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A CRITERION FOR THE ABSOLUTE CONTINUITY 
OF THE HARMONIC MEASURE 

ASSOCIATED WITH AN ELLIPTIC OPERATOR 

R. FEFFERMAN 

INTRODUCTION 

In this note, we consider elliptic operators L of the form 

(1) 
n 

L = L o;(a;jo) 
; .j=1 

where the coefficients aij are defined in some bounded open set n ~ R" , are 
measurable, and satisfy the ellipticity and boundedness condition 

(2) 
n 

llc;12 S L a;j(x)C;;C;j S r 11c;1 2 

; .j=1 

for some l > 0 and for all x E 0 and C; E R" . We also assume a;j = aj;. 
For such operators, the Dirichlet problem is solvable in n if and only if it 

is solvable for the Laplace operator, according to a theorem of Littman, Stam-
pacchia and Weinberger [I]. This means that if n ~ R" is a sufficiently nice 
bounded region (the unit ball, B, is an example) and J is a given continuous 
function on the boundary of 0, then there exists a unique function u, continu-
ous on n, so that L(u) = 0 in nand u = J on on. Let us assume, for con-
venience, that the origin belongs to O. Then the mapping J E ~(on) -> u(O) 
is a positive linear functional so there exists a unique nonnegative measure w 
on 00 such that for every J E ~(on), 

r J dw = u(O). Jun 
This measure w is called the harmonic measure associated to L. It is often 
important for applications to know whether or not w is absolutely continuous 
with respect to the surface measure da on the boundary of n. If this is the 
case, it is also of interest to know how nice the Radon-Nikodym derivative 
dw/da (the Poisson kernel) is. 

In recent years, several results have been found to answer these questions. 
First, according to a result of Caffarelli, Fabes, and Kenig [2] there exist elliptic 
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operators L of the form (I) such that the measure W associated to L is not 
absolutely continuous with respect to a. Later, Fabes, Jerison, and Kenig [3] 
proved the following theorem: 

Suppose L = I:~.j=1 Di(aijDj ). where the aij satisfy (2). Suppose further that 
the coefficient matrices A(x) = (aij(x») are continuous on B. Let the modulus 
of continuity 1'/ be defined for 0 < t < I by 

1'/(t) = sup IIA(x - sx) - A(x)lI· 
xEiJB 
O<s:51 

Assume that JOI 1'/2(t)dt/t < 00. Then W is absolutely continuous with respect to 
a. In addition. if dw = k da then k satisfies the reverse Holder inequality 

(3) ( 1 r 2 ) 1/2 1 r 
a(~) J II k da ~ C a(~) J II k da 

for all surface balls ~ ~ DB . 

Then in [4], Dahlberg extended this result to the case where the coefficients 
of L are discontinuous, and to a more general setting. To describe his result, 
let us recall several definitions. If ~ ~ DB is a surface ball centered at x E DB , 
of radius r, then we set S(~) = B(x; r)nB . A nonnegative measure J1. in B is 
called a Carleson measure if and only if J1.(S(~») ~ Ca(~) for all surface balls 
~ ~ DB. We say that J1. is a Carleson measure with vanishing trace provided 
there exists a function h(r) for 0 < r < I, such that limr -+o h(r) = 0 and 
J1.(S(~») ~ h(r)a(~) for all surface balls ~ of radius r, and all 0 < r < 1. 
If f(x) is a nonnegative function on DB, then we say that f E B P for some 
1 < p < 00 if and only if for all surface balls ~, 

(4) (a/~) i fP da) lip ~ C (a(~) if da). 

The smallest C for which (4) is valid is called the" B P norm" of f. 
In [4], Dahlberg proves the following theorem: 

Suppose Lo and L I are two operators of the form (1). with coefficient matrices 
Ao(x) and AI(x) respectively. For zEB set 

a(z) = sup IIAo(x) - AI(x)lI. 
xEB(z;.5(z)/2) 

where o(z) denotes the distance from z to DB. Assume that a2dz/o is a 
Carleson measure with vanishing trace. Assume that the harmonic measure Wo 
associated with Lo is absolutely continuous with respect to a and that dwo = 
koda where ko E BP. 1 < p < 00. Then the same must be true of the harmonic 
measure WI associated to LI • i.e .• WI = klda for some kl E B P . 

To state our result, let us recall that a function f(x) ~ 0 on DB belongs to 
Aoo if and only if for dv = fda, and any subset E ~ ~, ~ a surface ball, we 
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have 
veE) < C [aCE)] 0 
V(d) - a(d) . for some 0> O. 

Then it is well known, [5], that f E Aoo if and only if f E B P for some p > 1 . 
The result of this article will give a criterion which, on the formal level, 

looks very much like the Dini condition of Fabes, Jerison, and Kenig which 
guarantees that if the difference of the coefficient matrices Ao and A I of two 
elliptic operators Lo and L I meets the criterion, then Wo = koda, ko E A oo 

implies that WI = kl da , with kl E Aoo • We are not able to prove that the B P 

condition is preserved for a given p. Thus the conclusion of the theorem of 
Dahlberg is stronger than ours here. The significance of our result comes from 
the fact that, unlike the results in [3] and [4] our hypothesis does not require 
that the coefficients of Lo be uniformly close to those of LI as we approach the 
boundary of B, in order to guarantee that the good properties of the harmonic 
measure associated with Lo are inherited by that of LI . 

STATEMENT OF THEOREM 

Suppose that Lo and L I are elliptic operators in divergence form (I) with 
bounded measureable coefficients defined in the unit ball, B . Suppose, as above, 
Ao(x) and AI (x) denote their coefficient matrices, and Wo and WI the asso-
ciated harmonic measures. 

As above, for Z E B set 

a(z) = sup IIAo(x) - AI (x)1I 
XEB(z;J(Z)/2) 

where J (z) is the distance of z to the boundary of B. Then we have the 
following: 

Theorem. Suppose, for each x E aB . 
fl 2 dt 10 a ((I - t)x)T ~ c, 

for some constant C independent of x. Assume that Wo = koda where ko E 
Aoo . Then WI is absolutely continuous with respect to a and WI = klda where 
kl E A oo . 

The proof of our theorem follows the method of Dahlberg in [4]. There, 
Dahlberg considers the family of operators Lt' 0 ~ t ~ I, given by L t = 
(l-t)Lo+tL I • Let lOt denote the harmonic measure associated to L t and Q(t) 

the B P norm of lOt. He proves the differential inequality IQ(t)1 ~ CQ(t)N 

where Q(t) is the t derivative of Q(t), C depends on the Carleson measure 
constant of a2 dz / J , and A., the ellipticity constant. N is some large positive 
integer. This differential inequality shows that if a2dz/J is a Carleson measure 
of vanishing trace (so that essentially C can be taken as small as desired) and 
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Q(O) < 00, then Q( 1) < 00. The smallness of C is obviously crucial, since the 

solution of the equation IQ(t)1 = CQ(tt has a singularity when N> 1. Our 

aim here is to replace the differential inequality above with IQ(t)1 ::; CQ(t) , 
i.e., N = I. C can then be as large as we like. 

As one application of our theorem, we introduce the following notion, which 
we call "region of arbitrary perturbation." Let n ~ lRn be a bounded region 
in which the classical Dirichlet problem is solvable, and let no ~ n be a 
subregion. We call no a region of arbitrary perturbation provided whenever 
Lo and LI are two elliptic operators of the form (1) with coefficients Ao(x) 
and AI (x), then if Ao(x) - AI (x) is supported in no, and if the harmonic 
measure associated with Lo is ACXl on an, then this implies that the same is 
true for the harmonic measure associated with LI . Now set B+ ~ lRn+1 to be 

B+={(x,Y)lxElRn,y>O, andlxI 2 +l< I} 
and 

B+(!) = {(x, y) I x E lRn ,y > 0 and Ixl 2 + l < n. 
Suppose qJ(x) is a function defined on the ball centered at 0 of radius ! in 
lRn whose graph is contained in B + (!) and which is slowly oscillating in the 
sense that there exists a constant C so that for each Xo E BI/ 4 (0), we have 
!qJ(xo) ::; qJ(x) ::; 2qJ(xo) whenever x E Blxol/C(xo) n B I / 4(0). Let 

no = {(x, y) IIxl 2 + l < ! and qJ(x) < y < 2qJ(x)}. 

Then no is a region of arbitrary perturbation, as can easily be seen from our 
theorem. 

The notion of regions of arbitrary perturbation can be used to yield informa-
tion on the harmonic measure associated with some basic examples of elliptic 
operators. A discussion of these will appear elsewhere. 

Proof of the Theorem. Consider Lo and L I as in the statement of our theorem, 
and let L, = (l-t)Lo+tL I with associated harmonic measure w,. In [4] it is 
shown that we may assume that the coefficients of the L, are CCXl in B. Let 
w, = k,da, and .1 be a surface ball on aB, .1 centered at Xo of radius r. Let 
A = B(xo ; 2r) n B. We are trying to show that if ko E ACXl then the same is 
true of k\. To this end, let Ci be the normalized surface measure on .1, i.e., 
a = a/a(.1). We shall show that 

(5) 

and this shows that kl E ACXl . To do this, we require a trivial lemma, which the 
reader will notice is essentially just exploiting the duality of HI with BMO. 

Lemma. Fix to E [0 , I], and .1 ~ aB a surface ball centered at Xo of radius r. 
There exists afunction f(x) defined on the boundary of B, which is continuous, 
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nonnegative, supported in the surface ball centered at Xo of radius ~ r, ,1, such 
that 

IlfIIBMO(da) + Ilfliv (daja(t.)) ~ CII 

and 

hfkto dO- ~ cllllktoIlL(logL)(da)' 

(Here CIl ' cll depend only on n.) 

Proof of Lemma. We clearly may assume, by homogeneity, that IIktoIlV(da) = 1. 
By a well-known theorem of E. M. Stein [6], 

IIkt:ll vda ) ~ AllliktoIlL(IOgL)(da) 

where kt: denotes the Hardy-Littlewood (dyadic) maximal function of kto 
taken over cubes contained in ,1. Perform the Calderon-Zygmund decomposi-
tion of the kto at heights Bj , j = 1 , 2 , ... , where B is as follows: 

Let the Calderon-Zygmund cubes at height B j be called Qi. Then choose 
B so large that 

a (Q; n [Y,Q;,;I]) < ~a(Q;). 
Then let ffJ~ be a nonnegative smooth bump function which is I on Qi and 
o off of the dilate of Q; by 3/2. It is trivial to show that the function f = 

Lj.f ffJ~ + ffJ belongs to BMO(da) (ffJ E COO (8B)) , ffJ ~ 0, ffJ == 1 on ,1, and 
is supported in the concentric dilate of ,1 by 3/2) and 

IIfIlBMO(da) + IIfIlV(da) ~ CII ' 

,,(*- " ~ Cll it. ktoda ~ cIlAllliktoIILlogL(da)' 

This proves the lemma. 

Now, to show (5), we fix to E [0,1] and ,1, and we select f as in the lemma, 
and estimate 

(6) 
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and this ratio is shown in Dahlberg [4] to be equivalent to a quantity V as fol-
lows: Let u/ be the solution of L/u/ = 0 in A and u/ = I on 8A. Let IfI(Z) E 
COO(JRII ), IfI supported inside the ball B(O; !r), IfI == 2 inside B(O; !r). Let 
Z = (I - tr)xo and lfI(z) = 1fI((s - 2)/r)r- lI • Put V = fA u/o IfI dz. We have 
c i V ~ (6) ~ c2 V, so we estimate (6) by estimating V. Following [4] we con-
trol fA U/Ifl dz , via a differential inequality. We consider the modified Green's 
function h/ defined by L/h/ = IfI in A and h/ == 0 on 8A. Then as in [4], 

Ii u/lfldzl ~ C i eIVu/IIVh/ldz 

where e(z) = IIAo(z) - AI (z)II . 
Now, our assumption on a implies that IIellL'x, ~ C. Let AI = B(xo; tr)nB 

and A2 = A - A I . Then 

i2 eIVu/IIVh/1 dz ~ C (i2Ivu/dZ) 1/2 (i2IVh/dZ) 1/2 

and this is easily seen to be 

~ C hfk/da, 

where in this case and from here on w/ will stand for the harmonic measure 
associated with L/ in A taken at the point 2, and w/ = k/da . Then 

~ fk/da ~ Ca(d) ~ fk/ dr:. it. it. a(d) 

~ Ca(d) ~ II - 161k/ d~ + Ca(d)/6 ~ k/ dr:. it. a(d) it. a(d) 

(where 16 = hi da/a(il» 

~ Ca(d)II1 - 1611exP(dd")IIk/IIL'ogL(dd") + C 

~ CII/IIBMo(dl1)Q(t)IIk/llv(dl1/l1(a))a(d) + C ~ c' Q(t) 

where 
Ilk/ II L log L (dl1/l1(a) ;a) 

Q(t) = sup ~~--'-------'--
ac;,IJB Ilk/ II V (dl1/l1(a) ;a) 

the sup being taken over all surface balls d ~ 8B . 
Now we must estimate fA eIVu/IIVh/1 dz. For each dyadic surface cube 

- I 
Q ~ d, we let 

Q = {z E B I z/IIzll E Q, cn" ~ o(z) < 2clI " , l = side length of Q} , 
clI = 1Ov'n. 
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Then if aQ = sup{e(z)lz E Q}, 

III elV'u(llV'h(1 dz ~ ~ 
Q<;1'1 

(7) 
Q dyadic 

< 

By Caccioppoli's inequality, 

(k lV'h( 12dZ) 1/2 ~ C (k- h~dZ) 1/2 6(Q)-1 

133 

where Q~ denotes the concentric dilate of Q by (1 + Ibo), and 6(Q) denotes 
the side length of Q. 

By standard estimates on Green's function [7], if z E Q~, h((z) < 
C6(Q)2-llw((Q) , so that 

so that 

(8) l elV'u(llV'h(1 dz ~ ~ aQ ([ IV'U/dZ) 1/2 61- 1l / 2(Q)wt(Q) 
I Q<;1'1 Q 

Q dyadic 

Define F(x) E £2 for x E 8B, by letting F(x) = {aQ } XEQ • Define 
Q dyadic 

G(X) E £2 for x E 8B by 

G(x) = {([ IV'UtI262-II(Z)dZ) 1/2} XEQ 

Q Q dyadiC 

Then (8) ~ JuB F . G(x)dwt(x). Also, our assumption on a implies that F E 

L 00(£2) and IG(x)l p2 = S(f)(x). 
We therefore see that 

(8) ~ C ( S(f)(x) dwt(x) ~ C [( S2(f)(X) dWt(X)] 1/2 
JuB JuB 

Bya result of Dahlberg, Jerison, and Kenig [8], S is bounded on L 2 (dw t ) with 
a bound depending only on n and the ellipticity constant of Lt' Thus this last 
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IA=~ ~/dWt' 
Wt(d) 1A 

At this point, we observe that w t satisfies a doubling condition on surface 
balls [7J, with doubling constants depending only on the ellipticity constants of 
L t , and so 

(~ ~ II - 1 AI2 dWt) 1/2 5 C" sup ( l(d) (II -I al dWt) 
W t (d) 1A Ilr;iJB W t 1 Il 

== C"lI/lIsMO(dW') 

where C" depends only on n, C, and the ellipticity constant of Lo and LI ' 
and where la = (l/wt(d)) fill dwt · 

Next, we claim that II/lIsMO(dw') ::; C III Q(t). In fact, if Q is a surface cube 
on oR, and if IQ = (l/a(Q)) fQ I da, then 

1 ( a(Q) ( da 
wt(Q) lQ II - IQI dWt = wt(Q) lQ II - IQlkt a(Q) 

proving the claim. 
Finally 

( 10) 

But 

::; ;t\~) III - IQllexP(da/a(Q) ;Q)IIkt ilL logL(da/a(Q) ;Q) 

a(Q) 
::; C Wt(Q) II/I1SMO(da)Q(t)lIktIlV(da/a(Q);Q) 

::; C III Q(t) , 

hi kt a~i) ::; hll - IAlkt a~i) + IA h ktda 

(where IA = (l/a(~)) hi da::; C) 

::; II/IIBMO(da)lIktIlLlOgL(da/a(A);A) + C 

::; CQ(t)lIktllv(da/a(A);A) + C. 

From this it follows that (10) ::; CQ(t). This proves that I fA ut'" dzl ::; 
CQ(t) . 
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Now we have shown that 

l Utolfldz:::; l Uolfl dz + Ioto (l Utlfl dZ) dt:::; C [Q(O) + Ioto Q(t)dt] , 

while Q(to):::; C fA Uto IfI dz , if we choose .1 correctly, so that 

Q(to):::; C [Q(O) + Ioto Q(t)dt] 
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and this implies the bound on Q( 1) we require to finish the proof of the theo-
rem. 
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