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SUBMANIFOLDS IN HYPER-K.~HLER GEOMETRY 

ROBERT BRYANT AND REESE HARVEY 

J. INTRODUCTION 

A calibration ¢ is a differential form on a Riemannian manifold with two 
additional properties. First, the form should be closed under exterior differen-
tiation. Second, it should be less than or equal to the volume form on each ori-
ented submanifold (of the same dimension as the degree of the form ¢). Each 
calibration ¢ determines a geometry of submanifolds, namely those oriented 
submanifolds for which ¢ restricts to be exactly the volume form. Such sub-
manifolds are called ¢-submanifolds. The Fundamental Lemma of the theory 
of calibrations .says that each ¢-submanifold is homologically area minimizing. 

A Kahler form provides the most important classical example of a calibra-
tion. In this case the ¢-submanifolds are just the complex submanifolds of 
dimension one. One of the most interesting nonclassical examples of a calibra-
tion, introduced in Harvey and Lawson [HL], is a 4-form <I> on euclidean R8 
called the Cayley 4-form. This 4-form <I> has an elegant description in terms of 
the algebra of octonians 0, and is fixed by the subgroup Spin(7) of the group 
of all orthogonal transformations on O. As such, it would appear unlikely that 
<l> would have higher dimensional generalizations. The purpose of this paper is 
to provide the higher dimensional analogue. 

The Cayley form <l> on R8 == 0 can also be considered in a very natural way 
as a 4-form on H2, the quatemionic plane. After choosing to distinguish the 
scalar quatemion K, the 4-form can be expressed as 
() <1> _,21 2 ,2 
1.1 K = -'iWI - 'iwJ + 'iWK 

where WI' wJ ' and wK are the Kahler forms associated with the complex 
structures, Rr , R J ,and RK respectively, obtained by right quatemionic scalar 
multiplication. 

Now (1.1) provides a 4-form <l>K on H n for all n. When n ~ 3 the stabi-
lizer of <l>K in O(4n) is the subgroup Sp(n)· (S' U RrSI) of the quatemionic 
unitary group Sp( n) . Sp( 1) (see Lemma 2.14). The natural geometric setting 
for <l>K is obtained by replacing Hn by any hyper-Kahler manifold (see §8). 
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The main result (Theorem 2.27) of this paper has two parts. First, <l>K is a 
calibration. Second, 

G(<I>K) == {C; E GR(4, Ull): <l>K(C;) = I}, 
the set of possible tangent 4-planes for which <l>K is exactly the volume form, 
can be put in a "normal form" with respect to the automorphism group Sp(n)· 
(Sl URISI) of G(<I>K) (see (2.31)). In particular, if <l>K(C;) = 1 then the real 
span of C; is contained in some quaternionic 2-plane. This normal form, even in 
the [HL] case n = 2 is new, and provides additional insight into the geometry 
of <I>-submanifolds of o. We mention one example. Recall from [HL] that a 
submanifold M of 0 with the property that it is 10 == cos OR j + sin OR j anti-
complex at each point is a <I>-submanifold of 0; even if the complex structure 
10 varies. However, Proposition 7.1 states that 0 must be constant on each 
connected component of M. 

The fundamental 4-form <l>K on HII is also of interest from the following 
point of view. Given a calibration, </J, the larger the set G(</J) of possible p-
planes C; with </J(C;) = 1, the richer the geometry of </J-submanifolds. Thus 
calibrations </J E AP (RII ). with G( ¢) maximal are of particular interest. The 
known (nontrivial) examples of such maximal calibrations are: 

(1) The standard Kahler form wand (lj(n - 1)!)wll - 1 on ell , 

(2) Re(dz l /\ dZ2 /\ dz3); the special Lagrangian calibration on e3 , 

(3) </J and'll; the associative and coassociative calibrations on 1m 0 , 
( 4) <1>, the Cayley calibration on o. 

Note all but the first calibration is only for a specific dimension. In §4, the 
4-form <l>K is proved to be maximal. In addition, <l>K provides a natural 
extension of the associative 3-form </J from 1m 0 == 1m H EB H to a generalized 
associative 3-form </JK on 1m H EB HII for all n, which is also shown to be 
maximal in §4. 

2. THE FUNDAMENTAL 4-FORM ON HII 

We shall consider Ull , the set of columns of height n of quaternions, as 
a (right) quaternion vector space. We identify the space of n x n matrices 
over H, denoted Mil (H), with the space of U-linear maps of HII , denoted 
EndH(HII ), by letting A E Mn(H) act on the left of p == I (PI' ... ,PII) E HII . 
Let e(p ,q) (or Ipq) denote the standard quaternionic hermitian bilinear form 
on HII, 

II 
(2.1) e(p ,q) == "L,p'ql . 

1=1 

The special quaternionic unitary group 

Sp(n) == {A E MII(H): e(Ap ,Aq) = e(p ,q)} 

is also sometimes called the symplectic group. Re e(p ,q) (== (p, q)) equals 
the standard euclidean inner product on R411 ~ HII. For each unit imaginary 
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quaternion U E S2 C 1m H, right multiplication by u, RIIP == pu, defines an 
orthogonal complex structure on R4n • Let 

(2.2) 
denote the standard Kahler form with respect to the complex structure R II . 
Note that each of the forms w li is fixed by Sp(n). Let 1== R;, J == Rj , and 
K == Rk denote the standard basis for the pure imaginary scalars, 1m H, acting 
on H". Then 

(2.3) e(p. q) = (P. q) + iwI(p. q) + jwj(P. q) + kwK(p. q). 

The group Sp( I) == S3 == {v E H: IIv II = I} of unit scalars acts on H" on 
the right. The induced action on 1m H ~ {wlI : u E 1m H} is given by: 

(2.4) 

where 
x: Sp(l) -> SO(3) == SO(lmH) 

is the standard double cover of SO(3) by Sp( I) ~ Spin(3). To prove (2.4) 
note that 

(R~wlI)(p • q) = wlI(pv . qv) = (pvu. qv) = (pvuv. q) = wvuv(p • q). 

Remark 2.5. Identify A == (aij) E Sym3(R) C M 3(R) with 
~ 2 

A == allwI + a l2w I 1\ Wj + a13 w I 1\ w K 

(2.6) + a21 w j 1\ WI + a22w~ + a23 w j /\ WK 
2 + a31 w K 1\ WI + a32w K 1\ Wj + a33w K . 

Then it follows easily from (2.4) that the action of Sp(l) on Sym3(R) ISJUSt 
the usual action of SO(3) on Sym3(R) sending A -> gAg' , with g = X(v) E 
SO(3) . 

Note that the group Sp( 1) == S3 C H, of unit scalars, does not belong to 
Sp(n). In fact, the intersection is 22 == {± Id}. The enhancement of Sp(n) by 
the unit scalars, i.e., the subgroup of GLR(H") generated by Sp(n) x Sp(l) is 

(2.7) Sp(n)· Sp(l) == Sp(n) x Sp(l)/22 • 

which we will refer to as the quaternionic unitary group. By Remark 2.5, the 
4-form 
(2.8) 

is fixed by Sp(n) ·Sp(l). In fact, if A E GLR(H") fixes !w; + !w~ + !wi then 
A E Sp( n) . Sp( I) (see Bryant and Harvey [BHD so that this 4-form determines 
the quaternionic unitary group Sp( n) . Sp( I). This is not the 4-form of primary 
interest in this paper (although we shall compute its comass in §6). 

In order to define the 4-form of primary interest in this paper we must first 
choose one of the complex structures Ru (with u E S2 C 1m H) on H n . It is 
convenient to distinguish K == R K • 
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Definition 2.9. The fundamental 4-form <I>K determined by the choice K is 

<l>K == -!W7 - !W~ + !W~ E A 4(R411)* == A 4(011 )*. 
Remark. Actually, we have available a 2-sphere of fundamental 4-forms on 
R411 = Oil , denoted <1>1/ with u E S2 C 1m 0 . 

Since the action of Sp( I) (via right scalar multiplication) on {wl/: u E 1m O} 
is given by (2.4), the two circles: 

(2.10) 

(2.11 ) 

S 1 == {( cos t) + (sin t) R K: t E R} , 

R[SI == {(cos t)R[ + (sin t)R J: t E R} 

fix the fundamental4-form <l>K' Moreover, since the action of Sp(l) on a form 
i defined by (2.6), with A E Sym3 (R) , is the same as the action of SO(3) on 
Sym3 (R) , the subgroup of Sp( I) that fixes <I> K is exactly: 

(2.12) 

Thus the group 

(2.13) Sp(n)· (Sl U R[SI), with Sl == {eK/ : t E R} , 

fixes the fundamental 4-form <l>K' 

Lemma 2.14. Let H == {g E SO(O"): g*<I>K = <l>K} denote the subgroup of 
orthogonal transformations on Oil which fix <I> K . 

(2.15) If n = 2 then H = Spin(7) . 

1 1 (2.16) Ifn> 2 then H = Sp(n)· (S U R[S ). 

Proof (n > 2). The identity component HO of H contains Sp(n) and hence 
acts transitively on S411-1 ~ HII . By a well-known theorem of Borel, it follows 
that HO must be one of Sp(n) , Sp(n)· P (where P is a subgroup of Sp(I)), 
SU(2n) , U(2n), SO(4n) , or Spin(9) (if n = 4). The groups SO(4n) and 
Spin(9) are ruled out since they do not fix any 4-form on R411. Note that 
the assumption n > 2 automatically rules out the possibility H = Spin(7Y. 
Similarly it is easy to show that SU(2n) does not fix <l>K' Thus, the only 
remaining possibility is HO = Sp( n) . P where P ~ Sp( 1 ) is a (connected) 
subgroup. Since nO contains the circle Sl == {eK1 : t E R} and does not contain 
{e} . Sp( 1), it follows that HO = Sp( n) . S I. Now HO is a normal subgroup 
of H. It easily follows that Sp(n) is a normal subgroup of H. However, 
since Sp( n) has no outer automorphisms, it is not difficult to show that any 
element of H can be written in the form h = Az where A E Sp(n) and z 
commutes with Sp(n). It follows that z E Sp(l). Thus H ~ Sp(n) . Sp(l). 
Since R/ E H, we see that H properly contains HO. In fact, we must have 
H = Sp(n) . (Sl U R/SI). 
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When n = 2 the form <l> K is well understood in terms of the octonians. The 
algebra of octonians 0 equals H ffi He == {a + be: a , b E H} , with the octonian 
mUltiplication defined by 

(2.17) (a + be)(c + de) = ac - db + (be + da)e. 

The Cayley form <l> E A 40 is defined by 

(2.18) <l>(x ,y ,z ,w) == (x, Hy(zw) - w(zy)]). 

This form is a calibration (see Harvey and Lawson [HL]), i.e., 

(2.19) <l>(x 1\ Y 1\ z 1\ w) ~ Ix 1\ Y 1\ z 1\ wi. 
Let CAY denote g E GR( 4,0): <l>(~) = I~I}' the set of oriented real 4-planes 
in 0 where equality occurs in (2.19). The automorphism group Spin(7) acts 
transitively on CAY (see [HL]). Also, several descriptions of CAY are given in 
[HL]. 

If we let I == R;(O) (right octonian multiplication by i) and J == Rj(O) 
(right octonian multiplication by j) then this imposes a quaternionic structure 
on 0 ~ H2 . However, note that (a + be)i :f= ai + (bi)e and that «a + be)i)j :f= 
(a + be)k . Thus the quaternionic structure 0 = H2 is not given by the isomor-
phism 0 == H ffi He. Instead, identify (a, b) E H2 with 

(2.20) L(a,b) ==a+(kbk)eEO. 

Since 
(a + (kbk)e)c = ac + (kbke)e 

we see that under this identification, L, the quaternionic structures on H2 and 
o agree. That is, 

R;(O)L(a, b) = LRj(a, b), 

so that L: H2 --+ 0 is a quaternionic linear isomorphism. 

Lemma 2.21. Under the quaternionic linear isomorphism L: H2 --+ 0, defined 
by (2.20), the Cayley calibration <l> E A 40 pulls back to <l>K E A 4H2 . 

Proof. Let x == (a, b) E H2 , and let Wi, •.• ,w8 denote the standard basis for 
AIH2, i.e., Wi = (1 ,0)*, w2 = (i ,0)*, ... ,w8 = (O,k)*. Since 

W/(x ,y) = (xi ,y), WJ(x,y)=(xj,y), WK(x, y) = (xk, y) , 

12 34 56 78 
W/=W -w +w -w , 

(2.22) 13 42 57 86 
wJ=W -w +W -w , 

14 23 58 67 WK = W - W + W - W . 



6 ROBERT BRYANT AND REESE HARVEY 

Therefore, 
(2.23) 

d._ 121212 
'VK - - 'J. W / - 'J.WJ + 'J.WK 

1234 5678 1256 1278 3456 3478 
=W +W -W +W +W -W 

1357 1386 2457 2468 1458 1467 2358 2367 
-W +W -W -W +W -W -W +W . 

Now, let Wi , ... ,w8 denote the standard dual basis for 0, dual to the basis: 

1, i, j, k, e, ie, je, ke, for O. 

The Cayley calibration is given by (see [HL, p. 120]): 

(2.24) 
d. ~ 1234 + ~ 5678 ~ 1256 ~ 1278 ~ 3456 ~ 3478 
'V=W W +W -w -w +W 

+ ~ 1357 ~ 1386 + ~ 2457 + ~ 2468 ~ 1458 ~ 1467 ~ 2358 + ~ 2367 W -w W W +W -w -w w. 

Finally note that the map L: H2 --+ 0 pulls back wj to wi for j = 
1,2,3,4,5, and 8; and pulls back wi to -wi for j = 6 and 7. Comparing 
(2.23) and (2.24) the lemma follows. 

Because of Lemma 2.21, the proof that H = Spin(7), when n = 2 (see 
(2.15)), is an immediate consequence of the fact that the subgroup H' c SO(8) 
which fixes <I> is Spin(7). First, the fact that H' contains Spin(7) follows, as 
noted in [HL], since Spin(7) is the subgroup of isometries of 0 generated by 
{RlI: u Elm 0, lui = I} and since R:(<I» = <1>. It is well known that Spin(7) 
is a maximal closed subgroup of SO(8). Since <I> is not fixed by SO(8), this 
proves that H' = Spin(7) and completes the proof of Lemma 2.14. 

Lemma 2.21 combined with (2.19) yields 

Corollary 2.25. Suppose V is a quaternionic 2-plane in HI!. Then cI>Klv is a 
calibration. That is, 

<l>K(e) ::; lei for all e E GR(4. V). 
Proof. Since <l>K is fixed by Sp(n), we may assume that V = H2 X {O} and 
then apply (2.19). 

Definition 2.26. Given a quaternionic 2-plane V c HI! , let CA Y( V) denote the 
set of oriented real4-planes e E GR(4, V) in V for which equality <l>K(e) = lei 
holds. 

Now we can state the main result of this paper. 

Theorem 2.27. The fundamental four form 
d. I 2 I 2 I 2 A4HI! 
'VK - 'J. W / - 'J.WJ + 'J.WK E 

is a calibration, i.e., 

(2.28) 
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Moreover, equality, <l>K(e;) = le;I • holds if and only if 
(2.29) 

spanR e; C V for some quaternionic 2·plane V c H" , and e; E CAY(V). 
In fact, each e; belonging to the contact set 

(2.30) 

can be put in the following normal form with respect to Sp(n)· (SI U R[SI). 

(2.31) e; = (c1e l + s le2) /\ (c2Ie l + s2Ie2) /\ (c2Je l - S2Je2) /\ (clKe l - s l Ke2) 

with angles cP I and cP2 satisfying 

(2.32) 0 :5 cP2 :5 cPl :5 n/2 and cPl + cP2 :5 n/2. 

7 

Here el = (1.0,0, ... ,0). e2 == (0,1.0, ... ,0), and (cj,Sj) denotes 
( cos cP j , sin cP j)' i = 1 , 2 . 
Remark 2.33. Let u1 == c1e l +sle2, u1 == c2Ie l +s2Ie2' u3 == c2Je\ -s2Je2' and 
u4 = clKe l - s l Ke2 , so that e; has normal form e; == u\ /\ u2 /\ u3 /\ u4 • The 
angles cPI and cP2 can be obtained from the eigenvalues of wK restricted to 
span e;. In fact 

w[l span , = COS(cPl - cP2)(u1 /\ u2 - u3 /\ u4 ), 

wJlspan, = COS(cPI + cP2)(u1 /\ u3 + u2 /\ u4), 

wKlspan, = cos(2cPl)u 1 /\ u4 - COS(2cP2)U2/\ u3 · 

In order to prove Theorem 2.27 we need a more convenient expression for 
<l>K using the complex structure I on H" (we could just as easily choose any 
one of the complex structures cos 01 + sin OJ on H"). Since H == C Ee jC , the 
identification H" == C" Ee jC" ~ C21l provides a complex linear isomorphism 
H" ~ C21l , where H" is equipped with the complex structure I. Now each 
p , q E H" can be uniquely expressed as 

p=z+jw, 

with z, w ,e; • '1 E C" . 
Using these complex coordinates, the quaternionic hermitian symmetric bi-

linear form e(p, q) == pq can be expressed as 

(2.34) 

(Recall that pq denotes E;= 1 pJ qJ and let z'1 denote E;= 1 zj'1j , etc.) Let 
H(p ,q) == ze; + W'1 denote the standard C-hermitian symmetric bilinear form 
on C21l , and let u(P. q) == z'l - we; denote the standard C-skew bilinear form 
(also called the standard C-symplectic form) on C21l . Note that 

(2.35) 1 dId II d II U = dz /\ w + ... + z /\ w . 

(2.34) can be reexpressed as 
(2.34' ) e = H + ju. 
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Comparing (2.34 I) with (2.3) yields 

(2.36) H=(.)+iw] and a=w,-iwK . 

Now using this choice of the complex structure I on H" the fundamental 
4-form 

can also be expressed as 

(2.37) <l>K = -1w; - Re 1a2 . 

The proof that <l>K is a calibration (Theorem 2.27) depends on the fact that 
Re 1a2 is a calibration. 

Theorem 2.38 The 4-form Re 1a2 E A 4c2" is a calibration. i.e .. 

(2.39) Re1a2(11)::;1111 forallI1EGR(4.C211). 

Moreover, if equality holds then there exists a quaternionic 2-plane V c C 211 s:: 
H" with span 11 c V . 
Remark 2.40. If V == H2 X {O} C H" then 1a2 = 1(dz 1 /l.dw 1 +dz2 /l.dw 2)2 = 
dz 1 /I. dw 1 /I. dz2 /I. dw 2 is a unit complex volume form for C4 s:: V. Thus 
Re 1a21v = Re(dz 1 /I. dw 1 /I. dz2 /I. dw 2) is a calibration called the special La-
grangian calibration (see [HL] for details). Similarly, Re 1a21v is a special 
Lagrangian calibration for any quaternionic two plane V c nil . 

Let SLAG( V) denote the set {11 E GR (4. V): Re 1a2 (11) = I}, where 
Re 1a21v attains its maximum value, l. Thus the second half of Theorem 
2.38 may be restated as 

Re 1a2(11) = 1111 if and only if 11 E SLAG(V) for some 
(2.41 ) quateinionic 2-plane V c Hn. 

3. THE PROOF OF THE MAIN RESULT 

This section contains the proofs of the two theorems stated in §2. 

Proof of Theorem 2.38. This theorem says that Re 1a2 is a calibration with 
contact set 

(3.1 ) u SLAG(V). 
VEGI/(2.W) 

First note that 1a2 has bidegree 4,0 (with respect to the complex structure 
I). Therefore, 

(3.2) (1a2)(e) = 0 if e E GR(4. nil) contains a complex line. 

To prove (3.2) assume that e == e /I. Ie /I. u /I. v contains the complex line 
spanR {e . Ie}. Then e /I. Ie has bidegree 1,1, while u /I. v can be expressed 
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as the sum of terms of bidegree 2,0, 1,1, and 0,2. Therefore e has no bidegree 
4,0 component. 

Each 11 E GR (4 . C211 ) can be put in the following canonical form (see [HL, 
p. 70]) 

(3.3) 11 == e l 1\ (cos O/el + sin °1 e2) 1\ e3 1\ (cos 02Ie3 + sin 02e4) • 

where e l • e2 • e3 • e4 is part of a unitary basis for c2" (with complex structure 
I), and the angles satisfy 0::; °1 ::; n/2, °1 ::; °2 ::; n. Because of (3.2) 

(3.4) Re !a2(11) = Re !a2(e l 1\ e2 1\ e3 1\ e41\) sin °1 sin °2, 

Thus Re !a2 attains its maximum value when 11 = el l\e21\e31\e4 is I-isotropic. 
That is, 

(3.5) e E span 11 implies Ie -L span 11. 

Now assume that Re !a2 attains its maximum. Choose a unit vector el E 
span 11. Then 11 = e 11\ T where T is an I -isotropic 3-vector in {e 1 • Ie I}.!. • Com-
pleting e l to a quaternionic orthonormal basis e l • e2 ••••• ell' the subspace 
{el.le l }.!. maybe expressed as jCEBH"- I . Thus dimR(spanT)n({O}xH"- I ) ~ 
1 . That is, e2 may be chosen in span T. Hence 

(3.6) 11 = e l 1\ e2 1\ p 
with P E G2UC EB jC EB H"- 2) an I -isotropic 2-plane. 

Therefore, 

Re!a2 (11) = Re!a2(e l l\e2 I\p) = (e2~(el~Re!a2))(p) 

= (e2~(el~!w~))(P) - (e2~(el~!w!-))(P), 
Now, recalling the coordinate formulas (2.22) for wJ and wK on the quater-
nionic axis 2-plane H2 (which we now take to be the H-span of e l and ( 2 ); 

I 2 1234 1357 1368 2457 24611 5678 
"2WJ=-W +W +w +W +W -W • 
1 2 1234 1458 1467 2358 + 2367 5678 
"2WK=-W +W -w -W W -W . 

S· * I * 5 mce e 1 = wand e2 = W , 

(3.7) 

and 

(3.8) 

Therefore, 

(3.9) I 2 37 48 Re"2a (e l 1\ e2 1\ P) = (-w + W )(P)· 

It is a classical result that the two form _W37 + w48 is a calibration, i.e., 

(3.10) 
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This proves that Re !a2 is a calibration. Moreover, if equality occurs in 
(3.10) then span P is contained in the four dimensional space spanned by the 
third, fourth, seventh, and eighth coordinate axes in H2 = R8. Therefore 
span '1 = span e I /\ e I 1\ P is contained in H2 , completing the proof of Theorem 
2.38. 

Pro%/Main Theorem 2.27. Each -~ E GR (4 .C211 ) can be put in the following 
canonical form (3.3): 

(3.11) 
-~ == el /\ (cos 01 leI + sin 01 e2) /\ e3 /\ (cos 02Ie3 + sin 02e4) 

= - cos 01 cos 02el /\ leI /\ e3 /\ Ie3 - cos 01 sin 02el /\ leI /\ e3 /\ e4 
- sin 01 cos 02el /\ e2 /\ e3 1\ Ie3 - sin 01 sin 02el /\ e2 /\ e3 /\ e4. 

Recall the formula (2.37) <l>K == -!w; -! Rea2 , for <l>K. First, note -!w;(~) 
= cosO I cos 02 . Second, note that 

(3.12) _!a2(~) = sin 01 sin 02 !a2(e l /\ e2 /\ e3 /\ e4). 

because of (3.2). Therefore, 
(3.13) 

where 

(3.14) 

Because of Theorem 2.38, 

(3.15) IAI :::; 1 and IAI = 1 
if and only if span{e l • e2 • e3 • e4 } C V for some quaternionic plane V c H" . 

This proves that <l>K is a calibration, i.e., 
(3.16) 

Moreover, if <l>K(~) = 1 then IAI = 1 so that span{e l • e2• e3 • e4} C V for 
some quaternionic plane V c H" . Since the real span, span ~ , is contained in 
the H-span of {e l • e2 • e3• e4} it follows that span ~ C V, verifying (2.29). 

It remains to prove the normal form (2.30) for Sp(n)· (Sl U RISI) acting 
on the contact set G(<I>K). Because of (2.29), the general case n :?: 2 can be 
reduced to the special case n = 2. Given ~ E G(<I>K) , let ~H denote the 
quaternionic span of the vectors in ~. By (2.29), dimH ~H is either 1 or 2. 
If dimH~H = 1 then span~ is a quaternionic line in H". Conversely, all 
quaternionic lines in H" belong to G(<I>K) , i.e., plI-I(H) C G(<DK). Now 
suppose dimH~H = 2. Since Sp(n) acts transitively on the quaterionic 2-
planes in H", we may assume that ~H == H2 x {O} C H", the H-span of the 
first two axis vectors in H". The stabilizer of H2 x {O} in Sp(n)· (Sl URISI) 
is the subgroup 

(3.17) I I I H = (Sp(2) x Sp(n - 2»· (S URIS ). 
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It follows that the normal forms of e E G(<I>K) , under Sp(n)· (Sl U R/SI), are 
identical with the normal forms of e E CAY(H") under the group 

( 3.18) I I Sp(2) . (S U R/S ). 

Note that this is a proper subgroup of the full automorphism group, Spin(7), 
of <I> K when n = 2 . 

To give the proof of the normal form (2.30) when n = 2, it is convenient 
now to use the map L: H2 - 0 to transfer our problem over to O. First, 
we identify the image of Sp(2) . {I} in Spin(7) ~ SO(O) = SO(8). Recall 
that R~ . R~ E Spin(7) . Clearly Sp(2) is identified as the subgroup of Spin(7) 
which commutes with R; and R j' Thus, we call this subgroup Sp(2) also. 
The group {I}. S I clearly transfers over to the group, also denoted S I , given 
by {/R;OR'lt E R}. (Remember: R~ 0 R~ t= R?!) Now L can be used to 
identify CAY(H2 ) with CAY. 

As noted in §2, Spin(7) acts transitively on CAY. The stabilizer U in Spin(7) 
of eo == 1 II. i II.j II.k E CAY can be described as follows: Let Sp( I) x Sp( I) x Sp( 1) 
act on 0 by (u l • u2 • u3) • (a + be) = u3au l + (u2bul )e. This action preserves 
<I> and is almost faithful, the kernel being given by Z2 = {±( 1 . 1 . I)}. Let 
U = (Sp( 1) x Sp( I) x Sp( 1)) /Z2 denote the image subgroup in Spin(7). It is 
not difficult to see that U is the stabilizer of eo in Spin(7). That is 

(3.19) CAY ~ Spin(7)/U 

with U == (Sp( I) x Sp(l) X Sp(1))/Z2 (see [HL]). 
We can get a more familiar description of CAY as a homogeneous space 

by noting that U contains the center of Spin(7), namely Z = {±Is}' Thus, 
Spin(7)/U ~ Spin(7)/Z)/(U/Z). Now Spin(7)/Z = SO(7) , and U == U/Z = 
SO(3) x SO(4). Thus we have an isomorphism 

(3.20) CAY ~ SO(7)/ SO(3) x SO(4) ~ G(3. R7) 

where G(3. R7) is the Grassmanian of oriented 3-planes in R7 . 
It will be useful to have a more explicit description of the diffeomorphism 

CAY = G(3. R7). If e E CAY is written in the form e = e l lI.e2 l1.eJII.e4 where e; 
- J are orthonormal, then set e = (e2 x e l ) II. (eJ x e l ) II. (e4 x e l ) E A (1m 0). (Recall 

that,for X.yEO, xxy=!(Vx-xy) is an element of ImO~R7. If X.y 
are orthonormal, then x x y is a unit imaginary octonian.) Using the properties 
proved in [HL, §IV], one sees that the mapping e --. e establishes a well-defined 
diffeomorphism CAY'::' G(3. ImO) = G(3.R7). In particular, note that if 
e E CAY and e· denotes the orthogonal 4-plane endowed with the appropriate 
orientation so that e.L E CAY, then (e.L)- = -e. As a particular example, 
(lll.ill.jll.k)-=ill.jll.k and (ell.iell.jell.ke)- equals -ill.jll.k. As shown 
in [HL), there is a homomorphism x: Spin(7) --. SO(7) = SO(lm 0) given by 
X(g)(w) = g(g-I(I)w) for g E Spin(7) and WE ImO. This homomorphism 
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satisfies gx x gy = X(g)(x x y), so it easily follows that X(U) = U = the 
stabilizer of i I\j I\k where, as previously defined, US; Spin(7) is the stabilizer 
of ~o = 1 1\ i 1\ j 1\ k. Note that X is a 2-1 covering with kernel {± I} , the 
center of Spin(7). It is now easy to compute that X(Sp(2)· (S' URiS'» = 
S(0(2) x O( 5». This is the subgroup of SO(7) (= SO(lm 0» which preserves 
the 2-plane spanned by {i, j} S; 1m o. Our problem is now reduced to finding 
a normal form for oriented 3-planes in 1m 0 under the subgroup of SO(Im 0) 
which fixes the 2-plane {i, j}. This problem is easily solved. For any pair of 
angles «(J, ,(J2)' consider the 3-plane 

tie = [(cos (J,)i + (sin (J, )ie] 1\ [(cos (J2)j + (sin (J2)je] 1\ k . 

It is easy to see that any oriented 3-plane tI is equivalent to tie under the 
action of S(0(2) x 0(5» for some (J = «(J, ,(J2). Moreover, we may assume 
o ~ (J, ~ (J2 ~ Tel2 (this makes «(J, ,(J2) unique). Note that in the generic case, 
0< (J, < Te12, the stabilizer of tie in S(0(2) xO(5» is a subgroup of dimension 
1 with four components. It may be described as the set of transformations of 
the form 

i 8,i 
j 82j 
k 8,82k 
e -- (cos tP)e + (sin tP)ke 
ie 8, (ie) 
je 82(je) 
ke 8,82« - sin tP)e + (cos tP)ke) 

where 8: = 8; = 1 , and tP is an arbitrary angle. We will examine the nongeneric 
cases further on. 

Let tP, , tP2, tP3,tP4 be four angles and set (Ci,Si) = (COStPi' sintPi). Write 
~'" = (c,I + s,e) 1\ (c2i + S2ie) 1\ (c3j + S3je) 1\ (c4k + S4ke). Using the formula 
(2.24) for <I> we have 

<I>(~",) = cos(tP, + tP2 + tP3 + tP4)· 

Thus, ~'" E CAY iff tP, + tP2 + tP3 + tP4 := Omod2Te. In this case, it is easy to 
compute that 

e", = (c2i + S2 ie ) 1\ (c3j + s3je) 1\ (c4k + S4ke) 

where (ci ,Si) = (cos(tPi + tP,), sin(tPi + tP,» for i = 2,3,4. 
It follows that if we set tP = (!«(J, +(J2), !«(J, -(J2), !«(J2 -(J,), -!«(J, + (J2» 

then ~'" E CAY and e", = tie. By translating this information back into 0 2 via 
the map L, the normal form (2.31) is verified. 

Remark 3.21. Note that the given inequalities describe a triangle in the tP-plane. 
See Figure I. 

It is worth remarking on the special nature of some of the vertices and edges 
of this triangle. 
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(0,0) (0,11/2) 

FIGURE 1 

The case where CPl = CP2 = cP C [0, 1l/4] consists of those e E G(<I>K) which 
are anticomplex with respect to some complex structure 10 = (cos 0)1 +(sin O)J . 
Here, "anticomplex" means that -e, with its natural orientation, is an 10 -

complex 2-plane in H n (endowed with the complex structure 10 ), To see this, 
note that, under Hn, all 10 are equivalent and that e' as described in the 
above theorem is I -complex when CPl = CP2' Conversely, as was already noted 
in §2, all I-complex 2-planes in H belong to G(<I>K) when the orientation is 
reversed. 

The even more special case CPl = CP2 = 0 gives the plane e' = e1 /\e2 /\e3 /\e4 , 
a quaternion line in H n • 

The edge given by CPl + CP2 = 1l/2, 0 ~ CP2 ~ 1l/4 consists of 4-planes which 
are special isotropic with respect to J. It follows that a e E G(<I>K) which 
is equivalent to a e' with (CP1' CP2) on this edge is special isotropic for some 
calibration of the form - Re(!a;) where ao = (- sin O)w[ + (cos O)wJ - iwK • 

Note that ao is a complex (2, O)-form with respect to the complex structure 
10 . 

The vertex (CP1' CP2) = (1l/2, 0) consists of those 4-planes in H n which are 
K-complex and isotropic with respect to the form a = w[ - AwJ • This 
form a is of type (2,0) if we regard H n as a complex vector space via K. 
Conversely, it is easy to see that a K-complex 2-plane lies in G(<I>K) iff it is 
a-isotropic. 

As a final remark, let us note that, for n > 2, G(<I>K) is not a smooth 
submanifold of G( 4, H n). In fact, we have 

u CAY(V). 
VEG,,(2.Hn) 
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If we let CAY' (V) = CAY( V) \ HP( V) denote the set of e E CAY( V) which 
are not quaternion lines, then the smooth part of G( <I> K) can be written 

u 
The singular part is, of course, HplI - 1 ~ G(4, HII). 

4. MAXIMALITY 

A calibration ¢ E AP(R'')* determines its contact set 

This is the intersection of the hyperplane ¢ = 1 in APRil with the Grassman-
nian G(p, RII). The larger the contact set, the larger the geometry associated 
with the calibration ¢. It is natural to consider the case where G( ¢) is maxi-
mal. That is, 

(4.1) G(¢) c G(If!) implies G(¢) = G(If!) for each calibration If! E 
AP(RII )* . 

If the stronger condition 

(4.2) G(¢) c G(If!) implies If! = ¢ for each calibration If! E AP(RII)* 

is satisfied then ¢ is said to be an exposed calibration. 
This terminology is justified by the following facts (see [HL, 11.7] for more 

details). Let K denote the mass ball, i.e., the convex hull of G(p, RII) in APRil . 
Let K* == {¢ E AP(RII )*: ¢(e) ::; 1 for all e E K} denote the dual convex body, 
called the comass ball. Thus K* consists of all the parallel calibrations of degree 
p on Rn • If G( ¢) is maximal then it can be shown that ¢ is an extreme point 
of K* . Let e denote any fixed point in the interior of the convex hull of G( ¢) , 
then ff*(~) == {If! E K*: If!(e) = I} (the dualfacet of the singleton {e} c K) is 
just the set of calibrations If! satisfying G( If!) ;2 G( ¢). Now the condition (4.2) 
can be restated as ff* (e) = {¢} , i.e., the singleton {¢} is an exposed point of 
K* , not just an extreme point. 

Proposition 4.3. For n = 2, the calibration <I> K E A 4 (H2)* is exposed (and 
hence maximal). Equivalently, the Cayley calibration <I> is exposed. 

Proof. The proposition is an immediate consequence of the "first cousin prin-
ciple" (stated and proved below), since inspection of the coordinate formula 
(2.23) for <l>K E A 4(H2)* shows that each axis 4-plane in H2 is either one of 
the terms in (2.23) (i.e., belongs to G(<I>K)) or is a first cousin of one of these 
special axis 4-planes in G( <I> K) . 

This principle is a simple consequence of elementary calculus. It has been 
used in virtually all of the recent papers on calibrations, starting with [HL]. We 
include the proof for the sake of completeness. 
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Lemma 4.4 (The First Cousin Principle). If VI E AP(RII )* is a calibration which 
is 1 on <! == e I /\ ... /\ e p' where e I ' ... ,ell is an orthonormal basis for RII, 

then VI vanishes on all the first cousins of <! , 
(4.5) '1jk == e l /\ ... /\ ej /\ ... /\ ep /\ ek ' 

where I ~ j ~ p and p < k ~ n . 
Proof. Let f( B) == VI(e l /\ ... /\ (cos Bej + sin Bek ) 1\ ... 1\ e p). Since f attains 
its maximum value of one at B = 0, !' (0) = VI('1) must vanish. 

Theorem 4.6. The fundamental 4-form <I> K E A 4 (HII) * is an exposed calibration 
(and hence maximal). 
Proof. Suppose \II E A 4 (HII ). is another calibration which is identically one on 
the subset G(<I» c GR(4, HII). In order to prove Theorem 4.6, we must show 
that the difference ¢ == <I> K - \II vanishes. 

If V is a quaternionic 2-plane in HII then V::= H2 and hence ¢, restricted 
to V, vanishes by Proposition 4.3. Thus the Maximality Theorem 4.6 is an 
immediate consequence of the next lemma. 

Lemma 4.7. Let 

A == {<! E GR(r , HII): there exists a quaternionic 2-plane V with spanR <! C V}. 

Then A spans A 4HII . 
Proof. First we show that each real 2-plane '1 in HII can be expressed as a 
sum, 

(4.8) 

of 2-planes which are complex lines for one of the three complex structures I , 
J, and K. 

We may choose an H-unitary orthonormal basis e l ' ... ,ell for HII with 
'1 = e I /\ (cos Oll + sin Be 2) where u is in the H -span of e I . Obviously e I 1\ u 
can be expressed as a sum of the form (4.8). It remains to consider e l 1\ e2 • 

Choosing complex coordinates on H2 == spanH{e l ,e2} yields: 

(iJ/iJz;) = e l + i(ell) , 

(%z;) = e2 + i(e21) , 

(%z~) = e l + i(e,J) , 

(%z~) = e2 + i(e2J) , 

(%z~) = e, + i(eIK) , 

(%z~) = e2 + i(e2K) , 

(o/aw;) = (elJ) - i(eIK) , 

(o/awi) = (e2J) - i(e2K) , 

(o/aw~) = (e l I) + i(elK) , 

(o/aw;) = (e21) + i(e2K) , 

(o/aw~) = (ell) - i(eIJ) , 

(o/aw~) = (e21) - i(e2J). 

Given a 2-vector of type (1,1), with respect to a complex structure, it is the 
sum of complex lines. Thus each 2-vector of the form, say, (%ZI) 1\ (0/oz2) , 
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can be expressed as a sum of complex lines. Now 

Re(a/az~) A (a/a~) + Re(a/az~) A (a/az~) - Re(a/&w;) A (a/aw;) 
= el A e2 + (eIJ) A (e2J) + e l A e2 

+ (elK) A (e2K) - (eIJ) A (e2J) - (elK) A (e2K) 
= 2e l A e2 , 

completing the proof of (4.8). 
Any 4-plane in H" can be expressed as ~ A '1 with ~ and '1 2-planes. Using 

(4.8), 

~ A '1 = (Ea j A la j + Ebj AJbj + ECj A KCj ) 

A (Ea~ Ala~ + Eb~ AJb~ + E< AKc~) . 

Expanding this product, note that each term, say for example aj A laj A b~ A 

Jb~, is a 4-plane contained in a quaternionic 2-plane (spanH{aj , b~} in the 
example). 

5. THE GENERALIZED ASSOCIATIVE CALIBRATION 

Just as the fundamental 4-form cI>K on H" introduced in the last section 
generalizes the Cayley form cI> on H2 == 0, the 3-form, <PK on ImH E!) H,,-I , 
examined in this section, generalizes the associative form <p on 1m H E!) H == 
ImO. 

The associative form <p E A 3(lm 0)* is defined by 
(5.1) cb(x,y,z)==(x,yz) forallx,y,zEimO, 

or in coordinates, 
(5.1 ') A.. 234 265 + 735 + 764 278 + 368 + 458 o/==W -w W W -w W w. 
This 3-form <p is a calibration which attains its maximum value one on those 
3-planes ~ == x A Y A z in 1m 0 which are associative, i.e. x(yz) = (xy)z (see 
[HL]). 

Note that 
(5.1") <p = LJcI>, 
where 1 EO. 

The coassociative form 'If E A 4 (1m 0) * is defined by 
(5.2) 'If(x ,y ,z ,w) == !(x ,y(zw) - w(zy)) for all x ,y ,z ,w Elm O. 
That is, 
(5.2' ) 
is just the Cayley form cI> restricted to 1m 0 . 

Thus 
(5.3) 
(see [HL]). 
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Definition 5.4. The 3-form <PK E A3(Im H EB HII-I)* defined by 

(5.5) 

where e I == (I ,0, ... ,0) E HII , is the generalized associative form. 
Note that 

I 
(5.6) <l>K = W A <PK + IfIK · 
Remark. Since <l>K is fixed by Sp(n) and Sp(n) acts transitively on the unit 
sphere S411-1 c HII; el..J<l>K and U..J<l>K are SO(4n) equivalent for any unit 
vector U E HII . 

Let I, J, K denote the standard orthonormal basis for 1m Hand 1* , J* , 
K· the dual basis of I-forms on 1m H . 

Proposition 5.7. The generalized associative form can be expressed as 

(5.8) <PK = 1* A J* A K· - 1* A WI - J. A W J + K· A wK ' 

where WI' W J ' W K E A 2H II-I are the Kahler forms determined by I, J, and 
K respectively. Similarly, the generalized coassociative form can be expressed as 

• * •• *. 121212 (5.9) IfIK=J AK AWI+K Al AWJ-I AJ AWK-2W/-2WJ+2WK' 

Proof. Substituting into (2.22) with 1* == WI , 1* == w2 , J. == w3 , K* == w4 , 

yields 

(5.10) <l>K = - !(l* AI· -J* AK* +WI)2 

I (* * * * )2 -2 I AJ -K Al +wJ 
I. * * * 2 +2(1 AK -I AJ +WK ) . 

Expanding this expression out and comparing with the formula 

<l>K= 1* A<PK+IfIK 

proves the desired formulas for <P K and IfI K . 

Definition 5.11. If L is a quaternionic line in H II - I , let 

and 

COAS(ImHEBL) == {~E GR(4, ImHEBL): IfIK(~) = I~I}· 

Theorem 5.12. The generalized associative form <PK E A3(ImH EB H II - I)* and 
the generalized coassociativeform IfIK E A 4(Im HEBHII - I). are both calibrations. 
Moreover, <PK(~) = I ifand only if ~ E ASOqImHEBL) for some quaternionic 
line L C H"- I .. and IfI K(~) = I if and only if ~ E COAS(Im H EB L) for some 
quaternionic line L C H,,-I . 

Theorem 5.12 is an immediate consequence of Theorem 2.27. 
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Theorem 5.13. The associative calibration ¢K E A3(lmH EB HII-I)* and the 
coassociative calibration '" K E A 4 (1m H EB H II - I ) * are both exposed and hence 
maximal. 
Proof. Suppose ¢' E A 3 (1m H EB H II - I) * is another calibration and that 

ASOC(lmHEBHII - I) c G(¢') == {e! E GR(3. ImHEBH"-I): ¢'(e!) = I}. 

Then we must show that a == ¢K - ¢' vanishes. First consider the case ¢K E 
3 2 * d d A (1m H EB H) when n = 3, and let e l • e2 • e3 denote the stan ar quater-

nionic basis for H3 . Let e! denote one of the real axis 3-planes in 1m H EB H2 . 
If e! E ASOC(lmH EEl H2) then a(e!) = 0 since ¢K = ¢'(e!) = I. Suppose e! ft 
ASOC(lm H EB H2) . 

Case 1. e! is a three plane in {O} x H2 . Then spane! must contain at least two 
real axes in the same quaternion axis. Thus spane! must contain a complex 
line with respect to at least one of the complex structures I, J, or K. Say 
e! = e2 1\ le2 1\ u. Then '1 == -leI 1\ e2 1\ le2 is a first cousin of e! which is 
associative ( e l 1\ '1 is Cayley). Therefore, by the first cousin principle, both ¢K 
and ¢' must vanish on e! . 

Case 2. e! = U 1\ '1 with U E {leI .leI' Ke l }, say U = leI' Again, it is easy to 
see that e! has an associative first cousin. 

Thus each axis 3-plane e! in 1m HE9H2 is either associative or has an axis first 
cousin that is associative. This proves that, for general n, Q = ¢ K - ¢' vanishes 
on all 3-planes e! in 1m H EB V c 1m H EB H II - I where V is a quaternionic plane 
in H n- I . 

Now suppose e! is an axis 3-plane in 1m HEBH,,-I . If span e! is not contained 
in {O} x H,,-I then, since it is 3-dimensional, spane! c ImH EB V for some 
quaternionic plane V. Thus we may assume e! is an axis 3-plane in {O} x H3 . 
Choose coordinates z I . WI. z2 . w 2 • z3 . w 3 for H3 = C6 with respect to the 
complex structure I. The difference Q = ¢K - ¢ belongs to ReA3 .O(C6). The 
remainder of the proof, which is similar to the proof of Lemma 4.7, is omitted. 

To prove that the coassociative form '" K E A 4 (1m H EB H"-I) * is maximal, 
suppose ",' E A 4 (1m H EB H n - I)* is another calibration which is identically I 
on COAS. Since "'K' restricted to {O} x H,,-I , is a generalized Cayley form, it 
is maximal on {O} x H"-I . Therefore, a == "'K - ",' vanishes on all 4-planes 
in {O} x H II- I . 

Also, employing the first cousin principle, a vanishes on e! if e! contains 
a complex line with respect to one of the complex structures I, J, or K. 
Therefore, a = 1* 1\ PI + J* 1\ Pj + K* 1\ PK , with PI' Pj • PK E 
A3({O} x Hn-I)*. These forms can be shown to be in A3.0(C2n-2) , for each 
of the complex structures. Then, using complex coordinates, and arguing as in 
the proof of Lemma 4.7, the proof that Q = 0 is completed. The details are 
omitted. 
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6. Sp(n)-INVARIANT CALIBRATIONS 

In this section we consider the 4-forms <I>(A) == A E A 4(Hn)* in ..!he algebra 
generated by WI' wJ ' and wK (see (2.6) for the definition of A == <I>(A)). 
Recall that A E SymR (3) is a real symmetric 3 x 3 matrix. Each WI' W J ' 

W K and hence each <1>( A) is fixed by Sp( n). The objective of this section is to 
determine for which A the form <I>(A) is a calibration, i.e., 

<I>(A)(~) :::; 1 for all ~ E GR(4, H n). 

Consider, as usual, the unit scalars Sp( I) acting on H n on the right. Recall 
that the induced action of Sp(l) on the image of <1>: SymR(3) ~ A4(Hn)* is 
given by 

(6.1 ) u E Sp(I). 

where gll(x) == uxu for all x E ImH. Note that x: Sp(l) ~ SO(3) defined 
by u 1-+ gil == X(u) is the usual double cover of the special orthogonal group, 
for R3 2: 1m H, by the unit quaternions Sp( I) . 

Each A E SymR(3) can be put in diagonal form. That is, for some gil E 
SO(3) , A == gllAg~ is a diagonal 3 x 3 matrix, with diagonal entries A == 
(AI .A2 .A3)· Since Sp(l) c SO(4n) , the 4-form <I>(A) is a calibration if and 
only if R:[<I>(A)] is a calibration. Therefore, we need only consider the special 
(diagonal) 4-forms: 

(6.2) <I>(A) == AI ~w; + A2~W~ + A3 ~w~. 
Theorem 6.3. The 4-form <I>(A) E A*(Hn)* is a calibration if and only if A == 
(AI' A2 • A3) E R3 lies in the convex body defined by IAjl :::; I, j = 1,2,3 and 
IAI + A2 + A31 :::; I. See Figure 2. 

FIGURE 2 

Remark. For example, A2 ~w; + A3 ~wi is a calibration if and only if (A2' A3) 
lies in the convex body (see Figure 3) defined by IA21 + IA31 :::; 1 if A2A3 ~ 0, 
and by max{IA21.IA3/} :::;·1 if A2A3 :::; O. 
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FIGURE 3 

Two calibrations if> and f/I are considered the same type if there exists an 
orthogonal transformation g with If! = g* if>. If n = 2 see Dadok, Harvey, 
and Morgan [DHM] for the classification of the <I>(A). 

Theorem 6.4 (Classification n ~ 3). The calibrations <I>(A) with A on the bound-
ary of the convex body described in Theorem 6.3 can be classified as follows. 

(6.5) Vertices (Cayley): <1>1 ,<I>J ,<I>K correspond to the vertices with two of the 
I I fix AI ,A2 , A3 equal to -1 and one equal + 1. The group Sp(n)· (S URIS) es 

<I>(A) . 

(6.6) Vertices (anti-Cayley): -<1>1' -<I>J' -<I>K correspond to the vertices with 
two of the AI ,A2 ,A3 equal to + 1 and one equal -1 . 

(6.7) Edges (Kahler): The midpoints of these edges yield the calibrations !w:, 
!w~ ,!w~. The group U(2n) fixes these calibrations. 

(6.8) Edges (anti-Kahler): The midpoints of these edges yield the calibrations 
I 2 I 2 I 2 

-"2WI' -iwJ' -iWK' 

(6.9) Edges (special isotropic): The midpoints of each of the six nontrivial edges 
joining a Cayley vertex to an anti-Cayley vertex yield the calibrations Re !0'2 , 

where 0' is a complex symplectic form on Hn ~ C2n corresponding to one of the 
six complex structures ±I, ±J, ±K. For example, with +1, 0' = wJ - iWK 
(see (2.37) and Theorem 2.38). The group Sp(n) fixes these calibrations. 
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(6_10) Face (quaternionic): The midpoint of this face yields the quaternionic 
4-form 

(6.11 ) 

This calibration distinguishes the quaternionic lines in Hn. That is, G(a) == 
{~ E GR( 4, H/): Q(~) = I} is just p n- I (H), quaternionic projective space. 

The quaternionic unitary group Sp( n) . Sp( 1) fixes a_ 

(6.12) Face (antiquaternionic): The midpoint of this face is the calibration -a, 
which distinguishes the quaternionic lines with reverse orientation_ 

(6.13) Faces (K-complex and a-isotropic): The midpoints of these sixfaces yield 
calibrations of the form 

(6_14) 

The contact set 
G(P) == {~E GR(4,H/): P(~) = I} 

consists of those real 4-planes ~ which are both K-complex and a == WI - iWJ 

isotropic. The group Sp(n)· (Sl URISI) fixes p. 
Proof of Theorem 6.3. Each of the six vertices of the convex body defined in 
Theorem 6.3 has comass one. This is exactly Theorem 2.27 if the vertex is 
cI> K == cI>( - 1 , - 1 , + 1) ; and the other vertices are ± 1 times a calibration of 
this type. Consequently, each cI>(A.) in the convex hull of these six vertices also 
has comass one. 

To prove that each cI>(A.) , with A. outside the convex hull, has comass strictly 
larger than one, rescale by 0 < t < 1 so that tcI>(A.) is on the boundary of the 
convex hull. Now note that (see the statement of the Classification Theorem 6.4) 
there exist ~ E GR(4, H/) with tcI>(A.)(~) = 1. Therefore cI>(A.)(~) = t- I > 1. 

The proof of the Classification Theorem, which is routine but somewhat 
tedious, is omitted. 

7. THE GENERALITY OF cI>K-MANIFOLDS 

In this section, we want to make some remarks on the "generality" of the 
submanifolds in H n calibrated by cI>K' 

We begin by listing some of the "obvious" methods of producing cI>K-mani-
folds. First, if V ~ H n is any quaternionic 2-plane, then cI>KIV is equivalent 
to the Cayley calibration cI> on 0 (see §2). According to [HL), if 1:3 ~ 0 
is any real analytic submanifold of dimension 3 in 0, there exists a unique 
(real analytic) 4-manifold M4 ~ 0 which satisfies 1:3 ~ M4 and is a cI>-
manifold. This method produces (locally) all of the cI>K-manifolds M4 ~ H n 

which lie linearly fully in some quaternion 2-plane V ~ H n • Let us call these 
cI>K manifolds Cayley. A second method is to note that if 10 = (cosO)/+(sinO)J 
is used to induce a complex structure on Hn , then any lo-complex 2-manifold 
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M ~ Hn is a <ilK-manifold once we reverse the orientation. Of course, there 
are many complex surfaces in C 21l which lie linearly fully in C 21l • Thus, this 
second method produces many examples which cannot be generated by the first 
method when n > 2. Let us call these <ilK-manifolds anti- lo-complex. A third 
method is to consider the K-complex surfaces M ~ H" which are isotropic 
with respect to the K-holomorphic 2-form a = WI - RWJ • It is easy to see 
that these are quite general. For example, if we choose K-complex coordinates 

I n I II H" '" C211 l" h' h z ..... z . w ..... w on = lor w lC 

d ld l d2d2 d"d" (7.1) a = z A W + z A W + ... + z A W • 

then a holomorphic map 'If: C2 --> C21l satisfies 'If. (a) = 0 iff 'If = (z" (u . v) ; 
w" (u • v)) satisfies the single first order equation 

(7.2) 
II az" aw" az" aw" L aU 8v - 8v au = o. 

0=1 
This equation obviously has many solutions. If a solution 'If is an immer-
sion, then 'If(C2) ~ C211 (s:: H") is a <ilK-manifold. Let us refer to these <IlK-

submanifolds as K-complex a-isotropic surfaces. 
Although it is not remarkable that the submanifolds of these three types, 

Cayley, lo-anticomplex, and K-complex a-isotropic can be calibrated (see §6), 
perhaps it is surprising that all these types can be calibrated simultaneously. In 
particular, any union of 4-manifolds without boundary in H n of these types is 
mass-minimizing. It remains to be seen whether there exist <ilK-manifolds in 
Hn which do not fall into one of these types. 

In studying this question, we will need tools from the theory of moving frames 
and differential systems. It turns out that a special case must be disposed of 
separately from the general argument to be considered further on. 
Proposition 7.1. Suppose that M4 ~ H" is a connected smooth 4-manifold with 
the property that there exists a smooth map (): M4 --> R/21lZ so that TpM4 is 
an IO(p)-complex 2-plane for all p EM. Then either M4 is an (open subset 
of) a quaternion line in H" or else () is constant. 
Proof. If M4 is a quaternion line in H" , there is nothing to prove. Thus, we 
may assume that, at least on a dense open subset, TpM4 is not a quaternion line 
in Hn. We now construct a differential system appropriate for our problem. 
L d d d . d' 1 1 ,I ,I k 1 et us expan stan ar quatermon coor mates as q = x + ly + JU + v 
(1 ::; I ::; n). It is easy to see that the forms 
(7 4) I d 1 '( d 1 • d I) • W = x + I cos 'If Y + sm 'If u . 

(7.5) 1 d 1 '(' did I) Y/ = v - I sm 'If y - cos 'If u 

are of type (I .0) with respect to the complex structure I", for all 'If E R/21lZ. 
In fact, {w", .11~11 = 1 ..... n} spans A~'O(H/) (= the (l. O)-forms on H" 
using the complex structure I",). 
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Now let X = HII X (R/2nZ) and let / be the differential system on X 
generated a (p, 0) by the forms in A~ .0(HII ). Note that we may "graph" 
M4 ~ HII to get a new 4-manifold ii4 ~ HII X (R/2nZ) = X by setting 

(7.6) ~* 4 M ={(p,O(P»lpEM}. 

Since any element of A~(~)(HII) must vanish on Tpii4 for all p E ii4 (after 
all, TpM4 is an /O(p(complex 2-plane), we see that ii4 is an integral manifold 
of / . Because of the presence of IJI in wlf! and '1~, these forms are not closed. 
In fact 

In particular, we have 

d( I 2 1 ) _ 1 d (_1 2 1 1 _2 1 1 2 _1) 
W'" /\ w'" /\ '1", = 2' IJI /\ -'11f! /\ W'" /\ '1", - Ww /\ '1", /\ '1", + w'" /\ WIf! /\ w'" ' 

d( 1 1 2) _ 1 d (_1 1 2 1 _I 2 1 1 _2) 
W'" /\ '1", /\ '1", = 2' IJI /\ -'1", /\ '11f! /\ '11f! + w'" /\ WIf! /\ '11f! + w'" /\ '11f! /\ wlf! 

where the congruences are taken modulo A~'o ~ / . 
Using the normal form derived in §3 and the natural extension of the action 

of H on X, we may suppose that (p, O(p» = (0.0) E X and that 
4 TpM = U 1 /\ u2 /\ u3 /\ u4 = <! 

where 

u1 = (cos¢)8/8x l + (sin¢)8/8x2 , 

u3 = (cos¢)8/8u l - (sin¢)8/8i , 

u2 = (cos ¢)8/8y 1 + (sin¢)8/8/. 

u4 = (cos ¢)8/&v 1 - (sin¢)8/&v 2 , 

where 0 < ¢ :5 n/4 (we may assume ¢ =1= 0 since TpM is not a quaternion 
line). Since we are at a point where IJI = 0, we may compute 

o = d(w~ /\ w~ /\ '1~)I~ = (dOlp) /\ (-2i) cos2 ¢ sin ¢(u; + iu;) /\ u; /\ u: • 

o = d(w~ /\ '1~ /\ '1!)I~ = (dOlp) /\ (2i) cos2 ¢sin ¢u; /\ u; /\ (u: + iu;). 

This uses 

W~I~ = (cos¢)(u; + iu;), 

'1~le = (cos¢)(u: + iu;) , 

W~le = (sin¢)(u; + iu;), 

'1!le = (-sin¢)(u: + iu;) 

and the natural identification TpM ~ 1(p .O(p))M = e. Since u;, u; ,u; ,u: 
form a basis of TpM, it follows that dOlp = O. Since p was arbitrary, it 
follows that dO = 0 on M4. Thus 0 is constant. 

Let us now consider the general case of an oriented 4-manifold M4 ~ HII . 

We can define a symmetric matrix of functions A = (aij) on M4 as follows. 
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WI "2WJ (C.(P» WI" WK(c.(p» 1 
WJ(c.(p» WJ " WK(c.(p» . 

WK"WJ(c.(p» wi(c.(p» 

These quantities on M are invariant under the motion of Hn induced by 
translations and rotations by Sp(n). Of course, M4 is a <l>K-manifold iff 
a33 - all - a22 = I . Note that the quantities 

are actually invariant under H, the stabilizer of <l>K' Moreover, bl and b; 
are actually smooth functions on M4. Note that if we put c.(p) in "normal 
form" as in Theorem 2.27 

c.(p) = (clel + Sles) " (c2e2 + S2e6) " (c2e3 - S2e7) " (c le4 - sles) 
then we may compute 

b l = ~(cos(2(1>1 + 1>2» + cos(2(1>1 -1>2)))' 
b2 = ~I cos(2(1>1 + 1>2» - cos(2(1>1 -1>2»1· 

Since we have the inequalities 0 ~ 1>2 ~ 1>1 ~ 1C12 and 1>1 + 1>2 ~ 1C12, we 
get 

Since 0 ~ 1>1 -1>2' 1>1 + 1>2 ~ 1C12, we may invert to get 

1>1 = ~(cos-I(bl + b2) + cos-I(bl - b2», 
1>2 = ~(cos -I (b l - b2) - cos -I (b l + b2». 

It follows that 1>1 and 1>2 are continuous functions on any <l>K-manifold M4 . 
If 1>1 == 1>2' then we are in the situation covered by the previous proposition. 
Since we are going to discard this case, we will assume from now on that 1>1 > 
1>2 on M4. Also the case where 1>1 == 1C12 and 1>2 == 0 corresponds to the 
<l>K-manifolds which are K-complex a-isotropic. Thus, we shall assume that 
1>1 < 1C12. 

Since any <l>K-manifold is minimal, it is necessarily real analytic. It is there-
fore easy to see that the remaining possibilities (i.e., not Io-anticomplex and 
not K-complex a-isotropic) have dense open sets where one of the following 
possibilities holds: 

( 1) 1>2 == 0, 0 < 1> I < 1C I 2 (bottom edge of 1> -triangle). 
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(2) ¢2 == nl2 - ¢I and nl4 < ¢I < nl2 (upper right edge of ¢-triangle). 
(3) 0 < ¢2 < min(¢1 .n12 - ¢I) (interior of ¢-triangle). 
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In each case, the stabilizer of (p in H has a constant dimension. For exam-
ple, in Case 3 (the generic case), the stabilizer of ~t/J is a circle in H. 

From now on, we assume that our <I> K-manifold M4 ~ Hn falls into one 
of these cases. To study such manifolds, we introduce the moving frame. Let 
E I ..... En denote the standard quaternion basis of Hn. We introduce the 
standard real basis of H" , ~I ..... ~4n by defining ~4p-3 = E p' ~4p-2 = E pi, 

~4p-I = E pj, ~4p = E pk for p = 1, .... n. Let sr (= Sp(n) . (S' U R;S')) 
denote the set of bases e = (e l •...• e411 ) which are obtainable from ~ by 
rotations in H = Sp(n)· (S' URiS'). By the usual theory of the moving frame, 
we may write dee, ..... e411 ) = (e, •...• e411 )p where P is a matrix of I-forms 
with values in the Lie algebra of H. We can give an explicit description of P 
as follows: It will be convenient to identify the quaternions with a 4 x 4 real 
matrix algebra as follows: 

u -y -z 

-~l x + iy + jz + kw = 
x -w 
w x -y 

-z y x 

Let us set 

[~ 
0 0 

-~ 1 k= 0 I 
- 1 0 o . 

0 0 0 

(Note that k. commutes with i, j, and k.) Then we may write P in the form 

[
P.ll 

P= : 
Pn , 

where each Pm! is a 4 x 4 block satisfying 

(i) Pm! + t P!m = O. 
(ii) Pm! has values in H for m fl. 

(iii) Pmm = Pok. + P:nm where P:llm has values in H. 
(Note that if we set Po = 0 then we get the Lie algebra of Sp(n).) 

Now let x: M4 -+ H n be an immersion of a <I> K-manifold satisfying our 
genericity hypothesis above. Then there exists a framing e: M4 -+.9T (at least 
locally) which satisfies for all p E M 

-> 

TpM = u,(p) A u2(p) A u3(p) A u4(p) 
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where 

U1(p) = cos4>l(p)e l (p) + sin 4>1 (p)es(p) • 
u2(p) = cos4>2(p)e2(p) + sin4>2(p)e6(p)· 
u3(p) = cos4>2(p)e3(p) - sin4>2(p)e7(p)· 
u4(p) = COS 4>1 (p)e4(p) - sin4>l(p)es(p)· 

If we let 0:1, 0:2 , 0:3 , 0:4 denote the coframe of M4 dual to the tangent 
frame field u1 . u2 • u3 • u4 ' then setting wm = em' dx, we get 

1 12 23 34 4 
W = cos 4>1 0: . W = cos 4>20: . W = cos 4>20: . W = cos 4>10: . 
S .",16.",27 .",3 S .",4 

W = sIn '1'10: . w = sIn '1'20: . W = - sin '1'20: . W = - sin '1'10: . 
wm = 0 for m > 8. 

A tedious calculation using dwm = 0 shows that, for p > 2 , there exist quater-
nion functions up' v p on M so that 

P pi = up sin 4> 1 (0: 1 + ko: 4) + V p sin 4>2 (0: 2 + ko: 3) . 
1 4 2 3. Pp2 = [-Vpcos4>I(O: +ko: ) + Up cos 4>2(0: +ko: )]z. 

(This strongly uses the assumptions 4>1 > 4>2 and 4>1 < 1£/2. In the cases 4>1 = 
4>2 (10 -anticomplex) and 4>1 = 1£/2 (K-complex a-isotropic), these identities 
definitely fail.) Note that up == v p == 0 is equivalent to the condition that 
el 1\ e2 1\ e3 1\ e4 1\ es 1\ e6 1\ e7 1\ es be constant on M, i.e., that M lie in a 
quaternion 2-plane in H n and hence be of Cayley type. 

This suggests the following formulation of our problem as a differential sys-
tem. Let X = !T x H n x T2 . Let x: X --> Hn be projection on the second factor 
and let (4)1 .4>2) denote the (angular) coordinates on T2. We regard p as be-
ing well defined on X. In fact, by pull-back, we may regard the em:!T --> Hn 

as H n -valued functions on X. We define Will = (em' dx) as usual. Define 
I-forms on X 
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Now on Y consider the differential system I generated by {() I ,()2 , ()3 , ()4 , 

0)9 ,0)10, •.• ,0)411 ,() pI ,() p2} (where p = 3, ... ,n). Let the independence con-
d· . b . b I 2 3 4 0 h h IUons e glVen y 0: = 0: /\ 0: /\ 0: /\ 0: =I- . Then we ave shown that t e 
integrals of (I, 0:) on Y correspond to framed <l>k -manifolds which are not 
either Io-anticomplex or K-complex a-isotropic. 

It is easy to see that, when restricted to X x {O} ~ Y, this system becomes 
involutive with characters s; = s; = s; = 4, s~ = O. This gives rise to the 
<l>k -manifolds of Cayley type. 

Unfortunately, the system (1,0:) on Y is not involutive. In fact, in general, 
the torsion is not absorbable. Involved calculations suggest that, except for 
very special possibilities, this system has no integrals except those which lie 
on X x {O}, i.e., Cayley type solutions. We have not been able to prove this, 
however, as the algebraic difficulties involved in analyzing the SYSLem become 
too formidable. The upshot of the calculations is that, if <l>k -manifolds exist 
which are not of one of the three types, Cayley, Io-anticomplex, or K-complex 
a-isotropic, then they are quite special. In particular, they depend on at most 
two functions of three variables. Further progress in understanding this problem 
will be reported on as it arises. 

8. HYPER-KAHLER MANIFOLDS 

The appropriate general setting for the fundamental calibration <l>K is ob-
tained by replacing H" by a hyper-Kahler manifold X. 

Suppose V is a right quaternion vector space, i.e., the scalars, H, act on V 
on the right. A function e: V x V -+ H is said to be quaternionic hermitian if 
e is real bilinear and 

(8.1 ) e(x ,yA.) = e(x ,y)A., e(xA., y) = Xe(x ,y) , 

for all x, y E V and all scalars A. E H. If, in addition, 

(8.2) e(x ,y) = e(y ,x) for all x, y E V 

then e is said to be quaternion hermitian symmetric. 
The quaternionic hermitian form e is said to be nondegenerate if e(x ,y) = 0 

for all y E V implies x = 0 and e(x, y) = 0 for all x E V implies y = O. 
Moreover, e is said to be positive if e(x, x) > 0 for all nonzero x E V. 

Now assume that V is equipped with a nondegenerate quaternionic her-
mitian symmetric form e. (The standard model is V == H" and e(x, y) == 
E~I x,y,.) Exactly as in §2, each unit imaginary quaternion u E S2 C ImH 
determines a complex structure RII on V (by right mUltiplication) and a Kahler 
form 0)11 (x /\ y) == Ree(xu, y) == (u, e(x, y)}. Here ( , ) denotes the standard 
real inner product on H. 

There are several (equivalent) ways of defining a hyper-Kahler manifold. The 
next definition contains, in a certain sense, the maximal amount of information. 
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Definition 8.3. An n-dimensional hyper-Kahler manifold X, e is a smooth 4n-
dimensional real manifold X equipped with the following extra structure. First, 
assume that the quaternions H act (smoothly) on the tangent bundle on the 
right giving each tangent space, TpX, the structure of a right quaternionic 
vector space. Second, suppose e is a positive quaternionic hermitian symmet-
ric bilinear form on each tangent space TpX which varies smoothly with the 
point p EX. Thus Re e provides X with a Riemannian structure. Third, 
assume that each of the almost complex structures Ru ' with U E S2 C 1m H , 
is integrable and that the associated 2-form Wu is parallel with respect to the 
Levi-Civita connection associated to Re e . 
Remark 8.4. Given the first two assumptions, namely 

( I) the right action of H on TX, and 
(2) the positive H -hermitian symmetric bilinear form e, 

the third assumption can be weakened considerably. In fact, if each of the 
2-forms wu ' with U E S2 C 1m H, is closed then automatically 

(8.5) each of the almost complex structures Ru ' is integrable, 

and 

(8.6) each 2-form Wu is parallel. 

If an almost complex manifold is equipped with a closed, never vanishing 
(n ,O)-form then it is easy to verify that the Nijnhuis tensor of the almost com-
plex structure vanishes. Hence, by the Newlander-Nirenberg theorem, the al-
most complex structure of such a manifold is integrable. Statement (8.5) follows 
from this principle applied to the (n, O)-form a" where a is defined by (8.7) 
below. 

Identify the quaternion scalars H == C EB jC with two copies of the complex 
numbers. Then a quaternionic hermitian symmetric form e on V can be 
decomposed into a pair of complex valued bilinear forms h, a 
(8.7) e == h + ja 

with h a complex hermitian symmetric form and a a pure complex skew form. 
Here 

(8.8) 

exactly as for the standard model H" . The details are omitted. 
Thus, on a hyper-Kahler manifold X, if the complex structure I is fixed, 

this determines 

(8.9) a Kahler form WI ' and a closed holomorphic (2, O)-form a 
which is nondegenerate. 

Moreover, h and a are compatible in that 

(8.10) h(Rjx, y) = a(x, y) for all x, y, 
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and 

(8.11 ) 

Conversely, if h and a are given and (8.10) is used to define an I-complex 
antilinear map Rj then one can show that a(Rjx.RjY) = a(x.y), for all 
x . y if and only if R~ = -I . Thus, 

(8.12). If X is a 2n-dimensional Kahler manifold equipped with a closed 
holomorphic (2. O)-form a which is nondegenerate and compatible with the 
given hermitian metric h then e == h + ja defines a hyper-Kahler structure on 
X. 

Even if h and a are not compatible, X may admit a hyper-Kahler metric. 

Proposition 8.13. Suppose X is a compact manifold. If X is a Kahler manifold 
equipped with a holomorphic symplectic form a then X admits a hyper-Kahler 
structure e. of the form e = h + ja for some hermitian form h on x. 
Proof. Since an is a never vanishing holomorphic volume form, the first Chern 
class, c l (x), must vanish. Consequently the Calabi-Yau Theorem states that X 
admits a homologous Kahler metric h which is Ricci flat. Moreover, a must 
be parallel with respect to this metric, because of the Bochner identity. 

The proof is completed as follows. Note that in this next result X is not 
assumed to be compact or simply connected. 

Proposition 8.14. Suppose X is both a Kahler manifold (with hermitian form 
h ) and a holomorphic symplectic manifold (with symplectic form a). and that 
a is parallel. 

Then X admits a hyper-Kahler metric e which can be chosen to be either of 
the form e = h = ja or e = h + jfJ for some hand fJ. 

To prove this proposition, first note that a can be put in canonical form 
with respect to h (at each point) 

(8.15) 

with AI ~ A2 ~ ... > An > 0 and Z I •...• Z2n a unitary basis of I ,0 vectors. 
Relabel with III == AI •... • Il, = All so that III > ... > Il,. Then one can 

show that III •.•. ,Il, are global constants on X and that the correspon~ding 
eigenspaces VI ..... V, are parallel. Now either rescale h to obtain h or 
rescale a to obtain fJ. 

Of course, since e is parallel on a hyper-Kahler manifold, the holonomy 
group must preserve e and hence be contained in Sp(n). Conversely, if the 
holonomy group of a 4n-dimensional Riemannian manifold X is contained in 
Sp(n) then X admits a hyper-Kahler structure. 

Compact examples with local holonomy actually equal to Sp(n) (n ~ 2) 
were thought to be nonexistent for several years (Bogomolov [BoD, however 
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since then compact examples have been found (cf. Beauville [Be]). More re-
cently, the method of symplectic reduction provides a rich collection of exam-
ples of hyper-Kahler manifolds, see [HKLR]. 

Todorov [T] has recently announced that if a simply connected compact 
complex manifold X admits a unique (up to a constant) closed holomorphic 
2-form a and if this 2-form a is nondegenerate (as a complex skew bilinear 
form) then X admits a hyper-Kahler structure e. (Once the existence of a 
Kahler metric on X is established, it follows that X admits a Calabi-Yau 
metric, with a parallel, providing the hyper-Kahler structure.) 

All of the concepts and results of §2 carry over to a general hyper-Kahler 
manifold X, e. The 4-form <l>K on X is defined by 

(8.16) 

or equivalently by 

(8) <I> - 1 2 R 1 2 . h - . . 17 K = -'2WI- e'2a , WIt a = WJ -lWK· 
Remark. In fact we have a 2-sphere of 4-forms <1>1/' with u E S2 C 1m H a unit 
imaginary quaternion. 

The main result, Theorem 2.27, that <l>K is a calibration, carries over imme-
diately with H n replaced by the hyper-Kahler manifold X. 

Definition 8.18. A real oriented 4-dimensional submanifold M of a hyper-
Kahler manifold X is said to be a <l>K-submanifoid if 

(8.19) <l>K(M) == 1 at all points of M , 

where M(p) denotes the unit simple 4-vector e1 l\e2 1\e3 1\e4 where e1 ' ••• ,e4 
is an oriented orthonormal frame for M . 

Of course, since <l>K is a calibration, each <l>K -submanifold M of a hyper-
Kahler manifold X is homologically volume minimizing. 

Theorem 8.20. Suppose X is a hyper-Kiihler manifold. The 4-form <l>K is a 
calibration on X. The <I> K-submanifolds of X include, in particular 

(1) Cayley submamfolds of a hyper-Kiihler surface Y (n = 2) contained in 
X. 

(2) K complex and a == wJ - iWK isotropic submanifolds, i.e., complex 
submanifolds with respect to the complex structure K on X, which are 
also a-isotropic. 

(3) Ie == cos 01 + sin OJ anticomplex submanifolds. 
(4) Special O-isotropic submanifolds, i.e., - Re 1ai == -1(sin OWl-COS Ow J)2 

+ 1w~-submanifolds, 
here a e == - sin Ow I + cos Ow J - iw K is a closed holomorphic 2-form with respect 
to the complex structure Ie. 



SUBMANIFOLDS IN HYPER-KAHLER GEOMETRY 31 

REFERENCES 

[Be] A. Beauville, Varietes Kahleriennes compactes avec CI = 0, Asterisque 126 (1985), 181-192. 
[Bo] F. Bogomolov, Hamiltonian Kahler manifolds, Soviet Math. Dok!. 19 (1978), 1462-1465. 
[BH] R. Bryant and R. Harvey, Stabilizers of calibrations (to appear). 
[DHM] J. Dadok, R. Harvey, and F. Morgan, Calibrations on R8, Trans. Amer. Math. Soc. 307 

(1988), 1-40. 
[HL] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (I982), 47-157. 
[HKLR] N. Hitchin, A. Karlhede, U. Lindstrom, and M. Roeek, Hyperkahler metrics and super 

symmetry, Comm. Math. Phys. (to appear). 
[T] A. Todorov, Every holomorphic symplectic manifold admits a Kahler metric, preprint. 

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NC 27706 

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TX 77251 


	0010003
	0010004
	0010005
	0010006
	0010007
	0010008
	0010009
	0010010
	0010011
	0010012
	0010013
	0010014
	0010015
	0010016
	0010017
	0010018
	0010019
	0010020
	0010021
	0010022
	0010023
	0010024
	0010025
	0010026
	0010027
	0010028
	0010029
	0010030
	0010031
	0010032
	0010033

