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1

Let F be alocally compact, nondiscrete, non-Archimedean field (i.e., a finite
extension of Qp or a field of formal Laurent series over a finite field), and let D

be a division algebra of degree n over F, so that [D: F] = n’ . In this paper,
we give a construction of all irreducible unitary representations of D™ . There
does not seem to be an easy way to parametrize these representations; Theorem
5.5 is a start in that direction.

The problem of determining (D™)~ is interesting not only in itself, but also
for the light it sheds on the problem of determining all irreducible supercuspi-
dal representations of GL, (F). The problems are connected in two ways. The
construction of supercuspidals for GL,(F) has used procedures quite similar
to those used to construct (D)~ . In previous papers, (D*)” has been de-
termined when p2 =n or p2 t n. (See[11, 10, 3, 4, 5]).) The supercuspidal
representations of GL,(F) are known when p { n and when 7 is the product
of at most two distinct primes (see [12, 17, 2, 6]), and there is usually a close
similarity in methods of construction to the corresponding case for division al-
gebras. Furthermore, one important method of proving that the construction of
supercuspidals is complete uses the Matching Theorem of Deligne and Kazhdan
(see [8]), which sets up a natural correspondence between (D™)~ and the set of
discrete series representations of GL,(F). (See, e.g., [2] or [17] for this kind of
proof.) It seems likely that the construction in this paper will also apply to give
a construction of all supercuspidal representations of GL,(F). This matter
will be dealt with in a future paper. (In this connection, it is worth noting the
results in [15] about supercuspidals in GL,(F), n the product of two primes.)

Describing the general method of the construction requires some notation.
Let k be the residue class field of F, and suppose that k has g elements.
Recall (from, e.g., Chapter I of [18]) that D contains an unramified extension
F, of F with [F,: F] = n;theresidue class field k, of F,, with q" elements,
can also be regarded as the residue class field of D. Let R = R, be the ring
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of integers in D and P = P, its maximal ideal. The solutions in F, to
X' -Xx=0 give representatives for the residue classes of R/P =k, , and we
generally denote this set of coset representatives by k, . (This should cause no
confusion in the calculations, most of which are modulo P.) D also contains
a prime element w such that conjugation by w generates Gal(F,/F) and
such that " is a prime element in F . We write wxw ' =x7 for x € F,,
and in particular for x € k,. Let K be the group of units in R, and write
K" =14+P" (m>1); K" isnormal in K (and in D*), and K is normal
in D*. In fact, D* = K x (w) (semidirect product), and K/K' = kX,

K/ Kt = k, via the map 1+ aw’ — a. We sometimes write K'=«k.

We begin with a character y trivial on K "*! but not on K™ for some m.

(The analysis is easy if x is trivial on K.) We may also assume that y does
not extend as a character to all of D™ . Then x can be described by the formula

x(1+ym™) = c//oTrD/F(aw_m yw™) Vy €k,

for some o € k: ; here y is a character of F nontrivial on the ring of in-
tegers R, C F but trivial on the prime ideal P.. (Then x also defines a
character on R, /P. = k,, which we also denote by v, so that x(1+ yw’) =

yoTr, /k(ay”_m) .) From this, we can determine fairly straightforwardly the

elements w € D™ such that x(wxw_l) = x(x) for all x € K™. (We say that
such an element w commutes with x.) Let H, be the group of commuting
w.
We next extend y to K m=1 NH,, (this groupis K "1 unless m < 2), again
compute the algebra of commuting elements, and continue inductively. This
inductive computation is possible because of two lemmas. One, Lemma 2.2,
simplifies the problem of finding the elements commuting with y . It says that
if w, € P commutes with y, then so does 1 +w, € K ! The second, Lemma
3.8, provides us with a “standard” extension of x. It says, for instance, that if
x is defined on K’*' and if both K’ and a certain sub-division algebra D,

commute with x, then x has an extension yx, to K’ such that D, commutes
with x,. Any other extension of x differs from x, by a character trivial on
K’*' and hence is easily analyzable.

It may be helpful to say something about the connection between the ap-
proach used here and that used in the “tame” case (where p  n). The two
methods are surprisingly similar. In each, there are levels K’ such that the
division algebra D( N of elements commuting with x|, is smaller (in some
sense) than that commuting with x|.,,, . (The words “in some sense” are used
because the group of elements commuting with x|, is not generally a division
algebra; however, it contains the nonzero elements of a largest division algebra
D .) These j are related to the “jump points” described in Koch [13]. In
the tamely ramified case, the corresponding D( ;) were nested, and one could
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relate y to a character of some E™, where E is a field extension of F ; the
J corresponded to the conductors in the Howe factorization of y (see [12] or
[17]), and there were intermediate fields associated to these j as well. In the
general case, the D( j) are not nested, there is no Howe factorization, and the
“intermediate fields” are not well defined. What is defined is their ramification
index and residue class degree. We say a bit more about this in §6.

We use the notation of this section throughout the paper, except that we
do not use H, for the group of elements commuting with x|.,.. We write
2(x) = x(wxw_l), but also x—l(x) = ()((x))_1 . This should not cause
confusion. Lower case Greek letters near the beginning of the alphabet are used
for elements of k,, and 5 is an element of P. The unramified extension of
F of degree d and contained in F, is F,, and k, is the extension of k with
k;:k]l=d.

The bulk of the analysis of y is done in §3; §2 contains two useful lemmas
on commutators. In §4, we construct the irreducible representations of D™,
and in §5 we show that these exhaust (D*)~ and compute their degrees. As
noted above, §6 contains a brief comparison of the general case with the tamely
ramified case (when p { n). The final section is devoted to an example.

The recent work that led to this paper was prompted by a question of Allen
Moy about the representations of D; (Q,). T am grateful to him for pushing
me to find the answer and for many valuable suggestions about the form and
content of this paper. The referee also contributed material improvements in
exposition. I am also indebted to Philip Kutzko and David Manderscheid for
useful conversations, in which, inter alia, they explained their approach to the
problem of supercuspidal representations for GL, .

One final comment. In [14], Helmut Koch referred to a remark made in
a paper by Roger Howe and me about “the extremely pleasant geometry of
the conjugacy classes in tamely ramified division algebras,” and added, “Mir
scheint, das man das gleiche auch von dem allgemeinen Fall sagen kann.” At
the time, I did not see the geometry (or algebra) of D: as “extremely pleasant”
in the general case. Now I realize that his remark was not so unreasonable after
all.

2

We present here two lemmas that will be important in the proof. The first is
probably well known; the second may have independent interest.

(2.1) Lemma. Let x € K"N(D*,D*), m > 1. Then modulo K"™*' (r > m),
X = (U s V) Uy y s V) - (4,,0,), where v, € K’ and each u; is either @
or a root of unity in F, .

Proof. Let x = 1 + yoo™ mod P™*'. We show that x = (um,vm)modPWrl

for appropriate u, ,v,, as above. The lemma then follows by induction.
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If ntm,]let o be any root of unity generating F, over F. Then
(@,1+Bw™ =1+ (afc” ) = Hw™ modP™".

But a,B(oz"m)_1 -B=0= B =0, since a # o°" . Hence for an appropriate
B , we may make af(o’ )'] — B =7y, as required.
If njm,let u=w . Then

(@, 1+Bw™)=1+ (" - B)w” modP™,

so that we can get (u,v) = x if Tr P = 0. However, the character on K"
given by

x(1+§wm)=y/oTrkn/k506, d,€k, yasin§l,

extends to D* and is # 1 (for appropriate dy) if Tr, /ké # 0. Thus, if x is
a commutator (so that x(x) = 1), then Tr,, V= 0. O

Throughout the construction of the representations, we will need to know the
group of elements of D™ commuting with a character on a normal subgroup.
It will simplify matters greatly to know that if an element n# € P commutes
with a character, so does 1 + 7 (€ K ! ). The following lemma gives what is
needed.

(2.2) Lemma. Let A be the ring consisting of all formal power series over Z
in two noncommuting variables a and b, with a~',b™" adjoined. Call an
element x € A integral if the only words in x with nonzero entries are words in
a and b (i.e, no negative exponents appear). In the integral elements, let A,
be the ideal of words of total exponent > m (i.e, the total number of a’s and
b ’s appearing in each word is > m). Let

x=(l+a)(1+b)(1+a) ' (1+5)"
=(1+a)(1+b)(1-a+a’ - )(1-b+b"~.),

and let m be any positive integer. Then there exist an integer N and elements
cj,dj €A (1<j<N) such that

( ) each ¢ is one ofa,b,a_l N
(2) 4 =1 e A
(3) cjdjcj is integral,
(4) the product of commutators H , d ) differs from x by an element

of 4,.

Proof. Define the weight of a word in the free semigroup on a and b to be
m if the total number of a’s and b’sis m. Assume inductively that we have
elements ¢;,d; satisfying (1)-(3) with j < N, such that if y, = ]'[?’jl(cj,dj),

then y, 'x isasum 1+Y .k where kj € Z and Ekjwj € 4, . It suffices

JJJ’



ARBITRARY DIVISION ALGEBRAS 569

to show that we can find more commutators (¢; ,d ), Ny <Jj <N, satisfying

(1)-(3), and such that if y, =T}, . (c;,d,), then y['y;'x € 4, .
Note first that if w = f,--- (where each f; isan a ora b), then

T +w) =14+ (fy £ fi = f, f,) +termsin 4
(Sl +w)=1+(f, fi- Sy = Sy f,,) +termsin 4,

Thus we can use commutators (cj ,d j) , Ny+1<j<N,, to replace any word
by a cyclic permutation of that word. If this procedure eliminates all words of
length m, we are done. If not, we produce a contradiction. We may assume

that the sum of the terms of weight m is 1 = 3" j=1 kjw; , where each w; is

first in alphabetical order among its cyclic permutations and each kj €Z.
Let Q be a large prime (the rest of the proof will show how large), and
let F = F,((X)), the formal power series field with coefficients in F,. Let

D be the central division algebra of degree m? over F , with the Frobenius as
generator. Then D is generated by FQ,,, and a prime element w with @™ = X

and wyw’l =yQ, VyeFQ,,,. Wemap A onto Dbya—oaw, b~ w,
where a is a primitive (Q™ — 1)th root of unity. Then i ! Yo x goes to some
element x' =1+y, @™+, with

~,
=ijaj’
J=1

where ‘
[, = AV_:{Q'—l : the ithletter of w; isan a}.

Since x' is a commutator, it is standard (see the proof of Lemma 2.1) that
TrFom FoVm = = 0. Thus if we let ﬂ =al (and choose Q large enough that the
,8 are dlstlnct and nonconjugate as one varies over different words of length
m )s

r
Dok Tre,.m, B =0-
j=1
If we instead map 4 to D by a— o’w, b— w , the same argument gives

Zk Trg m/FQﬂ =0.

Jj=1
Let d,,...,d, (t < mr) be the images of the g ,; under the Galois group. Then

Zh,é =0, 1 <s<t(h =k if 6, is a conjugate of §,) .

Hence the Vandermonde determinant involving the o ; is 0, since the columns
are linearly dependent (provided that Q > all 4;). On the other hand, this
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determinant is (up to sign)

H 6;‘ H (51—5]»)950,

1Si<t 1<i<j<t
since the f; are nonconjugate. This is the desired contradiction. O

(2.3) Remarks. (a) In Lemma 2.2, we may take ¥ = a or a~! whenever the
word v—1 contains at most one b . This is because the u’s are used to permute
v — 1 cyclically, and we can get any cyclic permutation of @™ ba™ by simply
shifting a’s.

(b) We typically use Lemma 2.2 in the following way: let x be a character on
a subgroup H of K, and let s > 0. Assume that H contains all the elements
to which we apply y in what follows. Suppose that a € P, b € P’ satisfy

x* =y and xb|K2an=x|KanH. Then x((1+a,1+b))=1.

Proof. By Lemma 2.2 and the above remark, x(1 +a,1+ b) is a product of
commutators (a,a’) and (b,b'), d € H and b' € K* n H, and therefore
x(a,c)=xb,d)y=1. 0O

We shall abbreviate this argument by saying, “By Lemma 2.2 and Remark
2.3(b),....”

3

We now begin the construction of representations of D™ . We shall construct
all representations with conductor m + 1; that is, we look at representations
trivial on K™*' but not on K™ . Since we assume inductively that we know all
representations with smaller conductor (as well as those for all division algebras
of degree < n), we should begin with the lowest order cases. If 7 is trivial on
K, then it is defined on D™ /K = Z. We then say that © has ramification index
1 and residue class degree 1. If z is trivial on K ! , then it is a representation
of D*/K' = k) x Z (semidirect product), and standard theory determines

X
n. There is a character x on k such that n = Ind.x, x', where H is the

stability group of x in Z and ' is an extension of y to H . Each extension
gives a different 7, and yx, , x, yield the same set of representations = iff x,, x,
are conjugate under Z. If H = Z, then we say that 7 has ramification index 1
and residue class degree 1. If [Z: H] = f > 1, we say that n has ramification
index 1 and residue class degree f, and we associate the triple (0,1, f) to =.

We now look at the general case. We begin with a character y defined on
K™, m>1, and trivial on X mil Suppose first that y extends to a character
x' of D*. Then any irreducible representation 7 whose restriction in K™
contains x is of the form z =7, ® x', where n, has smaller conductor than
7. Thus we may regard this case as done.
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We are now at the main case to be considered. We may write
11+ym™ =wo TrD/F(alw_mywm)
=yo Trk,./k (a}'a )

for some (unique) o, € k, . Furthermore, alw_'" ¢ F,orelse y extends to
x' as above. We say that x is in general position. Let m = LR s; =[s,/2]+1,
s{ =s,+1—s,. Then if s, = 2m — 1 is odd, we have s; =5, = m, while if
s, =2m iseven, then s, =m+1 and 5] =m.

We begin by fixing an extension of y to K% , which we also call y. We
shall analyze this extension level by level and produce a conjugate with certain
desirable properties. We note first that the conjugates under D™ of x| gm are
of the form x~(1 +y@w™) = y o Trp p(e7w ™ "yw™), where aj'w ™" and
alw_"’ have the same minimal equation. We fix a representative of each
conjugacy class and consider only these azw ™" in what follows.

(3.1) Theorem. There exist a conjugate of x (on K° i ), a sequence Nisy) >

Misi—1)> -+ > Mist) of elements, a set s, = m > s, > --- > s, of distinguished

indices, and a set of pairs of integers (e;, f,), 1 < i < r, with the following

properties (in what follows for an index j, i is the largest index with s; > j,

and similarly for j', i’ ; we suppose that x itself is the deszred conjugate of x):
(1) The group of elements of D* commuting with | Ki

—Jj+! —Jj+! i—Jj+1
KK DY) (KT D)D)

where, for arbitrary indices j' and h, D, is the division algebra generated
over F by Mejry and kn/e ,and D, = D(s;,+,+1)’ My = s, +1) 2 ELC-
(2) The center of D, is an extension E of F with ramification index e,

and maximal unramiﬁed extension F 5 D( i has index nfe,f; over E( i (i.e,
its dimension over E; is (n/e fi)z) and it contains F, Je

(3) nyvng) =" for yek,,

4) N s a generator of Ph, and N~ 8enerates E ., over F.

(5) e;,_,le;, fi_\|f;, and e f|n; e,_lj:_ <ef and e f > 1.

(6) e, = n/(n/e,_,,s;), where e, = 1 and ( , ) is the greatest common
divisor.

(7) (i) Suppose that j, < j and f]|j,. Let y, be any character of k
trivial on k, e Then there exists 6 € k, lei such that if we set

nfe; fi

njei—,

(3.2) w="14+p 5T ) = (wyw ™'y,

then x* is trivial on P"*' and y*(1 + yr)(j)) = ¥, Vv € k), . (By
convention, 1, =t .)
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(ii) If j, < j and f; % j, but f,_,|j,, then for any character y, of k, Jeis
there exists 6 € k, Jeis such that if w,y" are defined as in (3.2), then 1 s
J1

trivial on P'"*' and x*(1 +onl) = w(v), Yy €k, .
(8) Dj,nK" C (D), ,nK YD nK™)...(D{ nK"™™ )K" and

D, NP C (D yNP)+(D_ NPy P

j+1
(Note. For this theorem, we take s, ., =5 —1.)
9 My =1, mod P/i*! if i is the largest index with j <s,;if j=s;, ny s

Pﬁ+1

congruent mod to an element of D, .

We will add a tenth property; see (3.9) infra.

(3.3) Notes. (1) We will associate a sequence of triples with y ; the sequence
will begin with (s,,e,,f)), ..., (srl 1€, fr,)' Further details will be given in
84.

(2) It may help the reader to have the following explanation of the properties
in Theorem 3.1. In producing an irreducible from y, Clifford-Mackey theory
shows that we need to know {x: x* = x}; this information is given by property
(1). Properties (2)-(4) describe the structure of D . They show that it is
generated over its center E( N by k, Je; and ) exactly as D, is generated over
F by k, and w . Properties (5) and (6) characterize the sequences {(s;,e;, f,)}
associated with irreducible representations of D™ . Property (7) describes the
freedom we have in conjugating y into a more tractable form. Property (8)
shows that the terms in the product for (1) fit well with one another. It implies,
for instance, that K*~/*' ... (K*~/*'nD) ) is normal in the group of elements
commuting with x|, . Finally, (9) says, e.g., that if j #s,, then D i NP and

D,. .. NP give the same residue classes mod P"*" .

(J+1)

(3) On K5 , x is given by (1 +y) = Yo TrD/K(xy) for some x €
P~ (mod Pl's") , and the theorem could be proved by analyzing the elements
that commute with x (or a suitable conjugate of x ) modulo an appropriate
power of P. Such a proof, however, would not apply to the extensions of The-
orem 3.1 that we will need in §4. We give a proof that will apply inductively to
these extensions.

The proof is long; we divide it into parts for future reference.

(3.4) We begin be verifying everything for j = m = s, . By hypothesis,
alw"" ¢ F.Let F [a,w_'”] =Eg, have ramification index e, and residue
class degree f, over F. Then e f, > 1, and e, (n,m) = n (since e, =
n/(n,m) is the smallest positive exponent such that (o, ~")" generates an
ideal P" with n dividing r). Let D(s.) be the division algebra of elements
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commuting with E ). We now prove property (1). Since the commutator sub-

group (K',K™) C K™ C Kery, K' commutes with x. If w € D;;l) , then
for y=1+y,, we have

-1 - -1
') = x(wyw™ ) = yoTry p(ay@w ™" - wyyw™)
—1 -
=yoTry (W -a®@ " wy,)
=Vyo Trp/p(a[w—myo) =x(),
since [alw_'" ,w]=0. Thus all elements in K ID(:) commute with y.
Conversely, suppose that y“ = y, with w = (Swh"(l +d6,@w +---). Since
1+0,w +62w2 +--- = w, satisfies x*" = x, it suffices to consider w = sw”.
Writing y as above, we have
woTr, p(ay@ "y@w"”)=yo Try play@ " S yw™ . (w7,
or \
-_m -m —-m -1
l//oTrk”/k(alya ) = V/OTrkn/k(alaa ya o )a
for all y € k, . Equivalently,

o.m—h

voTr, 7] —af 87 (6" ) =1, Wek,.

m am—h

m—h —h h -m
Hence 6° af =af d° ,or da” =ad’ ,and this implies that
h _
[6w",a,w "] =0.
Therefore dw” € D(>;|) .

(3.5) Since (a,w ") =a'w ™™ for some r, we see that F . is the maximal

unramified extension of E . Let fw "% be a prime element in E,, with

B ek, . Then Boo™* hasan (n/e, f,)th root M, in D, since

51)°

[E, (8= ") "): F1 = n.

It is clear that 1, &enerates P/ . Since Nsy) is of the form ﬂ'wf‘ , (3) clearly
holds. We have also verified (4)-(6), and (8) and (9) are vacuous. D, contains

Nisy) and k, Jer? and these elements generate an algebra of dimension n? /el2 f12
over E, .. Therefore they generate E,_ ., and (3) holds. Thus we need check
(s1) (s1)
only (7).
(3.6) Let j, satisfy s; SJp<S$;;setw= 146t~ Thenfor y = 1+yw’,
we have
xwyw™y ) = g (1+ @7 =98 )@ ")

s1—Jo 00 g1

(3.7) =yoTr, a8y -7

glo=s1  glo glo g%
-0 «

=yoTr, , 7@ a, )
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while wyw_ly_1 e K™ for y € K%' Hence x(wyw_ly_l) is trivial on
Kt

Suppose first that f, t j,. Then the above character is never trivial for
J # 0; if it were, then we would have to have

g'jO"“l ajo a-’O ol g1 a‘l—IO
a -0 o , 6 o =a 4,

[ew ™, 0w "] =0,

0=9

and this is impossible because D(s,) does not contain a generator of P* ~Jo
Hence we obtain every character of k, by varying J, and this proves (7)(ii). If
f] |Jo » the same calculation shows that the above character is trivial whenever

w=1+ 6'17((;’:)' Wi s e K, - (These are the elements commuting with

a,@ ") Thus we obtain Card(k,/k,, ) distinct x. On the other hand, if

. e .
y =1+, with y, €k, , , then (writing w = 1+ 81, 6, ek, ,
—=s1/h

nje
si/fi
(s1)

and a,@w " = ayn;)" ; @y €k, because ;" and 7 arein E ).

—1 _1 $1 — Ji Ji
2wy )™ = 11+ B = o090

s1—Jo

o
=Vyo Tl‘k"/k 50%(73 - )’g )s
since f||j, and f|s,. Furthermore, (n/e,)|s, , so that
o't —Jo o~ /o ol o~ Jo
Tr,, Tnje, Foag (%, =% ) =0 Trk,,/k,,/el (% -7 =0.

Hence x(wyw—] y"l) =1 for all y as above. Since there are Card(k,/k, /el)
characters of k, fixing k, /e, » WE s€€ that we can obtain exactly these characters
by varying J. This proves (7)(i).

In the inductive step, we begin with x|.,,, and consider x|, . It will be
useful to compare our character x|, with a “best possible” extension of x|g.,
to K’ . The next lemma describes this extension.

’

(3.8) Lemma. Let x be a character on K'Y, d <j<s, andlet e, f
1 1
be integers with e f|n such that both k:/ . and an element n generating i

commute with x . Assume also that nan™' = o forall a €k, le- Then x has

an extension x, to K’ such that k, / and n commute with .

e
Proof. We consider two cases separately.

(a) Assume that (n/e) t j. There are |k|" extensions of x to K’ | since
[K’: K/*') = |k|" and K//K"*' is Abelian. These extensions form an affine
space V', so that if x,,x,,x; are any three extensions, then x, x,x; ' is also
an extension. Furthermore, at most one extension x, is fixed by k:/e. For
if x.Xo are both k), -fixed, then Xo(x)"' =z~ is a nontrivial character
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on K, trivial on K’*! and fixed by k* . We have

nfe *
(A +y@))=poTr, (67 ), Vrek,,
for some J € kn/e . Since B(1+ ywj)/}_1 =1+ yﬂ(ﬂ"l)”jwj , we get
woTr, (67" )=woTr, ,(38° B7'v""), Wrek, and VBek,,.

So 68 =68, ¥ ek,,,
Consider the k' -orbits in V. Since |k|" is a power of p, while |k, | is
one less than a power of p, it is clear that the greatest common divisor of the

cardinalities of orbits is 1. Hence we can find orbits &, ... ,&, and integers
hy,...,h, with 3°_ h|@|=1. Let

i=1""
=TI TT )"

i=1 y'ed;

and J =0 because j is not a multiple of n/e.

Then y, extends x and is obviously k:/ . -stable. Since 7 normalizes k, Je?
x0(x) = 2o(nxn~") is also k:/e -stable. From what we proved above, x; = X, -
Therefore yx,, is the required extension.

(b) Suppose that (n/e)|j. Then (1 + ynj/f)d'l =1+ yr]j/f forall y €k,
and all € k:/e . Thus every extension of y to K’ is fixed by k:/ o Let X,
be any extension of x . Then every extension is of the form y, = x,y, , where

w1+ =yoTr, (L), Wrek,,

for some { € k,. Write 5 = ,Bwf+ .-~ andlet y=1+ yr]j/f. A calculation
gives

_ _ of
w(yn w0 =weTr, L -7)
-/

=V’°Trk"/k7(c—¢d ).

This shows first that ylc(nyrf') =y, () if y € k, and then that y = y, iff
e kf . Hence as { runs through &, , the characters n//c" (y/{)'l run through all
characters of K’ trivial on K’*! and on the elements 1 + 7'/, y € k.
Now consider x{’(x)xl(x)_l. For x € K’*', this is 1 by hypothesis. If
x = 1+yp’"” with y € k., then [x,n] = 0, and )(;’(x))(l()c)'l =1. So
x;’(x,)_l = (V’cﬂ(‘/’c)_l)—l for some {, and 0V is then 7 -stable. O
We make the notational convention at each step of the inductive process that

X is the given representation on K’ and Xo is an extension of x|g,.. to K’

with the property of the lemma (with respect to N1 and k, Je: ).
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(3.9) We now make our final inductive assumption, as promised earlier:
(10) For j =s; (so that Nijp1y = Mi—y » €EC.),

g L+ = yoTr o™,
where, if a; = Tr_ Ve, , then E,_|[a; ns‘/ fi- '1 is a field of ramification index
e; and residue class degree f; over F M1y = dnf /1=t mod P**Y | where &

commutes with E,_,[an/'].

For i =1, we have ¢, = f; =1 and we take n,=w , F, = F. Itis easy to
check that (10) holds in this case.

(3.10) It may be useful to see one early step in the induction worked out before
we go to the general step. Assume that for j+ 1 < h <5, we have Ny = s,
and Dy, =D, - We assume that (1)-(10) hold for 2 > j + 1 (so that we are
not yet at s, ), and examine what occurs at level j. Let x, be the extension of
X|gi« Wwith the properties of Lemma 3.8. If f| 1 j, then x is conjugate to x,
by an element fixing x|,.. , from (7)(ii). Thus we may assume that y = x,.
Let Ny = Msy and D, = D ) - Then s, < j. Properties (2)-(10) are now
all obvious for Jsi (1) requlres a calculation, which is omitted because a similar
calculation will occur at the end of case (a) below.

So assume that f}|j, j = j,f;. Then ¥~ =x-x, ! is a character trivial on
K’*', and on K’ there is a unique o) € k, such that

X (1 + 7"'7 G+1) )=V °TrD/F(az77(1+1) 7’7(].,.1))
-J
=yo Trkn/k(azy )

forall yek,. Let o, =Tr,_ Phe, (a'z) . There are now two cases to consider.

(a) Assume that a, ’7(;-{1

(1+1

7"/ is prime in E ., We have ( n/el)ljo. Let B be a fixed element of k,

such that Tr, Tk B =1 (if (e;,p) =1, B can be in the prime field). Then
n nfl

Tr, Phe, op =a, =Tr, Vg, a'2 . In view of (7)(i), we may assume that by

) (=Eg,,by assumption). Note that since

conjugation that @, = a,. In particular, we may assume a; =0 if a, =0.
_] —1 .
Also, o, ek"r\E(jH) =kfl because az”(j+°1) and n(j+°1) arein E .
We first define n; tobe n,. (1 + 6w'), where t = s, —Jj and 6 is to
be determined. We want ™ = y on K’. On K’*' this holds by property
(1). On K’, we have x;” = x(“‘sw), since xg"*” = x,, while (x™)™ =

(x™)"*" because conjugation by 1+ dcw’ is trivial mod K’*' . (This follows
from Lemma 2.2 and Remark 2.3(b).) Hence

i (1+6w') ,_ ~\ns
X’7(J) — XO w )(X )’7(} 1) .
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But (x~)"*"(x™)”" is trivial on the elements 1+ yn(’}?ﬂ) ,

yek since

nje

N . ~——1 . ~ J i
) (™) (1+7'7(J;+1))=X (1+(° —7)’78“))

J
=y OTrkn/el/k az(yﬂ _ y)

o’

o’ el
=yo Trkn/el /k((azy) - az)’) =1

(recall that o, € kf ). From (7)(i), we can choose J so that ()(((,I“L‘swl))_1 X0

()" (™)', and this is the desired .

Because ¢ is a multiple of n/e,, 1 + dw’ commutes with k_, . Thus (3)
1 nje

follows by the inductive hypothesis. Clearly n(”]ée‘f'

[F, [r]("Jée‘f‘]: Fl2>e f, and [D: F]= nz/elfl , we must have [F[r)("j/)‘"ﬁ]: F]
= e, f,. Hence F [n(”j/)e‘f‘] = E(j). The rest of (2) is now easy, and we have
also checked (4); (5), (6), (7), and (10) are true because the claim is exactly the
same as for j + 1. It is also easy to check (8) and (9).

That leaves property (1). D(j.) commutes with y by Lemma 2.2, and K

is central in D( X Since

S1—j+1

commutes with x because (K*/*' K’) c K**'. Conversely, any element w
commuting with y commutes with x/|.;., . Therefore

s1—j+1

— h r—1 s1—J
w_50"(j+l)(1+61”(j+1)+"'+5r_l”(j+1)+5 w ! +65|—j+lw +...)’

s1—J
where fir=s -7, ¢, ekfl if I<r+1,and ¢, €k, for [/ > r. (Note the
jump in indices between r—1 and s, —j.) Because of our expression for Gy »

we can replace each f(j+1) BY 7; at the cost of changing the J, with / >r.

Similarly, we can replace @ ™’

Thus we may write

with 11(’ ;) by again changing the J;, with [ > r.

_ h r s1—Jj+1
w = Jon(j)(l +61n(j) +-~-+(5,11(J.) +0,_ @ ! +631_j+2w

—j+1
j si=J ),

where the J, are in kﬁ for i < r and are in k, thereafter. Dividing by an
element known to commute with x, we consider w = 1 + 6,n('j). We need
0, €k - ' ‘
Suppose that 6,11('1.) =0w” 7/ +.... For x=1+yw’, we have

et

) =woTr e @y — 987’

1 g/ o/ g%
a —0 a; ).

= V/ o Trkn/k y(aa"’
Since x"“(x) )((x)'l =1 by assumption, we must have

- 2 a/ on
0 a, =0 a ,

or ,
o™l o1/
6 a =0da; ,
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or
[6w™™ ,a w °1=0
From (9), a,w " = ol )"/ /i mod P!~ , where a, and 7 /5t are central in
. Then [6 n( 7y QoM JS‘/ s ]e P'™/, from the above calculatlon But

[6,1(;» @M s‘”‘]—é[n(, , on(,s'/f']+[6,,aon "/f‘]n('j)

si/f
=16, a0m;) ']"(jw

and this last can be in P'™’ only if J, € k, Jer - This proves property (1).

It will also be important to know that our choices of a2 and az'2 have fixed a
representatlve of x in its orbit under conjugation by D . Suppose that x* =
x = 21", where x*(14y) = '/’°TrD/F('Bz'7(,+1)J’) Let B, =Tr, B, . Since
x* =x on K, property (1) gives an expression for x. Taking conjugacy

classes mod the subgroup of elements fixing x , we see that we may assume that
x =1+d6w” ™. But the computation performed when computing 1, shows

that for this x, y*(14+y)=x(1+y) when y = 7’7,+1 y € k,,, . Therefore
2~(x)"(1+y)=1 for these y. Since

~ -1
)T +y)=yeTr ,

=J
ate, (70 ((12 - :82))
if yek,,,a,=48. Byourchoiceof o, x=x".

(b) Assume that 0‘2’7]+| ¢ E1+1) Then E1+1)[°‘2'7,+1 ] is a field of rami-
fication index e, and residue class degree f, over F, where e,f, > e f, . We
then let S, = j. Note that (10) and (5) are now satisﬁed. It is also easy to check
(6). Let f, = f;fl ; set s, —s, = fir. Note that M(j+1) = M, - Now suppose that
w commutes with y . Then w commutes with x|, ., . From property (1).

si—j+1

h
w=50?71(1+51'7+"'+5,77|+5 i@ +0) = ww,,

say. (Note the jump in indices between r and s, — j +1.) We show that f; |h.
Let y=1+yn"=1+y,, with v €k, - Then
-1 -1 R -1 -1
xwyw 'y )= xo(wyw 'y )x (wyw 'y ).

By an application of Lemma 2.2 and Remark 2.3(b), we get x,(wyw ™ : y l) =
1. Hence we need only consider ¥~ . But

~ —1_—1 oy -1
x (wyw 'y )=‘/’°Tro/palz'7|10( S W =)

- Sih
=y oTr 4 a5l6y05 ) v =91’
a%2 0,]’|h
d

-5

g%

-1
=yo Trk”/el Jk 02[50( o )

! .
(all terms but a, are in k, /o))

Usz—flh a—flh —1 axz—flh o2
=y °Trk,,/,,l i ey 6, () -a ].
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Since this must be 1 for all y € k the coefficient of y must be 0; that is,

nfe
a2~ Nk gk a2~ ik g %2 o/
a, d = a,d, , a,d =a, Jj.

Thus [6Onf,a2nl'j°] = 0. Since F, E(j+1)[a2nl_j°], therefore 5011{' com-

mutes with F I Hence f)|hf,, or f; |h. This argument also implies that
%ehm
Let B € k, satisfy Tr, Vege B = 1. Asin (a), we may assume that a'z =a,pf.

when / = 0, since then we need [J,,a,n; 1= 0.

We fix one element azn,'j° in each conjugacy class under k:/e.

(n,) , and we may
assume (conjugating by 7, if necessary) that aznl_“ is the representative of its
conjugacy class. This fixes o, and a,.

We now produce 1 > @ generator of P~ , such that n(; commutes with y,

N’
X _ J;

1., normalizes k,, , and n(j)yr](j)' =97 forall y € Kyje, - Welet ) =
51;7{2(1 +60w’) , where ¢ = s, —s,. We require that J, €k, . Then 1+6,@"

f’
commutes with ( X~)‘5'"‘2 and 4, "lfz commutes with x,, just as in (a). Also,
fory=1+ynP, yek

nje, s W have

f,
~\ O 2 /f 52 - -5
@) =woTr,, wlegl@y” (677 " =" )
—h 2=NH 1 ¢2™N 52
=yoTr, 0167 (67 H7'ag  =al’]).
This will be 1 for all such y if 67 a3 * =a3”87" ", orif 67 *a, =al’s, ,

and this condition is met if we choose &, so that [J, '11le ,azr]]_’b] =0. Since a
prime element in E(j+l)[a2n]_’°] has an (n/e, f,)th root of the form J, nlf2 , this
choice is possible. (This determines J, only up to multiplication by an element
of kf2 , but the further choice of &, is arbitrary.) For this choice of 4,, (7)(i)

4 ‘
guarantees a 9, such that ()(N)‘S""2 ™)' = (xé“’"w xo"')"' , and for &, ,9, so

chosen, we have x"” = yx, just as in (a). The same argument as in (a) shows
that Ny conjugates k, Jes appropriately. We note that, by a similar argument,

P#” g >0, has a generator of the form J;nlgle(l +68,w') in D,. This makes
(8) clear, and (9) is also obvious.
We have verified (3). Recall that D( N is generated by k, Jes and My set

E;, = F, [n("jée’fz]. It is easy to see that Ef; is central in D, and that
e(EG)/F) > e, and f(E;/F) > f,. Since [D: F] = n2/e2f2, we must
have [E(j): F] =e,f,. But E(j) C E(j). Hence E(?) =E;, and (2) and (4)
follow. For property (1), D()j.) clearly commutes with y , and Lemma 2.2 shows
that D' NK ' and K*™*' commute with . For the converse, the inductive

hypothesis and our calculation at the beginning of (b) (together with the same
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sort of argument used for (1) of (a)) show that if w commutes with x, then
w =3y, (140, +- -+ +8, _ ' ' +...), with § €k, ,and 6, €k,
for [ < t. We need only prove that J, € k, n/er ? and thls is done just as in (a).

Observe also that if ' is another extension of x|, to K’ constructed as
above, then x and x' are nonconjugate. Write x' = x,x", where x#(l +y)=
woTry, (Byn? °v), By € k,. For y = yp® with y € k/e , (1 +y) =

—Ji
c//oTrk"/q/k(ﬂzy” Y, B, = Tr, (B;). Suppose that x* = x'. Since x

and x' agree on K’*', we can use (1) to get an expression for x . Ignoring
terms known to commute with x , we may assume that x = 67/ (1+8/ @™ ™),
d €k, Jer But a calculation done in verifying (7) shows that conjugation by

njey

1+ 6,w™ " fixes x onelements y = 1 +yn°, y € Ky, - Since (Snf' fixes
Xo» We must have (x~)x°(y) ( ) for these elements, where Xy = 6171
calculation shows that x; (a2111 °)x, 52’71 . Since we chose one element
from each conjugacy class, a, = B2 From our other choices, a'2 = ﬂ; and
X=x .

We still need (7). Write j, = hf,, and consider x(w,yw, ly_l) , wWhere
wy=1+ 61n{°'h° and y =1+ yn:’° (6,,7 €k, ,, ). Some computation gives

nje
-1 -1 J Jjp—s2 5 J1
(3.11) x(woywy ¥ ) =y oTr, (a5 6] " —a3 67)
But

o) 67" —al 67" = (0,80 T —al '6)" #0 ford, #£0if f,4), .
Otherwise, aznl_j° and 51’7{0 " commute, and we have seen that this is im-
possible because of the calculation at the beginning of (b). Hence we can make
an arbitrary character on the elements y (as above) by choosing J, appropri-
ately, and this proves (7)(ii). If f;[ J, » the above character (3.11) is trivial when
[ayn;”,8,nP "] = 0, or whenever &,77°™" = 57)8‘)’"%)”2 mod P /'*! with
o€k, /e, We then obtain only Card(k, Jer /k, /82) distinct characters. But we
also have

a1 o2

—1 -1 J
X(woy'wo y )= WOTrkn/e,/k al 1(7012 -7 az)-

If [yn1 ,an, ’°] =0 forall y ek this is always 1 on y. These are the

n/el 4
y with yn:’° =y n(hf)/ % mod PP+ (y e k, / e,)» bY (10). Hence the characters
we can obtain by varying J, are precisely the ones trivial on the elements

y'nlf e Dy . This is (7)(i).

(3.12) We now consider the general inductive step. We thus suppose that the
hypotheses hold for j + 1 and that we have defined the s,,¢,, f, for / <i (so
that 5, > j +1). We now consider y and x, on K. If f; tJ, then (7)(ii)
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implies that we may assume after a conjugation that x = y,. For this case, all
the properties (2)-(10) are easy (most are vacuous), and (1) is straightforward
(we will do a similar verification below). Thus we assume that f |j, and let

j=J,f,- Wehave x-x;' =z trivialon K’*' and yx (1+y11(j+1))

Tr(a;ﬂy"j), Vy € k,, for some element o;,, € k,. Let o, = Tr, k

i+1

n/e,

Jo
There are two cases, depending on whether @ My € E (j+1) OF not.

(3 13) (a) Assume first that amn(jj’ﬂ) €E,, - Then (n/e)|j, so that n{jﬂ)

E;s ; hence o, | € k . Let B €k, satisfy Tr,, Ve B =1.By(7)(i) and an
inductive argument, after conjugation we may assume that a; +1 = Ba;,, - (The

induction uses (9) to show that the elements 1+, 77’ 1 7 €k

nle, are congruent
J/ fl 1

mod K’*! to elements 1 + Vi Mmi with y,_, € k, Jeis .) In particular, if
o; = 0, then we may assume that o ;= 0 and that y, = x. We shall show
below that with this convention, different « i give nonconjugate y .

We first need n - We define

My =MoL+ 8, o)L+ 8,y 75) - (1 +8ymp)
where 1, f, = 5, +1 —Jsny =w, and the 0, € k, /e, Are to be determined. We

have, for y € kn/ei ,

o'_fl

| j
A+ 70l = v o Tr o, (77 =)

a'_fi
= '/’°Trk,./e,./k a;, (¥ -7

-5
=y °Trk../e,~/k V(ai+17’a —a,)=1,

since a € kﬁ. Thus, conjugation by N1 fixes ¥ on K’*! and on elements

(1+ yry{;ﬂ)) , VE kn/e,- . From (7)(i) and induction, we can choose the J, so
that 7, commutes with y . (As above, we use (9) in the inductive step.)
o

It is easy to check (as in (3.10)(a)) that 7 satisfies (3) and (8). Set 71("]/)"'

n. Then n and F, are central in D( j)»>and F[n] has ramification index over
n/e,- )

F thatis >e; (since n generates P and residue class degree > f; Since
[D: F] = nz/e,.fi, the center E of D, has degree e f; over F. Thus
F[n]=E , and (2) and (4) follow. Property (9) is also obvious.

(3.14) Since (5)-(7) and (10) are essentially the same for j and j+ 1, we
need check only (1). It is straightforward (using Lemma 2.2) to verify that

the elements of K™ ~/*'(K* /' nDX)... (K"t n D,.X_I)D:;) commute with

x . Conversely, suppose that " = y for some w in D”. Then x" = x
on K’*'; hence w € K" /(K*/ nD})--- (K" nD} )D(]H) Dividing
by an element known to commute with y, we may assume (as in (3.10)(a))
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that w =1+ 571(5‘ M-y g , 0 €k, Jeis * (There are higher order terms of
consequence. We deal w1th them later.) Our first task is to show that w is

congruent (mod K5/ +l) to an element in D(j.) . Let y€k, Jeis? and consider
G -7 ha + yn{b_]). Set hy = (s; — j)/f,_,, and write w = w W, » with
w, = l+5nf’ﬂ , - Itis not hard to verify (using Lemma 2.2) that pade! +y77 ) =
x(1+yn,) on these elements, since (w,, 1+ yn{"_]) € K and the .

-1

commute with x|,.. . Thus we are reduced to computing x'x~ on these

elements. Write x = x,x~ asin (3.12). Since xg’ ' = X, we consider

~ ~y— i Si—J J g~ Si
WO M) = wo Ty, o8y —967)

Ji=si gl i gSi
=yoTr, 4 (6" ol - 5<ﬂaf )
(See (10) for the definition of «,.) Thisistobe 1 forall y € k, / e, - Then 0=
(07 'a,_,da; o J)” or [611, ;11 = 0. From (1), 61]1 , is congruent

mod PS' ’ i+ to an element of D,; (8) now implies that ‘5'71‘—1 is congruent
mod P ~/*! to an element of D, . This is what we need.
Using (8), we may also write

_ ho ho+1 h
w = 1+5h0ﬂ(j)+5h0+1'7(,) +-- +6,,_1n

1=

1 .
+0, '71-1-2‘*" T Jicahy =5,_1—J,
with the J, € k, Jer_y * Dividing by an element known to commute with y, we
consider w =1 +5hl nf’Lz +---, and an argument like the one above lets us show

that 8, n", € k

nfeis " Proceeding inductively, we get (1).

To see that different o, , give nonconjugate x, let x, = x, %", where

J
Xyl =woTr ,(B,»"), Vrek,,
and
!
aj+1 # ﬂj+[ = Trk,,/k,,/ei(ﬂj+1) .

If x,x, are conjugate by x, then x fixes x|.,.. . Therefore, x is given by (1).
Dividing by an element known to commute with y (again by (1)), we have

h i
x=0n,,(L+8_m ) (1+8w").
But we saw in constructing ) that for these x, x*(y) = x(y) for y =

1+yn , YE kn . Therefore x (y) %~ (y) for these y. Since o,,,, B;,,
determme x, x , respectively on these elements, we must have o, , = B, .

/ ! .
Therefore o, = B, , as claimed.

(3.15) (b) Assume that o, m%, ) ¢ E;,,)- Then E o, 7, )] has rami-
fication index e, and residue class degree f; , over F,where e, f,,, > e f;.

This defines e, ,, f;,, . Let M =M1y Sinn =j,8;~=85,=fr,D D(j+1),
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E, = E(j+,). Write f,., = f,,,/f;. Properties (10) and (5) are now clear, and
(6) is easy. We next show that if w = éonf'(l +d,n,+--+) = w,w, commutes
with y, then f |/h. We may assume that w commutes with x|, . Let
y=1+y11 =1+y,, with yek . Then

—1 =1 e e S -1_-1
x(wyw™'y ™) = xo(wyw y o (wyw 'y ).
However, a calculation using Lemma 2.2 (essentially the same as one in 3.10(b))
shows that xo(wyw'1 y_l) = 1. The point is that y, commutes with x,. We
also have, by a computation that is by now standard,
olit _gSit1—Nih

~ -1 -1 “Sit -1
1 (wyw 'y )=W°Trk,,,e‘./ky[ai+lag I(‘50 )"ai+1]

fih

Since this is to be 1 for all y € k we must have a 5 = dya;,, , OF

nle; ’ i+1
[a1+111i_’°,6011:'] = 0. Since E;. lo;m; ’°] 2 F, has residue class degree
f;] over E(j+1) , we must have f +1 |k . Similarly, we have §, € k - if h=0

(see 3.10(b)).

Let B € k, satisfy Trk Thge B = 1. Then, as in (a), we may assume by
using (7)(i) and (9) that az+1 =a,,B. We fix one element o, 7, in each
conjugacy class under k, Je: (n,) , and we may assume (conjugating if necessary)
that o, , is that element of the conjugacy class. These choices fix a 1 and

@y - (That different o, , give nonconjugate y is proved essentially as in (a);
see the end of (3.14). We give some details below.)

Jo

(3.16) We next construct Ny - We set

Mgy = 5n,‘*'(1+6, MDA +6,_,m73) - (1+ 8ymg)

where n, =w , r, f, =8,_, —S;,;,and the 0, €k, n/e; ATE to be determined. The

construction is like that in (3.13). For y € kn Je: >

a/1+l —Siyl  —1

1!
6,' i+l
Gy DA+ = yeTr, yolel, 6 )

(X C'i+1]

If we choose d, so that [6,.71 i ,amn_s"] = 0, this will be 1 for all such y.
We can always choose such a J,, since «;, 1, % generates a field of residue
class f +1 1in D;. We next choose the J, inductively, using (7)(i) and (9). Now
(9) for j follows immediately. Because 7, acts as o’ on k, Je) > it is easy to
check that n,’ commutes with k Jeis ; hence (3) holds. For (8), we can use
the same argument to show that ng ! has a generator in D of the form

SnEM (L 46_n")---(1+6,n"). This implies easily that if x € D} NK',

r+si —s,‘f)

r = gf;,,, then we can write x (mod K as

X=X Xgi1 " Xorg» f,g,=s,—s,.,
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= X r+l fig1+Spe1—Si :
where Xod =Xgu1 i Xes10> Xgi1p € D, nK . It is now not too

hard to see that to verify (8) we need to show that if y, € D, n P
y, €D, NP [yith b < c, then

VY € (D NPT 4 (D, NPT g P
Since

y. €D, N Pr+f,~+1+sc+1—si) +(D,_,N Pr+ﬁ+s‘_s’) 4ot prHfmtsi=si ’

c+1
by (8) and the inductive hypothesis, we reduce the truth of the assertion with
b and c¢ to the truth for » and ¢ —a, a > 1. An inductive argument now
completes the proof of (8).

It is clear that 7, generates P/ and that )
Let Ej =F [r)("j/)e”'f"*‘] . Then E[j clearly has ramification index >e¢,,, and
residue class degree > f, +1 over F. On the other hand, D( i is known to be

nfewifinl s central in D u)*

of degree > nz/ei +1fiy1 over F. Hence, its center, E(j), has degree e

over F. But E(j)2 EG). Thus, E ;) = E<7>. This proves (2) and (4).

i+17i+1

(3.17) That leaves only properties (1) and (7). For (1), the verification that
elements in K* /! (k27! NDy)--- D, commute with x is straightforward,
using Lemma 2.2. Conversely, if w commutes with x, then w certainly
commutes with x|.,.,. Hence w = 6017;'°(1 +om+-), 6, € kn/ei. We
say in (3.15) that ﬂ +1lhy - Thus we may (possibly changing the J;) rewrite
w = 77("].‘)60(1 +on +-), hlffﬂ = h, . Since n("j') commutes with y , we may
assume that 4, = 0. From (3.15) again, we must have ¢, € k, Jes S D(’;) .
Thus we may assume that J, = 1. The rest of the proof proceeds as in (a); see
3.14).

( To) see that the y with distinct a; .1 are nonconjugate, let %' be another
extension. If x* = ', then x fixes | ki - Comparing (1) for j and j +1,
we see that we may assume that x = 6,41:'(1 + 5,‘—1'7?—_1')”‘(1 +0M,), 6, €
kn/e[ and the r, as in (3.16). On elements y = 1+ yn{b with y € kn/e, ,a
calculation using Lemma 2.2 shows that x”* (¥) = x™(y), where X, =06 in:' . We
have x = x,x~ , from (3.12). x, fixes x,, and, for y as above, (x™)™(y) =
woTr, (B ), where (xp)™'(a 1 ")x, = B, yn; . Since we fixed

aH_In{" in this conjugacy class, «, , = B,,, . It follows that y = 1.

(3.18) For (7), we may write j, = hf;. Let w, = l+5in{°_h" and y = 1+y77f'°

(where d,,y € k, / .,) - The standard computation (using Lemma 2.2 and the fact
jo—h, . .

that 6,7/°"" computes with x|, ) gives

g Si+l gSi+1 I o gl
d;)

—1 -1
(3.19) x(woywy y ) =woTr ,ve,,6 — —ay, 4
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If f,, tJ,, then the second factor is nonzero for J;, # 0, since otherwise
[o;m; Jo ,61.71:"’] = 0, and this violates what was proved in (3.15). Hence we
can, by choosing w, appropriately, conjugate to produce an arbitrary charac-
ter on the element y as above. This proves (7)(ii). If f: +11J; > then (3.19)

is trivial whenever 61.71;'° =4 n("jf’)/ S with & € k , and we obtain exactly

njeiry
Card(k, y o/ kn ,) distinct characters. But we can rewrite (3.19) as

/eis
-1 -1 J1=Six1 1 Sit]
x(weyw, 'y )=yo Trk,,/e',/k J; (ya;:-l -’ Ugp)s
and this is always trivial for yn™ = y'n"%* mod P**' (with y' € k., ),
: i = VG n/ei
since then [ynf’° ,a,n ] = 0mod P"'~**'*' Hence the characters we obtain
1 holf},

by varying d, are precisely these that are trivial on the elements 1+ y NGy '€
D( ;> and (7)(1) follows.
And this completes the proof of Theorem 3.1. O

4

Before continuing the construction, it may be helpful to pause and see where
we are going.

Let x be as in Theorem 3.1, and define s; = [s,/2]+ 1, s} =s,+ 1 -],
in analogy with s;,s; . We would like to construct all the irreducible unitary
representations of D™ containing y . Mackey theory says that we do this by
considering the group H, of elements x with x* = x, constructing all irre-
ducibles p of H; such that p contains x, and then inducing to D™ . Theorem
3.1 even tells us what H; is. Unfortunately, it is not obvious how to construct
the desired representations of H,. There is one special case, however, where

things are not so bad. If s, =1, then Hy = KS;/DI)< . We can extend y to
K S;Dlx (this is proved in Lemma 4.2), and the further extension to H, is not
hard. That gives us one representation of H, containing y, and the rest are
obtained by tensoring that one with representations of D] trivial on D' nK s
Since the dimension of D, over its center is < n’ , we may assume inductively
that we know these representations.

In general, however, we need to continue the construction. Suppose that
r, > 2. If weextend x to KS;(DI>< NK*~'), the elements of D/ NK*™ will in
general not commute with y (just as elements of K ' did not generally commute
with x|, -1 ). This suggests that we follow the procedure of Theorem 3.1 and
extend y to K S;(D]X NK*) . With luck, the group of elements commuting with
x will be K (K% n D) (K> nD})--- (K"~ nD*_)D}, and we will
have made progress. In particular, we will be in a position to complete the
construction as above when r, = 2. If r, > 2, then we can repeat the last step,
and so on. The problem is that the procedure of Theorem 3.1 may introduce
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more triples (s;,e;, f;) with i > r . Thus, even after r, iterations we may have
to continue further. Luckily, the procedure must be finite because n is finite.

This discussion may help to motivate the next definition. We say that a
pair (x',H), where H is a subgroup of D™ and y’ is a character on H, is
satisfactory if there are triples (s;,e;,f;) and elements 7,, 1 < i < r,, such
that

(a) H=K(K%nD})--- (K nD}_)), where D, is the division algebra
generated by 7, and k,

fei ;

(b) the group of elements in D* commuting with ' is K (K% n D)
(K»nDy_)Dy = H~ (the numbers s ,s; were defined above);

(c) there are elements Ny as in Theorem 3.1, with #, = M5 +1) a0d 7, =
N ) » such that properties (1)-(10) of Theorem 3.1 (see also (3.9)) hold.

o

Note that H~ normalizes H .

(4.1) Proposition. The character x of Theorem 3.1 has a satisfactory extension.

Proof. The proof will in fact show that y has “sufficiently many” satisfactory
extensions, in a sense to be made precise as we continue.

Let x, r, be as in Theorem 3.1. If r, = 1, then we observed above that
(K’; ,X) 1s already satisfactory. So we may assume that r, > 1. In that case,
consider the group H, = K (Ksé ND)). Clearly (H,,H,) C K*', since 25, >
5, > s; . Furthermore, x =1 on (H,, H,). To verify this, it suffices to calculate
x((u,v)) when each of u,v isin either K* or Ksélex . If v, say,isin K,
then x((#,v)) = 1 because u commutes with x. If u,v € K* ND; , then
x(u,v) = 1 by an application of Lemma 2.2. (Write u = 1 +u,. Then u,
commutes with x|, .) It follows that y has an extension to H, . Furthermore,
H /K i is Abelian, so that y has many such extensions. Choose one, which we
also call y.

We now apply the procedure of Theorem 3.1 to y . While a complete account
of what happens would be tedious, it may help to see the first step or so. We
first extend y| x 10 X, on H, nKs~! by using Lemma 3.8 (the proof applies
without change). Let j = s{ —1, i =r . Now consider our extension x to
H N KNI fr, t s’l — 1, then x and y, are conjugate, by (7)(ii) (the
argument is that of (3.12)), and we may take x = x,. We can then show,
as before, that if one sets Ny = ey D( H= D , etc., then we have the
analogue of property (1) of Theorem 3.1:

(1)

U+1)

X=x on H,nK' ™ nx7'(H,nK"!

& xe KV (KM D)) (KM D)D),

)x



ARBITRARY DIVISION ALGEBRAS 587
and properties (2)-(10) of Theorem 3.1 also hold. If f;|j, then write
X=XX s
() =weTr, K@), o ek, =]

— ! =]
Let a= Trkml P, @ If af; +°1) €E then we use the arguments of (3.13)

Jj+1)?
and (3.14) to produce ) (generating P/ )s E( i and D( j) SO that (1)-(10) of
Theorem 3.1 hold. (1) takes the modified form given above. If E( i +1)[om(;f’l)]
is a proper extension of E( 1) with ramification index e;,, and residue class
degree f,, over F, then set S;s1 = J, sothat (s, ,,e.,,f, ) is the next
triple for y. Let ey = Mi> D(j+1) = D,, etc. Now the argument of (3.15)-
(3.18) produces Ny Dy » ete. satisfying (1)-(10) of Theorem 3.1. Continue
this procedure.

In this way, we obtain further triples (s,,e;,f;), r, <i <r, (say), together
with elements Ny > division algebras D( i) and fields E( i j> s;, such that
(1)-(10) of Theorem 3.1 hold. If r, = 2 (this happens when r, = 2 and
we were never in case (b) of the proof of Theorem 3.1 for j < s, ), then
(H,,x) is satisfactory ((1) then says that X = x on H, nx_‘Hlx iff x €
KY(K% nD)D}). If not, let H, = H,(K" N D). As above, (H,, H,) C H,
and y =1 on (H,, H,); the reasoning is virtually the same. We then apply the
procedure to the extensions of x to H,.

Continue inductively. The procedure stops with a satisfactory (x,H,_;) if
s, = i. This is bound to happen for one of two reasons. If s, is large, we
use the fact that s, < s1(21—"' ) and r; < the number of prime divisors (with
multiplicities) of n. In any case, s, 2 2 if 5, > 2, and this will stop the
procedure. O

(4.2) Lemma. With notation as above, let (x',H) be satisfactory. Then x'
extends as a character to H - D, .

Proof. We need to show that if u;,v; € HoD:; and w = ]'[f=1(uj,vj) eH,
then y(w) = 1. By appropriate manipulations (described, e.g., in [4] and [5]),
we may assume that each u.,v i is in either H or D:; and that the terms
with one of u;,v; € H come first in the product. If, say, u, € H, then

)('((ul ,v,)) = 1 because v, € H~ commutes with x'. Thus we may assume

without loss of generality that all u;,v, € D . Hence w € (D,,,D;)NH . By

Lemma 2.1, w is (modK"*') a product of commutators (u;,v}) with each

u, €D CH™, v'e D*NK" C H. (This last comes from Theorem 3.1(8).)
J S5 =Y <&

Therefore y (w)=1. 0O

Fix an extension of x' to H - D:; , which we also call y'. We now produce
other representations of D:; H by tensoring with any irreducible representation
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p of D:; trivial on D:; NK* . We then produce a representation t of H~ by
tensoring with Weil representations. This step is described in detail in [12, 9,
and 1]. Here is a brief sketch. Suppose that s, is even, so that s = s, — 1.

There is a unique irreducible projective representation 4, of K U that is trivial

on K*' and satisfies

-1

A, ()2, ()4, (A, (6 ") = 20 xpx) !

1

x, )

for x; = 1+7,0" . Then (dim4,)> = [K: K'(HNK*)], and A, extends
canonically to a projective representation W, of HD:; K*' . When p is odd,
this is the Weil (or oscillator) representation. For p = 2, a description is given

in Chapter 1 of [9], and a different (but equivalent) description for general p is
found in §8 of [1]. It turns out that W is trivial on K "'nH Dr: . We now tensor

W with y ® p to get an ordinary irreducible representation on HD:; K. If
all 5 with j > 1 are odd, this representation is 7. If not, we repeat this
construction for each even s;, j>1,toget 7.

(4.3) Theorem. (a) For 1 as above, Indf,~ T =7 is irreducible.
(b) Let t,,7, (on H ,Hy )f)e construcfedas/ above, from x, @ p,, Xy ® P, -
Suppose that n, =n,. Then H =H, , X, =x,,and p, = p,.

Proof. For (a), write 7¥(x) = t(wxw™"). If ¥ and 7 intertwine on their

common domain, then their restrictions to the normal subgroup K S| intertwine.
Since 1|, ,; is a multiple of x, ad &, is a multiple of x", and thus x" = x.

Therefore, w € K* (D] nK*™*)...(D}_, nK*~'~*)D, , by Theorem 3.1.
1

rn

This group normalizes K" (D, N K*), and hence 7 and " intertwine when
restricted to this group. Again, 7 is a multiple of ¥ and t“ is a multiple
of x*. Hence, w € K" (D N K™ )(Dy NK*™*)---(D;;_ N K"Z"'SZ)D&).
Proceeding inductively, we get w € H~ . By a standard theorem ([16]), this
proves irreducibility.

For (b), assume that there is w € D™ so that 7, and T;U intertwine. Then
their restrictions to K*' intertwine, and these are multiples of y,,x, , respec-
tively. Therefore x,, x, are conjugate under D . From the uniqueness of the

a:.H in (3.12), this means that x, = x, on K*'. From Theorem 3.1,

w e K (D} n K" (D).
1
As above, this means that x,,x, are conjugate on Ks;(DlX N K%). By our
constru~ction,~)(l =1, on K’ (D]x nK‘f). By induction, we get x, = x, and
w € H;” = H, . But this immediately gives p, = p,. O

(4.4) Remark. We could also prove (b) by another argument. It is evident
from Theorem 3.1 and Proposition 4.1 that we have considered every completely
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satisfactory y and every representation containing such a y. Thus, we have
certainly constructed all of (D™)~, modulo tensoring with characters. We will
see in the next section that the number of representations with kernel containing
K" (") is precisely the number of such representations we have constructed.
Therefore, those constructed above must be distinct.

5

If we make the inductive assumption that every irreducible representation of
division algebras of index < n are constructed as in §§3 and 4, then the repre-
sentation p of D in §4 has associated to it a sequence of triples (s} ,e; , f;),

- (s;' ,e; , f:‘ ). (This sequence is empty if p factors through the norm map.)

If (s,e,, /)., (s,o 105 fro) is the sequence associated to x , we associate to
p the sequence
(CTY- ) PPN C Y-S 0 1N C SR -SUPI MUD IRPR C NP S S

where s, | = s;f Jrs s = e;ero ,and f, . = j; f, - Notice that p depends
on the choice of extension of ' to D:: , but that this choice does not affect the
sequence of triples because two representations that differ by a I-dimensional
representation generate the same sequence. We shall say that n is of type
{(s;,e,,01)s---,(s,,e,,f)}, r=ry+t. Note that n is of type ¢ iff it is 1-
dimensional. The conductor of 7 is, as usual, the smallest integer m + 1 such
that =|,,., is trivial. If z is trivial on K, the conductor will be 0. We also
say that n has ramification index e, and residue class degree f , and write
e(n)=e,, f(n)=f,. If n is of type ¢, we define e(n) = f(n) =1.

Observe that our construction of representations of D> applies also to K .
The one difference is that in those cases where we conjugated by @ or M)
to specify an element in the conjugacy class of y (e.g., immediately before
Theorem 3.1, or in (3.11)), we can no longer perform this conjugation. Thus
we obtain more conjugacy classes.

We use this observation to prove

(5.1) Theorem. The number of representations m of D™ (constructed by ten-
soring those of Theorem 4.1 with characters) that satisfy

(a) n(@") =1,

(b) f(n)|f, where f is a fixed divisor of n,

(c) the conductor of @ is <m+1,

n m
Ay = 'f—zZ# (_g) (q* = g,
dif

where u = Mobius function and [ ] is the greatest integer function.
Proof. We follow the reasoning used in §11 of [13]. Let gf = n. We consider

representations A of K with e(1) < g, f(4) < f, and conductor < m+ 1.
Consider the construction of ¥ . We must have %ls,- , since otherwise e(4) > g.

is
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Similarly, x, = x at each level j where 2 1' j. When "| Jj , we do not need to
have x, = x, but the element o; ;) (of (3.9)) must generate a field whose
residue class degree is < f. Since o, , could be 0, we see that there are
qf different choices for o, , at each j with f|j and 0 < j < m. That
gives ¢’U"¢/™ choices (again, [ ] is the greatest integer function), and there are
another qf —1 choices at K/K !'. Hence the total number of representations of
K satisfying the conditions is ¢’'¢/")(¢ —1). Mébius inversion now gives the
number of representations A with f(1) = f, e(A) < g, and conductor < m+1

to be . )
Ny o= u(f/d)g" - g™
d|f

Each such A has f inequivalent conjugates under D™, and the group of el-
ements in D™ fixing A has degree % over K. Hence there are T"an m.f
representations of 7 meeting the conditions of the theorem. 0O

(5.2) Corollary. The total number of irreducible unitary representations of D™
with conductor < m + 1 that are trivial on w” and are constructed as in §§3

and 4 is J
> fzu(f/d - 1)g™ . o
fin d|f

(5.3) Corollary. Every irreducible unitary representation of D™ is constructed
as in §83 and 4.

Proof. It suffices to consider irreducible representations 7z trivial on w . From
the main theorem of [13], the number of conjugacy classes of D /K ml (w) is
A, e This, of course, extends the inductive assumption made at the beginning
of this section. O

(5.4) Corollary. The number of irreducible unitary representations n of D™
trivial on (w") with ramification index %,residue class degree f, and conductor

<mis

Proof. If m has ramification index e and residue class degree f, with ef|n,
then 7 corresponds to a representation n~ of D:f. Thus, we obtain B
by Mobius inversion from Theorem 5.1. O

nim;f

Define an element © of (D;< )~ to be basic if its conductor (the smallest

number s + 1 such that K**' C Kern ) cannot be reduced by twisting with
a character (if K C Kern, then we require 7 to be trivial). Except for the
trivial representation, these are the irreducibles constructed in the previous sec-
tions. Of course, every element of (D;< )~ is the tensor product of a basic
representation with a 1-dimensional representation, and it is also easy to deter-
mine how many basic representations are obtained from a given one by twisting
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with a character. The next theorem gives a parametrization of sorts for basic
representations.

(5.5) Theorem. Let (s,,e,,f,),...,(s,,e,,f,) bea sequence of triples satisfy-
ing

i) s;>s8,>-5 20,

(11) ele,---le., filhhl---|f,, and 1 < e f <e,f,<---<ef <n,

(iii) e f|n,

(iv) fls; forall i, and e;=n/(n/e,_,,s,) (e,=1),

(v) e,=e,_, if s5,=0.
Let f; = f,, ﬂ . The number of basic irreducible unitary representations m in

general position whose associated sequence is (s, ,e,, f,), ... ,(s,.e,, f,) is
r
n - d o S, — S, De;
—2-]—[ S " ufrd) |4, a—Zf [—‘——‘] ,
i dlif
if 5,>0;

zH (}:‘1 - f/d)q ,  a asabove,
S \aig

ifs,=0 (fy=1,s,,, =~1, f/ =f,/f,_,., and [ ] is the greatest integer
function), and all these representations are of dimension

n
qg -1 4 1
f;‘qn/e,_lq’ V= l +Z ( —;)]’ni=ei-f}'

1 1 i

Proof. Begin by considering how many characters x have (s, ,e ,f|) as the
first associated triple. We must have

-5

(1 +ym™) = woTr, oy’

where atw ~°' generates a field of ramification index e, and residue class degree
f, - The ramification index is automatic, from (iv). For the residue class degree,
we need to have N P, & generating kﬁ . If N, Ve, @ =N, e, @20 then

—$ =5

W and o,w
count the elements in k, Jey generating kfl . There are ) dlf; u(f, /d)qd =Q(f)
such o. Each is in a conjugacy class of f, elements under D* /K.

For each j with 5, < j <5, and (n/e,)|j, we have a choice of qf‘ ways
of extending x. For the other j with 5, < j < s,, we have no choice in
how to extend yx. Thus there are (1/ fl)qf‘[(s'_”_”e'/ "o( f,) distinct x with
(s,,e,,f,) as the first associated triple and no further triple before s, .

At s,, we need to have aznl_sz generate a field of ramification index e, and
residue class degree f, over F. The e, part is automatic, from (iv). For

£, , it is better to think of a,n; " generating a field of residue class degree f
2 2M 2

are conjugate by an element of kn , so that we need only
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over F[n,]. As before, there are Edlfz’ /1(f2/f1d)qf‘d = Q(f;, f,) such a, mod

conjugacy by k, Jer * Each is in a conjugacy class of f; elements under the group
of elements commuting with .
Proceeding inductively, we get the number of characters on K ' to be

fr‘l H (qu""du(f;/d)) q°, a= Zfi[(si =Sy~ De;/nl,
j=1

i=1 \d|f’

provided that s, > 0. If 5, = 0, the above formula holds with the sum and
product to r — 1 instead of r. For the number of characters on K, we need
to multiply by qf' -1 if 5,>0 and by Zd,fr, ,u(f:/d)qf’“d if s, = 0. Finally,
there are n/f, further extensions of our character x to the group of elements
r]{’ . We thus get (a).

As for the dimension, assume first that s; is odd for all ;. Then we can
see by induction that n is induced from a character y on the group H =
Ks{(Dl’< NK%)... D, n KS;)D:‘ . We compute its index in D™ . Obviously,
we can work modulo K* and modulo w" . We have

/ /
Sy, Sty _ B S =8| n
[HOKZ.K']—qla B]_l:lf'l 2]—3

since HNK® contains elements 1+ yw’ +---, sy <j<s),onlyif f|j,and
there are then q"/ é choices for y. Since s'1 and s; are both odd and divisible
by f,, we also have B, =[s, —s,]n/2n, .

Similar reasoning (note that s, # 0) gives

[HNK: HNK*'1=¢", B =I[s_, —s]n/2n,,

for 1 <i<r. We also have

J;
But 25, — 1 =s, is divisible by f. If 25/ — 1 =, f,, then

|2 - (3] -

Hence g, = (s, —s,,,)n/2n, , where (for this part of the proof) s, , = f,.

We also have [HNK: HNK']=¢"% -1 and [H: (HNK){(@w")] = n/f..
Multiplying gives

/ |
[HNK': HNK"]=gq", ﬂr=[u ;-

[H: st(w")] =2dq" -1, B= Zﬂi .
i1

AN
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Hence
dimz = [D: K (@) ]/[H: H (@")]
=n(g" - )"/ IH: B (@")]
n
. 4 =1 nsl-1-8
- f;'qn/e, _ lq l ¢
From here, it is a question of putting n(s; —1)—p in some more pleasant form.
Set n,=e,f,, ny=e,=fy=1. We have
n (s; )n
n(s;—1)=f=5(s-1- Z——2 -

n.
i=1 :

(5.6) = —%+%Zs,. [f——%]mf,/n,

Sl nalanow)]

This gives (b) when all s ;. are odd. If, say, s, is even, then we have

I R _|Si=S|n
[HNK?: K] =4q", ,Bl-[ 7 }e.

3
Here, since s, =s,/2, we get

B, = (s, —s5,— f)n/2n, .
But the Weil representation of §4 corresponding to s, has dimension gz
while [D: K% (@™] = n(q" — 1)¢*7 " . The effect is that (5.6) is unchanged.

A similar analysis shows that the formula holds regardless of the parity of the
s;. (The analysis is carried out in more detail in §3 of [7].) O

6

It may be useful to see how the construction of representations presented in
this paper compares with the constructions in previous cases. When n = p,
we necessarily have r, = 1, and the situation is relatively simple. For n = p2
or pn, (with (p,n;) = 1), the construction presented here seems to be more
straightforward than those in [4] and [6].

There remains the case (p,n) = 1. The basic simplification is that in (3.13),
for instance, we can choose S to be in k, since Trkn Jk is faithful on k.
Therefore ai. +11 commutes with 5. The same statement applies to (3.15).
The result is that we may always assume that E( 5 S E (+1) - (In particular,
E( 5 = E( j+1) unless j is one of the s5,.) Furthermore, y is nontrivial on

E(s, NK*® , and, similarly, x(s) is nontrivial on E nKs’ (see §3 for notation).

This 51mp11ﬁes the structure of the satisfactory extens1on H of Proposition 4.1.
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Let E = E(:,) , where (s, ,e;, f),...,(s,,e,, f,) are the triples associated to
the representation x . Then x| . has the property that x| .. is trivial; x|,
and x|+ factor through N, JEs,)? but not through any norm map N, JE with

S1

E 2 E'; Xlgs and X|gen factor through N /E,, » Put not through any norm

map N, JE" with E(SZ) 2 E', and so on. This leads to the Howe factorization
of x (see [12] or [17]), which gives a definition of the s; depending only on
Xlgx - In the general case, the triples (s;,e;,f;) give a weak analogue of the
Howe factorization.

A formula for dimz is given as Theorem 3.25 of [7] for the case where
(n,p) = 1. We repeat it here, changing notation slightly so that it does not
conflict with the notation in this paper. Let n, = e,f;, and let a = n/n,,
m;=n/n;, and j,=1+s,/af, . Then

b

n
(6.1) dimz = f, L= L gle/PlectOarizen =<l
g -1

where ,
a(f) = Z:ji(mi_1 -m,), my=n,.
i=1

The definition of j; has the advantage of fitting in naturally with the definition
of the conductors of the terms in the Howe factorization. The formula was
written to involve a so that it would be easy to see the change in dimn as n
(the degree of the division algebra) varied, while the character x|, remained
fixed. Some algebra shows that (6.1) agrees exactly with Theorem 5.5. Thus the
dimension formula of [7] has a generalization to division algebras of arbitrary
degree over F .

7
In this section we give an example of the construction of supercuspidals.
We let F = F,;[[X]] and n = 27. Then w? =X and k = F,. Let o be
the Frobenius, y — y3. We examine the representations associated with the
sequence of triples
(45,3,1), (33,9,1), (19,27,1).

Since the s; (namely 45, 33, and 19) are all odd, we avoid the Heisenberg
construction.

We use the notation of [6] to describe k,, = F;,,. A basis for k,,/k is
constructed as follows: define o, a,, a; by

a::=al+1, a;=a2+af, a§=a3+a§.
Next define /S’j (0 <j £26) as follows: if j =9a;+3a,+a, (0<a,<2),

then g, = aj’ey’al'. The B , form the desired basis.
We define ¥ on F by

w(EnX') = w(n) =™ (y,e2/32).
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Now we begin to construct y. On K > we must have

X(l + yw“) =yo TrD/K(6_45w . yw45) >
where F[d_,,w ‘45] is a totally ramified extension of degree 3. Then (J_, ;@ -4 )3
= y_45w_135 = y_45X_5, where y_,, € k*, and we may assume after con-

jugation that J_,; = *1 € k. For definiteness, take J_,; = 1, so that
—45

11 +y9yw®) =y o Try Y =y oTr, , 7. Then we may set 7,5 = @ .

Notice that E 5 = F[w”].

We next extend y to K* ,K43 ,.... For K 44 , we know that the extension
X, of Lemma 3.8 is unique, and it is then clear that

—45

(7.1) Xl +x)= y/oTrD/K(w X).

It is also not hard to check that if x is not conjugate to x,, so that
x), Trk27/k3(5'_44) =6_, #0,

then s, = 44. Therefore x = x, on K*. A similar argument shows that
X =X, on K37, where x, is still given by (7.1). We also have Nagy = =
Napy =@ and E(37) =...= E(45) .

-1 —44
X Xo (1+x)=y OTI'D/K(5,_44TU

36
On K™, however, we have more leeway. We need

—36) )

-1
X% (1+x)=yo TrD/K(5'_3677((37) x Trk27/k9(6'_36) =0_36»

where J_ 3611('33;5 €Eg; - This is true if J_,¢ € k. From Corollary 2 of Proposi-
tion 2.1 in [6], we may assume that (5'_36 is a multiple of B, . If, for example,
!
0_36 = B\, then \
Ni36) = ’7(37)(1 +dw’),

where d = B, +--- can be calculated as in (3.10). We shall instead take the
easy way out and assume that J_,, = 0. Then we may also take o 36 =0, and
Miag) = M3y =@ > Ez) = Eqzyy -

On k¥ and K* , we also assume that y = y,, where x, is given by (7.1);
sy = M) and E(36) = E(34). At K**, however, we have a jump index. We
must have

-1 -33
XX (I+x)=y oTrD/K(JI_33}7(34)x) > Trk27/k9(5j_33) = 5_33 »

where 5_3311(_32)3 =0_3,3,W -3 generates a totally ramified field of degree 3 over

-33,3 -99
) =7V_33W

Y_33 € k™ . By conjugation, we may then assume that 0_4 € k™. We take

0_y3 = 1. Then 5'_33 = B3 + any linear combination of B,,...,B;, as a
computation (using results from §2 of [6]) shows.

E =E., . Since (_,,@ and w P € E , we must have
1 (34) 33 1
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We now need N3y = n (1 + 6w12) , where n, = M3a) - Given a choice of
5'_33 , we could compute ¢ and f(33) as in (3.10). We use another device here.
We have

(712) (1 +x)=yoTry L@+ ;o P)x],  xeP”.

So f(3; Must commute with @™ + 6'_33w_33 mod P~ , or (equivalently)
with X2 (@ * 46 @ ) =@’ + 5 ;@ mod P**. So we choose &' ,, to
make n?”) =@’ + 4 @’ mod P?. With § = B,, n?33) is of the desired
form (though computing 5133 is an unpleasant task). Then Ny =@+ ,3361:0 B
and E 3, = Fn,)].

As before, we must have x = x, on K 32 and K*! (at least after conjugating),
so that y is given on K* by (7.2). On K,

-1 -30
XX (I+x)=y °T1'D/1<(5/-3o’7(31)x) > My = N33y

where 0_,, = Trk27 Jks 6'_30 is such that 6_3071(3301) € E(31) . Therefore 6_,, € k,

and we may take 6'_30 to be any linear combination of B, ..., B,,. We shall
take 5'_30 = 0. We have similar choices at K>’ and K** , and we will assume
that d,, =0 and 6,, = 1. Then 7,5 = - =173, and

(7.3)

—45 =33 —24 24
A1+x)=yoTry (@™ +6. ymsy +6 54M05)%],  x€P;

9 2
Mgy = Mas) (L + M) +8,@™), 8, €ky, 8 €kyy.

As in the analysis for K 33 , we can finesse the computations by requiring that
3 -1 _ __—45 o233 o 24 -23 /

'7(24)X =w + 5_3317(34) + 6_2417(25) mod P~ ", where Trkz’/k3 0_,, = 1.
Setting J, = B; and &, = — B, fixes an appropriate 5;4 . Then E,y = F[n(324)] .

For K2, we again have y = x, and 7,3 =175y, while y is given by (7.3).
We now go on to H,, = K23(D;( nKzz) , where D, = {Zij’: ¥, € ky}. We
can no longer describe x as before, since H,, is not obviously isomorphic to
an additive subgroup of D. We could compute a central character y~ of Dl><

agreeing with x on D) N K>* and then consider x(x~)”' on D], but that
seems to be fairly complicated. We instead consider the extension x, to H,,.

(One can verify in other ways that x,(1 + ywn) =1 forall y € k;.) Since
sy #22, x = X, on H,, (at least after conjugacy), so that N2y = Mas) and
Ey) = Epy -

On H, =K 2 (Dl’< nK? 1) , we have a choice of extensions of . We need

-1 =21 3
XXy (L+n5y) = woTr ,(8,7),



ARBITRARY DIVISION ALGEBRAS 597

where 0_,, = Trk9 Jks (5'_21 is such that 5—21’7(—22)1 € E(22)‘ Therefore we need

6_, €k,and 6'_21 must be a linear combination of B, ..., B, . We will take
/

6_, =0,s0 tha’;3 ”(2)1() = n(zzg) and Eyy = E(zz).

On H,, = K (D; NK™), x = x, (after conjugating) and Moy = Nty
Egp = Epyy. On Hyg = KP(DINK"), x # x, because s; = 19. We must
have

-1 19 T
XX (l +y77(20)) = y/OTrkg/k(J_wy ),
where J_,q = Trk9 Jks (5’_19 is such that E(19)[‘5—19'7(_2é)9 ] is totally ramified of
degree 27 over F. This is in fact true for any nonzero J_,,, but there is no
loss in assuming that é_,, = 1, since the other choices are conjugate to these.
We will choose J_,y = —1. Some calculation shows that

14
Mgy = Moy (1 — @33))

commutes with y for an appropriate 6'_19. We have E(w) =F ['7(19)]- Let
Moy = 2> Epo) = E; > ete.
23, X 18 -1 18 T

For H g = K~ (D; NK"), we have x-x, (1+yn“9)) = W°Trk9/k(5-137’ ),
where 6_¢ = Tr, d' ¢ is such that 5_1817(—1;;; € E o, - This holds for all d__,
but there is no loss of generality in assuming that 6'_18 is a multiple of B;. We
will assume that &’ 15 =0, so that y = x, and Mgy = Mgy - We will assume
similarly that Mary =Ny -

We now go to H,, = K>(K'"nD[)(K'® n D)) and compare x with x,
there:

-1 16 | T 5 g8
X'Xo (1+Y'I(17))—'I/° rk;/k( _167 ))
where 0_,, = Tr; 8’ ¢ issuch that J_| 67]('1;)6 € E ;- This is automatic, but
we may take &’ ¢ to be a multiple of §,. We will assume that 6", = 8,.
Then
’7(16) = ”(17)(1 + ﬂzrlz)a

as a calculation shows. We also have E 6 = Flngel- We have similar choices

for Hy, ..., H,=K>(K'""nD)(K'*nDJ); we will assume that at each step
X = X,- Then Niey = = M0 and E(]6) == E(10)'

We now have a satisfactory extension. So ooy = M3 and E, = E;. In our
case, E; = D,. We extend x to a character of H= H10E3>< , which we also call

X, and induce to get 7.
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