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O. INTRODUCTION 

Let X be a compact manifold with nonempty boundary and let P be a first 
order elliptic differential operator over X . In order for P to have a well-defined 
index, a suitable boundary condition must be imposed. 

In [APS), Atiyah-Patodi-Singer introduced a boundary condition which is par-
ticularly significant for applications. Their condition involves a first order self-
adjoint operator, A, on Y = ax , which is naturally associated to P. Specifi-
cally, the boundary values of solutions, h, to Ph = 0, on X , are required to lie 
in the direct sum of the eigenspaces of A corresponding to negative eigenvalues. 

In this situation, an invariant of A called the l1-invariant, l1(A) , enters into 
the index formula for P; see [APS). Formally, l1(A) , is equal to the number 
of positive eigenvalues of A minus the number of negative eigenvalues. In 
actuality, A has infinitely many eigenvalues of each sign and l1(A) must be 
defined by a regularization procedure; see (0.3). 

The invariant, l1(A) , is not locally computable. That is, it cannot be obtained 
by integrating over Y, any differential form which is given in local coordinates 
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by a canonical expression derived from the symbol of A. In fact, any such 
expression behaves multiplicatively when one passes to a finite covering of the 
underlying manifold. Examples show that the t/-invariant does not always be-
have in this way. 

As a consequence of its not being locally computable, the t/-invariant is often 
difficult to compute explicitly. 

Consider, on the other hand, a I-parameter family of operators, A,. Then 
t/(A,) behaves smoothly, when reduced mod Z and it turns out that the varia-
tion, dt/(A,)/dt, is locally computable in terms of A" dA,/dt. This remarkable 
property of the t/-invariant is closely related to its connection with index theory. 

In the present paper, we study the limiting value of the t/-invariant for Dirac 
operators, in situations in which the metric (or part of the metric) on the under-
lying manifold is multiplied by the factor e -I and e -+ O. We show that in the 
presence of an additional invertibility hypothesis, the t/-invariant approaches a 
limiting value which is locally computable (or partly locally computable). 

The operation of blowing up the metric is called passing to the adiabatic 
limit. 

The additional invertibility hypothesis is described in more detail following 
(0.4), below. 

The original motivation for considering our problem comes from a paper 
of Witten, [W]. He considers a family of Dirac operators acting on an even 
dimensional manifold. The parameter space of his family is a circle and thus, 
the (odd dimensional) total space of his family is the total space of a fiber 
bundle over the circle. Witten gives an argument relating the holonomy of the 
determinant line bundle of the family to the limit of the t/-invariant of the 
Dirac operator on the total space, when the metric on the circle is blown up. 

Witten's result was proved rigorously in [BF] and [C3]. The emphasis in [BF] 
was on the superconnection formalism of Quillen, [Q], in relation to the proof 
given in [B I] of the local index theorem for families. 

In [C3], two proofs are given, one based on Duhamel's principle and the sec-
ond which exploited the connection with previous work on conical singularities; 
see [C I, C2]. For the case of the signature operator, an expression equivalent 
to that considered by Witten had arisen in [C2], when considering the variation 
of the t/-invariant, for a space with isolated conical singularities. Finally, it was 
emphasized in [C3] that for a fibration of compact manifolds, Z -+ M ~ B, 
the t/-invariant of the total space can be viewed as a renormalized difference of 
t/-invariants, with coefficients in an infinite dimensional bundle whose fiber is a 
space of sections along the fiber, Z. 

If, as above, we view the case of fibrations (discussed in §4) from the stand-
point of infinite dimensional coefficient bundles, then there is a corresponding 
problem for finite dimensional coefficient bundles. This is treated in §§2 and 3. 
The analogy between the above two problems extends the analogy between the 
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local index theorem for Dirac operators coupled to superconnections and (the 
second proof of) the local index theorem for families; [B 1]_ 

For the remainder of this introduction, we will restrict our attention to the 
case of fibrations and we will assume that the dimension of the base is odd. For 
obvious reasons, the statements of our results are slightly different in the cases 
dim B odd and dim B even, but the discussions of these two cases run parallel 
to one another. 

Let Z21 ---t M 2(k+/)-I ~ B 2k - I be a fibration of compact oriented spin man-
ifolds. We assume that the metric on M is of the form 

(0.1 ) M * B Z g = n (g ) + g 

where gB is the metric on Band gZ annihilates the orthogonal complement of 
the fibers. Let <! be a Hermitian vector bundle over M with unitary connection 
and V~ and curvature L ~ . 

We denote by D: the Dirac operator with coefficients in <! for the metric 

(0.2) M -I * B Z g£ = e n (g ) + g . 

By definition the reduced '1-invariant of D£M is 

_ M I [ . M I [00 -1/2 M _(D;I/)2( ] 
(0.3) '1(D£) = 2' dIm ker D£ + r( I /2) 10 t tr(D£ e ) dt . 

(The fact that the integral is convergent at t = 0 is nontrivial; see [Gil], [BF], 
and §3 below). 

Let RB be the curvature of B and let A(RB /2n) be the differential form 
representing the A-genus of B, which is obtained from the Chern-Weil homo-
morphism; 

(0.4) A(RB /2n) = det [[ .RB ~4n jl/2]. 
smR /4n 

We now assume that the Dirac operator along the fibers, DZ , with coefficients 
in <!, is invertible for all fibers Z (in §4, we briefly describe how the discussion 
can be modified if this fundamental assumption does not hold). Our basic 
assertion is that there exists an explicit differential form, ij, on B, whose value 
at p E B depends only on (global) information on Zp = n-I(p), and on the 
splitting of TM into its horizontal and vertical subbundles, such that 

(0.5) limf1(D:) = _I_'-k [ A(iRB)ij. 
£-+0 (2nl) 1B21-1 

Since, a priori, lim£-+o f1(D:) depends on global information on all of M, 
(0.5) represents a partial localization of the '1-invariant (to the fibers). Let R Z 

denote the curvature of the subbundle, 12 c TM, which is tangent to the 
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fibers, computed with respect to the connection obtained by projecting the Levi 
Civita connection for gB onto TZ. Then 

(0.6) I 1 ~ Z -L' d~ = --I A(iR) tr(e ), 
(2n i) z2I 

where JZ 2I denotes the operation of integration over the fiber. 
The form occurring on the right-hand side of (0.6) is a representative of the 

(normalized) Chern character of the index bundle of the family of Dirac oper-
ators, DZ, over B. This representative was obtained in [BI], by an extension 
to infinite dimensions of the superconnection formalism of [Q]. Since we have 
assumed D Z is invertible for all Z, the above family is trivial. Thus, the form 
on the right-hand side of (0.6) must be exact and the form ~ makes it exact in 
a canonical way. 

By referring to the formula for ~ (see (4.34)) one sees that ~ can be inter-
preted as a generalization to infinite dimensions of the form constructed in [Q], 
in order to transgress a Chern character form. Indeed, someone familiar with 
[Q] and with the Levi Civita superconnection of [BI], might be led to write 
down the formula for ~ by analogy with Quillen's formula. 

However, in the proof of (O.S), we do not set out with the express purpose 
of making the form on the right-hand side of (0.6) exact. Rather, the form ~ 

appears when we manipulate the integral in (0.3). That (0.6) should hold for a 
form obtained in this way can be perceived by noting that (0.3) is itself part of 
a transgression formula. An understanding of the sense in which this is so is of 
importance in dealing with the ,,-invariant. It leads naturally to the "auxiliary 
Grassman variable" which played a crucial technical role in [B2, BF, BGS] and 
which will be used again in the present paper. It is also intimately related to the 
proof of the Atiyah-Patodi-Singer formula, by means of the cone construction; 
see [C2, Chou]. We will return to these points in §3 and in [BC2]. 

We will discuss applications of our work and its relation to that of other 
authors elsewhere (see in particular [ADS, BaM, MI, M2, S]). At this juncture 
we will point out just the following. The main results of this paper are stated 
for the ,,-invariant-the value at s = 0 of the ,,-invariant, ,,(s). However, our 
method of proof makes it immediately apparent that there is a corresponding 
result for the ,,-function itself. This more general result is actually necessary 
for the applications mentioned above (compare the argument of [C3, Appendix 
3]). For some further comments pertaining to these applications, see Example 
A.2.7 below. 

Last, we mention that the ~ forms arise naturally in the context of L 2-index 
theory on closed oriented pseudomanifolds with nonisolated conical singulari-
ties. There they appear in local formulas for the homology ..2" -classes (see [C2, 
§9]). This is explained further in [BC2] in which the ~-forms and the cone con-
struction figure prominently. The main results of that paper and of the present 
one were announced in [BC I]. 
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1. ALGEBRAIC PRELIMINARIES 

(a) Z2-graded algebras. A vector space, Z, is called Z2-graded if it comes 
equipped with a direct sum decomposition Z = Zo $ Z I . This decomposition 
determines and is determined by an involution, p, 

(1.l ) piZ. ~ (-l)j, 
J 

A Z2-graded vector space, A = Ao $ A I ' which is an algebra, is called a 
Z2-graded algebra if 

(1.2) AjAj , CAj+j" 

We will use subscripts on elements to denote their grading, e.g., a j E A j. All 
such subscripts take values in Z2. 

If Z is a graded vector space then End(Z) is naturally a Z2-graded algebra, 
where m2 E Endj(Z) if 

( 1.3) 

A Z2-graded representation of A is a homomorphism, cfJ(A) --+ End(Z), for 
some Z, with cfJ(A) C Endj(Z). 

By definition, the left regular representation, a --+ La' of A, is Z2-graded 
by A = Ao$At . But it may have another Z2-grading, say A = A~$A~ (which 
need not define a Z2-graded algebra structure). Suppose there exists l' E A 
such that 1'2 = 1 and the ±l-eigenspaces of Lr define a Z2-grading for the 
left regular representation of A. Then any representation, cfJ, has a Z2-grading 
by the ± l-eigenspaces of cfJ( 1') . 

The Z2-graded algebra, A, is called supercommutative if all supercommuta-
tors, 

( 1.4) 

vanish. 
If A, cfJ , p are as above (A not necessarily supercommutative) then 

( 1.5) 

defines a supertrace on A, that is a linear map whose kernel contains all super-
commutators. 

If A, Bare Z2-graded algebras, their Z2-graded tensor product is naturally 
isomorphic as a vector space to A ® B (the elements of A®B are written a®b 
in place of a ® b ). The multiplication on A®B satisfies 

(1.6) (a®b)(cj'®d) = (-1 )jj' aCj'®bjd , 

If A, Bare supercommutative, so is A®B with respect to its natural tensor 
product grading, 

(1. 7) 
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determined by p A ® P B ' where the involutions P A • P B determine the gradings 
on A.B_ 

Let cf>. If/ be representations of A. B on X. Y. Let C2 = C Ell C define the 
grading on c2 and let J . K E End) (c2) denote the involutions, 

( 1.8) J= [ 0 -i] 
i 0 . 

( 1.9) K= [~ ~]. 
Note that JK = -KJ. If the grading on X ® Y ® C2 
involution 1 ® 1 ® iJ K , then 

(1.1 0) 
. ., • b b J J aj ® j' -> cf>(a) ® If/( ) ® J K 

defines a Z2-graded representation of A®B. 

is determined by the 

Let cf>. If/ be as above and let If/ be Z2-graded. Let P be as in (1.1). Then 

(1.11) aj®b -> cf>(a) ® pj If/(b) • 

defines a representation of A®B. If cf> is also Z2-graded, this representation 
is Z2-graded for the tensor product grading on X ® Y. 

Example 1.12. Let Lb denote the image of bE B under the left regular repre-
sentation. If this representation has a Z2-grading such that for all b. p satisfies 

(1.13) Lp(b) = pLb 
then by (1.11), 

(1.14) A®B~A®B. 

If p = L y , for some rEB, then (1.13) holds. 

Example 1.15. Let cf> be a representation of A and let Y be a graded vector 
space. Putting B = 1, 1f/(1) = Idy defines a representation of A ~ A®l via 
(1.11). 

(b) Clifford algebras. Let C/(V") denote the complex Clifford algebra of the 
real inner product space, V". Relative to an orthonormal basis, {e;} , C/(V") 
is defined by the relations 

( 1.16) 

As a vector space C/(V") can be identified with the complex exterior algebra. 
The Clifford mUltiplication is then exterior multiplication minus interior multi-
plication. The elements e(.) = e . ... e· , U) = U) ..... i.), i l < ... < i. , form 

I II Ij J J 

a basis for C/(VII ). Put IU)I = j. The subspaces C/O(V") , C/1(VIl ) spanned 
by those eU) with IU)I even (respectively odd) give C/(V") the structure of a 
Z2-graded algebra and we have 

(1.17) C/( VII) ~ C/(R1)® .. . ®C/(R) 
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(j-factors). If V is oriented, the element 

( 1.18) ,= { leI ... e 2k -I' n = 2k - 1 . 

leI' .. e2k • n = 2k 
is independent of the choice {e,.} and satisfies 

( 1.19) 2 , = 1. 

For n even, , defines a grading for the left regular representation. As in 
( 1.14), this gives the isomorphism 

(1.20) CI(Vn ffi R2J) ~ CI(V") ® CI(R2J ). 

For n = 2k, even, up to isomorphism, Cl ( V") has a unique irreducible 
module, F, which has dimension 2k and is Z2-graded (by </>(,)). In fact, 
CI(V2k ) ~ End(F). We will follow the standard convention and write F+ ffiF_ 

for FoffiFI • We write trs( ) for the supertrace on CI(V2k ) defined as in (1.5). 
If n = 2k - 1 is odd CI(V") has two inequivalent irreducible modules, each 

of dimension 2k- 1 • For arbitrary n, 
(1.21 ) 

defines an isomorphism, CI(V") ~ Clo(V" ffi R). Thus, for n odd, we can 
regard F for V n ffi R as (inequivalent) modules over CI(V") (, --+ ± IdF ±). 
For V 2k - I oriented, the notation tr( a) refers to the representation F + . 

Lemma 1.22 ([G]). (1) If n = 2k is even then 
(i) -j. (1 •...• 2k) . 

{ O. 
(1.23) trs(e(i)) = ,.-k2k. (i) = (1 •... . 2k). 

(2) If n = 2k - 1 is odd and 1(i)1 2: 1. 

(i) -j. (1 ....• 2k - 1) . 

(i) = (1 ..... 2k - 1). 
(1.24) 

The irreducible modules of CI(V" ffi Wm) can be obtained from irreducible 
modules F(Vn ), F(Wm) for CI(Vn ) , CI(Wm) as follows. 

For n, m odd, the module F (Vn) ® F (Wm) ® C2 of ( 1.10) is irreducible. 
For m even, the module F ( V n ) ® F (Wm) of ( 1.11) is irreducible. 
Finally, we note the effect of scaling the inner product ( . ) on V. For any 

inner product, CI(V) coincides as a vector space with A*(V)®C. Fix an inner 
product, ( . ) and let Cl£ (V) denote A" (V) with Clifford multiplication, 
O£ coming from e -I ( , ). Then the automorphism of A" ® C induced by 
e l / 2V --+ V, provides a natural isomorphism CI£(V) ~ CI(V). It also provides 
a natural isomorphism between the orthonormal frames {e l / 2ei } for e- I ( • ) 

and {e) for ( . ). Thus, although there is no canonical choice for the space 
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F (V) for { . }, any fixed choice also provides an irreducible module for Cle (V) 
via the above isomorphism. 

In the sequel, if X is a riemannian spin manifold, we will always assume 
that the space of spinors has been chosen independent of the scaling parameter 
of the metric. As a consequence, the action of e l / 2ej E Cle(TXx ) on Fx is 
independent of e and the Dirac operator De corresponding to e -I { • } is 
e l / 2 D , where D is the Dirac operator for { . }. 

2. THE FINITE DIMENSIONAL CASE; SUPERCONNECTIONS 

In this section we calculate the limits of reduced ,.,-invariants of certain Dirac 
operators coupled to superconnections, on closed oriented spin manifolds, when 
the metric, gB , is blown up by a factor e -I . These ,.,-invariants are shown to be 
independent of e when reduced mod Z. Under the appropriate invertibility 
hypothesis, the limit exists in R and we identify it. 

Our main purpose is to record that the formulas for lime-+o ij(De) (see The-
orems 2.28 and 2.43) are slight variants of analogous formulas of [B2] and can 
be proved by essentially the same arguments. We also introduce the rescaling 
technique of Getzler which plays a central role in §§3 and 4. In §3, the results 
of this section will be treated from a somewhat different viewpoint. 

The discussions of parts (a) and (b) correspond to the cases of fibrations with 
even and odd dimensional fibers respectively. As a consequence, our assump-
tions will differ in parts (a) and (b). 

(a) Odd dimensional base spaces. Let B2k - 1 be a compact connected ori-
ented riemannian manifold with metric gB and curvature RB. We assume 
that B2k - 1 has a spin structure and let FB denote a Hermitian bundle of 
spinors. The unitary connection on FB , which is induced from the Levi Civita 
connection on B, will be denoted "B. 

Let C; = C;+ EB C be a finite dimensional, Z2-graded, Hermitian vector bun-
dle over B, with orthogonal splitting. Let ".; be a unitary connection which 
preserves the splitting. The curvature of ".; is denoted by L'; . Often in what 
follows, we also use ".; to denote the induced exterior differentiation on forms 
with values in C; , in which case we have L'; = (,,';)2 . We give the bundle FB ®C; 
the tensor product connection, ,,= "B ® 1 + 1 ® ".; . 

The fiber, C;p, of C; , plays the role of the space of smooth L2-sections of the 
bundle of spinors of the fiber Z, of a fibration Z21 --+ M --+ B 2k - 1 (possibly 
tensored with a coefficient bundle). Since the grading on C; corresponds to the 
decomposition F Z = F: EBF~ , we write C; = C;+ EBC;_ (instead of C;o EBC;I ). We 
let p be the involution, plc;± = ± 1 . 

Keeping in mind (1.11), Example 1.15, and the discussion at the end of §1, 
we extend the natural representation of CI(Bp) on F: to a representation on F: ®C; as in (1.11). 



If 
(2.1 ) 

'I-INVARIANTS AND THEIR ADIABATIC LIMITS 41 

denotes the Dirac operator on sections of FB ® e associated to this representa-
tion, then in matrix form, 

(2.2) 0; [DC,+ D = o _~c,- ] , 

where DC,± denote the usual Dirac operators associated to the representations, 
I., -t I., ® 1 on e±. Thus, the 17-invariant 

(2.3) 

is a difference of 17-invariants and the reduced 17-invariant, 

(2.4) i1(Do;) = fi(Do;+) - fi(DC,-) + dim ker DC,-

is a difference of reduced 17-invariants mod Z . 
We now consider the operator 

(2.5) DC, + V = [
DC,+ 

V+ -~~-l 
where V E End_ (e) is selfadjoint. The pair (Vc" V) determines a supercon-
nection in the sense of [Q]. The operator DC, + V is the analogue of the Dirac 

h I f · . b . Z21 M 11 B2k - 1 operator on t e tota space 0 a nemanman su merSlOn, -t -t , 

for which the horizontal distribution is integrable. The role of the Dirac opera-
tor, D Z ,along the fibers is played by V. The finite dimensional analogue of the 
case of fibrations with nonintegrable horizontal distribution will be indicated in 
Appendix 1. 

Note the relation 

(2.6) J v+vr =0, n J o 

as a consequence of which DO; V + VDo; , the supercommutator of DO; and V, 
is of order zero. 

Theorem 2.7. Let (e 1 /2 D + V) be associated to the metric e - 1 g and supercon-
nection (vc" V). Then fi(e l / 2 DC, + V) is independent of e, when reduced 
modZ. 
Proof. Since the reduced 17-invariant of an operator does not change when the 
operator is multiplied by a constant, it suffices to show that 

d 
(2.8) ds t](D + sV) = o. 
By the standard formula for the variation of i1, 

d ak _ 1 
(2.9) ds fi(D + sV) = .Jii ' 
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where 

(2.10) 

Thus, our claim follows from 

Lemma 2.11. 

(2.12) 

j 

Proof. We use Getzler's method as adapted to the odd dimensional case in [BF]. 
W d B2k-1 R2k-1 h h d' {} f 2k-1 e can preten = , were t e coor mates Ya 0 R are 
normal coordinates. The operator Ve _(D+V)2, has a kernel in CI(TB)® End(e) 
and it suffices to study its trace at the origin. In terms of local trivializations 
which are covariant constant at Y = 0 , this kernel can be written in the form 

(2.13) L fa, 0'" 0 1;,; 0 ®k(n)(Y • t) dYI ... dY2k_1 • 

where k(n)(Y' t) = k(n)(O. Y • t) and 0 denotes Clifford multiplication. 
Since V E End_(e), it is clear that Ve-(D+V)2, is odd with respect to the 

total grading on CI(TB)® End(e) . Thus, the parity of kin) E End(e) is opposite 
to that of 1(0:)1 = i. Odd elements of End(e) have trace O. So, by (1.24), the 
only term in (2.13) with nonzero trace corresponds to (0:) = (1 ..... 2k - 1) . 

The proof will be concluded by examining the effect of Getzler's transfor-
mation, GJ1 /2 , on the operator J(De + V)2. By definition, this means that we 
conjugate this operator by the coordinate change, 

(2.14) 
make the replacement 

1/2 
Ya-+ J Yo' 

(2.15) 1 -+ J- 1/ 21 
(l: tt' 

in the Clifford variables, and change the Clifford multiplication, 0, to oJ' which 
satisfies 
(2.16) (J- 1/ 21;,) oJ (J- 1/ 2f p) + (J- 1/ 21;,) oJ (J- 1/ 2 fp) = -ltJnp ' 

Thus, limJ ..... o oJ = 1\, where 1\ denotes exterior multiplication. By (2.6), we 
easily obtain 

(2.17) 

(2.18) 

Thus (see [G]) 
(2.19) 

lim GJ, /2 (J(De + V)2) = lim GJ, /2 (J(De)2 + J(De V + VDe) + JV2) • 
J ..... O J ..... O 

= lim GJ, /2 (J(De)2). 
J ..... O 

e = Jr + L (0). 
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where the operator Jf' , which acts on A * (TR 2k - l ) , is a certain generalization 
of the Hermite operator and L c; (0) is the curvature 2-form of <! at the origin in 
R 2k - 1 _ Although its detailed form is not needed in this argument, we note that 
the heat kernel of Jf' + L c; (0) can be written down explicitly (compare [G]). 

Clearly, the kernel of Gc5I/!(Ve-c5(D~+V)!t) is equal to 

(2.20) "(t5-I/2f )0 ... (t5- I/2f )0 ®k (15 1/ 2 Jt)t5(2k-I)/2 d .. ·d . ~ "I c5 nj c5 (n) Y, Y 1 Y2k-I 
(n) 

L d h ffi . f J-(2k-I)/2f f d d . et a(n).J.c5 enote t e coe clent 0 t nl 0c5 ..• fij 0c5 y ... Y2k-1 In 
the asymptotic expansion at Y = 0 of the kernel in (2.20). Then 

(2.21 ) t5J- 1(nli /2 
a(n) .j .c5 = a(o) .J .1 • 

The kernel of Ve-(.r+L~)1 has an asymptotic expansion of the form 

(2.22) " a tJ-(2k-I)/2f 1\ ... f 1\ d ... d 
~ (n).J.O nl OJ Y I Y2k-I' 
J .(n) 

Since the coefficients in such expansions are determined locally from the differ-
ential operator, it follows from (2.19) that 

(2.23) 

Thus, 

(2.24) 
(2.25) 

limJJ-l(nll /2a . =lima . =a '. 
c5--+0 (n) .1 .1 c5-+0 (n).1. c5 (n) .1 .0 

a() . 1 =0, n .1. j < !1(a)1 ' 
a - a (nl .l(nll/2.1 - (nl .1(nll/2.0 ' l(a)1 even. 

The coefficients, a(n).J.o' can be read off from the known kernel of Ve -(..r+L~(O))t • 

But for our present purposes, it suffices to observe that since j takes integer 
values, (2.24) implies that for l(a)1 odd, the first nonvanishing coefficient is 

h ffi . f I(nlI/2+I-k S' I I()I 2k 1 ffi a(n) .[I(nll+ I )/2.1 ,t e coe clent 0 t . Ince on y a = - e ects 
the trace in (2.12), the lemma and Theorem 2.7 follow. 

Now assume that <!+ ,<!_ have the same dimension and that V is invertible. 
Since V is selfadjoint, V2 is positive definite and the integrand in the definition 
of the form, ii, below is convergent at 00. We put 

(2.26) A defl°O -(V{+UIf!V)! du 
11 = trs(Ve )~. 

o 2u 
Here, as in the remainder of this section, the exponential 
A" (TB)® End <!. The supertrace is given by 

(2.27) trs(wA) = wtr/A) , 

where WE A*(B) and A E End(V) (see [BF, (1.24)]). 

is evaluated in 
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Theorem 2.28. Let V be invertible. Then 
-L(, 

(2.29) dij = trs(e ) 

where the right-hand side represents the (normalized) Chern character of ~+ -
C E KO(B2k - I ). Moreover. 

(2.30) 

(2.31 ) 

lim f1(e l / 2 D~ + V) = _1_ f AURB)ij. 
e->O (2ni)k J B2k-1 

f1(D~+ ) - f1(DL ) == _1_ f AURB)ij (mod Z). 
(2ni)k J B2k-1 

Proof. Formula (2.29) is just the transgression formula of [Q). (2.31) is an 
immediate consequence of Theorem 2.7 and (2.30). 

To prove (2.30) we first note that the smallest eigenvalue of (e l /2 Df. + V)2 
is bounded below by some AO > 0, for e sufficiently small. In fact, 

(2.32) (e l /2 D~ + V)2 ;::: el/2(D~ V + VD~) + V2 

and our claim clearly follows from the fact that (D~ V + VD~) has order zero. 
In particular, f1(e l / 2 D~ + V) = 111(e l / 2 D~ + V) , for e sufficiently small. 

The remainder of the proof can be carried out by an argument analogous 
to that of [B2, Theorem 1.3). The context there was even dimensional, but the 
same considerations which played a role in Theorem 2.7 allow us to use (1.24) in 
place of (1.23) and thus to transfer the argument to the odd dimensional case 
(see also Remark 2.33). We will not give further details since, in any event, 
the proof can be completed by an argument which is completely analogous to 
the one given in §4, where the infinite dimensional case corresponding to the 
present finite dimensional one is treated. A crucial feature of that argument is 
the use of an exponential transform based on an auxiliary Grassmann variable 
(compare also the discussion of §3). 
Remark 2.33. Since ~+ and C can be identified by V, f1(Df,) can be regarded 
as the difference of the reduced l1-invariants on the same bundle; see (2.2). 
From this observation and the local formula for the variation of the f1 one 
can deduce that the right-hand side of (2.30) is equal to f1(D~) mod Z. Thus, 
mod Z, (2.30) follows from Theorem 2.7. 

(b) Even dimensional base spaces. Let B2k be a closed connected oriented 
riemannian spin manifold. Let ~ be a Hermitian vector bundle with unitary 
connection over B2k and let W be a selfadjoint endomorphism of ~. The 
spin representation is graded by T. We consider the operator 

(2.34) D+TW=[~ ~w] 
where D is the Dirac operator on FB ® ~ . 

Let e 1/2 D + T W be associated to the metric e -I gB . 
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Theorem 2.35. f1(e l / 2 D + rW) is independent oj e when reduced mod Z. 
Moreover, 

(2.36) (mod Z). 
Proof. Since the asymptotic expansion, as t -+ 0 , 
(2.37) tr(rWe-(D+STW)2 t ) '" 'La}J-k, 

contains only integral powers of t, it follows that 
d 

(2.38) ds f1(D+srW):= 0; 

compare (2.9). For s = 0, the operator De- D2t is odd. Hence tr(De- D2t ) := 0 
which implies 
(2.39) f1(D) = t dimker D 

= t dimker D+ + t dimker D_ 

= t Ind D + + dim ker D _. q .e .d . 

Now assume that W is invertible. Let <!7 ,<!~ be the bundles whose fibers 
are the direct sums of the positive (respectively negative) eigenspaces of the 
invertible selfadjoint operator W, <! = <!7 ® <!~ . Let D~~' be the Dirac oper-
ators associated to the connections Y'~~' obtained by projecting Y'~ onto <!: . 
Of course, Ind(Di~') and Ind(Df~) are independent of the particular choice 
of connection and 
(2.40) Hlnd(D~~') - Ind(D~~')] := t Ind(D~) (mod Z). 

To state our next result we need to introduce some formalism; see [Q, §5]. 
We let CI(R 1) be the Clifford algebra on RI associated to the negative of the 
usual bilinear form. Thus, CI(R 1) has a single generator, a, with a2 = 1 . We 
form the graded tensor product, A*(TB)®CI(R 1) ® End<! and put 

(2.41 ) 
and 
(2.42) 

tra(w®(aa + b) ® B) ~f wtr(aB) 

even· b even tra (w®(aa + ) ® B) = w tr(aB). 

Theorem 2.43. IJ W is invertible Jor each fiber, the Jorm 

(2.44) • = 100 t even( u? _(V{+1I1/2aW)2)~ 
'1 ra al'Ye 1/2 ° 2u 

is closed and represents the (normalized) Chern character oj <!7 - <!~ E KO(B). 
Moreover, 

(2.45) 
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Proof. Note first that by (2.40) the second equality in (2.45) generalizes (2.39). 
The proof of (2.44) is analogous to that of (2.29), but now since df! is odd, we 
get df! = O. Conjugation by r shows that 

(2.46) 

If we expand the exponential by Duhamel's principle we see that only odd 
powers of r can effect the trace in (2.46). Similarly, we find that 
(2.47) 

tr«e I/ 2D + rW)e-(e l /2D+rW)2 t ) = tr/(-el/2iD + W)e-(eD2-ie'/2[D,Wl+W2)t). 

Now the proof of the first equality in (2.45) can be carried out in the same way 
as that of (2.30). 

To see the second inequality in (2.45), let W' be the endomorphism 

(2.48) W' = W- I (W2//2 

and put 

(2.49) Wa = (1 - a) W + a W' • 

Then Wa is selfadjoint and invertible for all s. The even form (J on B2k x 
[0 . 1] , defined by 

(2.50) (J = 100 t even( W -(V{+daiJa+1I1/2erWa)2)~ rer (J ae 1/2 o 2u 
is closed (see [Q]). By the standard argument, it follows that replacing 
W' in 

(2.51 ) 100 t even ( Uf -(V{ +1I 1/2UW)2) ~ rer (Jrre 1/2 o 2u 

W by 

changes this even form by an exact form. By a similar argument, we can replace 
the connection, v~, by a connection VW , for which W' is parallel. After these 
replacements have been made, performing the integral gives 

(2.52) .Jii _LIf' T trs(e ) 

where L W = (VW)2 and the supertrace is with respect to the splitting ~ = 
~: EB ~~ . Our claim now follows from the Atiyah-Singer index formula. 
Remark 2.53. In [CoM] Connes and Moscovici have calculated the cyclic cocy-
cles of Fredholm modules by transgression of Quillen's superconnection forms. 
Also, the results of Connes, [Co], who calculated the cyclic cocycles associated 
with Dirac operators were recovered in [B2] in the local superconnection for-
malism. Theorem 2.43 is closely related to all these results. 

ApPENDIX 1. COUPLING TO GENERAL SUPER CONNECTIONS 

We indicate briefly how the preceeding results generalize when the Dirac 
operator is coupled to a superconnection involving forms of all degrees. We will 
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restrict attention to the dim B 2k - 1 odd (the case dim B2k is similar; compare 
parts (a) and (b) above). 

A general superconnection can be written in the form V'; + V where 
2k-1 

(A.l.l) V= L Vj 
j=O 

is a sum of j-forms with values in Endj +1 (C;) ; see [Q]. Thus, we can view V 
as odd element of A*(B)®End(C;). Let V denote the operator 

(A.l.2) V = "/ 0 .. · 0 / 0 v. (/ , ... , / ), 
- ~ ttl H) J (}I Ct, 

where each f",; varies over an orthonormal basis of B p' If we assume that Vj 
takes values in selfadjoint (respectively skewadjoint) elements of Endj +1 (C;) for 
j even (respectively j odd) we can again form the selfadjoint operator, D'; + V . 
In the context of fibrations considered in §4 there is a term corresponding to 
j = 2 coming from the integrability tensor of the horizontal distribution. Note 
that VI i= 0 just corresponds to a change of connection on C;. 

If the metric on B is multiplied bye-I, the expression in (A.I.2) gets re-
placed by 

(A.l.3) jl2 V(e) = "e / 0'" 0 / 0 V.(f , ... , / ). - L..J itl Hj.l (ll o.j 

Put 

(A.l.4) 

(x will play the role of U l/2 in (2.26». Application of Getzler's transformation 
leads to a formula analogous to that of Theorem 2.28. However, some care must 
be taken in defining the form ~ because of the small time asymptotics. Put 

(A.I.5) 

for s sufficiently large (note the negative exponents in (A.l.4». This form has 
a meromorphic continuation to C with simple poles and the residue at s = 0 
is exact. If we define 

(A.l.6) ~ = lim y(s) - t Res y(s) 
5-+0 5=0 

then 

(A. I. 7) lim~(eI/2D'; + V(e» = ~ f i(iRB)~. 
£-+0 (2711) J B2k-1 

Let Co denote the constant term in the asymptotic expansion as x -+ 0 of 
tr5 (e-(V{+V(X))2). Then 

(A.I.8) 
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In our main result on fibrations (see 0.4) the form ~ has the same structure 
as the form just defined. In that case, however, the residue vanishes identically. 
This cancellation stems from the fact that analogues of V~ and of V2 are not 
independent of each other. Both are functions of the geometry of the fibration. 

3. AUXILIARY GRASSMANN VARIABLES AND AUXILIARY ADIABATIC LIMITS 

We indicated in §2 that Theorems 2.28 and 2.43 can be proved by transfer-
ring the argument of Theorem 1.3 of [B2), the proof of which depends on an 
"auxiliary Grassmann variable." Here we show how by introducing an auxil-
iary dimension and then blowing up the metric in its direction, the auxiliary 
Grassmann variable appears naturally. We find that the basic facts concerning 
the l1-invariant in dimension n are consequences of statements concerning the 
behavior of supertraces for an associated operator in dimension n + 1 , as the 
metric is blown up in the auxiliary direction. This viewpoint is related to the 
proof of the "holonomy theorem" in [BF). 

These arguments can also be carried over quite directly to derive our results 
on l1-invariants for fibrations, proved in §4. There, however, we will employ 
the auxiliary Grassmann variable in a manner analogous to that of [B2) (see 
also [BF)). 

In this section we will restrict our attention to the case of odd dimensional 
base spaces (the even dimensional case is similar; compare Remark 4.100). 

To prove Theorem 2.28, it suffices to show (the pointwise reflection) 

(3.1) tr(el/2D~ + V)e-(t l / 2D<+vf l 

= vn. k [AURB) tr/Ve -(V<+/1/2Vj2)]2k_1 + (et) 1/20( 1 + t N ) 
(21l1) 

for some N; compare [B2, BF, C3). 
If we assume (3.1), we get 

(3.2) I· t-I/2 t « 1/2D~ V) -It -D +VJ-I) dt 1 loT I/,': ' 

t~2r(1/2) 0 r e + e 

1 1 ~. B loT _(V<+/1/2V)2 dt 
= --k A(IR) trs(Ve )~. 

B (21li) 0 2t 

Moreover, by the argument of [C3) (see (1.21)), we have 

(3.3) 12r(~/2) i oo t-I/2tr(el/2D~ + V)e-(e l
/
2D<+V)21 dtl 

< t -(2k-I)/2 -).oT/2 _ cons e e . 

By taking T = 2A; I (2k -1 )1 log el (with AO as in the proof given in §2) and using 
(3.1), (3.3), it follows that we can replace T by 00 in (3.2). This completes 
the proof of Theorem 2.28. 



II·INVARIANTS AND THEIR ADIABATIC LIMITS 49 

Remark 3.4. Application of Getzler's transformation, G(£!) 1/2 , shows that 

(3.5) lim tr(Ve -(£1/2D+ Vf l ) = vn. k [;t(iRB) trs(Ve -(V~+11/2V)2)hk_1 . 
£-+0 (21t1) 

Thus, (3.1) is actually equivalent to 
1/2 { 2 I· t ( 1/2 D c; -(£ D +V) I) 0 1m r 13 e = 

£-+0 
(3.6) 

(with suitable remainder estimates). However, (3.6) does not follow immedi-
ately from Getzler's method because of the presence of the operator 13 1/2 DC; in 
front of the exponential. Under rescaling, 6 1/2 DC; blows up like 13- 1/2 • 

Let B2k - 1 be as in §2. Consider the manifold Sl x B, viewed as [1'~] x B 
end points identified. Let I (r) be a smooth positive function on [1, ~] with 
f[i ' i] = r, such that 

(3.7) 

defines a smooth metric on Sl x B. We extend c; = c;+ EElC and its connection 

trivially to Sl x B. Also, we identify the bundle of spinors, F SI XB
2k

-
1 = 

SlxB SlxB. . B B B SlxB F + EEl F _ , wIth the dIrect sum F EEl F . Put D = D , 9,J = D,J • 
Then 

(3.8) 

9,J = [J I/ 2 (a (2kO- I) 1') D 
r+ 2 I + I 

_J I/ 2 (a (2k - 1) 1') D 1 r+ 2 I + I 

o 

= !i: 1/2 (a (2k - 1) I') C D u r+ 2 I +1· 

Here C = -iJ generates CI(R I ), D = DK, and J ,K are as in (1.8), (1.9). 

(3.9) C 2 = -1, 
(3.10) CD+DC=O. 

For clarity, in what follows we will work at the ordinary tensor product and use 
the operator 9 p (which is the equivalent of DC; of §2). Thus, we will also 
assume that C acts by 1 ® C and consider 9,J p . 

On [i ' i] , we put r = 1 +u and do Getzler's transformation G,JI/2 on the first 
variable u -+ JI/2U, C -+ J- I/2C, 0 -+ 0,J where (J-I/2C) 0,J (J-1/2C) = 1, 
lim,J-+o 0,J = ". We can easily find that 

(3.11) lim G. I /,«9.p + V/f))2 = _a,2 - z(Dp + V) + (Dp + V)2 ,J-+O o· 0 I 
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where Z2 = O. By using zD = -Dz, we get 

(3.12) -[-iJ,;-z(l)+pV)+(Dp+V)2)1 -(-1),;)1 z(D+pV)1 _(Dp+V)21 
e =e e e . 

= e-(-iJ,;)I[1 + z(D + pV)I]e-(DP+V)21. 

The operator (goP + VI/)2 has a heat kernel of the form 

(3.13 ) 

Lh(a).o(U.y.I)I", "'I,'jdudYI· .. dY2k_1 
(a) 

+ Lk(a).o(u.y.t)Cf",···I,'jdudy , ... dY2k_, 
(a) 

and the limiting operator in (3.11) has a heat kernel of the form 

L h(a) .0(Y .1)1,'1 ... fo} du dy I ... dY2k_1 
(n) 

(3.14) + Lk(a).o(Y .1)ZI,'1 "'I,'jdudYI · .. dY2k-l· 
(a) 

Let trs ( ) = tr(rp) denote the supertrace for gJ' xB . By reasoning as in Lemma 
2.11, we find that the coefficients of the asymptotic expansion as 1 ---> 0 (at 
u = 0) of trs(e-(.!Z'dP+Vlf)21) converge, as ~ -+ 0, to those of trp(k(, .... . 2k-l) .0(1) 

dcf ) (where trp(A) = tr(pA ). 
It is clear from (3.12) that 

I 1/2 -(Dp+V)21 
(3.15) trp(k(I.2 ..... 2k_I).0(t)) = 2..(i tr(t (Dp + V)e ). 

On the other hand, the even dimensional version of the argument of Lemma 
2.11 shows that for each ~ , 

(3.16) lim trs(e -(~5P+Vlf)21) = _l-k [A(fRs' xB)hk(dime;+ - dime; ) 
1-+0 (2ni) -

=0 
(where one sees that the right-hand side vanishes either by direct computation 
or as a consequence of the metric's being conformally a product). 

It follows from (3.15), (3.16) that 

(3.17) 

Since the left-hand side of (3.17) has an asymptotic expansion in integral powers 
of 1 , we obtain 

( 3.18) 

In particular, the integral on the left-hand side of (3.2) converges at 1 = O. 
Equivalently, it follows that the '1-function, '1(s) , for the operator Dr. + V is 
regular for Res> -2. 
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The argument we have given should be compared to that of [BF] and the 
discussion of [Cl, §§5 and 6]. 

Remark 3.19. If, in (3.7), we let 0 < r < 00 and take J(r) = r, we obtain the 
metric cone on B2k - I , with the metric blown up in the horizontal direction 
(see [C2, Chou, BC2]). Put 

(3.20) - ('2!..p+ VI ()211 trs(e ,) . )=drI\H(J,r,u), 

Then 

(3.21 ) d i r H(J,s,u)ds=drI\H(J,r,u), 

By arguing as above, we find 

( 3.22) 
1 1/2 2 ' . U -(Dp+V) II/S· 

hmH(J,s'U)=2 r:;;-2 tr((Dp+V)e ), 
0->0 V n s 

Thus, putting uli = t, we get 

(3.23) d r:;; t- 1/ 2tr((Dp+ V)e-(DP+V) I)dt =drI\H(J,r,u). [ 1 fll/a2 
2 1 

v n II/r' 

By letting U I a2 ...... 00, U I r2 ...... 0, u ...... 0, we obtain the integral which defines 
the l1-invariant and we see the sense in which this integral represents a trans-
gression formula for the adiabatic limit of the supertrace of the heat kernel of 
a Dirac operator on the cone; see [BC2] for further discussion. 

We now indicate how (3.1) can be proved in the context of the present dis-
cussion. We replace goP by e1/ 2g op in (3.11) and obtain 

, 1/2 2 2 1/2 1/2- 1/2- 2 (3.24) hm G~'/,((e g~p+ VI f)) = -e 8 -e z(e Dp+ V)+(e Dp+ V) , 0->0 u U II 

Then, at U = 0, we get 

(3.25) , -(c'l'':Zp+V/{)21 1 1/2 1/2 -(c'/'Dp+V)'1 hm trs(e 0 . ) = r:;;tr(t (e Dp + V)e ) 
0->0 vn 

(compare (3.15) and the discussion preceding it). Let 

(3.26) v.; = \7'; + dr 1\ 8 r 

. f'; 1 S'xB be the extensIOn 0 \7 to S x B and let Ro be the curvature tensor of g 
By applying G(Ct)I/' we find that 

(3.27) I ' t ( -(C 1!2':Z,)P+V/f)'I) - _1_[A~( 'R )t ( _(V¢+I'/'V/f)')] 1m rs e -, k 1 0 rs e 2k . 
HO (2nl) 

As previously mentioned, for each J, AURo) coincides with n* A(iR) where 
n: Sl x B ...... B. Thus, the right-hand side of (3.27) is independent of J. Let 
us grant that the limit as e ...... 0, of the right-hand side of (3.25), is equal to the 
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limit as J ~ 0, of the right-hand side of (3.27). Then, using (3.26), we easily 
obtain (3.1) (modulo the error estimate). 

The assertion that the expression in (3.25) is equal to H amounts to the fact 
that we can interchange the order in which we take the limits 8 ~ 0, J ---+ O. 
In the discussion above, this was justified by remarking that the asymptotic 
expansion depends continuously on the operator (as we converge to the limiting 
operator in (3.11)). A similar argument works in this case. The construction of 
the expansion which we now indicate, while not the simplest, would also work 
in the case of fibrations considered in §4. 

We start with the metric gi'XB and coordinates u = (r - 1)/J. Then we 
-I SlxB 'd' 1/2 1/2 Th' d express 8 g" 10 coor mates u ---+ 8 U, Y ---+ 8 Y . e estImates an 

arguments of [C3, §§3 and 4], produce an asymptotic expansion in powers of 8 

for tr/e-(el/~~jp+V/f)~/), A priori, this expansion contains singular terms, but 
these must vanish by the discussion above. One easily shows that the coefficients 
and remainder term depend smoothly on J. As J ~ 0 the metric on S I x B 
converges to a product metric on R I X B . The coefficients and remainder vanish 
in the limit, J ~ 0, as a consequence of the orientation reversing isometry in 
the u direction. By using the differentiability with respect to J and changing 
back to the r coordinate, we obtain the desired interchange of limits. The 
estimates on the remainder term also can be read off from the expansion. 

Note also that in (3.27), we are using Getzler's transformation for fixed time 
(not just for small time). 

4. THE INFINITE DIMENSIONAL CASE; FIB RATIONS 

Let Z ~ M 2!.. B be a fibration of closed oriented riemannian manifolds 
such that 1l is a riemannian submersion. Thus, the metric on M is of the form 

M * B Z (4.1) g = 1l (g ) + g . 

where gZ annihilates the orthogonal complement of the tangent space to the 
fiber. 

We will assume that the tangent bundle, TB, and the tangent bundle to 
the fibers, TZ c TM, both have spin structures. Then, using the splitting, 
TM = TH M E9 TZ , into horizontal and vertical subbundles, we obtain a spin 
structure on TM. 

Let e be a Hermitian vector bundle over M , with unitary connection, v~. 
Let De be the Dirac operator o'n M, with coefficients in e, associated to the 
metric 
(4.2) M -I * B Z ge = 8 1l (g ) + g , 
The following was observed in [BF, q. 
Proposition 4.3. If M is odd dimensional. lime-+o f1(De) exists in R/Z. 

In fact as 8 ~ 0, the Levi Civita connection, VL ,t , approaches a limit-
ing connection VL ,0 (see (4.16) below). Then the existence of limt -+o fJ(De) 
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follows from the fact that the variation of n(De ) coincides with the variation 
of the Chern-Simons type invariant which appears in the Atiyah-Patodi-Singer 
formula. The latter depends only on the connection. 

If the Dirac operator, D Z , is invertible for each fiber Z, it is easy to see 
that De is invertible for e sufficiently small. Hence, in this case, lime-+o fJ(De) 
exists in R (not just in RjZ) and we will derive a formula for it. In part 
(d) below, we indicate how the assumption that D Z is always invertible can be 
relaxed. 

The cases of odd and even dimensional base spaces are treated in parts (b) 
and (c) respectively. We will use the generalization to infinite dimensions, given 
in [B 1], of the superconnection formalism of [Q]. 

(a) Elementary geometry offibrations. We begin by recalling some results of 
[B 1]. Let Z ~ M .!!.. B be a fibration of smooth manifolds. The subbundle 
of TM whose fibers are the subspaces of TM tangent to the fibers, Z, will be 
denoted by 12. A connection on Z ~ M ~ B is a complementary subbundle 
Til M , i.e., TM = Til M $12 . Let pll . pZ denote the projections on Til M , 
12 relative to this splitting. 

If U is a locally defined vector field on B, we denote by U the unique 
locally defined section of Til M such that 1l. (U) = U. The integrability tensor 
(or curvature) of Til M is the 2-form, 9i on Til M with values in 12 defined 
by 

(4.4) -- -- -- z--9i(U. V) = -[U. V]+[U. V] = -p [U. V]. 

The value of 9i(U. V) at mE M depends only U(m), V(m). 
Let "Z be a smoothly varying family of connections on tangent bundles to 

the fibers. This family determines a connection (also denoted "z) on 12 by 
putting 

(4.5) x -"vW = [U. W] 

for any local horizontal lift, U, and vertical field, W. 
Suppose the fibers of 12 are equipped with a smoothly varying family of 

inner products. If we apply the above procedure to the corresponding family of 
Levi Civita connections on the fibers, Z, we do not necessarily obtain an or-
thogonal connection. We can correct for this by defining Aw: TM ~ End(12) 
by Aw ~ 0 for W vertical and 

(4.6) 

for U a horizontal lift. Here gZ is as in (4.1), Lv denotes Lie derivative, 
and WI' W2 are vertical. Then 

(4.7) 

preserves the inner products on 12. 
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Alternatively, let gM be any riemannian metric on M, which extends gZ 
and for which TH M EB TZ is an orthogonal splitting. If "L denotes the Levi 
Civita connection of gM , then 

( 8) Z I pZ L 4. "u + '2Au = "u· 
Moreover, 

(4.9) 

is the second fundamental form of the fiber. 
From now on, we assume that the metric gM is of the form (4.1). Let "B 

denote the Levi Civita connection for gB . Note that "B does not change when 
gB is multiplied by a constant. We define a connection " on TM by 

(4.10) 

and let S denote the difference tensor, 

(4.11) S = "L _". 
Then, for VI' V 2 horizontal lifts, WI' W2 vertical (and for ( ) = gM ) we 
have 

- - I (4.12) (S(WI )W2 , VI) = -(S(WI)VI ,W2) = '2 (Au, (WI' W2), 

( 4.13) 
(S(VI)WI ,V2) = (S(VI )V2 , WI) = (S(WI)VI ,V2) = !(.9P(VI ,V2), WI)' 

All other components of (S(·),·) vanish. Clearly, (S(·)·,·) is independent of 
B g . Also, 

(i) if V E TM then S(V): TH M -> TZ, 
- ~ H - -(ii) if VI' V 2 E T M then S(VI )V2 E TZ, 

(iii) if V E TH M then S(V)V = o. 
It follows easily from (4.12), (4.13) if "L ,£ is the Levi Civita connection of g: of (4.2) and Se = "L.£ - " , then 

(4.14) 
( 4.15) 

and hence that the limit, 

( 4.16) 

exists. 

pHS£=epHS, 

pZS£ = pZS 

lim "L ,£ = "L _ pH S , 
e->O 

The following discussion may be helpful in understanding the analogy be-
tween the results of §§2 and 3 and those of parts (b) and (c) of this section. 

Let y be an arbitrary vector bundle over M. Associated to y is a vec-
tor bundle, ji, over B whose (infinite dimensional) fiber, ji p' is the space of 
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smooth sections of YIZp (where Zp = n-I(p». There is an obvious functo-
rial isomorphism between the space of smooth sections of y and the space of 
sections of y which are smooth in the appropriate sense. 

If y has a connection, ~l', then we define the associated connection, V on 
y by 

- - l' (4.17) ~ uS = ~ us, 
where s denotes the section s of y, regarded as a section of y. Clearly, the 
curvature, R, of V , is given by 

- l' - - l' (4.18) R(VI ,V2) = R (VI' V2) - ~.jp(UIU2)' 

If y has a Hermitian inner product ( , ) and the fibers have a smoothly vary-
ing family of volume forms, wZ , then (for Z compact) we define a fiberwise 
inner product on y by 

( 4.19) 

Even if ~l' is unitary, V need not preserve the inner product in (4.19). Let 
W Z be extended to TM so that it annihilates horizontal vectors and put 

Z Z (4.20) Luw IZ = Muw . 
Then 

(4.21 ) 

is unitary on y. If, as we now assume, W Z is associated to gZ, then Mu is 
the mean curvature of Z in the direction of U. Hence (see (4.9), (4.12)) 

(4.22) Mu = ~)S(e;)e;, U) = ~ ~)Au(e), e;) 
. ; 

where {e;} is an orthonormal basis for 12m' 
(b) Odd dimensional base spaces. Let Z21 ..... M 2(k+I)-1 .!:. B 2k - 1 be as in part 

(a). We assume that B is oriented and spin with Hermitian bundle of spinors 
FB . The Levi Civita connection ~B on TB lifts to a connection ~F8 on FB . 
We also assume that the bundle 12 c TM is oriented and spin. Since 12 is 
endowed with a metric, gZ, we can define the Hermitian bundle of spinors, 

Z 
F Z = F: E9 F:. Then F Z inherits a connection ~F' from the connection 
pZ~L. We can take 

(4.23) FM = F: E9 F~ = n*(FB) ® F Z = n*(FB) ® F: E9 n*(FB) ® F: 

* FB F Z F.l1 which we endow with the tensor product connection n (~ ) ® ~ = ~ . 
We regard FM as a Clifford module over TM as in §l. If X E n*(TB) then 

X acts on n*(FB) ® F Z as X ® 7/z • If Y E 12 then Y acts by 1 ® Y. In 
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particular, if II •...• 12k- I is an orthonormal basis for 7l* (TB) at m EM, 
then II .. ·/2k - 1 acts like (_i)k ,FZ 

• Similarly, if e l ••••• e21 is an orthonormal 
. . I F Z 

baslsof 12 then e l ···e21 acts as (-I), so that 11···/2k-I' e l ···e21 acts 
on FM = 7l*(FB) ® F Z as (_i)k+I. 

Let c; be a Hermitian vector bundle on M with unitary connection, V';, 
and curvature L';. 

Let De (= DeM ) be the Dirac operator for g~ acting on smooth sections of 
FM ® C;. We now give a simple expression for De which was derived in (3.11) 
of [BI]. Let V" denote the connection on FM ® C; defined by 

II FB I """ ( (4.24) V = V - '5. ~ S(e;)e; •. ) 

where {eJ is a local orthonormal basis for 12; see (4.21), (4.22). Let 
(4.25) T(U. V) = -S(U. V) + S(V. U) 

denote the torsion tensor of V (see (4.11). Let c(T) E A2(T* B)®End(12) be 
the 2-form which assigns to U. V the odd endomorphism of 12 determined 
by letting T( U . V) act on 12 by Clifford multiplication. In the formula that 
follows, {f} is a local orthonormal basis for TB and we also write f for the n n 
horizontal lift /" The Dirac operator, D Z , along the fibers, extends naturally 
to an operator, 1 ® DZ on F M , which we continue to denote by DZ. Then 
we have 
(4.26) De = 8 1/ 2 L.t;,v~. + DZ - ~ L .t;,/pc(T)(fn . Ip). 

n n<p 
To obtain (4.26) start with the expression for the Dirac operator, D, on an 
arbitrary spin manifold. If {Wi} is a local orthonormal frame field, {s j} is the 
associated local basis of the spin bundle, and I is a smooth function, then D 
is given locally by 

(4.27) D(ls) = L Wi (f)WiSj + I ~ L (V;" WI' Wk)WiWIWkSj' 
i ikl 

If we apply (4.27) to (M, geM) and use the results of part (a) of this section, 
then (4.26) follows by a straightforward computation. 

Remark 4.28. Of course (4.26) holds for any riemannian submersion of spin 
manifolds (i .e., the dimensions of the base and fibers can be arbitrary). 

We now recall the definition of the Levi Civita superconnection given in [B 1, 
§3). Let Hoo = Hoo .+ tfJHoo ,_ be the bundle F Z ®c; (with infinite dimensional 
fiber, obtained by the construction discussed at the end of part (a). Let V" be 
the unitary connection on Hoo of (4.17). 

Definition 4.29. The Levi Civita superconnection, All' on H oo ' is the super-
connection 
(4.30) All = V" + U I / 2 DZ - c(T)/4u l / 2 . 
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If we wish to regard the operator DM = D in (4.26) as acting on sections 
of FB ® H oo , we simply write VII for VII . Then we obtain an operator with 
just the same structure as the operator Di! + V considered in Appendix 1. The 
operators D Z and c(T) correspond to Vo' V2 respectively. 

It is only a matter of viewpoint whether we write VII or VII in (4.26). 
However, in view of (4.18), the distinction is important in (4.30). 

The local index theorem for families of [B 1, Theorems 4.12 and 4.16] implies 

A2 1 1 ~ Z -e· (4.31) lim trs(e - ") = --I A(iR) tr(e ). 
11-+0 (271:i) Z 

Also, by Theorem 2.11 of [BGS], we know that as u --+ 0 
Z _A2 1/2 

(4.32) trs{{D + c(T)/4u)e ") = O(u ) 

uniformly on the compact manifold M. 
From now on, we will assume that D Z is invertible Jor all fibers, Z. Us-

ing Duhamel's formula, we find easily that as u --+ 00, the differential form 
trs«D z + c(T)/4u)e- A;') decays exponentially. Thus, we can make the follow-
ing definition. 

Definition 4.33. ij denotes the form of odd degree on B2k - 1 

(4.34) A roo Z _A2 1/2 
11 = 10 trs«D + c(T)/4u)e ") du/2u . 

Note that (4.34) has the same structure as the analytic continuation to s = 0 
of (A. 1.5) (with x = U I / 2 ). But by (4.32), no analytic continuation is necessary 
in the geometric case. 

We now prove an infinite dimensional analogue of Theorem 2.28 (see also 
(A. 1.5)-(A. 1. 7)), which generalizes the results of [BF, Theorem 3.16] and [C3, 
Theorem 4.27]. 

Theorem 4.35. As e --+ 0, f/(D£) has a limit in R, which is given by 

(4.36) lim f/(De) = _l-k r AURB)ij. 
£-+0 (271:i) 1 B 

Moreover, 

( 4.37) 1 1 - Z -L~ dij = --I A(iR) tr(e ). 
(271:i) Z 

Proof. If we represent the exponentials by smooth kernels, then by arguing as 
in the finite dimensional case considered in [Q], we find 

(4.38) - tr (e - ") = d tr _II e - II a A2 ((aA A2)) 
au s s aU 

= d (tr ((Dz + C(T)) e-A~) _I_ 
s 4u 2U I / 2 
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(compare the manipulations in [BI, §2]). By using (4.31) and (4.38) we obtain 
(4.37). 

We now concentrate on proving (4.36). We know by [BF, Theorem 2.4] (see 
also (3.18) above) that 

(4.39) 

where the integral is convergent at O. As in [BF] and [C3], where the case 
dim B = 1 was considered, the argument will consist of three steps. 

(i) First we prove that for e small enough there is a uniform positive lower 
bound for the smallest eigenvalue of D; . In particular, for such e, ker De = O. 

(ii) Then we prove that for u E (0. T], we have uniform convergence, 

(4.40) limtr(Dee-D;U) = vn. k r AURB)trs ((DZ + C4(T)) e-A~) d~/2 
e~O (2m) } B u 2u 

+ O(e 1/ 2(1 + TN)). 

for some N (which might depend on k). 
(iii) Finally, we use the same argument as in [C3] (see also the beginning 

of §3 above) to show that the large time contribution to the integral (4.39) is 
negligible. 

Step (i). 

Proposition 4.41. There exists ,10 > 0 such that for e sufficiently small. the 
spectrum of De2 is bounded below by ,10. In particular. for e small enough. 
dim ker De = 0 . 

Proof. Let P E B and let II III,), be the norm in the Sobolev space, HI, of 
sections of F Z 0e over Z = Z p ~ n -1 (p) which are in L 2 , together with their 
first derivatives. Since DZ is elliptic and invertible and since B is compact, 
there exists a constant C> 0 such that for any p E B, s E r(Fz 0 e) . 

r Z 2 2 
(4.42) C}z liD sll d Volzt> :::: Ilsllp ,1 ' 

p 

Of course, this inequality immediately extends to sections of FM 0e = n* (FB)0 
F Z 0e. Set 

(4.43) 

" 
By (4.26) 

(4.44) 

and so, 

(4.45) 
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(where the bracket is in the graded sense). The operator [Ee' D] is easily seen 
to be a first order differential operator which acts fiberwise. Thus, there is a 
constant e' such that 

(4.46) le l/2 tp ([Ee ' D]s ,S}I S el/2e'lislI; ,Zp S el/2e' CjIDz sll2 . 

Since Ee is selfadjoint, eE; is a positive operator. Thus, if el/2e' cst, 
( 4.47) 

The proposition follows. 

Step (ii). In order to prove the fixed time convergence result, (4.40), we will 
introduce an auxiliary Grassmann variable z (i.e. z2 = 0) which is odd. Thus 
z anticommutes with f ,dy ,e .. 

(t ('t I 

In [BF] (Proposition 2.1) such a variable was introduced in order to give 
a new proof of the fact that the l1-function of a Dirac operator is regular at 
s = O. It was also used there to obtain the main theorem of this section in case 
dimB = I. 

As previously explained, the reason for introducing the variable z stems 
from the fact that the expression Ul/2 Dee-D,2 11 , which controls (4.39), is singular 
with respect to Getzler's transformation. Once z has been introduced, we can 

. • _D211+zD 111/2 " consider Instead the part of tr( e' ' ) which Involves z. One way of 
de singularizing this expression was explained in §3. It depended on showing that 
the operator of passing to the auxiliary adiabatic limit could be interchanged 
with that of passing to the original one. 

In this section we will employ an alternate strategy. First we will prove a 
Lichnerowicz formula (easily derived from the one proved in [BF, Proposition 
2.1]) for the operator De2u- zDeul/2 . Although the resulting expression contains 
a term which behaves singularly with respect to Getzler's transformation, we 
show that this term can be cancelled by means of an exponential transform 
which involves the variable z in an essential way. 

First we introduce some notation. Let Q be a section of the bundle of linear 
maps from TM to End(Fz ® C;). We use the abbreviation 

(4.48) (Ve; + Q(e;))2 = I:(Ve; + Q(e;))2 - VE; 'il,;e; - Q (~Ve/;) , 
(4.49) (VI" + Q(f,J)2 = ~(V.r.. + Q(f,J)2 - VE" 'ilr,,!.. - Q (~V !./n) . 

Let k: be the scalar curvature of M for the metric g:. In the formulas 
which follow, we sum over all repeated indices. 
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Proposition 4.50. For u > 0, e > 0, the following formula holds. 
D2 _ D 1/2_ 

e U Z eU -

(4.51 ) 

- u[V'e; + !(S(e;)ej ./,Jejel/21;, 

+ * (S(e;)1;, ,fp)e l/2 f"e l/2 fp + ze;J2u l/2]2 

- u[e l/2V' f" + !(S(f,,Je;, fp)e;tfp + zf,,/2u l/2]2 

+ -2I1e.e. ® LI',(e. ,e.) + ue l/21 e. ® LI',(f ,e.) 
IJ I J al "I 

+ He l/21 el / 2 r ® LI',(I r) + HkM 2 a Jp a,Jp 4 e 

+ *eull L S(e;)e;1I 2 - e~(V' /.. S(e)ej , fa)' 
Proof. Let WI'" w 2(k+/)_1 be a locally defined smooth orthonormal frame field 
on an arbitrary spin manifold and let V'L denote the Levi Civita connection. 
Let ~ be as above_ By [BF, Proposition 2_1], we know that 

2 1/2 (L 1 ) 2 kM U I', 
(4.52) D u-zDu =U V'w;+ 2UI/2zW; +uT+iw;Wj®L (w;,w j ). 

We apply this formula to (M, g~) and make the substitution V'L = V' + S. 
By computing as in [B 1, (3.14)], we find that 

(4.53) De2u - zDeul/2 = - u[V'e; + !(S(e;)ej ,fa)ejel/21;, 

+ * (S(e;)f" ,fp)e l/2 f"e l/2 fp + ze;J2u l/2]2 

- u[e l/2V' /.. + !(S(1;,Je;, fp)e;efp + z1;J2u l/2]2 

+ !u(S(S(e;)e;)ej , f,,)eje3/ 21;, 
1/2 1/2 + z(u /2)e S(e;)e; + V'eS(e;)e; 

+ ~e;ej ® LI',(e; ,e) + ~el/2fae; ® LI',(fa , e;) 
II 1/21 1/2 r I', I rUM + '2 e "e J p ® L ( ,,' J p) + like . 

Note that with respect to [Bl, (3.14)], we have cancelled the terms S(fa)f", 
since these terms vanish (see (4.12), (4.13) above and the sentence which fol-
lows). Also, since S(e;)e; is horizontal, (S(S(e;)e;)1;" fp) = O. 

One easily checks that (4.52) is equivalent to (4.53). 
We now turn to the proof of (4.40). First of all, the estimates of [C3, §3] 

and a straightforward generalization of arguments of [C3, §4] show in studying 
the left-hand side of (4.39) that we can replace the base space by R 2k - 1 with 
a metric which is flat outside a compact set. Similarly, we can assume that the 
bundle is isometrically a product on that region. 

Let z be an odd Grassman variable as described after the proof of Proposi-
tion 4.41. If A and B are trace class in End H 00 ' set 

(4.54) tl(A + zB) = ztr(B). 
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As in [BF, §2] (see also (3.12) above), we find that 

(4.55) -D;II+zD,1I112 -D,211 1/2D -D,211 
e = e + zu ce . 

Thus, 

( 4.56) t z( -D;II+ZD,1I 112 ) _ 1/2 t (D -D;II) r e - zu r ce . 

Take Xo EM. For s > 0 let PSC.II (xo •. ) be the COO kernel, with respect to 
M s( D21HZD 111/2) the volume element of gl ,of the operator e -, , . If h is a smooth 

section of FM 0 ¢ , then 

(4.57) eS(-D,2I1HD,1I112)(h)(xo) = 1M psc·lI(xo ,x)h(x)dvolx . 

Let Yo = n(xo) and take a system of geodesic coordinates {Yo} centered at Yo' 
We can assume {y,,} is globally defined on R 2k - 1 • By using parallel transport 
along the horizontal lifts of geodesics in the base we can trivialize the fibration 
Z ..... M ..... R 2k - 1 . Similarly, we can use parallel transport along such geodesics 
to trivialize FM 0 ¢ . 

In what follows, we put y = '""' y f . As in [BF, Theorem 3.12], we will '--'n 0:' (\' 

conjugate the operator Dc2U - ZDz U I / 2 by 

(4.58) ZY/2(eu)l/2 L zy f e =1+ on 
" 2(eu)I/2' 

This will introduce a term which cancels the effect of the term zfo/2ul/2 In 

(4.51). The latter blows up if we apply G(eu) 112 and let e ..... O. 
For x EM, n(x) = y, set 

(4.59) 

Clearly, 

( 4.60) 

(4.61 ) 

P~c .II( ) _ pC .II( ) -Zy/2(W)112 
S Xo • x - s Xo ,x e . 

(where I PI®~ denotes the identity transformation). 
Since n(xo) = 0, we have fisC .II(XO' xo) = Psc .II(XO' xo). Thus, 

(4.62) 
(4.63) 
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By using (4.51) (of Proposition 4.50) it follows easily that 

(4.64) 
ZJ'/2(eu)I/1(D2 D 1/2) -ZJ'/2(£/I)I/1 e e U - Z eU e 

= -U ['Vei + !(S(ej)ej . l)ejel/2 1" + t(S(ej)l" . Ip)e l/2 lael /2 Ip 

1 1 _ 1 _ 1/2]2 + 2U I / 2 zej + 2U I / 2 (S(e)ej . y)zej - 2U I / 2 (S(ej)y .Ip)ze Ip 

- U [e l / 2'V I.. + !(S(I,,)ej . Ip}ejelp 

lip 1 _ 
+ 2U I/ 2 zl" - 2U I / 2 1,,(y )zlp + 2U I/ 2 ('V 1./;' y)zly 

U ~ 1/2 ~ + "2e;ej ® L (e; . e) + ue I"e; ® L (1", e;) 
u 1/2 1/2 ~ U M 

+"2e I"e Ip ® L (1", Ip) + 4ke 

+ e: IILS(e;)e;lr - e; ('V f,.S(ej)ej . 1,) 

1/2 ]2 
+ ';-/2 (S(fa)e j . y)zej 

2u 

- ul/2ze; ® LI!(y. e;) - ul/2el/2zl" ® d(y .fa)' 

Note that with the exception of the terms 

( 4.65) 

the terms which appear in (4.64) but not in (4.51) arise as consequences of the 
relation 

(4.66) zJ'/2(ell)I/1 f -ZJ'/2(£II)1/2 f /( )1/2 e "e = ,,- zY" eu . 

The terms in (4.65) arise from conjugating 'V I. .. 
Now apply Getzler's transformation G(£II) 1/1 to the expression on the right-

hand side of (4.64) and let e ~ O. Since y gets replaced by (eu) 1/2 y , we see 
that all the newly created terms in (4.64) drop out with the exception of those 
in (4.65). Since ('V r f ./J = O(y), we have 

Jp" , 

(4.67) 

and the second term in (4.65) also drops out. Most importantly, since I,,(yp) = 

o"p + 0(/) , the first term in (4.65) cancels the singular term zI,J2u l/2 , which 
came from (4.51) and which appears in the second square bracket in (4.64). All 
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remaining terms in (4.64) approach finite limits and we find that 

1· G [ZY/2(eu)I/1( D2 _ 1/2D) -ZY/2(W)I/2] 1m (eu)l/1 e U e ZU e e 
e~O 

= -U [\le, + 2u\/2 (S(ei)ej , J,.)ej dy" 

( 4.68) 
1 I 2] 2 

+ 4u (S(e).t;, ,fp) dy" dyp + zeJ2u / 

( 1 B ) 2 
- 0" + "8 (R U;" Jp) Jy , JJ) y p d y y d y J 

U ~ 1/2 ~ + 2eiej ® L (ei ,e) + u dY"ei ® L U;, ,ei ) 

1 ~ u Z 
+2dY"dYp®L (!",fP)+4 k . 

We have 

(4.69) 

where jf' is the generalized Hermite operator on B which was considered by 
Getzler and which appeared in §2. One easily checks that the expression in 
(4.68) is equal to 

(4.70) 

(see [BGS, Proposition 2.10] for details). Evaluating trZ at the origin gives 

(4.71 ) 
Z -(Jr +A2 _Z(II I/2 D" +c(T)/4111/2 )) -Jr Z _(A 2 _Z(II I/2 D"+c(T)/4111/2 )) tr (e /I ) = tr( e ) tr s (e /I ) 

-Jr (-i)' ~.B 
(4.72) tr(e ) = n'-1/2iA(IR ). 

Also, by Duhamel's formula, 
(4.73) 

trs(e -A~+Z(III/2D"+C(T)/4111/2)) = trs(e-A~) + Z trs[(u l / 2 D Z + c(T)/4u l /2)e -A~]. 

Now (using (4.55)) the same arguments as in [G] (see also [Bl]) show that 
(4.74) 

1 1/2 tr(Dee-D/ II ) ....... _1_._, r AURB)trs [(DZ + C4(T)) e-A~] -k 
2,fiiu (2m) } B u 2u 

uniformly, for u E [£5 , T] . 
To see that the convergence is actually uniform for u E [0, T] , it suffices to 

show that the coefficient, ce ' in the small time expansion, 

(4.75) 
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approaches a limit and that the remainder term remains uniformly bounded by 
C • U , independent of e. Now 

(4.76) z 1 /2 tr(Dee -Dll1) = 1 3/2 trZ (e -1I(D;-ZDc )) • 

2ViCu i 2ViCu 
Taking u = I in (4.68) gives 

(4.77) lim Gel/2[eZY/2el/2 (De2 - zDe)e -zy/2e l / 2 J ~f lim~ 
e~O e~O 

=-?a 
~f ?? + A; _ z(Dz + c(T)j4). 

Since the asymptotic expansion of tr( e -112;) at the origin depends on the local 
symbol of ~, it follows that the coefficients in this expansion converge as 
e -t 0, to those in the expansion for tr(e-II-t'b) and that the remainder terms 
are bounded by c· u independent of e. By putting this together with (4.75) 
and (4.76) we see that ce -t Co and that the remainder is bounded by c . u 
independent of e. 

Remark 4.78. The above argument also shows that the expansion of tr(e-YoII ) 
starts with the term Co and hence does not contain singular terms. By using 
the fact that only terms which saturate the Grassmann variables dyl .. ·d/k - I 

can contribute to the trace, it is easy to see by degree counting that 

(4.79) 

Thus, 

( 4.80) ~ B Z _A2 1/2 
A(iR ) tr[(D + c(T)j4u)e "J = O(u ). 

Since, in (4.80), the metric on B is arbitrary, it is not hard to see that this 
implies (4.32). 

Note that in (4.74) we did not include any estimate on the remainder term. 
However, such an estimate can be obtained from a straightforward generaliza-
tion of the argument given in [C3J, for the case dim B = 1 . Namely, we treat M 
as a perturbation of the product, R 2k - 1 x Z21 and iterate Duhamel's principle 
(2k + 1) times. In this way, for fixed u E [l , TJ , we obtain an expansion 

2k-1 
tr(Dee -D,~II) = L a/ i - 2k+ I)/2 + 0(e l / 2TN). (4.81 ) 

i=O 

The coefficients ai = ai(u) also satisfy lail ::; TN. The derivation of (4.81) 
(which would be tedious to write out in detail) is completely analogous to the 
one given in [C3, pp. 194-197J. Note that the estimates of [C3, pp. 192-194J 
on which that discussion is based, are valid in all dimensions. 

If we use (4.74), it follows that the singular terms in (4.81) vanish and that 
the constant term must coincide with the right-hand side of (4.74). Thus, (4.74) 
and (4.81) give (4.40). 



II-INVARIANTS AND THEIR ADIABATIC LIMITS 65 

Step (iii). As explained at the beginning of the proof, relation (4.40) yields 
Theorem 4.35 by using the argument of [C3, p. 181] (see also (3.3) above) to 
show that the large time contribution to the integral in (4.39) vanishes in the 
limit, e - O. 

Remark 4.82. We point out that tr(Dee-D;t) is actually uniformly exponentially 
decreasing (independent of e). In fact the inequality 

(4.83) 
-).11/2 

11/2 -All < e 
I\, e _c'--rJ'2' 

u 
together with the spectral theorem gives, for say u ~ 4 , 

tr(Dee -D;II) s c • tr(e -D,211/2) 

S c . e -).0 11 /4 tr(e -D;) • 
(4.84) 

with ,10 as in Proposition 4.41. Since the metrics, ge' have uniformly bounded 
geometry and volumes which grow like e-(2k- l l/2, by using standard estimates 
on kernels, we get 

(4.85) 

Thus, 

(4.86) t (D _D,211) < -AOII/4 -(2k- l l/2 r ee _ ce e . 

On the other hand, the integrand in (4.34) is bounded by c' e -).111 , for some 
At> O. Combining this with the error estimate O(e l / 2TN) (see (4.81) and the 
discussion which follows) gives for u ~ 4, 

(4.87) 

By using (4.86) for e l / 2 ~ e-AOII/8(2k-ll and (4.87) for e l / 2 S e-AOII/8(2k-ll , 

we obtain the required exponential decay. 
We point out that the uniform exponential decay was also observed in the 

corresponding contexts of [B2] and [BF]. 

Remark 4.88. It is also convenient to have a restatement of Theorem 4.35 in 
which the characteristic forms represent unnormalized characteristic classes. 
Let [ijhj-I denote the component in degree 2j - 1 of the odd form ij. Put 

( 4.89) 

Then (4.36) becomes 

( 4.90) 
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~ B ~ 

where A(R j2n) represents the A-class of B. Moreover, 

(4.91) 

where A(Rz j2n) represents the A-class of TZ and tr(e(i/21l)L<) represents the 
Chern character of e . 

(c) Even dimensional base spaces. We consider a riemannian submersion, 
Z2/-1 ---+ B2k , of closed oriented spin manifolds as in part (b). But now dimB 
is even and dim Z is odd. We identify the Hermitian bundle of spinors, FM , 
with n*(FB) EB F Z and let 1", ei , act by f", ® 1 ,rFB ® ei respectively. We 
also introduce a Hermitian bundle with unitary connection and curvature L ~ . 
Then we define De' f/(DJ ,c(T) ,All just as in §4(b). Of course, in defining All' 
we still assume dy" ,ei anticommute (which fits with the formalism of [Q, §5]. 
The same argument as in [BGS, Theorem 2.11], shows that as u ---+ 0 , 

(4.92) tlven[(Dz + c(T)j4u)e -All] = 0(U I / 2). 

The adiabatic limit, lime-+o f/(De) , exists in RjZ. The argument is the same 
as that given in part (a). 

Now assume that D Z is invertible for all fibers Z. 

Definition 4.93. ~ denotes the form of even degree, 

(4.94) ~ = In 1000 treven[(Dz + c(T)j4u)e -A;']duj2u l / 2. 

Then we have the following infinite dimensional analogue of Theorem 2.35. 

Theorem 4.95. As e ---+ 0, ~(De) has a limit in R, which is given by 

(4.96) lim ~(De) = ~ [ A(iRB)~. 
e-+O (2nl) J B2k 

Moreover, 

(4.97) 1 ~ ~ Z -L< d~ = --I A(iR ) tr(e ). 
(2ni) Z2I-1 

Proof. The proof is formally identical with that of Theorem 4.35. It is left to 
the reader. 
Remark 4.98. The component [~]o of ~, which is of degree 0, is just the '1-
invariant of the fiber. In this case (4.87) expresses [d~]o in local terms as in 
[APS]. 

Remark 4.99. Theorems 4.35 and 4.95 are actually equivalent. Let Sl ,~ be 
two copies of the unit circle and let y be the Hermitian line bundle over S I x S 1 

whose restriction to () x s...1 has holonomy () (0 $ () $ 2n). Then c1 (y) is the 
generator of H2(SI x s...1 ,Z). Given Z ---+ M ---+ B and a twisting bundle e, 
we pass to Z x Sl ---+ M X Sl X s...1 ---+ B X s...1 and the bundle ex y (compare 
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[BF, Theorem 3.16]). In this way, we replace the case in which the base space 
has dimension n by that in which it has dimension n + 1 (without changing 
the l1-invariant). 

Remark 4.100. If we put 

(4.101) ij = L (2~i)j [l1hj , 

then (4.96), (4.97) get replaced by 

(4.102) 

(4.103) 

lim f1(De) = { A(RB j2n)ij , 
e-+O 1 B2k 

dr; = ( A(Rz j2n) tr(e(i/21l)L~). 
lZ2I-1 

(d) The case in which the Dirac operator on the fiber is not always invertible. 
Even if D Z is not always invertible, we still know that the adiabatic limit, 
lime-+o l1(De) , exists in RjZ. In this case our discussion can be modified along 
the lines of that of [BF] and [C3], in which I-dimensional base spaces were 
considered. Essentially, one deforms to a situation in which the operator on 
the fiber (suitably modified) is invertible. The general result is somewhat messy 
to state. However, the case in which ker D Z is a subbundle is particularly 
important and will be discussed in detail elsewhere. Note that this case includes 
that of the signature operator. For this operator the adiabatic limit of the 11-
invariant exists in R, since there is no spectral flow (see also [D] for further 
discussion). Here we will consider only the following simplest special case. 

Assume that dim ker D Z is constant and that the subbundle ker D Z c H 00 = 
F Z ® e is parallel with respect to the unitary connection '\;t' . Assume further 
that the endomorphism ! 'L.,,<p c( T)(f" ,Jp ) dy" dy p preserves the splitting, 
Hoo = ker DZ EB (ker DZ)..L. Let l1(D;) denote the l1-invariant of DM (for 
the metric geM) restricted to the subbundle J = ker DZ. Then we have the 
following essentially obvious result. 

Theorem 4.104. 

(4.105) 

Moreover, lime-+o l1(De) , lime-+o l1(D;) exist individually in RjZ. 

One important case in which the assumptions given above are verified is the 
case of flat torus bundles with affine holonomy (which arise in connection with 
cusps of Q-rank 1 locally symmetric spaces). This will be discussed at greater 
length elsewhere. Another case is that of S I bundles with holonomy which acts 
by isometries. 
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ApPENDIX 2. MULTIFIBRATIONS 

We briefly describe a generalization of the results of parts (b )-( d) of §4 to the 
case of multifibrations. As explained below in Example A.2. 7 this generalization 
is significant for applications. 

We consider a sequence of fibrations of compact riemannian manifolds 

(A.2.1) 

Fo -+ Bo = M 
1 Iro 

FI -+ BI 
1lrl 

1 
F N _ I -+ BN _ I 

1 
BN 

Thus, any composition 7C j 0 ... 0 7C; is also the projection map of a fibration 
1r0"'01r" 

B; J -+ 'Bj+I' whose fiber, sr;.j is the total space of a multifibration 

F; -+ gr. 
I.} 

11r 

F;+I -+ .gr I . 1+ .} 
! 

(A.2.2) 0 

0 

0 

! 
F. g: . 

} } .} 

We assume that the maps, 7CO ' •• , ,7C N _I ' are riemannian submersions. We 
also assume that B N has a spin structure and that for each fibration F; -+ B; -+ 

B;+I ' the tangent bundle along the fibers has a spin structure. Then there are 
induced spin structures on M = Bo ' ... ,B N _I as well. 

Finally, let e be a Hermitian vector bundle with unitary connection over 
M=Bo' 

Let 
(A.2.3) TM = H N EEl H N-( EEl· .. EEl HI EEl TFo 
be the orthogonal splitting of TM induced by (A.2.1). Thus, 7C;_1 0 .•. 0 7CO 
maps H; isomorphicallyonto TF; C TB;. We now put (e) = (e, ' .. , ,eN) 
and consider the metric g(~ on M, obtained by blowing up the metric on H; 
by a factor (e)·· 'e)-I . 

Let D(B) denote the Dirac operator of g(B) with coefficients in e. Let i(o 
denote the ~-form for the fibration Fo -+ Bo -+ B( and let A(RF; /27C) denote 
the A-form of the tangent bundle along the fibers for the fibration F; -+ B; -+ 

Bi+1 • Let .f; denote integration over the fiber Fi .N-I ' where i = I, ... ,N -1. 
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Theorem A.2.4. Let Mil be odd dimensional and assume DFo is invertible jar 
all fibers Fo' Then 

(A.2.5) 

Remark A.2.6. The thrust of Theorem A.2.4 is that the limit exists independent 
of the manner in which e l ' ... ,eN tend to zero. The explicit formula in (A.2.5) 
is obtained by applying the results of §4 to the case limes-+o" .limel --+o ' The-
orem A.2.4 can be proved along the same lines of the arguments of §3 and/or 
§4. 

Example A.2.7. Let M be the cross section of a CUsp in a Q-rank 1 locally 
symmetric space of finite volume. Then M is the total space of a bundle with 
a locally symmetric space as base space and a nilmanifold as fiber. Thus, using 
the nilpotent structure, M can be viewed as the total space of a multifibration. 
If we let M move out to infinity and rescale the induced metric in such a way 
that the size of the smallest fiber, Fo' stays fixed, we obtain a family of metrics 
to which Theorem A.2.4 applies (actually one must take into account the fact 
that DFo is not invertible in these examples; compare §4(d». 

The special case of torus bundles over tori, T2k -+ L:4k - 1 -+ T 2k - 1 has been 
considered in [A, ADS, MI]. The adiabatic limit of the ,,-invariant is shown to 
be given by the value at zero of a certain (Shimizu) L-function. For the case 
k = I, this result was rederived in [A] and in [C3], as a consequence of the 
main results of [BF] and [C3]. 

By starting from the results of the present paper, one can easily show that 
for k arbitrary, lime-+o of ,,(De ,s) is of the form L(s)j(s) for s > -2. 
Z. D. Liu has verified that j(O) = I, which implies lime-+o ,,(De) = L(O). 
These considerations also extend to the general Q-rank I case treated by W. 
MUller, by means of the Selberg trace formula; see [M2]. This case will be 
discussed further from our viewpoint elsewhere. 

The following result is very closely related to Theorem A.2.4. Let fi·70 ,v-1 

denote the f7-form for the fibration Bo -+ B N • 

Theorem A.2.S. 

(A.2.9) lim f7.'To.,v-1 = [ft fi (RF;) 1 /. fiFo. 
(e)-+O . i 2n 1 

1=1 

Remark A.2.10. Of course, there are also statements corresponding to (A.2.5), 
(A.2.9) for supertraces of heat kernels. Moreover, these statements actually 
imply (A.2.5), (A.2.9) via the discussion of §3. 
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