get the identity:

1 + Λ4(V ) + Λ2(V ) = V + Λ3(V ).

Let the central character of π be ω : A×
F /F

× → C×. Since we know by the
work of Kim, cf. [Kim], that Λ2(π) is automorphic, by the strong multiplicity one
theorem, we get an identity of the isobaric sum of automorphic representations:

1 � ω � Λ2(π) = π � ω · π∨.

Observe that the right hand side of this equality is a sum of two cuspidal represen-
tations on GL4(AF ), whereas there are two one dimensional characters of A×

F /F
×

on the left hand side. This is not allowed by the strong multiplicity one theorem,
completing the proof of the proposition. �

Question 1 lies at the basis of this work.

Question 1. Let π1 (resp. π2) be an irreducible cuspidal automorphic repre-
sentation of GLn(AF ) (resp. GLn+2(AF )). Suppose that π1 is immersed in π2.
Then, is there an automorphic representation π of GL2(AF ) with central character
ω : A×

F /F
× → C×, and a character χ : A×

F /F
× → C×, such that,

π1 = χ · ω ⊗ Symn−1(π),

π2 = χ⊗ Symn+1(π)?

We will provide an affirmative answer to this question for n = 1, 2, 3 in this
paper. On the other hand, in section 5, we will provide counter-examples to this
question using the strong Artin conjecture for all pairs of integers (q−1, q+1) where
q ≥ 5 is a prime power. The work [Ca] proves strong Artin conjecture for certain
cases for q = 5, which allows us to construct an unconditional counter-example for
the pair (GL4,GL6) over Q in section 5.

The question studied in this paper can be studied from a purely group theoretic
point of view, and is discussed in section 5 from this perspective. We are unaware of
this group theoretic point of view to have been put to use earlier; it seems of interest
for connected reductive groups too. In section 6, we prove that the group theoretic
question has an affirmative answer for groups which are not virtually abelian, i.e.,
do not contain a subgroup of finite index which is abelian. Thus in the automorphic
context, when one of the representations π1, or π2 is Steinberg at a finite place,
or has regular infinitesimal character at one of the archimedean places of F , our
question should have an affirmative answer, but for the moment, we do not know
how to deal with it.

Remark 1. Here is a geometric analogue of the questions being discussed in this
paper.1 Let A and B be abelian varieties over a number field F with A simple. For

1This question has now been settled in a recent work of Khare and Larsen, cf. [KL].
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v any finite place of F where both A and B have good reduction, let Av, Bv denote
their reductions mod v (thus Av, Bv are abelian varieties over finite fields). Assume
that there are isogenies from Av to Bv (not surjective as we are not assuming
dim(A) = dim(B)) for almost all places v of F where A and B have good reduction.
Then the question is if there is an isogeny from A to B? If dim(A) = dim(B), this
is a consequence of the famous theorem of Faltings.

Remark 2. The paper was inspired by the notion of relevance introduced in [GGP],
and to understand whether two global A-parameters which are locally relevant at
all places must be globally relevant. This is not the case, and exactly for the reason
discussed in this paper: that the Hecke eigenvalues of the cuspidal representation
π1 may be contained in the set of Hecke eigenvalues of the cuspidal representation
π2 at almost all places of the number field without π1 being the same as π2.

Remark 3. Most of the paper deals with cusp forms π1 on GLn(AF ), and π2 on
GLm(AF ) for the restricted pairs (n,m) with m = n + 2, as the first non-obvious
case beyond m = n and m = n + 1, π1 is immersed in π2. However, one might
begin at the other extreme (n,m) = (1,m), and try to classify cusp forms π2 on
GLm(AF ) such that the Hecke eigenvalues of π2 at almost all places of F contain
the eigenvalue 1. By Proposition 3, there is a nice answer for (n,m) = (1, 3),
whereas by Proposition 2, there are none in the case (n,m) = (1, 4). It is easy to
see that the cuspidal representations π2 of GL6(AF ) which arise as the basechange
of a cuspidal selfdual representation of PGL3(AE) for E/F quadratic, have Hecke
eigenvalue 1 at almost all places of F . Using Theorem 2 of the paper [Yam] and
using a similar identity as in the proof of Proposition 2 which this time would be:

1 + Λ2 + Λ4(V ) + Λ6(V ) = V + Λ3(V ) + Λ5(V ),

a cuspidal representation π2 of GL6(AF ) having Hecke eigenvalue 1 at almost all
places of F arises as the automorphic induction of a cuspidal representation of
GL3(AE) for E/F quadratic (which is most likely selfdual, and on PGL3(AF ), but
this we have not proved). We have not investigated the situation for general pairs
(1,m).

We end the introduction by remarking that the last two sections of the paper,
sections 5 and 6, are written for finite groups and Lie groups respectively, and
are quite independent of the earlier sections. Section 5 eventually has implications
for automorphic representations through the known cases of (strong) Artin’s con-
jecture. Since automorphic representations on GLn(AF ), F a function field, are
characterised by their Galois representations by the work of L. Lafforgue, these
sections also construct both counter-examples to Question 1, and to assert that the
only counter-examples come from potentially abelian automorphic representations.

2. Preliminaries

For automorphic representations π1, π2 on GLa(AF ),GLb(AF ), we denote by
π1 � π2 the isobaric sum of π1, π2, which is an automorphic form on GLa+b(AF ).
If H(π1,v) and H(π2,v) are the Hecke eigenvalues of π1 and π2, then the Hecke
eigenvalues of π1 � π2 are the union (with multiplicities) of H(π1,v), H(π2,v).

We will also use the notation A � B where A (resp. B) is any collection of a
(resp. b) nonzero complex numbers defined for almost all finite places v of F . In
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this generality, we will use partial L function L(s, A), where the Euler product is
taken outside a finite set S of places, S containing the places at infinity.

In the same spirit, for A,B as in the last para, we will define A � B to be a
collection of a · b nonzero complex numbers for almost all finite places v of F , and
the associated partial Rankin product L function L(s, A � B), again where the
Euler product is taken outside a finite set S of places, S containing the places at
infinity.

Lemma 1. Suppose C, D are automorphic representations on GLc(AF ),GLd(AF ),
and χ a Grössencharacter on F . Suppose A is any collection of c+ d− 1 nonzero
complex numbers defined for almost all finite places v of F such that

A � χ = C � D.

Suppose that L(χ−1A, s) is known to have meromorphic continuation to the entire
complex plane with no zero at s = 1. Then there is an automorphic representation
π3 of GLc+d−1(AF ) whose Hecke eigenvalues are equal to A at almost all finite
places v of F .

Proof. Expand χ−1(C � D) as an isobaric sum of cusp forms, and note that for
any cusp form π on GLm(AF ), L(π, s), the partial L-function without regard to
omitted set of places has a pole at s = 1 if and only if m = 1, and π = 1. Therefore
by what is given for L(χ−1A, s), the isobaric sum decomposition of χ−1(C �D) in
terms of cusp forms must contain the trivial representation of GL1(AF ), omitting
which from χ−1(C � D) defines χ−1A as an automorphic representation. �
Lemma 2. Suppose π1 is a cuspidal automorphic representation on GLn(AF ) and
π2 is a cuspidal automorphic representation on GLn+2(AF ) such that at almost all
unramified places of π1 and π2, H(π1,v) ⊆ H(π2,v). Let ω1 (resp. ω2) be the central
character of π1 (resp. π2) which is a Grössencharacter on GL1(AF ). Suppose that
Λ2(π2), Sym

2(π1) are known to be automorphic. Then,

(1) The Rankin product π1 � π2 is automorphic.
(2) We have the isobaric decomposition of automorphic representations:

π2 � π1 � ω2/ω1 = Λ2(π2) � Sym2(π1).

Proof. We first prove the identity expressed in (2), i.e., that the two sides have
the same Hecke eigenvalues at almost all the primes of F . This task is made more
transparent by looking at vector spaces V,W,A with V = W + A with A two
dimensional, and noting the identity:

V ⊗W + Λ2(A) = W ⊗W +A⊗W + Λ2(A)

= Λ2(W ) +A⊗W + Λ2(A) + Sym2(W )

= Λ2(V ) + Sym2(W ).

Now, Lemma 1 proves the automorphy of π2 � π1 since its L-function is known
to be entire and non-vanishing on the line Re(s) = 1 by the Rankin-Selberg theory,
see Theorem 5.2 of Shahidi [Sha]. �
Lemma 3. Suppose π1, π2, π3 are cuspidal automorphic representations on
GLni

(AF ) (for i = 1, 2, 3). Suppose that the Rankin products π1 � π2 and π2 � π3

are known to be automorphic. Then in the isobaric sum decomposition of π1 � π2,
π∨
3 ⊂ π1�π2 if and only if in the isobaric sum decomposition of π2�π3, π

∨
1 ⊂ π2�π3.
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Proof. Since the Rankin product π1 � π2 is given to be automorphic, by Jacquet-
Shalika, the L-function,

L(s, π1 � π2 � π3),

has a pole at s = 1 if and only if π∨
3 ⊂ π1 � π2. Same triple-product L-function

dictates π∨
1 ⊂ π2 � π3. �

Besides the strong multiplicity one theorem of Jacquet-Shalika, we will use the
symmetric square lift of Gelbart-Jacquet cf. [GJ] which we state in the form we will
use. The work of Gelbart-Jacquet was to establish the symmetric square lift from
GL2 to GL3; for characterising the image of the symmetric square lift, we refer to
[Ra1].

Theorem 1. Let π2 be a cuspidal automorphic representation of PGL3(AF ) with
π2

∼= π∨
2 . Then π2 arises as the adjoint lift of an automorphic representation π of

GL2(AF ), i.e.,

π2
∼= Ad(π) = ω−1 ⊗ Sym2(π),

where ω is the central character of π, a Grössencharacter on GL1(AF ).

Corollary 1. Let π2 be a cuspidal automorphic representation of GL3(AF ) with
π2

∼= χ⊗ π∨
2 for χ a Grössencharacter on GL1(AF ). Then π2 can be written as

π2 = λ⊗ Sym2(π),

where π is a cuspidal automorphic representation of GL2(AF ), and λ a Grössen-
character on GL1(AF ).

Proof. Let ω2 be the central character of π2. Comparing the central characters for
the given isomorphism:

(1) π2
∼= χ⊗ π∨

2 ,

it follows that,

ω2
2 = χ3.

Therefore for μ = χ/ω2, the isomorphism in (1) can be rewritten as:

(2) π2
∼= μ−2 ⊗ π∨

2 ,

or,

(3) (μ⊗ π2) ∼= (μ⊗ π2)
∨.

Therefore, the representation μ ⊗ π2 of GL3(AF ) is selfdual. Comparing the
central characters on the two sides of equation (2), we find that the central character
ω of the representation μ⊗π2 of GL3(AF ) is quadratic. Twisting the representation
μ⊗ π2 of GL3(AF ) by ω, we find that the representation (ωμ)⊗ π2 of GL3(AF ) is
both selfdual and of trivial central character, so Theorem 1 applies, proving that
π2 is a symmetric square up to a twist. �
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3. The results

We introduce the following notation keeping Question 1 in mind. Suppose π1 is a
cuspidal automorphic representation on GLn(AF ) and π2 is a cuspidal automorphic
representation on GLm(AF ) such that at almost all unramified places of π1 and π2,
H(π1,v) ⊆ H(π2,v), we write π1 � π2.

We observe that we may twist the pair (π1, π2) appearing in Question 1 by a
Grössencharacter. Accordingly, in Proposition 3 that provides an affirmative answer
to Question 1 for n = 1 we may assume that π1 = 1.

Proposition 3. Let 1 denote the trivial representation of GL1(AF ) and suppose
that π2 is a cuspidal automorphic representation on GL3(AF ) such that 1 � π2.
Then π2 is a self-dual representation of PGL3(AF ), and arises as ω−1 ·Sym2(π) (the
adjoint lift) of a cuspidal automorphic form π on GL2(AF ) with central character
ω : A×

F /F
× → C×.

Proof. The proof will be a simple consequence of the strong multiplicity one theorem
of Jacquet-Shalika recalled in the beginning of this paper and Theorem 1 due to
Gelbart-Jacquet. Let ω2 be the central character of π2 which is a Grössencharacter
on GL1(AF ). By Lemma 2 in this case for (π1, π2) = (1, π2), it follows that

Λ2(π2) � 1 = π2 � ω2.

Therefore, by the strong multiplicity one theorem, we deduce that:

(1) ω2 = 1,
(2) Λ2(π2) = π2.

By (1) and (2), we find that
π2

∼= π∨
2 .

Therefore, by Theorem 1 due to Gelbart-Jacquet, π2 arises as the adjoint lift from
a cuspidal automorphic form π on GL2(AF ), i.e.,

π2 = ω−1 · Sym2(π),

proving the proposition. �
Proposition 4 provides an affirmative answer to Question 1 for n = 2.

Proposition 4. Suppose that π1 is a cuspidal automorphic representation of
GL2(AF ) with central character ω1 : A×

F /F
× → C×, and that π2 is a cuspidal

automorphic representation of GL4(AF ), and that π1 � π2. Then,

(1) π1 cannot be CM (a CM representation is one defined using a Grössen-
character of a quadratic extension E of F ).

(2) π2 = ω−1
1 ⊗ Sym3(π1).

Proof. Let ω2 be the central character of π2 which is a Grössencharacter of
GL1(AF ). By Lemma 2,

(1) π2 � π1 � ω2/ω1 = Λ2(π2) � Sym2(π1),

where all the terms appearing above are automorphic: Λ2(π2) by Kim [Kim],
Sym2(π1) by Gelbart-Jacquet [GJ], and π2 � π1 by Lemma 2.

We first assume that π1 is CM. Observe that since π1 is a cusp form on GL2(AF )
and π2 a cusp form on GL4(AF ), π2 � π1 cannot contain any Grössencharacter.
Therefore, by the isobaric decomposition (1), exactly one of the two terms Λ2(π2)
or Sym2(π1) may contain a Grössencharacter. Since we have assumed that π1 is
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CM, Sym2(π1) contains a Grössencharacter, and therefore, Λ2(π2) cannot contain
a Grössencharacter if π1 is CM.

Since π1 is CM, we can write,

Sym2(π1) = π3 � χ3,

where χ3 is a Grössencharacter, and π3 must be cuspidal (because the left hand
side of (1) has only one Grössencharacter in its isobaric decomposition). By (1),
χ3 = ω2/ω1, and we can simplify (1) to

π2 � π1 = Λ2(π2) � π3.

From Lemma 3, it follows that,

π2 = π1 � π∨
3 .

Therefore,

Λ2(π2) = [Sym2(π1) � Λ2(π∨
3 )] � [Λ2(π1) � Sym2(π∨

3 )].

Since Sym2(π1) = π3�χ3, therefore as Λ
2(π∨

3 ) is a Grössencharacter, we find that
Λ2(π2) contains a Grössencharacter which is not allowed, proving that π1 cannot
be a CM form.

Now we turn to the case when π1 is not CM in which case it is known by Gelbart-
Jacquet that Sym2(π1) is a cuspidal automorphic representation of GL3(AF ). There-
fore by the strong multiplicity one theorem applied to (1), we make the following
conclusions:

(1) the character ω2/ω1 : A×
F /F

× → C× must belong to the isobaric sum
decomposition of Λ2(π2), in particular, π2

∼= π∨
2 ⊗ (ω2/ω1), i.e., π2 has pa-

rameter in the symplectic similitude group, and considering the similitude
factor, we find:

(2) (ω2/ω1)
2 = ω2, i.e., ω2 = ω2

1 .

(2) Sym2(π1) must be contained in the isobaric sum decomposition of π2 � π1.

Since by [KS1], [KS2], π2 �π1 and Sym2(π1)�π1 are known to be automorphic,
we can apply Lemma 3, and conclude that:

(3) π∨
2 = π2 ⊗ (ω1/ω2) ⊂ π1 � Sym2(π∨

1 ) = π1 � ω−2
1 � Sym2(π1).

It is easy to see that,

π1 � Sym2(π1) = (ω1 ⊗ π1) � Sym3(π1),

therefore we can write (3) as:

(4) π2 ⊗ (ω1/ω2) ⊂ (ω−1
1 ⊗ π1) � ω−2

1 � Sym3(π1).

Since π2 is a cuspidal automorphic representation of GL4(AF ), applying the strong
multiplicity one theorem to (4), the only option we have (after using (2)) is that:

π2 = ω−1
1 ⊗ Sym3(π1),

proving the proposition. �
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Proposition 5 provides an affirmative answer to Question 1 for n = 3. The proof
of this proposition will use the unproved cases of functorialty for Λ2(π2) where π2

is a cusp form on GL5(AF ), as well as Sym6(π) for π a cusp form on GL2(AF ).
It may be mentioned that although automorphy of Sym2(π1) for π1 a cusp form
on GL3(AF ) is not known, in our context below, it will be applied to π1 which is
selfdual up to a twist, and hence is a symmetric square of a cusp form on GL2(AF )
up to a twist by Corollary 1 which allows one to conclude automorphy of Sym2(π1)
using known cases of functoriality for Sym4(π).

Proposition 5. Suppose that π1 is a cuspidal automorphic representation of
GL3(AF ) and that π2 is a cuspidal automorphic representation of GL5(AF ) such
that π1 � π2. Then, there exists a cuspidal automorphic representation π of
GL2(AF ) of central character ω such that up to simultaneous twisting of the pair
(π1, π2) by a Grössencharacter, we have:

π1 = Sym2(π),

π2 = ω−1 ⊗ Sym4(π).

Proof. Let ω1 (resp. ω2) be the central character of π1 (resp. π2) which is a
Grössencharacter on GL1(AF ). By Lemma 2, for any Grössencharacter χ on F :

(1) L(s, π2 × π1 × χ)L(s, ω2/ω1 × χ) = L(s, [Λ2(π2)⊕ Sym2(π1)]× χ),

Since π2 is a cuspidal automorphic representation of GL5(AF ), it is known by
Jacquet-Shalika, cf. [JS], that L(s,Λ2(π2)) cannot have a pole at s = 1. Therefore
for χ = ω1/ω2, since the left hand side of the product of L-functions in (1) has a
simple pole at s = 1, right hand side of (1) too must have a simple pole, contributed
therefore by L(s, Sym2(π1)⊗ω1/ω2). In particular, π∨

1
∼= π1 �ω1/ω2. By Corollary

1, such representations of GL3(AF ) arise as a twist of a symmetric square:

π1
∼= λ⊗ Sym2(π),

for a cuspidal automorphic representation π of GL2(AF ) of central character ω, and
λ a Grössencharacter on A×

F . Twisting the pair (π1, π2) by λ−1, we assume that

π1
∼= Sym2(π).
Since π1 = Sym2(π), and it is easy to see that,

Sym2(π1) = Sym2(Sym2(π)) = ω2 + Sym4(π),

and therefore by Kim, cf. [Kim], since Sym4(π) is known to be automorphic, so is
Sym2(π1). Since we are assuming that Λ2(π2) is known to be automorphic, Lemma
2 applies, allowing us to conclude that π2 � π1 is automorphic and we have the
isobaric decomposition:

(2) π2 � π1 � ω2/ω1 = Λ2(π2) � Sym2(π1).

Therefore, by the strong multiplicity one theorem applied to (2), we conclude
Sym2(π1) must be contained in the isobaric sum decomposition of π2 � π1 as a
direct summand.

Applying Lemma 3 to (2), we conclude that:

(3) π2 ⊂ π∨
1 � Sym2(π1),

again as a direct summand, since as we will see now, π∨
1 �Sym2(π1) is automorphic

by our assumption that Sym6(π) is automorphic.
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Since π1 = Sym2(π), and Sym2(Sym2(π)) = ω2 + Sym4(π), we find that:

π1 � Sym2(π1) = Sym2(π) � (ω2 � Sym4(π)),

= ω2 Sym2(π) � Sym2(π) � Sym4(π),

= ω2 Sym2(π) � ω2 Sym2(π) � ω Sym4(π) � Sym6(π),

if particular, if Sym6(π) is automorphic, so is π∨
1 � Sym2(π1).

Since π2 ⊂ π∨
1 � Sym2(π1) = ω−2π1 � Sym2(π1), we find that:

(4) π2 ⊂ Sym2(π) � Sym2(π) � ω−1 Sym4(π) � ω−2 Sym6(π).

Now π2 is a cuspidal representation on GL5(AF ), and by Proposition 6 proved
in the next section, isobaric decomposition of Sym6(π) cannot have a cuspidal
representation of GL5(AF ). Therefore applying the strong multiplicity one theorem
to (4), we find that the only option we have is that Sym4(π) is cuspidal, and

π2 = ω−1 Sym4(π),

proving the proposition. �

Remark 4. The identity proved in Lemma 2:

(1) π2 ⊗ π1 + ω2/ω1 = Λ2(π2) + Sym2(π1),

holds, as the proof shows, among any two representations (π1, V1) and (π2, V2) of
an abstract group G when dim(π2)− dim(π1) = 2 and when for any g ∈ G, the set
of eigenvalues of π1(g) acting on V1, counted with multiplicity, is contained in the
set of eigenvalues of π2(g) acting on V2, counted with multiplicity. All the proofs
in this section of Propositions 3, 4, 5 giving an affirmative answer to Question 1
for the pair (GLn,GLn+2) for n = 1, 2, 3 use this identity (1) crucially, answering
Question 1 for any group G, and then we had to carefully transport that proof (for
arbitrary group G) to the world of automorphic forms using the strong multiplicity
one theorem about isobaric decomposition of automorphic forms, and instances of
functoriality. However, when in section 6, we answer Question 1 in the affirmative
for general groups which are not virtually abelian, we do not rely on the identity
(1).

4. Isobaric types of Sym6(π)

For an automorphic representation π1 of GLn(AF ) with isobaric decomposition

π1 = π11 � π12 � · · · � π1�,

where π1j are irreducible cuspidal automorphic representations of GLdj
(AF ), we

call the set of un-ordered integers {dj} which forms a partition of n to be the
isobaric type of π1.

Proposition 6. Let π be a cuspidal non-CM automorphic representation of GL2(AF )

with central character ω : A×
F /F

× → C×. Assume that Symi(π) are automorphic

for i ≤ 6, and that Sym6(π) is not cuspidal. Then the isobaric type of Sym6(π) is
(3, 3, 1) if π is tetrahedral, (4, 2, 1) if π is octahedral, and of type (4, 3) otherwise.

Proof. We will split the proof according to the different cases for π.
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Tetrahedral case: In this case, one knows that Sym3(π) is reducible, and by
Theorem 2.2.2 of Kim-Shahidi [KS3],

(1) Sym3(π) = χ1π � χ2π,

for certain Grössencharacters χ1, χ2 of F . Since,

(2) Sym2 Sym3(π) = Sym6(π) � ω2 Sym2(π),

equation (1) gives:

(3) Sym6(π) � ω2 Sym2(π) = χ2
1 Sym

2(π) � χ2
2 Sym

2(π) � χ1χ2π � π.

Since we are assuming that π is non-CM, Sym2(π) is a cuspidal automorphic rep-
resentation of GL3(AF ), and thus the only option for the isobaric type of Sym6(π)
is (3,3,1).

Octahedral case: In this case, one knows that Sym2(π), Sym3(π) are irreducible,
but Sym4(π) is reducible, and by Theorem 3.3.7(3) of Kim-Shahidi [KS3],

(4) Sym4(π) = χ1π � χ2 Sym
2(π).

Since,

(5) Λ2 Sym4(π) = ω Sym6(π) � ω2 Sym2(π),

using (4) and (5) we have,

(6) ω Sym6(π) � ω2 Sym2(π) = χ2
1Λ

2(π) � χ2
2Λ

2 Sym2(π) � χ1χ2π � Sym2(π).

On the other hand,

(7) π � Sym2(π) = Sym3(π) � ωπ.

Using (6) and (7) we find that the isobaric type of Sym6(π) is (4,2,1).

Rest of the cases when Sym6(π) is not cuspidal: (Although one expects this
case to consist exactly of icosahedral representations, this seems not known. Such
automorphic representations of GL2(AF ) are called quasi-icosahedral in [Ra]. For
our proof below, this lack of knowledge does not matter.)

By Theorem A′ of Ramakrishnan [Ra], if we are not in the above two cases, and
Sym6(π) is not cuspidal, then Symi(π) are cuspidal for all i ≤ 5, and

(8) Sym5(π) = χπ � Sym2(π′),

where χ is a Grössencharacter on F , and π′ is a cuspidal automorphic representation
on GL2(AF ) such that Sym2(π) and Sym2(π′) are not twist equivalent.

We use the identity:

(9) π � Sym5(π) = Sym6(π) � ω Sym4(π).

Therefore using (8) we have,

(10) χπ � π � Sym2(π′) = Sym6(π) � ω Sym4(π),

or,

(11) χ[ω � Sym2(π)] � Sym2(π′) = Sym6(π) � ω Sym4(π),

which under the assumption that Sym6(π) is automorphic, is an identity of isobaric
automorphic representations.

Since Sym2(π′) is a cuspidal representation on GL3(AF ), there is a GL3-cuspform
in the isobaric decomposition on the left hand side of the identity (11). Further,
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we are forced to have a GL5-cuspform on the left hand side of the identity (11) to
account for Sym4(π) on the right (which is given to be cuspidal), so the possible
isobaric types on the left hand side of the identity (11) are (3,5) + a partition of 4.
Thus we deduce that the isobaric type for Sym6(π), an automorphic representation
on GL7(AF ), is 3 + a partition of 4. However, Sym6(π) cannot have, in its isobaric
decomposition, a representation of GL1 or a representation of GL2 as follows from
the isobaric decomposition (9) above. For example, if Sym6(π) had the shape
π2+π4 with π2 an automorphic representation of GL2 and π4 on GL4, then clearly
the Rankin product of the right hand side of (9) with π∨

2 will have a pole (at s = 1)
whereas the left hand side of the identity (11) which will be π�Sym5(π)�π∨

2 does
not have a pole since in our case, Sym5(π) is a cuspidal representation. Thus the
only option for the isobaric decomposition of Sym6(π) is (4, 3) �

5. Group theoretic analogues

In this paper we have answered the Question 1 for (GLn,GLn+2) for n = 1, 2, 3
in the positive. Thus the first case left unsettled is (GL4,GL6).

In this section, in Example 1 we construct instances where our Question 1 has
a positive answer (assuming strong Artin conjecture) for (GL4,GL6), a case not
treated by our work so far in this paper, and then in the final remark of the
section, we construct instances where our Question 1 has a negative answer, using
Calegari’s work in [Ca], for (GL4,GL6). We begin with some generalities on finite
groups, focusing eventually on GL2(Fq).

For representations V1 and V2 of a group G, define a relationship V1 � V2 (to be
read as V1 immersed in V2) if for each element g ∈ G, the set of eigenvalues of the
action of g on V1 (counted with multiplicities) is contained in the set of eigenvalues
of g acting on V2 (counted with multiplicities). Thus if V1 ⊂ V2 as representations
of G, then V1 � V2. If V1 � V2 and dim(V1) = dim(V2), then of course, V1

∼= V2 as
G-modules, whereas just as in Proposition 1, if dim(V1) + 1 = dim(V2), then also
V1 � V2 implies V1 ⊂ V2 as G-modules. However, it is not true in general that if
V1 � V2, then V1 ⊂ V2 as G-modules as we will now see.

Proposition 7. Let G = GL2(Fq). Let C be an irreducible cuspidal representation
of GL2(Fq) of dimension (q−1), and P an irreducible principal series representation
of GL2(Fq) of dimension (q + 1). Assume that the central character of C and P
are the same, which is ω : Z = F×

q → C×. Then,

C � P.

Proof. One knows that:

(1) The restriction of C to the diagonal torus T = F×
q × F×

q in GL2(Fq) is the
set of all characters with multiplicity 1 of T whose restriction to the center
Z is ω. These characters of T are also contained in the restriction of P to T
(there are two characters {χ1×χ2, χ2×χ1} of T appearing in the restriction
of P to T with multiplicity 2 which are the characters {χ1 × χ2, χ2 × χ1}
of T used to define the principal series P ).

(2) The restriction of C to the anisotropic torus S = F×
q2 in GL2(Fq) is the set

of all characters with multiplicity 1 of S whose restriction to the center Z
is ω except that the two characters {χ, χ̄} of S used to define the cuspidal
representation C do not appear. On the other hand, the restriction of P to
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S is the set of all characters of S with multiplicity 1 whose restriction to
the center Z is ω.

(3) The restriction of C to the upper triangular unipotent group U = Fq in
GL2(Fq) is the regular representation of U except that the trivial represen-
tation of U does not appear in C. On the other hand, the restriction of P to
U is the regular representation of U , except that the trivial representation
appears twice.

It follows that C � P , with dimP − dimC = 2. �

Now we note Proposition 8 whose obvious proof will be omitted. Using this
proposition, and the example of C � P , we get counter-examples to Question 1 at
the beginning of the paper. (The group GL2(Fq), q �= 2, 3, 4 has no two dimensional
irreducible (projective) representation, thus we cannot realize C and P as symmetric
powers of a two dimensional representation of a central cover of GL2(Fq).)

Proposition 8. If G is a finite group realized as a Galois group of number fields
G = Gal(E/F ), thus any two representations of G, V1 of dimension n and V2 of
dimension m gives rise to Artin L-functions, which assuming the strong Artin con-
jecture give rise to cuspidal automorphic representations π1 of GLn(AF ) and π2 of
GLm(AF ). If V1 � V2, then the Hecke eigenvalues of the automorphic representa-
tion π1 are contained in the Hecke eigenvalues of the automorphic representation
π2.

Example 1. Here is a nice example to illustrate the use of finite groups for Ques-
tion 1. The details of the example are taken from Lemma 5.1 and 5.3 of Kim [Kim2]
whose notation we will follow. The group SL2(F5) has two 2-dimensional irreducible
representations σ, στ (favorite of representation theorists, the odd Weil representa-

tion!). These have character values in Q(
√
5), and are Galois conjugate. We have

Sym3(σ) ∼= Sym3(στ ), an irreducible 4 dimensional representation of SL2(F5) ex-
tending to a cuspidal representation C of GL2(F5) of non-trivial central character.
Further, we have,

Sym5(σ) ∼= Sym5(στ ) ∼= Sym2(σ)⊗ στ ∼= Sym2(στ )⊗ σ,

giving the unique irreducible representation of SL2(F5) of dimension 6 extending to
a principal series representation P of GL2(F5) of non-trivial central character, same
as that of C. In particular, for the automorphic representations π1 of GL4(AF )
associated to Sym3(σ) and for the automorphic representations π2 of GL6(AF )
associated to Sym5(σ), for which since Sym3(σ) � Sym5(σ), Proposition 8 applies,
constructing an instance where Question 1 has an affirmative answer (using the
group G = SL2(F5).)

Remark 5. By the work of Calegari, cf. [Ca], irreducible representations of Gal(Q̄/Q)
of dimension 4 and 6 factoring through a Galois extension E of Q with Gal(E/Q) =
S5

∼= PGL2(F5) which arise by taking a cuspidal representation of PGL2(F5) of di-
mensions 4 = q−1, and a principal series of dimension 6 = q+1, give rise to cuspidal
automorphic representations Π and Π′ of GL4(AQ) and GL6(AQ) respectively.

Considerations of this section will then give a counter-example to the Question
1 for the pair of cuspidal automorphic representations π1 = Π and π2 = Π′ of
GL4(AQ) and GL6(AQ), since by Lemma 4, the automorphic representation Π of

GL4(AQ) does not arise as Sym
3(π) of an automorphic representation π of GL2(AQ).
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We leave checking that results of this section are in conformity with the earlier
results in the paper for q = 2, 3, 4 to the reader as a curious exercise!

The proof of Lemma 4 is due to F. Calegari.

Lemma 4. Let Π be an automorphic representation of GL4(AF ) which is an Artin
representation coming from the standard 4-dimensional irreducible representation
of S5 (realized as the Galois group of an extension E/F ). Then Π cannot be written
as Sym3(π) of an automorphic representation π of GL2(AF ).

Proof. Choose a place v of F such that the Frobenius conjugacy class for the ex-
tension E/F in S5 is the conjugacy class of a transposition in S5, and therefore,
the Hecke eigenvalues of Π at the place v is:

(1, 1, 1,−1).

Suppose Πv = Sym3(πv), with Hecke eigenvalues of πv being (αv, βv). Therefore
we have the equality of un-ordered quadruples (1, 1, 1,−1) and (α3

v, α
2
vβv, αvβ

2
v , β

3
v).

Assume without loss of generality that α3
v = 1, and one of α2

vβv, αvβ
2
v is also 1.

Thus either αv = βv or αv = −βv. Neither is an option if the un-ordered quadruples
(1, 1, 1,−1) and (α3

v, α
2
vβv, αvβ

2
v , β

3
v) are the same, and α3

v = 1. �

Question 2 was posed by F. Calegari.

Question 2 (F. Calegari). If the Hecke eigenvalues of an automorphic representa-
tion Π of GLn+1(AF ) are of the form (αn

v , α
n−1
v βv, · · · , αvβ

n−1
v , βn

v ) at almost all
places v of F , then is Π = Symn(π) for an automorphic form π of GL2(AF )?

6. Virtually non-abelian groups

In this section we prove that the group theoretic analogue of the Question 1 has
an affirmative answer as long as the group is not ‘virtually abelian’, i.e., does not
contain a finite index subgroup which is abelian.

In Proposition 9, we call a connected reductive group Q of type A1 if its derived
subgroup is PGL2(C) or SL2(C).

Proposition 9. Let G be a connected reductive algebraic group over C. Let π1 and
π2 be two finite dimensional representations of G with π1 � π2 such that

dim(π2)− dim(π1) = 2.

Then either
π2 = π1 + λ+ μ,

where λ, μ are one dimensional representations of G, or G has a reductive quotient
Q of type A1 and π′

1, π
′
2 irreducible representations of Q of dimensions d and d+2

respectively (d = 0 allowed) such that,

π1 = π + π′
1,

π2 = π + π′
2,

for a finite dimensional representation π of G.

Proof. Let T be a maximal torus in G, and W its Weyl group. Clearly, π1 � π2 if
and only if the weights of π1 for the torus T are contained in the weights of π2 (with
multiplicity). Since weights areW -invariant, if π1 � π2 with dim(π2)−dim(π1) = 2,
we see that there is a set of two (not necessarily distinct) weights of T (that of
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π2 − π1) which is W -invariant. By Lemma 5, this means that either these are
weights of T invariant under W , hence arise from characters λ, μ : G → C×, or
the group G has a quotient Q (obtained by dividing G by all normal simple groups
except one which is PGL2(C) or SL2(C)), with a quotient S of T as a maximal
torus in Q. Further, by the same Lemma 5, these two characters of T are pulled
back of characters of S via the map T → S. In the first case, i.e., when these are
two characters λ, μ : G → C×, the two representations of G, π2 and π1 + λ + μ,
have the same characters on T , therefore must be isomorphic.

In the second case, we appeal to the elementary fact that for a reductive group
Q of type A1, with maximal torus S, any set of two distinct characters of S of the
form {χ, χw} where w is the unique non-trivial element of the Weyl group of Q,
χ+χw is the difference of two irreducible representations π′

1, π
′
2 of Q of dimensions

d and d+ 2 respectively (d = 0 allowed), therefore, we have

π2 − π1 = π′
2 − π′

1,

as T -modules, and therefore

π2 + π′
1 = π′

2 + π1,

as G-modules, and the conclusion of the proposition follows. �

Lemma 5. Let G be a connected reductive group with T a maximal torus and W
its Weyl group. Then if χ is a character of T whose W -orbit has ≤ 2 elements,
then either χ is the restriction of a one dimensional representation of G to T , or
G has a quotient Q of type A1 with S a maximal torus of Q which is a quotient of
T , and χ is a character of T factoring through S.

Proof. It suffices to prove the lemma for semisimple groups where it easily reduces
to a simple group. The lemma for a simple group reduces to the assertion that if
G is a simple group which is not PGL2(C) or SL2(C), and if χ is a character of T
whose W -orbit has ≤ 2 elements, then character must be trivial. For this, observe
the well-known fact, cf. [Hum], Lemma B of section 10.3, that the stabilizer of χ
(in W ), an element in the character group X�(T ), which we assume without loss
of generality to belong to fundamental Weyl chamber, is generated by the simple
reflections fixing χ, hence in particular, it is the Weyl group WX of the associated
Levi subgroup. Now |W/WX | ≥ 3 can be easily proved for groups G of rank ≥ 2,
by an easy reduction to rank 2 where it is clear. �

Corollary 2 follows by an application of Clifford theory (applied to the normal
subgroup G0 of G) combined with Proposition 9 applied to G0, we omit its proof.

Corollary 2. Let G be an algebraic group over C, with G0, the connected com-
ponent of identity, a non-abelian reductive group. Assume G has irreducible finite
dimensional representations π1 and π2, with π1 � π2 (when restricted to G0) such
that

dim(π2)− dim(π1) = 2,

and the action of G on π1 + π2 is faithful. Then, both π1, π2 remain irreducible
when restricted to G0, and their restriction to G0 arises from a quotient Q (not
necessarily semi-simple) of G of type A1.

Remark 6. By proposition 9, there are no relations π1 � π2 among irreducible
representations of a connected simple algebraic group with dim(π2)− dim(π1) = 2,
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other than the obvious ones for G = SL2(C), and G = PGL2(C). Without the
constraint on dim(π2) − dim(π1) = 2, there are naturally many more representa-

tions, such as the pair of representations Λk(Cn), Symk(Cn) of GLn(C). It seems
interesting to classify all possible pairs of irreducible representations (π1, π2) with
π1 � π2 for connected simple algebraic groups with dimπ2−dimπ1, a fixed integer.
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