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WEAK CUSPIDALITY AND THE HOWE CORRESPONDENCE

JESUA EPEQUIN

Abstract. We study the effect of the Howe correspondence on Harish-Chandra
series for type I dual pairs over finite fields with odd characteristic. We de-
fine a bijection obtained from this correspondence, and enjoying the property
of “having minimal unipotent support”. Finally, we examine the interaction
between the Howe correspondence and weak cuspidality.

Introduction

Let Fq be a finite field with q elements and odd characteristic. A pair of reductive
subgroups of Sp2n(q), where each one is the centralizer of the other, is called a
reductive dual pair. We focus our attention on irreducible dual pairs (cf. [16]). One
such pair can be linear (GLm(q),GLm′(q)), unitary (Um(q),Um′(q)) or symplectic-
orthogonal (Sp2m(q),Om′(q)), with n = mm′ in all cases. The last two are also
called type I dual pairs, and the groups belonging to them are called type I groups.

Let (G,G′) be one of the reductive dual pairs listed above. Roger Howe defined
a correspondence ΘG,G′ : R(G) → R(G′) between their categories of complex
representations. Known as Howe correspondence, it arises from the restriction to
G×G′ of the Weil representation ω of the symplectic group Sp2n(q) (cf. [14]).

Let G be a connected reductive group defined over Fq, and G∗ its dual group.
Denote by G and G∗ their groups of rational points. In [17] Lusztig defined a
partition of the set E (G) of irreducible representations of G into Lusztig series
E (G, (s)). These series are parametrized by rational conjugacy classes of semisimple
elements s of G∗. The elements of E (G, (1)) are called unipotent representations of
G.

In general, the Howe correspondence is not compatible with unipotent represen-
tations. Therefore, we make use of a similar correspondence Θ�

m,m′ : R(Gm) →
R(G′

m′) arising from a Weil representation ω� introduced by Gérardin in [11]. This
correspondence preserves unipotent representations (cf. Proposition 2.3 in [3]).
Since in this paper we only work with this modified Howe correspondence we will
drop the superscript and denote Θ�

m,m′ , and ω� by Θm,m′ , and ω respectively.

In [19] Lusztig found that, for every irreducible representation π of a connected
reductive group G, there is a unique rational unipotent class Oπ in G which has the
property that

∑
x∈Oπ(q)

π(x) is nontrivial, and that has maximal dimension among

classes with this property. This class is called the unipotent support of π. Such
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classes are ordered by the relation given by O′ � O, if and only if O′ ⊂ O, referred
to as the closure order.

In [5] we defined an injective mapping θG,G′ : E (G, (1)) → E (G′, (1)) between
the unipotent series of the members of a type I dual pair (G,G′) in the stable range
(cf. [2]). For a unipotent representation π of G

– The representation θG,G′(π) occurs in ΘG,G′(π).
– If π′ belongs to ΘG,G′(π), then Oθ(π) � Oπ′

The last item above asserts that θG,G′(π) has the smallest unipotent support among
irreducible representations in ΘG,G′(π), it is in this sense minimal.

We want to extend this definition to the whole set of irreducible representations.
Naturally, any attempt to do this must make use of the Lusztig bijection. This
bijection known as well as the Lusztig correspondence is a one-to-one map between
the series E (G, (s)) and the series E (CG∗(s), (1)), of unipotent representations of
the centralizer CG∗(s). For classical groups, this centralizer can be expressed as a
product of smaller reductive groups.

For instance, when G is a unitary group

CG∗(s) � G# ×G(1),

where G# is a product of linear or unitary groups, and G(1) is a unitary group. We
obtain in this way a modified Lusztig correspondence Ξs sending π ∈ E (G, (s)) to
π# ⊗ π(1) ∈ E (G# ×G(1), (1)). For a unitary dual pair (G,G′) this bijection fits in
the commutative diagram

E (G, (s)) E (G# ×G(1), (1))

R(G′, (s′)) R(G# ×G′
(1), (1)),

ΘG,G′

Ξs

∼

ι⊗ΘG(1),G
′
(1)

Ξs′
∼

where ι(π) = π̃ denotes the contragredient representation of π. This motivates us
to define θG,G′(π), for π in E (G), to be the unique irreducible representation of G′

such that

Ξs′(θG,G′(π)) = π̃# × θG(1),G
′
(1)
(π(1)).

We also define such a mapping θG,G′ : E (G) → E (G′), for symplectic-orthogonal
pairs in the stable range. As we could expect, this bijection also selects represen-
tations with smallest unipotent supports. This is our first result (Theorem 4).

Theorem. Let π, τ belong to E (G, (s)), and πu, τu denote the corresponding unipo-
tent representations of CG∗(s). If Oπu

� Oτu then Oπ � Oτ . In particular, for
π in E (G), the subrepresentation θG,G′(π) of ΘG,G′(π) has the smallest unipotent
support.

In a recent paper [13], Gurevich and Howe presented the notion of rank for
representations of finite symplectic groups (see Section 4). This conduced to the
introduction of the eta correspondence. Consider a dual pair (G,G′) formed by
one orthogonal and one symplectic group; and suppose the pair is in the stable
range. Howe and Gurevich show that for ρ in E (G), there is a unique irreducible
representation in ΘG,G′(ρ) of maximal rank, it is denoted by η(ρ).

The correspondences θ and η are defined in different ways. The former chooses
a subrepresentation of Θ with smallest unipotent support, whereas the latter se-
lects one with greatest rank. In [22], Shu-Yen Pan shows that these two agree on
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their common domain of definition (the stable range), i.e. among the irreducible
constituents of Θ(π), the representation with the smallest unipotent support is the
one having the greatest rank. This points out to an inverse relation between these
two features. We discuss this in Section 4.

In [12], Gerber, Hiss and Jacon introduced the notion of weak cuspidality for
modular representations in non-defining (including zero) characteristic. The spirit
of the definition is the same as for cuspidal representations: the vanishing of par-
abolic restriction functors. For weakly cuspidal representations we nonetheless
restrict our attention to certain kind of parabolic subgroups, called pure by the
authors. This yields a weak Harish-Chandra theory that refines the usual one.
Moreover, for representations of unitary groups in prime characteristic, this new
definition provides a natural partition of the set of unipotent representations (see
Proposition 5), in the same way usual series do for ordinary unipotent representa-
tions.

A natural question arises: how does the Howe correspondence behave with re-
spect to this weak Harish-Chandra theory? We provide an answer to this question
for ordinary representations. We first prove that the Howe correspondence respects
weak cuspidality in case of first occurrence. This is our second result. It holds for
type I dual pairs (Gm, G′

m′), where the subindexes stand for the Witt indexes.

Theorem. Let (Gm, G′
m′) be a type I dual pair, and π be an irreducible weakly

cuspidal representation of Gm, and let m′(π) be its first occurrence index.

(1) If m′ < m′(π), then Θm,m′(π) is empty
(2) The representation Θm,m′(π)(π) is irreducible and weakly cuspidal
(3) If m′ > m′(π), then none of the constituents of Θm,m′(π) is weakly cuspidal

The proof of this result can divided into two independent parts: existence and
uniqueness, each making use of different tools. The former relies on the computation
of coinvariants of the Weil representation presented in Section 1. The latter relies
on the study of orbits and stabilizers for the action of a block diagonal subgroup of
a type I group on the set of maximal isotropic subspaces of the underlying module
of this group. We need to mention that the proof is inspired by the equivalent
result for cuspidal representations, but that it is more refined. Indeed, for cuspidal
representations, the uniqueness proof used the fact that the stabilizers above are
contained in a direct product of parabolic subgroups. For weakly cuspidal repre-
sentations this is not enough, we had to calculate these stabilizers explicitly. In
order to do so we had first to find explicit representatives for the orbits (which is
also not needed in the cuspidal setting).

From the last theorem above, the work required to establish the agreement be-
tween the Howe correspondence and weak cuspidal support is very much the same
required in the cuspidal setting.

1. Howe correspondence and cuspidal support

Theorem 3.7 of [3] states that the Howe correspondence is compatible with unipo-
tent Harish-Chandra series. In this section, we generalize this theorem to arbitrary
Harish-Chandra series. The proof follows that of Theorem 2.5 in [16].

We fix two Witt towers, T and T ′, such that (Gm, G′
m′) is a type I dual pair

for any Gm ∈ T and G′
m′ ∈ T ′.
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Let D be a field equal to Fq when the dual pair is symplectic-orthogonal, and
equal to Fq2 when the pair is unitary. Let Wm be the underlying D-vector space of
Gm. Let Pk be the stabilizer in Gm of the totally isotropic subspace ofWm, spanned
by the k first vectors of a hermitian base, k ≤ m. Denote by Nk its unipotent
radical, GLk = GL(D) and Mk = GLk ×Gm−k the standard Levi subgroup of
Pk. Denote by GLk′ , P ′

k′ , N ′
k′ , and M ′

k′ the analogous groups for G′
m′ . Finally,

denote by RG the natural representation of the group G ×G on the space S (G),
of functions defined on G with values in C. This representation is isomorphic to
the one obtained by inducing the trivial representation of G to G × G (diagonal
inclusion). It decomposes as

RG =
∑

π∈E (G)

π ⊗ π̃,

where π̃ denotes the contragredient representation of π.

Proposition 1 ([3, Proof of Theorem 3.7], [6, Corollary 1]). Let ∗Rk ⊗ 1 and
1 ⊗ ∗R′

k′ be the parabolic restriction functor from Gm × G′
m′ to Mk × G′

m′ and
Gm ×M ′

k′ respectively.

(a) The representation (∗Rk ⊗ 1)(ωm,m′) decomposes as:

min{k,m′}⊕
i=0

R
Mk×G′

m′
GLk−i ×GLi ×Gm−k×M ′

i
1GLk−i

⊗RGLi
⊗ ωm−k,m′−i.

(b) Likewise, the representation (1⊗ ∗R′
k′)(ωm,m′) decomposes as:

min{k′,m}⊕
i=0

R
Gm×M ′

k′
Mi×GLk′−i ×GLi ×G′

m′−k′
1GLk′−i

⊗RGLi
⊗ ωm−i,m′−k′ .

Let Gm be a type I group in the Witt tower T . The set of standard Levi
subgroups of Gm can be parametrized by partition t = (t1, . . . , tr), such that
|t| =

∑r
i=1 ti is not greater than m. The corresponding Levi subgroup is equal

to GLt1 × · · · ×GLtr ×Gm−|t|.
For this Levi subgroup, we denote parabolic induction by Rt and parabolic

restriction by ∗Rt. The Harish-Chandra series corresponding to the representation
σ1⊗· · ·⊗σr ⊗ϕ of this Levi is denoted by E (Gm,σ⊗ϕ)t, where σ = σ1⊗· · ·⊗σr.
Finally, for a cuspidal representation ϕ of Gm, we denote by ϕ′ (resp. m′(ϕ)) its
first occurrence (resp. first occurrence index) [1].

Proposition 1 is a key result in the proof of the following.

Theorem 1 ([6, Theorem 3]). The image of E (Gm,σ⊗ϕ)t by the correspondence
Θm,m′ is spanned by a single series E (G′

m′ ,σ′ ⊗ϕ′)t′ whenever m′ ≥ m′(ϕ) and is
zero otherwise. In the first case, if |t′| ≥ |t| then σ′ = σ ⊗ 1 and t′ = t ∪ 1d; if
|t′| < |t| then σ = σ′ ⊗ 1 and t = t′ ∪ 1d, where d = ||t′| − |t||.

In [6] we showed how this result implies Theorem 3.7 in [3]. The latter basically
says that the Howe correspondence preserves unipotent Harish-Chandra series. We
also used Theorem 1 to obtain the bijective correspondence θ we present in Sec-
tion 3. However, this was not necessary, we can define θ using only the Lusztig
correspondence (as done below).
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2. Howe correspondence and Lusztig correspondence

The purpose of this section is to see the effect of the Lusztig correspondence on
the Howe correspondence for type I dual pairs.

2.1. Centralizers of rational semisimple elements. Let G be a reductive
group defined over Fq, and CG(x) be the centralizer of a rational element x in
G. Denote by G and CG(x) their groups of rational elements.

Assume that G is also connected. In Proposition 5.1 of [18], Lusztig found a
bijection

Ls : E (G, (s)) � E (CG∗(s), (1)),(1)

where s is a rational semisimple element of G∗. Aubert, Michel and Rouquier
extended this bijection to even orthogonal groups (Proposition 1.7 of [3]). It is
known as the Lusztig bijection or Lusztig correspondence. Taking s = 1 yields a
bijection between the series of unipotent representations of G with that of its dual:

L1 : E (G, (1)) � E (G∗, (1)).(2)

We can also extend (1) by linearity in order to obtain an isometry between the
categories R(G, (s)) and R(CG∗(s), (1)) spanned by the Lusztig series E (G, (s))
and E (CG∗(s), (1)) respectively.

Following Section 1.B in [3], let G be a classical group of rank n, and Tn = Fn
q .

Let us choose an order in Fq such that 1 (resp. −1) is the largest (resp. second
largest) element, and let (Tn)≤ be the subset of Tn whose elements (λ1, . . . , λn)
verify λ1 ≤ . . . ≤ λn for this order. Let s be a rational semisimple element of its
Langlands dual G∗. By definition, a rational semisimple element is conjugate to a
unique element (λ1, . . . , λn) in (Tn)≤. Let νλ(s) be the number of times λ appears
in this list. There is a decomposition

CG∗(s) =
∏

G[λ](s),

where [λ] is the orbit of λ by the action of the Frobenius endomorphism, intersected
with {λ1, . . . , λn}. Each G[λ](s) is a reductive quasi-simple group of rank |[λ]|νλ(s).
Moreover, if λ �= ±1, then G[λ](s) is a unitary or general linear group (possibly
over some finite extension of Fq). Additionally:

(1) If G = Un is unitary, then G[±1](s) is a unitary group.
(2) If G = SO2n+1, then G[−1](s) = O2ν−1(s), and G[1](s) = SO2ν1(s)+1.
(3) If G = O2n, then G[±1](s) = O2ν±1(s).

In all cases we see that G[1](s) is a group of the same kind as G, but of smaller
rank.

2.2. Weil representation and Lusztig correspondence. Consider a unitary or
symplectic-(even)orthogonal dual pair (G,G′). Let m (resp. m′) be the Witt index
of G (resp. G′). According to Proposition 2.3 in [3], if s is a rational semisimple
element in G∗, then there is a rational semisimple element s′ in G′∗, such that the
Howe correspondence relates E (G, (s)) and E (G′, (s′)). Moreover, there is some l ≤
min(m,m′), and t in (Tl)≤ with eigenvalues different from 1, such that s = (t, 1),
and s′ = (t, 1). Let ωG,G′,t denote the projection of the Weil representation ωG,G′
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onto R(G, (s))⊗R(G′, (s′)), and Tl,0 the subset of (Tl)≤ whose elements have all
their eigenvalues different from 1. Proposition 2.4 in [3] asserts that

ωG,G′ =

min(m,m′)⊕
l=0

⊕
t∈Tl,0

ωG,G′,t.

We now endeavour to study the effect of the Lusztig correspondence on the Weil
representation ωG,G′,t. We treat unitary and symplectic-orthogonal groups inde-
pendently.

2.2.1. Unitary pairs. Suppose that G is a unitary group. Let s be a rational
semisimple element in G∗, let G# denote the product of G[λ](s) for λ �= 1, and
G(1) be the dual group of G[1](s). The groups of rational elements of G# and G(1)

will be denoted by G# and G(1) respectively. Considering the decomposition of
centralizers discussed above, and since by (2) the unipotent Lusztig series of G(1)

and G[1] can be identified, we obtain a modified Lusztig bijection

Ξs : E (G, (s)) � E (G#, (1))× E (G(1), (1)).(3)

For π in E (G, (s)) we will denote by π# and π(1) the (unipotent) representations
of G# and G(1) such that

Ξs(π) = π# ⊗ π(1).

Let (G,G′) be a unitary dual pair, and s (resp. s′) be a semisimple element of G∗

(resp. G
′∗).

Proposition 2. The groups G# and G′
# are isomorphic. Moreover, the pair

(G(1), G
′
(1)) can be identified with a unitary dual pair.

Proof. Both assertions in the statement above follow from the explicit decomposi-
tion of centralizers given in Section 2.1. The isomorphism between G# and G′

# is

a consequence of the fact that s and s′ have the same eigenvalues different from 1
(with same multiplicities). Concerning the second assertion, it suffices to state that
G[1] and G′

[1] are unitary groups. �

Finally, the Weil representation ωG,G′,t can be described in terms of a correspon-
dence between unipotent characters, defined either by RG#,1 or by the unipotent
projection of the Weil representation of the smaller unitary dual pair (G(1), G

′
(1)).

Theorem 2 ([3, Théorème 2.6]). Let t belong to Tl,0. For a linear or unitary pair
(G,G′), the representation ωG,G′,t is the image by the Lusztig correspondence

E (G×G′, (s× s′)) � E (CG∗(s)× CG′∗(s′), (1)),

of the representation

RG#,1 ⊗ ωG(1),G
′
(1)

,1.

2.2.2. Symplectic-(even)orthogonal pairs. Suppose that G is a symplectic, or an
even-orthogonal group. Let s be a rational semisimple element in G∗, let G#

denote the product of G[λ](s) for λ �= ±1, let G(−1) = G[−1](s), and G(1) be
the dual group of G[1](s). Again, considering the decomposition of centralizers
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discussed above, and that since by (2) the unipotent Lusztig series of G(1) and
G[1](s) can be identified, we obtain a modified Lusztig bijection

Ξs : E (G, (s)) � E (G#, (1))× E (G(−1), (1))× E (G(1), (1)).(4)

For π in E (G, (s)) we will denote by π#, π(−1) and π(1) the (unipotent) repre-
sentations of G#, G(−1) and G(1) such that

Ξs(π) = π# ⊗ π(−1) ⊗ π(1).

Let (G,G′) be a symplectic-orthogonal dual pair, and s (resp. s′) be a semisimple

element of G∗ (resp. G
′∗).

Proposition 3. The groups G# and G(−1) are isomorphic to G′
# and G′

(−1) re-

spectively. Moreover, the pair (G(1), G
′
(1)) is a symplectic even-orthogonal dual pair.

Proof. The proof of the first assertion is the same as that of Proposition 2, with
the difference that the groups G[−1](s) and G′

[−1](s
′) are in this case isomorphic

to O2ν−1(t). For the second assertion, since G is symplectic, the group G[1](s) is
special odd orthogonal and hence its dual is again symplectic. Likewise, the group
G′

[1](s
′) is even orthogonal, and so is its dual. �

As for unitary pairs, we now describe the Weil representation ωG,G′,t for sympl-
ectic-orthogonal pairs.

Theorem 3 ([21, Theorem 6.9 and Remark 6.10]). Let t belong to Tl,0. For a
symplectic even-orthogonal dual pair (G,G′) the representation ωG,G′,t is the image
by the Lusztig correspondence

E (G×G′, (s× s′)) � E (CG∗(s)× CG′∗(s′), (1)),

of the representation
RG#,1 ⊗RG(−1),1 ⊗ ωG(1),G

′
(1)

,1.

3. Minimal representations

LetG be a reductive group defined over Fq, andP = LU be a Levi decomposition
of the rational parabolic subgroup P. For a cuspidal representation ρ of L set

WG(ρ) = {x ∈ NG(L)/L : xρ = ρ}.
By Corollary 5.4 in [15] and Corollary 2 in [9], there is an isomorphism

EndG(R
G
L (ρ)) � C[WG(ρ)].(5)

In particular, irreducible representations in the Harish-Chandra series E (G, ρ)L are
indexed by irreducible representations of WG(ρ).

When G is a type I group and ρ is a cuspidal unipotent representation, the group
WG(ρ) above is a type B Weyl group. It is known that irreducible representations of
these groups are parametrized by bipartitions. We denote by ρμ,λ the representation
in E (Wr) corresponding to the bipartition (μ, λ) of r.

For every irreducible representation π of a connected reductive groupG, there is a
unique rational unipotent class Oπ in G which has the property that

∑
x∈Oπ(q)

π(x)

is nontrivial, and that has maximal dimension among classes with this property.
This class, introduced by Lusztig in [19], is called the unipotent support of π.

We now introduce a partial order on the set of unipotent conjugacy classes. It
is crucial for results below.
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Definition 1. The relation on the set of unipotent conjugacy classes of G, given
by O′ � O, if and only if O′ ⊂ O, is a partial order. We refer to it as the closure
order.

Let (G,G′) be a unitary or symplectic-(even)orthogonal dual pair. In [5] we de-
fined a bijective correspondence θG,G′ : E (G, (1)) → E (G′, (1)) between the unipo-
tent series of G and G′, in such a way that, for a unipotent representation π of
G

– The representation θ(π) occurs in Θ(π) [20].
– If π′ belongs to Θ(π), then Oθ(π) � Oπ′

The last item above asserts that θG,G′(π) has the smallest unipotent support among
irreducible representations in ΘG,G′(π), it is in this sense “minimal”.

Before extending this to arbitrary representations, we recall the definition for
unipotent representations. We work with symplectic orthogonal and unitary pairs
independently.

3.1. Unitary pairs. Unipotent representations of the unitary groups Un(q) are
known to be indexed by partitions of n. Moreover, those belonging to the same
Harish-Chandra series share a common 2-core and are therefore determined by
their 2-quotient (of parameter one) [3]. If we let Rμ be the representation of Un(q)
indexed by the partition μ of n, then the bijection issued from (5) relates Rμ to
ρμ(0),μ(1), where (μ(0), μ(1)) is the 2-quotient (of parameter 1) of μ.

Let (Gm, G′
m′) denote a unitary dual pair. According to Theorem 3.7 in [3] the

Howe correspondence relates the unipotent series E (Gm)ϕ to the series R(G′
m′)ϕ′ ,

where ϕ′ is the first occurrence of ϕ. Moreover, since ϕ ∈ E (Gl) and ϕ′ ∈ E (G′
l′)

are cuspidal and unipotent, the integers l and l′ are triangular, i.e. l = k(k + 1)/2
and l′ = k′(k′ + 1)/2 for some k and k′. From the discussion in the previous
paragraph, the theta correspondence between the series above can be identified to
a correspondence between E (Wr) and R(Wr′), for suitable r and r′. We can now
define a bijection θ : E (Wr) → E (Wr′) issued from the one above:

– θ(λ, μ) = ((r′ − r) ∪ μ, λ), if k is odd or zero.
– θ(λ, μ) = (μ, (r′ − r) ∪ λ), otherwise

Let Oμ be the unipotent support of the unipotent character Rμ. The closure
order among unipotent supports agrees with the dominance order on the indexing
partition [26], i.e. Oμ � Oν if and only if μ ≤ ν. The definition of θ made above is
done so that the unipotent support is at its smallest. Indeed, if θ(μ) is the partition
whose 2-quotient is θ(μ(0), μ(1)), then for all representations Rμ′ in Θ(Rμ) we have
θ(μ) ≤ μ′. We obtain in this way a bijection θG,G′ between the set of unipotent
characters of G and G′.

Let ι be an involution of sending a representation π to its dual π̃. For the defini-
tion in the general case we use Theorem 2, which we can express as a commutative
diagram

E (G, (s)) E (G# ×G(1), (1))

R(G′, (s′)) R(G# ×G′
(1), (1)).

ΘG,G′

Ξs

∼

ι⊗ΘG(1),G
′
(1)

Ξs′
∼
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This motivates us to define θG,G′ : E (G) → E (G′) by

Ξs′(θG,G′(π)) = π̃# × θG(1),G
′
(1)
(π(1)).

The representation θG(1),G
′
(1)
(π(1)) has already been defined since π(1) is unipotent.

We are therefore extending the definition of θG,G′ to the whole set of irreducible
representations, so that it is congruent with the Lusztig correspondence. It is only
natural to ask if this extension also selects representations with smallest possible
unipotent support. The answer is provided in a subsequent section.

3.2. Symplectic-orthogonal pairs. Let (Gm, G′
m′) be a dual pair (Sp2m(q),Oε

2m′).
Again, according to Theorem 3.7 in [3], the Howe correspondence Θm,m′ relates the
unipotent Harish-Chandra series E (Gm)ϕ to the series E (G′

m′)ϕ′ , where ϕ′ is the
first occurrence of ϕ. Moreover, since ϕ ∈ E (Gl) and ϕ′ ∈ E (G′

l′) are cuspidal and

unipotent, l = k(k + 1) and l′ = k
′2 for some k and k′. Again, thanks to (5), both

these series can be identified to the set of representations of certain Weyl groups
of type B. Hence, the correspondence between unipotent representations becomes
a correspondence between the set of irreducible representations of a pair (Wr,Wr′)
of type B Weyl groups, for suitable r and r′. We now define the one-to-one corre-
spondence θ : Irr(Wr) → Irr(Wr′) as follows :

– θ(λ, μ) = (λ, (r′ − r) ∪ μ), when k ≡ 1
2 (ε− 1) mod 2.

– θ(λ, μ) = ((r′ − r) ∪ λ, μ), otherwise.

Using the Springer correspondence to calculate the unipotent support, in [5] we
are able to prove that the choice above is made so that the support of θ(π) is the
smallest in Θ(π) for unipotent π. We obtain in this way a bijection θG,G′ between
the set of unipotent characters of G and G′.

Again, let ι be an involution of sending a representation to its dual. For the
general case, we use Theorem 3, which again we express as a commutative diagram

E (G, (s)) E (G# ×G(−1) ×G(1), (1))

R(G′, (s′)) R(G# ×G(−1) ×G′
(1), (1)).

ΘG,G′

Ξs

∼

ι⊗ ι⊗ΘG(1),G
′
(1)

Ξs′
∼

This moves us to define θG,G′(π) to be the representation such that

Ξs(θG,G′(π)) = π̃# ⊗ π̃(−1) ⊗ θG(1),G
′
(1)
(π(1)).

We stress that the representation θG(1),G
′
(1)
(π(1)) has already been defined since π(1)

is unipotent. We are therefore extending the definition of θ from unipotent to arbi-
trary representations making sure it is compatible with the Lusztig correspondence.
Again, it seems reasonable to ask if this extension also selects a representation with
smallest unipotent support. We provide the answer in the following section.

3.3. Lusztig correspondence and unipotent support. Assume G is a con-
nected reductive group. Let P be a parabolic subgroup of G with Levi decom-
position P = LU . Following [25] we introduce an induction functor on unipotent
classes from L to G as follows: for a unipotent class O in L, there exists a unique
unipotent class Õ of G such that Õ∩OU is dense in OU . We say that Õ is the class
obtained inducing O from L to G, and we write Õ = IndGL (O). This definition does
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not depend on the parabolic P containing L. Moreover, according to Proposition
II.3.2 in [25]

IndGL (O) =
⋃
x∈G

xOUx−1.(6)

Let s be a rational semisimple element of G∗, and let G(s) be the dual group of
CG∗(s). Since the unipotent series of these two groups can be identified, we have
a Lusztig bijection between the series of G defined by s and the unipotent series
of G(s). Denote by ρu the unipotent representation of G(s) corresponding to ρ in
E (G, (s)). If the group CG∗(s) can be identified to a Levi subgroup of G∗ then,
according to Proposition 4.1 in [10],

Oρ = IndGG(s)(Oρu
),

i.e. the unipotent supports of corresponding characters are related by the induction
of classes defined above.

For both symplectic-orthogonal and unitary dual pairs (G,G′), we have first de-
fined the bijection θG,G′ on the set of unipotent representations combinatorially.
We have then used the Lusztig correspondence to extend this definition to all ir-
reducible representations. In the unipotent case the definition was made so as to
minimize the unipotent support. If we aim at proving that this also holds for ar-
bitrary representations, we must study the effect of the Lusztig correspondence on
the unipotent support. The following result addresses this issue. As in (1), we
consider the Lusztig correspondence between the series E (G, (s)) and E (CG∗(s), 1).

Theorem 4. Let π, τ belong to E (G, (s)), and πu, τu denote the corresponding
unipotent representations of CG∗(s). If Oπu

� Oτu then Oπ � Oτ . In particu-
lar, for π in E (G), the subrepresentation θG,G′(π) of ΘG,G′(π) has the smallest
unipotent support.

Proof. We consider first the case where the centralizer of s in G∗ is a Levi subgroup
of G∗. From the discussion of centralizers in Section 2.1, this is the case for type
A groups.

Let L be a Levi subgroup contained in the parabolic P = LU . Take two unipotent
classes O and O′ in L, such that O′ is contained in the closure O. This implies
that O′U is contained in OU . Hence, due to (6):

IndGL (O′) =
⋃
x∈G

xO′Ux−1 ⊂
⋃
x∈G

xOUx−1 = IndGL (O),

whence IndGL (O′) � IndGL (O). Since in this case, as discussed above, the supports
of π, and τ are obtained inducing those of πu, and τu respectively, the result holds.

For the general case, since characters related by the Lusztig correspondence
have been unipotent supports related by the generalized induction defined in [25](as
proven in Proposition 4.5 of [10]), the result follows from the fact that this induction
is increasing (Remarque III.12.4.2 in [25]). �

4. Unipotent support and rank

In a recent paper [13], Howe and Gurevich presented the notion of rank for
representations of finite symplectic groups. This conduced to the introduction of
the eta correspondence, defined by the property of “having maximal rank”, as
explained below.
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Let Ln(q) be the group of symmetric matrices of size n with coefficients in Fq,
or equivalently, of symmetric bilinear forms over an Fq-vector space of dimension
n. Consider the Siegel parabolic P of Sp2n(q), with Levi decomposition P = LN ,
where L � GLn(q) and

N =

{(
1 A
0 1

)
: A belongs to Ln(q)

}
.

We identify the group N to the group Ln(q). Being abelian, all its irreducible rep-
resentations are one-dimensional. Moreover, fixing a non-trivial additive character
ψ of Fq, we can define a bijection between N and E (N) relating a symmetric A to
ψA, the latter being defined by ψA(B) = ψ(tr(AB)), for B symmetric.

Let ρ be a representation of Sp2n(q). The restriction of ρ to N decomposes as a
weighted sum of representations ψA, for A symmetric. The orbits of the action of
L on N can be identified with the orbits of GLn(q) on Ln(q), i.e. with equivalence
classes of symmetric matrices. The coefficients on the sum above are therefore
constant on these classes. The first major invariant of a symmetric bilinear form is
its rank. It is well known that, over finite fields of odd characteristic, there are just
two isomorphism classes of symmetric bilinear forms of a given rank r. We denote
by O+

r and O−
r the two equivalence classes of symmetric matrices of rank r. The

restriction of ρ to N decomposes as:

ρ|N =
n∑

r=0

∑
±

mr±
∑

A∈O±
r

ψA.

Definition 2.

– The rank of the character ψA is defined as the rank of A.
– The rank of ρ, denoted by rk(ρ), is defined as the greatest k such that the

restriction to N contains characters of rank k, but of no higher rank.

Consider the dual pair (G,G′) = (O±
2k, Sp2n′) where 2k ≤ n′, i.e., the dual

pair is in stable range. Howe and Gurevich show that for ρ in E (O±
2k(q)), there is

a unique irreducible representation in ΘG,G′(ρ) of rank 2k, all other constituents
having smaller rank. This gives rise to a mapping called the eta correspondence:

η : E (O±
2k(q)) → E (Sp2n′(q)).

We now have two one-to-one correspondences θ and η between the set of irreducible
representations E (G) of G, and the corresponding set E (G′) of G′. They are de-
fined in different ways. The former chooses a subrepresentation of Θ with smallest
unipotent support, whereas the latter selects one with greatest rank. In [22], Shu-
Yen Pan shows that these two “theta relations” agree on their common domain of
definition (the stable range). This amounts to saying that, among the irreducible
constituents of Θ(π), the representation with the smallest unipotent support is the
one having the greatest rank. This points out to an inverse relation between these
two features. We could ask if this also holds for all representations. This is indeed
the case for unipotent representations, the proof is straightforward from Proposition
3.4 in [23]. The general case still needs to be settled.

Conjecture 1. Let π and τ be two representations of G. If Oπ � Oτ then rk(τ ) ≤
rk(π).
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The statement in Conjecture 1 is the best we can hope for. That is to say, we
cannot ask the reverse implication to hold as well. The unipotent support is a
geometrical object attached to a representation, whereas its rank is just a number.
Since the closure order is a partial order, the reverse implication would tell us that
the rank of the latter determines the former.

5. Howe correspondence and weak Harish-Chandra theory

5.1. Weak Harish-Chandra theory. Let G = Gn be a type I group. For an
integer 0 ≤ r ≤ n, the pure standard Levi subgroup Mr,n−r of G is a subgroup of
the form

Mr,n−r = Gn−r ×GL1 × . . .×GL1,

where the linear group appears r times. A Levi subgroup of G is called pure if it is
conjugated to a pure standard Levi.

By the very definition, the set of pure Levi subgroups is stable by G-conjugation.
It can also be proven [12, Proposition 2.2] that if M and M ′ are pure Levi then
the intersection xM ∩M ′ is pure as well. This property is crucial in showing that
Harish-Chandra philosophy holds when we focus on set of pure Levi subgroups.

Let π be a representation of G, we say that π is weakly cuspidal if the parabolic
restriction of π to a proper pure Levi subgroup is trivial, i.e. ∗RG

M (π) = 0 for
every proper pure Levi subgroup M . A pair (M,π), where M is a pure Levi
subgroup and π is a weakly cuspidal representation of M , is called a weakly cuspidal
pair. As in the usual cuspidal setting, these pairs provide a partition of the set of
irreducible representations of G. Indeed, defining the weak Harish-Chandra series
corresponding to (M,π), as the set of irreducible subrepresentations of the parabolic
induced RG

M (π), we have:

Proposition 4 ([12, Proposition 2.3]).

(a) The weak Harish-Chandra series partition the set of (isomorphism classes
of) irreducible G-representations.

(b) Every weak Harish-Chandra series is contained in some usual Harish-
Chandra series.

Item (b) implies that every usual Harish-Chandra series is partitioned into weak
Harish-Chandra series, and hence shows that weak series refine the usual theory.

Definitions here are made for characteristic zero representations. However, the
same applies to non-defining prime characteristic. In the non-zero characteristic
case, weak Harish-Chandra prove better suited for studying unipotent represen-
tations. Let l be a prime different from p. From the work of Geck [8] we know
that irreducible unipotent representations in characteristic l of the unitary group
Un(q) are (just as in trivial characteristic) labelled by partitions of n. Calling πμ the
unipotent representation corresponding to the partition μ we get a result analogous
to [7, Appendice, proposition p. 224].

Proposition 5. If the unipotent representations πμ and πν of Gn lie in the same
weak Harish-Chandra series, then μ and ν have the same 2-core.

This result was originally part of a series of conjectures stated in [12], the main
of which (Conjecture 5.7) is now a theorem [4].
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5.2. Orbits and stabilizers on a quotient space. Let W1 be a symplectic space
spanned by {e1, . . . , en1

, e′n1
, . . . , e′1}, and W2 spanned by {f1, . . . , fn2

, f ′
n2
, . . . , f ′

1};
let n = n1 + n2 and Wn = Wn1

⦹Wn2
be their orthogonal sum. Using these bases,

we identify symplectic transformations with symplectic matrices.
Let Xk(W ) denote the set of isotropic k-dimensional subspaces of a symplectic

space W . Fix the maximal isotropic space Xn spanned by {e1, . . . , en1
, f1, . . . , fn2

},
and let Pn be the parabolic subgroup of Sp2n, formed by those matrices stabilizing
Xn. Using this Lagrangian we identify the quotient Sp2n /Pn with the set Xn(Wn)
of maximal isotropic subspaces of Wn.

Basic linear algebra shows that the set of maximal isotropic subspaces of Wn

can be identified to the set of triplets (U1, U2, φ) where U1 belongs to Xd1
(Wn1

), U2

belongs to Xd2
(Wn2

), φ : U⊥
1 /U1 → U⊥

2 /U2 is an isomorphism, and d1−d2 = n1−n2.
Moreover, the action of (x1, x2) in Sp2n1

× Sp2n2
on Xn(Wn) corresponds to the

following action

(x1, x2) : (U1, U2, φ) �→ (x1U1, x2U2, x2 ◦ φ ◦ x−1
1 ),(7)

on the set of triplets.
Let i = 1, . . . ,min{n1, n2}, and suppose that n2 ≤ n1. Let Kn be a matrix of

size n with 1’s on the antidiagonal and 0’s elsewhere. Finally, let

Vi =

[
1n 0n
Ti 1n

]
, where Ti =

⎡
⎢⎢⎢⎢⎣

Ki

0n2−i

Ki

0n2−i

0n1−n2

⎤
⎥⎥⎥⎥⎦ .

Proposition 3.4 in [16] asserts that the different ViPn for i = 1, . . . , n2 form a set
of representatives for the action of Sp2n1

× Sp2n2
on Sp2n /Pn. We are interested

in calculating their stabilizers.
The coset ViPn corresponds to the maximal isotropic subspace ViXn. The

isotropic spaces in the triplet (U1, U2, φ) corresponding to the latter are

U1 = ViXn ∩Wn1
, and U2 = ViXn ∩Wn2

.

An easy calculation shows that

U⊥
1 /U1 = 〈en1−i+1, . . . , en1

, e′n1
, . . . , e′n1−i+1〉,

U⊥
2 /U2 = 〈fn2−i+1, . . . , fn2

, f ′
n2
, . . . , f ′

n2−i+1〉.
Using coordinates in these bases, we define the isomorphism

φ : U⊥
1 /U1 → U⊥

2 /U2, φ(z) = K2iz.

Using the description (7) of the action of Sp2n1
× Sp2n2

on the set of triplets, we

see that (x1, x2) belongs to the stabilizer (Sp2n1
× Sp2n2

)ViPn of ViPn if and only if

x1U1 = U1, x2U2 = U2, x2φ = φx1.(8)

As before, let Pk, k = 1, . . . ,m be the stabilizer in Sp2m of the totally isotropic
space spanned by the first k vectors of a symplectic base. The first two equalities
on (8) tell us that

x1 ∈ Pn1−i ⊂ Sp2n1
, and x2 ∈ Pn2−i ⊂ Sp2n2

.
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Elements x in the parabolic Pk factorize as a product x = m(a,A)u, for a ∈ GLk,
A ∈ Sp2(m−k), u in the unipotent radical Nk of Pk, and

m(a,A) = diag(a,A,Kk
ta−1Kk).

Hence, we can express x1, x2 as a product x1 = m(a1, A1)u1, x2 = m(a2, A2)u2, for
suitable a1, a2, A1, A2, u1, and u2. The last equality on (8) becomes the identity
A2K2i = K2iA1 in Sp2i.

The same discussion can be put forward for even-orthogonal groups, in this case
the orbit representatives are

Vi =

[
1n 0n
Ti 1n

]
, where Ti =

⎡
⎢⎢⎢⎢⎣

Ki

0n2−i

−Ki

0n2−i

0n1−n2

⎤
⎥⎥⎥⎥⎦ .

Let Gm be Sp2m or O±
2m. We summarize the above results in Proposition 6. In

its statement m = m1 +m2.

Proposition 6. The matrices ViPm, for i = 1, . . . ,min{m1,m2}, form a set of
representatives for the orbits of Gm1

×Gm2
in Gm/Pm. Moreover the stabilizer of

ViPm in Gm1
×Gm2

is the subgroup of Pm1−i × Pm2−i given by

(Gm1
×Gm2

)ViPm =

⎧⎨
⎩

ak ∈ GLmk−i

(m(a1, A1)u1,m(a2, A2)u2) : uk ∈ Nmk−i

A2 = KA1K

⎫⎬
⎭ .

5.3. First occurrence of weakly cuspidal representations. In this section we
endeavour to study the effect the Howe correspondence has on weakly cuspidal
representations in the case of first occurrence. We also comment on the relation
between the correspondence and weak series.

Let Gm and Pm be as in Proposition 6.

Lemma 1 ([16, Corollary 3.3]). If (ω, S) is a model for the Weil representation,

then space of Gm–coinvariants SGm
is isomorphic to a submodule of IndGm

Pm
(1).

Theorem 5. Let (Gm, G′
m′) be a type I dual pair, and π be an irreducible weakly

cuspidal representation of Gm, and let m′(π) be its first occurrence index.

(1) If m′ < m′(π), then Θm,m′(π) is empty
(2) The representation Θm,m′(π)(π) is irreducible and weakly cuspidal
(3) If m′ > m′(π), then none of the constituents of Θm,m′(π) is weakly cuspidal

Proof. To avoid the excessive use of apostrophes we swap the groups in the dual
pair and consider the pair (G′

m′ , Gm) instead.
Consider a weakly cuspidal representation π′ of G′

m′ . The proof of the item (1) in
the statement is the definition of the first occurrence index. The proof of the other
two items can be divided into two independent parts: existence and uniqueness.
The methods used in each are different.

(A) Existence. We prove that if π′ ⊗ π appears in the oscillator representation
ωm′,m(π′), then π is weakly cuspidal.
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Assume that π is not weakly cuspidal. In this case we can find an irreducible rep-
resentation ϕ1 of Gm(π′)−1 such that π|RGm

M1
(χ1⊗ϕ1). Using Frobenius reciprocity

we have

0 �= 〈ωm′,m, π′ ⊗ π〉 ≤ 〈ωm′,m, π′ ⊗RGm

M1
(χ1 ⊗ ϕ1)〉

= 〈1⊗ ∗RGm

M1
(ωm′,m), π′ ⊗ χ1 ⊗ ϕ1〉.

Proposition 1 implies that the last term above is bounded by

〈ωm′,m−1 ⊗ 1GL1 , π
′ ⊗ χ1 ⊗ ϕ1〉+ 〈RGL1 ⊗ ωm′−1,m−1,

∗R
G′

m′
M ′

1
(π′)⊗ χ1 ⊗ ϕ1〉.

Since π′ is weakly cuspidal the second term in this sum must be trivial. The first
term yields ϕ1|Θm′,m(π′)−1(π

′), which contradicts the minimality of m(π′).

(B) Uniqueness. In order to establish uniqueness we prove that at most one weakly
cuspidal irreducible representation can appear in the union of Θm′,m(π′) for all
non-negative m.

Let π1 and π2 belong to Θm′,m1
(π′) and Θm′,m2

(π′) respectively. Following the
arguments in Section 3 of [16], it can be shown that the representation π1 ⊗ π̃2

is a constituent of the space of G′
m′–coinvariants SG′

m′ of the Weil representation.

Therefore, from Lemma 1 the representation π1 ⊗ π̃2 is a constituent of

IndGm

Pm
(1)|Gm1

×Gm2
=

min{m1,m2}⊕
i=1

Ind
Gm1

×Gm2

(Gm1
×Gm2

)ViPm
(1),

where the ViPm, for i = 1, . . . ,min{m1,m2}, are the representatives of the orbits
of Gm1

×Gm2
in Gm/Pm, described above. By transitivity

Ind
Gm1

×Gm2

(Gm1
×Gm2

)ViPm
(1) = Ind

Gm1
×Gm2

Pm1−i×Pm2−i
◦ IndPm1−i×Pm2−i

(Gm1
×Gm2

)ViPm
(1).

Moreover, from the explicit description of stabilizers already established,

Ind
Pm1−i×Pm2−i

(Gm1
×Gm2

)ViPm
(1) = 1GLm1−i ⊗ 1Nm1−i

⊗ 1GLm2−i ⊗ 1Nm2−i
⊗RGi

,

whence we deduce

Ind
Gm1

×Gm2

(Gm1
×Gm2

)ViPm
(1) = R

Gm1
×Gm2

Mm1−i×Mm2−i
(1GLm1−i ⊗ 1GLm2−i ⊗RGi

).

Since 1GLk
is a subrepresentation of RGLk

GLk
1
(1), the character on the right-hand side

of the last equality is a constituent of

R
Gm1

×Gm2

Mm1−i×Mm2−i
(R

GLm1−i

GL
m1−i
1

(1)⊗R
GLm2−i

GL
m2−i
1

(1)⊗RGi
)

= R
Gm1

×Gm2

Mm1−i×Mm2−i
◦RMm1−i×Mm2−i

Mm1−i,i×Mm2−i,i
(1

GL
m1−i
1

⊗ 1
GL

m2−i
1

⊗RGi
)

= R
Gm1

×Gm2

Mm1−i,i×Mm2−i,i
(1

GL
m1−i
1

⊗ 1
GL

m2−i
1

⊗RGi
).

We must now distinguish the following two cases.

(a) If m1 �= m2 then, for all i = 1 . . . ,min{m1,m2}, one of the Levi subgroups
Mm1−i,i or Mm2−i,i is going to be proper in Gm1

or Gm2
respectively. In this case

〈IndGm

Pm
(1)|Gm1

×Gm2
, π1 ⊗ π̃2〉 = 0

since π1 and π2 are both weakly cuspidal.
(b) If m1 = m2 = k, then for all i = 1 . . . , k,

〈IndGm

Pm
(1)|Gm1

×Gm2
, π1 ⊗ π̃2〉 ≤ 1.
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Indeed,

– In case 0 ≤ i < k, the Levi subgroups Mk−i,i and Mk−i,i are proper, and again

〈IndGk×Gk

(Gk×Gk)ViPm
(1), π1 ⊗ π̃2〉 = 0.

– In case i = k, we get

〈IndGk×Gk

(Gk×Gk)
ViPm′ (1), π1 ⊗ π̃2〉 ≤ 〈RGk

, π1 ⊗ π̃2〉 = 〈π1, π2〉.

Uniqueness follows from Items (a) and (b). �

Now that we have proven that the Howe correspondence preserves weak cus-
pidality on the first occurrence, we can ask whether it also behaves nicely with
respect to weak Harish-Chandra series. It turns out that this is indeed the case.
The statement and proof of this result is very much the same as Theorem 1 and it
will be therefore omitted.
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