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Searching for (sharp) thresholds in random structures: where

are we now?

Will Perkins∗

November 10, 2023

Abstract

We survey the current state of affairs in the study of thresholds and sharp thresholds in
random structures on the occasion of the recent proof of the Kahn–Kalai Conjecture by Park
and Pham and the fairly recent proof of the satisfiability conjecture for large k by Ding, Sly,
and Sun. Random discrete structures appear as fundamental objects of study in many scientific
and mathematical fields including statistical physics, combinatorics, algorithms and complexity,
social choice theory, coding theory, and statistics. While the models and properties of interest in
these fields vary widely, much progress has been made through the development of general tools
applicable to large families of models and properties all at once. Historically these tools originated
to solve or make progress on specific, difficult conjectures in the areas mentioned above. We will
survey recent progress on some of these hard problems and describe some challenges for the future.

1 Introduction

Randomness is a powerful tool for algorithm design, scientific discovery, modeling the world, engi-
neering, and mathematical proof. To use randomness effectively and confidently, we would like to
accurately understand the properties of a typical random object or structure. Perhaps most familiar
is the use of the Central Limit Theorem to understand statistical significance and margin of error in
scientific studies and political polling.

In modern applications in algorithms, physics, social science, and other fields the random objects
of interest can be very large and complex (think large computer networks, social networks, neural
networks, or models of many interacting particles). We would like to be able to understand with as
much accuracy as possible, what properties random structures typically possess, and how these typical
properties change as underlying parameters change.

Even for the simplest class of random structures (those in which elements of a structured set
are included independently with the same probability) this question can be extremely challenging,
depending on the complexity of the property of interest. Over the past 40 or more years, specific
problems have driven different fields (including probabilistic combinatorics, algorithms, and statistical
physics) to develop powerful tools for investigating this type of problem. Some of these tools are
designed for specific settings while others are very general.

Recently major progress on both general and specific problems has been made: Park and Pham
proved the ‘Kahn–Kalai Conjecture’ [111] and Ding, Sly, and Sun proved the ‘Satisfiability Conjecture’
for large k [45]. The aim of this survey will be to put these exciting developments in a shared context
and give an idea of some of the remaining and pressing challenges in the general area of thresholds in
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random structures. A key theme will be the way in which probability, combinatorics, and algorithms
interact in these questions.

1.1 Random structures, monotone properties, and thresholds

The main setting for this survey will be p-biased product probability measures on the discrete cube
{0, 1}N ; that is, associating to a vector x ∈ {0, 1}N the set Sx = {i ∈ [N ] : xi = 1}, probability
measures of the form

µp(S) = p|S|(1− p)N−|S| .

Typically we will think of N being large, and p small, possibly depending on N . This is simply
a random subset with elements chosen independently with the same probability. Often the set of
coordinates [N ] = {1, . . . , N} will have additional structure; the coordinates might represent vertices
or edges of some graph, or elements of an ordered set, or many other possibilities. Then we can think
of the random set S ∼ µp as being a random structure.

We will see numerous examples shortly, but perhaps the first example to have in mind is flipping
a sequence of N independent coins each with probability p of landing heads. The structure here is
the ordering of coordinates first to last.

A property F is simply an event in this probability space, F ⊆ {0, 1}N . A property F is non-trivial
if F 6= ∅, F 6= {0, 1}N . In our example, non-trivial properties include ‘Flipping all heads’; ‘Flipping
at least N/3 heads’; ‘Flipping an odd number of heads’, ‘Flipping a tail on the 7th and 11th flips’,
and so on. A property is monotone if it is closed under changing 0’s to 1’s; that is, if x ∈ F and y ≥ x
coordinate-wise, then y must also be in F . In the examples above about coin flips, all properties are
monotone (or have a monotone complement) except the property of flipping an odd number of heads.

For a non-trivial monotone property, the probability that F holds under µp increases from 0 to
1 as p increases from 0 to 1, and we will be interested in how rapidly it does so. Take the property
of flipping at least N/3 heads. By using a normal approximation to a binomial, we see that when

p = 1
3 + c

√
2

3
√
N

, µp(F) is approximately equal to the probability that a standard normal is at least −c;
and so as p passes 1/3 in an interval of length on the order N−1/2, µp(F) jumps rapidly from near
0 to near 1. The rest of this survey is devoted to understanding similar phenomena for much more
complex properties of random structures.

1.2 Examples

Here we give some examples from combinatorics, probability, statistical physics, computer science,
and social choice theory. These examples have driven considerable interest in thresholds in random
structures from different fields and their study from these different perspectives has also given the
field shared language and intuition.

1.2.1 Probabilistic combinatorics

A central example comes from combinatorics. Here we take n ∈ N and let N =
(
n
2

)
, with coordinates

representing edges of the complete graph Kn on n vertices. Then the elements of {0, 1}N are in
correspondence with (labeled) graphs on n vertices. A sample from µp is a random graph on n vertices
in which each possible edge is included independently with probability p; the model is known as the
Erdős-Rényi random graph [64, 50, 74, 58]. See two samples from G(n, p) in Figures 1 and 2. Despite
the simplicity of its definition, the Erdős-Rényi random graph exhibits a wide range of fascinating
behaviors, and has been studied from many angles: as an interesting random structure in its own right,
as a source of examples and counterexamples in graph theory, as a source of conjectured hard instances
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Figure 1: A realization of the random graph
G(25, 1/8)

Figure 2: A realization of the random graph
G(25, 1/4)

of combinatorial optimization problems, and as a host graph for random processes in probability and
statistical physics.

1.2.2 Computer science

In computer science, a computational decision problem can be represented by a property of the discrete
cube; or equivalently, boolean function f : {0, 1}N → {0, 1}, where the input x is encoded as a binary
string and f(x) = 1 if x is a YES instance and 0 otherwise. A graph-theoretic decision problem
corresponds directly to a property of graphs, as above. The focus in computer science is on the
computational resources (time, space, etc.) required to compute a given boolean function f , either in
the worst case over inputs, or, as we discuss more below, for typical or random instances x, such as
those drawn according to µp.

1.2.3 Statistical physics

Much of the language and intuition around thresholds and sharp thresholds comes from physical
systems that exhibit sudden changes in qualitative behavior as some parameter is changed in a small
way. This is the phenomenon of a phase transition. The phase transitions of water from liquid to solid
as temperature drops below 32◦ F or from liquid to gas as temperature rises past 100◦ F are familiar
to everyone.

Mathematically, phase transitions are non-analytic points (or discontinuities in functions or their
derivatives) of observables of infinite systems as some parameter varies. This is not quite the setting
described above of sequences of finite random structures with parameters that vanish as the system
size grows, but there is much to be gained by pushing this analogy in both directions; in Section 4
we describe the impact of the phase transition perspective on computer science, while [46] takes the
analogy in the other direction.

The statistical physics model perhaps most related to µp is that of percolation [85, 67, 25]. Here
the setting is typically an infinite graph, say a lattice like Zd or the hexagonal lattice. In site (resp.
bond) percolation each vertex (resp. edge) is declared ‘open’ independently with probability p; the
main question is about the existence or non-existence of an infinite, connected ‘open’ component. See
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Figure 3: Site percolation on a 100× 100 grid with p = 1/2

Figure 3 for a depiction of site percolation on a finite portion of Z2.

1.2.4 Social choice theory

Social choice theory is the study of collective decision making, including the study of voting mech-
anisms. We can view an election between two candidates with N voters as a boolean function
f : {0, 1}N → {0, 1}, where the candidates are labeled 0 and 1, and a vector x ∈ {0, 1}N is the
list of the votes of the N voters. The function f is a rule for determining the winner of the elec-
tion given the votes. A monotone function f can be thought of as a rule with the sensible property
that if a voter changes their vote from 0 to 1 the outcome of the election cannot change from 1 to
0. Social choice theory lends a lot of evocative terminology to the study of boolean functions and
thresholds. A ‘dictator’ boolean function is one that depends only on one coordinate; a ‘junta’ is one
that depends only on a small number of coordinates. The majority function (i.e. equal representation
democracy) has some extremal properties with applications in approximation algorithms (‘Majority
is stablest’ [86, 108]), while the ‘tribes’ function, a hierarchical majority function from [21], inspired
conjectures on general properties of boolean functions that have proved essential to the study of
thresholds.

1.3 Outline

In Section 2 we define critical probabilities, thresholds, sharp and coarse thresholds, and scaling
windows, then illustrate these notions with three examples from the study of random graphs. In
the next three sections, we present some problems and conjectures that have driven progress on
thresholds in different fields. In Section 3 we present the first of these main motivating questions,
the question of thresholds for spanning structures in random graphs and hypergraphs. We discuss
perfect matchings in hypergraphs, Latin squares, and the Kahn–Kalai Conjecture. In Section 4 we
discuss the random k-SAT model, the satisfiability conjecture, and statistical physics predictions for
thresholds in random computational problems. In Section 5 we describe the stochastic block model
and the predicted information-theoretic and algorithmic thresholds in the model.

We conclude in Section 6 with some questions and open problems.
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1.4 Further reading

This survey is not meant to be exhaustive at all, but rather aims to describe some recent results and
open problems in different areas, all around the topic of thresholds and sharp thresholds in random
structures. This area is very fortunate to have several excellent books and surveys devoted to the
topic from different perspectives. Some of these sources are listed below with a few remarks.

Friedgut’s 2005 survey ‘Hunting for sharp thresholds’ [55], following the developments in [54, 7, 57],
is devoted to the question of which properties have sharp thresholds (defined below), criteria for
proving sharpness of a threshold, and some intuition and meta conjectures on the topic.

Kalai and Safra’s 2006 survey [81] takes a broad look at threshold phenomena in computer science,
mathematics, and social choice theory and explains how notions arising in the latter (of ‘influence’ or
‘pivotality’ of coordinates) along with Fourier analysis of boolean functions can be used to study the
sharpness or coarseness of thresholds. O’Donnell’s textbook on discrete Fourier analysis of boolean
functions [109] is a great reference to learn about these tools.

From a different perspective, Duminil-Copin’s 2019 survey [46] describes how general tools from
the study of sharp thresholds of boolean functions can be used to study phase transitions in classical
statistical physics models like percolation on infinite graphs.

Rao’s recent survey [115] describes the 2021 breakthrough of Alweiss, Lovett, Wu, and Zhang
on sunflowers [14], the method of which led to the proof of the fractional Kahn–Kalai conjecture by
Frankston, Kahn, Narayanan, and Park [53]. Even more recently Park has written an expository
article [110] explaining the intuition behind the Kahn–Kalai conjecture and the consequences of its
proof by Park and Pham [111].

Finally, in Sections 4 and 5 on random computational problems and statistical inference we discuss
areas that have been shaped to a great extent by the field of statistical physics through questions,
conjectures, and methods. The textbook of Mezard and Montanari [98] is a great resource for under-
standing these methods, while the surveys of Zdeborová and Krzakala [129], Moore [104], and Abbe [1]
give an account of developments in this area in the last decade.

2 General questions, notions, and phenomena

In what follows, the perspective will be asymptotic as some underlying parameter, usually N or n,
tends to infinity. We use standard asymptotic notation: O(·), o(·), Ω(·), ω(·), Θ(·) to compare growth
rates of functions. We use a subscript, e.g. Oε(·), to indicate the implied constant may depend on ε.
When discussing probabilities we say an event A holds ‘with high probability’ or ‘whp’ as N →∞ if
limN→∞ Pr(A) = 1; that is, Pr(A) = 1 − o(1). Here we implicitly consider a sequence of probability
spaces.

For a non-trivial monotone property F , the probability µp(F), as a function of p, is a strictly
increasing function that starts with µ0(F) = 0 and µ1(F) = 1 (in fact it is a polynomial in p). The
basic question about a monotone property of a random structure is how µp(F) increases from 0 to 1
as p increases. More generally we will think of a sequence of random structures indexed by N along
with a sequence of monotone properties, and ask how µp(FN ) increases from 0 to 1 as a function of
N . From here on, we will write F and µp even though both implicitly depend on N .

Because µp(F) is strictly increasing, we can define the critical probability of F , pc(F), as

pc(F) = {p : µp(F) = 1/2} .

The first task in studying a particular property F is to identify, at least approximately, the critical
probability.
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Task 1. For a given monotone property F , determine pc(F) asymptotically as N → ∞, or at least
determine the asymptotic order of pc(F).

Obtaining the asymptotics of pc means finding some f(n) so that pc(F) = (1 + o(1))f(n); finding
the asymptotic order means finding f(n) so that pc(F) = Θ(f(n)).

In the context of random graphs, this task was put forward in the original paper of Erdős and
Rényi [50] and has been a central topic in probabilistic combinatorics since. In Section 3 we discuss
one of the most challenging classes of problems for this task: that of determining the asymptotic
order of pc for the existence of different kinds of spanning subgraphs (including perfect matchings
for random graphs and hypergraphs, H-factors of random graphs, and other combinatorial designs
(including Latin squares) in random structures). We will discuss the recent breakthrough work on the
Kahn–Kalai conjecture in [53, 111] that has led to a new powerful tool for determining the asymptotic
order of pc.

After Task 1, the most fundamental question about monotone properties is how quickly µp(F)
increases from near 0 to near 1. To quantify this, we define the width of the scaling window of a
monotone property. Let

Tε(F) = {p1−ε − pε : µp1−ε
(F) = 1− ε and µpε(F) = ε} .

In words Tε is the amount p has to increase for the probability of F to increase from ε to 1− ε.
Erdős and Rényi [50] defined a threshold function for a monotone property as follows: pt(n) is a

threshold function for a monotone property F if the following hold:

1. If p = ω(pt(n)), then µp(F) = 1− o(1).

2. If p = o(pt(n)), then µp(F) = o(1).

Equivalently, F has a threshold function (and we may take the function to be pc(F)) if for every small
ε > 0, Tε(F) = Oε(pc(F)).

The following result of Bollobas and Thomason justifies the abstract study of thresholds in mono-
tone properties and the specific definition of pc(F) above.

Theorem 1 (Bollobas–Thomason [27]). Every non-trivial monotone property has a threshold function;
moreover one can take pc(F) to be this threshold function.

The original proof of this theorem uses the Kruskal–Katona theorem, but a simple modern proof
is as follows. Let K be a large positive integer. If µp(F) = ε, then µKp(F) ≥ 1 − (1 − ε)K by
superimposing K independent copies of the random structure and applying monotonicity; taking
K ≈ log(1/ε)/ε proves the theorem.

Erdős and Rényi further classified thresholds as sharp or coarse according to how Tε(F) compares
to pc(F). We say F has a sharp threshold if for every ε > 0, Tε(F) = oε(pc(F)); otherwise F has a
coarse threshold. Equivalently, F has a sharp threshold if for every ε > 0,

1. If p ≥ (1 + ε)pc(F), then µp(F) = 1− o(1).

2. If p ≤ (1− ε)pc(F), then µp(F) = o(1).

Task 2. Determine if a monotone property F has a sharp or coarse threshold.

In fact, in very general settings Task 2 has been solved, with the machinery of discrete Fourier
analysis. Roughly, as Friedgut describes in [55] and Kalai and Safra write in [81], we should expect a
sharp threshold unless there is reason to expect a coarse threshold; and the reason to expect a coarse
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threshold is if F is essentially determined by a small number of coordinates or by the presence or
absence of a small substructure. This is made rigorous in increasing generality in Friedgut’s theorem
on sharp thresholds [54], Bourgain’s theorem in the appendix of [54], and Hatami’s result in [68]. We
describe in Section 4 the random k-SAT model, a main motivation for Friedgut’s important result.

A final task in understanding a particular property F with a sharp threshold is getting more
precise bounds on the scaling window.

Task 3. Determine the asymptotic order of the width of the scaling window of a monotone property
F .

Unlike with Tasks 1 and 2, as of yet there is no general principle in determining the magnitude
of Tε(F) beyond distinguishing sharp from coarse: the width of the scaling window really seems to
depend on the particular details of the property F in question, and being able to determine the
asymptotic order of the width indicates a near-complete understanding of the property.

2.1 Examples

We give three examples to illustrate these different tasks. The examples are the properties in the
random graph G(n, p) of containing a triangle, being connected, and being 3-colorable; call these
properties FK3

, Fconnected, F3−col respectively.

To understand the probability that G(n, p) contains a triangle, we can use the first- and second-
moment methods (see e.g. [12] for an exposition). Let X be the number of triangles. Then EX =

(
n
3

)
p3

and var(X) = (1 + o(1))
(
n
3

)
p3. Using this we can determine that pc(FK3) = Θ(1/n). Markov’s

Inequality yields:

Pr(FK3) = Pr(X ≥ 1) ≤ EX = (1 + o(1))
n3p3

6
= o(1)

when p = o(1/n). Chebyshev’s Inequality yields

Pr(FK3) = Pr(X = 0) ≤ Pr(|X − EX| ≥ EX) ≤ var(X)

(EX)2
= (1 + o(1))

6

n3p3
= o(1)

when p = ω(1/n). This pair of facts tells us that p = c/n (for any constant c > 0) is a threshold
function for FK3

. In fact much more is known: when p = c/n, the distribution of X converges to
a Poisson(c3/6) random variable. Thus the scaling window is of length Θ(1/n) and the threshold is
coarse; see Figure 4.

Next we turn to the property Fconnected. Being connected is a more ‘global’ property than that of
containing a triangle, but there is an easy lower bound on pc(Fconnected): if G has an isolated vertex
(and n > 1) then G must be disconnected. Or, taking complements, Fconnected ⊆ Fno isolated vertex.
As with triangles it is straightforward to understand the threshold for containing isolated vertices
using the method of moments. Let Y be the number of isolated vertices; then EY = n(1− p)n−1. As
with triangles, when EY tends to a positive constant, the distribution of Y converges to a Poisson
random variable; when EY → 0 whp Y = 0; and when EY →∞, whp Y ≥ 1. This tells us the exact
scaling window for Fno isolated vertex: if p = logn+c

n with c ∈ R constant, then Pr(Fno isolated vertex) =

(1 + o(1))e−e
−c

, see Figure 5. In this case the width of the scaling window is Θ(1/n) = o(pc) and so
the threshold is sharp.

It turns out that a first-moment argument on connected components of size ≥ 2 from Erdős and
Rényi [49] shows that in fact Fno isolated vertex approximates Fconnected very well indeed around the
threshold. An effective way to state the approximation is as a hitting time result, which we now
describe.
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Figure 4: Scaling window of FK3
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Figure 5: Scaling window of Fconnected

We can couple the random graphs G(n, p) for all p ∈ [0, 1] simultaneously by drawing iid
Uniform[0, 1] random variables Uij , 1 ≤ i < j ≤ n. Then we form G(n, p) by including (ij) ∈ E
if and only if Uij ≤ p. Under this coupling G(n, p′) is a subgraph of G(n, p) if p′ ≤ p. We can then
define the ‘random graph process’ as the discrete time process G0, G1, . . . , G(n

2)
where at each step a

uniformly random edge (not already present) is added to the graph. This process is what results from
raising p from 0 to 1 and marking the appearance of new edges in the coupling.

Theorem 2 (Hitting time for connectivity [49]). Whp over the random graph process we have

min
t
{Gt is connected} = min

t
{Gt has no isolated vertices} .

That is, the edge that touches the last isolated vertex in the process also connects the graph, with
high probability over the process. This implies that the threshold and scaling widow are the same for
Fconnected and Fno isolated vertex.

We will see below in Section 3 further examples of hitting time results along the same lines for
more complicated properties than connectivity.

Finally, consider a property for which we do not yet have a full understanding. Let F3−col be the
property that G has a proper 3-coloring of its vertices (no monochromatic edges). The complement
of this property is a non-trivial monotone property.

One can show that if p = c/n, c < 1, then whp G(n, p) is 3-colorable by showing that whp all
connected components are trees or unicyclic (and thus 3-colorable). For an upper bound on pc one
can use the first moment method on Z, the number of 3-colorings of G. As a first attempt we can

bound EZ ≤ 3n(1−p)n2

6 using the fact that a balanced partition of n vertices has the fewest potential
monochromatic edges. This tells us that G(n, c/n) is not 3-colorable whp when c > 6 log 3 ≈ 6.5917.
However, we can do something a little bit more clever: whp G(n, c/n) has cn

2 + o(n) edges and so we
can condition on the number of edges m, and compute EZ in the random graph Gm from the random
graph process. This gives the bound

EGm
Z ≤ 3n

(
1− 1

3

)m
which tends to 0 when m ∼ cn/2, c > 2 log 3

log 3−log 2 ≈ 5.419. We will see more of this idea of combining
the moment method with conditioning on typical events in Section 4.

Together these facts tell us that pc(F3−col) = Θ(1/n) and the width of the scaling window is
O(1/n), uniformly over ε. What are the asymptotics of pc? Is there some d3 so that G(n, d/n) is
3-colorable whp when d < d3 and whp not 3-colorable when d > d3? In fact this is the only remaining
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open problem from the original Erdős and Rényi paper on random graphs [50]. In Section 4 we
describe predictions for this problem made by statistical physicists.

3 Perfect matchings, Latin squares, Kahn–Kalai, and spread
distributions

From the beginning of the study of random graphs, a key question has been ‘For a given subgraph
H, when in the evolution of the random graph does a copy of H first appear?’ That is, what is the
threshold for the property FH of containing a copy of H.

For fixed size H, the answer is now known completely [23], though more delicate in general than
the case of H = K3 above. A threshold function for FH is the expectation threshold for the densest
subgraph H ′ of H (maximizing the ratio of edges to vertices over all induced subgraphs of H); the
value pE(H ′) so that the expected number of copies of H ′ in G(n, pE(H ′)) is 1. For p = o(pE(H ′)),
the expected number of copies of H ′ tends to 0, and so whp G(n, p) has no copies of H ′ and thus no
copies of H. When the expected number of copies of H ′ for each H ′ ⊆ H tends to infinity, it has been
showed that whp a copy of H exists.

It can be much more difficult to determine the threshold for the appearance of subgraphs whose size
grows with n; in particular, for spanning subgraphs that include each of the n vertices. Two classical
examples are those of H being a perfect matching (with n even) and H being a Hamilton cycle.
As with connectivity, there are natural lower bounds for pc(FH) in these cases, coming from local
obstructions. If G has an isolated vertex, it cannot have a perfect matching; if G has a vertex of degree
at most 1 it cannot have a Hamilton cycle. In both cases these obstructions determine the thresholds,
even in the strong form of hitting-time results [51, 90, 26] that give a complete understanding of the
scaling windows.

Other spanning subgraph problems remained open for many years. One famous such problem is
Shamir’s Problem [119] (mentioned first in print by Erdős in [48]): the problem of determining the
threshold for a random k-uniform hypergraph to contain a perfect matching.

A k-uniform hypergraph G = (V,E) is a set of vertices V along with a collection E of k-sets of
V (the case k = 2 is a usual graph). The random k-uniform hypergraph G(k)(n, p) is a k-uniform
hypergraph on n vertices in which each possible k-set is an edge independently with probability p. A
perfect matching in a k-uniform hypergraph on n vertices is a set of n/k vertex-disjoint hyperedges
that (necessarily) cover all n vertices; n must be divisible by k for a perfect matching to be possible.
For k = 2 (a graph) this coincides with the usual definition of a perfect matching.

As with perfect matchings in graphs, the natural obstruction to a perfect matching in a hypergraph
is a vertex not appearing in any hyperedges; this immediately yields a lower bound of Ω(log n · n1−k)
for the threshold for perfect matchings.

After many years of effort, Johansson, Kahn, and Vu proved that the lower bound is tight up to
constants.

Theorem 3 (Johansson–Kahn–Vu [76]). Let F be the property of G(k)(n, p) containing a perfect
matching when k divides n. Then

pc(F) = Θk(log n · n1−k) .

Much more recently Kahn proved much finer results: first-order asymptotics of pc(F) in [78] and
the definitive hitting-time result [77] (see also the related [69, 116, 70]).
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3.1 The Kahn–Kalai conjectures

Motivated by challenges like Shamir’s Problem, Kahn and Kalai [79] made two bold conjectures
about thresholds. These conjectures arise from the fact that it is often straightforward to give a lower
bound for pc(F); that is, to show that when p is small enough µp(F) = o(1). A matching or near
matching upper bound is often much more difficult. This is especially apparent in the examples above
(connectivity, perfect matchings, etc.) in which there is a trivial local obstruction to some property.
Kahn and Kalai’s two conjectures both have a similar flavor: ‘The best possible easy lower bound on
pc is not too far from the truth.’ We present the two conjectures in the opposite order they appear
in [79] (but in the order they arrived at them).

Their second conjecture is about the property FH of containing an isomorphic copy of some
subgraph H in a random graph (or hypergraph). We have seen several examples of this for different
H, including a triangle, a perfect matching, a Hamilton cycle, and a hypergraph perfect matching.
As we saw for fixed-size subgraphs, it can be crucial to consider the rarest (in terms of expected
number of copies) subgraphs of H. This motivates the following definition of the subgraph expectation
threshold of H:

pE(H) = min{p : EG(n,p)XH′ ≥ 1 ∀ subgraphs H ′ ⊆ H } .

Clearly pE(H) bounds below the threshold of FH ; if p = o(pE(H)) then there is some subgraph
H ′ ⊆ H that whp does not appear in G(n, p). Kahn and Kalai conjecture this cannot be too far from
the truth.

Conjecture 4 (Kahn and Kalai [79]). There exists an absolute constant K so that for all graphs H,

pc(FH) ≤ K · pE(H) · log |V (H)| .

For H of fixed size, Conjecture 4 asserts that pe(H) is a threshold for FH and this is known to be
true as described above. The real content of the conjecture is for H that grow with n. In particular
Conjecture 4 is tight (up to the constant K) for perfect matchings in graphs and hypergraphs.

Their first conjecture was in the more general setting of monotone properties of {0, 1}N . To state
it we must define a more abstract notion of an expectation threshold (following [123, 124, 79]). A
property F ⊆ {0, 1}N is p-small if there exists a ‘cover’ G ⊆ {0, 1}N so that:

1. ∀T ∈ F ∃S ∈ G, S ⊆ T .

2.
∑
S∈G p

|S| ≤ 1
2 .

To give some intuition for this definition, if H is a graph and H ′ ⊆ H, then FH′ is a cover of FH ,
satisfying the first condition above.

The expectation threshold of F , q(F), is the largest p for which F is p-small. Finally let L(F) be
the maximum size of a minimal element of F .

Notice that q(F) is a lower bound for pc(F). Let q = q(F). Then

µq(F) ≤
∑
S∈G

∑
T∈F,T⊇S

µq(T )

≤
∑
S∈G

∑
T⊇S

µq(T )

=
∑
S∈G

q|S| ≤ 1

2
.

Kahn and Kalai conjectured that in the abstract setting this cannot be far from the truth for pc. Park
and Pham then proved this.
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Theorem 5 (Kahn–Kalai Conjecture, now Park–Pham Theorem [111]). There exists an absolute
constant K so that for every monotone F ,

pc(F) ≤ K · q(F) · logL(F) .

Theorem 5 gives a powerful method for bounding pc from above: find a good (or the best) G with
the properties above, and this will determine pc up to a logN factor or better. Looking ahead, we can
characterize q(F) via the following integer optimization problem over the variables g(x), x ∈ {0, 1}N
which we interpret as the indicator vector of a potential cover G witnessing F being p-small.

V (F , p) = min
∑

x∈{0,1}N
p|x|g(x)

subject to

g(x) ∈ {0, 1} for all x ∈ {0, 1}N∑
S⊆T

g(xS) ≥ 1 for all T ∈ F

In particular, if V (F , p) ≥ 1/2, then q(F) ≤ p, and by Theorem 5, pc(F) ≤ K · p · logL(F). However,
solving an integer program over 2N variables (for all large N) seems somewhat formidable.

3.2 Duality and spread distributions

Before Park and Pham proved Theorem 5, Frankston, Kahn, Narayanan, and Park [53] (following the
breakthrough of Alweiss, Lovett, Wu, and Zhang on the sunflower conjecture [14]) proved a related
but weaker conjecture of Talagrand from [125], dubbed the ‘Fractional Kahn–Kalai Conjecture’. To
state this, we first relax the integrality constraint above and define a linear program (in 2N variables)

Vf (F , p) = min
∑

x∈{0,1}N
p|x|g(x)

subject to

g(x) ∈ [0, 1] for all x ∈ {0, 1}N∑
S⊆T

g(xS) ≥ 1 for all T ∈ F .

Then define qf (F), the fractional expectation threshold of F , to be the largest p for which Vf (F , p) ≤
1/2. Again it is easy to see that pc(F) ≥ qf (F), with the same proof as above.

Moreover, we have the relations

q(F) ≤ qf (F) ≤ pc(F) ≤ K · q(F) · logL(F) ≤ K · qf (F) · logL(F) ,

where the second-to-last inequality is Theorem 5; the weaker inequality pc(F) ≤ K · qf (F) · logL(F)
is the main result of [53].

Theorem 6 (Frankston, Kahn, Narayanan, and Park [53]). There exists an absolute constant K so
that for every monotone F ,

pc(F) ≤ K · qf (F) · logL(F) .

To bound pc with Theorem 6 it suffices to lower bound Vf (F , p): if Vf (F , p) ≥ 1/2 then pc(F) ≤
K · p · logL(F). The nice thing about the linear programing formulation is that we can use duality to
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give a lower bound. We can write the dual as a linear program with variables ν(T ) for each T ∈ F
and constraints for each S ⊆ {0, 1}N .

Vf (F , p) = max
∑
T∈F

ν(T )

subject to

ν(T ) ≥ 0 for all T ∈ F∑
T⊇S

ν(T ) ≤ p|S| for all S ⊆ {0, 1}N .

We are interested in showing Vf (F , p) ≥ 1/2 to bound pc and via duality this can be accomplished
by exhibiting a good ν(·). A slightly more elegant formulation is due to Talagrand [125], who made
the following definition of a spread probability distribution.

Definition 7. Let F ⊆ {0, 1}N . A probability measure ν supported on F is p-spread if for all
S ⊆ {0, 1}N , ∑

T⊇S

ν(T ) ≤ 2p|S| .

Putting all of the above together we obtain a very useful theorem.

Theorem 8. There is an absolute constant K so that the following is true. Let F be a monotone
property that supports a p-spread probability measure ν. Then

pc(F) ≤ K · p · logL(F) .

Theorem 8 follows from Theorem 6, duality, and the extra factor 2 allowing us to take ν to be a
probability measure.

3.3 Applications

Theorem 8 is a brand-new tool for proving upper bounds on pc(F) and we will recount here some
spectacular applications. But first as a warm-up we will see how it can be used to establish

pc(Fperfect matching) = Θ
(

logn
n

)
.

Let n be even, and let ν be the uniform distribution on perfect matchings of the complete graph
Kn. Let A be some set of edges of Kn and let M ∼ ν. We want to bound the probability that A ⊆M .
First note that if A is not a matching then this probability is 0. Now suppose A is a matching of size
k. Then, letting pm(G) denote the number of perfect matchings of G and (a)b = a!

(a−b)! ,

Pr(A ⊆M) =
pm(Kn−2k)

pm(Kn)
=

(n− 2k)!

2n/2−k(n/2− k)!

2n/2(n/2)!

n!
=

2k(n/2)k
(n)2k

≤
( e
n

)k
,

and so ν is e
n -spread. Applying Theorem 8 gives the result, though note that this is weaker than the

sharp threshold obtained in [51]. Here spreadness is proved by counting, and it helps a lot that we
have an explicit formula for pm(Kn) to use.

From Theorem 8 and similar counting arguments (see e.g. [53]), one can also rather easily obtain
the asymptotic order of the threshold for perfect matchings in hypergraphs and Kr-factors as well as
the threshold for containing any bounded-degree spanning tree, previously known through the long
proofs of Johansson, Kahn, and Vu [76] and Montgomery [103] respectively.

Perhaps even more exciting are applications which before the theorem were completely out of reach
but which now can be approached through finding spread distributions. We describe one application
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here but see also [114, 84, 15] for other applications of either Theorem 8 or the notion of spread
distributions.

A Latin square of order n is an n× n matrix with entries in {1, . . . , n} in which no row or column
contains repeated entries. A Latin square of order 8 is given in Table 1. One can ask about the

1 3 4 8 2 6 7 5
6 1 2 5 7 4 8 3
5 2 3 1 8 7 4 6
4 6 5 3 1 8 2 7
2 4 6 7 3 5 1 8
7 8 1 2 6 3 5 4
8 5 7 6 4 1 3 2
3 7 8 4 5 2 6 1

Table 1: A Latin square of order 8

existence of Latin squares of order n, the number of Latin squares of order n, or the existence of Latin
squares with additional properties. Johansson [75] asked a very natural threshold question about
Latin squares: if each position (ij) in an n × n matrix is assigned a list Lij of allowed symbols in
{1, . . . , n} by including each element in Lij independently with probability p, what is the threshold
in p for the existence of a Latin square in which each entry appears in the corresponding list Lij?

The lower bound comes from a simple local obstruction: for p ≤ (1 − ε) logn
n there will be empty

lists whp. A natural conjecture given the results and conjectures on perfect matchings and factors in
random graphs is that this local obstruction determines the threshold: its asymptotic order, first-order
asymptotics, and even in the form of a hitting time. This conjecture is stated explicitly in [94], and
see also the closely related conjectures in [32, 121, 82, 118].

Conjecture 9. The property FLatin has a sharp threshold at p = logn
n

Before Theorem 8, there was really no effective way to to prove upper bounds on pc(FLatin): the
best known result was that pc ≤ 1− δ for some fixed δ > 0 [16].

Using Theorem 8 and finding a sufficiently spread distribution on Latin squares, Sah, Sawhney
and Simkin proved Conjecture 9 up to subpolynomial factors: pc = n−1+o(1) [118]. Intriguingly, this
bound already established that the threshold is sharp without determining the threshold, by applying
Friedgut’s theorem discussed in the next section. Following this, Kang, Kelly, Kühn, Methuku, and
Osthus [82] proved pc = O(log2 n/n), within a factor log n of the conjecture. Then very recently Jain
and Pham, and independently Keevash, established the correct order of the threshold.

Theorem 10 (Jain–Pham [73]; Keevash [83]).

pc(FLatin) = Θ

(
log n

n

)
.

Using Theorem 8, it suffices to construct an O(1/n)-spread distribution on Latin squares. It is
natural to expect that (as in the case of perfect matchings) the uniform distribution is O(1/n) spread,
but unlike perfect matchings it is very challenging to enumerate Latin squares. So instead, the above
authors have constructed non-uniform spread distributions using sophisticated tools from probabilistic
and extremal combinatorics, namely iterative absorption (in [118, 82]), analyzing the Lovász Local
Lemma probability distribution (in [73]), and analyzing a random greedy stochastic process (in [83]).
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4 Random k-SAT and the satisfiability conjecture

The most important open problem in theoretical computer science (and one of the most important in
all of mathematics) is the P vs NP question: can computational decision problems with polynomial-
time checkable certificates be solved in polynomial time?

Most computer scientists and mathematicians believe that P6=NP and that many hard computa-
tional problems exist; these include classic problems like MAX-CUT, Max Independent Set, traveling
salesman, boolean satisfiability, graph coloring, among many others. It is believed that these problem
are computationally intractable in the worst-case over instances. On the other hand, large instances
of these problems are solved every day (see for example a survey on the success of SAT solvers in [61]
or exact solutions to very large instances of the traveling salesman problem in e.g. [17, 33]). What
can explain this discrepancy? One possibility is that ‘typical’ instances of certain NP-hard problems
are tractable while hard instances are exceptional.

This is one motivation for the study of average-case complexity : the computational tractability
or intractability of random instances of computational problems. Average-case complexity is a huge
topic with many fascinating facets and many mysteries (see e.g. [22, 126]). Here we will deal will a
small slice of the topic.

Recall that a boolean CNF formula is the AND of OR’s of literals (boolean variables and their
negations). A k-CNF formula is the AND of clauses of k literals each. For example, the following is
a small 3-SAT formula:

(x7 ∨ x2 ∨ x3) ∧ (x1 ∨ x8 ∨ x4) ∧ (x2 ∨ x4 ∨ x1) .

The k-SAT problem is to find an assignment of True and False to the boolean variables so that the
given k-CNF formula evaluates to true; if such an assignment exists the formula is satisfiable and
unsatisfiable otherwise.

An empirical observation about algorithms brought the study of random computational problems
to the attention of computer scientists, statistical physicists, and probabilists. In 1996, Mitchell, Sel-
man, and Levesque [120] (working on problems in Artificial Intelligence and computational deductive
reasoning) generated uniformly random 3-SAT instances on n variables with m constraints, for fairly
large n and different values of m. They ran standard heuristic SAT solving and SAT refutation algo-
rithms and observed the following: the running time required to find a solution (or find a proof that
none existed) showed a sharp peak (as a function of m) right around the point at which an estimate
of the probability of such a random instance being satisfiable made a sharp decrease from near 1 to
near 0.

These two empirical observations – that random k-SAT exhibits a sharp threshold and that in-
stances near the threshold are computationally hard – set off an explosion of work on random k-SAT
and related models (random graph coloring, k-NAE-SAT, k-XOR-SAT, etc.) in many different direc-
tions.

We can model random k-SAT in the setting of this paper. For a given n and p, let Fk(n, p) be a
random k-SAT formula generated by including each of the

(
2n
k

)
possible k-clauses independently with

probability p. The property of being satisfiable is a non-trivial property with a monotone complement
(and thus has a threshold function).

One long-standing conjecture is that the random k-SAT model exhibits a sharp threshold.

Conjecture 11 (Satisfiability Conjecture). For each k ≥ 2, there exists ck > 0 so that for every
ε > 0, the following hold:

• If p ≤ (1− ε)ckn−1/(k−1), then whp Fk(n, p) is satisfiable.

• If p ≥ (1 + ε)ckn
−1/(k−1), then whp Fk(n, p) is unsatisfiable.
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Conjecture 11 was proved early on for the special case of random 2-SAT [34]; and in fact the
precise scaling window was determined [24]. The reason for this is that determining satisfiability of a
2-SAT formula can be reduced to determining the strongly connected components of the implication
graph on literals; this gives a linear-time algorithm for 2-SAT in the worst case and gives a strong
analogy between the random 2-SAT threshold and the emergence of a giant component in a random
graph. The case k ≥ 3 is fundamentally different.

Random k-SAT is an example of a random constraint satisfaction problem (random CSP); there
is an initial set of possible solutions (here all possible assignments to n boolean variables) and a set
of random constraints is selected, each of which rules out some solutions (here each clause rules out
a 21−k fraction of all possible solutions). Random graph coloring is another random CSP: the qn

colorings of n vertices are the possible solutions; each edge rules out 1
q -fraction of the solutions.

How can one locate the satisfiability threshold in a random CSP? As with many of the examples
above, a starting point is to try the first- and second-moment methods on the random variable Z that
counts the number of solutions. If p is large enough that EZ → 0, we know pc ≤ p; conversely if p is
such that EZ →∞ and, say, E(Z2) ≤ C(EZ)2, then we know pc ≥ p.

This approach, combined with smart ideas of conditioning, replacing Z with a related random
variable, and solving difficult optimization problems to bound E(Z2), has been able to pin down the
satisfiability threshold in many random CSP’s to within a small constant factor (e.g. [89, 9, 11, 10]).
These probabilistic methods face a barrier, however, and cannot address Conjecture 11 or determine
pc. Instead, new tools and ideas from mathematics and statistical physics have been brought to bear
on the problem.

4.1 Friedgut’s Theorem

Major progress towards Conjecture 11 was made by Friedgut in [54] who proved an n-dependent sharp
threshold.

Theorem 12 (Friedgut). For each k ≥ 3 there is a function ck(n) bounded above and below by
constants so that for every ε > 0 the following hold:

• If p ≤ (1− ε)ck(n) · n−1/(k−1), then whp Fk(n, p) is satisfiable.

• If p ≥ (1 + ε)ck(n) · n−1/(k−1), then whp Fk(n, p) is unsatisfiable.

This theorem shows that the scaling window of random k-SAT is o(pc) but it leaves open the
possibility that the critical density ck fluctuates as n→∞.

Though motivated by the Satisfiability Conjecture, Friedgut proved much more in [54]: he gave
a very general characterization of what monotone properties of random graphs can have a coarse
threshold: those that are well approximated by the property of containing some bounded-size subgraph
from a bounded-size list of subgraphs. All other properties have a sharp threshold (in the non-uniform
sense of Theorem 12).

Returning to the example from Section 2.1, Achlioptas and Friedgut [7] use [54] to show that for
q ≥ 3 the property of G(n, p) being q-colorable exhibits a sharp threshold, in the sense of Theorem 12.
It remains open to show that there exists constants dq so that a sharp threshold for q-colorability
occurs at dq/n.

4.2 The cavity method and the structure of solution spaces

Statistical physicists soon turned their attention to random k-SAT and related models using tools and
intuition from the study of spin glasses [99, 101, 100, 97, 92, 102]. The replica and cavity methods
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The Physics Picture
The cavity method paints the following picture:

Figure: Schematic of the structural changes in the solution space of
random graph coloring as the average degree increases.

Figure 6: Cartoon of the evolution of the solution space for random k-SAT or random graph coloring
as the edge density increases.

are powerful analytic tools for analyzing disordered (random) systems, based on assumptions that to
a large extent have not been proved mathematically. Under these assumptions, these methods are
capable of making very detailed predictions for thresholds and phase transitions in a broad class of
random structures, Gibbs measures on random graphs.

Applying these methods to random CSP’s involves shifting perspective and instead of asking
whether or not there is a solution, asking ‘what does the uniform distribution on solutions (if they
exist) look like?’ Then the main properties of interest are correlations and overlaps. Correlations are
measured, for instance, by the covariance in the indicator random variables that two variables take
the value True (or two vertices take the color Red). Overlap is the random variable measuring the
fraction of coordinates on which two independent samples from the uniform distribution on solutions
agree.

Figure 6 depicts a cartoon of how the space of solutions in, say, random k-SAT or random graph
q-coloring, changes (or is predicted to change) as the density of constraints increases. Three distinct
thresholds are pictured. At low densities, solutions lie in one large component, connected under single
variable changes. Then after the shattering threshold solutions break apart into exponentially many
clusters of roughly equal exponential size, each separated by linear Hamming distance (Θ(n) variables
must be changed to move between clusters). Next, at the condensation threshold a constant number
of large clusters contain almost all solutions, while there are exponentially many smaller clusters.
Finally, after the satisfiability threshold, no solutions remain.

The condensation threshold is critical for correlations and overlap. In the random graph coloring
model, below the condensation threshold average correlations between vertices vanish as n → ∞,
and the overlap concentrates on 1/q (as it would if the graph were empty and we were sampling
uniformly from [q]n). Above the threshold, average correlations are bounded away from 0 and overlap
concentrates on two points, 1/q and some η > 1/q, with the second corresponding to the case in which
both samples come from the same dominant cluster. In the language of the cavity method, the model
is replica symmetric below the condensation threshold and exhibits replica symmetry breaking above
the threshold.

In terms of identifying the satisfiability threshold, condensation is important because it presents a
fundamental obstacle to applying the second-moment method to the random variable Z counting the
number of solutions: no amount of conditioning can reduce the variance sufficiently and so another
approach is required (see the discussion in [39, 38, 37, 20]).

4.3 Proof of the satisfiability conjecture for large k

How can one locate the satisfiability threshold in light of condensation blocking the second-moment
method? One very successful solution is to use the cavity method predictions to select a different
random variable on which to perform the second-moment method. In particular, the predicted ‘1-
RSB’ behavior of both random k-SAT and random graph coloring suggests that while the uniform
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distribution over solutions exhibits replica symmetry breaking above the condensation threshold, the
uniform distribution on clusters does not.

The innovation of Coja-Oghlan and Panagiotou in [39] was to design a random variable Zβ counting
the number of solutions with βn ‘blocked’ variables that is a stand-in for counting the number of
clusters of a given (exponential) size. The same authors apply this idea to random k-SAT in [37],
additionally conditioning on typical vertex degrees. This kind of random variable was also used
in [44, 43] to determine thresholds and limiting values of optimization problems in random regular
models (in which each vertex or variable has the same edge or constraint degree).

In [45], Ding, Sly, and Sun used this cavity-method inspired second-moment argument along with
conditioning on the typical empirical distribution of arbitrary depth neighborhoods of variables to
resolve Conjecture 11 for k large enough.

Theorem 13 (Ding, Sly, Sun 11). There exists k0 > 0 so that for each k ≥ k0 there exists ck so that
the following hold.

• If m ≤ (1− ε)ckn, then whp Fk(n,m) is satisfiable.

• If m ≥ (1 + ε)ckn, then whp Fk(n,m) is unsatisfiable.

The proof is a mathematical tour-de-force, employing several sophisticated tools (for both the
upper and lower bounds) and performing very challenging probabilistic and combinatorial calculations.
Notably, to prove Conjecture 11 in this case they establish the exact threshold as predicted by the
1-RSB cavity method.

One could hope to apply the same strategy to random graph coloring, but this seems hopelessly
complex: having q > 2 possibilities for each variable makes everything more complicated, and the
proof in [45] is already over 300 pages.

4.4 Algorithmic thresholds

What about the other question asked by Mitchell, Selman, and Levesque – is it true that random
k-SAT instances near the satisfiability threshold are computationally intractable?

There was some hope among statistical physicists that survey propagation, a message-passing
algorithm based on the 1-RSB predictions for random k-SAT and other models, might provide an
efficient search algorithm for instances near the satisfiability threshold [28]. However (at least for
large k) this was disproved [71, 29].

Instead, evidence of computational hardness based on the structure of the solution space has
emerged. Achlioptas and Coja-Oghlan proved the shattering of the solution space in [6] and observed
that the threshold for shattering approximately coincides with the density above which no efficient
search algorithms are known (though see below for a caveat in linking the two). While it did not
establish a direct link between solution space structure and algorithms, this paper was innovative
both in its techniques (using the planted model, described more below) and in making a conceptual
link between the two.

A more direct link with algorithms is the Overlap Gap Property (OGP) pioneered by Gamarnik
and Sudan [60, 59]. The basic OGP states that there is an interval (a, b) so that whp over an instance
of a random computational problem, no pair of solutions have their normalized overlap in (a, b). This
can be proved using a first-moment method. Amazingly, this simple property then implies that entire
classes of algorithms (local algorithms, low-degree algorithms) cannot find a solution whp. For random
k-SAT the OGP perspective has been applied to determine approximately the low-degree algorithmic
threshold of the problem [29].
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4.5 Scaling windows

With Friedgut’s theorem establishing a sharp threshold in the random k-SAT model, one could hope
to say something quantitatively stronger about scaling windows in this and related models. Friedgut’s
theorem (or Bourgain’s more abstract theorem) gives bounds on the k-SAT scaling window of the form
Tε = O(pc/ log log n), just barely enough for a sharp threshold. Surprisingly, Abbe and Montanari [4]
show that even a very mild improvement to this bound would resolve Conjecture 11

Proposition 14 ([4]). If for any fixed δ > 0, the scaling window for random k-SAT satisfies Tε =
O(pc/ log1+δ n), then Conjecture 11 holds.

The statistical physics cavity method does not give much guidance on what to expect for scaling
windows. In 2002, Wilson [127] used basic probabilistic arguments to prove generic polynomial lower
bounds on the scaling window for random k-SAT and other models, thus disproving a number of
conjectures from statistical physics. Good upper bounds for random k-SAT or random graph q-
coloring are completely lacking currently.

In a different random CSP, however, scaling windows have recently been pinned down precisely.
The binary perceptron [40] arose in the 1960’s as a toy model of a neural network then attracted
attention in statistical physics via the work of Gardner and others [62, 63, 91]. A symmetric variant
was recently introduced in [18] and has some remarkably nice properties from a mathematical point of
view. For one, the plain first- and second-moment methods (along with some concentration arguments)
suffice to pin down precisely the satisfiability threshold in the model [18, 113, 3]. Closely related is
the fact that the solution space looks very different than the cartoon in Figure 6: for all constraint
densities below the satisfiability threshold, whp over the instance, almost all solutions are isolated,
at linear Hamming distance from the nearest other solution. The corresponding cartoon would be a
sprinkling of points.

The nature of the solution space in this model raises a lot of questions: if almost all solutions are
isolated should the search problem be hard at all densities? In fact there are efficient search algorithms
at low densities [87] even when almost all solutions are isolated; these algorithms in fact find solutions
lying in very rare clusters (with maximum possible diameter) [2], as predicted by physicists working
on machine learning problems [19]. This indicates that the cartoon in Figure 6 is not really relevant to
algorithms: the cartoon depicts properties of typical solutions, while efficient algorithms may indeed
find rare solutions. The structural properties like the OGP that apply to all solutions (or tuples of
solutions) are more algorithmically relevant.

Finally, in a recent breakthrough Altschuler proved something remarkable about the scaling win-
dow: the scaling window, measured in number of constraints, is of width O(log n) (while the critical
number of constraints is O(n)) [13]. Contrast this to what is known via abstract results like Friedgut’s
theorem which would give a bound of O(n/ log log n); and to what is known for models like random
k-SAT and random graph coloring which is only what the abstract results give. Even more recently
Sah and Sawhney determined the scaling window completely, showing it is of width O(1) and giving
the limiting probability of satisfiability inside the window [117].

5 Statistical inference and the stochastic block model

A fundamental statistical question can be phrased as ‘Under what circumstances can a signal be
recovered from a noisy observation of that signal?’ Or - ‘Can we distinguish a signal from noise?’

As the study of statistics has evolved in the age of fast computers and massive data sets, these
same questions remain fundamental but the data sets of interest are now very high dimensional and
the question of efficient computation becomes paramount. Just as we want to know whether ‘typical’
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instances of 3-SAT are algorithmically tractable we also want to know if ‘typical’ statistical inference
problems are algorithmically tractable.

A very useful framework for the rigorous study of these questions is the teacher–student framework
(see e.g., [129]). In this framework, a teacher describes a generative probabilistic model of data to
a student. The model takes as an input a ‘ground truth’ and adds to this noise of some form. The
teacher chooses a ground truth from some known prior distribution, generates the data from the
model, and presents the data to the student. The student’s task is to recover the ground truth from
the data, using knowledge of the generative model and prior distribution.

Perhaps the most studied teacher–student model in the stochastic block model, a toy model for the
statistical and machine learning task of clustering: partitioning a set of data points into subsets with
similar characteristics. The stochastic block model deals with a simple specialization of clustering:
community detection in which the the data is a graph and the task is to partition the vertex set into
subsets of vertices with similar connectivity structure; this could mean finding a partition in which
most edges lie within parts, or finding a partition in which most edges cross the parts.

Formally, a symmetric version of the stochastic block model is defined as follows. Fix an integer
q ≥ 2, and pin, pout ∈ [0, 1], p 6= q, and let n denote the number of vertices of the graph.

• Choose a partition σ ∈ [q]n of [n] into q parts uniformly at random.

• For each pair i, j ∈ [n], i 6= j, include the edge (i, j) with probability pin if σ(i) = σ(j) and with
probability pout if σ(i) 6= σ(j), all edges independently of the others.

• Call the resulting graph Ĝ.

If pin > pout, then, on average, more edges will be drawn between vertices with the same label
(we say the model is assortative); if pin > pout, the opposite is true (the model is disassortative). If
pin = pout the model is simply G(n, p).

The inference task is to recover the partition σ given the graph Ĝ. Recovery can be defined in
different ways: exact recovery (up to a permutation of the q labels); recovery of almost all the labels
up to permutation; or recovery of a partition σ′ that (after a permutation) agrees with σ on 1

q + ε
fraction of vertices, for some small ε > 0; that is, just a tiny bit better than random guessing. We
focus here on the last notion, called weak recovery.

Though we have left the setting of monotone properties of the hypercube under µp, we have retained
some of the essential features: this model has independent edges and an important monotonicity
property. If we fix the ratio pin

pout
=: α and set pin = pα and pout = p then the weak recovery problem

only becomes easier as p increases: we have more data (observed edges) from which to deduce the
signal (the underlying partition).

5.1 Sharp thresholds for inference

Though the stochastic block model was defined independently in different fields in the 1980’s [72,
31, 47], mathematical interest in the model exploded in 2011 when Decelle, Krzakala, Moore, and
Zdeborová [41] used the cavity method to make a series of beautiful predictions about sharp thresholds
in the model.

We focus on their conjectures for thresholds for weak recovery when pin, pout = O(1/n) and so the
random graph has constant average degree.

There is an information theoretic threshold at dinf if

1. when d < dinf, pin = α dn , pout = d
n , there is no algorithm (efficient or not) that whp finds a

partition σ′ that agrees with σ on 1
q + ε fraction of vertices (after a permutation of the parts)

for any fixed ε > 0.
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2. when d > dinf, pin = α dn , pout = d
n , there is ε > 0 and an algorithm (perhaps inefficient) that

whp finds a partition σ′ that agrees with σ on 1
q + ε fraction of vertices (after a permutation of

the parts).

There is an algorithmic threshold at dalg if

1. when d < dalg, pin = α dn , pout = d
n , there is no polynomial-time algorithm that whp finds a

partition σ′ that agrees with σ on 1
q + ε fraction of vertices (after a permutation of the parts)

for any fixed ε > 0.

2. when d > dalg, pin = α dn , pout = d
n , there is ε > 0 and a polynomial-time algorithm that whp

finds a partition σ′ that agrees with σ on 1
q + ε fraction of vertices (after a permutation of the

parts).

For the case q = 2, 3 they conjectured that for any α, dinf = dalg, but for q ≥ 5 they conjectured
a gap: dinf < dalg (now known as a statistical–computational gap, and the subject of great recent
interest in statistics and computer science). The q = 2 conjecture was proved in celebrated works of
Mossel–Neeman–Sly [105, 106] and Massoulié [95]

The positive side of their general conjecture about dalg, that weak recovery is possible above the
‘Kestum–Stigum threshold’, was proved by Abbe and Sandon [5]. The information–theoretic threshold
conjecture in the disassortative case (α < 1) was proved in [36] by implementing a rigorous version
of the cavity method, but the assortative case remains open in general. The surveys [104, 1] contain
detailed accounts of further developments.

5.2 The planted model

To wrap things up, we discuss a concept with connections to all of the developments recounted in
Sections 3, 4, and 5.

The stochastic block model is an example of a planted model. A solution (in this case a partition
into q parts) is chosen, then a random instance is drawn consistent with this planted solution. The
inference task above is to recover information about the planted solution given the random instance.
An even easier computation task is to distinguish the planted model from the purely random model
(in this case the Erdős-Rényi random graph G(n, p)).

It is straightforward to devise planted models for random k-SAT and random graph coloring: pick
a solution σ uniformly at random and choose independent constraints or edges among those that are
satisfied by σ.

Achlioptas and Coja-Oghlan [6] show that if the number of solutions in the random model is
sufficiently concentrated, then high probability results about the planted solution in the planted model
can be transferred to high probability statements about uniformly random solutions in the random
model. This is the key to establishing results on the structure of the solution space (and is used in
the symmetric perceptron results [113, 3] as well).

Returning again to random graph coloring, the planted model is exactly the extreme case (α = 0)
of the disassortative stochastic block model. In [20, 36, 35] the condensation threshold for random
graph q-coloring is determined precisely, in terms of a solution to a variational problem arising from
the cavity method. This bound is the best known lower bound on the q-colorability threshold for
q ≥ 4 (the best bound for q = 3 is in [8]). In [36], a precise connection between condensation
thresholds and information theoretic thresholds is made: the two thresholds coincide for a large
class of models exhibiting some symmetry and convexity; these include random graph coloring, the
anti-ferromagnetic Potts model, k-NAE-SAT. They do not include random k-SAT (asymmetry) or
the assortative stochastic block model (lacking the needed convexity). Overcoming these technical
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obstacles and being able to identify condensation thresholds in asymmetric models is a major challenge
and could eventually lead to a generic approach to Conjecture 11. See related discussion in [128, 88].

To conclude, somewhat surprisingly the planted model is closely related to the developments
recounted in Section 3 as well. Mossel, Niles-Weed, Sun and Zadik [107] recently showed that a well-
chosen planted model and a second-moment argument can be used to prove the ‘spread lemma’, the
key technical ingredient in the proof of improved sunflower bounds [14] and the fractional Kahn–Kalai
conjecture [53].

6 Conclusions and questions

As we saw in Section 3, the fractional Kahn–Kalai theorem has sufficed for all known applications,
but one can ask if there are applications that require Theorem 5.

Question 1. Are there threshold applications that need the full power of Theorem 5 rather than the
fractional version of Theorem 6? Or is there a constant K so that qf (F) ≤ Kq(F)?

The second is conjectured in the affirmative by Talagrand in [125].

As we have seen, one effective way of determining sharp thresholds and scaling windows is to prove
a hitting time result, relating a complex property to a simple property.

Question 2. Is there a general way to find first-order asymptotics of pc for the property of G(n, p)
containing a subgraph H when there is not a natural hitting-time conjecture?

A nice conjecture for one such property is by Kahn, Narayanan, and Park on the threshold for the
existence of the square of a Hamilton cycles in G(n, p); that is, the existence of a cyclic ordering of
the n vertices so that there is an edge between every pair of neighbors and second neighbors.

Conjecture 15 (Kahn, Narayanan, and Park [80]). For the property F of G(n, p) containing the
square of a Hamilton cycle,

pc(F) = (1 + o(1))

√
e

n
.

In [80] they prove pc = Θ(n−1/2) using a finer understanding of the spreadness of the uniform
distribution on squares of Hamilton cycles; a direct application of Theorem 8 would have lost a log n
factor. See also [122, 52] for generalizations.

Question 3. Are there any general-purpose tools for bounding the width of the scaling window of
a monotone property with a sharp threshold, beyond the bounds given by Friedgut’s theorem? Can
Conjecture 11 be proved in a generic way, without the need to precisely identify the threshold?

Random geometric graphs

We conclude the survey by stating one of the author’s favorite open problems on thresholds in random
structures.

In this survey we have discussed the Erdős-Rényi random graph in depth and another model of a
random graph in the stochastic block model; both models have the important property that edges are
independent. There are many other important random graph models that do not have this property.
Here we discuss one, the random geometric graph [65, 112], in which edges between randomly placed
points are determined geometrically.
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In particular, let Sd−1 be the unit sphere in d-dimensions1. The random graph Gd(n, p) = (V,E)
is formed as follows:

• Let V = [n]

• Select n points x1, . . . , xn independently and uniformly from Sd−1.

• Let E = {(i, j) : xi · xj ≥ τp} where τp is chosen so that Pr[xi · xj ≥ τp] = p.

In particular, like the Erdős-Rényi random graph G(n, p), Gd(n, p) is a random graph on n vertices
with edge probability p; but now the edges are not independent.

Thresholds in a random geometric graphs have been studied extensively; see the textbook of
Penrose [112] for results on connectivity, subgraph containment, existence of a giant component.
More recently, following the influential paper of Devroye, György, Lugosi, and Udina [42], thresholds
in Gd(n, p) when d = d(n) → ∞ have been studied, along with a different kind of threshold: for
a given p(n) for which values of d(n) are the two random graphs G(n, p) and Gd(n, p) statistically
distinguishable? [30, 93].

Just as in G(n, p), a general study of monotone properties is possible in Gd(n, p). In particular, let
F be a non-trivial monotone property (where as always monotone pertains to adding edges). Then
again the probability that F holds in Gd(n, p) is a strictly increasing function of p, and so pc(F) can
be uniquely defined, and all of the same questions from Section 1.1 can be asked in this setting too.

Perhaps surprisingly then, the analogue of Theorem 1, the Bollobas-Thomason theorem, that
lays the foundation for the general study of thresholds of monotone properties in random graphs,
is not known in general for random geometric graphs. In the special case of d = 1 (points on a
circle), McColm proved that every monotone property has a threshold [96]. Moreover, Goel, Rai,
and Krishnamachari [66] proved that the scaling window of every monotone property is bounded by
a function (depending on d) that vanishes as n → ∞, the analogue of the result of Friedgut and
Kalai [56] for G(n, p). The general statement, however, remains open.

Conjecture 16. Every non-trivial monotone property has a threshold in Gd(n, p).
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HILBERT MEETS RAMANUJAN:

SINGULARITY THEORY AND INTEGER PARTITIONS

HUSSEIN MOURTADA

Abstract. What can singularities of algebraic varieties say about the decom-

positions of a positive integer into a sum of positive integers ?

1. Introduction

In his first letter to Hardy, dated 16 January 1913 ([18], p. 29) Ramanujan
stated the formulas

(1.1) 1 +
e−2π

1 + e−4π

1+ e−6π

...

=

√5 +
√

5

2
− 1 +

√
5

2

 e
2π
5

(1.2) 1 +
e−π

1 + e−2π

1+ e−3π

...

=

√5−
√

5

2
− 1−

√
5

2

 e
π
5

about which Hardy writes in the article ”The Indian Mathematician Ramanujan”
([34], p. 144):

”[These formulas] defeated me completely. I had never seen anything in the least
like them before. A single look at them is enough to show that they could only be

written down by a mathematician of the highest class. They must be true because,
if they were not true, no one would have had the imagination to invent them.”

This article is not exactly about these formulas, but about some identities which are
at the heart of their proofs; this allows the author to enjoy writing them and prob-
ably the reader (who already knew them or not yet) to enjoy the scene. According
to [17], the first proof of these formulas was given by Watson [56]; following [9], let
us see how partitions, via the Rogers-Ramaunujan identities, play a fundamental
role in the proof. Consider the q−difference equation

(1.3) F (x) = F (xq) + xqF (xq2),

where q ∈ C∗ and F (x) =
∑
an(q)xn is an analytic function satisfying F (0) = 1.

2020 Mathematics Subject Classification. 14B05,13P10,11P84,11P81,05A17,05A19,13D40.
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Let c(x, q) := F (x)
F (xq) ; we have

c(x, q) = 1 +
xq

c(xq, q)
= 1 +

xq

1 + xq2

c(xq2,q)

.

Iterating this last identity, we find that the left member of the identity (1.1) is equal
to c(1, e−2π) and that the left member of the identity (1.2) is equal to c(1, e−π). Now,
if we plug F (x) =

∑
an(q)xn in the equation (1.3), by comparing the coefficients

of xn on both sides, we get

an(q) =
qn

2

(q)n
=

qn
2

(1− q)(1− q2) · · · (1− qn)
.

This gives the left equalities in the following two identities:

(1.4) F (1) = 1 +
∑
n≥1

qn
2

(q)n
=

∏
i≡ 1,4 (mod 5)

1

1− qi
.

(1.5) F (q) = 1 +
∑
n≥1

qn
2+n

(q)n
=

∏
i≡ 2,3 (mod 5)

1

1− qi
.

The equalities on the right in (1.4) and (1.5) are two miracles, which are central in
this article. They allow us to represent c(1, q) as an infinite product and we may
then deduce Ramanujan’s continued fraction (1.1),(1.2) by an appeal to the theory
of elliptic theta functions.

The ”miracles” in (1.4) and (1.5) are called the Rogers-Ramanujan identities; it is
magic how they appear ”in many different domains”: statistical mechanics, combi-
natorics and number theory, representation theory, probability theory and in Alge-
braic Geometry and Commutative Algebra; see [12, 16, 20, 22, 30, 33, 29]. Here we
will concentrate on the Algebro-Geometric side of the story. But at first, since we
have stated the Rogers-Ramanujan identities in terms of q−series, let us explain
why these are partition identities.

Definition 1.1. A partition of a positive integer n is a decreasing sequence λ =
(λ1 ≥ λ2 ≥ · · · ≥ λr) such that λ1 + · · ·+ λr = n. The λi’s are called the parts of
λ and r is its size.

For instance, 4 has 5 partitions:

(1.6) 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

The combinatorial version of Rogers-Ramanujan identities in terms of integer par-
titions is due to MacMahon [40] and Schur [53].

Theorem 1.2 (Rogers–Ramanujan identities, combinatorial version). Let n be a
nonnegative integer and set i ∈ {1; 2}. Denote by T2,i(n) the number of partitions
of n such that the difference between two consecutive parts is at least 2 and the part
1 appears at most i − 1 times. Let E2,i(n) be the number of partitions of n into
parts congruent to ±2 + i mod 5. Then we have

T2,i(n) = E2,i(n).
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For example, the partitions of 4 (see 1.6) which are counted by T2,2(4) are 4 and
3 + 1; those which are counted by E2,2(4) are 4 and 1 + 1 + 1 + 1. In particular
we have T2,2(4) = E2,2(4) = 2, and the theorem says that this is the case for
every positive integer n. The relation between the identities (1.4) and (1.5) and
theorem 1.2 is that one can prove that the left member of (1.4) (respectively (1.5))
is the generating series of the sequence T2,2(n) (respectively T2,1(n)) and it is not
a difficult exercise to see that the right member of (1.4) (respectively (1.5)) is the
generating series of the sequence E2,2(n) (respectively E2,1(n)). Recall here that
the generating series of a sequence of integer numbers (an)n∈Z≥0

is by definition∑
n∈Z≥0

anq
n.

The other important object (with integer partitions) for this article is the arc
space, coming from algebraic geometry. Let X ⊂ Ce be an algebraic variety: i.e., X
is the zero locus in Ce of a set of polynomials in e variables with coefficients in the
field C of complex numbers. The arc space X∞ of X is a space which parametrizes
the arcs (germs of formal curves) which are traced on X; so a point of X∞ cor-
responds to an arc on X. As we will see, this is also an ”algebraic variety” (or a
scheme) which often is of infinite dimension. Arc spaces (and their finite dimen-
sional approximations) play an important role in singularity theory, for instance
via the Nash problem [49], motivic integration [25, 23], birational geometry [47] or
equisingularity [45, 46, 37, 38].

This article tells, on the one hand, about a link between arc spaces and partition
identities and on the other hand how this link allows one to discover and prove
new partition identities. In the second section, we will introduce the arc space and
the arc HP-series (the arc Hilbert-Poincaré series) which is an invariant of singu-
larities of algebraic varieties; we will also show how to compute this series in some
examples. The third section reveals the relation between the arc HP-series and
Rogers-Ramanujan identities: differential algebra and Groebner basis theory play
an important role here. The fourth section shows how one can guess and prove new
partition identities using the link between arc spaces and integer partitions. The
last section is about research directions which are related to the subject of this ar-
ticle but which have not been treated here. The article is meant to be self contained.

Aknowledgements. The author would like to thank several colleagues and friends
with whom he discussed at a moment or another about the subject of this paper,
in particular: P. Afsharijoo, L. Boccadifuoco, C. Bruscheck, S. Corm, S. Corteel,
J. Dousse, M. Hajli, H. Hauser, F. Jouhet, M. Lejeune-Jalabert, Z. Mohsen, A.
Rangachev, J. Schepers, B. Teissier.

2. The Arc Hilbert-Poincaré series

Let C be the field of complex numbers (any other field of characteristic zero
would be good for this paper). Let X ⊂ C3 be an affine algebraic variety; the story
is absolutely the same if we replace the 3 in C3 by an integer number e, modulo
more notations; actually later we will consider examples where e (the embedding
dimension) is 1, 2 or 3. For the scope of this paper, we can consider X to be a
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hypersurface defined by a polynomial f ∈ R = C[x, y, z], i.e.

X = {(a1, a2, a3) ∈ C3 | f(a1, a2, a3) = 0}.
Again, not much related to what we will tell changes if we replace the ideal generated
by (f) by an ideal generated by a finite number of polynomials. We will also write

(2.1) X = Spec
C[x, y, z]

(f)
= Spec

R
(f)

;

this latter notation emphasizes, as in modern Algebraic Geometry, on the fact the
ring of polynomial functions defined on X with value in C is given by

OX =
C[x, y, z]

(f)
.

For instance, the polynomial function defined by f (or any polynomial in the ideal
(f) generated by f) is zero in OX ; this meets the fact that for any (a1, a2, a3) ∈
X, f(a1, a2, a3) = 0. Moreover, the use of the notation Spec allows us to distinguish
the variety (or scheme) defined by f from the one defined by f2 (even though the
underlying geometric object is the same); one can think of SpecR/(f2) as a kind
of thickening of SpecR/(f), since we have more polynomial functions on it, f for
instance is not zero in R/(f2) .

An arc γ on X is defined by a string of power series

γ(t) = (x(t), y(t), z(t))

such that f(γ(t)) = f(x(t), y(t), z(t)) = 0. This latter equality says that the arc γ
which was originally defined as an arc on C3 is an arc on X. Let us write

(2.2) x(t) =
∑
i≥0

xit
i, y(t) =

∑
i≥0

yit
i, z(t) =

∑
i≥0

zit
i,

and expand f(γ(t)) =

(2.3) f(
∑
i≥0

xit
i,
∑
i≥0

yit
i,
∑
i≥0

zit
i) =

∑
j≥0

Fj(x0, y0, z0, . . . , xj , yj , zj)t
j .

The data of an arc is then equivalent to the data of the coefficients

xi, yi, zi, i ∈ Z≥0,

which satisfy the equations Fj(x0, y0, z0, . . . , xj , yj , zj) = 0 for every j ∈ Z≥0.
Hence the arc space which is the space of all arcs on X is the algebraic variety
X∞ which is defined in an infinite dimensional affine space (whose coordinates are
xi, yi, zi, i ∈ Z≥0) by the polynomials Fj , j ∈ Z≥0. In other terms X∞ = SpecOX∞
where

OX∞ =
C[xi, yi, zi, i ∈ Z≥0]

(Fj , j ∈ Z≥0)
.

Giving the variables xi, yi and zi the weight i, the polynomials Fj are weighted-
homogeneous of degree j : Indeed, if we replace in the equation (2.3) the variables
xi, yi, zi by λixi, λ

iyi, λ
izi, it becomes

f(
∑
i≥0

λixit
i,
∑
i≥0

λiyit
i,
∑
i≥0

λizit
i) =

∑
j≥0

Fj(λ
0x0, λ

0y0, λ
0z0, . . . , λ

jxj , λ
jyj , λ

jzj)t
j ;
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At the same time, noticing that λiti = (λt)i we can write the equation as follows

f(
∑
i≥0

xi(λt)
i,
∑
i≥0

yi(λt)
i,
∑
i≥0

zi(λt)
i) =

∑
j≥0

Fj(x0, y0, z0, . . . , xj , yj , zj)(λt)
j ;

hence, by collecting the coefficients of tj in both forms of the equation, we have

Fj(λ
0x0, λ

0y0, λ
0z0, . . . , λ

jxj , λ
jyj , λ

jzj) = λjFj(x0, y0, z0, . . . , xj , yj , zj).

This gives OX∞ a structure of a grading ring, i.e., we have a decomposition

OX∞ =
⊕
j≥0

OX∞,j ,

as a direct sum of subgroups OX∞,j such that the product of an element in OX∞,j
with an element in OX∞,j′ is an element in OX∞,j+j′ . The fact that the Fj are
weighted-homogeneous is essential, otherwise, we can have two polynomials in
C[xi, yi, zi, i ∈ Z≥0] which are of different weights but whose images in OX∞ are
equal. Still, OX∞ is not yet our favorite geometric object.

One notices that the data of a morphism of affine algebraic varieties φ : X −→ Y
(a morphism which is defined by polynomial functions) is equivalent to the data
of ring homomorphism φ∗ : OY −→ OX which to a polynomial function h on X,
i.e. h ∈ OY , associates φ∗(h) = φ ◦ h. Hence the natural ring morphism given by
OX −→ OX∞ which sends x, y, z respectively to x0, y0, z0, defines a morphism

ψX : X∞ −→ X.

We sometimes omit X in the notation ψX when X is clear from the context. This
is the morphism which to an arc γ(t) = (x(t), y(t), z(t)) ∈ X∞ associates γ(0) ∈ X,
the center of γ. Let us assume that the origin O = (0, 0, 0) ∈ X (by a change of
variable any point x ∈ X can be considered to be the origin). We are interested in
the fiber ψ−1(O) of ψ above O. We have ψ−1(O) = SpecA∞, where

A∞ =
C[xi, yi, zi, i ∈ Z≥1]

(fj , j ∈ Z≥1)
;

the f ′js are obtained from the F ′js by substituting x0, y0, z0 by 0. Hence the fi’s are
again weighted-homogeneous when giving xi, yi and zi, i ∈ Z>0 the weight i and
A∞ inherits a graded structure A∞ =

⊕
j≥0A∞,j . We are now ready to define our

invariant, the arc HP-series.

Definition 2.1. The arc HP-series of X at O is defined by

AHPX,O(q) :=
∑
j∈Z≥0

dimCA∞,jqj .

Remark 2.2. The reason why we considered the arcs with center at a point (i.e.
ψ−1(O)) and not X∞ is that the dimension over C of OX∞,0 (the homogeneous
component of weight 0) is not finite (OX∞,0 is actually isomorphic to OX). Of
course, one could consider the dimension over a generic point of an irreducible
component of X, but in that case this series is much less interesting as it will be
apparent later.

Example 2.3. The most basic example is the case where X = SpecC[y] = A1 is
the affine line and O is the origin. Following the explanation above, we have

A∞ = C[yj , j ∈ Z>0],
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with the graded structure induced from giving yj the weight j for every j ∈ Z>0.
In particular, A∞,j is generated, as a vector space over C by the monomials

yj1yj2 · · · yjr
where j1 + j2 + · · · + jr = j and where we can assume j1 ≥ j2 ≥ · · · ≥ jr. These
generators are in bijection with the partitions of j, simply by associating with the
monomial yj1yj2 · · · yjr the partition j = j1 + j2 + · · · + jr. Let us use the usual
notation p(j) to denote the number of partitions of j, where by convention p(0) = 1.
We then have

AHPA1,O(q) =
∑
j∈Z≥0

p(j)qj =
∏

j∈Z>0

1

1− qj

The equality to the right in the above equation is a formula which is due to
Euler; one can prove it simply by substituting in the product

1

1− qj
= (1 + qj + q2j + · · · ).

and then by expanding the product using the usual product of power series. A
similar computation gives us

AHPAd,O(q) =
∏

j∈Z>0

1

(1− qj)d

Example 2.3 actually allows us to compute the arc HP-series in many examples.
To see that, let us use a slightly fancier definition of an arc γ on a variety X : an
arc γ on X is a morphism

γ : SpecC[[t]] −→ X.

Here, C[[t]] is the ring of power series with coefficients in C. One can see it as the
completion of the local ring of the affine line at the origin, as follows: the local ring
of the affine line A1 = SpecC[t] is the ring C[t](t) which is obtained from C[t] by
inverting all the polynomials h ∈ C[t] whose values at the origin O is not 0. This is
a local ring with a unique maximal ideal (t); the powers (t)n of this maximal ideal

gives a basis of a topology on C[t](t). The completion Ĉ[t](t) of C[t](t) with respect
to this topology is C[[t]]. One moral of the story is that SpecC[[t]] can be thought
as a formal neighborhood of the origin in the affine line A1, hence the intuition that
the image of γ is a germ of a formal curve on X. Now, if we are interested only in the
arcs centered at the origin O ∈ X, then such an arc γ corresponds to a morphism
γ : OX,0 −→ C[[t]]. Since C[[t]] is complete the universal property of completeness

tells us that γ factors through a morphism γ̂ : ÔX,0 −→ C[[t]]. So, if we assume
that the variety X is non-singular at O (for a hypersurface this is equivalent to say
that the partial derivatives at O are not all zero) then by Cohen structure theorem

([27], section 7.4), the completion ÔX,0 is isomorphic to C[[y1, . . . , yd]], d being the
dimension of X at O. It follows that the data of any γ is equivalent to the data of a
morphism γ̂∗ : C[[y1, . . . , yd]] −→ C[[t]] and that Ψ−1X (O) is isomorphic to Ψ−1

Ad(O).
We conclude from example 2.3 the computation of AHPX,O; Moreover, one can
show that if X is singular at O, AHPX,O 6= AHPAd,O.

Proposition 2.4. Let X be an algebraic variety and consider a point O ∈ X. We
have that X is non-singular at O if and only if
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AHPX,O(q) =
∏

j∈Z>0

1

(1− qj)d

Proposition 2.4 tells us that the arc HP-series is an invariant of singularities
since it detects singular points from non-singular ones. It also tells us that this
series contains more information at singular closed points (the case that we are
considering); for instance if X is irreducible, it is non-singular at its generic point
and its arc HP-series (where dimensions are considered over the residue field of the
generic point) is equal to the series in the proposition; see [44] section 9 for a com-
parison of the information contained in this invariant with more classical invariants
of singularities.

In general, it is quite difficult to compute this series, essentially because the
homological complexity of the jet schemes (the finite dimensional approximation
of the arc space); for instance even for curves singularities [45], the jet schemes
have a lot of irreducible components and they are very far from being equidi-
mensional. We will actually use jet schemes to show how to compute HP-series
for some ”simple” singularities. For m ∈ Z≥0, an m−jet α on X is a morphism
α : SpecC[t]/(tm+1) −→ X. Following the same reasoning that we made to repre-
sent the arc space, we find that for an X like in (2.1) the m−th jet scheme of X
is

Xm = SpecOXm = Spec
C[xi, yi, zi, i = 0, . . . ,m]

(Fj , j = 0, . . . ,m)
.

Again, for the same reason as in the arc space case we have a natural morphism
πm : Xm −→ X (again here, when it is clear from the context, we neglect the
mentioning of X in the notation πm) and we have π−1(O) = SpecAm where

(2.4) Am =
C[xi, yi, zi, i = 1, . . . ,m]

(f1, . . . , fm)

We are ready to determine the arc HP-series for rational double point surface
singularities. These latter are somehow ubiquitous in singularity theory and in
algebraic geometry [26]. For instance these are the only locally complete intersection
rational surface singularities. Embedded in C3, They are defined via the equations:

An, n ∈ N : xy − zn+1 = 0.

Dn, n ∈ N, n ≥ 4 : z2 − x(y2 + xn−2) = 0.

E6 : z2 + y3 + x4 = 0.

E7 : x2 + y3 + yz3 = 0.

E8 : z2 + y3 + x5 = 0.

The following theorem was first proved in [43]; we give here a proof following [22].

Theorem 2.5. Let X be surface having a rational double point singularity at O.
We have

AHPX,O(q) =
1

(1− q)3
∏
j≥2

1

(1− qj)2
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Proof. We will prove that π−1m (O) ⊂ SpecC[xi, yi, zi, i = 0, . . . ,m] is a complete
intersection (i.e., the codimension of all its irreducible components is equal to the
number of its defining equations); the result will then follow from [54], knowing
that the weight of fj is j for j = 1, . . . ,m, and that by definition the Hilbert-
Poincaré series of Am is equal to the Hilbert-Poincaré series of Am modulo (qm+1).
Notice that embedded in A3

m := SpecC[xi, yi, zi, i = 0, . . . ,m], π−1m (O) is defined
by the ideal (x0, y0, z0, f2, . . . , fm); i.e. by the equations given by all the generators
of the ideal equal to 0 (f1 does not appear here because it is equal to 0 modulo
(x0, y0, z0)). So the codimension of π−1m (O) in A3

m is smaller than or equal to m+2,
the number of equations. We also know that π−1m (Xreg) (Xreg being the non-
singular locus of X) is irreducible of codimension m + 1 : indeed, one can see
that the equations Fj , j = 0, . . . ,m are linear outside (x, y, z) = (0, 0, 0). If the
codimension π−1m (O) is smaller than or equal to m + 1, then π−1m (O) cannot be

included in the Zariski closure π−1m (Xreg) of π−1m (Xreg) since its dimension is then

larger than or equal to the dimension of π−1m (Xreg); the other inclusion is also

impossible since π−1m (O) ⊂ {x0 = 0} while π−1m (Xreg) is not. We deduce that if the
codimension π−1m (O) is smaller than or equal to m + 1, then Xm has at least two
irreducible components; this contradicts the fact that Xm is irreducible since X is
locally complete intersection with rational singularities [48]. Hence we deduce that
the codimension of any irreducible component of π−1m (O) in A3

m is exactly equal to
m+ 2, the number of the defining equations.

�

There are several other instances where the arc HP-series can be determined, see
[44].

3. The arc HP-series and the Rogers-Ramanujan identities

The first Rogers-Ramanujan identity comes into the picture when considering
one of the most elementary singularities, the one defined by (x2) in the line. More
precisely, from [21], we have:

Theorem 3.1. Let X = SpecC[y]/(y2). We have

AHPX,O(q) =
∏

i≡1,4 mod 5

1

1− qi

Moreover, let B∞ := A∞/(y1). Again B∞ inherits from A∞ a graded structure
B∞ = ⊕j∈Z≥0

B∞,j and one can consider its Hilbert-Poincaré series

HPB∞(q) =
∑
j∈Z≥0

dimCB∞,jqj .

Theorem 3.2. The Hilbert-Poincaré series of B∞ is

HPB∞(q) =
∏

i≡2,3 mod 5

1

1− qi

We will now give a proof of theorem 3.1. This proof reduces the computations
of the arc HP-series via the theory of Groebner basis to the computation of a
Hilbert-Poincaré series of a quotient of an infinite dimensional polynomial ring by
a monomial ideal. To apply this theory, we use the differential structure of the arc
space. Let us say two words about these two concepts, one about each.
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Groebner bases. The polynomial ring with one variable, C[x], is Euclidean, i.e.
one can apply the Euclidean algorithm which says that given g, h ∈ C[x], there
exists a unique couple of polynomials (q, r) such that

g = hq + r,

and 0 ≤ deg(r) < deg(h); we have that r = 0 if and only if h divides g. This
algorithm is very useful to detect whether an element g belongs to an ideal I ⊂
C[x] : indeed, again thanks to the Euclidean algorithm, C[x] is principal, I = (h)
is generated by one element and g ∈ I if and only if h divides g, equivalently if
r = 0. In the polynomial ring R = C[x1, . . . , xn] with several variables, the ideals
are finitely generated (Hilbert Basis theorem) but not principal in general; hence
the need of a division algorithm which allows to divide a polynomial by several
other polynomials. For that, the degree (which does not define a total ordering of
monomials, many monomials may have the same degree) is replaced by a monomial
ordering that we denote by ≺: this is a total ordering on the monomials of R which
satisfies that for monomials m1,m2,m3 if m1 ≺ m2 then m1m3 ≺ m2m3. We also
demand for ≺ to be a well ordering, i.e., any set of monomials of R has a smallest
element with respect to ≺ . Unlike the monomial of highest degree, the initial
monomial in≺(h) of h ∈ R with respect to ≺ is unique, this is the largest monomial
in h with respect to ≺ . One can then divide a polynomial h by an ordered set of
polynomials (h1, . . . , hs), and the result is:

(3.1) h = h1q1 + . . . hsqs + r,

where q1, . . . , qs, r ∈ R and there is no monomial appearing in r which is divisible
by any of in≺(hi), i = 1, . . . , s. In general r depends on the order of the s−tuple
(h1, . . . , hs) and the condition that r = 0 is not necessary for f to belong to the ideal
generated by (h1, . . . , hs) : for instance (see example 5 page 68 of [24]), the division
of x1x

2
2−x1 by (x1x2−1, x22−1) with respect to the lexicographical ordering, where

we assume y ≺ x, is given by:

x1x
2
2 − x1 = x2(x1x2 − 1) + 0.(x22 − 1) + (−x1 + x2).

The remainder r = −x1 + x2 6= 0 but

x1x
2
2 − x1 = x1(x22 − 1) ∈ (x1x2 − 1, x22 − 1).

To fix this problem, one should consider a special (with respect to the chosen
monomial order ≺) basis (g1, . . . , gl) of the ideal I = (h1, . . . , hs) which satisfies
that the initial ideal in≺(I) := (in≺(h);h ∈ I) is given by

in≺(I) := (in≺(g1), . . . , in≺(gl)).

Such a basis is called a Groebner basis and it ensures when dividing by (g1, . . . , gl)
the uniqueness of the remainder r. one notices that in the example above, I =
(h1, h2) where h1 = x1x2 − 1 and h2 = x22 − 1, the basis (h1, h2) is not a Greobner
basis (with respect to the lexicographical ordering), indeed:

(3.2) S(h1, h2) := x2h1 − xh2 = x− y ∈ I.
We have in≺(x−y) = x 6∈ (in≺(h1), in≺(h2)) = (x1x2, x

2
2). But the basis (h1, h2, h3 =

x− y) is a Groebner basis. The S-polynomial defined in equation (3.2) is made so
that one can eliminate the initials of both h1 and h2 and search for other elements
in the ideal which give new initials that do not belong to the ideal generated by
the initials of the generators of the input basis. As one can guess, the S-polynomial
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is the right tool in general to find a Groebner bases by applying it recursively to
all the couple of elements in the basis and by adding them (actually the remainder
of their divisions by the basis) to the basis when they are useful. The fact that
such an algorithm (the Buchberger algorithm) stops, as for the division algorithm,
is related to the property that the monomial order is a well ordering. Now one im-
portant thing for us, is that for a graded ring which is the quotient of a polynomial
ring R by a (weighted-)homogeneous ideal, the Hilbert-Poincaré series satisfies (see
e.g, theorem 5.2.6 in [32])

(3.3) HPR/I(q) = HPR/in≺(I)(q).

Note that the equality (3.3) is somehow natural, since by the discussion above, if we
take a Greobner basis I = (g1, . . . , gl), any element in R is congruent by the division
algorithm by (g1, . . . , gl) to a unique element r (the remainder) whose terms are
not divisible by any in≺(gi), i.e, by terms whose image in R/in≺(I) is a basis over
C. For more about Greobner bases, the reader can consult e.g [24, 27, 32].

Differential structure on the arc space. The ring OX∞ , where X is an affine
variety, has a structure of a differential ring. Let us stick to the example of X in
section 2 and to the notations there. The ring of global functions on A3

∞ is

OA3
∞

= C[xi, yi, zi, i ∈ Z≥0].

We have a derivation D on OA3
∞

defined by D(xi) = xi+1, D(yi) = yi+1, D(zi) =
zi+1 for i ∈ Z≥0. If we replace in the equation (2.2) the variables xi by xi/i! (where
j! is the factorial of j), and similarly for yi and zi, we find

(3.4) f(γ(t)) =
∑
j≥0

Fj(x0, y0, z0, . . . , xj , yj , zj)
j!

tj .

where F0 = f(x0, y0, z0) and Fj is recursively defined by the identityD(Fj) = Fj+1;
equation (3.4) follows from the fact that both sides are additive and multiplicative
in f and that this equality is obviously true for f = x, y or z. We obtain hence the
desired differential structure which is induced by the derivation D on OX∞ ; this is
because the rings

C[xi, yi, zi, i ∈ Z≥0]

(Fj , j ∈ Z≥0)
and

C[xi, yi, zi, i ∈ Z≥0]

(Fj , j ∈ Z≥0)

are isomorphic, the isomorphism being given by the change of variables expressed
above. Fore more about differential algebras see [36, 52].

Proof. (of theorem 3.1) The ring of A∞ of global functions on ψ−1(O) is (modulo
an isomorphism) given by

A∞ =
C[yj , j ∈ Z>0]

[y21 ]



HILBERT MEETS RAMANUJAN: 

where

[y21 ] =(y21 ,

2y1y2,

2y22 + 2y1y3,

6y2y3 + 2y1y4,

6y23 + 8y2y4 + 2y1y5, . . .)

=(f2, f3, . . .)

is the differential ideal generated by y21 and all its iterated derivatives by the deriva-
tion D. For a general singularity O ∈ X, where X is affine, the ring A∞ needs not
be differential even if OX∞ is; in our case, this is true because one can construct an
(non-homogeneous) isomorphism between A∞ and OX∞ . Now, when writing the
generators fi of the ideal, we ordered their terms by the weight (in fi they are all
of the same weight i) and by considering as smaller the monomials which make
use of larger indices: for instance, y23 is larger than y2y4 which is larger than y1y6;
this order that we denote by ≺ sounds to us natural from a geometric point of
view since y23 says something about the third neighborhood while y2y4 concerns the
fourth neighborhood ; so we want to see y23 before y2y4. Now if we want to find a
Groebner basis, we need to study the S−polynomial of the various couples of gener-
ators among the f ′is. If the the initial monomials of of fi, fj are coprime, then their
S−polynomial will not ”give” new initials (see e.g. proposition 1, page 106 [24]). So
we need to consider the S−polynomials for the couples (f2n, f2n+1), (f2n+1, f2n+2)
and (f2n+1, f2n+3). Let us study the first case, the other being similar. We have

(3.5) S(f2, f3) = 2y2f2 − y1f3 = 0.

Now deriving (3.5) iteratively 3n+ 4 times, we obtain the equation

(3.6)
3n−1∑
j=1

cjyjf3n+1−j = 0, cj ∈ C.

Using the Leibniz formula, we find

cn = 2Cn−23(n−1) − C
n−1
3(n−1)

cn+1 = 2Cn−13(n−1) − C
n
3(n−1)

where Ckn :=
(
n
k

)
denotes the binomial coefficient. Let α2n and α2n+1 be respectively

the coefficients of y2n in f2n and of ynyn+1 in f2n+1. Since f2n = D2n−2(f2) and
f2n+1 = D2n−1(f2), again using the Leibniz formula we see that the coefficients αn
and αn+1 satisfies

α2n = Cn−12(n−1)

α2n+1 = Cn2n
Now, noticing that α2ncn+1 = −α2n+1cn we can rewrite the equation (3.6) as

S(f2n, f2n+1) =
∑

j=1,··· ,3n−1;j 6=n,n+1

cjyjf3n+1−j .

This latter formula says that S(f2n, f2n+1), n ≥ 2 does not give new initials (reduces
to 0 modulo the basis (f2, f3, . . .), using the terms of [24]). Similarly, we can

SINGULARITY THEORY AND INTEGER PARTITIONS  11
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prove that the S-polynomials of the couples (f2n+1, f2n+2) and (f2n+1, f2n+3), n ≥ 1
reduce to 0 modulo the basis (f2, f3, . . .) and by theorem 6 page 108 in [24], we
deduce that (f2, f3, . . .) is a Groebner basis. Hence, since

in≺(f2n) = α2ny
2
n and in≺(f2n+1) = α2n+1ynyn+1

we have

in≺([y21 ]) = (y2n, ynyn+1, n ≥ 1).

From the equality (3.3), we deduce that the arc HP-series of X at O is equal to the
Hilbert-Poincaré series of

L :=
C[yj , j ∈ Z>0]

(y2n, ynyn+1, n ≥ 1)
,

graded by giving the weight j to yj . The j−th (wighted)-homogeneous component
Lj of L is generated by the monomials

yj1yj2 · · · yjs
where j1 +j2 + · · ·+js = j and where yj1yj2 · · · yjs is not divisible by any monomial
of the type y2n or ynyn+1, this is equivalent to say that difference between two
consecutive parts of the associated partition j1 + j2 + · · · + js of j is at least 2.
Using theorem 1.2 and the identity (1.4) we obtain the form of the arc HP-series
in the statement of the theorem.

�

Remark 3.3. (1) The fact that we derived (3.5) 3n+ 4 times is not a trick, it is
just that we know the weight of S(f2n, f2n+1) and we derived enough times
to reach this weight; deriving once make the weight grow of 1.

(2) It worth noticing, that the fact that we considering a non-finitely generated
ideal in the above proof is a source of simplification : indeed, if we consider
the finitely generated ideals (f2, f3, . . . , fm),m ∈ Z≥3), then the given basis
is no longer a Groebner basis with respect to the considered monomial
ordering; it is only when we let m goes to infinity that we have the miracle
that the basis is a Groebner basis. This can for instance be seen in the
equation 3.6, where some fi’s for i > 2n+ 1 may intervene.

The proof of theorem 3.2 follows the same ideas and computations in the proof
of theorem 3.1. The proof above inspires the following approach (see [21]) towards
the Rogers-Ramanujan identities. We begin by introducing some notations: Let
Id = (y2n, ynyn+1, n ≥ d),

L(d) :=
C[yj , j ∈ Z≥d]

Id
,

graded as above and h(d) = HPL(d) . We have an exact sequence

(3.7) 0 −→ C[yj , j ∈ Z≥d]

(Id : yd)
[−d] −→ C[yj , j ∈ Z≥d]

Id
−→ C[yj , j ∈ Z≥d]

(Id, yd)
−→ 0

where the first non-zero morphism is the multiplication by yd; the symbol [−d]
means that the graded structure is shifted by −d, so that the elements of weight
0 after adding the [−d] correspond to those of weight −d if we drop the [−d], and
the column ideal

(Id : yd) = {h ∈ C[yj , j ∈ Z≥d] | h · yd ∈ Id}.
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The shift guarantees that all the morphisms are homogeneous (they send an
element of a given weight to an element of the same weight) and hence we have
exact sequences at the level of the graded components seen as C-vector spaces.
Noticing that

C[yj , j ∈ Z≥d]

(Id : yd)
= L(d+2),

the rank theorem gives the following

h(d) = h(d+ 1) + qd · h(d+ 2),

and one deduces (see[21])

Proposition 3.4. The power series h(1) satisfies

h(1) = Ad · h(d) +Bd+1 · h(d+ 1);

for Ai, Bi ∈ k[[q]] fulfilling the following recursion

Ad = Ad−1 +Bd

Bd+1 = Ad−1 · qd−1

with initial conditions A1 = A2 = 1 and B2 = 0,B3 = q.

Since ordqBd ≥ d − 2, both limAd and limBd exist (limits with respect to the
q−adic topology as sequence of power series), and they satisfy

limBd = 0 and h(1) = limAd.

The recursion from Proposition 3.4 can be simplified to h(1) = limAd where Ad
fulfills

(3.8) Ad = Ad−1 + qd−2 ·Ad−2
with initial conditions A1 = A2 = 1.

This last recursion is well-known from [13]. Its limit is the infinite product

∞∏
i=1,4mod 5

1

1− qi
,

i.e., the generating series of the number of partitions with parts equal to 1 or 4
modulo 5. The construction above gives the generating series Gd defined in [13] an
interpretation as a Hilbert-Poincaré series of the quotients C[yj , j ∈ Z≥d]/Id. This
immediately implies that the series Gd are of the form Gd = 1 +

∑
j≥iGdjq

j , the

empirical hypothesis of [13].

4. Other Partition identities inspired by this viewpoint

An extension of Rogers-Ramanujan identities. In section 3, we showed that
the arc HP-series for one of the simplest singularities is equal to the generating series
of the number of partitions appearing in the Rogers-Ramanujan identities. At the
heart of the proof, we find a computation of a Groebner basis of the ideal [y21 ], the
defining ideal of the space of arcs centered at O ∈ SpecC[y]/(y2); this Groebner
basis is differentially finite,i.e., it is built from a finite number of elements (here
only one) and all their derivatives. The monomial order considered in section 3 is
somehow ”geometric” (chosen for geometric reasons), but one may also consider
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another monomial ordering < for which the initial ideal in<([y21 ]) of [y21 ] may vary
but the Hilbert-Ponicar series of the quotient

HPSpecC[yj ,j∈Z>0]/in<([y21 ])
= HPSpecC[yj ,j∈Z>0]/([y21 ])

will not vary, by equality (3.3). In [6], a Groebner basis computation with respect to
a weighted lexicographical ordering was considered; but (see theorem 2.2 in [6]) such
a basis cannot be differentially finite. This made it very difficult to actually compute
a Groebner basis of [y21 ] with respect to this order; still, from the computation one
can guess (without a proof) that the leading ideal should be

(4.1) (ykyi1 . . . yik , where k ≤ i1 ≤ · · · ≤ ik).

By playing this game with [y2i ] for i ∈ Z>0 and using iteratively exact sequences
which are similar to (3.7), on can prove the following (Theorem 1.7 [6]):

Theorem 4.1. Let n ≥ k be a positive integer. The number of partitions of n
with parts larger than or equal to k and size less than or equal to (the smallest part
minus k−1) is equal to the number of partitions of n with parts larger than or equal
to k and such that the difference between two consecutive parts is at least 2.

For k = 1, theorem 4.1 says that:

For a positive integer n ≥ 1, the number of partitions of n with size less than
or equal to the smallest part is equal to the number of partitions of n such that the
difference between two consecutive parts is at least 2; this yields another member of
Rogers-Ramanujan identities.

Let us call G2,2(n) the number of partitions of n with size less than or equal to
the smallest part. The partitions of 4 (see (1.6) which are counted by G2,2(4) are

4 and 2 + 2.

In particular we have T2,2(4) = E2,2(4) = G2,2(4) = 2 (see theorem 1.2 for the
notations), and theorem 4.1, for k = 1, asserts that the equality

T2,2(n) = E2,2(n) = G2,2(n)

is true for every n.

Remark 4.2. Recently, in [8], using new methods from differential algebra, the
authors proved that the ideal appearing in (4.1) is actually the initial ideal of [y21 ]
with respect the weighted lexicographical order. Still, until now we do not have a
Groebner basis with respect to this order.

In [2], using similar ideas to those who led to theorem 4.1, the author proved
another exciting extension to Rogers-Ramanujan identities, in which the parity
(even odd) of the parts of a partition plays an important role.

Gordon’s identities and their extensions. In the last section, we kept some-
what hidden the fact that there is a great generalization of theorem 3.1, proved in
[22].
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Theorem 4.3. Let n ∈ Z≥2. For X = SpecK[y]
(yn) ,

AHPX,0(q) =
∏

i 6≡ 0,n,n+1 mod(2n+1)

1

1− qi
.

The proof follows the same strategy of the proof of theorem 3.1 but the differen-
tial calculus is much more involved. Another famous family of identities intervenes
in the proof, Gordon’s identities [31].

Theorem 4.4 (Gordon’s identities). Let r and i be integers such that r ≥ 2 and 1 ≤
i ≤ r. Let Tr,i be the set of partitions λ = (λ1, λ2, . . . , λs) where λj−λj+r−1 ≥ 2 for
all j, and at most i−1 of the parts λj are equal to 1. Let Er,i be the set of partitions
whose parts are not congruent to 0,±i mod (2r+1). Let n be a nonnegative integer,
and let Tr,i(n) (respectively Er,i(n)) denote the number of partitions of n which
belong to Tr,i (respectively Er,i). Then we have

Tr,i(n) = Er,i(n).

Using ideas similar to those of section 3, in [3, 1], the author gave an alternative
approach to Gordon’s identities and conjectured a great generalization of theorem
4.1. This conjecture was proved recently in [5, 4]. Let us give the statement of
this theorem: Given an integer r ≥ 2, for 1 ≤ i ≤ r, define the (i, `)-new part of
λ = (λ1, . . . , λs) as follows:

pi,`(λ) :=


λs if ` = 1,

λs−
∑`−1
j=1 pi,j(λ)

if 2 ≤ ` ≤ i,
λs+`−i−

∑`−1
j=1 pi,j(λ)

if i < ` ≤ r − 1,

where λj = 0 for j ≤ 0, and if pi,`(λ) = 0 then pi,j(λ) = 0 for j > `. We denote the
number of all non-zero (i, `)-new parts of λ by Nr,i(λ).

Theorem 4.5. Let r ≥ 2 and 1 ≤ i ≤ r be two integers. Let Cr,i be the set of
partitions of the form λ = (λ1, . . . , λs), such that at most i−1 of the parts are equal

to 1 and either Nr,i(λ) < r − 1, or Nr,i(λ) = r − 1 and s ≤
∑r−1
j=1 pi,j(λ)− (r − i).

Let n be a nonnegative integer, and denote by Cr,i(n) the number of partitions of n
which belong to Cr,i. Then we have

Cr,i(n) = Tr,i(n) = Er,i(n).

The proof uses on the one hand another classification theorem of the partitions
in Cr,i in terms of a new type of Durfee dissection (inspired by [11], this is a
classification in terms of Ferrers diagrams): the proof of this interpretation uses
simple commutative algebra (another purely combinatorial proof of the same result
is also given); On the other hand it uses Bailey lattices [15, 55], a very powerful
tool for calculus with q − series.

Another singularity and its associated family of partition identity. To
have a taste of what kind of partition identities can come out of singularities in
higher dimensions we give below a family of partition identities which is associated
with the singularity at the origin of

Y = Spec
C[x, y]

(xy)
.
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Let us first introduce partitions with 2 colors. Consider that we have two copies of
each positive integer m, one is blue and the other is red; we denote these copies by
mb and mr. We define an order between the colored integers by mb > mr (hence
mb +mr and mr +mb are the same); if m > k, we set mc > kc′ for c, c′ ∈ {b, r}.

An integer partition of a positive integer number n is a decreasing sequence (with
respect to the order that we have just defined) of positive integers of one color or
an other

λ = (λ1,c1 ≥ λ2,c2 ≥ . . . ≥ λl,cl),
where ci ∈ {b, r} and such that λ1,c1 + λ2,c2 + · · ·+ λl,cl = n. For example, the two
colors integer partitions of 2 are:

2b
2r

1b + 1b
1r + 1r
1b + 1r.

Our singularity Y, sometimes called the node singularity, is somehow related (but
still very different in nature) to the singularity X = SpecC[x]/(x2), which led to
the Rogers-Ramanujan identities: one can ”put them” in a family

F : Spec
C[x, y, t]

(x(x− ty))
−→ SpecC[t].

The fibers over t 6= 0 are isomorphic to Y and the fiber above t = 0 is X×A1. This
can perhaps explain the small similarity of theorem 4.1 with the following theorem
from [6]:

Theorem 4.6. Let j be a positive integer number. The number of partitions of n
with 2 colors (say blue and red) of j, . . . , 2j − 1 and only the red color of any other
positive integer larger than 2j is equal to the number of partitions n whose parts
are larger than j and of two colors and such that the number of blue parts is strictly
less than its smallest red part (if this latter exists) minus (j − 1).

5. Omissions

Many other research directions are directly related to the subjects of this article.
I can mention the relation between Neighborly partitions, monomial ideals, graphs
and hypergraphs [42, 7]; this subject which is a direct continuation of the story told
in this article has led recently in [50] to a new proof of Rogers-Ramanujan identities.
I can mention the relation with vertex operators and Virasoro Algebras [14, 28, 39].
And the reader possibly sees interactions with other research directions.
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44. Mourtada, H. Jet schemes and their applications in singularities, toric resolutions and integer

partitions. In Handbook of Geometry and Topology of Singularities IV. Springer, Cham, 2023.
45. Mourtada, H., Jet schemes of complex plane branches and equisingularity. Ann. Inst. Fourier

(Grenoble). 61, 2313-2336 (2011), https://doi.org/10.5802/aif.2675

46. Mourtada, H., Veys, W. & Vos, L., The motivic Igusa zeta function of a
space monomial curve with a plane semigroup. Adv. Geom.. 21, 417-442 (2021),

https://doi.org/10.1515/advgeom-2021-0009

47. Mustata, M., Singularities of pairs via jet schemes. J. Amer. Math. Soc.. 15, 599-615 (2002),
https://doi.org/10.1090/S0894-0347-02-00391-0

48. Mustata, M., Jet schemes of locally complete intersection canonical singularities. Invent.

Math.. 145, 397-424 (2001), https://doi.org/10.1007/s002220100152, With an appendix by
David Eisenbud and Edward Frenkel

49. Nash, J. Arc structure of singularities. Duke Math. J.. 81 pp. 31-38 (1995),
https://doi.org/10.1215/S0012-7094-95-08103-4, A celebration of John F. Nash, Jr.

50. O’Hara, K., and Stanton, D. Notes for neighborly partitions. arXiv 2307.06786 (2023).

51. Peeva, I. Graded syzygies. Algebra and Applications (Springer-Verlag, London) 14 (2011).
52. Ritt, J., Differential Algebra. (American Mathematical Society, New York,1950)

53. Schur, I, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrchen. In:

Gesammelte Abhandlungen. Band II. Springer-Verlag, Berlin-New York, (1973)
54. Stanley, R., Hilbert functions of graded algebras. Advances In Math.. 28, 57-83 (1978),

https://doi.org/10.1016/0001-8708(78)90045-2
55. Warnaar, S. O., 50 Years of Baileys lemma, in Algebraic Combinatorics and Applications,

pp. 333–347, A. Betten et al. eds. (Springer, Berlin, 2001).

56. Watson, G. N. Theorems Stated by Ramanujan (IX) : Two Continued Fractions. J. London

Math. Soc. 4, 3 (1929), 231–237.
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UNIFORMITY WHEN ARITHMETIC MEETS GEOMETRY

HOLLY KRIEGER

Abstract. In 1983, Faltings proved Mordell’s famous 1922 conjecture relat-

ing arithmetic to geometry: that for a polynomial equation f(x, y) = 0, if
the topology of the set of solutions over the complex numbers is sufficiently

complicated, then the set of solutions with rational numbers is finite.

Once we know a set is finite, natural questions arise: can we compute this
finite set? How large can it be? What input data does its size depend on?

Recent works of Dimitrov-Gao-Habegger and Kühne have provided a strong
and striking answer to this last question. More generally, they proved what

is known as the uniform Mordell-Lang conjecture for curves embedded into

their Jacobians, answering a question posed by Mazur in 1986. Here the word
‘uniform’ roughly means that the size bound depends only on the genus of the

curve (a measure of the topological complexity of the solutions over C) as well
as a notion of algebraic complexity for the field in which we search for points
satisfying the polynomial equation.

In this article, we will build up the tools to understand the uniform Mordell-

Lang conjecture and survey the methods of Dimitrov-Gao-Habegger and Kühne
that led to its resolution.

1. Introduction

From the fundamental starting point of the integers Z and their operations of
addition and multiplication, we can build the rational numbers Q and polynomial
functions f(x1, . . . , xn) with integer or rational coefficients. Diophantine problems
are those that ask: what can we say about the integer or rational solutions to an
equation of the form f(x1, . . . , xn) = 0, or a system of such equations?

These questions are foundational, broad, and deep. From the non-existence of
rational solutions to the equation x2 − 2 = 0 we discover the irrational numbers.
From integral solutions to equations of the form x2 − ny2 = 1 we encounter the
continued fraction expansion of

√
n and the more general theory of approximation

of real numbers by rational numbers. Geometrically, the infinitude of rational
solutions to the equation x2 + y2 = 1 yields the infinite collection of Pythagorean
triples, and studying rational solutions of the equation y2 = x3 − n2x tells us
whether a positive rational number n is the area of a right triangle with rational
side lengths (this is known as the congruent number problem).

We will focus on the study of the set of rational solutions to equations of the
form f(x, y) = 0, where f is a polynomial with integral (or rational, or algebraic)
coefficients. The algebraic curve which is the set of complex solutions to f(x, y) = 0
(more precisely, a compact smooth model of the curve) is topologically a sphere
(genus 0) or a sphere with g handles, in which case we say the curve has genus g.

2020 Mathematics Subject Classification. 14H40,11G50,11G10.
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We are interested in rational points on curves here not only as a first case (dimension
1 being the simplest possible) but also because there is a fantastic and profitable
trio of perspectives when investigating rational points on curves of genus g ≥ 1:
the arithmetic structure of the rational points, the analytic structure carried by the
curve as a Riemann surface, and the algebraic structure obtained by embedding the
curve in its Jacobian, which is both a group and an algebraic variety. The interplay
between these three structures provides us with extraordinarily powerful tools to
study the arithmetic and geometry of algebraic curves.

In this vein, Mordell conjectured [34], and Faltings proved [12], that a curve of
genus g ≥ 2 has only finitely many rational points; that is, the complex topol-
ogy of the curve controls the arithmetic. The topology also controls the algebra:
Raynaud’s proof [36] of the Manin-Mumford conjecture established that a curve
contains finitely many torsion points (for the group structure when embedded in
its Jacobian) if the genus of the curve is greater than 1. These theorems are unified
by a broader Mordell-Lang conjecture, which was settled by the work of Hindry
[22] and Faltings [13].

Even before the finiteness of rational or torsion points on curves of genus g ≥ 2 was
established by Faltings and Raynaud, Mazur asked [31]

is it reasonable to hope that the cardinality [...of the set of rational
or torsion points...] admits an upper bound that depends only on
the genus...?

An affirmative answer to this question became known as the uniform Mordell-Lang
conjecture, which was recently resolved by the work of Dimitrov-Gao-Habegger [11]
and Kühne [26]. The innovation leading to their solution relies on a characterization
from each perspective - analytic, arithmetic, and geometric - of when a subvariety
of a family of abelian varieties is non-degenerate, a property which allows one to
control the number of rational points, torsion points, and other ‘special’ points on
the subvariety. The theory of these non-degenerate subvarieties and its application
to questions of points on curves in their Jacobians was built over a decade’s work
by all four authors [21] [19] [16] [15] [26] [10] [11].

Their breakthrough remarkably draws on tools from several very different ap-
proaches used for studying rational or torsion points on a curve: the theory of
heights and divisors which allowed Vojta [41] to reprove Faltings theorem, the
equidistribution theory used by Szpiro-Ullmo-Zhang [40] [43] to provide an alter-
native proof of the Manin-Mumford conjecture, and the application of abelian log-
arithms to study unlikely intersections in families initiated by Masser-Zannier [29].
Since their work, some of their tools used have been extended substantially; for
example, work of Yuan-Zhang [42], DeMarco-Mavraki [9], and Gauthier-Vigny [20]
pursue dynamical generalizations of the uniform Mordell-Lang conjecture by devel-
oping the theory of non-degenerate subvarieties in that setting, and Gao-Ge-Kühne
[18] have extended the work of Dimitrov-Gao-Habegger and Kühne to prove a uni-
form Mordell-Lang type result for points on general subvarieties of abelian varieties.

In this article we will explain the uniform Mordell-Lang conjecture, survey a small
sample of the preliminary work, and explain the basic approach of Dimitrov-Gao-
Habegger and Kühne which resolved the conjecture. This paper is meant as a
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starting point for a reader unfamiliar with the theory; for further reading (or the
more advanced reader) I strongly recommend the wonderful survey of Gao [17], to
which much of the technical narrative of this survey is indebted.

Acknowledgements. Thanks to Laura DeMarco, Philipp Habegger, Ziyang Gao,
Mattias Jonsson, Michael Stoll, and Jack Thorne for helpful conversations and
correspondence related to the preparation of this article.

2. Rational points on curves: arithmetic and geometry

More than a century ago, Mordell [34] noted the depth and difficulty of the study
of Diophantine problems.

Mathematicians have been familiar with very few questions for so
long a period with so little accomplished in the way of general
results, as that of finding the rational solutions...

In this section we will study how the set of rational solutions to a polynomial
equation of the form f(x, y) = 0, where f is a polynomial with rational coefficients,
relates to the geometry of its complex solution set.

The polynomial f can be described by the information of its coefficients and the
bidegrees of its monomial terms, and so we expect the set of rational solutions to
depend in some way on this input information. However, this dependence can be
subtle. For example, the equation x2+y2 = 1 has infinitely many rational solutions,
arising from integer solutions to the Pythagorean equation a2 + b2 = c2. However,
the similar equation x2 + y2 = −1 has no rational (or even real) solutions, and as
Fermat proved (as found in his notes after his death), the equation x4+ y4 = 1 can
have no rational solutions when xy ̸= 0.

While the degree of a polynomial is a natural quantity to work with, it is not quite
the correct notion to be useful for studying solution sets. To see this, note that
the set of solutions to x2 + y2 = 1 can be identified with the set of solutions to
x2024 + y2 = x2022 via the map (x, y) 7→ (x, x1011y); since this map is invertible
away from the points (0,±1), the two solutions sets are bijectively identified, up to
a finite number of points. The correct geometric perspective is that of the genus of
the set of complex zeros of the polynomial.

2.1. Curves and genus. If the partial derivatives of f do not simultaneously
vanish at any points (x, y) satisfying f(x, y) = 0 (that is, the curve is smooth) and
the set of complex solutions is connected, then the set of complex solutions has the
structure of a 1-dimensional complex manifold; that is, a Riemann surface. In this
exposition, a curve will refer to any compact Riemann surface; by a fundamental
equivalence, these can be identified with smooth, irreducible, projective algebraic
varieties of dimension 1.

The complex solutions to f(x, y) = 0 provide an example of a one-dimensional com-
plex algebraic variety, though not one that is projective, or is necessarily smooth or
irreducible. However, any irreducible variety of dimension 1 is birationally equiv-
alent to a unique smooth projective curve, where a birational equivalence of va-
rieties of dimension 1 is a map locally defined by rational functions which iden-
tifies the solution sets away from finitely many points, such as the example of
(x, y) 7→ (x, x1011y) given above.
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The topological classification of compact Riemann surfaces tells us that any curve is
homeomorphic to either the sphere or a g-holed torus for some g ≥ 1. We define the
genus of the curve to be 0 if the curve is a topological sphere, and g otherwise. As we
will see, the genus provides a fundamental invariant for classifying the possibilities
for rational points on a curve.

2.2. Curves of small genus. In the case of the genus 0 curve associated to x2 +
y2 = 1, there is a simple geometric construction to understand why the set of
rational solutions is infinite. Consider any line in the plane which contains the
point (1, 0); that is, a line of the form x + λy = 1 for a real (or complex) slope λ.
The intersection of the real circle x2+y2 = 1 with this line is the set of points (x, y)
so that (1− λy)2 + y2 = 1; solving for y and finding x with the line’s equation, we

obtain the points (1, 0) and ( 1−λ2

1+λ2 ,
2λ

1+λ2 ). Thus the infinitude of rational points on
the circle comes down to the infinitude of the set of rational slopes that we may
choose for λ.

We can view this construction as an explicit presentation of the curve as a genus

0 curve; indeed, the map λ 7→ ( 1−λ2

1+λ2 ,
2λ

1+λ2 ) provides a birational equivalence from

C to the solution set of x2 + y2 = 1. For a general genus 0 curve, we may have
infinitely many rational points as above, but we may have finitely many or none at
all, as in the example x2 + y2 = −1, or the example x2 + y2 = 3, where we can see
there are no rational solutions by working modulo 4 . If the defining polynomial
f has rational coefficients, these ‘local’ obstructions to rational points are the only
issue that arises in genus 0, and the dichotomy holds generally: either f(x, y) = 0
has infinitely many rational solutions, or none.

An even more interesting geometric construction to produce rational points arises
in the setting of elliptic curves; that is, curves of genus 1. Any curve of genus
1 is birationally equivalent to one of the form y2 = x3 + ax + b, where a, b are
complex numbers satisfying 4a3 + 27b2 ̸= 0 (this choice ensures that the curve is
smooth). We can mimic the above construction as follows: if there is any one
rational point P on a curve of this form (with coefficients in Q), we consider the
tangent line to the curve at P . Since the defining equation of the curve has degree
3 in x, we can see that this tangent line will intersect the curve at exactly one
more point, whose coordinates will be rational functions of the coordinates of P
and the coefficients a, b. In this way, we obtain an algebraic self-map of the elliptic
curve which sends rational points to rational points, so we can use one rational
point to produce another. Iterating this map, we can potentially obtain a large set
of rational points on the elliptic curve; so really, this is a dynamical approach to
propagating rational points. The set of rational points produced by this procedure
is actually only potentially infinite, though, because we are not guaranteed at each
step to produce new rational points. Indeed, the third point may turn out to be
P itself, or more generally we may iterate this procedure only to end up in a finite
cycle of points.

If we have two or more rational points on the curve, we can generalize this con-
struction: given two rational points P and Q on the elliptic curve, the line through
P and Q will intersect the curve at exactly one more point R, which will be ra-
tional if P and Q (and the defining coefficients a and b) are. The remarkable fact
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about elliptic curves is that this geometric construction is also algebraic! Explic-
itly, we can use it to define an abelian group law on the set of complex solutions to
y2 = x3 + ax+ b by defining P +Q to be the reflection of R about the x-axis, with
R as described above. Notice that our procedure above with the tangent line was
sending a point P of the curve to the point −(P + P ).

Since the sum of two rational points under this group law is again a rational point,
the set of rational points on an elliptic curve defined by rational coefficients form
a group. In the 1922 paper [34] quoted above, Mordell proved that this group is
finitely generated. Several features of this result are ripe for generalization; there
are higher dimensional analogues of elliptic curves known abelian varieties, and we
may wish to consider fields other than Q; for example, number fields, which are
finite extensions of Q. Indeed Mordell’s result was extended to abelian varieties over
number fields by Weil’s doctoral thesis a few years later, and this generalization
is now known as the Mordell-Weil theorem. Among other novel tools, Weil’s work
included the initial ideas for the height functions, which are fundamental to the
modern study of arithmetic geometry (see subsection 5.1).

2.3. Curves of higher genus. Mordell concluded his 1922 paper with

I might note that the preceding work suggests to me the truth of
the following statements concerning indeterminate equations, none
of which, however, I can prove [...] The equation

ax6 + bx5y + · · ·+ fxy5 + gy6 = z2

can be satisfied by only a finite number of rational values of x and
y with the obvious extension to equations of higher degree [...] The
same theorem holds for any homogeneous equation of genus greater
than unity, say, f(x, y, z) = 0.

Mordell’s implicit evidence for this conjecture, beyond the computational, primarily
seemed to be the failure of any geometric or algebraic structure which might allow
one to “boost” one rational point to infinitely many, such as the type described in
the previous section for curves of genus 0 and 1. Let’s consider the procedure we
used in the genus 1 case to (potentially) obtain many rational points from a single
point, and understand why it must fail in higher genus. On a concrete level, if we
wish to obtain a unique further point from intersecting a line through a rational
point P with a higher genus curve, we need the tangency of the tangent line at P
to be of higher order; that is, P must be a flex point of the curve. But a plane
curve which is not a line has only finitely many flex points, so we cannot hope to
make this geometric procedure work in higher genus.

Independently of the particulars of the tangent line construction, though, any dy-
namical approach to propagating rational points must fail in higher genus. For we
cannot hope to produce an infinite set of rational points by any algebraic self-map
of the curve as we did in the elliptic curve case, since the theorem of Hurwitz [24]
bounds the order of the group of holomorphic self-maps of a genus g > 1 compact
Riemann surface by 84(g − 1) - a result which provides additional motivation in
itself, perhaps, for Mordell’s conjecture.

It turns out that this is not just a failure of innovation of methods to produce
rational points on higher genus curves: Mordell’s claim was proved by Faltings [12]



6 HOLLY KRIEGER

and is now known as the Mordell conjecture or Faltings’ theorem: a curve of genus
g ≥ 2 has at most finitely many rational points.

In light of Faltings’ theorem, what can we say about the finite set of rational points
on a higher genus curve? Here are a few well-studied examples.

Example 2.1. Fermat’s Last Theorem asserts that the equation

xn + yn = zn

has no solutions in positive integers x, y, z for any integer value n ≥ 2. Rearranging
a bit with negative signs we see that this is equivalent to the statement that rational
solutions of xn + yn = 1 are a subset of {(±1, 0), (0,±1)}. For n ≥ 4, the curve
defined by xn+yn = zn has genus at least 2, and so Faltings’ theorem tells us there
are only finitely many rational points on this curve. Note the finiteness is a weaker
statement that explicit computation of the solutions, now known by the proof of
the (much!) stronger statement of Fermat’s Last Theorem.

Example 2.2. It is easy to see that the set of rational points on a curve can be
arbitrarily large; for example, if r1, . . . , rm are distinct rational numbers, then the
set of zeroes of

f(x, y) = ym −
m∏
i=1

(x− ri)

contains the m rational points of the form (ri, 0), 1 ≤ i ≤ m. However, notice
that the genus in this curve is quadratic in m. Better constructions are known,
primarily by improving interpolation by using curves with many symmetries; as
Elkies pointed out, the construction of Mestre [32] yields for each g ≥ 2 a curve
over Q of genus g with at least 8g + 12 rational points.

Example 2.3. Rational points of curves of genus 2 have been particularly well-
studied, and while Mestre’s work gives examples of genus 2 curves with at least 28
rational points, much larger sets are known. The current record is was found by
Stoll, searching a family constructed by Elkies: the genus 2 curve

y2 = 82342800x6−470135160x5 + 52485681x4+

+ 2396040466x3 + 567207969x2 − 985905640x+ 247747600

has at least 642 rational points! See the list of these points at https://www.

mathe2.uni-bayreuth.de/stoll/recordcurve.html.

2.4. Working over number fields. For expository purposes, we have largely con-
strained ourselves so far to considering points with coordinates in Q on polynomials
defined over Q. While reading this article, you can if you wish always restrict your
attention to that setting. However, when one is in search of roots of polynomial
equations, extending the field can always be done to provide more solutions, and
so it is an important theoretical point to note that any finite extension of Q will
not change the fundamental underlying finiteness provided by Faltings’ theorem.
Indeed, the arithmetic machinery brought to these questions all work in the broader
context of number fields; that is, fields which are extensions of Q of finite degree.

https://www.mathe2.uni-bayreuth.de/stoll/recordcurve.html
https://www.mathe2.uni-bayreuth.de/stoll/recordcurve.html
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The elements of these fields are all algebraic numbers; that is, they are roots of poly-
nomials with integer coefficients. We write Q for the minimal (infinite) extension
of Q which contains all algebraic numbers.

We might, for example, be interested to know which points with coordinates in
the Gaussian rationals Q(i) lie on the Fermat curve xn + yn = 1; or perhaps we
wish to adjoin an nth root of unity ζn to Q, in which case the Fermat curve gains
points of the form (ζkn, 0) and (0, ζkn). Even more generally, we might also wish
to choose coefficients for the polynomial f which lie in a number field, to enable
studying rational points on curves like xn+

√
2yn = 1. In this setting, we often use

the term ‘rational points’ or ‘K-rational points’ to denote the set of points with
coordinates in the minimal field extension K of Q which contains all coefficients
defining the polynomial f(x, y). As noted above, although extending Q can provide
some new points on a higher genus curve, a key feature of the connection between
arithmetic and geometry is that the finiteness of rational points in higher genus is
valid independent of the choice of this number field K; that is, Faltings’ theorem
holds in this generality.

Theorem 2.4. [Faltings] Let K be a number field, and C a curve of genus g ≥ 2
defined over K. Then C contains finitely many K-rational points.

This theorem was reproved using different techniques by Vojta in 1991 [41], simpli-
fied by Bombieri [1] and Faltings [13], and recently by a new approach of Lawrence
and Venkatesh [28].

3. Torsion points on curves: algebra and geometry

We discussed in the last section why the geometric and dynamical approaches to
propagating rational points fails in higher genus, but remember that in the case
of genus 1, we also had algebraic structure; that is, the rational points (as well
as the complex points) on an elliptic curve form an abelian group. This algebraic
structure is an extremely powerful tool for the study of rational points on elliptic
curves, and its analogue in higher genus - the Jacobian of a curve - will provide us
with the same tools in that setting. In this section, all curves will have genus g ≥ 2
unless stated otherwise.

3.1. Construction of the Jacobian. While the complex points of a higher genus
curve do not admit a (useful) group structure, we can embed the curve into an
algebraic variety whose points form an abelian group; that is, an abelian variety.
The downside of this is that application of the group law no longer necessarily maps
two points on the curve to a sum which still lies on the curve, so we cannot use
the group law to produce more rational points on the curve itself. Nonetheless,
we can study the rational points in the larger variety - which itself exhibits this
beautiful interaction between algebra, arithmetic, and geometry - to deduce useful
information about the rational points on the curve.

This tool is technical but so important that we will describe it from several per-
spectives.

First, we will construct this embedding formally for any higher genus curve C. A
divisor on C is a formal Z-linear combinations of points on the curve; that is, sums
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of the form
∑m

i=1 niPi with ni ∈ Z and Pi a complex point of the curve C for
each i. Divisors on C with the addition operation form an abelian group which
we’ll denote by Div(C). The degree of a divisor is the integer

∑m
i=1 ni, and the

set Div0(C) of divisors of degree 0 forms a subgroup of Div(C). An easy way to
construct divisors of degree 0 is to consider the ‘zeros and poles’ divisor associated
to an analytic function: if f is a nonconstant analytic map from C to the Riemann
sphere, then the divisor obtained from f is

div(f) :=
∑
x∈C

ordx(f)x,

where ordx(f) is the order of vanishing of f at x if f(x) = 0, minus the order of the
pole if f(x) = ∞, and zero otherwise. Since the degree of an analytic map between
compact Riemann surfaces is well-defined, the degree of any zeros and poles divisor
is 0.

We say that two divisors are linearly equivalent if their difference is of the form
div(f) for some nonconstant analytic map f from C to the Riemann sphere. As a
basic example, if f(x, y) = 0 describes a smooth plane curve C of degree d, then
the divisor formed from intersecting C with a line - that is, the divisor which is the
sum of the points in the intersection, counted with their multiplicities - is linearly
equivalent to any other divisor from the sum of d collinear points of C.

Definition 3.1. The Jacobian of the curve C, denoted Jac(C), is the group of
degree 0 divisors modulo linear equivalence.

To embed C into its Jacobian, we need only choose a basepoint x0 ∈ C to construct
the Abel-Jacobi map based at x0:

Φx0(x) := [x]− [x0] ∈ Jac(C),

sending a point to the linear equivalence class of the divisor x− x0. By definition,
Jac(C) is generated as a group by the image of C under any Abel-Jacobi map; in
fact, Jac(C) is generated by elements of the form [x] − [y], where x, y ∈ C. An
Abel-Jacobi map is injective precisely when the genus of C is at least 1. In this way
we see that any curve of genus g ≥ 1 can be viewed as a subvariety of an abelian
variety.

We can take an analytic perspective to define the Jacobian, if we prefer, and the
flexibility of the two perspectives is key to the work of Dimitrov-Gao-Habegger and
Kühne. Again starting with a curve C of genus g ≥ 2, as C is a Riemann surface of
genus g, C admits exactly g linearly independent holomorphic differential 1-forms,
so we can fix a basis ω1, . . . , ωg of holomorphic differentials.

Since the first homology of C is of dimension 2g, we may choose representatives
c1, . . . , c2g generating the 1-dimensional homology of C, and define for each ci the
period ω(ci) to be

ω(ci) :=

(∫
ci

ω1,

∫
ci

ω2, . . . ,

∫
ci

ωg

)
,

and define the period lattice Ω in Cg to be the subgroup generated by the periods
ω(ci) for 1 ≤ i ≤ 2g. One can show that the period lattice is discrete in Cg and
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a free abelian group on 2g generators, so the quotient Cg/Ω is a complex torus of
dimension g.

Recall that Jac(C) is generated by classes of the form [x] − [y] where x, y ∈ C.
Given any x, y ∈ C, let γ be a path from y to x, and define the vector

ω(γ) :=

(∫
γ

ω1,

∫
γ

ω2, . . . ,

∫
γ

ωg

)
,

which lies in Cg, and whose value modulo the period lattice Ω is independent of
the choice of path γ from y to x. We can then define a map Jac(C) → Cg/Ω
on the generating set of classes of the form [x] − [y] by sending the class of the
divisor [x]− [y] to ω(γ). A fundamental theorem is that this map provides a group
isomorphism, and so we identify the Jacobian of C with the complex torus Cg/Ω
via this map, giving the analytic characterization of the Jacobian.

Note that this analytic process of constructing a period lattice varies holomorphi-
cally with C; that is, if we have a family of genus g curves which vary holomorphi-
cally, then for any given curve C0 in the family and any choice ω(c1), . . . , ω(c2g)
of basis for the period lattice of the Jacobian for C0, we may vary this basis holo-
morphically to provide a basis for curves which are holomorphic perturbations of
C0. This is the basis of the construction of the Betti map crucial to the work of
Dimitrov-Gao-Habegger and Kühne, as described in subsection 6.4.

3.2. Torsion points on curves. We have been focused so far on the interaction
between arithmetic (that is, rational points) and the geometry of curves, but now
that we have a construction to embed a curve into an abelian variety, we can ask the
natural question: how does the geometry of the curve impact the algebraic structure
of the points on the curve embedded into this abelian variety? In particular, if C is
embedded into its Jacobian Jac(C), how many torsion points of the group Jac(C)
can the embedded curve contain?

This question was raised independently by Manin and Mumford and answered
by Raynaud [36], now referred to as Raynaud’s theorem or the Manin-Mumford
conjecture.

Theorem 3.2. [Raynaud] Let C be a curve of genus g ≥ 2, and fix an embedding
C ↪→ Jac(C). Then the set of torsion points of Jac(C) in C is finite.

Remark 3.3. Notice that we have not restricted ourselves to points in some fixed
number field here; indeed, for any number field K the set of K-rational torsion
points of Jac(C) is a finite set, so the question is not interesting unless we allow
the field to vary. This is an easy consequence of basic height theory.

3.3. The Mordell-Lang conjecture and unlikely intersections. The question
of torsion points on a curve in its Jacobian might seem very far from the question of
rational points on a curve, but as Lang realized [27] well before either was proved,
the Mordell conjecture and the Manin-Mumford conjecture can be unified into a
single statement, now known as the Mordell-Lang conjecture. Given an abelian
group A (with additive notation), the rank of A is the cardinality of a maximal
linearly independent subset. For example, any finitely generated abelian group is
isomorphic to Zr ⊗ T for a torsion subgroup T , and so a finitely generated group
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has finite rank r. However, an abelian group can have finite rank without being
finitely generated, as is the case for the rational numbers Q under addition.

Lang made several conjectures of varying strength which generalized the Mordell
conjecture; the form we state below was proved by the work of Faltings [13] and
Hindry [22], generalizing Vojta’s proof of Mordell.

Theorem 3.4. Let C be a complex curve of genus g ≥ 2, embedded into its Jacobian
Jac(C). Then for any finite rank subgroup Γ of Jac(C), C ∩ Γ is finite.

Let’s understand why this is a unification of the Mordell and Manin-Mumford
conjectures.

Proposition 3.5. Theorem 3.4 implies Theorem 2.4 and Theorem 3.2.

Proof. Let us first consider 2.4. Suppose C is a curve of genus g ≥ 2 defined over
a number field K. As noted in subsection 2.2, Mordell and Weil proved that the
set of K-rational points of Jac(C) form a finitely generated group; in particular, a
finite rank subgroup of Jac(C). By Theorem 3.4, we conclude that the embedded
curve C contains only finitely many points of the finite rank subgroup of K-rational
points in the Jacobian.

Now we turn to Theorem 3.2. By definition, the rank of the set of torsion points
of any abelian group is 0, and so applying Theorem 3.4 we deduce that any curve
of genus g ≥ 2 embedded into its Jacobian contains only finitely many torsion
points. □

4. Uniformity

Theorem 3.4 gives us a powerful finiteness result - on rational points, torsion points
of the curve inside its Jacobian, and more - from the very basic information of the
genus of a curve. Now that we know this set of rational points on a curve of genus
at least two is finite, we want to know: what is this finite set?

Unfortunately, writing down a complete list of the rational points on a higher
genus curve is a very difficult problem even for specific cases; even the most well-
studied case of xn + yn = 1 took more than a decade after Faltings’ theorem and
a substantially different toolkit of techniques. In fact, the negative resolution of
Hilbert’s tenth problem provides some evidence that there can be no algorithm to
decide existence or non-existence of any rational solution to a system of polynomial
equations. While there is a wealth of interesting work in the direction of effective
computation of rational points on a curve, we will address here a weaker question:
given a curve of genus g ≥ 2 over the rational numbers, how large can the set of
rational points be?

4.1. Uniform Mordell-Lang. We can fit this question into the Mordell-Lang
framework:

Question 4.1. Given a curve of genus g ≥ 2 embedded into its Jacobian and a
finite rank subgroup Γ of Jac(C), how large can C ∩ Γ be?
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We have already explored this question somewhat with Example 2.2, where we
demonstrated that if we allow the genus of a curve to be large, then the curve can
have a large number of rational points. It follows that any upper bound on the size
of the set of rational points must have some dependence on the genus of the curve.
Additionally, any upper bound must depend on the rank of the subgroup Γ; after
all, we could simply expand Γ by adding elements of C, increasing both the rank
of Γ and the number of points in the intersection C ∩ Γ.

In 1986, Mazur asked if perhaps these were the only inputs needed to provide an
upper bound on the size of C ∩ Γ:

Question 4.2. [uniform Mordell-Lang] Does there exist a bound B = B(g, r) so
that for every curve C of genus g embedded into its Jacobian, and every subgroup
Γ of Jac(C) of rank r, we have

|C ∩ Γ| ≤ B(g, r)?

The question is stated with deliberate ambiguity about the field over which we
are working. Although Theorem 3.4 was stated over the complex numbers, one
of the advantages of the uniformity question is that by a specialization argument
of Masser [30], an affirmative answer for Question 4.2 over Q suffices to deduce a
positive answer to Question 4.2 for any field of characteristic 0.

4.2. Previous work. In the last few decades there have been a variety of tools
used to chip away at Mazur’s question, particularly in the situation when Γ is the
set of rational points of the Jacobian (the setting of Faltings theorem) or when
Γ = {0} (the setting of Raynaud’s theorem). We will mention only a few of these,
though the literature is substantial.

Perhaps the most well-explored is the approach of Chabauty and Coleman; in 1941,
Chabauty [3] proved a partial result towards the Mordell conjecture, proving finite-
ness of rational points for curves of genus g ≥ 2 over Q for which the rational
points of the Jacobian formed a group of rank at most g − 1 by a study of the
p-adic Lie theory of the Jacobian. Coleman [4] made Chabauty’s method explicit,
but the bounds obtained depend on the geometry of curve when considered over
finite fields Fp for a well-chosen prime p which depends on the curve, so are not
uniform. In a more recent innovation, Stoll [39] and Katz-Rabinoff-Zureick-Brown
[25] combined these methods with non-archimedean tools to prove very strong uni-
form results; in particular, they were able to remove the choice of a ‘good’ prime
for the curve. These bounds were still subject to a condition on the rank of the
group of rational points of the Jacobian; however, the method is appealing because
it produces explicit and reasonably strong bounds. Katz-Rabinoff-Zureick-Brown
also used these methods to make progress on the uniform Manin-Mumford ques-
tion, obtaining an upper bound on torsion points on a curve defined over a number
field K in its Jacobian: this bound depends on the genus and the extension degree
[K : Q], so are not fully uniform.

Other progress has generally been limited to particular families of curves; based
on the method of Vojta (see section 5), David-Philippon [6] and David-Nakamaye-
Philippon [5] proved for some families of curves bounds of the form

|X(K)| ≤ c(g, [K : Q])1+ρ,
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where K is a number field, X(K) denotes the K-rational points on the curve, ρ
is the rank of the K-rational points of the Jacobian of X, and c is a constant
depending on the data of the genus g of X and the field extension degree of K
over the rationals. In the direction of uniform Manin-Mumford, DeMarco-Krieger-
Ye [7] provided a fully uniform bound for a family of genus two curves, using the
quantitative equidistribution theory of Favre-Rivera-Letelier [14].

4.3. The result of Dimitrov-Gao-Habegger and Kühne. In a striking series
of innovations, the works of Dimitrov-Gao-Habegger [11] and of Kühne [26], in
turn based on Habegger [21], Gao-Habegger [19], and Gao [15] [16], provide an
affirmative answer to Mazur’s uniform Mordell-Lang question:

Theorem 4.3. [Dimitrov-Gao-Habegger and Kühne] Let g ≥ 2 be an integer, and
F a field of characteristic 0. Then there exists a constant c(g) with the following
property. Let C be a smooth curve of genus g defined over F , and let P0 be an
F -rational point of C, with associated Abel-Jacobi embedding j : C ↪→ Jac(C). Let
Γ be a subgroup of Jac(C)(F ) of finite rank ρ. Then

|j(C)(F ) ∩ Γ| ≤ c(g)1+ρ.

By taking F to be a number field and Γ = Jac(C)(F ) we obtain a uniform bound
(depending on g and ρ) on the number of F -rational points of C, proving a unifor-
mity for the size of the finite sets asserted by Faltings’ theorem. Taking F = C and
Γ to be the torsion points of the Jacobian (a rank 0 subgroup, recall) we obtain a
uniform version of Raynaud’s theorem.

In structure, the work of Dimitrov-Gao-Habegger and Kühne is based on a proof
of the Mordell conjecture given by Vojta in 1991 [41] and the quantitative version
of that argument developed by Rémond [37]. The key essential issue in trying to
understand how a curve in an abelian variety (such as its Jacobian) interacts with
a subgroup Γ is how to arithmetically encode the information of the curve having
higher genus. After all, there can be plenty of (genus 1) curves in an abelian variety
with infinitely many rational points; for example, if E is an elliptic curve with an
infinite set of rational points, and A = E×E is the product of E with itself, then A
will contain many curves which have infinitely many rational points. In particular,
any curve of the form {(P, [n]P ) : P ∈ E} with a fixed positive integer n will
provide such a curve, as does a curve of the form P × E where P is any choice of
torsion point of E.

In the case of a single abelian variety, this arithmetic encoding is done via the
theory of heights associated to divisors. In Vojta’s approach, the genus of the curve
C is encoded in the properties of the so-called Vojta divisor on C × C and its
associated height function; in the next section, we will outline some of the ideas of
Vojta’s argument. The primary innovation of the work of Dimitrov-Gao-Habegger
and Kühne was the notion of non-degenerate subvarieties of an abelian scheme,
along with a geometric description of these subvarieties, control over the arithmetic
proximity of points on a non-degenerate subvariety, and an equidistribution result
for points of small height on non-degenerate subvarieties.
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5. Vojta’s approach

To understand part of the outline of the Dimitrov-Gao-Habegger and Kühne argu-
ments, we will first describe the structure of Vojta’s approach to Faltings’ theorem,
as simplified and exposited by Bombieri.

5.1. Heights on projective space. The fundamental tool to freely move between
geometry and arithmetic is a height function. For details (and a much more carefully
presented discussion) see Part B of [23].

A point in projective space Pn(C) of n dimensions is described as a line through the
origin in Cn+1; that is, a set of coordinates [x0, x1, . . . , xn] defined up to multipli-
cation by a non-zero complex constant. A Q-rational point in projective space can
then - after cancelling denominators - be represented by a point x = [x0, x1, . . . , xn]
for which x0, x1, . . . , xn are integers with no common divisor. We define the naive
logarithmic height of the point x to be

h(x) := logmax{|x0|, . . . , |xn|}.
This value h(x) has the following arithmetic interpretation. WhileQ comes equipped
with the absolute value inherited from its embedding into the complex numbers, it
also admits p-adic absolute values, given for any prime p by

|q|p = p−ordp(q),

where ordp(q) counts the number of factors of p that divide q (with negative sign if
the factors appear in the denominator). The key fact unifying these absolute values
on Q is known as the product formula, which states that for any non-zero q ∈ Q we
have ∏

v∈MQ

|q|v = 1,

whereMQ is the set consisting of the p-adic absolute values together with the ‘usual’
Euclidean absolute value. One can check that we may equivalently define

h(x) =
∑

v∈MQ

logmax{|x0|v, . . . , |xn|v};

this is known as a local decomposition for the height, and by the product formula
the sum will be independent of the choice of rational representative for the point
x. Thus we understand the naive logarithmic height as providing a measure of
arithmetic size, since it measures not only the usual absolute value but also the
contributions from prime divisors of coordinates. The local decomposition definition
of the height of a point can be extended to points in projective space over any
number field, using Ostrowski’s theorem to understand the embeddings of the field
into the complex numbers as well as the analogues of the p-adic absolute values.

We obtain in this way a function h : Pn(Q) → [0,∞), where Q denotes the algebraic
closure of Q, the minimal infinite extension containing every number field.

5.2. Heights from divisors. The height function provides us with a description
of arithmetic complexity for points in projective space and so for any algebraic
variety which can be embedded into projective space as well; if we have a variety
X and an embedding ϕ : X ↪→ Pn, then we may define hϕ(x) := h(ϕ(x)) for any

x ∈ X(Q). So how do we (potentially) find embeddings of a variety into projective
space? The basic idea is the following: if we have a set {f0, . . . , fk} of rational
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functions taking X → P1, then we can consider the map X → Pk which (away from
the poles and common zeros) is defined by

x 7→ [f0(x), f1(x), . . . , fk(x)].

This will by no means always give an embedding; we certainly need some basic
requirements like an independence property for the maps and their vanishing loci,
and for the set of rational functions on X to be large ‘enough’. But the theory
of divisors provides a natural setting where this idea can succeed to provide an
embedding of X into projective space if such a map exists, and therefore allow X
to inherit a height function from that embedding.

Recall from our construction in subsection 3.1 of the Jacobian of a curve the concept
of a divisor on a curve: a formal sum of points (i.e. dimension 0 subvarieties) of
the curve. For an arbitrary algebraic variety X of dimension d, we can mimic this
construction, instead defining a divisor to be a formal sum of subvarieties of X with
dimension d− 1. As in the case of curves, we can define the divisor associated to a
rational function on X, linear equivalence of divisors, and degree of a divisor. We
can then associate to any divisor a set of rational functions as follows: let D be a
divisor on X, and

L(D) = {f a rational function on X | D + div(f) has non-negative coefficients}.

This is a finite-dimensional vector space, and for any basis f0, . . . , fk of this space,
we obtain a map ϕL(D) : X → Pk. If this map is an embedding, the divisor is called
very ample. If a divisor has a multiple which is very ample, we say the divisor is
ample. We conclude that any ample divisor, if it exists, can be used (possibly after
taking a multiple) to provide an embedding of the variety into projective space.

Let’s illustrate this technique with an example. Let E = C/Λ be a an elliptic curve
with point P corresponding to the equivalence class of 0. The theory of Weierstrass
elliptic functions provides us with two linearly independent examples of rational
maps on E; namely, the Weierstrass ℘ function and its derivative ℘′; these have
poles of order two and three at the lattice points, respectively. One can show that
the constant map is a basis for L(P ), {1, ℘} is a basis for L(2P ), and {1, ℘, ℘′} is
a basis for L(3P ). The first two examples clearly do not give an embedding of E
into projective space, but the map E → P2 given by the basis {1, ℘, ℘′} for L(3P )
is in fact an embedding, realizing E as a plane curve in Weierstrass form (up to a
factor of 4). So 3P is very ample, and the embedding E ↪→ P2 provides a height
function on E, by composition with the height function on P2.

Finally we note that if a variety X ↪→ Pk is already embedded into projective space,
then the embedding corresponds to one coming from the divisor class associated to
a hyperplane, which is the equivalence class containing divisors given by subvarieties
of the form L ∩X where L is the set of solutions to ℓ(P ) = 0 for a general linear
form ℓ in the coordinates of Pk. We can see this in the preceding example, as 3P is
precisely the intersection of a Weierstrass elliptic curve with the tangent line at a
flex point, and as noted in subsection 3.1, there is a single divisor class on E which
contains the divisors formed from three collinear points, including the degenerate
case of the flex point.

This discussion leads us to the Weil height machine, a construction which associates
to any (smooth projective) variety V defined over a number field a map from divisors
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to height functions:

h : Div(V ) → {functions V (Q) → R},

where a very ample divisor D is associated to a height function hD from an embed-
ding arising from a choice of basis of L(D), and for the rest we use the fact that any
divisor on a smooth projective variety can be written as a difference of two very
ample divisors. There is clearly some ambiguity here, as we choose a basis for L(D)
and representations of D as a difference of very amples, and so to be precise we
generally only have a height function well-defined up to a bounded constant; that
is, if hD is a choice of height function associated to a divisor D and h : V (Q) → R
is a function for which |hD(x)− h(x)| is uniformly bounded, then h is considered a
height function for D as well.

In fact, this entire discussion goes through if we replace Q with an arbitrary number
field, and the machine is normalized in the sense that the height associated to the
hyperplane in projective space recovers the naive logarithmic height. We will not
delve more deeply into the description of the Weil height machine, but we must
note two important positivity features:

(1) if a divisor D = n1Y1 + · · ·nrYr has non-negative coefficients ni ≥ 0 (we
say D is effective), then there is a lower bound B so that hD(x) ≥ B for
all x ̸∈ Y1 ∪ · · · ∪ Yr, and

(2) if a divisor D on V is ample and C is any real constant, then for any number
field K, the set

{x ∈ V (K) | hD(x) ≤ C}
is finite.

In this way, the geometric features of a divisor are translated into positivity prop-
erties for the associated height function, a feature which we will see has substantial
arithmetic consequences.

5.3. Heights on Jacobians. The Jacobian of a curve C of genus g ≥ 2 comes
with a natural ample divisor: the theta divisor

Θ := {j(x1) + · · ·+ j(xg−1) : x1, . . . , xg−1 ∈ C},

where j is any choice of Abel-Jacobi embedding of the curve into its Jacobian. We
will also consider

Θ− := {−j(x1)− · · · − j(xg−1) : x1, . . . , xg−1 ∈ C},

since the divisor Θ + Θ− has a useful symmetry from the additive inverse. It
turns out that Θ+Θ− is also ample, and the corresponding height function hΘ+Θ−

takes non-negative values. We obtain by restriction of hΘ+Θ− to j(C) a notion of
arithmetic complexity for the rational and algebraic points on the curve C.

Remarkably, by a construction of Néron and Tate, one may modify hΘ+Θ− by a
bounded function to obtain a height function on Jac(C) which has encodes prop-
erties of the group structure on Jac(C). We define the canonical or Néron-Tate
height associated to Jac(C) to be

ĥΘ(P ) := lim
n→∞

hΘ+Θ−(nP )

n2
.
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This canonical height is also non-negative, and transforms well with the group law:

we have ĥΘ(nP ) = n2ĥΘ(P ) for all algebraic points P of the Jacobian. Together

with the second positivity property of the height machine, it follows that ĥΘ(P ) = 0
if and only if P is a torsion point of the Jacobian. It also satisfies the ‘parallelogram
law’

ĥΘ(P +Q) + ĥΘ(P −Q) = 2ĥΘ(P ) + 2ĥΘ(Q).

From the parallelogram law it follows that

⟨P,Q⟩ := 1

2

(
ĥΘ(P +Q)− ĥΘ(P )− ĥΘ(Q)

)
defines an inner product on the algebraic points of the Jacobian, and |P |2 = ĥΘ(P )
gives a norm

In this way we have used the geometry of the curve - encoded via the theta divisor
- to construct a height function, which in turn can be used to construct a norm on
the algebraic points of the Jacobian. This norm provides for us a notion |P −Q| of
the arithmetic distance between two algebraic points of the curve.

5.4. The inequalities of Mumford and Vojta. Let’s think for a moment about
how we might use this norm to control the number of rational points on a curve C
of genus g ≥ 2. In 1965 Mumford [35] realized that the genus of the curve controls
the geometry of the points with respect to the inner product associated to the
height defined by the theta divisor as described in 5.3. To see this, let ∆ denote the
diagonal in C × C, and h∆ an associated height function, which by the positivity
property for effective divisors we may assume is non-negative off the diagonal. We
associate C with its image in Jac(C) under the Abel-Jacobi embedding associated
to any rational point (if C has no rational points, we don’t have much to prove
for Mordell’s conjecture). Mumford computed an explicit formula to relate h∆ to
the inner product, a simplified version of which states that for any algebraic points
P ̸= Q of C, we have

h∆(P,Q) =
1

2g
|P |2 + 1

2g
|Q|2 − ⟨P,Q⟩+O(|P |+ |Q|+ 1)).

As Mumford realized, the key feature here is that when g > 1, the leading term

1

2g
|P |2 + 1

2g
|Q|2 − ⟨P,Q⟩

is an indefinite quadratic form, taking negative values when ⟨P,Q⟩ is close to |P ||Q|.
This can be played off the non-negativity of the height h∆(P,Q) to impose restric-
tions on the real geometry (with respect to the inner product) of the algebraic
points on higher genus curves. To demonstrate this simply, we’ll consider the
case of points which are linearly dependent as elements of Jac(C) ⊗ R equipped
with the inner product described above, an example inspired by the exposition of
Bombieri and Gubler [2]. Suppose that P ̸= Q are rational points of C which sat-
isfy ⟨P,Q⟩ = |P ||Q|; let’s assume without loss of generality that |P | ≥ |Q|. Since
P ̸= Q, h∆(P,Q) ≥ 0, and by Mumford’s formula we have

⟨P,Q⟩ ≤ 1

2g
|P |2 + 1

2g
|Q|2 +O(|P |+ |Q|+ 1)),
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so by assumption,

|P ||Q| ≤ 1

2g
|P |2 + 1

2g
|Q|2 +O(|P |+ 1)).

Dividing both sides by |P ||Q|/2g we see that

2g ≤ |P |
|Q|

+
|Q|
|P |

+O
(

1

|Q|

)
.

If g > 1, then either the first or third term on the right must be sufficiently large
for this inequality to hold, so we deduce that either |P | is substantially larger than
|Q|, or |Q| is not too large.

This is (obviously) not a finiteness proof, but we see in this computation how the
geometric features of the inner product control the ability of a higher genus curve
to contain rational points; this particular computation forces a spacing between
linearly dependent rational points of sufficient height. In fact, the same argument
holds under the weaker assumption ⟨P,Q⟩ > (1 − ϵ)|P ||Q| for a fixed small choice
of ϵ, which is to say that large points can only be nearly parallel with respect to
the inner product if the ratio |P |/|Q| is sufficiently large.

Vojta’s approach to prove Faltings’ theorem worked with the same basic tools, us-
ing height functions associated to well-chosen divisors to understand the geometric
spacing of rational points on higher genus curves, according to the inner product
associated to the theta divisor on their Jacobian. Instead of the diagonal divi-
sor ∆, Vojta worked with a family of divisors to get a sufficiently strong result,
choosing a divisor based on the properties of P and Q; however, one then has the
substantial technical issue of understanding the lower bound for the divisor - more
precisely, controlling an effective representative for the divisor, both in complexity
and in vanishing multiplicity at (P,Q). For this the elementary theory of heights is
insufficient, and Vojta draws from ideas in arithmetic intersection theory and Dio-
phantine approximation to prove a geometric separation of rational points known
as Vojta’s inequality.

Theorem 5.1 (Vojta’s inequality). Let C be a curve of genus g defined over a
number field K, embedded into its Jacobian by an Abel-Jacobi embedding associated
to a rational point. Write ⟨·, ·⟩ for the inner product associated to the canonical
height relative to the theta divisor on the Jacobian. There exist constants C1, C2 so
that if P,Q ∈ C(K) are two points satisfying |Q| ≥ C1 and |P | > C2|Q|, then

⟨P,Q⟩ ≤ 3

4
|P ||Q|.

To understand how Faltings’ theorem follows, note that for any ϵ > 0, Jac(C)(K)⊗
R can be covered by finitely many sectors of the form ⟨P,Q⟩ ≤ (1 − ϵ)|P ||Q|,
since Jac(C)(K) is finitely generated. Thus we really only need to know that each
sector of this type contains finitely many K-rational points. If a sector of this
type (with ϵ sufficiently small) contains any rational point Q with |Q| ≥ C1, then
Vojta’s inequality asserts that the sector contains no algebraic points P satisfying
|P | > C2|Q|, so we need only know that the set of rational points with bounded size
is finite. Since Θ +Θ− is ample, we know that the set of rational points for which

hΘ+Θ− is bounded is finite; since ĥΘ differs from hΘ+Θ− by a bounded constant,
we have the desired finiteness statement.
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6. The work of Dimitrov-Gao-Habegger and Kühne

Both proofs of the Mordell conjecture - Faltings’ p-adic approach, and Vojta’s geo-
metric approach - are susceptible to effective refinements that might allow (partial)
uniform control of the size of the finite set of rational points on a higher genus curve.
As noted in 4.3, the uniform result of Dimitrov-Gao-Habegger and Kühne follows
the structure of Vojta’s argument. So let’s begin by examining the discussion of
5.4 with an eye towards effective and uniform improvements.

6.1. Uniformity in Vojta. Vojta’s inequality itself yields two constants, C1 and
C2, where C1 denotes the lower bound on height for both points, and C2 the spacing
bound. As our simple computation when |P ||Q| = ⟨P,Q⟩ suggests, C2 is easily
shown to be chosen to depend only on the genus of the curve C. However, as Vojta
varies the divisor away from ∆, the O bound for the linear term in h∆(P,Q) varies
too, and so C1 depends on the curve C (more particularly, on a suitable notion of
height for C). Given Vojta’s inequality, we then used two finiteness statements:
the finite cover by narrow sectors of Jac(C)(K), and the finite points of bounded
height. The number of narrow sectors has a simple bound 7ρ, where ρ is the rank
of the Jac(C)(K) (or any finite rank subgroup we might wish to consider). The set
of points of bounded height, on the other hand, cannot be bounded independently
of C by elementary height techniques, since the bound in question is related to C1

and so depends on C itself.

Recall that the uniform Theorem 4.3 asserted a bound on |C(Q) ∩ Γ| of the form
c(g)1+ρ when C is viewed as embedded in Jac(C), where ρ is the rank of Γ. The
discussion of the previous paragraph suggests we break the points of |C(Q) ∩ Γ|
into two types:

(1) small points: P ∈ C(Q) ∩ Γ satisfying ĥΘ(P ) ≤ B(C), and

(2) large points: P ∈ C(Q) ∩ Γ satisfying ĥΘ(P ) > B(C),

where B(C) is a constant which depends on a suitable notion of height for C. The
techniques of Vojta noted above provide a uniform upper bound of the form c(g)1+ρ

on the set of large points, and so the work of Dimitrov-Gao-Habegger and Kühne
deals with counting points of small height.

6.2. Variation of canonical height. The basic constructions of Section 5 were
universal in the sense that they were independent of the higher genus curve under
consideration: the construction of the theta divisor, of the canonical height and
associated norm, and of the Vojta divisors leading to Vojta’s inequality require only
the structure of the group law on the Jacobian and the divisor group of the product
of the curve with itself, and so these constructions are amenable to being done in
families. Silverman [38] explored this variation of canonical height in families of
abelian varieties; to illustrate, let’s consider a basic example that follows from his
work.

Let Et denote the Legendre elliptic curve for t, the set of solutions to

y2 = x(x− 1)(x− t),

where t ∈ C \ {0, 1}. We can consider the two-dimensional space E consisting of
points of the form (t, P ), where t ∈ C \ {0, 1} and P is any point on Et; note that
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we have a natural projection map π : E → C \ {0, 1} which sends (t, P ) 7→ t, and
we should think of π−1(t) as a copy of Et.

When t ∈ Q, the elliptic curve Et admits a Néron-Tate height on the algebraic

points of the curve, which we will denote by ĥEt . We can therefore define a function

hE(Q) : E(Q) → R by hE((t, P )) = ĥEt
(P ). This is not a height function associated

to a very ample divisor as described in Section 5; for example, since the point (0, 0)
is a torsion point of order 2 for any choice of t, we have hE((t, (0, 0))) = 0 for all t,
and so the points of bounded height are not a finite set.

On the other hand, (0, 0) was a rather special choice of point, torsion for every
parameter t. If instead we consider for each t the point

Pt := (2,
√
2(2− t))

for some choice of square root, then the canonical height of Pt will grow as t does.
This relationship persists for other choices of varying point Pt, known as sections
of the family. Silverman proves (a generalization of the following result):

Theorem 6.1 (Silverman). Given a section σ, there is a geometric quantity ĥEη (ση)
so that

lim
h(t)→∞

ĥ(σ(t))

h(t)

exists and equals ĥEη
(ση).

In this setting, this geometric quantity ĥEη
(ση) is a function field height. The

key thing to notice is the difference between the two examples of sections that we
considered above. If the section is taken to be the constant point (0, 0), which is
persistently torsion for the family, then the limiting value in Silverman’s theorem is
0, and we can make no finiteness deduction about points of small height associated
to this section: this is bad news for controlling points of small heights uniformly
in this family (and indeed, elliptic curves contain infinitely many torsion points).
On the other hand, when the limiting value of Silverman’s theorem is non-zero, a
point of small height must live above a parameter t of bounded height, and so we
can hope to control small points of this type via Silverman’s theorem.

This is precisely the approach of Dimitrov-Gao-Habegger and the work of the au-
thors that precedes it, which includes the substantial technical improvement of
allowing points to live in a subvariety of any dimension rather than a section. The
novelty in their resolution of this question is a complete and natural description of
a geometric quantity associated to the subvariety which plays a role analogous to

that of ĥEη
(ση) in Silverman’s theorem. We will outline now, omitting a number of

technicalities (see [17] for a more technical survey), their construction.

6.3. Moving to the universal family. Roughly speaking, curves of genus g are
parametrized by an algebraic family Mg and we have a universal curve Cg → Mg,
where the preimage in Cg of a point in Mg is isomorphic to the curve parametrized
by the point. We have also a universal abelian variety Ag → Ag, where Ag is a
parameter space for abelian varieties of dimension g and above each t ∈ Ag lies a
copy of the abelian variety corresponding to t (note that for readability, we are not
discussing principal polarization and level structure).
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We connect these two universal objects as follows. For m ≥ 1 and any parameter t
of Mg we may define a map

(P0, . . . , Pm) → (P1 − P0, . . . , Pm − P0);

the image is a list of m points on the Jacobian of the curve. This induces the
Faltings-Zhang map

Cm+1
g → Am

g

on (products of) the universal objects. Just as in Silverman’s setting, we have a
natural notion of height on Am

g arising from the Néron-Tate height on each abelian
variety.

Ag itself is quasi-projective and defined over a number field so admits a height

function h : Ag(Q) → R, from which we obtain a notion of height for the Jacobian
of a curve defined over a number field; we write h([Jac(C)]) for this quantity. The
constant B(C) which discriminates small from large points in fact takes the form
c1 max{1, h([Jac(C)])} for a constant c1 depending only on g (there is also a depen-
dence on the choice of height function we place on Ag, but this is no obstruction to
a uniformity result).

In this language, Theorem 4.3 comes down to a statement of the following form,
which provides uniform control over the small points.

Theorem 6.2. Given g ≥ 2, there exist constants c1 and c2 depending only on g
so that for any curve C of genus g and any algebraic point P of C, we have∣∣{Q ∈ C(Q) : ĥ(Q− P ) ≤ c1 max{1, h([Jac(C)])}

}∣∣ < c2.

There are two key inputs to the proof of this theorem, which we’ll describe with
the remaining two subsections.

6.4. Degeneracy and the Betti form. The first key input, due to Dimitrov-Gao-
Habegger, is a proof of Theorem 6.2 under the assumption that h([Jac(C)]) is not
too small. This follows from a statement very similar to that of Silverman’s varia-
tion of canonical height, controlling the height of a point in the total space in terms
of the height of the parameter. In the case of Silverman’s theorem, we can use such
a statement to deduce that a point of small height sits above a parameter of small
height precisely when the limit - that geometric quantity which is a function field
height - is non-zero. In the full generality of Dimitrov-Gao-Habegger, they replace
this geometric quantity with a notion called non-degeneracy, and crucially provide
both analytic and algebraic descriptions of when a subvariety is non-degenerate.

This notion of non-degeneracy can be analytically described by the Betti rank of
the subvariety at any smooth point. If A → S is a family of abelian varieties
of dimension g parametrized by S, we may at any point s ∈ S choose a basis
ω1(s), . . . , ω2g(s) of the period lattice for As, the abelian variety parametrized by
s0. From the discussion of subsection 3.1, this choice varies holomorphically with
the parameter s on a simply connected neighborhood ∆ ⊂ S, and for any s ∈ ∆
and any point x ∈ As we can write

x =

2g∑
i=1

bi(x)ωi(s),
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where (b1(x), . . . , b2g(x)) ∈ R2g mod Z2g =: T2g The map

b∆ : ∆ → T2g

is the Betti map associated to ∆ (though it is only unique up torus automorphisms).

As a very basic example to see that the Betti map might tell us something about
torsion and height along subvarieties of A, notice that if we consider an algebraic
torsion section X in A - for example, the subvariety of identity points - then the
Betti map on simply connected ∆ ⊂ X will take a constant value. To that end,
we define the Betti rank of an irreducible subvariety X of A at a smooth point
x ∈ X(C) to be the (R-)rank of db∆ |Xsm,an at x, for any appropriate choice of ∆
and b∆.

We then say X is non-degenerate if there is any smooth point with maximal Betti
rank; that is, the Betti rank is 2dim(X) at x for some smooth point x of X. This
notion of non-degeneracy is most easily understood in the situation when A is a
family of simple abelian varieties of dimension g; that is, the generic element of
the family has no proper abelian subvarieties, assuming the family is finite over
the universal abelian variety. In that case, non-degeneracy of a subvariety X is
simply the restriction that the group generated by X is not contained in any proper
subvariety of A (note that the identity example above fails this requirement) and
that dimX ≤ g. In practice, the constraint dimX ≤ g can be circumvented by
taking fibered products.

There is a useful characterization of non-degeneracy in differential geometric terms.
By a construction of Mok [33], there is a closed semi-positive smooth (1, 1)−form
ω on Aan so that for any subvariety X of A and any smooth point x of X, we have
maximal Betti rank at x in X if and only if (ω|∧dimX

X )x ̸= 0.

These descriptions of non-degeneracy are fundamentally analytic; however, one
would hope - and indeed Gao proved [16] - that they have an algebraic interpretation
which (very!) roughly amounts to a statement like: ‘when we throw away all the
pieces of X which come from abelian subvarieties, there is something left over’. The
proper phrasing of this statement is non-trivial; to quote Gao [17], we will say only
that Gao proves that to each subvariety X of A, there is an intrinsically defined
algebraic subvariety Xdeg with the property that X ̸= Xdeg if and only if X is
non-degenerate in the Betti sense.

Under reasonable geometric conditions (generalizing the finiteness and group-generation
properties in the simple abelian case) on X, we have two methods to construct non-
degenerate subvarieties from X: one by taking mth fibered powers of X and A for
m ≥ dim S, and the other as the image of the Faltings-Zhang map for m ≥ dim X.

We can now formulate the generalization of Silverman’s theorem proved by Dimitrov-
Gao-Habegger; rather, a slight improvement from the exposition of [17]. Recall our
setup that π : A → S is a family of abelian varieties over an irreducible projective

variety S, on which we define a fiberwise height function ĥ(P ) := ĥA,Θ(P ), where
A is the abelian variety parametrized by π(P ). As a projective variety we may also
choose a height function hS on the base S.

Theorem 6.3. [Dimitrov-Gao-Habegger] Let X be an irreducible subvariety of A
defined over Q, and let X∗ = X \ Xdeg. There exist constants c > 0 and c′,
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depending only on X and the choice of height functions, so that

ĥ(P ) ≥ chS(π(P ))− c′ ∀P ∈ X∗(Q).

Note here the resemblance to Silverman’s theorem - away from a suitable locus (in

Silverman’s case, the sections where ĥEη
(ση) = 0), the fiberwise height ĥ of a point

must grow as the corresponding parameter does. From this, they deduce Theorem
6.2: when the height of the Jacobian of a curve is sufficiently large, so must be the
Néron-Tate height of the difference of points on the curve.

Crucial to this deduction is the construction of a suitable non-degenerate subvariety
arising from curves inside their Jacobian. While the theorem is trivial if X is degen-
erate, the statement of the theorem is carefully constructed this way to allow the
proof to proceed by induction on the dimension of the base S. Their argument uses
the geometric information of non-degeneracy of X to deduce positivity properties
of well-chosen divisors (contrast this with the discussion of subsection 5.4 and the
choice of the diagonal divisor) which in turn provide lower bounds on associated
height functions; a key tool here is Siu’s criterion,which allows the positivity to be
checked via intersection theory.

From this work already a strong uniformity statement of Mordell-Lang type can
be deduced: that Theorem 4.3 holds under the assumption that the height of the
Jacobian of the curve is not too small. The work of Kühne [26] on the uniform
Bogomolov conjecture provides sufficient control over points of bounded height on
families of curves in their Jacobians to strengthen this to the full statement of
Theorem 6.2 and so of Theorem 4.3.

6.5. Small points and equidistribution. An abelian variety is a complex torus
Cg/Λ for a lattice Λ and therefore comes with a natural notion of volume: the
Haar measure on the abelian variety, a translation-invariant measure which can be
normalized to have total volume 1. For any N ∈ N, the torsion points of order
dividing N are the images under the quotient map of points z ∈ Cg with Nz ∈ Λ,
and these are evenly distributed with respect to the Haar measure: the number of
N -torsion points contained in a subset of a fundamental domain is asymptotic to
the volume of the subset, as N → ∞.

This is an illustration of a much broader phenomenon of equidistribution of points
of small height, initiated by the work of Szpiro-Ullmo-Zhang [40] and Zhang [43]
studying points of small height on abelian varieties. First, we make precise the
notion that a sequence of points is ‘evenly distributed’ with respect to a measure.
In the case of torsion points above, notice that we clearly must take the complete
set of N -torsion points to obtain an even distribution; in the general setting, we
consider Galois orbits of points.

Torsion points have Néron-Tate height 0; more generally, if A is an abelian variety

defined over a number field K equipped with Néron-Tate height ĥA, we say that a

sequence xn ∈ A(K) is of small height if ĥ(xn) → 0 as n → ∞. Since A is defined
over a number field K, for each x ∈ A(K) we have a finite set Gal(K/K)x called
the Galois orbit of x; these are the points of A(K) which satisfy the same polyno-
mial relations with coefficients in K as x does for example, since the group law is
defined over K, this means that a torsion point will have Galois orbit consisting
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of torsion points of the same order. In this setting, Zhang proved the following
equidistribution theorem.

Theorem 6.4. [Zhang] Let {xn} be a sequence of points of small height in A(K),
and assume that no subsequence is contained in a proper subvariety of A. Then the
Galois orbits are equidistributed with respect to the Haar measure µA on A; that is,
for any continuous function f on A we have

1

|Gal(K/K)x|

∑
y∈Gal(K/K)x

f(y) →
∫
A

f dµA

as n → ∞.

This equidistribution statement provides an alternative proof of the Manin-Mumford
conjecture (Raynaud’s theorem) via contradiction: if a curve defined over a number
field has infinitely many torsion points when embedded in its Jacobian, then that
sequence satisfies the requirements of the equidistribution theorem, so has Galois
orbits which equidistribute to the Haar measure on the Jacobian. This measure is
supported everywhere on the Jacobian; in particular, the small points cannot be
trapped on the curve itself, the needed contradiction. In fact Zhang proved a more
general equidistribution theorem: that for any subvariety X ⊂ A, there is a unique
probability measure to which Galois orbits of any small and generic sequence of
points can equidistribute.

A clever double application of this equidistribution theorem allowed Zhang to con-
clude a stronger statement which had been known as the Bogomolov conjecture:
that if X is a subvariety of A which is not a torsion translate of an abelian subva-
riety, then there is ϵ > 0 so that the set

{x ∈ X(Q) : ĥA(x) ≤ ϵ}
is contained in a proper subvariety of X. If X is a curve, this is therefore a finite
set.

It is this work that Kühne upgraded to the setting of families of abelian varieties,
using the notion of non-degeneracy and the Betti form to replace the requirements
onX and the Haar measure on A. More precisely, Kühne proved for a family A → S
of abelian varieties defined over Q that for any non-degenerate subvariety X, any
generic sequence of points of small height (here, the fiberwise Néron-Tate height)
in X Galois-equidistributes to the measure (ω|X)∧dimX , where ω is the Betti form
on A.

This equidistribution theorem was first proved in a special case by DeMarco-
Mavraki [8] and has since been generalized broadly by Yuan-Zhang [42]. Following
the ‘double equidistribution’ strategy of Zhang, Kühne deduced a uniform Bogo-
molov statement for curves in their Jacobians. As in Theorem 6.2, the constants
depend on choices of heights, which does not concern us for the Mordell-Lang ap-
plication.

Theorem 6.5. [Kühne] Given g ≥ 2, there exist constants c3, c4 depending only
on g so that for any curve of genus g and any algebraic point P of C, we have∣∣{Q ∈ C(Q) : ĥ(Q− P ) ≤ c3)}

}∣∣ < c4.
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In rough outline, the double application of equidistribution works as follows. We
may construct a family A → Cg over the universal curve and a subvariety X ⊂ A so
that the fiber of X → Cg over a point P is precisely the curve containing P , which
via X ⊂ A is embedded into its Jacobian via the Abel-Jacobi embedding based
at P . By the construction of non-degenerate subvarieties given in the previous
subsection, taking mth fibered powers of X and A for m suitably large yields a
non-degenerate subvariety Y of a fiber power of A.

Now, this non-degenerate subvariety comes with a natural measure from the Betti
form which by Kühne’s work is the limit of any small generic sequence of points,
and the same is true taking further fibered products of Y . On the other hand, on
the (n+1)st fiber power of Y we have the nth Faltings-Zhang map, and the image
this map comes with its own unique measure via the equidistribution theorem (in
fact, Kühne here needs to consider a product of the identity and Faltings-Zhang
map to obtain non-degeneracy). Pulling this measure back under that map, we get
a second measure on a large power of Y . Examining these measures at the (power
of the) smooth point where full Betti rank is achieved by the non-degeneracy of Y ,
one can show that they are not equal.

Since the measures are distinct, they can be distinguished by some continuous
function. Therefore, equidistribution tells us that a sequence of points of small
height cannot have image under the Faltings-Zhang map which consists of points
of small height. But differences of points and Néron-Tate height are controlled by
the parallelogram law (see subsection 5.3); in particular, we have

ĥ(P −Q) ≤ 2ĥ(P ) + 2ĥ(Q),

and so small points do have Faltings-Zhang images which are small height. Carefully
leveraged, this yields Theorem 6.5.

With some additional manipulation of constants (see section 9 of [17]), this combines
with Theorem 6.3 to provide Theorem 6.2, and the uniform Mordell-Lang conjecture
follows.
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PASSING A CURVE THROUGH N POINTS – SOLUTION
OF A 100-YEAR-OLD PROBLEM (BY E. LARSON AND I.

VOGT)

RAVI VAKIL

ABSTRACT. Through two randomly chosen points in the plane, indeed in n-space, there is
a line. Through five randomly chosen points in the plane, there is a conic. But in higher-
dimensional space, through even four randomly chosen points, there can’t be a conic,
because all conics have to lie on a plane, and four randomly chosen points don’t. Through
four randomly points in the plane, you can find a cubic y = ax3+bx2+cx+d, and if you’re
not looking just for a graph of an equation, you can find a cubic ax3+bx2+ · · ·+hx+ iy = 1

through nine randomly chosen points.
For centuries, the “interpolation problem” has arisen in many contexts: is there a curve

of some “type” through a bunch of generally chosen points? Even making this precise
has led to important definitions and notions and theorems. In this talk, I’ll discuss Eric
Larson and Isabel Vogt’s proof of the interpolation problem (in its modern incarnation)
in full generality, bringing on beautiful ideas both old and new. We will start with some
elementary observations and intuitions, and gently build up to some of the ideas behind
their tour-de-force solution.
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1. INTRODUCTION

Last year, Eric Larson and Isabel Vogt posted the final paper [LV2] in their solution to the
“interpolation problem” for curves in space. This current note (and accompanying lecture)
is intended to give a broad mathematical audience an introduction to why this is such
a fascinating problem, of longstanding interest, and to give some insight into the ideas
behind both the problem and the solution. Not incidentally, I hope to give the reader some
sense of the kinds of thinking that go into such algebro-geometric problems and solutions,
and especially of the perspectives that carry over into other fields of mathematics.

For rigorous detail, I refer the reader to Larson and Vogt’s papers, starting with [LV2]
and working backwards. Better still is to watch a lecture by one of the authors (either in
person, or one of the recorded versions online). For a broader overview aimed at a more
general audience, I recommend Jordana Cepelewicz’s excellent article in Quanta [Ce].

2. WHAT IS THE INTERPOLATION PROBLEM, AND WHAT IS THE MOTIVATION FOR IT?

The problem is about interpolating curves through points. Let me begin with some
versions of this, and then see how the problem naturally extends.

Suppose I have n distinct points in the plane R2, and I want to pass a curve through it
(see Figure 1). Obviously I can do so, given a pencil and enough hand-eye coordination.
That’s not interesting. But can I pass a line through them simultaneously? If n > 2, then
I’d have to be very lucky to be able to — the points would have to be collinear. If n = 1,
it is very easy, and there are infinitely many lines that will do the trick (and if n = 0, it is
easier still). Clearly n = 2 is the important “edge-case” — I can manage it, but only one
line does the job (Figure 1).

FIGURE 1. Passing a curve through 13 points in R2

But if my curve can be of higher degree, I can reach more points.
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FIGURE 2. There is a unique line through two distinct points in the plane
(Euclid’s Elements, c. 300 BCE)

A generalization can be interpreted as “Lagrange interpolation”: if I am looking for a
polynomial f(x) satisfying n constraints

f(x1) = y1, f(x2) = y2, . . . f(xn) = yn,

can I find such a polynomial of degree d? For a general such problem you can find a
polynomial of degree d = n− 1 or greater, but not of any smaller degree.

Let’s unpack this a bit, because there are a number of lessons hidden here.

I can make up an example where this is never possible, if you choose your constraints
badly — there is no polynomial for which f(0) = 1 and f(0) = 2 for example. And if you
choose your constraints very well, you may be able find an interpolating polynomial of
degree smaller than n − 1 — it is not hard to find a polynomials satisfying f(x) = x for
the integers between 1 and 5 for example (Figure 3). But there is a correct answer that
applies for a “generally chosen” set of constraints. We can make this precise in a number
of ways — “almost all” choices of constraints, a “randomly chosen” choice of constraints,
a Zariski-dense subset of the parameter space of constraints, etc. All that matters is that
you see that the proper formulation of the question (at least to first approximation) is that
the constraints be “general” in some sense we can make precise on another day. So from
now on we will make that assumption.

FIGURE 3. If you are lucky, you may be able to find a line through five points
in the plane (Vakil’s Elements, c. 2024 CE)
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An interesting but tangential point (or should it be “tangential line”?) is that if d = n−1,
then (i) there is precisely one polynomial of degree d through these points. And also, (ii)
we can write down explicitly what that polynomial is. For example, the unique quadratic
f(x) in C[x] satisfying f(x1) = y1, f(x2) = y2, and f(x3) = y3 is

f(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
y1 +

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
y2 +

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
y3.

These two facts (i) and (ii) are tightly intertwined, by a basic algebro-geometric principle.
(Similarly, when there were are solutions to an algebro-geometric problem, you might
expect to need a single square root in the solution, and the quadratic equation is the first
example of this principle.)

Next, consider five generally chosen points (x1, y1), . . . , (x5, y5) in R2. Lagrange interpo-
lation shows that we can string a “degree 4 polynomial” y− f(x) = 0 through them. But
we can manage something of lower degree — of degree 2 (see Figure 4). Let me show this
to you in two different ways, which will later give us two different insights.

FIGURE 4. There is a (unique) conic through five generally chosen points
(Pappus, c. 340 CE)

First, we can try to find a quadratic in two variables that vanishes at these five points. In
other words, we’re looking for 6 numbers a, b, c, d, e, f such that our five points (xi, yi)
satisfy the equation

(1) ax2 + bxy+ cy2 + dx+ ey+ f = 0.

It looks like we have one too many unknowns. But multiplying the equation of a conic by
a constant yields the same curve. (Translation: the plane conics are parametrized not by R6,
but by RP5. Notice how we are forced to consider the notion of projective geometry, just as
the ancients were!) So we may as well set one of the variables to 1, say f = 1. (Remember
that our points are randomly chosen, so none of them is (0, 0).) We then have five linear
equations in the five unknowns a, b, . . . , e. These turn out to have a unique solution. (It is
worth thinking through why.) So we can find a degree 2 curve through the points.

Now let us instead think of the problem parametrically, by asking if there is a way
of passing a pencil through these points, in a “degree 2 way”. The right way of posing

4



the question turns out to be the following: Are there three degree two polynomials
X(t) = at2+bt+ c, Y(t) = dt2+ et+ f, and Z(t) = gt2+ht+ i such that the parametrized
curve

(2) (X(t)/Z(t), Y(t)/Z(t))

passes through the five given points? This turns out to be the same question, because such
parametrized curves are precisely the plane conics. It looks like we have 9 unknowns a, . . . ,
i, which is well over our five constraints. We realize quickly that we can knock this down
to 8 unknowns, because we can assume i = 1 (in a similar way to what we did with plane
conics), but we are still off by three unknowns. It turns out that there is a 3-dimensional
way of parametrizing a conic, and that is where these 3 extra choices come from. (This 3 is
precisely the dimension of the automorphism group of P1. This was also well-known to
the classical Greeks, although not in this language.)

A new behavior arises in degree 3. There is a single cubic passing through 9 generally
chosen points (x1, y1), . . . , (x9, y9):

(3) ax3 + bx3y+ · · ·+ i = 0.

As with the case of the conic, this becomes a question of linear algebra. However, there
is not a degree 3 parametrized curve passing through 9 generally chosen points — you can
only pass one through 8 generally chosen points, and in this case there turn out to be 12
of them (not 1, as in all of the other problems we have considered so far). (Incidentally,
this 12 is the magic 12 that turns up whenever elliptic curves are lurking in the shadows.)
What is going on?

The answer is helpfully explained by the complex picture. Every parametrized curve
(2) of any degree is basically the Riemann sphere (except we remove finitely many points
where the denominators Z(t) are 0). But a cubic curve (3) is torus (a “genus 1 Riemann
surface”), again minus finitely many points. So the difference in behavior in the problem
over R is explained by the same problem over C — and is yet another reason why we decided
to work over the complex numbers. The key additional information here is that our curves
now have a notion of “genus” (the number of holes), and cubic curves can have genus 0 or
genus 1. Genus 0 cubic curves can interpolate 8 general points in the plane, and genus 1
cubic curves can interpolate 9 general points in the plane. (See Figure 5 for a sketch of a
genus 2 Riemann surface.)

Working with the complex numbers resolves a problem that you might have asked
about even in degree 2. A conic over R can have two “pieces” if it is a hyperbola. If the
conic through our five points is a hyperbola, and the points are not all on one branch, does
that count as stringing a single curve through the five points? For now let’s say “yes”. And
one important and good way around this is to work over the complex numbers, rather
than the real numbers.
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FIGURE 5. A genus 2 Riemann surface

(There are many clues in algebraic geometry telling us that it is easier to work over
the complex numbers, even if we initially care about the real numbers. Frankly the real
numbers are much harder to deal with sometimes, and may not be worth the trouble.) So
from now on we work over C rather than R (and it is important to note that this doesn’t
change any of our earlier discussion).

FIGURE 6. This counts as a single curve (conic) through 5 points

Now I can tell you the full story of degree d curves in the plane. Such curves can
have genus g anywhere between 0 and (d − 1)(d − 2)/2 inclusive. (A generally chosen
degree d polynomial in two variables has genus (d− 1)(d− 2)/2. At the other extreme, a
“parametrizable” degree d curve, known also a rational curve, has genus 0.)

2.1. Theorem (interpolation for degree d genus g plane curves). — Plane curves of degree
d and genus g can interpolate up to 3d− 1+ g generally chosen points in the plane.

Our tour so far has taken us through a vast territory and chronology of mathematics,
from millennia past through the late nineteenth century. (For background, see [Cr, W, Ca,
HB, B, L].)
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3. THE INTERPOLATION IN HIGHER DIMENSION: CURVES IN SPACE

When we start to consider curves in space (and higher-dimensional space), things
get even more interesting. If the previous section connects many important themes in
mathematics leading up to 1900, this section connects central ideas in algebraic geometry
in the twentieth century. I will continue to focus on the mathematics rather than giving
complete citations and history.

We now consider curves, in space of any dimension. We continue to work over the
complex numbers (although we will discuss other fields in §9). Rather than working in Cr,
it is more convenient (and logically equivalent) to work in CPr. (This is precisely the same
way that the ancient Greeks knew that to understand conics, one should think of them in
projective plane.)

Curves in projective space still have a “degree”. One interpretation of the degree is as
follows: intersect your curve with a random hyperplane in CPr (or Cr if you prefer) and
count the number of points.

But there are still very different sorts of curves of the same degree d. In particular, curves
in CPr still have a genus g (an “intrinsic” property of the curve) on top of their degree
(something “extrinsic”, relating to how it is sitting in r-space). So we can ask: for how
many points can we string a degree d genus g curve in CPr through? If r = 2, this is
precisely the question discussed in §2.

This leads us to consider the “space” parametrizing such curves (a “moduli space” of
degree d genus g curves in CPr). We call this space Mg(CPr, d). (Technically speaking, this
notation should be reserved for the space of degree dmaps of genus g smooth Riemann
surfaces to CPr, which is almost the same thing.)

Another new feature of curves of different genus is that there is basically one curve
of genus 0; and a one-parameter family of curves of genus 1 (parametrized by the “j-
invariant”); and a (3g− 3)-parameter family of curves of genus g. The space of genus g
Riemann surfaces is denoted Mg, so for example dimCM3 = 6, and Mg

∼= Mg(CPr, 0).

And oddly, once the genus gets bigger, different curves of genus g can move differently
in projective space (and can even move in different-dimensional families). This is central to
the study of algebraic curves, and this area of study is called Brill-Noether theory. (Another
fun side fact: the spaces Mg(CPr, d) are not only non-smooth, but are “as non-smooth as
can be” in precise sense, which Mumford described as “Murphy’s Law”.)

The celebrated foundational result of Brill-Noether theory tells us whether there is a map
from a generally chosen genus g curve to CPr of degree d. We need to say this a bit more
precisely, because we could map the curve to CP2 (or even to CP1), and then embed that P2
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(or P1) linearly in any CPr for r ≥ 2. We wish to ask about maps that are “non-degenerate”,
which means that they don’t map to any hyperplane inside CPr. The essential fact for our
story is the following.

3.1. Brill-Noether Theorem (Griffiths-Harris, 1980, [GH]). — There exists a nondegenerate
degree d map from a generally chosen genus g curve C to CPr if and only if the Brill-Noether
number

ρ(d, g, r) := (r+ 1)d− rg− r(r+ 1)

is nonnegative.

We now fit this into the language we are developing. The moduli space Mg(Pr, d) has
many different “pieces” (or “irreducible components”), and we are interested in those
whose image is dense in Mg (i.e., which include a “general genus g curve”). That set (or
more precisely, the closure of that subset of the moduli space) will be denoted Mg(Pr, d)BN.
Such curves in space are called Brill-Noether curves.

In this language, the Brill-Noether Theorem 3.1 the following

3.2. Brill-Noether Theorem (reworded). — The space Mg(Pr, d)BN is nonempty if and only
if ρ(d, g, r) ≥ 0.

We finally can have a well-posed interpolation question. Let Mg,n(Pr, d)BN be the
parametrizing degree d Brill-Noether curves C → Pr along with n points p1, . . . , pn
of C.

3.3. Question. Suppose d, g, r, n are nonnegative integers with ρ(d, g, r) ≥ 0. When does
there exist a degree d genus g Brill-Noether curve through n generally chosen points in
CPr? In other words, when is the image of the natural map

(p1, . . . , pn) : Mg,n(Pr, d)BN // (Pr)n

dense?

We can show using the deformation theory that the space Mg(Pr, d)BN of Brill-Noether
curves has dimension

dimC Mg(Pr, d)BN = (r+ 1)d− (r− 3)(g− 1).

(All of our dimensions are “complex dimensions”, since everything in sight will be a
complex manifold, or essentially so. Hereafter we omit the subscript C on “dim”.) We can
use this to get a cheap bound on the answer to Question 3.3.
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The space Mg,n(Pr, d)BN parametrizing Brill-Noether curves with n points p1, . . . , pn has
dimension

(4) dimMg,n(Pr, d)BN = (r+ 1)d− (r− 3)(g− 1) + n.

You should think of it as follows. The curve C can move in a family of dimension

dimMg(Pr, d)BN = (r+ 1)d− (r− 3)(g− 1),

and at the same time, the n points are independently wandering around on the curve C.

3.4. Turning out the lights. If you put light bulbs on the n points p1, . . . , pn, and turn
off the lights, you will see the n points moving around in space, with the curve barely
visible in the dimness. You might hope that the n points are moving around completely
independently. If they aren’t, there should be some reason for it that is somehow visible, or
that we can figure out. For example, if the curve C was a line (d = 1), we would see even
with the lights out that those points were all obviously collinear as they wandered about.

3.5. A necessary condition for interpolation. So if those n points can sweep out all n-tuples of
points in CPr, we necessarily need

(5) (r+ 1)d− (r− 3)(g− 1) + n ≥ nr

from which

(6) (r− 1)n ≤ (r+ 1)d− (r− 3)(g− 1).

In other words, if inequality (6) is violated, there is no chance for a generally chosen
Brill-Noether curve (of degree d, genus g, in CPr) to pass through n generally chosen
points.

So the big question is: what if the inequality (6) is satisfied? Is it always possible to
interpolate?

(To make sure you understand what we are doing, you should substitute r = 2 and
compare it to our discussion in §2.)

After some thought you probably won’t see any counterexamples, leading you to
conjecture the following.

3.6. Conjecture (naive interpolation). — If inequality (6) holds, then given n generally chosen
points in CPr, there is a degree d, genus g Brill-Noether curve passing through them.

Sadly, the world is not our friend.

9



4. THE FOUR EXCEPTIONAL CASES, AND THE STATEMENT OF LARSON-VOGT’S

INTERPOLATION THEOREM

Here are four cases where inequality (6) is satisfied, but we can’t string such a Brill-
Noether curve through n points, and the reason is not as obvious as in the case of §3.4. The
four cases are

(d, g, r) ∈ {(5, 2, 3), (6, 4, 3), (7, 2, 5), (10, 6, 5)}.

But in each of the four cases, there is a good explanation. I’ll describe one case so you
can see how more structure can emerge from the darkness.

For the case (5, 2, 3), we are considering genus g = 2 curves of degree d = 5 in CP3

(so r = 3). From inequality (6), we see we can only hope to pass such a curve through n
general points if n ≤ 10. But it turns out that we can’t pass a curve through 10 generally
chosen points, because of a hidden structure present, which we now describe.

A genus 2 genus 5 curve C necessarily sits on a degree 2 surface in CP3 (a “quadric
surface”). To show this requires some theory of Riemann surfaces.

Now if the coordinates of C3 are x, y, and z, a quadric surface has defining equation

?x2 + ?xy+ ?y2 + ?yz+ ?z2 + ?zx+ ?x+ ?y+ ?z+ ? = 0,

which has ten unknowns. We can take the constant term to be 1 (as in our discussion of
conics at equation (1), so we have only 9 degrees of freedom. Hence this quadric surface
can only pass through 9 generally chosen points (and will then necessarily miss the tenth,
which was after all randomly chosen), so there is no chance that genus 2 degree 5 curve C
(which after all must lie on a quadric surface) can pass through 10 generally chosen points.

There are similar reasons for the other three counterexamples, and they all have to do
with hidden geometric structure in the problem. The nature of that geometric structure
depends on your point of view. From one point of view there is always some surface
causing the problem (playing the role of the quadric surface). In each case, the surface is
itself parametrizable, which is somehow not a coincidence (although in another sense all
four exceptions are by definition exceptional and hence coincidences).

Faced with four counterexamples, we cleverly update our conjecture.

4.1. Interpolation Conjecture. — If inequality (6) holds, then given n generally chosen points
in CPr, there is a degree d, genus g Brill-Noether curve passing through them. Well, except for
those four counterexamples.

This is what Larson and Vogt prove.
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5. A FIRST IDEA, AND A BETTER STATEMENT

Let’s return to our picture of watching the points on the Brill-Noether curve move in
the dark. We wish to show that the points move as freely as possible. In the case of our
first counterexample, described in §4, how might we have seen that there was going to
be a problem? How would we have discovered the quadric surface by just looking at the
curve (and the n points, which really don’t matter for this question)? The answer is that
if you deform (wiggle) the curve C itself, it has a special set of deformations that keep it
inside the quadric surface that we had yet to discover. So the clue is that when we look
at the curve in 3-space, there is a 2-dimensional bit of surface near the curve that we can
somehow see. This can be stated as follows — the curve has a rank 2 “normal” vector
bundle, and inside it there is a special rank 1 “subbundle” (the normal bundle of the curve
in the surface) that should have been identifiable in some way. And indeed this subbundle
is identifiable by “cohomological means”.

5.1. The more correct statement.

As always in mathematics, to better find the truth, we need to find the correct statement
of the result. The following is a mild variation of the discussion at §3.5. If inequality (6)
is satisfied, we might hope that the n points on a Brill-Noether curve can move freely in
projective space (with the expected number of degrees of freedom), as the curve and points
vary. This is the statement we should wish to prove, and we have to avoid counterexamples.
As described earlier, there are four counterexamples we know of. But there is a fifth one.
If (d, g, r) = (6, 2, 4) (in English: genus 2 curves of degree 6 in CP4), then inequality (6)
(or equivalently, inequality (5)) suggests that there is such a Brill-Noether curve passing
through nine general points, and one generally chosen line. But this is not the case. (See
[LV2, §2.1] for an explanation.)

6. THE CLASSICAL APPROACH: “DEFORMATIONS”

Fix now g, d, r, and n. There is an approach to such questions that has been used for a
very long time, presumably even in the 1800’s or earlier. Suppose you had a single Brill-
Noether curve (of genus g, degree d, in CPr), with n points on it, and if when you deform
it (“jiggle it in all possible infinitesimal ways”), the n points can move in all possible
directions. More precisely, suppose that the space of Brill-Noether curves has dimension
D, and the choice of motion of points (in the direct sum of their “tangent spaces” in CPr,
say ⊕ni=1TCPrpi) is a subvector space of dimension

min (D+ n,dim (⊕ni=1TCPrpi)) = min(D+ n,nr).

Then even though this is just is an infinitesimal statement, it is enough to show that the
points can move in an honest family of that dimension, and ifD+n ≤ nr, it means that the
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points can move basically everywhere independently. (Because everything is ”algebraic”,
the locus they can move in is ”algebraically describable”, and the only algebraically
describable sets containing an analytic open neighborhood are “almost everything”.)
This means that they can move to pass through ”generally chosen” n points, so ”we can
interpolate”.

So now the problem has turned into finding a single Brill-Noether curve, with a single
collection of n points, which can ”deform well”. This still seems very difficult, because it
is hard to name any Brill-Noether curve of given genus and degree if g, d, and r are large
numbers.

Let’s look more closely at this problem. A neighborhood of the curve C in projective
space looks a lot like the normal bundle of C in CPr (the “tubular neighborhood theorem”).
So a small deformation of the curve C should essentially be seen as a “section of the normal
bundle”.

6.1. (For experts: It is worth taking a brief break to note that this is how the dimension of the
space of Brill-Noether curves given in (4) can be found. One can show thatH1(C,NC/CPr) =

0 for such curves; and then use the Riemann-Roch theorem to compute h0(C,NC/CPr) −

h1(C,NC/CPr) to be the right side of (4).)

So if we want the n points to move freely in r-space as the curve moves freely, and
the points move freely on the curve, we are hoping to see that given any elements of the
normal vector spaces at those n points, there is a section of the normal bundle that takes
on those values. (This is something you have to see to believe, which is why you need to
attend the lecture. The argument will be in the form of an interpretative dance.)

Translation: The sections of the normal bundle form a vector space H0(C,NC/CPr). We
want the map

H0(C,NC/CPr) // ⊕ni=1NC/CPr |pi

to be surjective. Translation: we want the space of sections of the normal bundle which
happen to vanish at the n points to be a codimension nr subspace in H0(C,NC/CPr) (the
conditions imposed are “independent”). The space of sections of the normal bundle
which happen to vanish at the n points can be interpreted as the sections of a slightly
different bundle (the normal bundle “twisted by these n points”). So the question is now
understanding the sections of this “modified normal bundle”.

Now comes the second trick, very much in Larson-Vogt’s territory: our curve can be
very special, and we see this in an example. Suppose we wished to show that conics in
the plane can pass through five general points. I will now show you a very special conic
passing through a very special set of five points.
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For the conic C, I take the union of the x- and y-axes, i.e., the equation xy = 0. This is
not a smooth curve, but it has the mildest possible singularity, what is called a “node” at
the origin. (One definition of “node” is something analytically that looks like the union of
the two axes at the origin.) For the points, I take (1, 0), (2, 0), (3, 0), (0, 1), and (0, 2). You
will notice that I have taken smooth points of the curve C (I have avoided the node), and
that I have split up the five points as evenly as I can among the two “pieces” (“irreducible
components”) of C.

So we could apply our normal bundle strategy to this nodal curve, and hope for the
best. The downside is that the tubular neighbourhood theorem no longer works where
the curve isn’t a manifold; but that doesn’t matter much, because we have passed the
stage of needing the tubular neighborhod theorem, and now only need to work with some
modified normal bundle constructed in some abstract way. The notion of normal bundle
turns out to make sense near the node (so that it is still a bundle, even though the tubular
neighborhood theorem, again, fails).

But now we want to do some sort of induction, which means trying to change the prob-
lem into one about each of the two “pieces” (“irreducible components”) of the degenerated
conic, so we turn it into a question about lines, which are easier to understand.

The normal bundle to the x-axis in the plane is very similar to the restriction of the
normal bundle to this degenerated conic in the plane — it is precisely the same except at
(0, 0), where it is some sort of modification. So at the hoped-for inductive step, instead of
the normal bundle to the “simpler piece”, we get a modified version of the normal bundle
to the simpler piece, so the curve is simpler but the modifications needed to the normal
bundle sound more severe.

But we have already resigned ourselves to trying to understand (the sections of) modified
normal bundles, so at this point we realize that our induction is going to have to deal with
curves in CPr and given modifications of the normal bundle.

7. COMPLETING THE PROOF

All we have to do now is to make this precise, make the inductive statement and prove
the theorem, and we could leave this as an exercise for the reader.

Unfortunately, this strategy roughly describes where Larson and Vogt were near the
start of their approach. Except for their clever focus on the the fact that the interpolation
problem was about modified normal bundles, and that this was something they could
control well enough to induct on, it describes an attack that was undoubtedly tried by
many authors in the 1980’s or earlier.
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8. SLALOM SKIING

I will conclude by describing the nature of the obstacles to making this work. The details
of the analysis, and the tactical decisions that made them work, are less appropriate for an
expository lecture.

For a Brill-Noether curve, the normal bundle is well-behaved — for example, it has no
higher cohomology (in particular, H1), as alluded to in §6.1. But as soon as you modify it,
you are in danger of “unbalancing” the bundle to lose this niceness — or at the very least,
to lose the ability to show that the bundle retains this niceness.

But on the other hand, you want to break the curve into simpler pieces, and eventually
into lines, so you can end up with a base case you can work with.

And furthermore, when you break the curve into pieces, you want the resulting pieces to
also be “Brill-Noether curves”, and it is harder to make sense of what this means once the
curves are so special as to be broken, particularly when the very definition of Brill-Noether
curves is that they were “generally chosen”. How can you tell when a highly degenerate
curve is the limit of a Brill-Noether curve?

In the end, Larson and Vogt’s induction resembles a difficult slalom, winding between
these two dangers as your induction downwards careens toward your desired base case.
As one might expect, as the induction gets closer and closer to the base case, their options
for degeneration become more and more limited, and at many times it looked like there
was no way forward, and they were guaranteed to crash into a tree. This is why there are
particularly clever or delicate arguments in small-dimensional projective spaces, e.g., in
CP4, see [LV1]. The interest of this paper isn’t because CP4 is so gosh-darn interesting, but
because the obstacles come hard and fast in that dimension.

9. WORKING OVER OTHER FIELDS

At the start, I gave reasons to work over C instead of over R. A lot of arguments
and intuitions involved “wiggling” or “deforming”, so a priori we can’t seem to make
these arguments in other fields, where we can’t use “convergence” or other analytic tools.
Surprisingly, all of the techniques can extend to work over arbitrary algebraically closed
fields (and even fields that are not algebraically closed if you say things with great care).
Better yet, Larson and Vogt’s arguments apply in this vast generality. Working in this
generality actually helps (at least in some vague moral sense) because it makes clearer
what geometrically is relevant to the problem, just as making the correct more general
statement in §5.1 led us (or more correctly, Larson and Vogt) to the correct attack on the
problem. And although the correct statement led to a fifth counterexample, knowing the
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fifth counterexample helped lead to a correct inductive strategy (since Larson and Vogt
had to somehow dodge the fifth counterexample).

Similarly, if you extend the problem to arbitrary fields, you also get an additional family
counterexamples to the statement they wished to prove, but this additional family helps
think about the correct argument (at least in retrospect). The family of counterexamples
is so basic that I am surprised (even amazed) that it wasn’t well-known before — these
aren’t exotic curves.

In general, if you have a genus 0 (smooth) curve (over any algebraically closed field!),
every vector bundle splits into a direct sum of line bundles, and you expect the “general
one” to be “balanced” — the line bundles should either be all the same, or at least “differ
by the least possible nonzero amount”. (Translation for experts: the degrees of any two of
them differ by at most one.)

9.1. Example [LV2, Thm. 1.4]. If k is an algebraically closed field of characteristic 2, and
C ⊂ CPrk is a curve of genus 0, and degree d such that d− 1 isn’t divisible by r− 1, then
the normal bundle of C in CPrk is not balanced.

I leave this as a riddle for those experienced in this sort of arithmetic geometry: why
would you expect this to be true?

10. CONCLUSION

The work of Larson and Vogt not only completes this long open programme, it really
tied it up with a bow, giving a motivation and explanation for the counterexamples, as
well as a structure for why the result holds.

I find Larson and Vogt’s result very attractive, because the question is so motivated and
multifaceted, and because the solution is a mixture of the concrete roll-up-your-sleeves
get-your-hands-dirty argumentation, mixed with the use of judiciously deployed big and
abstract machinery. Their general strategy is a frontal blunt unsubtle attack on the problem,
but their tactics require precision and care. In the end, the approach is theoretical and
pencil-and-paper, but at the same time they were unafraid of writing code to convince
readers that they didn’t miss any small extra edge case.

10.1. Acknowledgements. In preparing for the talk, I benefited from both Eric Larson
and Isabel Vogt explaining their thoughts in detail, which ended up being far more for my
own benefit than for yours, dear reader, because I tried to give you a birds-eye overview
of the story for non-experts. I am also forever grateful to J. Harris, the teacher of the three
of us, for showing us by example how to think about such beautiful things.
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