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1. INTRODUCTION 

The point of this paper is to prove arithmeticity of a class of finitely generated 
groups that arise naturally in a purely geometric context. Namely, we prove 
arithmeticity of the holonomy group of a Lie foliation of a compact manifold, 
assuming the existence of a metric for which the leaves are symmetric spaces 
of non positive curvature and rank at least 2. This provides a partial answer to 
the question raised a number of years ago by A. Haefliger [13] of determining 
the possible holonomy groups of Lie foliations. 

To indicate the nature of the questions we are considering, let us first recall 
that if N is a Riemannian manifold, a fundamental question is to understand 
the relationship of the topology of N and the geometry of N (or for many 
purposes, the geometry of if). There has been a wide variety of work on 
this type of question from a variety of viewpoints. In particular, we can ask 
how the geometry of N (or if) controls the nature of 7r 1 (N). One can ask 
a more general question, namely to understand to what extent the geometry of 
if controls the actions of 7rl (N) on a manifold T. A standard construction 
associates to every such action a foliation of a manifold M which has all leaves 
locally isometric to if, in which T appears naturally as a submanifold of M 
transverse to the foliation, and the 7rl (N)-action on T controls the way in 
which the leaves of this foliation are "tied together". We can thus reinterpret 
our last question, and broaden its context as well, by formulating the following 
question: Determine the extent to which the geometry of a simply connected 
Riemannian manifold X controls the way in which the leaves of a foliation are 
tied together if we assume the leaves are all locally isometric to X. In general, 
it is of course difficult to understand actions of a group on a manifold, and 
correspondingly difficult to understand foliations with leaves locally isometric to 
a given X . It is natural to begin an investigation of such actions with the case in 
which the action on T preserves some geometric structure, e.g., a Riemannian 
metric. In terms of the associated foliation, this becomes a special case of the 
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notion of a "Riemannian foliation" (described in more detail below) in which 
the leaves are tied together in a way that preserves a metric. In this situation, 
generalizing the case of a foliation coming from an action of a fundamental 
group, there is a discrete group, called the holonomy group, with an embedding 
in a connected Lie group, that controls the way in which the leaves are tied 
together. The nature of the results we prove is that under certain assumptions 
on the geometry of X, this "tying together", i.e., the holonomy group together 
with an embedding in a connected Lie group, is of a very specific arithmetic 
nature. 

To be more precise, we first recall the notion of a Lie foliation. Let g- be a 
foliation of a compact connected manifold M . If W c M is a sufficiently small 
open set, the foliation on W is given by the fibers of a submersion p: W -+ V. 
If Pi: »-: -+ Vi are two such submersions, we obtain a diffeomorphism (or 
homeomorphism if the foliation is only assumed to be continuous) 

~j: Pi (»-: n Uj) -+ Pj(»-: n Uj). 
If X is a manifold and G is an effective transformation group of X, we say 
that g- is a (G, X)-foliation if we can choose a covering {»-:} of M such 
that Vi c X is open and each ~j is the restriction of an element of G. This 
notion, and related notions, have been studied in [2, 7, 13,21,24], for example. 
In particular, if X is a Riemannian manifold and G is a group of isometries, 
g- is called a Riemannian foliation, and if X = G, a connected Lie group, 
then g- is called a Lie foliation, or more precisely, a G-foliation. These cases 
have been studied in [4, 8, 9, 12, 17, 22], and elsewhere. By passing to a 
transverse orthogonal frame bundle, the study of Riemannian foliations can in 
most respects be reduced to the study of Lie foliations (see, e.g., [17]). It is clear 
that if G and G' are locally isomorphic, a G-foliation is also a G' -foliation. 
Thus, one can speak more properly of a g-foliation, where 9 is a Lie algebra. 

For any G-foliation, there is a natural homomorphism h: 1fl (M) -+ G, 
the holonomy homomorphism, and a locally trivial fibration D: 'if -+ G (the 
developing map) which commutes with the action of 1fl (M) (where 1fl (M) 
acts on G via translation by h(y), y E 1fl (M)). Here M is the covering 
of M corresponding to the normal subgroup ker( h). Furthermore, the leaves 
of g- are exactly the images of the fibers of D under the covering projection 
'if -+ M. The group h(1fl (M)) = reG is called the holonomy group of the 
G-foliation. Various general results on Lie foliations allow reduction to the case 
of foliations with a dense leaf [17]. In this case, the holonomy group r will 
be dense in G. For the construction of hand D, see [8, 24]. If the fibers of 
D are connected, then the leaves of g- are in natural 1-1 correspondence with 
the r-orbits in G. We then say that g- has good development over G. If G 
is simply connected, this will always be the case, but it mayor may not be true 
for other groups locally isomorphic to G. 

Suppose now that G is a connected semisimple Lie group with finite center 
and that reG is a dense subgroup. Then r is called arithmetic if there is a 
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semisimple algebraic Q-group H and a smooth surjection p: H~ - Adc (G) 
such that p(H~ n Hz) and Adc(r) are commensurable (cf. the definition of 
arithmeticity for discrete subgroups [28]). In light of Margulis' arithmeticity 
theorem [15, 28], this is equivalent to the condition that there is a semisimple 
Lie group G' and an irreducible lattice A c Adc(G) x G' such that Adc(r) is 
commensurable with the projection of A into Adc(G). While this latter for-
mulation is perhaps more natural in a geometric context (although it carries less 
information without Margulis' theorem), we wish to emphasize the arithmetic 
formulation here. This is because we shall show that a suitable holonomy group 
is arithmetic not by first showing it is a lattice and then applying Margulis' the-
orem, but rather by showing via other methods that it is naturally a subgroup 
of a group of the form Hz where H is a Q-group and then using further argu-
ments to show that it must be of finite index in this group. Thus, in our proof, 
the fact that the group is a lattice will follow after we establish its arithmetic 
nature, rather than vice versa by an application of Margulis' theorem. 

We recall that any symmetric space Y of non positive curvature has a (es-
sentially unique) de Rham decomposition Y = II~ , where each ~ is an irre-
ducible symmetric space of nonpositive curvature. We let 

d(Y) = min{dimIsom(~)} 
where Isom(~) is the group of isometries of ~ (and is a noncompact simple 
Lie group if Yi is not Euclidean). 

We can now formulate a precise version of our main results. 
Theorem A. Let 9 be a (real, finite dimensional) Lie algebra and !T a 
g-Joliation oj a compact connected manifold M. Suppose there is a dense, sim-
ply connected leaf Assume there is a Riemannian metric on M such that each 
leaJ is a locally symmetric space oj nonpositive curvature such that all irreducible 
Jactors in the de Rham decomposition oj the covering symmetric space Y have 
rank at least 2. Then: 

( I ) 9 is semisimpie. 
(2) There is a (connected) Lie group G with finite center (and Lie algebra 

g) such that !T has good development over G. 
(3) The holonomy group reG is a dense arithmetic subgroup. 
(4) Adc (r) is commensurable with the projection into Adc (G) oj a lattice 

in AddG) x Isom(Y). 
(5) codim(!T) = dimg ~ d(Y). 

As indicated above, the hypothesis that !T has a dense leaf is not a serious 
restriction. It is possible that Theorem A remains true without the assump-
tion that there is such a leaf which is simply connected. In this direction, our 
arguments show: 
Theorem B. Assume all hypotheses oj Theorem A, except the hypothesis that 
there is a simply connected leaf (We still assume there is a dense leaf) Then 
codim!T ~ d(Y)j2. 
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Theorem B implies of course the nonexistence in low codimension of Lie 
foliations with a dense leaf and leaves locally isometric to Y. Via the reduction 
of Riemannian foliations to Lie foliations alluded to above (see [17]), we obtain 
the following consequence. 

Corollary C. Let !T be a Riemannian foliation of a compact manifold M with 
codimension d. Assume there is a metric on M such that the leaves of !T are 
locally isometric to a symmetric space Y all of whose irreducible factors have 
rank at least 2. If d(d + 1) < d(Y), then all leaves are compact. Moreover, 
there is a finite covering Xi of M such that the lifted foliation !T on M is the 
foliation defined by a fiber bundle projection. 

A priori, the holonomy group of a Lie foliation is a finitely generated subgroup 
of a Lie group. Haefliger [13] raised the general problem of understanding 
which such groups may arise this way. The general nature of Theorem A is of 
course that it is a theorem relating the geometry of the leaves to the holonomy 
embedding r ~ G. There are other such results. Namely, in [4] it is shown 
that for a Lie algebra g, a g-foliation has leaves of polynomial growth if and 
only if 9 is nilpotent, and that the leaves are "Folner" (i.e. satisfy a certain 
isoperimetric inequality) if and only if 9 is solvable. In [8], (0 (1, n), Hn)_ 
foliations (Hn = hyperbolic n space) are studied in case dim!T = 1 , i.e. the 
leaves are locally isometric to the line. 

As we remarked above, our proof of Theorem A does not employ Margulis' 
arithmeticity theorem, but the proofs do have certain features in common. 
Namely, the basic step in the proof of Margulis' theorem is his "superrigid-
ity" theorem. In [26] (see also [27, 28]) we generalized Margulis' superrigidity 
theorem to obtain "superrigidity for cocycles", a result which gives detailed 
measure-theoretic information about actions of semisimple groups on vector 
(or principal) bundles. This theorem will in tum playa basic role in the proof 
of the present arithmeticity theorem (i.e. Theorem A). 

Although the hypotheses of Theorem A are of a geometric and topological 
nature, the more difficult and central part of the argument in the proof involves 
the relationship of algebraic groups and ergodic theory. In fact, we shall basi-
cally deduce Theorem A from the following result in ergodic theory. We refer 
the reader to [10, 11] and §3 below for the notion of measurable stable orbit 
equivalence. 

Theorem D. Let G be a connected Lie group and reG a dense finitely gen-
erated subgroup. Let H be a connected semisimple adjoint Lie group, each of 
whose simple factors has R-rank at least 2. Suppose the action of r on G (by 
translations) is measurably stably orbit equivalent to an essentially free action 
of H on a (standard) measure space preserving a finite measure. Then: 

( 1 ) G is semisimple. 
(2) rnZ(G) is offinite index in Z(G). 
(3) AdG(r) is a dense arithmetic subgroup of AdG(G). 
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(4) AdG (r) is commensurable with the projection into AdG (G) of a lattice 
in AdG(G) x H. 

We remark that the properties of the measurable equivalence relation defined 
by the action of a dense subgroup on a Lie group also play a role in the results 
of [4] described above on g-foliations with g solvable. Namely, in [31] we 
showed that if r is a dense subgroup of G, where G is a connected Lie group, 
then the r action on G is amenable if and only if G is solvable. This was 
applied in [4] in the proof that for a g-foliation, the leaves are Folner if and 
only if g is solvable. 

§§2-10 of this paper are devoted to the proof of the results stated above. In 
§ll, we show how one can obtain results similar to Corollary C for foliations 
in which the leaves are locally isometric to certain rank one symmetric spaces 
of negative curvature, namely those whose isometry group is a Kazhdan group. 
This is based on a result proved in § 11, concerning stable orbit equivalence of 
the action defined by a dense subgroup of a Lie group with a finite measure 
preserving action of a Kazhdan group. 

I would like to thank Y. Carriere and E. Ghys for communicating their papers 
[4, 5] which stimulated my interest in some of these matters. 

2. PRELIMINARIES ON FOLIATIONS 

We recall from the introduction the following definition. 

Definition 2.1. Let g be a (real, finite dimensional) Lie algebra and G a con-
nected group with Lie algebra g. Let!T be a g-foliation of a compact, 
con~cted manifold M, h: 7r, (M) -+ ~ the holonomy homomorphism, and 
D: M -+ G the developing map, where M is the covering of M corresponding 
to ker(h). We say that !T has good development over G if the fibers of D 
are connected. 

We then have the following easily verified assertions. 

Proposition 2.2. (a) If G, -+ G2 is a covering and !T has good development 
over G2 , it has good development over G, . 

(b) If G is simply connected, !T has good development over G. 

We let M/!T denote the (in general non-Hausdorff) space ofleaves. 

Proposition 2.3. If !T has good development over G, with h (7r, (M)) = r, then 
the 7r, (M)-map D: M -+ G induces a bijection of M/!T with G /r . 

( We remark that in general, r is not closed in G.) 

It will be convenient to express this bijection in an alternate manner. 

Proposition 2.4. If !T has good development over G, then there is a Borel iso-
morphism () of G with a Borel subset T c M such that: 

(a) T intersects every leaf at least once, and in at most a countable set. 
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(b) If x, YET, then x and yare in the same leaf if and only if (r' x 
and (r' yare in the same r-orbit in G. 

Proof. We can choose a Borel section of the r-map D: M -+ G, and with 
some care the image of this section will map injectively under projection to 
M . Let T be this image in M. 

We shall need the following observation about foliations by locally symmetric 
spaces. 

Proposition 2.5. Let !T be a foliation of a compact manifold M. Assume each 
leaf is locally isometric to a symmetric space Y of nonpositive curvature. Let 
H be the connected component of the identity of the isometry group of Y. Fix 
Yo E Y and let K be the stabilizer of Yo in H, so that K is a compact Lie 
group. Then there is a principal K -bundle p: M* -+ M with a smooth H -action 
on M* such that the H -orbits in M* are precisely the inverse images under p 
of the leaves of !T. Further, for x E M* , the stabilizer Hx is isomorphic to 
the fundamental group of the leaf of !T through p(x). If!T is a Riemannian 
or Lie foliation (or more generally if there is a transverse invariant measure of 
smooth class) then there is a finite H -invariant measure on M of smooth class. 

Proof. Let M* be the set of smooth maps q: Y -+ M such that q is a Rie-
mannian covering of a leaf of !T. If h E H , clearly q 0 h E M* , so that H 
acts on M*. Fix a point Yo E Y and define p: M* -+ M by p(q) = q(yo)' 
Then all assertions of the proposition may be verified in a routine manner. 

3. PRELIMINARIES ON ERGODIC THEORY 

In this section we review a number of ergodic theoretic notions that we will 
need for the proofs of the main theorems. There will be a number of statements 
in which equality should be interpreted as equality almost everywhere. We may 
occasionally be careful in this direction, but for the most part this distinction 
causes only routine problems and we will usually ignore them. In subsequent 
sections there will be a significant number of known results we shall use freely, 
providing references but not in general discussing them as background material. 
The reader is referred to [28J for a general discussion of the ideas involved. 

We begin by recalling the notion of orbit equivalence and stable orbit equiv-
alence. We refer the reader to [10, 11, 20, 27, 28J and the references therein 
for more detail. Suppose G and H are locally compact groups acting on (stan-
dard) measure spaces (X,.u) and (y, v) respectively. The measures .u and 
v are assumed to be a-finite and quasi-invariant. The actions are called or-
bit equivalent if (possibly after discarding null sets) there is a measurable and 
measure class preserving bijection 0: X -+ Y such that 0 takes G-orbits onto 
H-orbits; more precisely, for (a.e.) x EX, O(xG) = O(x)H. A somewhat 
weaker notion, whose measure theoretic properties were examined in detail in 
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[10, 11, 20] (although in a slightly different context in [20]) is the notion of 
stable orbit equivalence. 

Proposition 3.1 [11]. The following are equivalent. 
(i) The action of G x S' on X x S' is orbit equivalent to the action of 

H x S' on Y x S' (where S' is the circle). 
(ii) After discarding invariant null sets, there is a measurable map (): X --+ Y 

such that () induces a null set preserving bijection X/G --+ Y/ H. (We 
remark that we do not assume () itself to be either injective or surjective. ) 

Definition 3.2. If the conclusions of 3.1 are satisfied, the G-action on X and 
the H -action on Yare called stably orbit equivalent. 

We say that an action has "continuous orbits" if (almost) every orbit is un-
countable. 

Proposition 3.3 [11]. (a) If two actions are stably orbit equivalent, one is ergodic 
if and only if the other is ergodic. 

(b) Actions with continuous orbits are stably orbit equivalent if and only if they 
are orbit equivalent. 

(c) If the G-action on X has continuous orbits and H is a countable group 
acting on Y, then the actions are stably orbit equivalent if and only if ( after 
discarding invariant null sets) there is a Borel isomorphism () of Y with a Borel 
subset T c X such that () induces a null set preserving bijection Y/ H --+ X/G. 

Example 3.4. Suppose sr is a foliation of a compact manifold M and that 
the leaves are locally homogeneous spaces with a common universal cover L. 
Let H be the connected component of the identity of the isometry group of 
L. Suppose sr is a g-foliation with good development over G. Let reG 
be the holonomy group. Then the action of H on M* (where M* is as in 
Proposition 2.5) is stably orbit equivalent to the r-action on G. 

Proof. This follows from 2.4, its proof, 2.5, and 3.3. 

A basic property of stable orbit equivalence is that it induces isomorphism 
on cohomology. Before stating this in the form we need, we recall some facts 
about cocycles (see [28] as a general reference). 

We recall that if G acts on (the right of) X and L is a locally compact 
group, a Borel function a: X x G --+ L is called a cocycle if for all g, h E 
G, a(x, gh) = a(x, g)a(xg. h) (a.e. x). Two such cocycles a. p are called 
equivalent or cohomologous (and we write a '" P) if there is a measurable 
(jJ: X --+ L such that for each g E G, (jJ(x)a(x, g)(jJ(xg)-' = P(x. g) (a.e.). 
We denote by Z' ((X. G); L) the space of cocycles and by H' ((X. G); L) the 
set of cohomology classes of cocycles. If L, c L is a subgroup, it is often 
of interest to know when a is cohomologous to a cocycle taking all values 
in L,. If Y is an L-space, a function (jJ: X --+ Y is called a-invariant if 
(jJ(x)a(x, g) = (jJ(xg). The following is basically formal. 
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Proposition 3.S. The following are equivalent: 
(i) a is equivalent to a cocycle taking all values in L 1 ; 

(ii) there is a measurable a-invariant ¢: X --+ LjL1 • 

Using this, one can define the important notion of the algebraic hull of a cocy-
cle taking values in an algebraic group. (See [28, 30] for a proof and discussion 
of the following result.) 

Proposition 3.6. Let k be a local field of characteristic 0, L an algebraic 
k-group, and Lk the group of k-points. Suppose G is a locally compact group 
acting ergodically on X, and that a: X x G --+ Lk is a cocycle. Then there is 
an algebraic k-group H c L with the following properties. 

(i) a is equivalent to a cocycle taking all its values in Hk . 
(ii) For any algebraic k-group H' with H~ c Hk a proper inclusion, a is 

not equivalent to a cocycle taking all its values in H~. 
(iii) Up to conjugacy in Lk , Hk is the unique such group satisfying (i), (ii). 
(iv) If a is equivalent to a cocycle taking all its values in some algebraic 

group H~ C Lk , then some conjugate of Hk in Lk is contained in H~. 

Definition 3.7 [28]. The group Hk (or more precisely its conjugacy class in 
Lk ) is called the algebraic hull of a. The algebraic hull is an invariant of the 
cohomology class defined by a. We say that a is Zariski dense in Lk if the 
algebraic hull is Lk itself. 

Example 3.8 [28]. Suppose G is a semisimple connected real algebraic group 
with no compact factors, and X is a G-space on which G acts ergodically with 
finite invariant measure. Let a(x, g) = g, so that a: X x G --+ G is a cocycle. 
If H is a closed subgroup, then a is equivalent to a cocycle taking all values 
in H if and only if there is a G-map X --+ Gj H. If H is algebraic, the Borel 
density theorem [3, 28] implies H = G. Thus, a is Zariski dense in G. 

In general, an ergodic action of a real algebraic group G is called Zariski 
dense in G if the cocycle a(x, g) = g is Zariski dense. This is equivalent to 
the assertion that there is no measurable G-map X --+ G j H where H eGis 
proper algebraic. 

A cocycle a: X x G --+ L is called orbital if for (almost) all x EX, 
a(x, g) = e for all g E Gx ' the latter being the stablizer of x in G. If 
a '" p, then a is orbital if and only if P is orbital. We let Z~rb((X, G); L) 
(resp. H~rb((X, G); L) ) denote the set of (resp., equivalence classes of) orbital 
cocycles. 

Lemma 3.9. Suppose G acts on (X, J1.). Let p: X x S 1 --+ X be projection. 
Then the map 

• 1 1 1 1 P : Zorb((X, G) ; L) --+ Zorb((X X S ,G x S ); L) 
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given by (p* a)((x, s), (g, z)) = a(x, g) induces a bijection on orbital coho-
mology. The inverse is the map on cohomology induced by i: X -+ X x S I , 

i(x) = (x, e), i.e. is given by (i* P)(x, g) = P((x, e), (g, e)). If the G-action on 
X is ergodic, and L is (the k-points of) an algebraic group, then the algebraic 
hull of a is equal to the algebraic hull of p * a . 

Proof. All but the last assertion follows from [11, 20]. The last assertion is 
easily verified. 

Corollary 3.10. If (X, G) and (y, H) are stably orbit equivalent ergodic actions, 
then there is a bijection H~rb((X, G) ;L) -+ H~rb((Y' H) ;L) preserving algebraic 
hulls. 

Example 3.11. Consider the situation in Proposition 3.3(c). Suppose further 
that the G-action on X is ergodic and essentially free (i.e. almost all stabi-
lizers are trivial). We then have a cocycle a: Y x H -+ G characterized by 
O(y)a(y. h) = O(yh) (cf. [28, 4.2.8]). Under the isomorphism of Corollary 
3.10, this corresponds to the cocycle p: X x G -+ G given by P (x, g) = g. In 
particular, if G is semisimple with no compact factors, and the measure on X 
is finite and invariant, then a is Zariski dense in G by Example 3.8. 

If G is a connected semisimple Lie group for which all simple factors have 
R-rank at least 2, then we have very explicit information on the cocycles with 
a simple algebraic hull. If 1C: G -+ L is a continuous homomorphism, let 
a1r (x, g) = 1C(g) , so that a1r : X x G -+ L is a cocycle. The following result is 
fundamental for the proofs of Theorems A, B, and D. 

Theorem 3.12 [26, 27, 28] (Superrigidity for cocycles). Let G be a connected 
semisimple Lie group with finite center such that every simple factor of G has 
R-rank at least 2. Let (X .Il) be an ergodic G-space with finite invariant mea-
sure. Let a: X x G -+ L be a cocycle. 

(a) If L is a simple adjoint noncompact Lie group and a is Zariski dense in 
L, then there is a (smooth) homomorphism 1C: G -+ L (necessarily surjective) 
such that a '" a1r • 

(b) If L is a simple adjoint complex algebraic group, and a is Zariski dense 
in L, then either. (i) there is a smooth homomorphism 1C: G -+ L such that 
a'" a1r ; or (ii) a'" P where P takes all values in a compact subgroup of L. 

(c) If L is a group of k-points of a k-group where k is a totally disconnected 
local field of characteristic 0, then a,...., p where p takes all values in a compact 
subgroup of L. 

This result is a generalization of Margulis' superrigidity theorem [15, 28]. 
Theorem 3.12 was first proven under slightly different hypotheses in [26] (see 
[27, 28] for the present hypotheses), where it was used to prove results about 
orbit equivalence of actions of semisimple groups. Here we shall need the 
following variant of the application given in [26]. 
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Corollary 3.13. Let G and X be as in 3.12 (and assume the G-action on X is 
effective). Let H be a connected semisimple adjoint Lie group with no compact 
factors, and Y an ergodic H -space which is essentially free. Suppose further 
that the action on Y is Zariski dense in H. (We do not assume, however, that 
the H -action has a finite invariant measure.) Suppose the G-action on X and 
H-action on Yare stably orbit equivalent. Then there is a surjective (smooth) 
local isomorphism n: G ---> H and a measure class preserving map If/: X ---> Y 
such that If/(xg) = If/(x)n(g). Inparticular, Y hasafinite H-invariantmeasure 
( in the given measure class) . 

Proof. This follows from the proof of [28, Theorem 5.2.1]. In this proof, only 
the Zariski density of the action of Hand Y is used, not the fact that there 
is a finite invariant measure. 

Ano!her very useful result about cocycles for such G derives from the fact 
that G has Kazhdan's property. 

Theorem 3.14 [28, Theorem 9.1.1]. Assume G is a locally compact Kazhdan 
group (e.g., G is a connected semisimple Lie group with finite center for which 
every simple factor has R-rank at least 2). Let X be an ergodic G-space with a 
finite invariant measure, and Q: X x G ---> L a cocycle, where L is an amenable 
locally compact group. Then Q is equivalent to a cocycle taking all values in a 
compact subgroup of L. 

We can now indicate the relevance of these considerations for the proof of 
Theorems A and B. By Example 3.4, the holonomy action of r on G is stably 
orbit equivalent to a finite measure preserving ergodic action of a semisimple 
Lie group, each of whose simple factors has R-rank at least 2. Theorems 3.12 
and 3.14 give us some control over the cohomology of the latter action and 
by Corollary 3.10, we have information on HI for the r-action on G. Each 
homomorphism of r in turn defines an element of HI , and thus we can hope 
to derive information about homomorphisms of r. This, of course, has the 
potential of leading one to an arithmeticity theorem. 

4. A HOMOMORPHISM EXTENSION THEOREM 

In this section we describe a basic result on the extension of homomorphisms 
of dense subgroups to homomorphisms of the ambient group. The technique is 
basically due to Margulis and appears in approximately the following form in 
our discussion of Margulis' work in [28]. 

Theorem 4.1. Let A be a dense subgroup of a locally compact group L. Let k 
be a local field of characteristic 0, M an (algebraically) connected k-group 
and n: A ---> Mk a homomorphism with n(A) Zariski dense. Suppose there is 
a measurable A-map ¢>: L ---> Mk/Nk where N c M is a k-subgroup for which 
Mk acts effectively on Mk/ Nk . Then n extends to a continuous homomorphism 
L ---> M k • 
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Proof. This is implicit in the argument of [28, p. 128] but we shall include some 
details for completeness. 

Let F(L,MkINk) denote the space of measurable maps ¢: L ---- MklNk, 
two such maps being identified if they agree almost everywhere. This space has 
the topology of convergence in measure on compact sets. The group Mk acts on 
F(L, Mkl Nk) pointwise in the image, and L acts on this space by translation on 
the domain. Since A c L is dense and Mk and Nk are algebraic, we can apply 
the argument of [28, p. 128]. This will show that there is a point Xo E MklNk 
and a measurable (and hence continuous) homomorphism a: L ---- Mk such 
that for hE L, ¢(h) = xo· a(h), provided we can establish that {m E Mklx. 
m = x for all x E ¢(L)} is trivial. However, ¢(L)· 1l(A) c ¢(L) since ¢ is a 
A-map and hence the Zariski closure of ¢(L) is 1l(A)-invariant (more precisely, 
the Zariski closure of the essential range of ¢). Since 1l(A) is Zariski dense 
in M, this implies ¢( L) is Zariski dense. Thus, if m E Mk pointwise fixes 
¢(L), it pointwise fixes MklNk which by our effectiveness assumption implies 
m is trivial. To complete the proof, it suffices to show that a extends 1l. For 
yEA and (a.e.) hE L, we have 

¢(hy) = xo· a(hy) = xo· a(h)a(y) = ¢(h)a(y) , 

and ¢(hy) = ¢(h)1l(Y). Therefore, for almost all h we have ¢(h)a(y) = 
¢(h)1l(Y). Therefore a(Y)1l(y)-1 pointwise fixes the essential range of ¢. As 
we remarked above, this set is Zariski dense, so a(Y)1l(y)-1 acts trivially on 
MklNk, showing a(y) = 1l(Y). 

Suppose now that G is a connected Lie group. Then there is a unique 
maximal solvable normal subgroup ReG such that G IRis a connected 
adjoint semisimple Lie group. Namely, let p: G ---- GI rad(G) be the natural 
projection where rad(G) is the radical. Then let R = p-l(Z(G/rad(G))). We 
then have the following corollary of Theorem 4.1. 

Corollary 4.2. Let G be a connected Lie group, R as above, p: G ---- G I R . 
Let reG be a dense subgroup, and let M be a connected semisimple adjoint 
real or complex algebraic group. Suppose N c M is an algebraic subgroup not 
containing a nontrivial normal subgroup of M. Let 1l: r ---- M be a homomor-
phism with 1l(r) Zariski dense. If there is a measurable r-map ¢: G ---- MIN, 
then there is a rational homomorphism a: G I R ---- M such that 1l = a 0 (p Ir) . 
Proof. By Theorem 4.1, 1l extends to a continuous homomorphism a: G ----
M, and since 1l(A) is Zariski dense in M and M is semisimple and adjoint, 
aiR is trivial. 

For totally disconnected groups we obtain: 

Corollary 4.3. Let G be a connected Lie group, and reG a dense sub-
group. Let k be a totally disconnected local field of characteristic 0, and M 
an (algebraically) connected simple adjoint k-group. Suppose 1l: r ---- Mk is 
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a homomorphism with n(r) Zariski dense. If N c M is a proper k-subgroup, 
then there is no measurable r-map G ~ Mk/Nk . 

5. FIRST RESULTS ON R 

We now begin the proof of Theorems A, B, and D. To fix notation, we assume 
G is a connected Lie group, and reG a countable dense subgroup. Let 
rad( G) be the radical and R :) rad( G) the maximal solvable normal subgroup 
with G/R = L a connected semisimple adjoint Lie group (see §4). While R is 
solvable, it is not necessarily connected. We let H be a connected semisimple 
adjoint Lie group each of whose simple factors has R-rank at least 2. Let 
X be an ergodic, essentially locally free (Le. almost all stabilizers are discrete) 
H -space with a finite invariant measure. We assume the actions of H on X 
and r on G are stably orbit equivalent. In this section we obtain some first 
results on Rand r n R. We shall of course subsequently obtain much sharper 
information. 

Lemma 5.1. R -=1= G, i.e. L is nontrivial. 

Proof. Suppose R = G. Since R is solvable, the action of r on R is 
amenable. It follows that there is a cocycle R x r ~ R whose algebraic hull 
is R. (This can be deduced from [6], which shows that an amenable action is 
orbit equivalent to a Z-action, and the construction of cocycles on Z-actions 
in [23]. From the latter, one obtains a cocycle a for which the skew product 
action of r on R x R, given by (r, t) . y = (ry, t + a(r, y)) is ergodic. This 
easily implies that the algebraic hull is R.) By Corollary 3.10, there is a cocycle 
a: X x H ~ R with algebraic hull R. However, this contradicts Theorem 3.14. 

Remark. The proof shows that the lemma is valid if H is any Kazhdan group, 
not necessarily a semisimple group with all simple factors of R-rank at least 2. 

The next result we establish under the additional assumption that the 
H -action is essentially free. 

Lemma 5.2. Assume the H -action on X is essentially free. Then r n R is 
discrete. 

Remark. This argument will apply for H any semisimple Lie group with no 
compact factors. 

Proof. Let R) = (r n R). Since R is normal in G, r normalizes R), and 
since r is dense in G, R) eGis normal. Let E = G/ R) and q: G ~ E be 
the natural map. We remark that R) is solvable and hence that r n R is an 
amenable dense subgroup of R) . 

Let a: G x r ~ H be the cocycle given by Example 3.11. Thus, we choose 
a Borel isomorphism (): G ~ T c X and define a by ()(gy) = ()(g)a(g. y). 
(The existence of a depends upon the assumption that the H -action is essen-
tially free.) By the remarks in Example 3.11, a is Zariski dense in H. Let 
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a l = alGx (rnR). Let Pc H be a minimal parabolic subgroup, and M(HIP) 
the space of probability measures on HIP with the weak- • -topology. (We recall 
HIP is compact, and hence M(HIP) is as well.) Since rnR is amenable, the 
action of rnR on G is amenable [28], and hence there is an ai-invariant func-
tion ¢: G -+ M(HIP) (see §3, and for a complete discussion see [28, Chapter 
4]). Since r n R acts ergodically on RI and H act smoothly on M(HI P) in 
the sense of [28] (i.e. all orbits are locally closed; see [28, Chapter 3] for a proof) 
we can apply the cocycle reduction lemma [28, 4.2.11]. This implies that there 
is an ai-invariant function ¢: RI x (rnR) -+ HIHI where HI is the stabilizer 
of an element of M(HI P) . By a result of Moore [18] (see also [28, Chapter 3]), 
HI is an amenable algebraic group. Choose A c H to be an amenable algebraic 
group of minimal dimension for which there is an ai-invariant ¢: RI -+ HIA. 
Since the rnR-actions on all the fibers of q: G -+ E are mutually isomorphic, 
we can find a measurable ai-invariant ¢: G x (rnR) -+ HIA. 

Now let N(Ao) be the normalizer in H of the identity component of A, so 
that N(Ao) is also an algebraic subgroup of H. Let p: HIA -+ HIN(Ao) be 
the natural map. The uniqueness argument of [28, 6.2.8], using the minimal-
ity of the dimension property of A, shows that if ¢I' ¢2 are both HIA-valued 
ai-invariant functions on RI ' then pO¢1 = pO¢2 . It follows that if ¢I '¢2: G -+ 

HIA are ai-invariant, then po ¢I = po ¢2' Since r normalizes r n R, if 
¢: G -+ HIA is ai-invariant, then ¢. y will be ai-invariant as well for any 
y E r. Here ¢.y is given by (¢.y)(g) = ¢(gy)a(g, y)-l . Thus, po¢ = po(¢.y). 
In other words, po ¢ is actually a-invariant, not just ai-invariant. We thus 
have an a-invariant map G -+ HIN(Ao). Since Q is Zariski dense in G, 
this implies N(Ao) = H, and since A is amenable (and H has no compact 
factors), we have that AO is trivial, i.e. A is finite. 

Thus, we may suppose a I = al G x (r n R) is equivalent to a cocycle taking 
all values in a finite subgroup A c H. Let VI: G -+ H be measurable with 
P(g, y) = VI(g)a(g, y)VI(gy)-1 E A for all g E G, y E rnR. We recall that a 
satisfies O(gy) = O(g)a(g, y), where 0: G -+ X. Thus, if we define A: G -+ X 
by A(g) = O(g)· VI(g)-1 , we have A(g)P(g, y) = A(gy). Thus, [A(g)] = [A(gy)] 
in XI A. Since r n R is ergodic on the fibers of q, and XI A is a countably 
separated Borel space owing to the finiteness of A [28,2.1.21], [A] is constant 
on the fibers of q, i.e., all A(g), g E Rl ' lie in the same A-orbit. Hence, all 
O(g), g E RI ' lie in the same H-orbit. However, by the choice of 0, this 
means r n R acts transitively on R I ,i.e. r n R = R I . Hence r n R is closed, 
and therefore discrete. 

Corollary 5.3. If the H -action is essentially free, r n R is central in G. 

Proof. By Lemma 5.2, it is discrete. Since it is normalized by rand r is 
dense in G, it is also normal in G. 

Corollary 5.4. To prove Theorems A and D, it suffices to assume rnR is trivial. 
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Proof. Let G' = G /rnR and r' = r /rnR. Then r' c G' is a dense subgroup, 
and the action of r' on G' is stably orbit equivalent to the action of r on 
G. In the case of Theorem A, if !T has good development over G, and r is 
the holonomy group in G, then !T will have good development over G' and 
r' will be the holonomy group in G'. It follows readily that if we obtain the 
desired results for G' and r' , we have them for G and r as well. 

6. HOMOMORPHISMS OF r INTO SIMPLE LIE GROUPS 

We continue with the notation established at the beginning of §5. We let 
p: G --+ G/ R = L be projection, and let A = p(f). Thus, L is nontrivial 
(by Lemma 5.1) and A c L is a countable dense subgroup of a connected 
semisimple adjoint Lie group. If Q is a locally compact group and h: r --+ Q 
is a homomorphism, we let cxh: G x r --+ Q be the cocycle cxh(g, y) = h(y). 
Our main goal in this section is Theorem 6.4, which asserts that if Q is a 
noncompact simple adjoint Lie group, then the number of homomorphisms of 
r into Q (modulo conjugacy in Q) with Zariski dense image is finite. Basic 
to proving this is understanding the relation between hand cxh • 

We first need the following easy fact. 

Lemma 6.1. Suppose that for i = 1, 2, Qi is a connected simple adjoint (real 
or complex) Lie group, and hi: r --+ Qi is a homomorphism with hi (r) Zariski 
dense in Qi. Let h = (hi' h2): r --+ Q I x Q2 and let Q be the algebraic hull of 
h (r). Then either: 

(i) Q = Q I X Q2; or 
(ii) QO is the graph of a smooth isomorphism 7C: Q I --+ Q2' and hence 

7C 0 hi = h2. 

Proof. Since Qi is connected and hi(r) is Zariski dense, QO projects onto both 
Q I and Q2. Write QO = R ~ U where R is reductive and U is unipotent. 
Then the projection of U into Qi is normal and unipotent, hence trivial. 
Similarly, the projection of the center Z(R) onto Qi is central and hence 
trivial. Thus, QO is semisimple and adjoint. Hence, there is Qi c QO which 
is normal such that Qi maps isomorphically onto Qi. If Q I = Q2' we clearly 
have conclusion (ii). If not, Q0:::> Q I x Q2' and we clearly have assertion (i). 

Theorem 6.2. Let G, L, r be as above and Q a connected simple adjoint (real 
or complex) Lie group. For i = 1 , 2, let hi: r --+ Q be a homomorphism with 
hi(f) Zariski dense in Q. Suppose cxh1 '" cxh2 . Then either: 

(a) there is a continuous automorphism 7C of Q such that 7C 0 hi = h2; or 
(b) for i = 1, 2, hi extends to a continuous homomorphism hi: G --+ Q, 

and hence defines, in the real case, a rational surjection hi: L --+ Q , and 
in the complex case a rational surjection Lc --+ Q . 
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Proof. Let QI c Q x Q be given by QI = {(x, x)lx E Q}, so that QI c Q x Q 
is an algebraic subgroup. Then hI and h2 are conjugate by an element of Q 
if and only if the homomorphism h = (h2' hI): r ---> Q x Q is contained in a 
Q x Q-conjugate of QI • Now assume Cth1 ,..., Cth2 • Then there is a measurable 
map ¢: G ---> Q such that ¢(g)hl (y)¢(gy)-I = h2(y) for (almost) all g E G, 
and all YEr. The group QxQ acts on Q by z.(x,y)=x-Izy. This action 
is transitive and the stabilizers are precisely the conjugates of QI in Q x Q. The 
cohomology equation above can be rewritten as ¢(gy) = ¢(g)·(h2(Y)' hi (y)). In 
other words, ¢: G ---> Q is a r-map where Q is considered as the homogeneous 
space Q = (Q X Q)/QI ' and r acts on Q via h. By Lemma 6.1, if h(r) is 
not Zariski dense in Q x Q, we have conclusion (a). Thus, we may assume 
Zariski density. Since QI contains no nontrivial normal subgroup of Q x Q , 
we can apply Corollary 4.2 and deduce that h (and hence hI and h2 ) extends 
continuously to G. 

We shall apply this result to study Hom(r, Q). We first observe: 

Lemma 6.3. If Q is a connected simple adjoint (real or complex) Lie group, 
and h: r ---> Q is a homomorphism with h(r) Zariski dense, then the following 
are equivalent: 

(1) h does not extend to G; and 
(2) Cth is Zariski dense in Q. 

Proof. If Cth is not Zariski dense, then there is an Cth invariant ¢: G ---> Q/QI ' 
where QI c Q is proper algebraic. This simply means that ¢ is a r-map. Since 
h(r) is Zariski dense we can apply Corollary 4.2 to deduce that h extends to 
G. Conversely, if h extends, we have h(g)Cth(g, y)h(gy)-I = e, so that Cth 
has algebraic hull {e}. 

Theorem 6.4 (with notation as in the beginning of §5). For any noncompact, 
connected, simple, adjoint Lie group Q, the number of conjugacy classes of 
homomorphisms r ---> Q with Zariski dense image is finite. Furthermore, if 
there is such a homomorphism which does not extend to G, then Q is a factor 
ofH. 

Proof. The homomorphisms h: r ---> Q with Zariski dense image fall into two 
groups: (I) those with Cth Zariski dense, and (II) those with Cth not Zariski 
dense. By Lemma 6.3, those in group (II) extend to continuous surjective ho-
momorphisms G ---> Q , and these factor to surjections L ---> Q. Thus, there are 
only finitely many conjugacy classes in group (II). For those in group (I), we have 
from Theorem 3.12 and Corollary 3.10 that {Cthlh in group (I)} forms only 
finitely many equivalence classes of cocycles, and that if this set is nonempty, 
then Q is a factor of H. By Theorem 6.2, this implies {hlh in group (I)} is 
finite modulo Aut(Q) , and since Q is simple, it is finite modulo conjugacy by 
elements of Q. 
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7. HOMOMORPHISMS INTO TOTALLY DISCONNECTED SIMPLE GROUPS 

Theorem 7.1. Let G, r as above. Let M be a k-simple connected k-group, 
where k is a totally disconnected local field of characteristic o. Then for any 
homomorphism 7C: r -+ Mk with 7C(r) Zariski dense we have 7C(r) is compact. 

Proof. We may clearly assume M is an adjoint group. As above, let 0!11" be the 
cocycle 0!11": G x r -+ Mk given by O!11"(g, y) = 7C(y). 

Lemma 7.2. 0!11" is Zariski dense in M k . 

Proof. If not, there is an 0!11" -invariant function ¢: G -+ Mk/ Nk where Nk C 
Mk is (the k-points of) a proper k-subgroup, i.e., ¢ is a r-map. However, 
this contradicts Corollary 4.3. 

Continuing the proof of 7.1, we may now apply assertion (c) of Theorem 
3.12 and Corollary 3.10. We deduce that 0!11" is equivalent to a cocycle taking 
all values in a compact subgroup of M k • We are thus reduced to proving: 

Lemma 7.3. Let k be a local field of characteristic 0, M an (algebraically) 
connected k-simple adjoint k-group, and 7C: r -+ Mk a homomorphism with 
7C(r) Zariski dense. Suppose 0!11" is Zariski dense and that 0!11" is equivalent to a 
cocyc/e taking all values in a compact subgroup of M k . Then 7C(r) is compact. 

Proof. Let Q c M be a minimal parabolic k-subgroup. Thus, Mk/Qk is 
compact. Let K C Mk be a compact subgroup such that there is a measurable 
¢: G -+ Mk for which ¢(g)O!11"(g, y)¢(gy)-I E K. Let M(Mk/Qk) be the 
space of probability measures on Mk/Qk with the weak-· topology. Since K 
is compact, there is a K-invariant fl E M(Mk/Qk). Let A: G -+ M(Mk/Qk) be 
defined by A(g) = fl·¢(g) , where we write the action of Mk on M(Mk/Qk) on 
the right. Then K -invariance of fl implies that A is 0!11" -invariant. Equivalently, 
A is a r-invariant element of the function space F(G, M(Mk/Qk)) ' where, as 
usual, this is the space of measurable functions, two being identified if they 
agree almost everywhere. The r action is given by right translation on G and 
the action on M(Mk/Qk) given by 7C. The action of G on F(G, M(Mk/Qk)) 
given by (g. f)(a) = f(g -I a) commutes with the r-action. In particular, 
if we let A = F(G, M(Mk/Qk))r be the space of r-invariants, then A is a 
compact convex set (with the weak-· topology as in [25]; see [25] for a full 
discussion) on which G acts linearly and continuously. Let p: G -+ L be the 
projection. Let PeL be the product of the compact factors of L together 
with a minimal parabolic subgroup for each noncom pact factor of L. (If L is 
compact, P = L. This is degenerate for the remainder of the argument, but 
the argument still applies.) Since P is amenable and ker p = R is solvable, 
p. = p -I (P) is also amenable. Hence, there is a p. -invariant element in 
A. Therefore, if we let a11" be the cocycle a11": P \ L x r -+ Mk given by 
a 11" (x , y) = 7C(y) , such a p. -invariant element of A will define a a11" -invariant 
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function '1': P \ L -+ M(Mk/Qk). The Mk action on M(Mk/Qk) has locally 
closed orbits and the stabilizers are either compact or contained in the k-points 
of a proper algebraic k-subgroup of Mk [28, Chapter 3]. Since r is dense in 
G (and hence in L), it acts ergodically on P \ L. Therefore, as in [28, p. 93], 
we deduce that either: 

(a) there is a measurable r-map '1': P \ L -+ Mk/Nk where N is a proper 
k-subgroup; or 

(b) there is a measurable r-map '1': P \ L -+ Mk/ B where B c Mk is a 
compact subgroup. 

Case (a) is impossible since Cl:'7r is Zariski dense in M k • In case (b), we 
observe that L has a conull orbit in P \ L x P \ L , and hence r acts ergodically 
on P\LxP\L. From [28,5.9.1], we see that (b) implies that 1C(r) is compact. 

8. HOMOMORPHISMS OF r INTO COMPLEX SIMPLE GROUPS 

The arguments of §§6 and 7 now allow us to prove the following result about 
homomorphisms into complex groups. 

Theorem 8.1. Let r. G as above. Let Q be a connected simple adjoint algebraic 
group (over C). Then the number of conjugacy classes of homomorphisms 
h: r -+ Q such that (i) h(r) is Zariski dense in Q. and (ii) h(r) is not 
compact, is finite. 

Proof. As in the proof of Theorem 6.4, we consider the two groups of homo-
morphisms h: r -+ Q with h(r) Zariski dense: (I), those h with O'.h Zariski 
dense in Q; and (II), those with Cl:'h not Zariski dense. By Lemma 6.3, those 
in group (II) extend to continuous homomorphisms G -+ Q , and to continuous 
surjections Lc :...... Q. Thus, there are only finitely many conjugacy classes in 
group (II). For those in group (I) with the additional property that h(r) is not 
compact, we have from Lemma 7.3 that O'.h is not equivalent to a cocycle into a 
compact subgroup of Q. Therefore, by Theorem 3.12(b), those {Cl:'h} in group 
(I) with h (r) not compact form only finitely many equivalence classes of co-
cycles. By Theorem 6.2, we deduce that there are only finitely many conjugacy 
classes of such homomorphisms. 

9. ARITHMETICITY IN THE SEMISIMPLE COMPONENT, 

AND THE PROOF OF THEOREM B 

In this section we prove that A, the image of r in L, is a dense arithmetic 
subgroup of L, under the additional assumption that the H -action on X is 
essentially free. Along the way, without this additional assumption, we shall 
prove Theorem B. The first step in proving arithmeticity is standard, given the 
homomorphism results of §§6-8. We continue our notation from preceding 
sections. (We do not yet assume essential freeness of the H -action.) 
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Lemma 9.1. There is a number field k, Q eke R, [k: Q] < 00, with ring 
of integers &, a semisimple adjoint k-group W, and an isomorphism of Lie 
groups L === W~ such that for some subgroup A' c A of finite index, we have 
A' C WI9" 

Proof. We follow the general outline of [28, Chapter 6]. We first claim 
Tr(AdL(y)) E Q for all YEA. For this, it clearly suffices to see Tr(AdL1 (PI (y))) 
E Q for all YEA, and any simple factor PI: L -+ LI of L. We can 
write LI = M~ where M c GL(n, C) is an R-simple adjoint Q-group. For 
any rJ E Gal(C/Q) we have a (discontinuous in general) automorphism of 
GL(n, C), and since M is a Q-group, we have an automorphism of M and 
AdM(M). We denote these automorphisms by rJ as well. Let hu: r -+ M be 
the composition r - A '- L - LI - M ...!!-. M. Then hu(r) is Zariski dense 
in M. Suppose Tr(AdL1 (PI (y))) is transcendental for some YEA. Then 
{rJ(Tr(AdL1 (PI (Y))))lrJ E Gal(C/Q)} is dense in C. This set is of course iden-
tical to {Tr(AdM(hu(y)))lrJ E Gal(C/Q)} (where we lift Y back to an element 
of r). This implies that for infinitely many such rJ, hu (r) is not contained 
in a compact subgroup of M, and that among these, there are infinitely many 
nonconjugate hu. This contradicts Theorem 8.1. 

Given that these traces are all algebraic, the lemma of Vinberg (see [28, 6.1.7]) 
implies that we can realize L as L = W~ where W is a Q n R-group, and 
A c W"QnR. 

Since A is finitely generated, we have A C Wk for some k c R with 
[k : Q] < 00, and since A is Zariski dense, W is defined over k. Once again 
using the fact that A is finitely generated, we can find finitely many (finite) 
primes 9'i of & such that, denoting by ki (resp., &:) the completion of k 
(resp., &) at 9'i' we have that the map A/An WI9' -+ fIi Wk)WI9'; is injective. 
Since ki is totally disconnected, WI9'; is a compact open subgroup, and since 
the map A -+ Wk ; has Zariski dense image, it follows from Theorem 7.1 that 
for each i the image of A in Wk) WI9'; is finite. Therefore A' = An WI9' is of 
finite index in A. This proves the lemma. 

We now consider the Q-group Rk/Q(W) obtained from W by restriction 
of scalars [28, Chapter 6]. We let J = Rk/Q (W)~. Then J is a connected 
semisimple adjoint Lie group. The group L is a factor of J and we have a 
projection r: J -+ L such that r(JQ) = Wk n L, and r(Jz) = WI9' n L. There is 
also an isomorphism 0:: Wk -+ Rk/Q(W)Q such that o:(WI9') = Rk/Q(W)z (see 
[28] for details). 

Let M* be the algebraic hull of o:(A') in Rk/Q(W). Since the projection of 
o:(A') onto each simple factor of J is Zariski dense, the proof of Lemma 6.1 
implies that M* is semisimple and adjoint, and since o:(A') c JQ , M* is a 
Q-group. Let M = (M~/. By passing to a normal subgroup A" c A of finite 
index, we can assume o:(A") c M~ n M. Since r(o:(A")) is Zariski dense in 
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L, we have that M projects onto L, so we can write M = L x L' x K where 
L' is the product of the remaining noncom pact simple factors of M , and K is 
the product of the remaining compact simple factors. Clearly the projection of 
a(A") into Lx L' is discrete. We choose a normal subgroup L" C L' such that 
the projection of a(A") of L x L" is discrete, but the projection into L x L'" 
is not discrete for any proper normal subgroup L'" c L" . We remark that since 
A (and hence A") is dense in L, L" is not trivial. Recall the map p: G ----> L , 
and let r" = pi (A") , so that r" c r is normal and of finite index. We wish 
to apply our earlier results to the action of r" on G. Therefore, we need: 

Lemma 9.2. The r" action on G is stably orbit equivalent to an ergodic action 
of H preserving a finite invariant measure. 

Proof. Since G is connected, r" is clearly dense in G. Let c be the cocycle of 
the r-action on G defined by the homomorphism A: r ----> rjr" , i.e. c(g, y) = 
A(y). By Corollary 3.10 and the discussion preceding it, c corresponds to an 
orbital cocycle c: X x H ----> r jr". It is not hard to verify that the action of 
H on X x rjr" given by (x,[y])· h = (xh, [y]c(x,h)) is then stably orbit 
equivalent to the action of r on G x r jr" . This latter action is in turn stably 
equivalent to the action of r" on G. Finally, we remark that the action of H 
on X x r jr" is ergodic as ergodicity is an invariant of stable orbit equivalence. 

Proof of Theorem B. Let Q be an R-simple factor of L". Then Q must 
project injectively into some factor WlT of Rk/Q (W) = TIlT WlT where (J runs 
through the distinct embeddings of k in C. Thus, dimR Q :::; dimR WlT = 
2 dimR L. Now consider the homomorphism nQ: r" ----> Q which is the compo-
sition of po a with projection onto Q. This has Zariski dense image. Further-
more, nQ does not extend to a continuous homomorphism of G , for otherwise 
such a homomorphism would define a rational homomorphism nQ: L ----> Q, 
and projection of a(A") onto Lx Q would be contained in the graph of nQ . 

This would contract Zariski density of a(A") in M. It now follows from 
Lemma 6.3 that the cocycle a : G x r" ----> Q is Zariski dense in Q. By 

1fQ 

Corollary 3.10, Lemma 9.2, and Theorem 3.12, we deduce that there is a ra-
tional surjection H ----> Q. In particular, dimQ 2': d(H) = min{dimH'IH' is 
a simple factor of H}. Therefore, dim L 2': d(H)j2, completing the proof of 
Theorem B. 

We now return to the situation in Theorems A and D. We shall henceforth 
assume, by virtue of Corollary 5.4, that r n R is trivial. Otherwise, we retain 
all the notation of this section. 

Let q: M ----> L x L" be projection. We can write the homomorphism 
qoa: A" ----> Lx L" as (qoa)(y) = (y, a' (y)) where a' : A" ----> L" is a homomor-
phism. Define p: r" ----> G x L" by P(y) = (y, a' (p(y))) . Then p is an injective 
homomorphism and the projection of P(r") onto Lx L" is simply q(a(A")). 
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In particular, this projection is discrete and since p (r") n ker( G xL" --+ Lx L") 
is (r" n R) x {e} and hence trivial, we have that p (r") c G X L" is discrete 
as well. 

Lemma 9.3. The L"-action on (G x L")jP(r") is stably orbit equivalent to an 
ergodic action of H preserving a finite invariant measure. Furthermore, this 
action of L" is Zariski dense in L". 

Proof. For the first assertion, we begin by observing that the L" action on 
(G x L")j P(r") is stably orbit equivalent to the P(r") action on (G x L")j L" . 
The projection of G x L" onto G takes P(r") injectively onto r", so the 
action in question is stably orbit equivalent to the action of r" on G. Thus, 
the first assertion of Lemma 9.3 follows from Lemma 9.2. 

We now tum to the second assertion of Lemma 9.3. Suppose there is a mea-
" " r"" " . surable L -map ¢: (G x L )jP( ) --+ L jT where TeL IS a proper alge-

braic subgroup. Choose TeL" to be of minimal dimension among those alge-
braic subgroups for which there exists such a map. By the uniqueness argument 
of [28, 6.2.8] (cf. the proof of Lemma 5.2), if ¢l '¢2 are two such maps, then 
WO¢l = WO¢2 where w: L"jT --+ L"jNLII(To) is projection. Since G com-
mutes with L" , go¢ is also an L" -map, and hence wo(g.¢) = wo¢. Therefore, 
wo¢ is a G-map as well as an L"-map,. We deduce that P(r") c G x NLII (To) . 
Since the projection of P(r") into L" is Zariski dense, it follows that TO c L" 
is normal. Write L" = TO X Tl where Tl c L" is also normal. Then Tl acts 
with closed orbits and finite stabilizers on L" jT. (Recall TO c T is of finite 
index.) It follows that (perhaps by passing to a conull set) the action of Tl on 
(G x L")j P(r") is smooth in the sense of [28, Chapter 2], and hence that the 
P(r") action on (G x L")jTl is smooth, i.e., the P(r") action on G x TO 
is smooth. Since P(r") is a countable subgroup of G x TO, this implies that 
the image of P(r") in G x TO is discrete. Since ReG is a solvable normal 
subgroup, this implies that the image of P(r") in G/R x TO = L x TO is also 
discrete. (Namely, discreteness of P(r") implies that the action of P(r") on 
G x TO is amenable [28]. Since R is solvable normal, the action of per') 
on (GjR) x To is also amenable; cf. [31]. The main result of [31] implies that 
the identity component of the closure of the image of P(r") (i.e. the image of 
a(A") ) in L x TO is solvable. Call this connected solvable group S. It is of 
course normalized by the image of a(A"). However, a(A") is Zariski dense 
in M, which implies that S is normal in L x TO . It must therefore be trivial, 
so we deduce that the image of a(A") in L x TO is discrete; cf. Auslander's 

. f" h 0" " theorem [19].) However, by the chOlce 0 L ,we ave T = L ,so T = L , 
verifying Zariski density, and completing the proof of the lemma. 

Theorem 9.4. A c L is a dense arithmetic subgroup. Furthermore, A" is iso-
morphic to a lattice in L x H . 
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Proof. We first claim that the discrete subgroup q(a(A")) c Lx L" is actually 
a lattice. Since we have a surjective G x L" -map 

(G x L")/P(r") - (L x L")/q(a(A")) , 

it suffices to see that P(r") is a lattice in G x L" . We shall need the following 
fact. 

Lemma 9.S. Let A, B be Lie groups and DcA x B a discrete subgroup. Suppose 
B acts ergodically on (A x B)/ D with respect to the smooth measure class. If 
there is a finite B-invariant measure J..l of smooth class, then D is a lattice in 
AxB. 

Proof. Since J..l is a finite B-invariant ergodic measure, any other B-invariant 
measure in the same measure class with the same total mass must be equal to 
J..l. (Namely, for any such measure v, let f = dv/dJ..l. This is B-invariant, 
hence constant.) However, for a E A, a*J..l will be such a measure, and hence 
J..l is A-invariant as well. 

Returning to the proof of Theorem 9.4, to see that P(r") is a lattice, by 
Lemma 9.5 it suffices to prove that there is a finite L"-invariant measure of 
smooth class on (G x L")/ P(r"). However, this follows from Lemma 9.3 and 
Corollary 3.13. This also shows that L" is isomorphic to H. To complete the 
proof of 9.4, it suffices to show that L' = L" . For then ker(q) is compact and 
hence a(A") is a lattice in M. Since we already know a(A") eM; n M , we 
would then have an inclusion of lattices, and so a(A") would be of finite index 
in M; n M , verifying arithmeticity . .If L' i- L" , then there is a noncompact 
simple normal subgroup Y of L' which is not contained in L". We recall 
that by construction qla(A") is injective and the projection of a(A") into Y 
is Zariski dense. Since q(a(A")) is a lattice in Lx H projecting densely to 
L, and all simple factors of H have R-rank at least 2, we can apply Margulis' 
superrigidity theorem [15, 28] to deduce that there is a rational homomorphism 
L - Y extending the map of q(a(A")) given by projecting a(A") into Y. 
Then the projection of a(A") into Lx Y is contained in the graph of this 
homomorphism, contradicting Zariski density of a(A") in M. 

10. COMPLETION OF THE PROOFS OF THEOREMS A AND D 
To prove Theorems A and D, it remains only to show that R is finite and 

central. (We are still under the assumption that r n R is trivial, given by 
Corollary 5.4.) By Theorem 9.4, identifying r with A c L, we can assume 
that r = p(D) where DeL x H is a lattice, p: Lx H - L is projection, 
and plD is injective. Consider the map p: G - L of ergodic r-spaces. This 
is a principal R-bundle on which r acts by principal bundle automorphisms. 
Hence, if we measurably trivialize the bundle, the r-action on G will be given 
by a cocycle a: L x r - R , i.e., we have measurably that G = L x Rand r 
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acts by (I, r)·y = (Iy, m(/, r)) . The r action on L is the same as the D-action 
on L ~ (L x H) j H , which is stably orbit equivalent to the action of H on 
(L x H)j D . The latter is a finite measure preserving action of a Kazhdan group. 
By Corollary 3.10 and Theorem 3.14, the co cycle a is equivalent to a cocycle p 
taking all values in a compact subgroup R( cR. Thus, the r-action on G is 
measurably equivalent to the action on Lx R given by (l, r)· y = (ly, rp(l, y)) . 
Since this action is ergodic (because r is dense in G), it follows that R( = R, 
i.e. R is compact. Since R is solvable, we deduce that RO is abelian. Then 
the map R ...... Gj[G, G] has finite kernel. Since r is isomorphic to a lattice 
in L x H , projecting densely onto all factors of R-rank less than 2, the image 
of r in the abelian group G j[ G ,G] is finite [16], and since r is dense in 
G, Gj[G, G] is finite. Thus, R is finite, hence central, and this proves the 
theorems. 

11. FOLIATIONS BY QUATERNIONIC HYPERBOLIC SPACE 

In this section we show how one can obtain results similar to Theorem B for 
foliations by certain rank one locally symmetric spaces, namely those for which 
the isometry group of the universal cover is a Kazhdan group. 

Theorem 11.1. Let Y be a Riemannian foliation of a compact manifold M. 
Assume there is a metric on M for which the leaves are locally isomorphic to 
either a quaternionic hyperbolic space (of dimension at least 8) or to the Cayley 
hyperbolic plane. If codim Y :::; 3, then there is a finite covering M of M such 
that Y is the foliation defined by a fiber bundle projection. If Y is a Lie 
foliation with codimY'::; 6, the same conclusion is true. 

The isometry group of the symmetric spaces in question are Kazhdan [14, 
28]. Therefore, the discussion above for the higher rank case shows that it is 
sufficient to prove the following result about stable orbit equivalence. 

Theorem 11.2. Let G be a (nontrivial) connected Lie group with dim G :::; 6, 
and reG a finitely generated dense subgroup. Suppose H is a Kazhdan group 
and (X, /1) an ergodic H-space with finite invariant measure. Then the r-action 
on G is not stably orbit equivalent to the H -action on X. 

Example 11.3. Before proceeding with the proof, we observe that we may have 
a connected Lie group G and a fintiely generated dense subgroup reG such 
that neither G nor r is Kazhdan, but the r-action on G is stably orbit equiv-
alent to a finite measure preserving action of a Kazhdan group. Namely, if 
reG x G' is an irreducible lattice where G' is Kazhdan but G is not, then 
the r-action on G is stably orbit equivalent to the G'-action on (G x G')jr. 
One can easily have examples with G = SO( 1 , n) and G' = SO(2, n - 1) for 
n ~ 4. 

For the proof of Theorem 11.2, we will need the following result about co-
cycles. 
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Theorem 11.4 [29]. Let H be a Kazhdan group and (X,.u) an ergodic 
H -space with a finite invariant measure. Let k be a local field, char( k) = 0, 
and a: X x H -+ PSL( 2 , k). Then a is equivalent to a cocyc/e taking all values 
in a compact subgroup of PSL( 2 , k) . 

For the proof of 11.4, see [29]. 

Proof of Theorem 11.2. The proof follows the main lines of the proof of The-
orem B using Theorem 11.4 in place of Theorem 3.12. We shall therefore just 
sketch the argument. Let ReG be as in the proofs of Theorems A, . Band 
D. By the remark following Lemma 5.1, we can assume G =j:. R, so L' = G/R 
is nontrivial. Since dim L' ~ 6, there is a simple factor L of L' which is a 
subgroup of PSL(2, C). For ease of notation, we let PSL(2, C) = M; Ad will 
denote AdM' Let A be the (dense) image of r in L. For each (J E Gal(C/Q) 
we obtain an automorphism (usually discontinuous) of M, which we still de-
note by (J, and hence a homomorphism hu: r -+ M. This image is Zariski 
dense in M (where M is viewed as an algebraic group over C, not as a real 
algebraic group). Let au: G x r -+ M be the cocycle au(g, y) = huC}'), Then 
by Lemma 6.3, either au is Zariski dense in M or hu extends to a continuous 
homomorphism G -+ M , which must factor to a homomorphism L' -+ M . 
In case au is Zariski dense, we have from Theorem 11.4 and Lemma 7.3 that 
hu(r) has compact closure. We deduce, as in the proof of Lemma 9.1, that 
Tr(Ad(y)) E Q for all YEA. Then, as in 9.1 (see also [1, p. 135]) we may 
assume Ad(A) C Ad(M)k where k c R is a finite Galois extension of Q. By 
Theorem 11.4 and Lemma 7.3, we again deduce, as in the proof of Lemma 9.1, 
that Ad(A') c Ad(M)19' for some subgroup A' c A of finite index, where & 
is the ring of integers in k. Let r' be the pull-back of A' to r, so r /r' is 
also finite. Let a: Ad(M)19' -+ Rk/Q(Ad(M))z be the standard map (see [28]). 
Let N be the algebraic hull of a(A'). Then N is semisimple, projects onto 
Ad(M) , and we can write N ~ Ad(M) x M'. Since a(A') is discrete, and 
Ad(A') is not discrete, the projection of a(A') onto M' cannot be precom-
pact. Thus, there is some R-simple factor Mil of M' in which the projection 
of a(A') is not precompact. There is some (J E Gal(k/Q) so that the projec-
tion of Mil c Rk/Q (Ad M) onto Ad(M( is an isomorphism of Lie groups. 
By Theorem 11.4 and Lemma 7.3, we deduce that for such a (J, the cocycle 
au: G x r' -+ M U is not Zariski dense. Therefore, by Lemma 6.3, hu extends to 
a smooth homomorphism G -+ M U , hence defines a rational homomorphism 
L -+ Mil. This contradicts the Zariski density of a(A') in M, and completes 
the proof. 
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