
REPRESENTATION THEORY
An Electronic Journal of the American Mathematical Society
Volume 26, Pages 1268–1323 (December 21, 2022)
https://doi.org/10.1090/ert/631

THE JORDAN–CHEVALLEY DECOMPOSITION FOR
G-BUNDLES ON ELLIPTIC CURVES

DRAGOŞ FRĂŢILĂ, SAM GUNNINGHAM, AND PENGHUI LI

Abstract. We study the moduli stack of degree 0 semistable G-bundles on
an irreducible curve E of arithmetic genus 1, where G is a connected reductive
group in arbitrary characteristic. Our main result describes a partition of this
stack indexed by a certain family of connected reductive subgroups H of G
(the E-pseudo-Levi subgroups), where each stratum is computed in terms of H-
bundles together with the action of the relative Weyl group. We show that this
result is equivalent to a Jordan–Chevalley theorem for such bundles equipped
with a framing at a fixed basepoint. In the case where E has a single cusp
(respectively, node), this gives a new proof of the Jordan–Chevalley theorem
for the Lie algebra g (respectively, algebraic group G).

We also provide a Tannakian description of these moduli stacks and use it
to show that if E is not a supersingular elliptic curve, the moduli of framed
unipotent bundles on E are equivariantly isomorphic to the unipotent cone
in G. Finally, we classify the E-pseudo-Levi subgroups using the Borel–de
Siebenthal algorithm, and compute some explicit examples.
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1. Introduction

1.1. Overview and main results. Fix an irreducible projective curve E of arith-
metic genus 1 over an algebraically closed field k. There are three possibilities:
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(1) E has a single ordinary cusp;
(2) E has a single node;
(3) E is smooth.

We also fix a basepoint x0 in the smooth locus of E. We will refer to these cases
as the cuspidal, nodal, or elliptic cases respectively.1

Fix also a connected reductive group G over k. We consider the moduli stack
GE := Bun0,ss

G (E)
of degree 0, semistable G-bundles over E. We denote by GE the moduli stack of
such bundles P together with a framing - that is, a trivialization of the fiber Px0 .

We will see that GE is a smooth algebraic variety with an action of G (changing
the trivialization), and that GE = GE/G. In fact, by results of Friedman–Morgan
[FM01], we have:

• GE
∼= g = Lie(G) if E is cuspidal, and

• GE
∼= G if E is nodal.

In these cases, the action of G on GE corresponds to the adjoint/conjugation action.
In the elliptic case, we will see that the stack GE shares many of the properties of
the adjoint quotient stacks g/G and G/G.

1.1.1. The Jordan–Chevalley decomposition. One of our main results is a form
of the Jordan–Chevalley decomposition for GE , which recovers the usual Jordan–
Chevalley decomposition for g and G in the cuspidal and nodal cases respectively.

An element p ∈ GE is called semisimple if its G-orbit is closed. We say that
an element p ∈ GE is unipotent if its orbit closure contains the trivial bundle
p0. We denote by Guni

E the subvariety of unipotent elements of GE and by Guni
E

the corresponding substack in GE . We note that these definitions recover the usual
notion of semisimple and unipotent/nilpotent elements in the nodal/cuspidal cases.

The Jordan–Chevalley decomposition essentially states that every framed bundle
p ∈ GE can be uniquely decomposed as p = ps · pu where ps is semisimple, pu is
unipotent, and ps commutes with pu. As it stands this statement is not well formed
as it is not clear what it means to “multiply” elements in GE (the usual statement of
Jordan decomposition in the nodal and cuspidal cases uses multiplication in G and
addition in g). However, it does make sense to multiply a Z(G)-bundle P ′ and a G-
bundle P: we define P ′ ·P to be the bundle induced from the external product P ′×E

P via the multiplication map Z(G) × G → G (which is a group homomorphism).
Moreover, this construction is naturally compatible with framings, giving rise to an
abelian algebraic group structure on Z(G)E and an action of Z(G)E on GE.

We will also show that for a reductive subgroup H of G, the induction map on
framed semistable bundles HE → GE is a closed embedding (see Proposition 2.19).
Therefore we can identify HE with the corresponding closed subvariety of GE . We
are now ready to state the first result, a form of Jordan–Chevalley decomposition:

Theorem 1.1 (See Theorem 4.8). Given p∈GE, there is a unique triple (H, ps, pu),
where H is a connected reductive subgroup of G, ps ∈ Z(H)E with StabG(ps)◦ =
H, pu ∈ Huni

E , and p = ps · pu.

The subgroups of G which occur as connected stabilizers of semisimple elements
of GE will be called E-pseudo-Levi subgroups. In the cuspidal case, these are

1Note that in the first two cases, unlike the third, the pair (E, x0) has no moduli.
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precisely the Levi subgroups (centralizers of semisimple elements of g) and in the
nodal case, these are pseudo-Levi subgroups (connected centralizers of semisimple
elements of G). We give a classification of E-pseudo-Levi subgroups in Appendix A:
in the elliptic case we get precisely the intersections of two pseudo-Levi subgroups.

Remark 1.2. For simply connected groups over C, a similar Jordan–Chevalley de-
composition was proved in [BEG03, Theorem 5.6] using an algebraic uniformization
of GE through loop groups (see [BG96]).

1.1.2. The partition according to E-pseudo-Levis. Typically, in the statements of
the Jordan–Chevalley decomposition for G and for g, the subgroup H is not explic-
itly mentioned, though it may be easily recovered as the connected centralizer of
the semisimple element.

However, in our proof of Theorem 1.1, the subgroup H will be the key player and
the decomposition into semisimple and unipotent elements will play a subsidiary
role. In fact, the semisimple and unipotent elements may be recovered from the
subgroup H in the following sense.

Given a subgroup H of G we define the G-regular loci
(Z(H)E)reg = {p ∈ Z(H)E | StabG(p)◦ = H} ⊆ Z(H)E

and
(HE)reg♥ = (Z(H)E)reg ·Huni

E ⊆ HE .

The subgroup H is an E-pseudo-Levi precisely when (Z(H)E)reg is non-empty.
Note that the conditions in Theorem 1.1 are precisely stipulating that p ∈ (HE)reg♥ .
On the other hand, any element p ∈ (HE)reg♥ may be uniquely written as a product
ps · pu where ps ∈ (Z(H)E)reg and pu ∈ Huni

E (see Proposition 4.10). We denote by
(GE)H the image of (HE)reg♥ in GE .

In other words, Theorem 1.1 states that every element p ∈ GE lies in the im-
age of (HE)reg♥ for a unique E-pseudo-Levi subgroup H. Thus we may rephrase
Theorem 1.1 as follows:

Theorem 1.3. There is a locally closed partition:

GE =
⊔
H

(GE)H

indexed by E-pseudo-Levi subgroups H ⊆ G. Moreover, the natural embeddings
HE → GE restrict to isomorphisms

(HE)reg♥
∼−→ (GE)H .

We will reformulate this result in one final way (in the form that will actually be
proved in Section 4). Recall that GE denotes the quotient stack GE/G, and write
(HE)reg♥ for (HE)reg♥ /H. We write WG,H for the relative Weyl group NG(H)/H (a
finite group if H is an E-pseudo- Levi subgroup of G).

Theorem 1.4. The stack GE carries a locally closed partition

GE =
⊔
[H]

(GE)[H]

indexed by conjugacy classes [H] of E-pseudo-Levi subgroups H ⊆ G. Moreover,
the natural induction maps HE → GE restrict to equivalences

(HE)reg♥ /WG,H
∼−→ (GE)[H].
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Our proof of Theorem 1.4 (and hence of Theorem 1.1 and Theorem 1.3) involves
a geometric analysis of the induction map HE → GE (see Section 4.2).

Remark 1.5. A key difference between the statements of Theorem 1.4 and Theo-
rem 1.3 is that, unlike the subvarieties (GE)H in GE , the substacks (GE)[H] have an
a priori definition that does not make reference to the induction map HE → GE .
More precisely, given a G-bundle P ∈ GE , pick a framed lift p ∈ GE and then
choose any semisimple bundle in the closure of its G-orbit. The underlying G-
bundle defines a conjugacy class [H] that is independent of the chosen framing and
is hence canonically associated to P. The content of Theorem 1.3 is that, in the
presence of a framing, there is a canonical choice of subgroup H within its conju-
gacy class, and (equivalently) a canonical choice of semisimple element ps in the
orbit closure of p.

1.1.3. Unipotent bundles. Theorem 1.4 and Theorem 1.1 allow us to reduce the
study of degree 0, semistable G-bundles on E to semisimple and unipotent bundles.

Our next result shows that, under certain hypotheses, the collection of unipotent
bundles in GE is insensitive to the isomorphism type of E. We let J(E) denote the
Jacobian of E, which is either isomorphic to Ga, Gm, or E itself in the cuspidal,
nodal, or elliptic cases respectively. We denote by Guni the unipotent cone of G
(which is the same as Guni

E for E a nodal curve).

Theorem 1.6. An isomorphism of formal group Ĵ(E) � Ĝm induces an isomor-
phism of G-varieties

Guni
E

∼= Guni.

Moreover this isomorphism extends over a formal neighbourhood of Guni
E in GE:

(GE)∧uni
∼= G∧

uni.

Remark 1.7. In characteristic zero, there is always an isomorphism Ĵ(E) � Ĝm.
In fact, there is also an isomorphism Ĵ(E) � Ĝa which gives the same result but
with the unipotent cone in G replaced by the nilpotent cone N in g.

In characteristic p > 0, if E is an elliptic curve, an isomorphism Ĵ(E) � Ĝm

exists precisely when E is ordinary (i.e. not supersingular).

Remark 1.8. As a special case of Theorem 1.6 we recover a G-equivariant isomor-
phism N ∼= U between the unipotent and nilpotent cones for each isomorphism
Ĝa

∼= Ĝm. The latter isomorphisms exist only in characteristic zero, and are given
by exponential maps. On the other hand, there exist G-equivariant isomorphisms
(the so-called Springer isomorphisms) N ∼= U under very mild conditions on the
characteristic, even though Ĝa � Ĝm in positive characteristic. It seems reasonable
to expect that Guni

E is isomorphic to U (and N ) under much more general condi-
tions than in Theorem 1.6. From [GSB19, Theorem 3.11] one can deduce that the
varieties Guni

E and Guni are smoothly equivalent for uniformizable elliptic curves un-
der some restrictions on G and the characteristic. See also [GSB19, Corollary 8.8]
where they show it fails for G = E8, E supersingular in characteristic 2, 3 or 5.

1.1.4. Semisimple bundles and the classification of E-pseudo-Levi subgroups. Fix
a maximal torus T of G and let Φ ⊂ X∗ denote the corresponding space of roots
sitting inside the character lattice X∗ = X∗(T ). Then

TE
∼= Homgp(X∗, J(E)) ∼= J(E)r,
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where r is the rank of T .
Note that a G-bundle P ∈ GE is semisimple if and only if it admits a reduc-

tion to T . We may understand the partition into E-pseudo-Levi subgroups root
theoretically as follows.

First note that any character α ∈ X∗ defines a homomorphism α∗ : TE → J(E),
taking a T -bundle on E to its induced line bundle via α. Given p ∈ TE , we let
Σp = {α ∈ Φ | α∗(p) = 1J(E)}. The subsets Σ of Φ which occur in this way will be
called E-root subsystems of Φ.

It turns out that any such E-root subsystem Σ ⊂ Φ is a closed root subsystem
and so it corresponds to a connected reductive subgroup H of G (see also Section 3.2
for Borel–de Siebenthal theory). In fact, we have H = StabG(p)◦ and

Proposition 1.9. There is a one-to-one correspondence between:
• E-pseudo-Levi subgroups H of G containing T , and
• E-root subsystems Σ ⊆ Φ.

Moreover, in each of the cases cuspidal, nodal and elliptic one can characterize
precisely the E-root subsystems of Φ (see Appendix A and Proposition A.8 for the
elliptic case).

Remark 1.10. The theory of semisimple bundles becomes increasingly complicated
as one passes from the cuspidal to the nodal and then to the elliptic cases. For
example, the centralizer of a semisimple element of g is a Levi subgroup, and in
particular connected. The centralizer of a semisimple element in G is connected
(but not necessarily simply-connected) whenever G is simply connected. On the
other hand, the automorphism group of a semisimple G-bundle P ∈ GE where E is
smooth may be disconnected, even if G is simply connected! An example is given
for G of type D4, see Example 6.6 (this example also appears in [BEG03, p. 18]).

Fortunately, our result provides control over the component groups of auto-
morphisms of semisimple bundles in terms of Weyl group combinatorics (just as
Lusztig’s stratification does in the group case). More precisely, let p ∈ TE with
Σp = Σ for some E-root subsystem Σ of Φ, and let PG be the induced G-bundle.
Then Theorem 1.4 implies that

π0 Aut(PG) ∼= StabNW (Σ)(p)/WΣ,

where NW (Σ) = {w ∈ W | w(Σ) = Σ}.

1.1.5. The Lusztig stratification. Putting these results together, we can refine the
partition of GE in Theorem 1.4 as follows.

Corollary 1.11. Suppose either that char(k) = 0 or that E is ordinary. There
is a stratification

GE =
⊔

[H,O]

(GE)[H,O]

indexed by G-conjugacy classes of pairs (H,O) where H is an E-pseudo-Levi
subgroup of G, and O ⊆ Huni

E is a unipotent H-orbit. For each such pair [H,O]
we have an isomorphism:

(GE)[H,O] ∼= (Z(H)regE ×O)/NG(H) ∼= (Z(H)regE ×O)/WG,H .

Remark 1.12. To make the comparison with Lusztig’s work more evident, note that
to each E-pseudo-Levi subgroup H, one can associate a Levi L = LH = CG(Z(H)◦).
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This is the smallest Levi subgroup which contains H. A bundle P ∈ GE is called
isolated if it is contained in (GE)[H] and H is not contained in any proper Levi.
(It follows from Proposition 1.9 that there are finitely many isomorphism classes of
isolated bundles.) Instead of parameterizing the strata using subgroups of elliptic
type and unipotent bundles, one may use Levi subgroups and isolated bundles.
This is how Lusztig describes the stratification of G in [Lus84].

1.2. Motivation: The geometric Langlands program and elliptic Springer
theory.

1.2.1. Global geometric Langlands. Recall that in the global geometric Langlands
program, one aims to describe the derived category D(BunG(C)) of D-modules or
constructible sheaves on the moduli stack of G-bundles on a smooth projective curve
C in terms of the derived category of quasi-coherent (or more general Ind-coherent)
sheaves on the moduli stack of LG-local systems, where LG is the Langlands dual
group to G.

Recall that for every parabolic subgroup P ⊆ G with Levi factor L, we have
Eisenstein and constant term functors:

EisGL,P : D(BunL(C)) � D(BunG(C)) : CTG
L,P .

Generally speaking, these functors are defined via a pull-push construction involving
the diagram2:

(1.1) BunP (C)
p

����
���

���
��

q

�����
���

���
�

BunL(C) BunG(C)

An object of D(BunG(C)) is called cuspidal if it is in the kernel of the constant
term functor for every proper parabolic subgroup P of G. As per Harish-Chandra’s
philosophy of cusp forms, one may think of the category D(BunG(C)) as built up
from Eisenstein series of cuspidal objects in D(BunL(C)) as L ranges over Levi
subgroups of G. In this way one can hope to understand the category D(BunG(C))
inductively in terms of smaller reductive groups.

Typically, the Eisenstein series from different Levi subgroups will interact in
a complicated way, and this does not lead to a straightforward description of
D(BunG(C)). We will now describe a closely related category for which the Harish-
Chandra approach yields a complete description.

1.2.2. Springer theory and character sheaves. Let us turn to the category D(G/G)
of “class sheaves” on G, i.e. conjugation equivariant constructible sheaves or D-
modules on the group G. Analogous to the Eisenstein and constant term functors
above, one has functors of parabolic induction and restriction:

IndG
P,L : D(L/L) � D(G/G) : ResGP,L

defined by pull-push along the diagram:

2More precisely, one must consider a fiberwise compactification of BunP (C) over BunG(C).
One must also specify which functors (star or shriek) are employed for this process. We will ignore
these distinctions for the purposes of this informal discussion.
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(1.2) P/P

���
��

��
��

�

����
��
��
��

L/L G/G.

Just as in Section 1.2.1 one defines the cuspidal objects as those whose parabolic
restriction to any proper Levi is zero. Again, one aims to describe the category
D(G/G) in terms of parabolic induction from cuspidal objects in D(L/L) as L
ranges over Levi subgroups.

In his seminal paper [Lus84], Lusztig obtained a block decomposition of the
category of equivariant perverse sheaves on the unipotent cone Guni ⊆ G:

(1.3) PervG(Guni) =
⊕

(L,O,E)

Rep(WG,L).

Here, the blocks are indexed by cuspidal data, consisting of a pair of a Levi subgroup
L together with a simple cuspidal local system E on the unipotent orbit O of the
unipotent cone of L. The classical Springer correspondence for representations of
the Weyl group W = WG,T is recovered inside of (1.3) as one of these blocks,
corresponding to the unique cuspidal datum with L = T , a maximal torus.

More recently, more general forms of the decomposition (1.3) have been obtained
for the derived category of nilpotent orbital sheaves by Rider–Russell [RR16], the
category of equivariant D-modules on the Lie algebra g by Gunningham [Gun18,
Gun17] and the derived category of character sheaves by Li [Li18].

In the setting of D-modules on g/G or sheaves supported on the unipotent cone
of G, the set of cuspidal data indexing the decomposition is the same as in (1.3). We
will call this set the unipotent cuspidal data for G. In the case of character sheaves
on G/G, however, this set must be expanded to account for unipotent cuspidal data
for pseudo-Levi subgroups H of G. More generally, one can consider E-cuspidal
data for any arithmetic genus 1 curve as we explain further now.

1.2.3. Elliptic Springer theory. The main object of study in this paper is the stack
GE ⊆ BunG(E) of semistable G-bundles on a curve of arithmetic genus 1.

The stack GE which we study in the present paper forms a bridge between the
situations described in Section 1.2.1 and Section 1.2.2. On the one hand GE sits
inside BunG(E) as the locus of degree 0 semistable bundles. On the other hand,
when E is taken to be a nodal curve one has an isomorphism GE

∼= G/G.
Viewing the category D(GE) through the lens of Section 1.2.2, one defines func-

tors of parabolic induction and restriction using the correspondence

LE ← PE → GE

and study the corresponding Harish-Chandra (or generalized Springer decomposi-
tion). The ordinary Springer correspondence in the elliptic setting was studied by
Ben-Zvi and Nadler [BZN15].

One can also formulate a generalized Springer correspondence for the (various
flavours of) category D(GE) which recovers the standard patterns for orbital and
character sheaves in the cuspidal and nodal cases. This will be expanded on in
future work; for now, let us just note that the indexing set of the generalized
Springer decomposition (which we are calling E-cuspidal data) involves a choice
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of an E-pseudo-Levi subgroup H of G, together with a WG,H -equivariant simple
unipotent cuspidal local system for H.

In this way Theorem 1.4 may be thought of as a geometric antecedent to the
generalized Springer correspondence for D(GE): it expresses the geometry of the
stack GE in terms of unipotent orbits for E-pseudo-Levi subgroups. We note that
the work of Li with Nadler [LN21] is another expression of the idea that GE is glued
together from data indexed by E-pseudo-Levi subgroups. However, the techniques
of loc. cit. involve an analytic uniformization of GE , whereas the present paper
stays within the realm of algebraic geometry.

1.2.4. Elliptic geometric Langlands. We may view the category D(GE) as a sub-
category (via extension by zero from the semistable locus, say) of the automorphic
geometric Langlands category D(BunG(E)) for an elliptic curve E. In this way,
(generalized) Springer theory is embedded into the geometric Langlands correspon-
dence. This perspective is exposited in [LN21, Section 1.3.1.2].

As a cautionary remark: there are now two different notions of cuspidal for an
object of D(GE): one using the constant term functor via diagram (1.1) (we will
call this Langlands cuspidal) and the other using the parabolic restriction functor
via diagram (1.2) (we will call this Springer cuspidal). If an object of D(GE) is
Langlands cuspidal it is necessarily Springer cuspidal, but it is not clear if the
converse holds: the constant term may be supported on non-zero components of
BunT (E).

Despite these difficulties, our results in this paper can be used to obtain strong
restrictions on the existence and support of Langlands cuspidals on BunG. As a
simple example, it can be shown that any Langlands cuspidal Hecke-eigensheaf in
D(BunSL2) must restrict to one of the four Springer cuspidal objects in D((SL2)E).

1.2.5. Quantum geometric Langlands. However, the relationship between Springer
theory and geometric Langlands is the most direct when one considers the quan-
tum deformation. Namely, one studies the category Dκ(BunG) of L⊗κ-twisted
D-modules on BunG where L is the determinant line bundle (for this discussion
let us restrict to the case where the ground field k has characteristic zero and the
group G is simple). Here κ can be taken to be any complex number. The quantum
geometric Langlands conjecture posits an equivalence (assuming κ is not the critical
level which we normalize to κ = 0)

Dκ(BunG) � D−1/κ(BunG∨).
When κ is irrational it can be shown that any non-zero object of Dκ is cleanly
supported on the semistable locus. In this way, the quantum geometric Langlands
equivalence at irrational level κ reduces to a statement about cuspidal data for G
and LG. We plan to return to this in future work.

There is also a Betti formulation of quantum geometric Langlands (see [BZN18]).
For an elliptic curve E, this involves3 the category Dq(G/G) of quantum D-modules
on G/G (see [BZBJ18]). (Here, the parameter q is roughly an exponential of the κ∨

appearing in the de Rham formulation above.) There is a conjectural generalized
Springer correspondence for Dq(G/G). Interestingly, though the categories are very

3The Betti formulation of quantum geometric Langlands is not as symmetric as in the de Rham
setting; here we are describing the category that naturally lives on the spectral side of geometric
Langlands correspondence; the automorphic version will be described in terms of certain twisted
sheaves on BunG.
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different, one expects the same (discrete) cuspidal data to appear for the generalized
Springer decomposition of D(GE) and Dq(G/G). S.G. hopes to expand on this
point in forthcoming work with David Jordan and Monica Vazirani. We note that
the “Springer block” of such a quantum generalized Springer would involve W -
equivariant modules for the algebra of q-difference modules on the torus T , which
may explain the connection with the work of Baranovsky, Evens and Ginzburg
[BEG03].

1.2.6. Eisenstein sheaves and elliptic Hall categories. The main motivation for
D.F. to study the stratification described in this paper concerns not cuspidal sheaves
but rather Eisenstein sheaves. More precisely, one can define the category QG(E)
of principal spherical Eisenstein sheaves on an elliptic curve E as the category gen-
erated by EisGT,B(Ql) inside Db(BunG(E)). This can be thought of as a categorical
version of the space of spherical automorphic functions for the field of functions on
a smooth projective curve over a finite field. The latter, at least for the groups GLn,
is nothing else but the degree n part of the spherical Hall algebra of the curve. See
[Lau90,SV11,Sch12,Fra13] for more details about the relationship to automorphic
functions. Therefore, one can think of QG(E) for the groups GLn as a categorical
version of the spherical Hall algebra. It can be actually proved [Sch12] that one
obtains in this way a categorification of the elliptic Hall algebra. The situation for
higher genus curves is not well understood.

A sensible question to ask (for elliptic curves) is the classification of simple
objects of the spherical category QG(E). Actually the proof of the above mentioned
result on categorification goes by first establishing such a classification. The main
result of [BZN15] implies that there is an injection Irr(W ) ↪→ Irr(QG(E)), where
W is the Weyl group of G. Previously, in [Sch12] this was shown to be a bijection
for GLn. The precise expectation for simply connected groups is that the above
map is a bijection.

Our main results in this article allow us to rule out some of the sheaves that
could appear in Irr(QG(E)) and that do not arise from Irr(W ). In the case of
SLn and some groups of small rank this is enough to confirm the above sought
for bijection. However, at the moment, we do not know if it is true for all simply
connected groups.

1.2.7. Affine character sheaves and local geometric Langlands. The local geomet-
ric Langlands program provides yet another interpretation of the category D(GE).
Roughly speaking, one is motivated by local Langlands to study the category
D(LG/LG) of class sheaves for the loop group LG of G. This may be considered
as a natural home for what one might call affine character sheaves. This category
is technically very difficult to study (or even define). However, a slight deformation
LG/qLG of the stack LG/LG is closely related to the moduli stack BunG(Eq) for
a certain elliptic curve Eq. Thus one may consider D(BunG(Eq)) as an avatar of
affine class sheaves (this idea appears in [BNP13]).

The most natural formulation of the relationship between LG/LG and BunG

is analytic. In (unpublished) work of Looijenga, it was shown that there is an
equivalence of complex analytic stacks

LholG/qL
holG � Bunan

G (Eq).
Here q ∈ C×, |q| 	= 1, Eq = C×/qZ is the corresponding elliptic curve, and LholG =
Maphol(C×, G) is the holomorphic loop group which acts on itself by q twisted
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conjugation:
Adq(g(z))h(z) = g(qz)h(z)g(z)−1.

This idea of analytic uniformization was generalized by Li with Nadler [LN21],
leading to analytic proofs of results closely related to those in this paper.

2. Preliminaries

2.1. Notation and generalities on G-bundles. Let X be a scheme and G an
affine algebraic group over an algebraically closed field k. By a G-bundle (or prin-
cipal G-bundle, or G-torsor) over a scheme X we mean a scheme π : P → X over
X with a π-invariant right G-action such that, étale locally on X, π : P → X is G-
equivariantly isomorphic to π1 : X ×G → X. In other words, there exists X ′ → X
étale and surjective such that the pullback of P to X ′ is G-equivariantly isomorphic
to X ′ ×G

X ′ ×G X ′ ×X P

X ′
π1




π′

When there’s no danger of confusion we will simply write P for a G-bundle and
omit the mention of π : P → X.

If P is a G-bundle over a scheme X and Y is a quasi-projective variety with a
left G-action, then we can form the associated fiber space over X with fiber Y as
YP = P ×G Y := (P × Y )/G. If moreover Y has a right H-action for some group
H, then YP is naturally endowed with an H-action.

We will apply the above construction in two particular cases:
• if ρ : H → G is a morphism of groups, then to an H-bundle P we associate

a G-bundle: GP = P H× G. We’ll also denote it by ρ∗(P).
• if V is a representation of G (viewed as an affine space with a left G-action)

then to a G-bundle P we associate the vector bundle VP = (P × V )/G.

Example 2.1. A particularly important case of the first situation above is for the
group morphism m : Z(G) ×G → G. If P ′ is a Z(G)-bundle and P is a G-bundle
we denote the induced G-bundle m∗(P ′ × P) by P ′ · P.

Example 2.2.
(1) If G = G2

m then a G-bundle is simply a pair of line bundles (L,M). If
α : G2

m → Gm is given by α(t, s) = ts−2 then α∗(L,M) = L ⊗M−2.
(2) If G = GLn then the category of G-bundles is equivalent to the category

of vector bundles of rank n. The correspondence is given by associating
to a GLn-bundle P the vector bundle P ×GLn An. We will use this cor-
respondence tacitly especially in the case G = Gm where we think of a
Gm-bundle as a line bundle using the natural representation of Gm on A1.
In this situation, Example 2.1 corresponds to tensoring a vector bundle by
a line bundle.

(3) Consider the Lie algebra g with the adjoint action of G. For a G-bundle P
we have its adjoint bundle P ×G g =: gP that will play an important role
in the text. If G = GLn then the adjoint bundle is none other than the
vector bundle of endomorphisms.
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2.2. Semistability. First let us recall the definition of slope: for a vector bundle
V on a smooth curve X/k we put μ(V) := deg(V)/ rank(V) ∈ Q and call it the slope
of V .

Definition 2.3.
• A vector bundle V on X is semistable (respectively, stable) if for all proper

subvector bundles W ≤ V we have μ(W) ≤ μ(V) (respectively, μ(W) <
μ(V)).

• A G-bundle P is semistable if for any parabolic subgroup P ≤ G and any
reduction of structure group of P to P , say PP , and any dominant character
χ : P → Gm, the line bundle χPP

is of degree ≤ 0.
• If H is a non-reductive group then an H-bundle P is called semistable if

the induced H/Ru(H)-bundle is semistable, where we denoted by Ru(H)
the unipotent radical of H.

Remark 2.4. One can also define semistability of a G-bundle through the adjoint
representation: P is (ad-)semistable if gP is a semistable vector bundle. In charac-
teristic 0 these two definitions are equivalent, however in characteristic p they are
not. See also [Ram96] for the definitions of semistability or [Sch14] for a definition
through a slope map closer in spirit to the one for vector bundles.

The situation for elliptic curves is as in characteristic 0:

Proposition 2.5. A G-bundle P of degree 0 on an elliptic curve is semistable if
and only if all its associated vector bundles VP for V ∈ Repk(G) are semistable.

Proof. In characteristic 0, this is true in arbitrary genus, see [Ram96, Prop. 3.17].
The proof hinges on the Narasimhan–Seshadri theorem [NS65].

We now treat the positive characteristic case where genus 1 is necessary. Assume
that P is semistable. We appeal to a result of Sun [Sun99, Thm 2.1]: a G-bundle
on an elliptic curve is semistable if and only if it is strongly-semistable (i.e., all its
Frobenius twists are semistable). A result of Ramanan–Ramanathan [RR84, Thm
3.23] (see also [Sun99, Cor 1.1]) implies that for a strongly semistable G-bundle of
degree 0 all the associated vector bundles VP for V a highest weight representation
are semistable of degree 0. Since any representation of G has a filtration with
associated quotients of highest weight, we deduce that VP is semistable of degree
0.

Conversely, suppose that VP is a semistable vector bundle for all representations
V of G. Let P ≤ G be a parabolic subgroup and PP a reduction of P to P . Let
χ : P → Gm be a dominant character. We need to show that the line bundle χPP

is of degree ≤ 0. Since χ is dominant, there exists a highest weight G-module,
say V (χ), such that P acts on the highest weight line through χ. We deduce that
the line bundle χPP

is a subsheaf of the vector bundle V (χ)P′
P

= V (χ)P which is
semistable of degree 0. Therefore deg(χPP

) ≤ 0 as we wanted. �

Remark 2.6. The above proof extends to the case of G-bundles of arbitrary degree
as long as we only use highest weight representations. The issue for arbitrary
representations is that if VP and WP are semistable vector bundles of different
degrees then their direct sum, i.e., (V ⊕W )P , is not semistable. Another way to
remedy this is to consider only those representations of G that factor through the
adjoint group (for these, all the associated vector bundles are of degree 0).
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It will also be useful to consider a notion of semistability for G-bundles on certain
singular curves, namely the nodal and cuspidal curve Enode and Ecusp considered
in Section 1.1.4 We caution the reader that this is only a working definition for us
and we do not pretend it is the good notion of semistability over a singular curve.

Definition 2.7. A G-bundle on a singular curve X is said to be semistable if its
pullback under the normalization map X̃ → X is a semistable G-bundle on X̃.

Remark 2.8. See [Bho01, Section 2] and [Bal19,Sch05] for a more in depth discus-
sion of semistability for G-bundles on singular curves.

Remark 2.9. It follows from results of [FM01, Thm 3.3.1] that over a cuspidal or
nodal curve the following two conditions are equivalent for a G-bundle P:

(1) P is trivial when pulled back to the normalization P1,
(2) for any representation V of G the associated vector bundle VP is slope

semistable.
This justifies our choice of calling a G-bundle on a nodal/cuspidal semistable pro-
vided its pullback to the normalization is trivial.

2.3. Moduli spaces and stacks. Let X/k be a projective curve. For each test
scheme S, we write BunG(X)(S) for the groupoid of G-bundles on XS = X×S. An
excellent account of basic properties of this moduli stack can be found in [Wan11].

Consider the substack Bunss
G(X) whose k-points consist of semistable G-bundles.

It is proved in [Sch14, Prop. 6.1] that it is an open substack.
We write Bun0

G(X) for the connected component containing the trivial bun-
dle; such bundles are said to have degree 0. For connected groups G and smooth
projective curves X, the stack BunG(X) decomposes into connected components
indexed by the algebraic fundamental group π1(G) (the quotient of the cocharacter
lattice by the coroot lattice), see [Hof10]. The parametrisation can be viewed as a
generalization of the usual Chern class of a vector bundle on a curve.

Now let E be a genus 1 curve over k with one marked smooth point which may
either have a simple node or a cusp singularity. Thus, E is either a smooth elliptic
curve E, a genus 1 curve with a single node Enode or a genus 1 curve with a single
cusp Ecusp.

We write GE := Bun0
G(E)ss for the moduli stack of degree 0 semistable G-bundles

on E. It is an open dense substack of the degree 0 component Bun0
G(E). The case

when E is an elliptic curve is the main object of study in this paper. As noted in
Section 1.1, the nodal and cuspidal cases may be expressed in more concrete terms
as follows.

Proposition 2.10 ([FM01, Thm 3.1.5, Thm 3.2.4]). There is an equivalence of
stacks

GEnode
∼= G/adG

and
GEcusp

∼= g/adG.

Remark 2.11. In loc. cit. the proofs are over the complex numbers and for simply
connected groups. However, the same proof works in arbitrary characteristic and
for any reductive group.

4For such curves, the normalization is isomorphic to P1, where the only degree 0-semistable
bundle is the trivial bundle.
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2.4. Reductions of the structure group. Suppose we are given ρ : H → G
a morphism of groups and a G-bundle P on a scheme E. A reduction of P to
H is a pair (P ′, φ) of an H-bundle together with an isomorphism of G-bundles
φ : P ′ ×H G � P. We say that two reductions (P1, φ1) and (P2, φ2) of P are
isomorphic if there exists an isomorphism of H-bundles P1 � P2 that intertwines
φ1 and φ2.

The collection of possible reductions of a G-bundle P to an H-bundle forms
naturally a groupoid. If moreover ρ is injective, this groupoid is equivalent to a set
as can be easily checked.

An alternative way of giving a reduction of P to H is to give a section s : E →
P/H of the bundle5 P/H → E. Indeed, to such a section we associate the pullback
P ′ together with φ : P ′ → P:

P ′ P

E P/H

φ

s

Since P → P/H is an H-bundle, P ′ → E is one as well. Moreover, the map φ is
H-equivariant and induces a G-equivariant isomorphism P ′ ×H G → P.

To say that two such sections s1 and s2 are isomorphic we need to look at E
and P/H as groupoids (the first one is discrete but the second one is non-discrete
when ρ is not injective). Then s1 and s2 are isomorphic if there exists a natural
transformation η : s1 ⇒ s2 that is an isomorphism. In the case of a subgroup H ≤ G
the groupoids are discrete and saying that s1 and s2 are isomorphic is the same as
saying they are equal (as functions).

Conversely, if (P ′, φ) is a reduction of P to H then quotienting out by H the
composition P ′ f �→(f×1)−→ P ′ ×H G

φ� P we get a section E → P/H.
The above correspondence is an equivalence of categories and we will use freely

either way of looking at a reduction.
The most important cases for us are H ≤ G and B � T .

Remark 2.12. From the above discussion we have that BunH(E) → BunG(E) is a
representable morphism of stacks when H is a subgroup of G. This is used silently
throughout the text.
2.5. Framed bundles. We start by recalling some basic notions for framed bun-
dles over a pointed projective curve (E, x0) and then consider the moduli stack GE

of framed degree 0 semistable G-bundles. We show, through Lemma 2.13, that it
is a variety that is a G-bundle over the corresponding non-framed moduli stack.
Then we proceed to the main point of this section, namely we show that for a closed
subgroup H ≤ G we have a closed embedding HE ↪→ GE (see Proposition 2.19).

A framed G-bundle p = (PG, θ) is a G-bundle on E together with a G-equivariant
isomorphism θ : PG|x0 � G of the fiber of PG over x0 with the group G. The degree
and semistability are defined in terms of the underlying G-bundle.

Sometimes, for convenience, we will omit the mention of θ and simply say that
p is a framed G-bundle.

It is clear that the moduli stack of framed G-bundles Bunfr
G(E) is a G-torsor over

the moduli stack of G-bundles BunG(E).

5If ρ is not injective this bundle is actually a gerbe with fiber B(ker ρ).
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Let PG be a G-bundle and θ, θ′ two framings. Then there exists a unique g ∈ G
such that θ′ = g · θ, more precisely such that the following diagram commutes

PG|x0
θ ��

θ′
���

��
��

��
�

G

g·
��

G

For (PG, θ) a framed G-bundle we have an induced map iθ : Aut(PG) → G
defined by restricting the automorphism to the fiber PG|x0 and using the basic fact
recalled above that any two framings differ by an element of G. If (PG, θ

′) is another
framing on PG, then the induced map iθ′ : Aut(PG) → G satisfies iθ′ = giθg

−1,
where g ∈ G is such that θ′ = g · θ.

In the case that interests us we have moreover

Lemma 2.13. Let p := (PG, θ) be a degree 0, semistable, framed G-bundle over
an elliptic curve E. Then the induced morphism iθ : Aut(PG) → G is injective
and its image is StabG(p).

To prove Lemma 2.13 we will make use of a property of degree 0 semistable
vector bundles that holds in any genus. Recall that for the purposes of this paper,
a vector bundle on a singular curve is defined to be semistable of degree 0 if and
only if its pullback to the normalization is semistable of degree 0.

Lemma 2.14. Let X be a projective curve, and V, W semistable vector bundles
of degree 0. Then any map f : V → W is of constant rank.

Proof. First let us note that we may reduce to the case when X is smooth. Indeed,
given such a map f : V → W on X, we may pullback to a map f̃ : Ṽ → W̃ on the
normalization η : X̃ → X, and restricting to the fiber of f̃ at x̃ ∈ X̃ identifies with
the fiber of η at x = η(x).

Now suppose that X is smooth. Then ker(f) and im(f) must both be semistable
of degree 0 because V and W are semistable of degree 0. Now, if coker(f) had
torsion then its preimage would be a positive degree subbundle in V contradicting
semistability. Thus we must have that f is of constant rank as required. �
Proof of Lemma 2.13. Let us first start with G = GLn, so PG is equivalent to a
semistable vector bundle, say V , of degree 0.

We will show that restriction to the fiber at x0 together with the framing gives
an inclusion Aut(V) ↪→ GLn. Suppose there is an automorphism ψ in the kernel.
Then ψ − Id is an endomorphism of V which is zero at x0. Thus by Lemma 2.14,
ψ − Id must be identically zero as required.

Back to the general case. Consider G ↪→ GL(V ) a faithful highest weight repre-
sentation. Then we know from [Sun99, Cor 1.1, Thm 2.1] that VP is a semistable,
degree 0 vector bundle.

Therefore by the above, its automorphisms lie inside GL(V ).
We have the following commutative diagram of varieties

Aut(P) 
 �� HomG-eq(P, G) �
�

��

��

HomG-eq(P,GL(V ))� �

��


 �� Aut(VP),

G � � �� GL(V )
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where the marked � are the canonical isomorphisms which are instances of

H0(P G× Y ) � HomG-eq(P, Y )

for any G-variety Y .
From the injectivity of the three marked maps, we deduce that the first vertical

morphism is injective as well, which is what we wanted.
Moving on to the second statement, it is a general fact and fairly easy to show

that if an algebraic group G acts on a scheme X then the morphism π : X →
[X/G] is a G-bundle, where [X/G] is the quotient stack. Moreover, if x ∈ X then
Aut(π(x)) = StabG(x).

In our situation this can also be shown directly. Put p = (P, θ) and denote by
iθ : Aut(P) → G the induced map. If φ ∈ Aut(P) then check that φ : (P, iθ(φ) ·
θ) � (P, θ), i.e., p = g · p as we have already showed above that Aut(p) = 1. In
other words, iθ(φ) ∈ StabG(p). Conversely, let g ∈ StabG(p). This means that
(P, g · θ) = (P, θ). Explicitly, there exists an isomorphism φ : P → P compatible
with g · θ and θ. One checks routinely that iθ(φ) = g. We have shown that
iθ : Aut(P) � StabG(p). �

Remark 2.15. Lemma 2.13 is also true for higher genus curves. Given a semistable
G-bundle P of degree 0 one needs to pick up a faithful representation V of G such
that VP is semistable . By results of [IMP03], this is the case for V a low-height
representation. However, we will never use this result and so we do not provide the
details.

Let now H ≤ G be a closed subgroup of G and consider the induction map from
H-bundles to G-bundles. First we show that the induction preserves semistability:

Lemma 2.16. The map Bun0
H(E) → Bun0

G(E) sends semistable bundles to semi-
stable bundles.

Proof. First we treat the case when H is reductive. Let P be a semistable H-bundle
of degree 0. In genus 1 we can use the definition of semistability through associated
vector bundles (see Proposition 2.5) and this simplifies the argument.

Let V be a representation of G and restrict it to H. Then (P H× G) G× V = P H× V

is a semistable vector bundle of degree 0. Hence P H× G is a semistable G-bundle
of degree 0.

Suppose now that H is not reductive and consider a Levi decomposition H = LU
where L is isomorphic to H/U and U := Ru(H) is the unipotent radical of H. By
definition (see Definition 2.3), an H-bundle P is reductive if the induced L-bundle
P/U is reductive. Let P be a semistable H-bundle. We want to show that P H× G is
semistable. We will use the characterization of semistability through the associated
vector bundles, see Proposition 2.5. Let V be a representation of G. We have to
show that P H× G

G× V is a semistable vector bundle. Notice first that we can
rewrite it as P H× V where V is viewed as a representation of H. There exists
a filtration of V such that the unipotent group U acts trivially on the associated
graded. Call this associated graded V ′. Hence the vector bundle VP has a filtration
such that its associated graded is V ′

P . But V ′
P is isomorphic to P/U

L× V ′ which is
semistable of degree 0 (by Proposition 2.5). It follows that VP is also semistable of
degree 0. �
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Remark 2.17.
(1) Note that Lemma 2.16 is false without assuming degree 0 for the H-bundle.

For example, for T = G2
m ↪→ GL(2) we have that (O(−1),O(1)) is a

semistable T -bundle of degree (−1, 1) but the induced GL(2)-bundle (a
rank 2 vector bundle) O(−1) ⊕ O(1) is not semistable, although it is of
degree 0.

(2) There is a way to extend Lemma 2.16 to bundles of arbitrary degree. In
order to have a correct statement we could use the slope map of Schieder
[Sch14]: we require that the degree of the H-bundle has the same slope as
the degree of the induced G-bundle. This strategy has been used in [Fră15].
However, this generalization is never used in this paper.

When (E, x0) is a pointed, irreducible projective curve of arithmetic genus 1 we
denote by GE the moduli stack of degree 0, semistable framed G-bundles over E
where the framing is at x0 ∈ E. Lemma 2.13 shows that GE is an algebraic space
that is a G-torsor over the stack GE . Actually we can be more precise:

Proposition 2.18. For any linear algebraic group G, the moduli stack GE is a
separated, reduced scheme of finite type, i.e., a variety.

Proof. (Sketch) The case of cuspidal and nodal curves is dealt with by Proposi-
tion 2.10.

If E is smooth, the moduli stack Bun0
G(E) is algebraic, smooth and locally of

finite presentation (see [Wan11, Thm 1.0.1]). In the proof of loc. cit. it is shown
that BunG is covered by quasi-compact open substacks that admit a smooth map
from a Quot scheme. Assume for a moment that GE is representable by a scheme.
Then we immediately deduce that it is reduced, separated and of finite type since
Quot schemes are separated and of finite type.

We are left to showing that GE is representable by a scheme. The case G = GLn

follows from [Sim94, Thm. 4.10].
For a general linear algebraic group, embed G ↪→ GL(V ) and use Lemma 2.16

to deduce a morphism
Bun0,ss,fr

G (E) → Bun0,ss,fr
GL(V )(E).

Since GL(V )E is a scheme and BunG(E) → BunGL(V )(E) is schematic (valid more
generally, see for example [Wan11, Cor. 3.2.4]) we deduce that GE is a scheme as
well. �

Proposition 2.19, used silently in the sequel, is conceptually important in under-
standing the partition of the moduli stack GE in terms of subgroups and it paves
the way to the Jordan–Chevalley decomposition as formulated in Theorem 1.3.

Proposition 2.19. For any closed subgroup H ≤ G the induction map between
moduli spaces of framed bundles HE → GE is a closed embedding.

To prove Proposition 2.19, we will make use of Lemma 2.20 of Lemma 2.14 and
of an additional technical lemma on equivariant embeddings:

Lemma 2.20. Suppose X is a projective curve and V a semistable vector bundle
of degree 0.

(1) Suppose L is a degree 0 line bundle on X. Then any injective map of
sheaves L → V is necessarily the inclusion of a subbundle.
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(2) Suppose L1,L2 are line subbundles of V such that L1|x = L2|x for some
x ∈ X. Then L1 = L2.

Proof. Part (1) follows immediately from Lemma 2.14, and part (2) follows by
considering the canonical morphism L1 ⊕ L2 → V . �

Lemma 2.21. 6 Let H ≤ G be a closed subgroup. Then we can find a represen-
tation V of G and a line L ⊂ V such that

(1) StabG(L) = H,
(2) G/H ↪→ P(V ) equivariantly,
(3) the complement G/H\(G/H) is empty or the support of a Cartier divisor.

Proof. By a theorem of Chevalley (see, for example, [Bor91, II.5.1]) we can find
a representation W and a line L ⊂ W with properties (1), (2) above. If H is a
parabolic subgroup then we’re done. If not, put X := G/H and denote by Z the
complement X \ (G/H). Let X̃ be the normalization of the blow-up of X along Z.
The G-action on X extends by universal properties to X̃ and the complement of
G/H in X̃ is, by construction, the support of a Cartier divisor.

Now we use Sumihiro’s theorem [Sum74] to embed X̃ ↪→ P(V ) equivariantly in
the projectivization of a representation V of G. �

Proof of Proposition 2.19. By Lemma 2.21 we may pick a representation V of G
and a line L ⊆ V such that the morphism g �→ g·L defines an equivariant embedding
into the projective space G/H ↪→ P(V ) and such that the complement of G/H in
its closure is the support of a Cartier divisor.

Now suppose PG is a G-bundle on E and put V := VPG
. We have an embedding

of associated bundles:

PG/H = PG ×G (G/H) ↪→ PG ×G P(V ) = P(V).

The data of an H-reduction PH of PG is equivalent to a section s : E → PG/H
which we will consider as a section of the projective bundle P(V) via the embedding
above. In other words, an H-reduction corresponds to a certain line subbundle
L = PH ×H L ↪→ V . Note that if PG and PH are semistable and of degree 0, then
so are V and L.

Let us first show that HE → GE is injective. Given a framed G-bundle p =
(PG, θ), we suppose it has two reductions to a framed H-bundle, corresponding to
two line subbundles L1,L2 as explained above. Under the framing isomorphism

V|x0 = PG|x0 ×G V ∼= G×G V = V,

we have that L1|x and L2|x both correspond to the line L ⊆ V . Thus, by
Lemma 2.20, we must have L1 = L2 as required. Since an injective map of schemes
is automatically separated (see [Bos12, Cor 7.4.10]) we deduce that HE → GE is
separated.

Now let us show that HE → GE is proper. We use the valuative criterion of
properness and since we already noted the morphism is separated we only need the
existence part. Thus, let S denote the spectrum of a valuation ring, U its generic
point, Z its closed point, and let ES , EU , EZ be the base change of E to S, U , and
Z respectively.

6We thank M. Brion for providing us the proof.
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Given a family (PG,S , θ) of framed, degree 0, semistable G-bundles on ES to-
gether with a compatibly framed H-reduction on EU , we must show that it extends
to a compatibly framed H-reduction on ES .

As before, we have the associated vector bundle VS over ES , and we record the
data of the H-reduction as a line subbundle LU ↪→ VU . We must show that

(1) LU extends to a line subbundle LS ⊆ VS over ES and
(2) The corresponding section ES → P(VS) lands inside the subbundle PG,S/H.

For the first part, we note that the line subbundle extends to a subsheaf LS →
VS . Indeed, by the properness of P(VS) → ES , we may extend the section s : EU →
P(VU ) over the generic point of EZ to define a line subbundle L′ on E′

S , where E′
S

is an open subset of ES whose complement is of codimension 2. This line subbundle
is the restriction of a unique line bundle LS on ES (e.g. by taking the closure of
a Weil divisor representing it), and the map L′ → VS |E′

S
necessarily extends over

the codimension 2 locus.
Now we observe that the restriction LZ of LS to EZ is a degree 0 line bundle (as

it deforms to the degree 0 line bundle LU ) with a non-zero map to VZ . It follows
from Lemma 2.20 that LZ → VZ must be a subbundle as required.

We move on to prove the second part.
We will show that the section s : ES → P(VS) defining the line subbundle LS

above lands inside PG,S/H. If G/H is closed in P(V ) then PG,S/H is closed in
P(VS) and so the image of the section is contained entirely in it.

In case G/H is not projective, remember that D := G/H \G/H is the support
of a Cartier divisor (see Lemma 2.21).

The section s lands inside PG,S
G× (G/H) which is the closure of PG,S/H in

P(VS). The complement of PG,S/H in its closure is the support of a Cartier divisor,
namely CS := PG,S

G× D. Thus the set of points x ∈ ES for which s(x) /∈ PG,S/H
is Q := s−1(CS) which is either empty or a divisor (since the image of the section
s is not contained in CS). As s(x) ∈ PG,S/H for all x ∈ EU , we must have that
Q ⊆ EZ . Since EZ is irreducible we either have Q = EZ or Q is empty. But now
note that the framing on PG,S defines a trivialization

P(VS)|{x0}×S
∼= P(V ⊗OS)

and the section s takes the constant value [L] along the entire slice {x0}×S of ES .
In particular, Q 	= EZ and so it must be empty. �

2.6. The coarse moduli space and the characteristic polynomial map.
The coarse moduli space of degree 0, semistable G-bundles, which is none other
than the GIT quotient GE//G, was identified by Laszlo [Las98] to be isomorphic
to the GIT quotient TE//W for a maximal torus T (see also [Fra21] for a proof in
arbitrary characteristic). There is a natural G-invariant morphism from the framed
moduli stack to the moduli space of G-bundles that we think of as the characteristic
polynomial map (in analogy to Lie theory)

χ = χG : GE → ME(G).

Notice that the G-invariance of χ is equivalent to χ factorizing through the
moduli stack

χ : GE → ME(G).
It is a good moment to revisit the notion of a semisimple G-bundle.
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Lemma 2.22. Let P ∈ GE. The following are equivalent:
(1) P has a reduction to any maximal torus;
(2) P has a reduction to some maximal torus;
(3) Every framed lift p ∈ GE of P has a closed G-orbit;
(4) P is a closed point in the stack GE.

Definition 2.23. A G-bundle P ∈ GE is called semisimple if it satisfies any of the
above properties.

Proof. The equivalence of (1) and (2) follows from the fact that all maximal tori
are conjugate. The equivalence of (3) and (4) follows readily by considering the
map GE → GE which is a G-bundle. The orbits of G are mapped to points of GE

and an orbit is closed if and only if the point in the stack quotient is closed.
The proof of (3)⇒(2) follows from Lemma 2.24.
Now let us prove (2)⇒(3). We suppose that P has a reduction to a maximal

torus T . Consider the following commutative diagram

GE MG,E

TE TE//W.

χ

ι

χ′




By assumption, there exists s ∈ TE such that ι(s) is a lift of P to the framed
moduli space GE . We need to show that the orbit G · ι(s) is closed in GE . Since
GE → MG,E is a GIT quotient we know that in any fiber there is a unique closed G-
orbit. In particular, the fiber χ−1(χ(ι(s)) contains a closed orbit, say G ·p′. By the
implication (3)⇒(2), there exists s′ ∈ TE such that ι(s′) = p′. Since χ′(s) = χ′(s′)
we must have Ws = Ws′ which implies G · ι(s) = G ·p′. We conclude that the orbit
G · ι(s) is closed, namely that P is a semisimple G-bundle. �
Lemma 2.24. For every P ∈ GE there is a bundle Pss in its closure which admits
a reduction to a maximal torus.

Proof. We will construct a family P̃ of bundles over A1/Gm whose generic fiber
is P and special fiber admits a reduction to T . First note that by [BZN15, Thm.
2.2(1)]7 every such bundle P admits a degree 0 reduction PB to a Borel subgroup
B (note that this fact is very particular to degree 0 semistable bundles in genus 1).
Let T denote a maximal torus contained in B, and choose a cocharacter h : Gm → T
such that the conjugation action on B has strictly positive weights on the unipotent
radical N . In particular, the family of homomorphisms

f : B × (A1 \ {0}) → G

defined by
ft(b) := f(b, t) = h(t)bh(t)−1

extends uniquely to t = 0 ∈ A1, where f0 projects onto T ⊆ G. We consider
this family as a homomorphism of group schemes f : BA1 → GA1 and consider the
associated bundle (over E × A1):

P̃ = PB
A1 ×B

A1 ,f GA1 .

7In loc. cit. the derived group is assumed to be simply connected and they work in character-
istic zero. However, their proof works without these assumptions. See aldo [Fra21, Remark 2.13]
and [Fră15] for a slightly different proof of a more general result in this generality.
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We note that the fiber over 1 ∈ A1 is PB ×B G ∼= P and the fiber over 0 ∈ A1 the
semisimple bundle PB ×B,f0 G. Moreover, the action of Gm via the cocharacter h

provides an equivariant structure, descending P̃ to a family over A1/Gm with the
desired properties. �

As there is a unique closed orbit in the fibers of χ : GE → ME(G), we see that
the bundle Pss constructed in Lemma 2.24 is unique (up to isomorphism). We
record this fact here for later reference.

Proposition 2.25. Given P ∈ GE, there is a unique-up-to-isomorphism semisim-
ple bundle Pss ∈ GE with the property that χ(Pss) = χ(P).

We refer to the bundle Pss as “the” semisimplification of P.

Remark 2.26. The maps χ and χ (see beginning of Section 2.6) map a semisimple
bundle P into its equivalence class in TE//W .

Definition 2.27. The moduli stacks/varieties of unipotent G-bundles are defined
to be the preimages of 1 ∈ ME(G):

Guni
E :=χ−1(1),

Guni
E :=χ−1(1).

Remark 2.28. Notice that for p ∈ GE we have χ(p) = 1 if and only if the closure
{p}− contains the trivial bundle. This is due to the fact that GIT moduli spaces
parameterize closed orbits and an arbitrary orbit is sent to the unique closed orbit
contained in its closure. Hence the informal definition of unipotent bundles from
Section 1.1.1 coincides with the above one.

3. The partition of semisimple bundles by Lusztig type

In this section we construct and study a certain locally closed partition of the
coarse moduli space ME(G).

Recall that the points of the coarse moduli space ME(G) are in bijection with
isomorphism classes of semisimple objects of GE . Let PG ∈ GE be a semisimple
object and let p ∈ GE be a framed lift. Then the automorphism group Aut(PG)
is identified with the (possibly disconnected) reductive subgroup StabG(p) of G.
Different choices of framing define conjugate subgroups of G, and thus the conjugacy
class of StabG(p) in G is a well-defined invariant of the bundle PG.

In this way, we may partition ME(G) according to the corresponding conjugacy
class in G of its automorphism group. It will be convenient to encode the data of
StabG(p) in two stages:

• The neutral component H = StabG(p)◦, which is a connected reductive
subgroup of G.

• The component group π0StabG(p), which is a subgroup of the finite group
NG(H)/H.

The goal of this section is to study this partition of ME(G), and express it in
combinatorial/root-theoretic terms.
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3.1. E-pseudo-Levi subgroups. Denote by E the set of conjugacy classes of con-
nected reductive subgroups.8 Consider the map (of sets)

h : ME(G) → E
which takes the isomorphism class of a semisimple bundle PG to the G-conjugacy
class of StabG(p)◦, where p is a framed lift of PG. We denote by

ME(G)[H] := h−1([H])
the fibers of the map h.

Definition 3.1. We say that a connected reductive subgroup H of G is an E-
pseudo-Levi subgroup if it is of the form StabG(p)◦ for some semisimple p ∈ GE .
We write EE ⊂ E for the set of conjugacy classes of E-pseudo-Levi subgroups of E.

Remark 3.2. As mentioned in Section 1 (see also Proposition 2.10), if E is cuspidal
(respectively, nodal) then GE

∼= g (respectively, GE
∼= G). Thus E-pseudo-Levi

subgroups correspond to connected centralizers of semisimple elements of g (respec-
tively, G). These are precisely the Levi (respectively, pseudo-Levi) subgroups of G
(see Appendix A).

In Section 3.6 we will give an alternative description of this partition, which
allows us to understand the closure relations. In particular, at the end of Section 3.4
we will establish the following result (which may also be deduced from the theory
of Luna stratifications; see Remark 3.4).

Proposition 3.3. For each E-pseudo-Levi H, the subset ME(G)[H] is a locally
closed subvariety of ME(G).

We may record the finer partition according to the conjugacy class of the full
automorphism group as follows. If PG is a representative of a point in ME(G)[H]
and p a framed lift, then StabG(p) ⊆ NG(H) (as every algebraic group normalizes
its own neutral component). Thus the component group of StabG(p) is naturally a
subgroup of the relative Weyl group:

π0StabG(p) = StabG(p)/H ⊆ WG,H := NG(H)/H.

Given a subgroup A of WG,H , we write ME(G)[H,A] for the subset of ME(G)[H]
corresponding to semisimple bundles PG such that the component group of Aut(PG)
is identified with a conjugate of A as above. (The pair [H,A] is defined up to
simultaneous conjugation in G.)

In particular, the subset ME(G)[H,1] consists of isomorphism classes of semisim-
ple bundles PG whose full automorphism group Aut(PG) is identified with the
connected group H.

Remark 3.4. Suppose we are given a G-variety Y such that every point has a G-
invariant affine chart. Then we have the categorical quotient Y//G whose points
are in bijection with closed G-orbits on Y . We may partition Y//G according to the
conjugacy class in G of the (necessarily reductive) stabilizer of the corresponding
closed orbits. One can show that this defines a locally closed partition ([Lun73],
see e.g. [KR08] for an overview). In the case of G acting on the framed moduli

8There is a slight subtlety in characteristic 2 or 3 where we further need to impose the condition
(3.1), see remarks in Section 3.2. For the sake of readability, we do not introduce a further
adornment for E.
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space GE , this reproduces the partition ME(G)[H,A] as described above. For our
purposes it is convenient to focus mainly on the coarser partition according to
connected reductive subgroups H, hence the choice of notation.
3.2. Borel–de Siebenthal theory. Fix a maximal torus T of G, and let Φ denote
the corresponding set of roots. A subset Σ ⊆ Φ is called closed if ZΣ∩Φ = Σ. We
denote by A the set of closed subsets of Φ. To a closed subset Σ we associate the
following subgroup of T

Z(Σ) :=
⋂
α∈Σ

ker(α).

We will also consider reductive subgroups H of G containing the maximal torus T
that moreover satisfy an additional condition:

H = CG(Z(H))◦.(3.1)

It is proved in [Gil10] that if the characteristic of the field is not 29 or 3 then all
reductive subgroups containing a maximal torus satisfy condition (3.1).

The connection between closed subsets of roots and connected reductive sub-
groups is given by Theorem 3.5 of Borel–de Siebenthal, extended to positive char-
acteristic in [Gil10,Leh12]:
Theorem 3.5 ([BDS49,Gil10,Leh12]). The collection of connected reductive sub-
groups H ≤ G that contain the maximal torus T , and in characteristic 2 or 3
satisfy condition (3.1), is in bijection with A. The correspondence is given by as-
sociating to H its root system and, conversely, to Σ ∈ A the subgroup CG(Z(Σ))◦.

Moreover, under this correspondence we have G(Σ) = CG(Z(Σ))◦ and
Z(G(Σ)) = Z(Σ) = Z(CG(Z(Σ))).(3.2)

Proof. Apart from the last equality in Eq. (3.2), all is part of Borel–de Siebenthal
theory. See for example [BDS49, Théorème 4 and Section 6, page 213] and [Gil10,
Leh12].

For the last equality, it is enough to show that Z(CG(Z(Σ))) is contained in the
neutral component CG(Z(Σ))◦. If h is in Z(CG(Z(Σ))), then h ∈ CG(T ) = T ⊂
CG(Z(Σ))◦. Since Z(CG(Z(Σ))◦) = Z(Σ) we deduce Z(CG(Z(Σ))) ⊂ CG(Z(Σ))◦
which moreover implies Z(CG(Z(Σ))) ⊂ Z(Σ). �
Remark 3.6. In this paper all reductive subgroups that will appear satisfy condition
(3.1), essentially by construction. See Lemma 3.10 for the group of automorphisms
of a semisimple bundle. See for example [Gil10, Lemma 0.1] or [Leh12, Proposition
1.1] for centralizers of subgroups of the maximal torus.
3.3. E-root subsystems. In this subsection, we will present an alternative ap-
proach to the theory of E-pseudo-Levi subgroups in terms of their associated root
data.

Recall that TE denotes the algebraic group parameterizing framed T -bundles on
the fixed curve E. Thus TE is isomorphic to either t or T in the cuspidal and nodal
cases respectively. In general
(3.3) TE

∼= Hom(X∗(T ), J(E)),

9For example, in the Lie algebra of type B2 the vector space spanned by the root spaces
corresponding to short roots is a Lie subalgebra because the structure constants are divisible by
2. This yields a sub-Lie algebra of so(5) that does not exist in other characteristics and its root
system is not closed.
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where J(E) denotes the Jacobian variety of E, and X∗(T ) = Hom(T,Gm) the
character lattice.

Note that each character α ∈ X∗(T ) gives rise to a homomorphism α∗ : TE →
J(E), taking a T -bundle to its associated line bundle. For p ∈ TE , we set

Σp := {α ∈ Φ | p ∈ ker(α∗)} .(3.4)
We write AE for the subset of A consisting of subsets Σp ⊂ Φ which occur in this
way. The elements of AE are called E-root subsystems of Φ.

Thus we have a map
κ : TE → A

which assigns to a point p ∈ TE the set Σp. The image is AE by definition and for
Σ ∈ AE we put

(TE)Σ := κ−1(Σ)
with its reduced induced structure. Equivalently, by unwinding the definition of κ,
one can describe this subvariety as

(TE)Σ = {p ∈ TE | α ∈ Φ, α∗(p) = 1J(E) if and only if α ∈ Σ}.(3.5)
Lemma 3.7. The map κ : TE → AE is continuous with respect to the topology on
AE induced by the partial order given by inclusion. In other words the partition

TE =
⊔

Σ∈AE

(TE)Σ

is locally closed.
Proof. It suffices to show that the preimage

(TE)≥Σ = κ−1({Σ′ | Σ′ ⊇ Σ})
is closed. But this subset is just the intersection of root hyperplanes ker(α∗) ⊆ TE

for α ∈ Σ. �
As we will see in Section 3.4, the partition of TE according to E-root subsystems

records the conjugacy class of the neutral component the stabilizer of G acting on
TE . We may also record the component group of the stabilizer as follows.

Let W = WG,T be the Weyl group. Let Σ ⊆ Φ be an E-root subsystem. We
write NW (Σ) ⊆ W for the normalizer of Σ. Let WΣ denote the Weyl group of Σ
(considered as a root system in its own right). We have that NW (Σ) = NW (WΣ)
and so WΣ is a normal subgroup in NW (Σ).
Lemma 3.8. Let p ∈ TE and set Σ = Σp. Then

WΣ ⊆ StabW (p) ⊆ NW (Σ).
We write Ap for the corresponding subgroup of WG,Σ := NW (Σ)/WΣ.

Thus to each p ∈ TE we have a pair (Σp, Ap) consisting of an E-root subsystem
Σp and a subgroup Ap of WG,Σ.

Proof. First note that, by definition of Σ, p is contained in each of the root hyper-
planes corresponding to roots in Σ. Thus p is fixed by the corresponding reflections
in WΣ and thus by all of WΣ. This proves the inclusion on the left.

Now let w ∈ StabG(p), and suppose α ∈ Σ. Then
w(α)∗(p) = α∗(w−1p) = α∗(p) = 1J(E).

Thus w ∈ NW (Σ), establishing the inclusion on the right. �
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3.4. Connecting E-pseudo-Levis and E-root subsystems of roots. Recall
that we have fixed a maximal torus T ⊆ G, with associated roots Φ and Weyl group
W .

It follows from Borel-de-Siebenthal theory (see Section 3.2) that the assignment
Σ �→ [G(Σ)] defines an order preserving bijection between E and A/W . The follow-
ing result states that Σ is an E-root subsystem if and only if G(Σ) is an E-pseudo-
Levi subgroup.

Proposition 3.9. The assignment Σ �→ G(Σ) defines an order-preserving bijec-
tion

AE/W
∼−→ EE .

This follows immediately from the following result:

Lemma 3.10. Let p ∈ TE and view it inside GE. Then StabG(p)◦ = G(Σp).

Proof. To show that these two connected subgroups of G are equal, it suffices to
show that their corresponding Lie algebras are equal inside g. Put p = (PG, θ). The
Lie algebra of StabG(p)◦ ∼= Aut(PG) is given by the global sections of the adjoint
bundle H0(E; gP). As PG is induced from a T -bundle P, the adjoint bundle gPG

splits as a direct sum

gPG
= gP = tP ⊕

⊕
α∈Φ

gα,P .

For each α ∈ Φ, the line bundle gα,P is trivial precisely when α ∈ Σp. In this case,
the framing provides a canonical identification

H0(E; gα,P) = gα.

Similarly, we have H0(E; tP) = t. On the other hand, if α /∈ Σp, then H0(E; gα,P) =
0 because a line bundle of degree 0 on a curve has a section if and only if it is trivial.
Thus we have that

H0(E; gP) = g(Σp)

as required. �

Now recall that the map
q : TE → ME(G)

identifies ME(G) with the categorical quotient TE//W . Putting all this together,
we have

Lemma 3.11. The following diagram commutes:

TE
κ ��

q

��

AE

��

ME(G)
h

�� EE

This proves Proposition 3.3 in view of Lemma 3.7.
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3.5. The component group. Given a semisimple bundle in PG ∈ GE , we have
shown that the neutral component Aut(PG)◦ may be identified with G(Σp) where
Σp is the set of roots which annihilate a given framed lift p ∈ TE of PG.

We will now refine this to give a combinatorial description (i.e. in terms of the
W -action on TE) of the component group of StabG(p) (∼= Aut(PG)).

Recall that for a connected reductive subgroup T ⊆ H ⊆ G with root subsystem
Σ ⊆ Φ, we have an isomorphism

WG,H := NG(H)/H ∼= NW (Σ)/WΣ := WG,Σ.

This finite group is referred to as the relative Weyl group of H (or of Σ) in G. It
naturally acts on the algebraic group Z(H)E (also written Z(Σ)E). The following
result identifies the component group of a semisimple bundle in ME(G)[H] with
the stabilizer in the relative Weyl group of a corresponding lift to p ∈ Z(H)Σ.

Lemma 3.12. Let p ∈ TE, and let H = G(Σp). Then there are compatible
identifications

StabWG,Σ(p)

�
��

� � �� NW (Σ)/WΣ

�
��

π0StabG(p) StabG(p)/H∼		 � � �� NG(H)/H.

Proof. Note that we have a commutative diagram with exact rows

1 �� NH(T )

��

�� StabNG(H)∩NG(T )(p)

��

�� StabNW (Σ)(p)/WΣ

��

�� 1

1 �� H �� StabG(p)/H �� StabG(p)/H �� 1

It is a straightforward diagram chase to show that the right most vertical morphism
is an isomorphism. Similarly, one checks that this isomorphism is compatible with
the embeddings as required. �

3.6. Closure relations for the partition. We shall see presently that the closure
of the variety (TE)Σ is a union of varieties (TE)Σ′ . However, the Σ′ that appear
in the closure relation are determined by a slightly modified partial order relation
which we determine below.

Let us first establish some more notation. Given a diagonalizable affine group
scheme Z, we define10

ZE := Hom(X∗(Z), J(E)),
where X∗(Z) = Hom(Z,Gm) is the character group. In this case, ZE is itself a
commutative group scheme. More precisely, we may write Z (non-canonically) as
a product (Gm)r × K where r is a non-negative integer and K is a finite abelian
group. In that case, ZE is isomorphic to the product J(E)r × KE , where KE :=
Hom(K, J(E)) is a finite group scheme (possibly non-reduced and disconnected).

10The notation GE was previously defined only in the case when G is a connected reductive
group. By (3.3), this definition is compatible with the previous one in their common domain of
definition (i.e., when Z is a torus). One can define GE more generally for possibly disconnected
reductive groups, but we will not need this for the present paper.
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With these conventions, we note that there is a natural isomorphism of algebraic
groups

(3.6) (ZE)◦,red � (Z◦,red)E .

Given Σ ∈ AE we consider the subgroup L(Σ) := CG(Z(Σ)◦,red) where we recall
that Z(Σ) ≤ T is defined by

Z(Σ) =
⋂
α∈Σ

ker(α).

The group L(Σ) is a Levi subgroup of G (as it is the centralizer of a torus) which
clearly contains G(Σ) (as every element of G(Σ) centralizes Z(Σ)◦). In fact, it is
the smallest such Levi subgroup. We will write Σ◦ for the set of roots of L(Σ). We
are ready now to define a new partial order on A.

Remark 3.13. We are interested in the sets (TE)Σ as subvarieties of TE and so it
makes sense to discard the nilpotents that can appear in Z(Σ)E or (TE)Σ (relevant
only for bad11 primes for the group G).

Definition 3.14. Given Σ1,Σ2 ∈ A, we define the partial order � by

Σ1 � Σ2 if Σ1 ⊇ Σ2 and Σ2 = Σ1 ∩ Σ◦
2.

We say that a closed subset is isolated if it is maximal with respect to this partial
order.

Note that maximal subsets Σ are characterized by the fact that Z(Σ)◦,red =
Z(G)◦,red. This notion is useful in order to relate our partition/stratification to the
one of Lusztig [Lus84, 3.1]:

Proposition 3.15. We have the closure relation

(TE)Σ =
⊔

Σ′�Σ

(TE)Σ′ .

Proof. As per Remark 3.13 we do not have to consider the non-reduced scheme
structure that could appear on (TE)Σ and on its closure.

First we claim that we have the following description of the closure:

(3.7) {(TE)Σ}− = (Z(Σ)E)◦,red · (TE)Σ.

Indeed, note that (TE)Σ is open in Z(Σ)redE = (TE)≥Σ, and thus its closure is
necessarily a union of connected components of Z(Σ)redE . In particular, the closure
must be a union of orbits for the neutral component (Z(Σ)E)◦,red.

Now suppose p ∈ TE is in the closure of (TE)Σ. We must show that

Σ = Σp ∩ Σ◦.

As (TE)≥Σ is closed and contains (TE)Σ, it must also contain (TE)Σ and thus p.
In other words, we have Σ ⊆ Σp. By construction we have Σ ⊆ Σ◦ and hence
Σ ⊆ Σp ∩ Σ◦.

It remains to show the other inclusion. Let α ∈ Σp ∩Σ◦. By (3.7) we may write

p = q · r,

11A prime p is bad for the reductive group G if X∗(T )/ZΣ has p-torsion for some Σ ⊂ Φ. Only
a handful of primes are concerned for each reductive group G.
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where q ∈ (Z(Σ)E)◦,red and r ∈ (TE)Σ. As α ∈ Σp we get α∗(p) = 1J(E) (see (3.4));
as α ∈ Σ◦ we have Z(Σ)◦,red ≤ kerα which coupled with (3.6) gives α∗(q) = 1J(E).
Thus we deduce that α∗(r) = 1J(E) which, by (3.5), implies α ∈ Σ as required. �

3.7. Summary of section. Recall that we have defined a locally closed partition
in two ways

ME(G) =
⊔

[Σ]∈AE/W

ME(G)[Σ](3.8)

=
⊔

[H]∈EE

ME(G)[H].

We thus obtain a locally closed partition

GE =
⊔

[Σ]∈AE/W

(GE)[Σ](3.9)

=
⊔

[H]∈EE

(GE)[H]

by pulling back via the characteristic polynomial map χ : GE → ME(G). Similarly
for the framed version GE using χ : GE → ME(G).

A stratum that plays a special role for us is the one corresponding to H = G.
We put

(GE)♥ := (GE)[G].

One should think of this locus as those G-bundles whose semisimplification “is
central” (i.e. has a reduction to the center Z(G) of G).

Note that the set E carries partial orders ≤,� induced from the same named
orders on A (see Definition 3.14).

Proposition 3.16. The partitions from (3.8), (3.9) of ME(G) and GE have the
closure relations determined by the partial order �.

Proof. Follows from Lemma 3.11 and Proposition 3.15. �

Remark 3.17. The upshot of this section is that there are two approaches to deter-
mining the type of a semisimple bundle: either compute its automorphism group
or choose a reduction to T and compute the subset of roots on which the bundle
vanishes.

4. The Jordan–Chevalley theorem

In this section we will prove Theorem 1.1 and Theorem 1.4 from Section 1. A
key concept here is the notion of regularity which we define in Section 4.1. Then
we will establish the equivalence of the two main theorems in Section 4.3. Finally
we will prove Theorem 1.4 over Section 4.4 and Section 4.5.

4.1. The regular locus. Fix H an E-pseudo-Levi subgroup of G. Recall that
this means that there exists a semisimple framed G-bundle q ∈ GE such that
StabG(q)◦ = H.

Definition 4.1. We say that p ∈ HE is
(1) G-regular if StabG(p)◦ ⊆ H,
(2) strongly G-regular if StabG(p) ⊆ NG(H),
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(3) maximally G-regular if StabG(p) ⊆ H.

One may immediately check that for a given p ∈ HE we have implications
maximally G-regular =⇒ strongly G-regular =⇒ G-regular

(the second implication uses that NG(H)◦ = H).
If the stabilizers of semisimple elements of GE are always connected, then all

three notions above coincide because the regularity only depends on the semisim-
plification (see Proposition 4.4). For example, this happens when E is cuspidal (so
GE = g) or when E is nodal and G = GE is simply connected. However, in general,
the three notions are all distinct as illustrated by Example 4.2.

Example 4.2. Consider the case where E is a nodal curve, and thus we may
identify GE = G. Assume also that char(k) = 0.

(1) Let G = PGL2 and T the maximal torus represented by the classes of
diagonal matrices. Consider the matrix

X =
(

1 0
0 −1

)
.

One can check that StabG([A]) = NG(T ). Thus [X] is strongly G-regular
(and thus regular) element of T , but it is not maximally G-regular .

(2) Now let G = PGL3 and H the Levi subgroup consisting of classes of block
matrices of the form: ⎛

⎝∗ ∗
∗ ∗

0
0

0 0 ∗

⎞
⎠ .

We write T for the diagonal maximal torus again.
Consider the matrix

Y =

⎛
⎝1 0 0

0 ζ 0
0 0 ζ2

⎞
⎠ ,

where ζ is a primitive third root of unity. Then StabG([Y ]) is the preimage
in NG(T ) of the cyclic subgroup group A3 ⊆ S3 ∼= NG(T )/T .

In particular
StabG([Y ])◦ = T ⊆ H

and thus [Y ] is a G-regular element of H. However,
StabG([Y ]) � H = NG(H),

so [Y ] is not a strongly G-regular element of H (it is however a strongly
but not maximally G-regular element of T ).

We write H reg
E (respectively, Hstr-reg

E , respectively, Hmax-reg
E ) for the locus of G-

regular (respectively, strongly G-regular, respectively, maximally G-regular) ele-
ments. As these loci are manifestly H-invariant (in fact, NG(H)-invariant) we have
corresponding loci H reg

E , Hstr-reg
E , Hmax-reg

E in the stack HE .

Remark 4.3. Whereas the loci (GE)[H] and (GE)[H,A] introduced in Section 3 are
intrinsic to G, the G-regular locus (HE)reg and its relatives are defined in terms of
how H sits as a subgroup of G (i.e. are not intrinsic to H). In what follows, we
will often need to consider both the intrinsic loci of HE (such as (HE)[K] for some
E-pseudo-Levi K of H) and the G-regular loci. To keep track of these notions,
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we will always label intrinsic loci in the subscript and regularity conditions in the
superscript.

It will be useful to have a few other characterizations of the regularity condition.
To state the result we will need to recall some notation.

Let PH ∈ HE . Choose an element p ∈ TE lifting χ(PH) under the map

TE → ME(H) = TE//WH .

This element determines a closed root subsystem Σp ⊆ Φ (see Section 3.3). Note
that we consider Σp as a subset of the roots Φ of G and it might not be contained
in the root subsystem ΣH corresponding to H.

Recall that by Proposition 2.25 there is a unique-up-to-isomorphism semisimple
bundle Pss

H with χ(Pss
H) = χ(PH).

Proposition 4.4. Let PH ∈ HE, and choose p ∈ TE and Pss
H as described above.

The following are equivalent:
(1) PH is regular,
(2) Pss

H is regular,
(3) The morphism π : HE → GE is étale at PH ,
(4) H•(E; (g/h)PH

) = 0,
(5) Σp ⊆ ΣH .

Remark 4.5. The equivalence of (2) and (1) means that the condition of PH being
G-regular depends only on the “characteristic polynomial” χ(PH). Thus we have
a locus

ME(H)reg ⊆ ME(H)
such that PH is G-regular if and only if χ(PH) ∈ ME(H)reg. According to (5), the
locus ME(H)reg is equal to the image of (TE)≤ΣH

under the map TE → ME(H).
In particular, it follows from Proposition 4.4 that ME(H)reg (respectively, H reg

E ) is
open and dense in ME(H) (respectively, HE).

Proof of Proposition 4.4. First, let us show that conditions (4) and (3) are equiv-
alent. The map π is étale precisely at the points where its differential is a quasi-
isomorphism of tangent complexes. Recall that the cohomology of the tangent
complex of HE at a bundle PH is given by the cohomology of the adjoint bundle
of PH , that is, by Hi(E; hPH

).
The differential of π at PH ∈ HE is the map

THE ,PH
→ π∗TGE ,π(PH)

which upon taking cohomology groups becomes

Hi(E; hPH
) → Hi(E; gPG

), i = 0, 1.

The cone of this map of complexes is given by H•(E; (g/h)PH
). Thus we have that

H•(E; (g/h)PH
) = 0 if and only if π is étale at PH as required.

Let us show the equivalence of (4) and (5). Fix PBH
a reduction of PH to a Borel

subgroup of H such that the induced T -bundle, call it PT , satisfies PT
T× H = Pss

H .
(See paragraph above Proposition 4.4.) The vector bundle (g/h)PH

= (g/h)PBH

carries a filtration whose associated graded is (g/h)PT
. This latter bundle is a direct

sum of line bundles (gα)PT
corresponding to roots α ∈ Φ\ΣH . By definition, the

bundle (gα)PT
is trivial if and only if α ∈ ΣPT

= Σp. Noting that the cohomology
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of a degree 0 line bundle on E vanishes if and only if it is non-trivial, we deduce
that (4) is equivalent to (5).

To see the equivalence of (2) and (5) we first note that, by Lemma 3.10,

G(Σp) = StabG(p)◦.

Condition (2) means that the left hand side is contained in H, whereas condition
(5) means that the right hand side is contained in H.

By Lemma 4.6, the bundle PH is G-regular if and only if the homomorphism
Aut(PH) → Aut(PG) induces an isomorphism Aut(PH)◦ ∼= Aut(PH)◦ (where
PG := PH

H× G). Taking the corresponding Lie algebras, we see that PH is G-
regular if and only if the map

H0(E; hPH
) → H0(E; gPH

)

is an isomorphism. Using the long exact sequence associated to the short exact
sequence of H-modules

0 → h → g → g/h → 0
and Serre duality (the canonical bundle is trivial), this is equivalent to condition
(4). We’ve shown that (4) is equivalent to (1). �

Lemma 4.6. An element p ∈ HE is G-regular if and only if StabG(p)◦ =
StabH(p)◦.

Proof. First note that StabH(p)◦ is a connected subgroup of StabG(p) so it is neces-
sarily contained in the neutral component: StabH(p)◦ ⊆ StabG(p)◦. If StabG(p)◦ =
StabH(p)◦, then certainly StabG(p)◦ ⊆ H so p is regular. Conversely, if p is reg-
ular, then StabG(p)◦ ⊆ H ∩ StabG(p) = StabH(p) is a connected subgroup and
thus it must be contained in the neutral component. So StabG(p)◦ = StabH(p)◦ as
required. �

We write Z(H)regE for the intersection Z(H)E ∩ H reg
E (similarly for Z(H)str-regE ,

ZH(E)max-reg). The various notions of regularity are somewhat simpler here.

Lemma 4.7. Fix an element p ∈ Z(H)E.
(1) The element p is G-regular if and only if it is strongly G-regular.
(2) Assume p is regular. It is maximally G-regular if and only if the relative

Weyl group WG,H acts freely on the orbit of p.

Proof. (1) Suppose p is regular, i.e. StabG(p)◦ ⊆ H. But p ∈ Z(H)E , so H ⊆
StabG(p) and thus StabG(p)◦ = H. As the neutral component of any algebraic
group is a normal subgroup, we have StabG(p) ⊆ NG(H) as required.

(2) By regularity of p, StabG(p)◦ = H as explained above. Thus p is maximally
G-regular if and only if StabG(p) is connected. According to Lemma 3.12, the
component group of StabG(p) is precisely the stabilizer of p in WG,H , hence the
claimed result. �

4.2. The main results. For convenience, we remind the reader of the statements
of Theorem 1.1 and Theorem 1.4, to be proved in this section.

To state the first result, recall that for an E-pseudo-Levi subgroup H of G,
we defined the G-regular locus (HE)reg in Section 4.1. We denote by Z(H)reg the
intersection Z(H)E ∩ H reg

E . The locus of unipotent bundles Huni
E is defined to be

fiber χ−1
H (1) of the characteristic polynomial map χH : HE → ME(H).
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Theorem 4.8 (Jordan decomposition). Given a semistable, degree 0, framed G-
bundle p ∈ GE, there is a unique triple (H, ps, pu) where H is an E-pseudo-Levi,
ps ∈ Z(H)regE , pu ∈ Huni

E , and
p = ps · pu,

where the multiplication is defined via the group morphism m : Z(H) × H → H
(see Example 2.1).

To state the next result recall that we have defined a partition of GE (and also
of GE) in Section 3.7

GE =
⊔

[H]∈EE

(GE)[H]

and we defined the heart locus to be (GE)♥ := (GE)[G].

Theorem 4.9 (Galois theorem). For H an E-pseudo-Levi subgroup of G the
morphism

(HE)reg♥ → GE

is a WG,H-Galois covering onto (GE)[H].

To begin with we will establish the following result, which expresses the Jordan–
Chevalley decomposition on the heart locus (where, in fact, it is simply a direct
product). This may be thought of as a baby version of Theorem 4.8.

Proposition 4.10. There is an equivalence of stacks

(GE)♥ � Z(G)E ×Guni
E .

Proof. The following is the cartesian diagram defining (GE)♥ and Guni
E :

Guni
E (GE)♥ GE

{1} Z(G)E ME(G)

χ

The group Z(G)E acts on both GE and ME(G) and the map χ is equivariant. This
readily implies the required isomorphism from the statement.

One could also argue as follows: the natural product map

Z(G)E ×Guni
E → (GE)♥

is Z(G)E-equivariant and this enables us to define its inverse by the following
formula

P �→ (χ(P), χ(P)−1 · P). �

Corollary 4.11. We have an equivalences of stacks

(HE)reg♥ � Z(H)regE ×Huni
E � (HE)str-reg♥ .

Proof. The first equivalence follows from Proposition 4.10 and from the fact that
regularity of an H-bundle is governed by its semisimple part, i.e. by the part
in Z(H)E (see Proposition 4.4). The analogous equivalence also holds for the
strongly G-regular locus. The second equivalence then follows from the fact that
Z(H)regE = Z(H)str-regE (Lemma 4.7). �
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4.3. Equivalence of Theorems 4.8 and 4.9. Our next step will be to show that
the two main results are mutually equivalent.

Let us first recast Theorem 4.9 in terms of framed bundles. It states that the
map

π̃reg
♥ : G×NG(H) (HE)reg♥ → GE(4.1)

is a (G-equivariant) isomorphism onto (GE)[H].
To prove Theorem 4.9, we must show the following two statements:
(1) (“Surjectivity”) The image of π̃reg

♥ is precisely (GE)[H].
(2) (“Injectivity”) The map π̃reg

♥ is injective.
Analogously, to prove Theorem 4.8, we must show the following two statements:
(1) (“Existence”) Every p ∈ GE has a Jordan datum (H, ps, pu) with p =

ps · pu ∈ (HE)reg♥ .
(2) (“Uniqueness”) Given p ∈ GE with two Jordan data (H, ps, pu) and

(H ′, p′s, p
′
u) we have (H, ps, pu) = (H ′, p′s, p

′
u).

We will show that the “existence” (respectively, “uniqueness”) part of Theorem
4.8 is equivalent to the “surjectivity” (respectively, “injectivity”) in Theorem 4.9.

4.3.1. Existence implies surjectivity. Suppose p ∈ (GE)[H] with associated Jordan
data H ′, ps, pu. It follows that p ∈ (H ′

E)reg♥ ⊆ (GE)[H] and thus H ′ = Ad(g)H for
some g ∈ G. Then p is the image of

(g, g−1 · p) ∈ G×NG(H) (HE)reg♥

as required.

4.3.2. Surjectivity implies existence. Given p ∈ (GE), we let [H] denote the unique
conjugacy class of E-pseudo-Levi subgroups such that p is in the locus (GE)[H].
Surjectivity means that there exists

(g, p′) ∈ G× (HE)reg♥

such that g · p′ = p. By replacing p′ with g−1 · p′ and H with Ad(g−1)H, we may
assume that p ∈ (HE)reg♥ . Recall (Corollary 4.11) that (HE)reg♥

∼= Z(H)regE ×Huni
E .

Thus p has a Jordan decomposition p = ps · pu as required.

4.3.3. Uniqueness implies injectivity. We must show that if p, p′ ∈ (HE)reg♥ and
g ∈ G such that g · p = p′, then g ∈ NG(H). As we have assumed p, p′ ∈ (HE)reg♥ ,
we have Jordan decompositions p = ps · pu and p′ = p′s · p′u. Note that H =
StabG(ps)◦ = StabG(p′s)◦. By the uniqueness of the Jordan decomposition, we
must have that g · ps = p′s. Thus Ad(g)H = H, so g ∈ NG(H) as required.

4.3.4. Injectivity implies uniqueness. Let p ∈ GE and suppose we have two Jordan
data (H, ps, pu) and (H ′, p′s, p

′
u). To prove the uniqueness of the Jordan decomposi-

tion it suffices to show that H = H ′ (as within (HE)reg♥ = Z(H)regE × (HE)uni, every
element has a unique Jordan decomposition).

First observe that the Lusztig type of p is well-defined, so [H] = [H ′], i.e. there
exists g ∈ G such that Ad(g)H = H ′.

Now we have p ∈ (H ′
E)reg♥ , and thus g−1 · p ∈ (HE)reg♥ . It follows that p is the

image of both (1, p) and (g, g−1 · p) under the map

π̃reg
♥ : G×NG(H) (HE)reg♥ → GE .
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By injectivity, we must have that g ∈ NG(H). But then H ′ = H as required.
The remainder of this section will be taken up with the proof of Theorem 4.9

(and thus Theorem 4.8).

4.4. Proof of surjectivity. In this subsection we give a proof of the surjectivity
part of Theorem 4.9. Specifically, we show the following:

Proposition 4.12. The restriction

πreg
♥ : (HE)reg♥ → GE

maps surjectively onto (GE)[H].

The statement splits into two parts:
(1) The image of

πreg
♥ : (HE)reg♥ → GE

is contained in (GE)[H].
(2) The image of πreg

♥ contains all of (GE)[H].

4.4.1. Proof of (1). Let PH ∈ HE and let PG = π(PH) be the induced bundle.
Then we will show

(a) if PH ∈ H reg
E then PG ∈ (GE)≤[H];

(b) PH ∈ (HE)♥ if and only if PG ∈ (GE)≥[H].

Remark 4.13. The converse of part (a) above is false. For example, suppose we
are in the group case E = Enode with G = GE = GL3. Let H ⊆ G denote the
subgroup consisting of matrices of the form⎛

⎝∗ ∗
∗ ∗

0
0

0 0 ∗

⎞
⎠ .

Now let p ∈ H denote the matrix: ⎛
⎝1 0 0

0 2 0
0 0 2

⎞
⎠ .

Then p ∈ G[H] as StabG(p) is conjugate to H, but p /∈ H reg as StabG(p) � H.

Proof of (a). First suppose that PH ∈ HE is semisimple. Let p ∈ HE denote a lift
to a framed bundle.

Then PH is G-regular if and only if Aut(PG)◦ ∼= StabG(p)◦ ⊆ H. On the other
hand, PG is contained in (GE)≤[H] if and only if StabG(p) is contained in some
G-conjugate of H.

Thus we have the required implication in case PH is semisimple. In general, the
result follows from the fact that the conditions PH ∈ H reg

E and PG ∈ (GE)≤[H] only
depend on the characteristic polynomial of PH (respectively, PG) and thus only
depend on the isomorphism class of the semisimplification (see Section 2.6). �

Proof of (b). Again, suppose PH is semisimple. Then PH is contained in (HE)♥
if and only if H = StabH(p) = StabG(p) ∩H. This in turn is equivalent to PG ∈
(GE)≥[H]. As before, the general case follows from the fact that the conditions only
depend on the characteristic polynomial. �
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4.4.2. Proof of (2). Suppose PG is contained in (GE)≤[H] (respectively, (GE)[H]).
Then we will show that there exists PH in (HE)reg (respectively, (HE)reg♥ ) such that
π(PH) = PG.

Recall that by Proposition 4.4, the substack H reg
E is precisely the locus on which

the map π is étale. In particular, the image π(H reg
E ) is an open substack of GE . We

must show that this open substack contains all of (GE)≤[H].
First suppose PG ∈ (GE)≤[H] is semisimple. Let T be a maximal torus of H

(and thus of G). Then, by Lemma 3.10, there is a framed reduction p ∈ TE such
that StabG(p)◦ ⊆ H. Thus the induced H-bundle PH is a G-regular H-reduction
of PG as required.

Now let us drop the assumption that PG is semisimple, and let Pss
G denote a

semisimplification of PG. Then Pss
G is semisimple and contained in (GE)≤[H], thus

by the above argument Pss
G is contained in π(H reg

E ). But Pss
G is contained in the

closure of the point PG; thus any open neighbourhood of Pss
G in GE contains PG.

As π(Greg
E ) is such an open neighbourhood, we must have PG = π(PH) for some

PH ∈ H reg
E as required.

It remains to show that if moreover PG ∈ (GE)[H] then the above constructed
PH belongs to (HE)♥. If p is a framed lift of PH such that StabG(p)◦ ⊂ H then the
condition PG ∈ (GE)≥[H] means H ⊂ StabG(p)◦. We deduce that H = StabG(p)◦
which in turn implies StabH(p) = H, or in other words PH ∈ (HE)♥.

4.5. Proof of injectivity. In this section we prove the injectivity required (see
(4.1)) in the proof of Theorem 4.9. In other words, we must show that

πreg
♥ : (HE)reg♥ /WG,H → GE(4.2)

is an embedding.
Let us first sketch an outline of the strategy of proof. We wish to apply the

following general principle:

Proposition 4.14. If an étale morphism of schemes X → Y is an embedding
over a dense open subset of Y and X is separated, then it is an open embedding.

Proof. We reduce it to [Gro67, Thm 17.9.1]. Namely, according to loc. cit., a
morphism of schemes U → V is an open immersion if and only if it is flat, locally
of finite presentation and a monomorphism in the category of schemes.

In our case we only need to check that the morphism is a monomorphism which
follows at once from birationality and separatedness. �

Remark 4.15. Since being an open immersion is a property that is smooth-local on
the target, Proposition 4.14 can be applied to a morphism of finite type stacks that
is representable by separated schemes and this is how it will be used below.

While π is étale over the locus (HE)reg, we cannot apply Proposition 4.14 directly
to the morphism π as it is not generically an embedding - its generic fiber has
cardinality |W |/|NW (WH))| (see Lemma 4.23).

However, the failure of π to be generically an embedding is precisely accounted
for by the corresponding map

ρ : ME(H)//WG,H → ME(G)

on the level of coarse moduli spaces, which also has generic degree |W |/|NW (WH)|
(Lemma 4.23). The idea is thus to replace the target GE with the base-change G̃E :
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HE/WG,H

π



ν ��

χ
H 

��

���
���

���
�

G̃E

ρ̃
��

��

�

GE

χ
G

��

ME(H)//WG,H
ρ

�� ME(G)

In this way, we obtain a morphism ν which is generically an embedding
(Lemma 4.17). Moreover, we will show that ν is étale when restricted to the
locus Hstr-reg

E /WG,H (see Lemma 4.16), and thus an open embedding on this locus
by Proposition 4.14 (we can apply it in this situation since ν comes from an obvi-
ous G-equivariant morphism between varieties). As this locus contains the desired
substack (HE)reg♥ /WG,H (recall that (HE)str-reg♥ = (HE)reg♥ by Corollary 4.11), the
morphism

νreg
♥ : (HE)reg♥ /WG,H → G̃E

is an embedding.
Finally, we show that the restriction of the base change morphism

ρ̃reg
♥ : (G̃E)reg♥ → GE

is an embedding (Corollary 4.20). Thus the composite

(HE)reg♥ /WG,H
� � �� (G̃E)reg♥

� � �� GE

is an embedding as required in (4.2).
Now let us go through the steps in the proof one by one. We start with Lemmas

4.16 and 4.17, whose proof will be given in Section 4.6.

Lemma 4.16. The following restriction of ν is étale

νstr-reg : (HE)str-reg/WG,H → G̃E .

Lemma 4.17. There is an open dense subset of HE/WG,H on which ν is an open
embedding.

Assuming Lemma 4.16 and Lemma 4.17, we may now establish:

Lemma 4.18. The restriction
νreg
♥ : (HE)reg♥ /WG,H → G̃E

is an embedding.

Proof. By Lemma 4.16 νstr-reg is étale, and by Lemma 4.17 it is generically an
embedding. Thus by Proposition 4.14, νstr-reg is an open embedding. The claim then
follows immediately from the fact that (HE)reg♥ = (HE)str-reg♥ (Corollary 4.11). �

Lemma 4.19 is an analogue on the level of coarse moduli spaces of the desired
injectivity part of Theorem 4.9. Its proof is given in Section 4.6.

Lemma 4.19. The morphism
ρreg
♥ : ME(H)reg♥ //WG,H −→ ME(G)

is an embedding.
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It follows immediately that the base change is also an embedding:

Corollary 4.20. The morphism

ρ̃reg
♥ : (G̃E)reg♥ −→ GE

is an embedding.

Putting Lemma 4.18 and Corollary 4.20 together we obtain that the composite

(HE)reg♥ /WG,H
� � �� (G̃E)reg♥

� � �� GE

is an embedding. This completes the proof of Theorem 4.9 (modulo the proofs in
the following subsection).

4.6. Proofs of Lemma 4.17, Lemma 4.16, and Lemma 4.19. For this sub-
section we will fix a maximal torus T of our fixed E-pseudo-Levi subgroup H (and
thus T is also a maximal torus of G).

Proposition 4.21 (which is essentially Theorem 4.9 for the special case H = T )
forms a key step in the proof of Lemma 4.17.

Proposition 4.21. The induction map
T reg

E → GE

is an unramified W -Galois cover onto (GE)[T ].

Proof. Notice first that by Proposition 4.12 the image lands inside (GE)[T ]. Now
the claim is equivalent to the statement that

G×NG(T ) T reg
E → (GE)[T ]

is an isomorphism. We have already seen that the map is onto and étale (Propo-
sitions 4.4 and 4.12). For injectivity, we must show that for all p ∈ T reg

E we have
StabG(p) ⊆ NG(T ). But by definition StabG(p)◦ = T , so the required statement
follows from the fact that StabG(T ) normalizes its own neutral component. �

Definition 4.22. We say that a morphism f : X → Y is generically a covering
of degree d if there are dense open subsets U of X and V = f(U) of Y such that
f |U : U → V is a covering (i.e. finite and étale) of degree d.

Lemma 4.23. The following morphisms are generically covering maps of degree
|W |/|NW (WH)|:

(1) π : HE/WG,H → GE,
(2) ρ : ME(H)//WG,H → ME(G).

Proof. (1) Consider the following diagram:

TE

β
��

���
���

���
���

α

��

HE

γ
��

δ

��

GE

HE/WG,H

π

��										

By Proposition 4.21, we have that α is generically a covering of degree |W | and β
is generically a covering of degree |WH |. Thus γ is generically a covering of degree
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|W |/|WH |. By construction, δ is a covering of degree |WG,H |. Thus π is generically
a covering of degree |W |/|WH ||WG,H | = |W |/|NW (WH)| as required.

(2) Now consider the diagram:

TE
β′
��

α′





TE//NW (WH) ��

�
��

TE//W

�
��

ME(H)//WG,H ρ
�� ME(G)

As W acts freely on a dense open subset of TE (namely Tmax-reg
E ; see Definition 4.1),

we have that α′ is generically a covering of degree |W | and β′ is generically a covering
of degree |NW (WH)|. Thus ρ is generically a covering of degree |W |/|NW (WH)| as
required. �
Proof of Lemma 4.17. Consider again the diagram:

HE/WG,H

π



ν ��

χ
H 

��

���
���

���
�

G̃E

ρ̃
��

��

�

GE

χ
G

��

ME(H)//WG,H
ρ

�� ME(G)

By Lemma 4.23, π and ρ are both generically coverings of degree |W |/|NW (WH)|.
Thus, by base change, ρ̃ is generically a covering of degree |W |/|NW (WH)|. But as
π = ρ̃ ◦ ν we must have that ν is generically a covering of degree 1, i.e. generically
an embedding as required. �
Lemma 4.24. The morphism

ME(H)//WG,H → ME(G)
is étale on the locus ME(H)str-reg//WG,H .

Proof. Recall that
ME(G) � TE//W

and
ME(H)//WG,H � TE//NW (Σ),

where Σ is the root system of H. Using [Gro71, Prop V.2.2] we deduce that if
NW (Σ) contains the stabilizer StabW (p), then the map

TE//NW (Σ) → TE//W

is étale at p. Thus the claim reduces to Lemma 4.25. �
Lemma 4.25. Let p ∈ TE ∩Hstr-reg

E . Then StabW (p) ⊆ NW (Σ).

Proof. By assumption StabG(p) ⊆ NG(H). Suppose w ∈ StabW (p) and choose a
lift to w̃ ∈ NG(T ). Then w̃ ∈ NG(H) by assumption, and thus w preserves the root
system Σ of H as required. �

We may now proceed with:
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Proof of Lemma 4.16. Consider once more the diagram:

HE/WG,H

π



ν ��

χ
H 

��

���
���

���
�

G̃E

ρ̃
��

��

�

GE

χ
G

��

ME(H)//WG,H
ρ

�� ME(G)

By Lemma 4.24, ρ is étale on ME(H)str-reg//WG,H . Therefore its base change
ρ̃ is étale on G̃E

str-reg
. We also know that Hstr-reg

E ⊆ H reg
E is étale over GE by

Proposition 4.4. Thus both the source and target of νstr-reg are étale over GE , and
hence νstr-reg is itself étale as required. �

Finally we come to

Proof of Lemma 4.19. We have a commutative diagram

TE
















���
��

��
��

��

ME(H) �� ME(G)

which exhibits ME(G) as TE//W and ME(H) as TE//WH . The further quo-
tient ME(H)//WG,H is thus identified with TE//NW (WH) (recall that WG,H

∼=
NW (WH)/WH).

Let us denote by Σ = ΣH ⊆ Φ the roots of H with respect to T . The
locus ME(G)[H] (respectively, ME(H)reg♥ ) is precisely the image of (TE)Σ (see
Lemma 3.11).

Thus ME(G)[H] is identified with the quotient of (TE)Σ by the subgroup of W
which preserves the locus (TE)Σ. But this subgroup is precisely NW (WH). Thus
both ME(G)[H] and ME(H)reg♥ //WG,H are identified with (TE)Σ//NW (WH). In
particular, the map

ME(H)reg♥ //WG,H → ME(G)[H]

is an isomorphism as required. �

5. The Tannakian approach and unipotent bundles

The goal of this section is to understand the geometry of the locus of unipotent
bundles Guni

E in GE . Let (GE)∧uni denote the formal neighbourhood of the unipotent
locus. Similarly, we have the unipotent cone Guni in G and its formal neighbourhood
G∧

uni. We will prove:

Theorem 5.1. Let E,E′ be two pointed curves of arithmetic genus 1. Then any
isomorphism of formal groups Ĵ(E) ∼= Ĵ(E′) defines G-equivariant isomorphisms

(GE′)∧uni
∼ �� (GE)∧uni

Guni
E′

∼ ��
��

��

Guni
E

��

��
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Corollary 5.2. If E is an ordinary elliptic curve over k (in particular, if char(k)
= 0) then we have isomorphisms

G∧
uni

∼ �� (GE)∧uni

Guni ∼ ��
��

��

Guni
E

��

��

In order to prove Theorem 5.1 we will use the following result.

Theorem 5.3. Given a genus 1 marked curve E as above, there is an equivalence
of stacks

GE � Fun⊗(Repk(G),Tor(J(E))).

Theorem 5.3 is a combination of a Tannaka duality statement, expressing G-
bundles in terms of their associated vector bundles, and a Fourier-Mukai duality,
relating vector bundles on E and torsion sheaves on J(E).

The idea of the proof of Theorem 5.1 is to use the isomorphism of formal groups
Ê′ ∼= Ê to identify torsion sheaves on E and E′ which are supported in a formal
neighbourhood of the identity.

Remark 5.4. Note that in characteristic zero, we can identify Ê ∼= Ĝm
∼= Ĝa. Thus,

under these conditions we obtain isomorphisms between the nilpotent, unipotent,
and elliptic unipotent cones (and their formal neighbourhoods). These isomor-
phisms arise from exponential maps in characteristic 0.

In characteristic p > 0, there is no isomorphism of formal groups Ĝa
∼= Ĝm. Nev-

ertheless, under very mild conditions on the characteristic, there are G-equivariant
isomorphisms (the so-called Springer isomorphisms) between the nilpotent cone in g

and the unipotent cone in G. It is natural to conjecture that there are also Springer
isomorphisms between Guni

E and Guni (and guni). We plan to return to this in future
work.

5.1. Tannaka duality. In this subsection, we will use Tannaka duality to express
the stack GE in terms of its associated vector bundles. The primary reference will
be the paper [Lur04], however see also [Nor76] for the original approach.

Let S be a k-scheme. We denote by Repk(G) the symmetric monoidal category
of finite dimensional representations of G over k. Given a G-bundle PG on S, the
associated vector bundle construction affords a symmetric monoidal functor

ass(PG) : Rep(G) → Vect(S),

V �→ PG ×G V,

where the right hand side denotes the exact category of vector bundles on S (with
monoidal structure given by tensor product). Moreover, ass(PG) is continuous
(meaning it preserves all small colimits), exact, and sends finite dimensional repre-
sentations to vector bundles on S.

The basic idea of Tannakian reconstruction is that the bundle PG can be recov-
ered from the functor ass(PG).

More precisely, let Fun⊗(Repk(G),Vect(S)) denote the groupoid of exact tensor
functors (note that Vect(S) is an exact category, so this makes sense).



GEOMETRY OF SEMISTABLE G-BUNDLES 1307

Theorem 5.5. The associated bundle construction defines an equivalence of
groupoids

ass : BunG(S) ∼−→ Fun⊗(Repk(G),Vect(S)).

Proof. Recall that we can think of BunG(S) as the mapping stack Hom(S,BG).
By [Lur04, Theorem 5.11] the associated bundle construction defines an equivalence
of groupoids

(5.1) ass : BunG(S) ∼−→ Fun⊗
tame(QC(BG),QC(S)),

where the right hand side denotes the groupoid of continuous (i.e., colimit preserv-
ing), tame tensor functors. Note that it is immediate to see that for a test scheme
S′ the map ass corresponds to the pullback

(f : S′ × S → BG) �→ (f∗ : QCoh(BG) → QCoh(S × S′)).

By definition, a functor is tame (see [Lur04, Definition 5.9]) if it preserves flat
objects and short exact sequences of flat objects.

As every object of QC(BG) (which is identified with the category of O(G)-
comodules) is flat, the right hand side consists of exact functors which take values
in flat objects of QC(S). Moreover, QC(BG) is the Ind-completion of Repk(G),
and thus the data of an exact, continuous functor from QC(BG) is equivalent
to specifying an exact functor from Repk(G). By continuity of the tensor product,
this equivalence preserves symmetric monoidal structures. Finally, by construction,
every ass(PG)(V ) is a vector bundle for every finite dimensional representation V .
Thus we can identify the groupoid of tensor functors in (5.1) with those in the
statement of the theorem, as required. �

Let E be a curve of arithmetic genus 1 as usual, and let ES = E × S denote the
base-change to an arbitrary test scheme S.

Note that a G-bundle on ES is semistable if and only if all its associated vector
bundles are semistable and of degree 0 (see Remark 2.4). Thus we may identify the
sublocus GE = Bun0

G(E)ss in terms of Tannaka duality:

Corollary 5.6. For each test scheme S, the associated bundle construction de-
fines an equivalence of groupoids

GE(S) ∼−→ Fun⊗(Repk(G),Vectss,0(ES)),

where the right hand side denotes the groupoid of exact tensor functors.

5.2. Fourier-Mukai transform. Let J be a smooth one-dimensional commuta-
tive group scheme, e.g. J(E) for E elliptic curve, Gm, or Ga. Given a test scheme
S, we define the category of S-families of torsion sheaves on J :

Tor(J)(S) :=
{
P ∈ Coh(JS)

∣∣∣∣ P flat over S
Supp(P) → S is finite

}
.

The category Tor(J)(S) carries a monoidal structure given by convolution:

P1 ∗ P2 = m∗(P1 � P2),

where m : JS ×S JS → JS is the multiplication map. This construction defines a
presheaf of tensor categories on Schk.
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Theorem 5.7. Let E be an irreducible projective curve of arithmetic genus one.
The assignment

L �→ O[L]

taking a degree 0 line bundle on E to the corresponding skyscraper sheaf on J(E)
extends to an equivalence of symmetric monoidal categories(

Vect0,ss(ES),⊗
)
� (Tor(J(E))(S), ∗) .

Proof. The equivalence of abelian categories is classical in the case of a smooth
elliptic curve; in our situation where E is an integral curve of arithmetic genus 1,
it may be deduced from [Teo99, Theorem 1.3 (for the absolute case), Theorem 1.9
(for the relative case)]. More generally, it is shown in loc. cit. that there is a
canonical equivalence between degree 0 semistable torsion-free sheaves on E and
torsion sheaves on E. It follows readily from the construction (see Proposition
1.8 of loc. cit.) that when the torsion-free sheaf happens to be a vector bundle,
the corresponding torsion sheaf is supported on the smooth locus of E, which is
identified with J(E) (using the section x0).

In fact, this construction is an example of a Fourier-Mukai transform. We have
a canonical Poincaré line bundle P on E × J(E) (normalized at x0 ∈ E) with the
defining property that P|E×{L} ∼= L for any degree zero line bundle L ∈ J(E). This
kernel extends to a torsion-free sheaf P̃ on E × E. Taking P̃ as a Fourier-Mukai
kernel defines a functor

F : Db(E) → Db(E)
which according to Burban–Kreussler [BK05, Theorem 2.21] agrees with the functor
of [Teo99] when restricted to semistable torsion-free sheaves of degree zero, and thus
further restricts to the desired functor on semistable degree 0 vector bundles.

From this perspective, the claim about symmetric monoidal structures is a special
case of a more general claim that the Fourier-Mukai transform Db(E) → Db(J(E))
induced by the Poincaré bundle intertwines the tensor product on E with convolu-
tion (also known as Pontryagin product) induced by the group operation on J(E).
See e.g. [BBR09] for the case of abelian varieties, which applies to our setting when
E is a smooth elliptic curve.

Alternatively, in the cuspidal and nodal cases, one may directly apply the re-
sults of [FM01, Corollary 2.1.4, 2.2.4] which give an equivalence between degree
0 semistable vector bundles on E of rank n and conjugacy classes of n × n ma-
trices (respectively, invertible matrices). It may be readily checked that, taking
all ranks n together, these equivalences define a symmetric monoidal equivalence
between all degree zero semistable vector bundles on E and torsion modules for k[t]
(respectively, k[t, t−1]). �

In particular, we obtain a description of the moduli stack of GLn-bundles in
terms of torsion sheaves. Each S-family of torsion sheaves has a well-defined length:
the degree of Supp(P) → S. For each test scheme S we let Torn(J)(S) denote the
maximal subgroupoid of Tor(J)(S) whose objects are torsion sheaves of length n.

Corollary 5.8. There are equivalences of stacks
GLn,E

∼= Vect0,ssn (E) ∼= Torn(J(E)).

Putting together the Tannakian statement Corollary 5.6 with the Fourier-Mukai
statement Theorem 5.7 we obtain:
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Corollary 5.9. There is an equivalence of stacks

GE � Fun⊗(Repk(G),Tor(J(E))).

5.3. Torsion sheaves and effective divisors. We wish to identify the loci of
unipotent bundles in terms of their associated torsion sheaves. This will be ex-
pressed in terms of the Norm map which associates a Cartier divisor to a torsion
sheaf.

First let us recall that for a smooth curve J , we have isomorphisms
Divn(J) ∼= Hilbn(J) ∼= Symn(J),

where:
• Divn(J) denotes the moduli of effective Cartier divisors of degree n,
• Hilbn(J) is the Hilbert scheme of points of length n on J ,
• Symn(J) is the quotient Jn/Sn.

(See e.g. Milne [Mil86, Theorem 3.13].) Moreover, these are all smooth varieties of
dimension n.

Given a test scheme S and an object P of Torn(J)(S) we will associate a relative
effective Cartier divisor Divn(P) on JS which measures the support of P with
multiplicity.

We will sketch one construction of Div(P) from [MFK94, Section 5.3] (see also
[KM76]). Suppose we are given P an S-family of torsion sheaves on J . In particular,
P is a coherent sheaf on JS which is flat over S and with no support in depth 0.
We consider the determinant line det(P), which may be defined locally in terms of
a free resolution. As P has no generic support, det(P) carries a canonical section
OJS

→ det(P) defined away from the support of P. This rational section defines
the Cartier divisor Div(P).

This construction gives rise to a morphism of stacks:
Div : Torn(J) → Divn(J) ∼= Symn(J).

Note that Symn(J(E)) is isomorphic to the base of the characteristic polynomial
map ME(GLn). In fact, Lemma 5.10 explains that the morphism Div is a realiza-
tion of the characteristic polynomial map via the equivalence of GLn-bundles and
torsion sheaves of length n.

Lemma 5.10. The equivalence of Corollary 5.8 fits into a commutative square:

GLn,E

��

∼ �� Torn(J(E))

Div

��

ME(GLn) ∼ �� Symn(J(E))

Proof. We have already constructed all the arrows in the diagram. To see that
the diagram commutes, it is sufficient to check the commutativity on the dense
substacks consisting of semisimple objects. This in turn reduces to checking the
assertion for n = 1 where it is clear. �

5.4. Unipotent bundles. Recall that 1 ∈ J denotes the unit for the group struc-
ture. Let 1n ∈ Symn(J) correspond to the effective Cartier divisor on J given by
the unique length n subscheme of J whose underlying reduced scheme is 1×S. We
will also use the notation 1n to denote the corresponding length n subscheme of J .
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The space of unipotent torsion sheaves on J , denoted Torn(J)uni, is defined to
be the fiber of Torn(J) over the point 1n in Symn(J). In other words, an S-family
of torsion sheaves is called unipotent if the corresponding divisor is equal to 1n,T .

We write Torn(J)∧uni for the completion of Torn(J) along the substack Torn(J)uni.
The goal of the remainder of this subsection is to show that these stacks only depend
on the formal neighbourhood of 1 ∈ J .

Just as above, we may define the presheaf of categories Torn(Ĵ) and the presheaf
of sets Symn(Ĵ) parameterizing S-families of torsion sheaves (respectively, effective
Cartier divisors) in Ĵ . Again, there is an associated divisor map denoted abusively
also by Div:

Div : Torn(Ĵ) → Symn(Ĵ).
We denote by Torn(Ĵ)uni the fiber over 1n.

Lemma 5.11. We have natural isomorphisms giving rise to a commutative dia-
gram

Torn(Ĵ) ∼ ��

��

Torn(J)∧uni

��

Symn(Ĵ) ∼ �� Symn(J)∧1n
.

In particular, there is an equivalence
Torn(J)uni ∼= Torn(Ĵ)uni.

Proof. First, we claim that for a test scheme S, the image of Torn(Ĵ)(S) in
Torn(J)(S) consists of S-families of torsion sheaves on J which are set-theoretically
supported on the closed subset 1S ⊆ JS . Indeed, note that an S-family of torsion
sheaves on Ĵ is, by definition, given by an S-family of torsion sheaves on some
infinitesimal thickening of 1 ∈ J . Giving such a family is indeed equivalent to an
S-family of torsion sheaves on J which is set-theoretically supported on 1S ⊆ JS .
Similarly, one shows that the image of Symn(Ĵ)(S) in Symn(J)(S) consists of S-
families of divisors which are set-theoretically supported in 1S .

To show that Symn(Ĵ) ∼= Symn(J)∧1n
observe that an S-point of the completion

Symn(J)∧1n
corresponds to an S-family of degree n effective divisors in Symn(J)(S)

whose restriction to Sred is equal to the divisor 1n,Sred . This is equivalent to saying
that the set-theoretic support of the divisor is contained in 1S as required.

Finally, to show that Torn(Ĵ) ∼= Torn(J)∧uni, it suffices to prove that the diagram

Torn(Ĵ)

��

�� Torn(J)

��

Symn(Ĵ) �� Symn(J)

is cartesian. This follows from the observation that an S-family of torsion sheaves
on J is set-theoretically supported on 1S if and only if the associated divisor is
set-theoretically supported on 1S . �
Remark 5.12. In fact, an S-family of torsion sheaves is unipotent if and only if its
(scheme-theoretic) support is contained in the subscheme 1n,S . This is a conse-
quence of the Cayley-Hamilton theorem (see Example 5.13).
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Example 5.13. Let J = Ga = Spec(k[t]), and let S = Spec(R) for a Noetherian
local ring R. Then the groupoid Torn(Ga)(R) consists of R[t]-modules M which
are free over R of rank n.

Given such a module M and choosing an R-basis, the action of t is expressed
by a matrix AM . Then the associated divisor is given by the function det(t−AM )
(a polynomial of degree n with coefficients in R). The coefficients of χA(t) =
det(t − AM ) define the corresponding element of Rn = An(R) ∼= Symn(Ga)(R).
Note that, by the Cayley-Hamilton theorem, MA is scheme-theoretically supported
in the divisor χA(t). An R-point is nilpotent (respectively, formally nilpotent) if
χA(t) = tn (respectively, the non-leading coefficients of χA(t) are nilpotent in R).

5.5. Unipotent cones. The next result explains that the subfunctors of GE cor-
responding to unipotent (respectively, infinitesimally unipotent) bundles can be
understood via the equivalence of Corollary 5.9 as those functors which factor
through the subcategories of unipotent (respectively, infinitesimally unipotent) tor-
sion sheaves.

Proposition 5.14. Let P denote an object of GE(S) with associated functor

F : Rep(G) → QC(J(E) × S).

Then P is contained in the subgroupoid of unipotent (respectively, infinitesimally
unipotent) bundles if and only if, for each V ∈ Rep(G), F (V ) is a unipotent
(respectively, infinitesimally unipotent) family of torsion sheaves.

Proof. First note that for any morphism of groups G → G′, there is a commutative
diagram:

GE

��

�� G′
E

��

ME(G) �� ME(G′)

It follows that if an object of GE(S) is unipotent (respectively, infinitesimally unipo-
tent) then its image in G′

E(S) is unipotent (respectively, infinitesimally unipotent).
In particular, we obtain such a diagram with G′ = GL(V ) for each representation

V of G. Thus (noting Lemma 5.10) it follows that if PG is (infinitesimally) unipotent
then all the associated torsion sheaves F (V ) are (infinitesimally) unipotent.

Note that if V is a faithful representation, then the map

ME(G) → ME(GLn) ∼= Symn(J(E))

has the property that the set-theoretic fiber of the basepoint 1n consists only of
the basepoint 1G of ME(G) (i.e. a semisimple G-bundle is trivial if and only if the
associated vector bundle is trivial, at a set-theoretic level). It follows then that if
F (V ) is infinitesimally unipotent, then P is infinitesimally unipotent.

This argument does not quite work for the non-infinitesimal case, as the map

ME(G) → ME(GLn) ∼= Symn(J(E))

is not injective on S-points for a general (possibly non-reduced) scheme S.
However, Lemma 5.15 implies that it is enough to take a sufficiently large collec-

tion of representations V1, . . . , Vm (for example, the fundamental representations)
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to obtain that the map

ME(G) →
∏
i

ME(GLdi
) ∼= Symd1(J(E))× . . .× Symdm(J(E))

is a closed embedding in a formal neighbourhood of the basepoint (and thus injective
on S-points set-theoretically supported on the basepoint). �

Lemma 5.15. Let V1, . . . , Vm be such that their classes generate R(G) as a ring.
For example, we can take the collection of fundamental representations. Then
the corresponding map

(5.2) ME(G) → Symd1(J(E)) × . . .× Symdm(J(E))

is a closed embedding in a formal neighbourhood of the basepoint 1G ∈ ME(G).

Proof. By assumption, the map of representation rings

(5.3) R(GL(V1)) ⊗ . . .⊗R(GL(Vr)) → R(G)

is surjective. Thus the corresponding map of varieties

T//W → Symd1(Gm) × . . .× Symdr(Gm)

is a closed embedding. In particular it is a closed embedding after completing at
the basepoint of T//W .

Choosing an isomorphism of formal schemes (not necessarily respecting the group
structure) Ĝm

∼= Ĵ(E) gives an identification of the maps in (5.2) and (5.3) in a
formal neighbourhood of the basepoint as required. �

We are now ready to prove Theorem 5.1 (and consequently Theorem 1.6 from
Section 1).

Theorem 5.16. Any equivalence of formal groups Ĵ(E1) ∼= Ĵ(E2) defines equiv-
alences:

(GE1
)∧uni

∼ �� (GE2
)∧uni

Guni
E1

∼ ��

��

Guni
E2

.

��

Proof. The first part of the theorem says that there is an equivalence of stacks of
infinitesimally unipotent bundles:

(GE1
)∧uni

∼ �� (GE2
)∧uni.

By Corollary 5.9 and Proposition 5.14, we have an identification

(GEi
)∧uni

∼= Fun⊗(Rep(G),Tor(Ĵ(Ei))).

The identification of formal groups Ĵ(E1) ∼= Ĵ(E2) defines, for each test scheme S,
an equivalence of symmetric monoidal categories Tor(Ĵ(E1))(S) � Tor(Ĵ(E2))(S),
and thus we obtain the required equivalence.

The second part of the theorem means that this equivalence preserves the sub-
stacks of unipotent bundles. But according to Proposition 5.14, the unipotent
bundles may be recognized as those functors whose corresponding tensor functors
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factor through the subcategory of unipotent torsion sheaves. As the subcategory
of unipotent torsion sheaves is preserved under the equivalence

Tor(Ĵ(E1)) � Tor(Ĵ(E2)),
we obtain the required result. �

6. Examples

In this section we compute (partially) some examples. The reference and notation
for root systems that we used is from the appendix of [Bou81].

We recall that GE stands for the stack of semistable G-bundles of degree 0 on
E. Denote by J the Jacobian of E.

Example 6.1. Take G = PGL(2). We have two possible closed sets: empty set,
full set. The Weyl group acts on (Gm)E = J by L �→ L−1.

We have a decomposition

GE = N/G
⊔

(J \ {O}) /(T �S2).

Observe that the PGL(2)-bundles O ⊕ L, where L ∈ J [2] and L 	= O, have
automorphism group T �S2 which is disconnected. This is to be expected because
the centralizer of a semisimple element in a non-simply-connected group does not
have to be connected.

Example 6.2. Take G = SL(2). Then we have

GE = (J [2] ×N/G)
⊔

(J \ J [2])/(T �S2)

and here all the bundles have connected automorphism groups.

Example 6.3. Take G = GL(2), T = G2
m. Then we have

GE = J ×N/G
⊔

(TE \ diag)/(T �S2)

and here also all the automorphism groups are connected.

Example 6.4. Let G be a group of type G2. The root system is
Φ = ±{α, β, α + β, 2α + β, 3α + β, 3α + 2β},

where α is the short root.
The closed subsets not contained in any proper Levi are Φ and

Σ = ±{β, 3α + β, 3α + 2β}.
We have G(Σ) = SL(3) which is a pseudo-Levi subgroup. The other closed sets
(up to conjugation by W ) are {α}, {β} and ∅ and one can easily see that G(α) �
GL(2) � G(β) and G(∅) = T � G2

m. It is also an exercise to check that NG(G(α)) =
G(α) and similarly for G(β).

The roots give us an isomorphism TE � J2 where the first coordinate corresponds
to α and the second to β. The partition of GE is therefore

GE = NG/G �
(
J [3] ×NSL(3)

)
/ SL(3)

� (J − J [3]) ×NG(α)/G(α)
� J ×NG(β)/G(β)
� (TE − coord)/T �W,

where coord � J × {OE} ∪ {OE} × J ⊂ J × J corresponds to the coordinate axes.
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Now a more involved example:

Example 6.5. Take G = Sp(6) which is a group of type C3. The simple roots are
{α1, α2, α3} with α3 the long root. The longest root is 2α1 + 2α2 + α3.

We put α0 := −(2α1 + 2α2 + α3). The affine Dynkin diagram is

>
α0 α1 α2 α3

<

We use the Borel-de Siebenthal algorithm to produce closed sets (see Section 3.2).
If we remove only α0 or only α3 we get back the group G. If we remove the affine
vertex and some other vertices we get all the Levi subgroups of G.

If we remove one vertex different from α0 or α3 we get
α0 α2 α3

< Σ1 =±
{
α2, α3, α2+α3, 2α2+α3,
2α1 + 2α2 + α3

}
�SL(2)×Sp(4),

>
α0 α1 α3

Σ2 =±
{
α3, α1, 2α1+2α2+α3,
α1 + 2α2 + α3, 2α2 + α3

}
�Sp(4)×SL(2).

One can check easily that s2s1 takes Σ1 into Σ2, hence also the group G(Σ1)
into G(Σ2).

By applying once more the above algorithm we get (discarding the Levi sub-
groups) the following root system:

α0 α′
0 α3 Σ3 =±{α3, 2α1 + 2α2 + α3, 2α2 + α3} � SL(2)3,

where α′
0 = −(2α1 + α0) = 2α2 + α3.

The groups G(Σ) are computed by inspecting the root/coroot system and by
looking at the center and the fundamental group.

We can also compute the relative Weyl groups and find WG,Σ1 = 1 and WG,Σ3 =
S3. Actually the Weyl group of Sp(6) is W = (Z/2Z)3 �S3 and one can check (or
see from the diagram) that the Weyl group of Σ3 is WΣ3 � Z3.

If we iterate once more the algorithm we only get Levi subgroups of Φ, Σ1 or
Σ3.

For the partial order � the closed sets Φ,Σ1,Σ3 are the maximal ones (up to
permutation by W ).

Hence the closed pieces in the partition of GE are

J [2] ×NSp(6)/ Sp(6),(
J [2]2 − diag

)
×NSL(2)×Sp(4)/ SL(2) × Sp(4),(

(J [2]3 − diags) ×NSL(2)3/ SL(2)3
)
/S3.

Here also, all the bundles have connected automorphism group even though we
quotient by S3 because its action is free on J [2]3 \ diags.

Example 6.6. The last example we compute (in detail) is a simply connected group
of type D4. We would like to provide an example to show that the automorphism
group of a semisimple bundle can be disconnected.

Let G = Spin(8) be the simply connected group of type D4 and denote by T a
maximal torus. The simple roots are denoted by αi, i = 1, 2, 3, 4 and the center of
G is isomorphic to μ2 × μ2.

For convenience, let us spell out the root datum that we used for the computa-
tions (for more details one should consult [Bou81, Planche IV, p.256]):
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• the character lattice and the root lattice are

X∗(T ) = 〈ω1, ω2, ω3, ω4〉 ⊃ 〈α1, α2, α3, α4〉,

where the roots are given in terms of fundamental characters as:

α1 = −2ω1 + ω2,

α2 = −ω1 + 2ω2 − ω3 − ω4,

α3 = −ω2 + 2ω3,

α4 = −ω2 + 2ω4,

• the cocharacter lattice which equals the coroot lattice (because simply con-
nected) is

X∗(T ) = 〈α̌1, α̌2, α̌3, α̌4〉,
• the longest root is α0 := α1 + 2α2 + α3 + α4.

Notice that the simple coroots give us an isomorphism (α̌1, α̌2, α̌3, α̌4) : G4
m → T .

It is useful to think of the simple coroots (and fundamental characters) as being
the coordinates of T .

The affine Dynkin diagram is

α2 α1α3

α4

α0

where α0 = −(α1 + 2α2 + α3 + α4).

If we remove a vertex different from α2 we get the whole Φ. Removing α2 we
obtain the diagram of a group of type A1 ×A1 ×A1 ×A1.

Therefore (using again Borel–de Siebenthal algorithm, Section 3.2), up to con-
jugacy, there are only two maximal closed sets, namely Φ and

Σ := ±{α1, α3, α4, α1 + 2α2 + α3 + α4}

which is a root system of type A4
1. All the other closed subsets that we can obtain

iterating the algorithm are Levi subgroups of G or of G(Σ).
The group G(Σ) can be computed to be

(SL(2) × SL(2) × SL(2) × SL(2))/μ2,

where μ2 is the diagonal central subgroup. (This is achieved by computing the root
datum for G(Σ).) Notice that this is not simply connected!

Let us recall that the Weyl group of G is isomorphic to S4 � P where P ≤
(Z/2Z)4 is the hyperplane

∏
xi = 1 and where the symmetric group acts on it by

permutations. One sees best the action of S4 � P on characters/cocharacters by
introducing additional variables εi, i = 1, 2, 3, 4 such that ω1 = ε1, ω2 = ε1 + ε2,
ω3 = 1

2 (ε1 + ε2 + ε3 + ε4) and ω4 = 1
2 (ε1 + ε2 + ε3 − ε4). Using these coordinates

the action of S4 is by permuting the εi and the action of P is by multiplication
(i.e. changing signs).

The Weyl group WΣ of G(Σ) is generated by the permutations (12), (34) to-
gether with (−1,−1, 1, 1), (1, 1,−1,−1) ∈ P where we think of Z/2Z = {±1}
multiplicatively.
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Another computation shows that the normalizer of WΣ in W is generated by
WΣ, P and the permutation (13)(24) . The relative Weyl group is

WG,Σ � 〈(13)(24)〉 × 〈(−1, 1,−1, 1)〉 � S2 × Z/2Z.

There are two closed strata in GE , namely

(6.1)
J [2]2 ×NG/G,(
(J [2]3 − J [2]2) ×NG(Σ)

)
/G(Σ) �WG,Σ.

Let us be more explicit about the semisimple parts J [2]2 and J [2]3.
The center of Spin(8) is {t ∈ T | αi(t) = 1} which using the identification

G4
m � T given by cocharacters becomes

{(z1, z2, z3, z4) ∈ T | z2 = z2
1 = z2

3 = z2
4 and z2

2 = z1z3z4}

which can be rewritten as

{(z1, z2, z3, z4) ∈ T | 1 = z2 = z2
1 = z2

3 = z2
4 = z1z3z4} � μ2

2.

Similarly, the center of G(Σ) is

Z(G(Σ)) = {(z1, z2, z3, z4) ∈ T | 1 = z2 = z2
1 = z2

3 = z2
4} � μ3

2.

So in (6.1) the J [2]2 corresponds to Z(Spin(8)) � μ2
2 and J [2]3 corresponds to

Z(G(Σ)) � μ3
2. The complement can also be made explicit

J [2]3 − J [2]2 = {(L1,O,L3,L4) | Li ∈ J [2] and L1L3L4 	� O}.

One can check that the relative Weyl group WG,Σ acts on the above locus without
fixed points. Hence we will not find a semisimple bundle whose automorphism
group (as a Spin(8)-bundle) contains G(Σ) and is disconnected.

However, we’ll produce a semisimple bundle whose automorphism group (as a
Spin(8)-bundle) is disconnected with connected component precisely the maximal
torus. Using the identification G4

m � T given by the simple coroots, a T -bundle is
a quadruple of line bundles PT = (L1,L2,L3,L4).

To simplify the analysis we impose furthermore L2
i � O for i = 1, 2, 3, 4 (this

will ensure later on that some element of the Weyl group stabilizes it). In order for
Aut(PT

T× Spin(8))◦ to be T we must have α∗(PT ) 	� O for all roots α (there are 12
positive roots). Given the simplifying assumption we’ve made L2

i � O, i = 1, 2, 3, 4,
this boils down to the following conditions

L2 	�O and O 	� L1L3L4 	�L2.

Let L2,L4 ∈ J [2] \ {O} be two non-isomorphic line bundles (this is possible if
we’re not in characteristic 2). Then the T -bundle PT := (O,L2,O,L4) satisfies the
above conditions and hence the automorphism group of P := PT

T× Spin(8) has
connected component equal to T .

The following element in the Weyl group σ := σα0σα1σα3σα4 stabilizes PT (as
a T -bundle!). More precisely, in general we have σ(L1,L2,L3,L4) = (L−1

1 ,L−1
2 ,

L−1
3 ,L−1

4 ). Hence σ ∈ Aut(P) which implies that Aut(P) is a disconnected group
(with connected component equal to T ).
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Appendix A. Classification of elliptic closed subsets

The focus of this section is on the case when E is an elliptic curve but we’ll
quickly review the cusp (rational) and nodal (trigonometric) cases. In Section 3.3
we gave a general recipe to produce closed subsets of the root system Φ of G as
centralizers of elements in t, T and TE . More precisely, we put

x ∈ t � Σx := {α ∈ Φ | α(x) = 0},(A.1)
t ∈ T � Σt := {α ∈ Φ | α(t) = 1},(A.2)

p ∈ TE � Σp := {α ∈ Φ | α∗(P) = triv}.(A.3)
The collection of these subsets will be denoted (in this section) by Arat, Atrig re-
spectively, Aell.

Over the complex numbers, using the analytic uniformizations (X∗(T )⊗ZC)/X∗(T )
� T and (X∗(T )⊗Z (R2))/X∗(T )⊕2 � E, the proof of Proposition A.6 is all that is
needed. However, to deal also with the positive characteristic, one needs to do a
little combinatorics of root systems and diagonalizable groups. The key ingredient
is a Lemma from [Ste68, 5.1] that we record as Lemma A.1 and its elliptic analogue
Lemma A.3.

Let a ∈ t and consider Σa ∈ Arat. Then Σa is the root system of the Levi
subgroup CG(k · a) (the centralizer of a subtorus is always a Levi subgroup, see for
example [DM91, Proposition 1.22]). If L is a Levi subgroup of G then for a generic
element a in the center of the Lie algebra l, the closed set Σa is the set of roots of
L.

The trigonometric situation is a bit more complicated. For t ∈ T the closed
subset Σt is the root system of the connected centralizer CG(t)◦ which might not
be a Levi subgroup if the order of t is finite. The reductive subgroups of G thus
obtained are called pseudo-Levi subgroups and they are well known in the theory
of reductive groups.

Going further to the elliptic case, it turns out that the subsets Σp are the root
systems of intersections of two pseudo-Levi subgroups of G. We will sketch the
proofs below after fixing some notation.

Fix a Borel subgroup B containing the maximal torus T ⊂ B ⊂ G, and let
Φ ⊃ Δ be the set of roots and of simple roots respectively.

A prime number p is said to be good for G if p does not divide any coefficient of
the highest root12 (w.r.t. Δ.) of Φ. This is a very tiny restriction on p and G. For
example, p > 5 is good for every group and p ≥ 3 is good for any classical group.

Denote by X = X∗(T ) the character lattice of T and by Y its dual lattice. One
can construct, in a functorial way, the compact abelian Lie group Tc = (Y⊗ZR)/Y
such that Homgr(Tc,C×) = X.

For t ∈ T we put Xt := {λ ∈ X | λ(t) = 1} and similarly for x ∈ Tc we put
Xx = {λ ∈ X | λ(x) = 1}. We define analogously Σt and Σx.

We start with a preparation lemma from [Ste68, 5.1] that is needed to pass from
an arbitrary field to R.
Lemma A.1.

(1) For any t ∈ T there exists x ∈ Tc such that Xt = Xx.
(2) If x ∈ Tc is of finite order prime to p = char(k) then there exists t ∈ T

such that Xt = Xx.
12If the root system is not irreducible, consider all the highest roots.
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Proof. We sketch the idea of the proof.
The abelian group X/Xt is finitely generated and injects into k× through the

map λ �→ λ(t). Since a finite subgroup of k× is cyclic we deduce that the torsion
part of the abelian group X/Xt is cyclic. To X/Xt corresponds a sublattice of Y
and hence a subgroup T ′

c ⊂ Tc which is the product of a compact torus and a cyclic
group. As such it has a topological generator, say x ∈ T ′

c. By construction we have
Xx = Xt.

Conversely, the finite cyclic group X/Xx corresponds to a cyclic subgroup μ of
T of order prime to p. Hence μ has a generator t of the same order as x and by
construction we have Xt = Xx. �

Remark A.2. The reason we need the order to be prime to p = char(k) is that in
Gm there are no points of order p, i.e., μp is infinitesimal.

If the field k has elements of infinite order, then Gm has a Zariski generator and
hence any torus has a Zariski generator. Therefore in (2) above we can replace the
assumption “x of finite order prime to p” by “the component group of 〈x〉 has order
prime to p.”

For P ∈ TE put XP = {λ ∈ X | λ∗(P) � O}. Similarly one can prove

Lemma A.3. For any P ∈ TE there exist x1, x2 ∈ Tc such that XP = Xx1 ∩ Xx2 .
Conversely, for x1, x2 ∈ Tc of finite order prime to p there exists P ∈ TE such
that XP = Xx1 ∩ Xx2 .

Proof. In the proof of Lemma A.1 we used that a finite subgroup of k× must be
cyclic. We also used that k× has a primitive rth root of unity if and only if r is
prime to char(k).

The analogue for an elliptic curve is: a finite subgroup of J(E) is a product of
two cyclic groups. The group of torsion points J(E)[r] is isomorphic to Z/r × Z/r
if and only if r is prime to char(k).

Hence the quotient X/XP is a product of a free abelian group and two cyclic
groups. The rest of the proof is the same. �

We can now easily deduce

Corollary A.4.
(1) For any t ∈ T there exists x ∈ Tc such that Σx = Σt.
(2) For any P ∈ TE there exist x1, x2 ∈ Tc such that ΣP = Σx1 ∩ Σx2 .

Conversely, by [MS03, Prop. 30,32] we have

Proposition A.5. Assume char(k) is good for G.
(1) For any x ∈ Tc there exists t ∈ T such that Σt = Σx.
(2) For any x1, x2 ∈ Tc there exists P ∈ TE such that ΣP = Σx1 ∩ Σx2 .

Just as Levi subgroups correspond, up to conjugation, to subsets of the simple
roots, pseudo-Levi subgroups admit a similar characterization. In order to state
the result, we introduce some notation. Let

Δ̃ := Δ � {α(l)
0 : l a connected component of Φ}

be the set of simple roots of the corresponding affine root system, where α
(l)
0 is the

negative of the longest root in the corresponding connected component Φ(l)
+ . (If the
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Dynkin diagram is not connected there are several longest roots corresponding to
each connected component and we want to add the negative of each of them to Δ.)

Given a subset S ⊂ Δ̃ put ΣS := ZS ∩Φ. By construction, ΣS is a closed subset
of Φ.

Proposition A.6 ([MS03, Lemma 29], [Lus95, Lemma 5.4]). The set {Σx | x ∈
Tc}/W consists of subsets of the form ΣS for some proper subset S of Δ̃ as defined
above.

Proof. We recall the proof from loc. cit. for the convenience of the reader. Put
π : tR = Y⊗Z R → Tc the projection.

Let x ∈ Tc. If the closure of the subgroup generated by x is a torus, its centralizer
is a Levi subgroup and we’re done.

Otherwise, write x = x′s with s of finite order and x′ that generates a torus. We
have Σx′s = Σx′ ∩ Σs and since Σx′ corresponds to a Levi subgroup we are left to
deal with Σs. So we can suppose x is of finite order in Tc.

The affine Weyl group X∗(T ) �W acts on tR and, up to conjugating x by some
element of W , we can assume x lies in the image of the fundamental alcove through
the map π : tR → Tc. Hence we can take x̃ ∈ π−1(x) in the fundamental alcove.

Looking at the roots as linear functions on tR we have

Σx = {α ∈ Φ | α(x̃) ∈ Z}.

Define S := {α ∈ Δ̃} | α(x̃) ∈ {0, 1}}. By construction ΣS ⊂ Σx. Let us prove
that ΣS = Σx.

Recall that the fundamental alcove in tR is defined by the inequalities

0 ≤ α(y) ≤ 1, for all α ∈ Φ+.

Denoting by γ(l) = −α
(l)
0 the highest root of Φ(l), the fundamental alcove can be

rewritten as

0 ≤ αi(y) ≤ 1 for all αi ∈ Δ,

0 ≤ γ(l)(y) ≤ 1 for all connected components l of Φ.

For α ∈ Σ(l),+
x we have 0 ≤ α(x̃) ≤ γ(l)(x̃) ≤ 1, hence α(x̃) ∈ {0, 1}.

If α(x̃) = 0, then α, being a positive sum of simple roots, is a sum of simple
roots all of which must belong to S, hence α ∈ ΣS .

If α(x̃) = 1 then γ(x̃)−α(x̃) = 0, hence all the simple roots appearing in γ(l)−α
must be in S. Thus γ(l) −α ∈ ΣS and since γ(l)(x̃) = 1 we also have γ(l) ∈ ΣS . We
deduce α ∈ ΣS and the proof is finished. �

Remark A.7. One can think of the above construction in the following way. Take
the extended Dynkin diagram whose nodes are indexed by Δ̃ and remove some
non-zero number of nodes (at least one from each connected component). This will
then be the (non-extended) Dynkin diagram corresponding to some pseudo-Levi
subgroup of G. In fact it is known that the Dynkin diagrams corresponding to
closed subsets Σ ⊂ Φ can be obtained by repeatedly applying this procedure, see
[BDS49] for more details.

Proposition A.8. Assume that char(k) is good for G. The collection of closed
subsets Aell consists precisely of intersections of two elements of Atrig. In other
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words, the G(Σ) for Σ ∈ Aell are precisely the neutral component of intersections
of two pseudo-Levi subgroups.

Proof. It follows from Proposition A.6 together with Proposition A.5 �

Remark A.9. The elliptic closed subsets are obtained, up to W -conjugation, by ap-
plying two times the Borel–de Siebenthal algorithm: take the affine Dynkin diagram
and remove some vertices and then consider the closed subset of roots generated
by it (which is a root system again).
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1322 DRAGOŞ FRĂŢILĂ, SAM GUNNINGHAM, AND PENGHUI LI

[Lun73] Domingo Luna, Slices étales (French), Sur les groupes algébriques, Bull. Soc. Math.
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