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1 

Let F be a locally compact, nondiscrete, non-Archimedean field (i.e., a finite 
extension of Qp or a field of formal Laurent series over a finite field), and let D 
be a division algebra of degree n over F, so that [D: F) = n2 • In this paper, 
we give a construction of all irreducible unitary representations of D X • There 
does not seem to be an easy way to parametrize these representations; Theorem 
5.5 is a start in that direction. 

The problem of determining (Dx) ~ is interesting not only in itself, but also 
for the light it sheds on the problem of determining all irreducible supercuspi-
dal representations of GLn(F). The problems are connected in two ways. The 
construction of supercuspidals for GLn(F) has used procedures quite similar 
to those used to construct (Dx) ~. In previous papers, (Dx) ~ has been de-
termined when p2 = n or p2 tn. (See [11, 10, 3, 4, 5].) The supercuspidal 
representations of GLn(F) are known when p t n and when n is the product 
of at most two distinct primes (see [12, 17, 2, 6]), and there is usually a close 
similarity in methods of construction to the corresponding case for division al-
gebras. Furthermore, one important method of proving that the construction of 
supercuspidals is complete uses the Matching Theorem of Deligne and Kazhdan 
(see [8]), which sets up a natural correspondence between (Dx) ~ and the set of 
discrete series representations of GLn(F). (See, e.g., [2] or [17] for this kind of 
proof.) It seems likely that the construction in this paper will also apply to give 
a construction of all supercuspidal representations of GLn(F). This matter 
will be dealt with in a future paper. (In this connection, it is worth noting the 
results in [15] about supercuspidals in GLn(F) , n the product of two primes.) 

Describing the general method of the construction requires some notation. 
Let k be the residue class field of F, and suppose that k has q elements. 
Recall (from, e.g., Chapter I of [18]) that D contains an unramified extension 
Fn of F with [Fn: F] = n ; the residue class field kn of Fn , with qn elements, 
can also be regarded as the residue class field of D. Let R = RD be the ring 
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of integers in D and P = PD its maximal ideal. The solutions in Fn to 
xqn _ X = 0 give representatives for the residue classes of R/ P ~ kn ' and we 
generally denote this set of coset representatives by kn • (This should cause no 
confusion in the calculations, most of which are modulo P.) D also contains 
a prime element ro such that conjugation by ro generates Gal(Fn/ F) and 
such that ron is a prime element in F. We write roxro- 1 = XU for x E Fn , 
and in particular for x E kn • Let K be the group of units in R, and write 
K m = 1 + pm (m ~ 1); K m is normal in K (and in D X ), and K is normal 
in DX. In fact, D X = K x (ro) (semidirect product), and K/ Kl ~ k: ' 

. ·1· 0 K J /KJ+ ~ kn via the map. 1 + oro J 1-+ o. We sometimes write K = K. 
We begin with a character X trivial on K m+1 but not on K m for some m. 

(The analysis is easy if X is trivial on K.) We may also assume that X does 
not extend as a character to all of DX • Then X can be described by the formula 

X(1 + I'ro m ) = 'II 0 TrD/F(oro -m. I'ro m) V)' E kn 

for some 0 E k: ; here 'II is a character of F nontrivial on the ring of in-
tegers RF c F but trivial on the prime ideal PF • (Then X also defines a 
character on R F / P F = kn ' which we also denote by'll, so that X (1 + I'ro m) = 
'II 0 Trkn/k(o),u- m

).) From this, we can determine fairly straightforwardly the 
elements WE D X such that X(wxw- 1) = X(x) for all x E K m • (We say that 
such an element w commutes with X.) Let Hm be the group of commuting 
w. 

We next extend X to K m- 1 nHm (this group is K m- 1 unless m ~ 2), again 
compute the algebra of commuting elements, and continue inductively. This 
inductive computation is possible because of two lemmas. One, Lemma 2.2, 
simplifies the problem of finding the elements commuting with X. It says that 
if Wo E P commutes with X, then so does 1 + Wo E Kl . The second, Lemma 
3.8, provides us with a "standard" extension of X. It says, for instance, that if 
X is defined on Ki+1 , and if both Ki and a certain sub-division algebra Do 
commute with X, then X has an extension Xo to Ki such that Do commutes 
with Xo. Any other extension of X differs from Xo by a character trivial on 
K i +1 and hence is easily analyzable. 

It may be helpful to say something about the connection between the ap-
proach used here and that used in the "tame" case (where p f n). The two 
methods are surprisingly similar. In each, there are levels Ki such that the 
division algebra DU) of elements commuting with XIKi is smaller (in some 
sense) than that commuting with XIKi+1 • (The words "in some sense" are used 
because the group of elements commuting with XIKi is not generally a division 
algebra; however, it contains the nonzero elements of a largest division algebra 
D(j).) These j are related to the "jump points" described in Koch [13]. In 
the tamely ramified case, the corresponding DU) were nested, and one could 
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relate X to a character of some EX , where E is a field extension of F; the 
j corresponded to the conductors in the Howe factorization of X (see [12] or 
[17]), and there were intermediate fields associated to these j as well. In the 
general case, the DU) are not nested, there is no Howe factorization, and the 
"intermediate fields" are not well defined. What is defined is their ramification 
index and residue class degree. We say a bit more about this in §6. 

We use the notation of this section throughout the paper, except that we 
do not use Hm for the group of elements commuting with XIKm' We write 
XW(x) = X(wxw- I) , but also X-I(x) = (X(X))-I. This should not cause 
confusion. Lower case Greek letters near the beginning of the alphabet are used 
for elements of kn' and 11 is an element of P. The unramified extension of 
F of degree d and contained in Fn is Fd , and kd is the extension of k with 
[kd: k] = d. 

The bulk of the analysis of X is done in §3; §2 contains two useful lemmas 
on commutators. In §4, we construct the irreducible representations of D X , 

and in §5 we show that these exhaust (Dx) ~ and compute their degrees. As 
noted above, §6 contains a brief comparison of the general case with the tamely 
ramified case (when p f n). The final section is devoted to an example. 

The recent work that led to this paper was prompted by a question of Allen 
Moy about the representations of D; (Q2)' I am grateful to him for pushing 
me to find the answer and for many valuable suggestions about the form and 
content of this paper. The referee also contributed material improvements in 
exposition. I am also indebted to Philip Kutzko and David Manderscheid for 
useful conversations, in which, inter alia, they explained their approach to the 
problem of supercuspidal representations for GLn • 

One final comment. In [14], Helmut Koch referred to a remark made in 
a paper by Roger Howe and me about "the extremely pleasant geometry of 
the conjugacy classes in tamely ramified division algebras," and added, "Mir 
scheint, das man das gleiche auch von dem allgemeinen Fall sagen kann." At 
the time, I did not see the geometry (or algebra) of D: as "extremely pleasant" 
in the general case. Now I realize that his remark was not so unreasonable after 
all. 

2 

We present here two lemmas that will be important in the proof. The first is 
probably well known; the second may have independent interest. 

(2.1) Lemma. Let x E Kmn(D x ,Dx), m ~ 1. Then modulo K,+I (r ~ m), 
x = (um , vm)(um+1 ,vm+I)··· (u" v,), where Vj E K j and each u j is either w 
or a root of unity in Fnx . 

Proof. Let x == 1 + ),w m modpm+l. We show that x == (u m , v m) modpm+1 
for appropriate um ' vm as above. The lemma then follows by induction. 
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If n f m , let a be any root of unity generating Fn over F . Then 

( P m) um -I m a, 1 + w == 1 + (ap(a ) - P)w modpm+l. 

um I um But ap(a )- - P = 0 =? P = 0, since a -::f. a . Hence for an appropriate 
p, we may make aP(aUm)-1 - P = )" as required. 

If nlm, let u = w . Then 

(w , 1 + pw m) == 1 + (pu _ P)w m modpm+l, 

so that we can get (u, v) == x if Trkn /k )' = o. However, the character on K m 

given by 

150 E k, 'II as in § 1 , 

extends to DX and is "1-1 (for appropriate 150 ) if Trkn/k 15"1- o. Thus, if x is 
a commutator (so that X(x) = 1 ), then Trkn /k )' = o. 0 

Throughout the construction of the representations, we will need to know the 
group of elements of D X commuting with a character on a normal subgroup. 
It will simplify matters greatly to know that if an element t7 E P commutes 
with a character, so does 1 + t7 (E KI). The following lemma gives what is 
needed. 

(2.2) Lemma. Let A be the ring consisting of all formal power series over Z 
in two noncom muting variables a and b, with a -I ,b -I adjoined. Call an 
element x E A integral if the only words in x with nonzero entries are words in 
a and b (i.e., no negative exponents appear). In the integral elements, let Am 
be the ideal of words of total exponent ~ m (i.e, the total number of a 's and 
b 's appearing in each word is ~ m). Let 

x = (1 +a)(1 +b)(1 +a)-I(1 +b)-I 

= (1 + a)(1 + b)(1 - a + a2 - ···)(1 - b + b2 - ... ), 

and let m be any positive integer. Then there exist an integer N and elements 
cj,dj E A (1 ~ j ~ N) such that 

(1) h . ,I' b -I b- I eac cj lS one oJ a, , a, ; 
(2) dj - 1 E Al ; 

(3) cjd/11 is integral; 
(4) the product of commutators I1~=1 (cj , d) differs from x by an element 

of Am· 

Proof. Define the weight of a word in the free semigroup on a and b to be 
m if the total number of a's and b 's is m. Assume inductively that we have 
elements cj ,dj satisfying (1)-(3) with j ~ No such that if Yo = I1~~I(Cj ,d), 
then y~1 x is a sum 1 + Lj kjwj' where kj E Z and L kjwj E Am . It suffices 
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to show that we can find more commutators (cj , d), No < j ::; NI ' satisfying 
(1)-(3), and such that if YI = n~No+I(Cj ,dj ), then y~ly~lx E Am+l . 

Note first that if W = 1; ... 1m (where each 1; is an a or a b), then 

(1;-1 ,1 + w) = 1 + U;··· Im1; - 1; ... 1m) + terms in Am+1 ; 
(1m, 1 + w) = 1 + (Im1; .. ·Im- I - 1; ... 1m) + terms in Am+1 . 

Thus we can use commutators (cj , d), No + 1 ::; j ::; NI ' to replace any word 
by a cyclic permutation of that word. If this procedure eliminates all words of 
length m, we are done. If not, we produce a contradiction. We may assume 
that the sum of the terms of weight m is 1 = E~=I kjwj' where each Wj is 
first in alphabetical order among its cyclic permutations and each k j E Z . 

Let Q be a large prime (the rest of the proof will show how large), and 
let F = F Q«X)) , the formal power series field with coefficients in F Q. Let 
D be the central division algebra of degree m2 over F , with the Frobenius as 
generator. Then D is generated by F Qm and a prime element w with w m = X 
and w yw -I = yQ, \:Iy E F Qm. We map A onto D by a 1-+ aw, b 1-+ W , 

where a is a primitive (Qm - 1 )th root of unity. Then y ~ I Y ~ I X goes to some 
element x' = 1 + Ymwm + ... ,with 

where 
lj = I)d- I : the ith letter of Wj is an a} . 

Since x' is a commutator, it is standard (see the proof of Lemma 2.1) that 
TrFam/Fa Ym = o. Thus if we let Pj = alj (and choose Q large enough that the 
Pj are distinct and nonconjugate as one varies over different words of length 
m), 

r 

L: kj TrFam/Fa Pj = 0 . 
j=1 

If we instead map A to D by a 1-+ aSw, b 1-+ W , the same argument gives 
r 

'" k . TrF /F P~ = 0 . ~ J am a J 
j=1 

Let 61 , ••• ,6/ (t ::; mr) be the images of the Pj under the Galois group. Then 
m L:hi6: = 0, 1 < s < t (h. = k. if 6. is a conJ·ugate of p.) . 

- - I J I J 
j=1 

Hence the Vandermonde determinant involving the 6j is 0, since the columns 
are linearly dependent (provided that Q > all hi). On the other hand, this 
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determinant is (up to sign) 

IT 6j IT (6j - 6j ) ¥= 0, 
I~j~t l$i<j~t 

since the Pj are nonconjugate. This is the desired contradiction. 0 

(2.3) Remarks. (a) In Lemma 2.2, we may take u = a or a-I whenever the 
word v-I contains at most one b. This is because the u 's are used to permute 
v-I cyclically, and we can get any cyclic permutation of ami bam2 by simply 
shifting a's. 

(b) We typically use Lemma 2.2 in the following way: let X be a character on 
a subgroup H of K, and let s > O. Assume that H contains all the elements 
to which we apply X in what follows. Suppose that a E P, b E pS satisfy 
Xa = X and llK2snH = XI K2snH' Then X((1 + a, 1 + b)) = 1. 

Proof. By Lemma 2.2 and the above remark, X (1 + a , 1 + b) is a product of 
commutators (a, a') and (b, b'), a' E Hand b' E K2s n H, and therefore 
x(a,c) = X(b,d) = 1. 0 

We shall abbreviate this argument by saying, "By Lemma 2.2 and Remark 
2.3(b), .... " 

3 

We now begin the construction of representations of D X • We shall construct 
all representations with conductor m + 1 ; that is, we look at representations 
trivial on Km+1 but not on Km. Since we assume inductively that we know all 
representations with smaller conductor (as well as those for all division algebras 
of degree < n), we should begin with the lowest order cases. If 7C is trivial on 
K , then it is defined on D X / K ~ Z. We then say that 7C has ramification index 
1 and residue class degree 1. If 7C is trivial on KI , then it is a representation 
of D X /KI ~ k: x Z (semidirect product), and standard theory determines 
7C. There is a character X on k: such that 7C ~ Indf: H x' , where H is the 
stability group of X in Z and X' is an extension of x' to H. Each extension 
gives a different 7C , and X I ,X2 yield the same set of representations 7C iff X I ,X2 
are conjugate under Z. If H = Z, then we say that 7C has ramification index 1 
and residue class degree 1. If [Z: H] = f > 1 , we say that 7C has ramification 
index 1 and residue class degree f, and we associate the triple (0, 1 ,f) to 7C. 

We now look at the general case. We begin with a character X defined on 
K m , m ~ 1 , and trivial on K m+ I . Suppose first that X extends to a character 
X' of DX. Then any irreducible representation 7C whose restriction in K m 

contains X is of the form 7C = 7C I ® x' , where 7C I has smaller conductor than 
7C. Thus we may regard this case as done. 
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We are now at the main case to be considered. We may write 

X(l + )'wm) = VI 0 TrD/F(alw -m)'wm) 

= VI 0 Trkn/k(al- m
) 

571 

for some (unique) a l E kn • Furthermore, alw-m ~ F, or else X extends to 
X' as above. We say that X is in general position. Let m = Sl' s~ = [sl/2] + 1 , 
s~' = S I + 1 - s~. Then if s I = 2m - 1 is odd, we have s~ = s~' = m, while if 
s I = 2m is even, then s~ = m + 1 and s~' = m . 

We begin by fixing an extension of X to K S ; , which we also call X. We 
shall analyze this extension level by level and produce a conjugate with certain 
desirable properties. We note first that the conjugates under D X of XIKm are 
of the form X~(1 + )'wm) = VI 0 TrD/F(a~w-m)'wm), where a~w-m and 
a I W -m have the same minimal equation. We fix a representative of each 
conjugacy class and consider only these aW -m in what follows. 

(3.1) Theorem. There exist a conjugate of X (on KS;), a sequence l1(s.) , 
l1(sl-I)' ••. ,11(s;) of elements, a set Sl = m > S2 > ... > sri of distinguished 
indices, and a set of pairs of integers (e j , J;), 1 :::; i :::; r l , with the following 
properties (in what follows, for an index j, i is the largest index with Sj ~ j, 
and similarly for j', i'; we suppose that X itself is the desired conjugate of X ): 

(1) The group of elements of DX commuting with X IKj is 

KSI-J+I(Ks2-J+I n DX) ... (Ks;-J+I n D~ )D~ 
I I-I (j) , 

where, for arbitrary indices j' and h, DU/) is the division algebra generated 
over F by l1U/) and kn/e;I' and Dh = D(Sh+I+ I) ' l1h = l1(sh+I+ I) , etc. 

(2) The center of DU) is an extension EU) of F with ramification index ej 

and maximal unramified extension FI;; DU) has index n/ejJ; over EU) (i.e., 
its dimension over EU) is (n/e jJ;)2) and it contains Fn/e;. 

-I (If; fi 
(3) 11(j) "Il1U) =)' or I' E kn/e; . 
(4) · t if pI; d n/e;1; t E F 11(j) IS a genera or 0 ,an 11U) genera es U) over 1;. 
(5) ej_Ilej , J;-dJ;, and ejJ;ln; ej_IJ;_1 < ejJ; and elf;. > 1. 
(6) e j = n/(n/ej_1 ,s), where eo = 1 and ( , ) is the greatest common 

divisor. 
(7) (i) Suppose that jl < j and J;UI . Let Vlo be any character of kn/e;_1 

trivial on kn/e;. Then there exists 0 E kn/e;_1 such that if we set 

(3.2) w = 1 + "~s;-j')/I;_I 
",-I ' 

# -I -I X (y) = X(wyw y ), 

then X# is trivial on pJI+I and l(1 + ),l1{j)) = Vlo()') , V)' E kn/e;_I. (By 
convention, 110 = w .) 
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(ii) If jl < j and 1; f jl but 1;- l ljl' then for any character "'0 of kn/e;_1 
there exists 6 E kn/e;_1 such that if w ,X# are defined as in (3.2), then X# is 
.. I piI+1 d #(1 iI ) () ow k t"vla on an X + I'''(j) = "'0 I' , vI' E n/eh' 
(8) D"><. n K' C (D"><. n K')(D x n K'+s;-i) ... (Dx n K'+s2-i)K'+sI-i and 

(j) - (j+I) I-I I 

D . n p' C (D. n P') + (D. n p'+s;-i) + ... + p'+sl-i (j) - (j+I) I-I . 

(Note. For this theorem, we take S'I+I = S' - 1.) 
(9) "(j) == "; modp.fi+1 if i is the largest index with j ~ s;; if j = s;, "(j) is 

congruent modp.fi+1 to an element of D;. 

We will add a tenth property; see (3.9) infra. 

(3.3) Notes. (1) We will associate a sequence of triples with X; the sequence 
will begin with (Sl ,el ,~), ... ,(S'I ,e'l ,1,1)' Further details will be given in 
§4. 

(2) It may help the reader to have the following explanation of the properties 
in Theorem 3.1. In producing an irreducible from X, Clifford-Mackey theory 
shows that we need to know {x: XX = X} ; this information is given by property 
(1). Properties (2)-(4) describe the structure of D(j)' They show that it is 
generated over its center E(j) by kn/e; and "(j) exactly as Dn is generated over 
F by kn and w. Properties (5) and (6) characterize the sequences {(s;, e;, 1;)} 
associated with irreducible representations of D X • Property (7) describes the 
freedom we have in conjugating X into a more tractable form. Property (8) 
shows that the terms in the product for (1) fit well with one another. It implies, 
forinstance, that K SI - i+1 ••• (KSh-i+lnD:_I) is normal in the group of elements 
commuting with XIKj' Finally, (9) says, e.g., that if j ::j; s;, then D(j) n p' and 
D(j+I) n p' give the same residue classes modp,+1 . 

(3) On K S;, X is given by X(1 + y) = 'II 0 TrD/K(xy) for some x E 

p-SI (mod P I-s; ) , and the theorem could be proved by analyzing the elements 
that commute with x (or a suitable conjugate of x) modulo an appropriate 
power of P. Such a proof, however, would not apply to the extensions of The-
orem 3.1 that we will need in §4. We give a proof that will apply inductively to 
these extensions. 

The proof is long; we divide it into parts for future reference. 

(3.4) We begin be verifying everything for j = m = Sl' By hypothesis, 
0IW-m rt F. Let F[oIW- m] = E(sil have ramification index el and residue 
class degree ~ over F. Then el~ > 1, and e l (n, m) = n (since e l = 
n/(n,m) is the smallest positive exponent such that (olw-m)el generates an 
ideal p' with n dividing r). Let D(Sil be the division algebra of elements 
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commuting with E(sll' We now prove property (1). Since the commutator sub-
group (KI, Km) ~ K m+1 ~ Ker X, KI commutes with X. If w E D(~ll ' then 
for y = 1 + Yo' we have 

W -I -m-I 
X (y) = X(wyw ) = VI 0 TrD/F(alw • wYow ) 

-I -m 
= VI 0 TrD/F(w . alw . wYo) 

= 'II 0 TrD/F(alw -myo ) = X(y) , 

since [alw-m ,w] = O. Thus all elements in KID~ll commute with X. 

Conversely, suppose that XW = X, with w = aw ho (1 + alw + ... ). Since 
1 +alw +a2w 2 + ... = WI satisfies XW1 = X, it suffices to consider w = aw h • 

Writing y as above, we have 
-m m -m h m h -I 

VloTrD/F(alw yw )=VloTrD/F(alw ·aw ·yw ·(aw) ), 

or 
-m -m h-m I 

'II 0 Trk./k(a l yU ) = 'II 0 Trk./k(alau yU a-), 

for all y E kn • Equivalently, 

um- h um um- h u-h uh u-m 
Hence a a l = a l a , or aa = aa , and this implies that 

h -m [aw ,alw ] = o. 
Therefore aw h E D~ll . 

(3.5) Since (alw-mtl = a'w-rn for some r, we see that Ffi is the maximal 
unramified extension of E(Sll' Let pw n/el be a prime element in E(sll' with 
P E kn • Then pw n/el has an (n/el.t;)th root f/(sll in D, since 

[Es1 «pw n/el tfi/n): F] = n. 

It is clear that f/(sll generates pfl . Since f/(sll is of the form p' w fi , (3) clearly 
holds. We have also verified (4)-(6), and (8) and (9) are vacuous. D(sll contains 
f/(sll and kn/el , and these elements generate an algebra of dimension n2 /e~l 
over E(Sll' Therefore they generate E(sll' and (3) holds. Thus we need check 
only (7). 

(3.6) Let jo satisfy s; :5 jo < SI; set w = l+aw SI - jo • Then for y = l+yw jo , 

we have 
-I -I uSI-io uio s 

X(wyw y ) = x(1 + (ay - ya )w I) 

(3.7) 
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while wyw-Iy-I E KSI +I for y E Kio+l. Hence X(wyw-Iy-I) is trivial on 
Kio+l. 

Suppose first that Ir f jo' Then the above character is never trivial for 
J i' 0; if it were, then we would have to have 

aJo-SI aJo aJo aSI a-SI aSI-Jo o = J 0 1 - J 0 1 ' J 0 1 = 0 1 J, 
[oro-SI ,Jro SI - io ] = 0, 

and this is impossible because D(sd does not contain a generator of pSl-io . 
Hence we obtain every character of kn by varying J, and this proves (7)(ii). If 
Ir lio ' the same calculation shows that the above character is trivial whenever 
w = 1 + J' ,,((SI)-io)/ fi, J' E k / . (These are the elements commuting with 

SI n el 

0lro-SI .) Thus we obtain Card(kn/kn/el ) distinct X. On the other hand, if 
1 io/fi'h k h (.. 1 ~ (sl-io)/fi ~ k y = + YO"(sd ,WIt Yo E n/el' t en wntmg w = + uO"(sd ' Uo En' 

d -m si/fi k b -m d -si/fi • E ) an 0lro = 00"(sd ; 00 E fi ecause 0lro an "(sd are m (sd: 

aSI-Jo a-Jo = If! 0 Trkn/k Jooo(Yo - Yo ), 

since Irlio and Irlsl' Furthermore, (n/el)ls I , so that 
aSI-Jo a-Jo aSI a-Jo 

Trkn/kn/el Jooo(Yo - Yo ) = Jooo Trkn/kn/el (Yo - "I) = 0 . 

Hence X(wyw-Iy-I) = 1 for all y as above. Since there are Card(kn/kn/e) 
characters of kn fixing kn/el ' we see that we can obtain exactly these characters 
by varying J. This proves (7)(i). 

In the inductive step, we begin with xIKJ+I and consider xIKJ' It will be 
useful to compare our character xlKJ with a "best possible" extension of XIKJ+I 
to K i . The next lemma describes this extension. 

(3.8) Lemma. Let X be a character on K i +l , s~ :::; j < Sl' and let e, f 
be integers with efln such that both k~e and an element " generating pi 

commute with X. Assume also that ,,0,,-1 = oa! for all a E kn/e . Then X has 
an extension Xo to Ki such that kn/e and" commute with XO' 

Proof. We consider two cases separately. 
(a) Assume that (n/e) f j. There are Ikln extensions of X to K i , since 
. . I . I 

[KJ: K J+ ] = Ikln and K J /KsI + is Abelian. These extensions form an affine 
space V, so that if XI ,X2' X3 are any three extensions, then XIX2X;1 is also 
an extension. Furthermore, at most one extension Xo is fixed by k~e' For 
if Xo,X~ are both k:/e-fixed, then XO(X~)-I = X~ is a nontrivial character 
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on K j , trivial on K j +1 and fixed by k~e. We have 

~ j u- j 

X (l+yw )=VloTrk./k(c5y ), VYEkn, 

for some c5 E kn/e. Since P(1 + ywj)P-1 = 1 + YP(P-I(j w j , we get 

u- j u-j -I u- j 
VI o Trk./k(c5y )=VloTrk./k(c5P P I' ), VYEkn and VPEkn/e · 

So c5p = c5puj , Vp E kn/e, and c5 = 0 because j is not a multiple of n/e. 
Consider the k~e-orbits in V. Since Ikln is a power of p, while Ik~el is 

one less than a power of p, it is clear that the greatest common divisor of the 
cardinalities of orbits is 1. Hence we can find orbits &'1' ... ,&',. and integers 
hi' ... ,h, with E;=I hil~1 = 1 . Let 

Xo = IT IT (X')h; . 
i=ll.'Ef!; 

Then Xo extends X and is obviously k~e -stable. Since '1 normalizes kn/e , 

xci(x) = Xo('1 x '1- 1) is also k~e -stable. From what we proved above, xci = Xo· 
Therefore Xo is the required extension. 

(b) Suppose that (n/e)lj. Then c5(1 + Y'1 j /f )c5-1 = 1 + Y'1j /f for all I' E kn 
and all c5 E k:/e • Thus every extension of X to K j is fixed by k:/e • Let XI 
be any extension of X. Then every extension is of the form X, = XI VI" where 

j/f 
VI,(1 + 1''1 ) = VI 0 Trk./k('y) , VI' E kn' 

for some' E kn . Write '1 = pwf + ... and let y = 1 + Y'1 j /f . A calculation 
gives 

-I -I r ul ) VI,('1Y'1 )VI,(y) =VloTrk./k'o(Y -I' 
-I 

= VI 0 Trk./k 1'(' _ ,u ). 
This shows first that VI,('1Y'1- I ) = VI,(y) if I' E kf and then that Vlt = VI, iff 'E kf . Hence as , runs through kn' the characters Vlt(VI,)-1 run through all 
characters of K j trivial on K j+1 and on the elements 1 + Y'1 j /f , I' E kf . 

Now consider X~(X)XI(X)-I. For x E K j+l , this is 1 by hypothesis. If 
x = 1 + Y'1 j /f with I' E kf , then [x,'11 = 0, and X~(X)XI(X)-I = 1. So 
X~(XI)-I = (Vlt(VI,)-I)-1 for some" and XI VI, is then '1-stable. 0 

We make the notational convention at each step of the inductive process that 
X is the given representation on K j and Xo is an extension of XIKj+1 to K j 
with the property of the lemma (with respect to '1U+I) and kn/e;). 
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(3.9) We now make our final inductive assumption, as promised earlier: 
(10) For j = Si (so that '1U+I) = '1i-I' etc.), 

h if T I h E [ S;//;_I]' fi l'..l if ;hn' "d were, I o.i = rk_/k_/ei_1 o.i' t en i-I o.i'1i-1 IS a e u 0 ramlJ'"atlOn m ex 
e,. and residue class dearee '",. over F' n . == t5n[;//;-1 modp/;+I where t5 

0' Ji '"I(j_I) "'1-1 ' 
t "th E [ S;//;_I] commu es WI i-I o.i'1i_1 " 

For i = 1 , we have eo = fa = 1 and we take '10 = w , Fo = F . It is easy to 
check that (10) holds in this case. 

(3.10) It may be useful to see one early step in the induction worked out before 
we go to the general step. Assume that for j + 1 :5 h :5 Sl ' we have '1(h) = '1(stl 
and D(h) = D(sl)' We assume that (1)-(10) hold for h ;::: j + 1 (so that we are 
not yet at S2)' and examine what occurs at level j . Let Xo be the extension of 
XIKj+1 with the properties of Lemma 3.8. If ~ f j , then X is conjugate to Xo 
by an element fixing XIKj+I' from (7)(ii). Thus we may assume that X = Xo' 
Let '1U) = '1(stl and D U ) = D(Stl· Then S2 < j. Properties (2)-( 10) are now 
all obvious for j; (1) requires a calculation, which is omitted because a similar 
calculation will occur at the end of case (a) below. 

So assume that ~U, j = jo~' Then X- = X· X~I is a character trivial on 
K i +1 , and on Ki there is a unique a.; E kn such that 

- ( io) ( I - io io) X 1 + "I'1U+I) = '" 0 TrD/ F 0.2'1U+I) . "I'1U+ I ) 
I u- j 

= '" 0 Trk_/k (0.2"1 ) 

for all "I E kn • Let 0.2 = Trk /k (a.;). There are now two cases to consider. 
- -/el 

(a) Assume that 0.2'1(j~ol) E Eu+l ) (= E(stl, by assumption). Note that since 
'1 n/etfl is prime in EU+I ) , we have (n/el)Uo' Let p be a fixed element of kn 
such that Trk /k P = I (if (el ,p) = 1, P can be in the prime field). Then 

- _/el 

Trk /k 0.2P = 0.2 = Trk /k a.;. In view of (7)(i), we may assume that by 
- -/el - -/el 

conjugation that 0.2P = a.;. In particular, we may assume a.; = 0 if 0.2 = O. 
Also, 0.2 E k n n E u+l ) = kJI because 0.2'1(j~1) and '1(j~I) are in E u+I ). 

We first define '1(j) to be '1U+I)(1 + t5ti:7t) , where t = SI - j and t5 is to 
be determined. We want X"(j) = X on Ki. On Ki+1 this holds by property 
(1). On K i , we have xriU) = X~I+6wt) , since xriU+I) = Xo' while (X-)"U) = 

(X-)"U+I) because conjugation by 1 + t5w t is trivial modKi +l . (This follows 
from Lemma 2.2 and Remark 2.3(b).) Hence 

X"U) = x61+6wt ) (X -)"U+I) . 
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But (X-)'1U+I) (X-)-I is trivial on the elements 1 + Y1I(i+l) , Y E kn/e, ' since 

(X-)'1U+I)(X-)-1(1 + Y1I(Y+I») = X-(1 + (yUj - Y)1I(Y+I») 
u j u- j 

= 'IIoTrk /k a 2(Y -y) ./el 
uj u- j 

= 'II ° Trk /k((a2y) - a2y) = 1 ./el 

(recall that a2 E kf ). From (7)(i), we can choose ~ so that (X61+Jro t»)-1 Xo = 
(X-)'1U+I)(X-)-1 , and this is the desired ~ . 

Because t is a multiple of njel , 1 + ~'II7' commutes with kn/e, • Thus (3) 

follows by the inductive hypothesis. Clearly 1I~jtfi is central in DU)' Since 
[Ffi[1I~he'fi]: F] ~ eJI and [DU): F] = n2jel f;., we must have [F[1I~helfi]: F] 

= elf;.. Hence F[1I0t fi ] = EU). The rest of (2) is now easy, and we have 
also checked (4); (5), (6), (7), and (10) are true because the claim is exactly the 
same as for j + 1 . It is also easy to check (8) and (9). 

That leaves property (1). DD) commutes with X by Lemma 2.2, and K SI - j+1 

commutes with X because (KSt - j+1 ,Kj ) ~ K st+1 . Conversely, any element w 
commuting with X commutes with XIKj+1 • Therefore 

~ h ,-I St-j ~ St-j+l ) 
W = Uo1lu+l)(1 +~1 1Iu+I) + ... +~'-I 1IU+I) +~St-j'1I7 +USt _j+I '1I7 +"', 
wheref;. r = SI - j, ~l E kfi if I ::; r + 1 , and ~l E kn for I ~ r. (Note the 
jump in indices between r - 1 and SI - j .) Because of our expression for 1IU)' 
we can replace each 1IU+l) by 1IU) at the cost of changing the ~l with I ~ r. 
Similarly, we can replace 'lI7 St - j with 1I~j) by again changing the ~l with I ~ r. 
Thus we may write 

~ h (1 ~ ~,~ sl-j+1 ~ St-j+l) w=uo1l(j) +ul1I(j)+"'+u,1IU)+ust_j+I'1I7 +usl _j+2 '1I7 ... , 

where the ~i are in kfi for i < r and are in kn thereafter. Dividing by an 
element known to commute with X, we consider w = 1 + ~,1I~j)' We need 
~,E kn/et • 

Suppose that ~,1I~j) = ~'II7sl-j + .... For x = 1 + Y'II7 j , we have 

W -I u'l-j uj u-' 
X (x)X(x) = 'II ° Trk./k a l (~Y - Y~ ) 

uj-'t uj uj U'I 
= 'II ° Trk./k y(~ a l - ~ a l ). 

Since XW(x)X(X)-1 = 1 by assumption, we must have 

or 
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or 
5: St-j -s [uW ,O:IW ]=0. 

F (9) -St - -stilt dpl-St h d -Stilt I . rom ,O:IW = 0:0'1(J) mo ,were 0:0 an '1(J) are centra In 

D(J). Then [dr'1~j) ,000'1u;t/f] E pl-j, from the above calculation. But 

[ 5: r -stilt] 5: [ r -stilt] [5: -stilt] r 
ur'1(j) ,000'1(j) = Ur '1(J)' O:o'1(j) + Ur ' O:o'1(j) '1(J) 

[ 5: -stilt] r 
= U r ' 0:0'1(J) '1(j) , 

and this last can be in pl-j only if dr E knlet . This proves property (1). 
It will also be important to know that our choices of 0:2 and 0:; have fixed a 

representative of X in its orbit under conjugation by D X • Suppose that XX = 
X' = XoX* ,where X*(1+y) = 'IIoTrDIF(p~'1U~ol)Y). Let P2 = Trknlk./et p~. Since 
XX = X on K j+l , property (1) gives an expression for x. Taking conjugacy 
classes mod the subgroup of elements fixing X, we see that we may assume that 
x = 1 + dw St - j . But the computation performed when computing '1(J) shows 
that for this x, XX(1 + y) = X(1 + y) when y = I''1{Y+I) , I' E knlel . Therefore 
X~(x')-I(1 + y) = 1 for these y. Since 

~ I -I (I-j 

X (X) (I+Y)='IIoTrknlkn/el(I' (0:2-P2)) 

if I' E knlet ' 0:2 = P2 • By our choice of 0:;, X = / . 

(b) Assume that 0:2'1{Y+I) ¢. E(J+I). Then E(J+I)[0:2'1U~I}] is a field of rami-
fication index e2 and residue class degree fz over F, where e2fz > elf; . We 
then let S2 = j . Note that (10) and (5) are now satisfied. It is also easy to check 
(6). Let fz = /zf; ; set SI - S2 = f;r. Note that '1(J+I) = '11 • Now suppose that 
w commutes with X. Then w commutes with xlKj+t . From property (1). 

5: h ( 1 5: 5: r 5: St - j+ I ) W = u0 '11 + u l '1 + ... + ur'1l + USt_j+lw + ... = w 1w 2 ' 

say. (Note the jump in indices between rand SI - j + 1 .) We show that /zlh. 
Let y = 1 + I''1{o = I + YI ' with I' E knlet . Then 

-I -I -I -I ~ -I -I X(wyw y ) = Xo(wyw y )X (wyw y ). 

By an application of Lemma 2.2 and Remark 2.3(b), we get Xo(wyw-Iy-I) = 
1 . Hence we need only consider X ~ . But 

X-(wyw -Iy -I) = 'II 0 TrDIF O:;'1;jO(Wly lw;1 - YI) 
I -I (ls2 (11t h (I- s2 

= 'II 0 Trknlk 0:2[do(do ) I' - 1'] 

(all terms but 0:; are in knlet ) 
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Since this must be 1 for all y E kn/ el ' the coefficient of y must be 0; that is, 

uS2-/lh u-/lh uS2-/lh u-S2 u/lh 
0:2 00 = 0:2°0 ' 0:2° = 0:2 °0 . 

Thus [oo'1~ ,0:2'1~jO] = O. Since Ffi ~ EU+,)[0:2'1~jo], therefore 00'1~ com-
mutes with F12 . Hence /;Ihf;., or .t;lh . This argument also implies that 
00 E kn/e2 when h = 0, since then we need [°0 , 0:2'1~jO] = O. 

Let P E kn satisfy Trk /k P = 1. As in (a), we may assume that o:~ = 0:2P . _ -/el 

We fix one element 0:2'1~jo in each conjugacy class under k~el ('1,) , and we may 
assume (conjugating by '1, if necessary) that 0:2 '1 ~ jo is the representative of its 
conjugacy class. This fixes o:~ and 0:2 • 

We now produce '1(j)' a generator of pfi , such that '1(j) commutes with X , 

'1U) normalizes kn/e2 , and '1(j) Y'1U)' = yuh for all y E kn/e2 . We let '1U) = 

o,'1hl +oow t ) , where t = s, -S2. We require that 0, E kn/ el . Then 1 +oow t 

t5 I; f:. 
commutes with (X-) I'll and 0,'1,2 commutes with Xo' just as in (a). Also, 
for y = 1 + Y'1{o, Y E kn/ el ' we have 

(x-)t5I '1{; (y) = 'II 0 Trk /k(0:2[(O,yUh (or2)-'t-S2 _l-S2]) 
n/el 

u-/2 uS2-h -, uS2-/2 uS2 = 'II 0 Trk /k(Y[O, (0, ) 0:2 - 0:2 ]). 
n/el 

. . . u-h uS2-h uS2 uS2-/2 . U-'2 uh 
ThiS will be 1 for all such Y If 0, 0:2 = 0:2 0, ' or If 0, 0:2 = 0:2 0" 
and this condition is met if we choose 0, so that [o,'1{l ,0:2'1~jO] = O. Since a 
prime element in EU+,)[0:2'1~jO] has an (n/e2/;)th root of the form 0, '1{l , this 
choice is possible. (This determines 0, only up to multiplication by an element 
of kfi' but the further choice of 0, is arbitrary.) For this choice of 0, ' (7)(i) 

f' 
guarantees a 00 such that (X-)t51'1 12 (X-)-' = (X~+t50wIX~')_' ,and for 0, ,00 so 
chosen, we have X'l(j) = X, just as in (a). The same argument as in (a) shows 
that '1(j) conjugates kn/e2 appropriately. We note that, by a similar argument, 
pgfi, g > 0, has a generator of the form 0; '1[1; (1 + o~ w t) in D2. This makes 
(8) clear, and (9) is also obvious. 

We have verified (3). Recall that D(j) is generated by kn/e2 and '1(j); set 
E(;) = Ffi['1~e2fi]. It is easy to see that EU) is central in DU) and that 
e(Eu/ F) ~ e2 and !(Eu/ F) ~ /;. Since [DU): F] = n2/e2/;, we must 
have [EU): F] = e2/;· But EU) ~ EU). Hence EU) = EU)' and (2) and (4) 
follow. For property (1), DD) clearly commutes with X , and Lemma 2.2 shows 
that D; n K' and K SI - S2+' commute with X. For the converse, the inductive 
hypothesis and our calculation at the beginning of (b) (together with the same 
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sort of argument used for (1) of (a)) show that if w commutes with X, then 
w = t5011~)(1+t51 + .. . +15/11: +t5sl_S2+IW,+I+ ... ), with 150 E kn/ e2 , and 15, E kn/el 
for I < t. We need only prove that 15, E kn/el ' and this is done just as in (a). 

Observe also that if x' is another extension of xIKJ+1 to Ki constructed as 
above, then X and x' are nonconjugate. Write x' = XoX# , where X#(l + y) = 

'II 0 TrD/K(p~11~-JO y), P~ E kn • For y = Y11io with Y E kn/el , X#(l + y) = 
a- Jo I x I . 

'II 0 Trk /k(P2Y ), P2 = Trk /k (P2)· Suppose that X = X . Smce X 
njel n n/el 

and X' agree on K i + l , we can use (1) to get an expression for x. Ignoring 
terms known to commute with X , we may assume that x = 15 11~ (1 + 15; W S2 -SI ) , 

15 E kn/el . But a calculation done in verifying (7) shows that conjugation by 
1 + 15; W S2 -SI fixes X on elements y = 1 + Y11{o, Y E kn/ el . Since 15 11~ fixes 
Xo' we must have (X ~ (0 (y) = X' (y) for these elements, where Xo = 15 11~. A 
calculation shows that X~I(0:211~io)xo = P211~io. Since we chose one element 
from each conjugacy class, 0:2 = P2 • From our other choices, 0:; = P~ and 

I X=X· 
We still need (7). Write jl = hoi;, and consider x(woyw~ly-I), where 

Wo = 1 + 151 11{o-ho and y = 1 + Y11~o (151 , Y E kn/el ). Some computation gives 

(3.11) 

But 
ail ahs2 ([52 ait (7-52 aS2-h ait .. 

0:2 151 - 0:2 151 = (0:2151 - 0:2 151) :/: 0 for t5l :/: 0 If 1; f 11 • 

Otherwise, 0:211~ io and t5l11io-ho commute, and we have seen that this is im-
possible because of the calculation at the beginning of (b). Hence we can make 
an arbitrary character on the elements y (as above) by choosing 151 appropri-
ately, and this proves (7)(ii). If i;ljl ' the above character (3.11) is trivial when 
[0: n-io 15 nio - ho ] - 0 or whenever 15 nio - ho = t5n(Jo-ho)!f{ modps2-il+1 with 

2'1\ 'I '1\ -, 1 '1\ - 'I(J) 
15 E kn/e2 . We then obtain only Card(kn/e)kn/e) distinct characters. But we 
also have 

-I -I (1) -51 (1) a-52 
X(woywo y ) = 'II 0 Trk /k 151 (Y0:2 - Y 0:2) . 

n/el 

If [Y11~o ,0011~io] = 0 for all Y E kn/el , this is always 1 on y. These are the 
y with Y11~o == y' 11~{f{ modpio+ 1 (y' E kn/e) , by (10). Hence the characters 
we can obtain by varying 151 are precisely the ones trivial on the elements 

I ho/f{ D Th" (7)(') Y 112 E (j)' IS IS 1 . 

(3.12) We now consider the general inductive step. We thus suppose that the 
hypotheses hold for j + 1 and that we have defined the sf' e" It for I ::; i (so 
that Si ~ j + 1). We now consider X and Xo on Ki. If 1; f j, then (7)(ii) 
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implies that we may assume after a conjugation that X = Xo. For this case, all 
the properties (2)-(10) are easy (most are vacuous), and (1) is straightforward 
(we will do a similar verification below). Thus we assume that !;U, and let 
. . I" W h -I - .. I K J+I d -(1 JO) J = JOJi· e ave X . Xo = X tnvla on an X + YrJU+I) = '11 0 

Tr(Ct~+lyuj), VI' E kn' for some element Ct~+1 E kn · Let Cti+1 = Trkn/kn/e; Ct~+1 . 
There are two cases, depending on whether Cti+1 rJ{i+l) E EU+I) or not. 

(3.13) (a) Assume first that Cti+1 rJ{i+l) E Eu+l ) . Then (nlei)U, so that rJ{i+l) 
E Eu+ l ) ; hence Cti+1 E k/; . Let P E kn satisfy Trkn/kn/e; P = 1. By (7)(i) and an 
inductive argument, after conjugation we may assume that Ct~+1 = PCti+1 . (The 
induction uses (9) to show that the elements 1 +Y/rJf!ft ,1'/ E kn/e/ ' are congruent 

d K J+I I 1 J/ft I • h k) I . I ·f mo to e ements + 1'/-1 rJ/_I- Wit 1'/-1 E n/e/_I. n partlcu ar, 1 

Ct J = 0, then we may assume that Ct~ = 0 and that Xo = X. We shall show 
below that with this convention, different CtJ give nonconjugate X. 

We first need rJ(j). We define 

rJ(j) = rJU+I)(1 + c5i _ 1 rJ;~n(1 + c5i_2rJ;:~)··· (1 + c5orJ~O), 
where rtfi = S/+I - j, rJo = W' , and the c5/ E kn/e/ are to be determined. We 
have, for I' E kn/e; , 

( "ij~,) -1)(1 + JO) T I (u-f; ) X X YrJU+I) = 'II 0 rkn/k Ct i+1 I' - I' 
u-f; 

= 'II o Trkn/e;/k Cti+l(y -I') 
u-f; 

= 'II 0 Trkn,e;/k Y(Cti+1 I' - Cti+l ) = 1, 

since Ct E k/;. Thus, conjugation by rJU+I) fixes X on K J+I and on elements 
(1 + YrJ{i+I») ' I' E kn/e;. From (7)(i) and induction, we can choose the c5[ so 
that rJ(j) commutes with X. (As above, we use (9) in the inductive step.) 

It is easy to check (as in (3.1O)(a)) that rJ(j) satisfies (3) and (8). Set rJ'/he;/; = 
rJ. Then rJ and F/; are central in DU)' and F/;[rJ] has ramification index over 
F that is ~ ei (since rJ generates pn/e;) and residue class degree ~!; Since 
[DU): F) = n2 lei!;' the center EU) of D(j) has degree e j!; over F. Thus 
F[rJ] = EU)' and (2) and (4) follow. Property (9) is also obvious. 

(3.14) Since (5)-(7) and (10) are essentially the same for j and j + 1, we 
need check only (1). It is straightforward (using Lemma 2.2) to verify that 
the elements of KS,-J+I(Ks2-J+I n D~) ... (Ks;-J+I n Dt_I)D~) commute with 

X. Conversely, suppose that XW = X for some w in DX. Then XW = X 
on K J+I . hence w E KS,-J(Ks2-J n DX) ... (KS;-J n D X )Dx Dividing 

, I I-I U+I)· 
by an element known to commute with X, we may assume (as in (3.10)(a)) 
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that W = 1 + o",~~~j)ffi-I + ... , 0 E kn/e;_I' (There are higher order terms of 
consequence. We deal with them later.) Our first task is to show that W is 
congruent (modKS;-j+l) to an element in DD). Let I' E kn/e;_1 ' and consider 
(Xw • X-I)(I + Y"'{~I)' Set ho = (s; - j)j /;-1' and write W = WI wo' with 
Wo = 1 +O"'~I . It is not hard to verify (using Lemma 2.2) that xW0(1 +Y"'{~I) = 
X(I + Y"'{~I) on these elements, since (wo,1 + yrd~l) E Ks;+1 and the Y"'{~1 
commute with xIKs;+I' Thus we are reduced to computing XWIX- I on these 
elements. Write X = XoX~ as in (3.12). Since X;I = Xo' we consider 

"" WI "" -1 jo qSj-j qi (1-5; 

(X) (X) (I+Y"';_I)=VloTrkn/e;_JkO:;(OY -yo) 

(See (10) for the definition of 0:;.) This is to be 1 for all I' E kn/e;_1 . Then 0 = 
£(I-S; £ (lS;-i (Ii ho -jo ho 

(U O:;_IUO:;_I) ,or [0"';_1 ,00;_I",;_d = O. From (1), 0"';_1 is congruent 
modps;-j+1 to an element of D;; (8) now implies that O"'~I is congruent 
modps;-j+1 to an element of DU)' This is what we need. 

Using (8), we may also write 
1 £ ho £ ho+ I £ hi -I £ hi 

W= +uho"'(j)+uho+I"'U) +"+uhl_I"';_1 +uhl "';_2+"" /;_2hl=S;_I-j, 

with the 01 E kn/e;_1 . Dividing by an element known to commute with X, we 
consider W = 1 +Ohl "'~~2 + ... , and an argument like the one above lets us show 
that 0h l "'~~2 E kn/e;_2 • Proceeding inductively, we get (1). 

To see that different 0:;+1 give nonconjugate X, let XI = XoX# , where 
# jo '(Ii k 

X (1 + Y"'U+I)) = VI 0 Trkn/k(Pj+IY ), VI' En' 

and 
O:j+1 ::J Pj+1 = Trkn/kn/e; (P;+I) . 

If X ,XI are conjugate by x, then x fixes XIKi+1 . Therefore, x is given by (1). 
Dividing by an element known to commute with X (again by (1)), we have 

x = 0"'~+1)(1 + 0;_1 "';~I)'" (1 + oowrl) . 

But we saw in constructing "'(j) that for these x, XX(y) = X(Y) for y = 

1 + Y"'{J) , Y E kn/e;. Therefore /(y) = X~(y) for these y. Since 0:;+1' P;+I 
determine X~ ,X# , respectively on these elements, we must have 0:;+1 = P;+I . 
Therefore 0:~+1 = P:+ I ' as claimed. 

(3.15) (b) Assume that 0:;+1 "'{J+I) rt Eu+I). Then Eu+I)[O:;+1 "'{J+I)] has rami-
fication index e;+1 and residue class degree /;+1 over F , where e;+I/;+1 > e;/; . 
This defines e;+I' /;+1 . Let "'; = "'U+I) , S;+I = j, s; - S;+I = /;r, D; = Du+l ) , 
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E; = Eu+I). Write /;+1 = .t:+I/;' Properties (10) and (5) are now clear, and 
(6) is easy. We next show that if w = t50'1:(1 +t5I'1; + ... ) = W1W2 commutes 
with X, then .t:+llh. We may assume that w commutes with XIKj+I' Let 
Y = 1 + Y'1fo = 1 + Y1 ,with Y E kn/e; . Then 

-I -I -I -I ~ -I -I X(wyw y ) = Xo(wyw y )X (wyw y ). 

However, a calculation using Lemma 2.2 (essentially the same as one in 3.1 O(b)) 
shows that Xo(wyw-1y-l) = 1. The point is that YI commutes with Xo' We 
also have, by a computation that is by now standard, 

~ -I -I 0'-';+1 -I O'/;h O";+I-fl h 

X (wyw Y ) = IjI 0 Trknle;fk Y[0!;+1 t50 (t50 ) - O!;+ll 

Since this is to be 1 for all Y E kn/ e;, we must have 0!;+It5r'2 = t500!~:: ' or 
[ - Jo ~ h 0 S· - Jo 1 F h 'd 1 d 0!1+1'1; ,uo'1; 1 = . mce EU+1) [O!;+I '1; ;2 fi as reSl ue c ass egree 
.t:+1 over E u+l ) , we must have .t:+llh. Similarly, we have t50 E kn/e;+, if h = 0 
(see 3.1 O(b)). 

Let P E kn satisfy Trkn/knle; P = 1. Then, as in (a), we may assume by 
using (7)(i) and (9) that O!~+I = O!;+IP, We fix one element O!;+I'1;Jo in each 
conjugacy class under kn/ e; ('1;), and we may assume (conjugating if necessary) 
that O!;+I is that element of the conjugacy class. These choices fix O!~+I and 
O!j+I' (That different O!j+1 give nonconjugate X is proved essentially as in (a); 
see the end of (3.14). We give some details below.) 

(3.16) We next construct '1(j)' We set 

~ f!+'(1 ~ ';-1)(1 ~ ';-2) (1 ~ '0) '1(j) = u j '1j + u;_1 '1;-1 + u;_2'1;_2 .. , + uo'1o ' 

where '10 = 1ZJ , 'Ii; = SI_I -S;+I ,and the t51 E kn/ e/ are to be determined. The 
construction is like that in (3.13). For Y E kn/ e; , 

(15;,/:+1 )-1 -I Jo 0'/;+1 0'-';+1 -I 0'-'; 
(X I X )(1 + Y'1; ) = IjI 0 Trknle;fk Y[O!;+I t5;(t5; ) - O!;+ll . 

If we choose t5; so that [t5j'1.t;~I, O!;+I '1-s;l = 0, this will be 1 for all such y. 
We can always choose such a t5;, since O!i+I'1;s; generates a field of residue 
class .t:+1 in D;. We next choose the t51 inductively, using (7)(i) and (9). Now 
(9) for j follows immediately. Because '11 acts as aft on kn/e/, it is easy to 
check that '11'/ commutes with k Ie. ; hence (3) holds. For (8), we can use n 1+1 

the same argument to show that pgfi+, has a generator in DU) of the form 
~ gfi+'(1 ~I ';) (1 ~ 'I) Th" I' '1 h 'f D X K' u;'1; + u;_1 '1;-1 '" + uo'1I' IS Imp les easl y t at 1 x E ; n , 

,= g/;+I ' then we can write x (modK'+s'-S!) as 

x = XgXg+I ' , ,xg+g1 ' i;g[ = s[ - s;, 
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h D x K,+lfHI +Sb+I-Sj It' t t were Xg+I = Xg+I,i'" xg+1,o' xg+1,b E b n . IS now no 00 

hard to see that to verify (8) we need to show that if Yb E Db n p'+sb+I-Sj , 
Y E D n pr+ /;+1 +Sc+l-Sj with b < c then 

c c ' , 

Since 

by (8) and the inductive hypothesis, we reduce the truth of the assertion with 
band c to the truth for band c - a, a > 1. An inductive argument now 
completes the proof of (8). 

It is clear that "(j) generates p/;+I and that "~hej+I/;+1 is central in D(j)' 
Le E- F[ n/ej+I/;+I] Th E- I I h 'fi" d > d t (j) ="(j) . en (j) c ear y as ramI catlOn In ex _ ei+1 an 
residue class degree ~ /;+1 over F. On the other hand, D(j) is known to be 
of degree ~ n2/e i+I /;+1 over F. Hence, its center, E(j), has degree ei+I/;+1 
over F. But E(j) ;2 EU)' Thus, E(j) = EU)' This proves (2) and (4). 

(3.17) That leaves only properties (1) and (7). For (1), the verification that 
elements in K S1 - i+1 (KS2 - i+1 n D;) ... D()) commute with X is straightforward, 
using Lemma 2.2. Conversely, if w commutes with X, then w certainly 
commutes with xIKJ+I' Hence w = 150 ,,7°(1 + al"i + ... ), 150 E kn/ej . We 
say in (3.15) that .r:+dho' Thus we may (possibly changing the ai ) rewrite 
w = "0)150(1 + 151"1 + ... ), hl.r:+1 = ho' Since "0) commutes with x, we may 
assume that hi = O. From (3.15) again, we must have 150 E kn/ ej+1 ~ DD) . 
Thus we may assume that 150 = 1. The rest of the proof proceeds as in (a); see 
(3.14). 

To see that the X with distinct Q~+I are nonconjugate, let x' be another 
extension. If XX = x' , then x fixes XIKJ+1 . Comparing (1) for j and j + 1, 
we see that we may assume that x = ai ,,7(1 + ai _ 1 ,,;~n'" (1 + ao"~O), 151 E 

kn/e/ and the 'I as in (3.16). On elements Y = 1 + '1,,{o with '1 E kn/ ej , a 
calculation using Lemma 2.2 shows that XX(y) = XXO(y) , where Xo = ai ,,7 . We 
have X = XoX- , from (3.12). Xo fixes Xo' and, for y as above, (X-)XO(y) = 

(P u-J) h ()-I( -io) P -io S' fi d If/oTrk.,e;lk i+I'1 ,were Xo Qi+I"i xo= i+I"i . Incewe xe 
Qi+I"{o in this conjugacy class, Qi+ 1 = Pi+1 . It follows that X = x' . 
(3.18) For (7), we may write jo=ho/;' Let wo= l+ai ,,{o-ho and Y= 1+'1,,7° 
(where ai' '1 E kn/e). The standard computation (using Lemma 2.2 and the fact 
that ai,,{o-ho computes with XIKJ+1 ) gives 

(3.19) 
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If /;+1 f jl ' then the second factor is nonzero for J i =f:. 0, since otherwise 
[Cti+I'C jo ,Ji I17°] = 0, and this violates what was proved in (3.15). Hence we 
can, by choosing Wo appropriately, conjugate to produce an arbitrary charac-
ter on the element y as above. This proves (7)(ii). If /;+1 iii ' then (3.19) 
is trivial whenever J I'I1'!o == JI1(h?)/f:+1 with J E k / ,and we obtain exactly 

I J n e;+1 

Card(kn/e/kn/e;+) distinct characters. But we can rewrite (3.19) as 
-I -I uh -S;+I uh U-S;+I 

X(woywo y ) = '" 0 Trkn/e;fk Ji (YCti+ 1 - Y Cti+ l ) , 

and this is always trivial for yn'!o == y' nholf:+1 mod pjo+1 (with y' E k ) 
"I "(;) n/e;+1 ' 

since then [YI17° ,Ct211;jO] == Omodpit-s;+I+I. Hence the characters we obtain 
by varying J1 are precisely these that are trivial on the elements 1 + y' 11~{f:+1 E 
DU) , and (7)(i) follows. 

And this completes the proof of Theorem 3.1. 0 

4 

Before continuing the construction, it may be helpful to pause and see where 
we are going. 

Let X be as in Theorem 3.1, and define s; = [s;l2] + 1, s;' = Si + 1 - s;, 
in analogy with s~, s~'. We would like to construct all the irreducible unitary 
representations of D X containing X. Mackey theory says that we do this by 
considering the group Ho of elements x with XX = X , constructing all irre-
ducibles p of Ho such that p contains X , and then inducing to D X • Theorem 
3.1 even tells us what Ho is. Unfortunately, it is not obvious how to construct 
the desired representations of Ho' There is one special case, however, where 

s" x things are not so bad. If S'I = 1, then Ho = K I DI . We can extend X to 
K S ; D~ (this is proved in Lemma 4.2), and the further extension to Ho is not 
hard. That gives us one representation of Ho containing X, and the rest are 
obtained by tensoring that one with representations of D~ trivial on D~ nKs; • 

Since the dimension of DI over its center is < n2 , we may assume inductively 
that we know these representations. 

In general, however, we need to continue the construction. Suppose that 
'I ~ 2. If we extend X to KS;(D~nKS;-I), the elements of D~nKs2-S; willin 
general not commute with X (just as elements of KI did not generally commute 
with xlKsl-1 ). This suggests that we follow the procedure of Theorem 3.1 and 
extend X to KS; (D~ n KS~). With luck, the group of elements commuting with 
X will be KS;I(Ks~1 nDx)(KS3-S~ nDx) ... (KSrl-I-SI nDx )Dx and we will 

1 2 'I-I 'I' 
have made progress. In particular, we will be in a position to complete the 
construction as above when 'I = 2. If 'I > 2, then we can repeat the last step, 
and so on. The problem is that the procedure of Theorem 3.1 may introduce 
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more triples (S;, e;, 1;) with i> r l . Thus, even after r l iterations we may have 
to continue further. Luckily, the procedure must be finite because n is finite. 

This discussion may help to motivate the next definition. We say that a 
pair (x', H) , where H is a subgroup of D X and x' is a character on H, is 
satisfactory if there are triples (s;, e;, 1;) and elements 11;, 1 ::; i ::; ro' such 
that 

(a) H = KS;(KS~ n D~) ... (Ks:o n D~_I)' where D; is the division algebra 
generated by 11; and kn/e;; 

x 's" s" x (b) the group of elements in D commuting with X is K 1 (K 2 n DI ) ... 
s" x X-'" (K '0 nDro_I)Dro = H (the numbers .Si'SI were defined above); 
(c) there are elements 11(j) as in Theorem 3.1, with 11; = 11(SHI+I) and 11ro = 

11(s:o) ' such that properties (1)-(10) of Theorem 3.1 (see also (3.9» hold. 

Note that H- normalizes H. 

(4.1) Proposition. The character X of Theorem 3.1 has a satisfactory extension. 

Proof. The proof will in fact show that X has "sufficiently many" satisfactory 
extensions, in a sense to be made precise as we continue. 

Let X, r l be as in Theorem 3.1. If r l = 1, then we observed above that 
(KS ; ,X) is already satisfactory. So we may assume that r l > 1. In that case, 

s' s' x s', consider the group HI = K I(K 2 nDI ). Clearly (HI ,HI) ~ K I, since 2s2 ~ 
S2 > s~ . Furthermore, X == 1 on (HI' HI)' To verify this, it suffices to calculate 
X«u, v» when each of u, v is in either K S; or KS~ nD~ . If v, say, is in K S ; , 

s' x then X«u, v» = 1 because u commutes with X. If u, v E K 2 n DI ' then 
X(u,v) = 1 by an application of Lemma 2.2. (Write u = 1 + uo' Then Uo 
commutes with xIK S2 .) It follows that X has an extension to HI' Furthermore, 
HI / K S ; is Abelian, so that X has many such extensions. Choose one, which we 
also call X. 

We now apply the procedure of Theorem 3.1 to X. While a complete account 
of what happens would be tedious, it may help to see the first step or so. We 
first extend xIK ,; to Xo on HI nKs;-1 by using Lemma 3.8 (the proof applies 
without change). Let j = s; - 1, i = rl • Now consider our extension X to 
HI n Ks;-I. If 1,1 f s~ - 1, then X and Xo are conjugate, by (7)(ii) (the 
argument is that of (3.12», and we may take X = Xo' We can then show, 
as before, that if one sets 11(j) = "U+I) , DU) = D u+l ) , etc., then we have the 
analogue of property (1) of Theorem 3.1: 

(1) 

XX =X on nHI nKs;-1 nx-I(HI nKs;-I)x 

{::} x E K S;' (Ksl - j+1 n D;) ... (Ks;-j+1 n Dr_I)DD) , 
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and properties (2)-(10) of Theorem 3.1 also hold. If 1;1j, then write 

-X = XoX , 
- jo , u- j 

X (1 + ),17(HI)) = If! 0 Trkn/el/k(O: )' ), 
'k . r . 

0: E n/el ,JoJj = J . 

Let 0: = Trkn/el/kn/ei 0:' • If O:17(j~ol) E EU+ I ) , then we use the arguments of (3.13) 
and (3.14) to produce 17U) (generating ph ), EU)' and DU) so that (1)-(10) of 
Theorem 3.1 hold. (1) takes the modified form given above. If EU+l)[O:17(j~°I)] 
is a proper extension of Eu+l ) with ramification index ei+1 and residue class 
degree 1;+1 over F, then set Sj+1 = j, so that (Sj+1 ,ej+1 ,1;+1) is the next 
triple for X. Let 17U+I) = 17j' Du+l ) = Dj' etc. Now the argument of (3.15)-
(3.18) produces 17(j) ,D(j) , etc., satisfying (1)-(10) of Theorem 3.1. Continue 
this procedure. 

In this way, we obtain further triples (Sj' ej , 1;), r l < i :::; r2 (say), together 
with elements 17(j)' division algebras D(j)' and fields E(j)' j ~ s~, such that 
(1)-(10) of Theorem 3.1 hold. If r2 = 2 (this happens when rl = 2 and 
we were never in case (b) of the proof of Theorem 3.1 for j < SI)' then 
(HI' X) is satisfactory « 1) then says that XX = X on HI n x -I HI x iff x E 

s" s" x x s" x K I (K 2 n DI )D2 ). If not, let H2 = HI (K 3 n D2 ). As above, (H2' H2) ~ H2 
and X = 1 on (H2' H2) ; the reasoning is virtually the same. We then apply the 
procedure to the extensions of X to H2 • 

Continue inductively. The procedure stops with a satisfactory (X ,Hj _ l ) if 
sri = i. This is bound to happen for one of two reasons. If SI is large, we 
use the fact that sri:::; SI (21-ri) and rj :::; the number of prime divisors (with 
multiplicities) of n. In any case, sri ~ 2 if SI ~ 2, and this will stop the 
procedure. 0 

(4.2) Lemma. With notation as above, let (x', H) be satisfactory. Then x' 
extends as a character to H· D~ . 

Proof. We need to show that if Uj , Vj E H· D~ and w = n;=1 (u j , Vj) E H, 
then X(w) = 1. By appropriate manipulations (described, e.g., in [4] and [5]), 
we may assume that each U j , v j is in either H or D ~ and that the terms 
with one of uj ' Vj E H come first in the product. If, say, u l E H, then 
x'«u l ,VI)) = 1 because VI E H- commutes with x'. Thus we may assume 
without loss of generality that all U j , V j E D~ . Hence w E (D~ ,D~) n H. By 
Lemma 2.1, w is (modKs1 +1) a product of commutators (u~, v;) with each 
uj E D;o ~ H- , v; ED; n K S: ~ H. (This last comes from Theorem 3.1(8).) 
Therefore x'(w) = 1. 0 

Fix an extension of x' to H· D~ , which we also call X' . We now produce 
other representations of D~ H by tensoring with any irreducible representation 
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P of D~ trivial on D~ n K S! . We then produce a representation 1: of H- by 
tensoring with Weil representations. This step is described in detail in [12, 9, 
and 1]. Here is a brief sketch. Suppose that SI is even, so that s~' = s~ - 1. 
There is a unique irreducible projective representation Al of K S ;' that is trivial 

s' on K I and satisfies 

s" 2 II I II for Xj = 1 + 'YjOJ I • Then (dimA I ) = [Ksl : KSI(H n KSI )], and Al extends 
canonically to a projective representation ~ of HD~Ks;' . When p is odd, 
this is the Weil (or oscillator) representation. For p = 2, a description is given 
in Chapter 1 of [9], and a different (but equivalent) description for general p is 
found in §8 of [1]. It turns out that W is trivial on KI nHD~ . We now tensor 
W with X ® P to get an ordinary irreducible representation on H D~ KS ;' • If 
all Sj with j > 1 are odd, this representation is 1:. If not, we repeat this 
construction for each even Sj' j > 1 , to get 1:. 

(4.3) Theorem. (a) For 1: as above, Ind~_ 1: = 'Tt is irreducible. 
(b) Let 1: I ' 1:2 (on H'( ,H:; ) be constructed as above, from X~ ® PI' X; ® P2 . 

Suppose that 'Ttl ~ 'Tt2 · Then H'( = H:;, X~ = X;, and PI ~ P2 . 
Proof. For (a), write1:w (x) = 1:(wxw- I ). If 1:w and 1: intertwine on their 
common domain, then their restrictions to the normal subgroup K S ; intertwine. 
Since 1:IK ,; is a multiple of X, 1:w IK,; is a multiple of XW , and thus XW = X. 
Therefore, W E KS;' (D~ n K S2 - S;) ... (D~ -I n KS'I -I-s; )D(~;) , by Theorem 3.1. 

This group normalizes KS;(D~ n KS~), and hence 1: and 1:w intertwine when 
restricted to this group. Again, 1: is a multiple of X and rW is a multiple 
of Xw. Hence, W E KS;'(D~ nKS~')(D; nKS3-S~) ... (D~_1 nKS'2-I-S~)D(~~). 
Proceeding inductively, we get W E H-. By a standard theorem ([16]), this 
proves irreducibility. 

For (b), assume that there is W E D X so that 1: I and 1:~ intertwine. Then 
their restrictions to K S ; intertwine, and these are multiples of X I ,x ~ , respec-
tively. Therefore XI' X2 are conjugate under D X • From the uniqueness of the 
a~+1 in (3.12), this means that XI = X2 on K S ; • From Theorem 3.1, 

W E KS;' (D~ n K S2 - S;) ... (D(:;)). 

s' X s' As above, this means that XI' X2 are conjugate on K I (DI n K 2). By our 
construction, XI = X2 on KS; (D~ n KS~). By induction, we get XI = X2 and 
WE H'( = H:; . But this immediately gives PI ~ P2. 0 

(4.4) Remark. We could also prove (b) by another argument. It is evident 
from Theorem 3.1 and Proposition 4.1 that we have considered every completely 
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satisfactory X and every representation containing such a X. Thus, we have 
certainly constructed all of (Dx) ~ , modulo tensoring with characters. We will 
see in the next section that the number of representations with kernel containing 
K m+1 (ron) is precisely the number of such representations we have constructed. 
Therefore, those constructed above must be distinct. 

5 
If we make the inductive assumption that every irreducible representation of 

division algebras of index < n are constructed as in §§3 and 4, then the repre-
sentation p of D; in §4 has associated to it a sequence of triples (s~ , e~ ,1;), ... , (s; , e; ,1;). (This sequence is empty if p factors through the norm map.) 
If (Sl ' el ' f;) , ... , (sro ' ero ' /'0) is the sequence associated to X, we associate to 
p the sequence 

(Sl ' e 1 ' ~), ... , (sro ' ero ' /'0) , (sro+1 ' ero+1 ' /'0+1) , ... , (sro+l ' ero+t ' /'0+1) , 

where sro+i = s;/'o' ero+i = e;ero ' and /,o+i = 17 /'0· Notice that p depends 
on the choice of extension of x' to D~, but that this choice does not affect the 
sequence of triples because two representations that differ by a I-dimensional 
representation generate the same sequence. We shall say that n is of type 
{(si'ei'~), ... ,(sr,er'/')}' r=ro+t. Note that n is of type cp iff it is 1-
dimensional. The conductor of n is, as usual, the smallest integer m + 1 such 
that nlKm+1 is trivial. If n is trivial on K, the conductor will be O. We also 
say that n has ramification index er and residue class degree /" and write 
e(n) = er , f(n) = /,. If n is of type cp, we define e(n) = f(n) = 1 . 

Observe that our construction of representations of D X applies also to K. 
The one difference is that in those cases where we conjugated by ro or "(j) 

to specify an element in the conjugacy class of X (e.g., immediately before 
Theorem 3.1, or in (3.11)), we can no longer perform this conjugation. Thus 
we obtain more conjugacy classes. 

We use this observation to prove 

(5.1) Theorem. The number of representations n of D X (constructed by ten-
soring those of Theorem 4.1 with characters) that satisfy 

is 

(a) n(ro n) = I, 
(b) f(n)lf, where f is a fixed divisor of n, 
(c) the conductor of n is ::; m + 1, 

n ""' (f) d d[m/J1 An;m;f = f2 L.JJ.l d (q - l)q , 
dlf 

where J.l = Mobius function and [] is the greatest integer function. 
Proof. We follow the reasoning used in § 11 of [13]. Let g f = n. We consider 
representations A. of K with e(A.) ::; g, f(A.) ::; f, and conductor ::; m + 1 . 
Consider the construction of x. We must have ilsj, since otherwise e(A.) > g. 
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Similarly, Xo = X at each level j where if j. When ilj, we do not need to 
have Xo = X, but the element Q:i+l l1(j) (of (3.9)) must generate a field whose 
residue class degree is ~ f. Since Q: i+1 could be 0, we see that there are 
qf different choices for Q: i+1 at each j with fU and 0 < j ~ m. That 
gives qf[mg1n1 choices (again, [] is the greatest integer function), and there are 
another qf - 1 choices at K/ Kl . Hence the total number of representations of 
K satisfying the conditions is qf[mg1n1(qf -1). Mobius inversion now gives the 
number of representations A. with f(A.) = f, e(A.) ~ g, and conductor ~ m + 1 
to be 

Nn,m,f = ~p(f/d)(l- 1)l[m1f] . 
dlf 

Each such A. has f inequivalent conjugates under D X , and the group of el-
ements in D X fixing A. has degree 7 over K. Hence there are fo Nn,m,f 
representations of 1C meeting the conditions of the theorem. 0 

(5.2) Corollary. The total number of irreducible unitary representations of D X 

with conductor ~ m + 1 that are trivial on ron and are constructed as in §§3 
and 4 is 

An;m = ~~ n2P(f/d)(l- 1)l[m1f]. 0 
fin dlf f 

(5.3) Corollary. Every irreducible unitary representation of D X is constructed 
as in §§3 and 4. 
Proof. It suffices to consider irreducible representations 1C trivial on ro . From 
the main theorem of [13], the number of conjugacy classes of D X /Km+1 (ro) is 
An om· This, of course, extends the inductive assumption made at the beginning 
of this section. 0 

(5.4) Corollary. The number of irreducible unitary representations 1C of D X 

trivial on (ro n) with ramification index 7' residue class degree f, and conductor 
~ m is 

Bn;m;f = ~ ~ fn 2 P (c~) P (~) (qd - 1)l[m1f] . 
dlf cl(nlf) c 

Proof. If 1C has ramification index e and residue class degree f, with efln, 
then 1C corresponds to a representation 1C~ of D:r Thus, we obtain Bn;m;f 
by Mobius inversion from Theorem 5.1. 0 

Define an element 1C of (D:) ~ to be basic if its conductor (the smallest 
number s + 1 such that Ks+ 1 ~ Ker 1C) cannot be reduced by twisting with 
a character (if K c Ker1C, then we require 1C to be trivial). Except for the 
trivial representation, these are the irreducibles constructed in the previous sec-
tions. Of course, every element of (D:) ~ is the tensor product of a basic 
representation with a I-dimensional representation, and it is also easy to deter-
mine how many basic representations are obtained from a given one by twisting 
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with a character. The next theorem gives a parametrization of sorts for basic 
representations. 

(5.5) Theorem. Let (s I ,e I ,1;) , ... ,(s" e" 1,) be a sequence of triples satisfy-
ing 

(i) Si > S2 > ... s, ~ 0, 
(ii) ede21·· . Ie, ,1; l/zl·· ·11" and 1 < el1; < e2/z < ... < e,l, :::; n, 

(iii) 1.1 e, ,n, 
(iv) I,lsi for all i, and ei = nl(nlei_ 1 ,s) (eo = 1), 
(v) e, = e,_1 if s, = o. 

Let I; = I;+I/;· The number of basic irreducible unitary representations 1C in 
general position whose associated sequence is (Sl' el ,1;) , ... , (s" e" 1,) is 

if s, > 0; 

;" g (~qJ.-'d ~(I, / d)) q" , a as above, 

if s, = 0 (10 = 1, S,+I = -1, /; = 1;11;-1' and [] is the greatest integer 
function), and all these representations are of dimension 

qn _ 1 y 
I, n/e q, q r _ 1 

n [ I, L' (1 1 )] Y = - -1 + - + s· -- - - ,n. = e.f . 2 n I n. n. I I I 
'i=1 I-I I 

Proof· Begin by considering how many characters X have (s I ,e I ,1;) as the 
first associated triple. We must have 

where a'W -SI generates a field of ramification index eland residue class degree 
1; . The ramification index is automatic, from (iv). For the residue class degree, 
we need to have Nk /k a generating kfi· If Nk /k a I = Nk /k a2, then 

n nlel 1 n nlel n nlel 

a I 'W -SI and a 2'W -SI are conjugate by an element of kn ' so that we need only 
count the elements in kn/el generating kfi . There are Ldl!1 J.l.(1;ld)l = Q(1;) 
such a. Each is in a conjugacy class of 1; elements under D X I K . 

For each J with S2 < J < Sl and (nlel)IJ, we have a choice of qfi ways 
of extending X. For the other J with S2 < J < Sl' we have no choice in 
how to extend x. Thus there are (1/1;)qfi[(sl-S2- I)el/n1Q(1;) distinct X with 
(Sl ,el ,1;) as the first associated triple and no further triple before S2· 

At S2' we need to have a21J~S2 generate a field of ramification index e2 and 
residue class degree /z over F. The e2 part is automatic, from (iv). For 
/Z, it is better to think of a21J~S2 generating a field of residue class degree h. 
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over F[11I]' As before, there are Edit; J.lU;j II d)qfid = Q(ft ,h) such 0:, mod 
conjugacy by kn/ e1 • Each is in a conjugacy class of J;, elements under the group 
of elements commuting with X. 

Proceeding inductively, we get the number of characters on Kl to be 
, 

0: = L .t;[(s; - S;_I - l)e;!n], 
j=1 

provided that sr > O. If sr = 0, the above formula holds with the sum and 
product to r - 1 instead of r. For the number of characters on K, we need 
to multiply by qf, - 1 if s, > 0 and by Edit: J.l(!,jd)qf,-ld if S, = O. Finally, 
there are n j I, further extensions of our character X to the group of elements 
11;- . We thus get (a). 

As for the dimension, assume first that s; is odd for all i. Then we can 
see by induction that 1C is induced from a character X on the group H = 

s' X s' s' x x K l(DI n K 2) ... (Dr_I n K r)Dr . We compute its index in D . Obviously, 
s' n we can work modulo K 1 and modulo ro . We have 

P = [s~ - S~] !!.. 
I I' e' 

JI I 

since H n KS~ contains elements 1 + yro j + ... , s~ :::; j < s~ , only if II j , and 
there are then qn/e1 choices for y. Since s~ and s~ are both odd and divisible 
by h, we also have PI = [SI - s2]nj2n l • 

Similar reasoning (note that s, # 0) gives 
, , p 

[HnKs;: HnKs;-l] = q ;, 

for 1 :::; i < r. We also have 

P, = [(S; - 1)] !!.. . 
I, er 

But 2s; - 1 = sr is divisible by 1,. If 2s; - 1 = crl, , then 

[ 2S; - 1] = [C,] = sr - I, 
I, 2 21,' 

Hence Pr = (sr - sr+1 )nj2n, ' where (for this part of the proof) sr+1 = I, . 
We also have [H n K: H n KI] = qn/er - 1 and [H: (H n K)(ro n)] = nj 1,. 

Multiplying gives 
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Hence 

From here, it is a question of putting n(s~ -1) - P in some more pleasant form. 
Set ni = eJ;, no = eo = fo = 1 . We have 

n(s~ - 1) - P = i(si - 1) - t (Si -2~+I)n 
i=1 I 

n nI:' [1 1] = - - + - s. - - - + nJ./n 2 2 I n. n. " i=1 I-I I 

(5.6) 

= !!. [-1 + f, + t Si (_1 -~)]. 2 n n. I n. 'i=1 1- I 

This gives (b) when all Sj are odd. If, say, SI is even, then we have 

Here, since S~' = S 1/2 , we get 

PI = (SI - S2 - f)n/2nl . 
But the Weil representation of §4 corresponding to SI has dimension qn(l-eIl /2, 

s" n n (s" I)n while [D: K I (tv )] = n(q - l)q 1- • The effect is that (5.6) is unchanged. 
A similar analysis shows that the formula holds regardless of the parity of the 
Sj. (The analysis is carried out in more detail in §3 of [7].) 0 

6 
It may be useful to see how the construction of representations presented in 

this paper compares with the constructions in previous cases. When n = p , 
we necessarily have 'I = 1 , and the situation is relatively simple. For n = p2 
or pno (with (p, no) = 1 ), the construction presented here seems to be more 
straightforward than those in [4] and [6]. 

There remains the case (p, n) = 1 . The basic simplification is that in (3.13), 
for instance, we can choose P to be in k, since Trk./k is faithful on k. 
Therefore a~+I11 commutes with 11. The same statement applies to (3.15). 
The result is that we may always assume that EU) ~ EU+I ). (In particular, 
EU) = Eu+ l ) unless j is one of the Si.) Furthermore, X is nontrivial on 
E(~d nKsl , and, similarly, X~j) is nontrivial on E(~j) nKSj (see §3 for notation). 
This simplifies the structure of the satisfactory extension H of Proposition 4.1. 
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Let E = E(S,) , where (S" e, ,1;)' ... , (S" e" 1,) are the triples associated to 
the representation X. Then xlex has the property that XIKSI+1 is trivial; XIKSI 
and XIKS2+1 factor through NE/E ' but not through any norm map NE/EI with (SI) 
E(Sil ~ E' ; XlKS2 and XIKS3+1 factor through NE/E(S2) , but not through any norm 
map NE/E' with E(S2) ~ E' , and so on. This leads to the Howe factorization 
of X (see [12] or [17]), which gives a definition of the Sj depending only on 
XIEX. In the general case, the triples (Sj, ej ,I;) give a weak analogue of the 
Howe factorization. 

A formula for dim 1C is given as Theorem 3.25 of [7] for the case where 
(n ,p) = 1. We repeat it here, changing notation slightly so that it does not 
conflict with the notation in this paper. Let nj = ejl;, and let a = n/n" 
mj = n,/n j , and jj = 1 + sJaf,. Then 

(6.1 ) d · - f. qn - 1 (aJr/2)[aa:(O)+a+'-an,-e,J 
Im1C - '/ q , qn e, _ 1 

where , 
a(O) = L:jj(mj_, - mj), 

j=, 
The definition of jj has the advantage of fitting in naturally with the definition 
of the conductors of the terms in the Howe factorization. The formula was 
written to involve a so that it would be easy to see the change in dim 1C as n 
(the degree of the division algebra) varied, while the character XIE remained 
fixed. Some algebra shows that (6.1) agrees exactly with Theorem 5.5. Thus the 
dimension formula of [7] has a generalization to division algebras of arbitrary 
degree over F . 

7 

In this section we give an example of the construction of supercuspidals. 
We let F = F3UX]] and n = 27. Then ro 27 = X and k = F3 • Let (J be 
the Frobenius, I' 1--+ 1'3. We examine the representations associated with the 
sequence of triples 

(45,3,1), (33,9,1), (19,27,1). 
Since the Sj (namely 45, 33, and 19) are all odd, we avoid the Heisenberg 
construction. 

We use the notation of [6] to describe k27 = F327 • A basis for k27/k is 
constructed as follows: define a, ' a 2 , a 3 by 

3 3 2 3 2 
a, = a, + 1 , a 2 = a 2 + a, ' a 3 = a 3 + a 2 • 

Next define Pi (0::; j ::; 26) as follows: if j = 9a3 + 3a2 + a, (0::; a j ::; 2) , 
then Pi = a;3a~2a~1 . The Pi form the desired basis. 

We define'll on F by 

(Yo E Z/3Z) . 
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Now we begin to construct X. On K 45 we must have 
~ -~ ~ X(1 +)lro ) = III 0 TrD/K(~_45ro ·)lro), 

where F[~_45ro -45] is a totally ramified extension of degree 3. Then (~_45ro-45)3 
-135 -5 h k X d f = )1-45 ro = )I _45X ,were)l -45 E ,an we may assume a ter con-

jugation that ~ -45 = ± 1 E k. For definiteness, take ~ -45 = 1, so that 
45 0'-45 

x(1 +)lro ) = III 0 Trk./k)l = III 0 Trk./k)l. Then we may set 11(45) = ro . 
Notice that E(45) = F[ro 9]. 

We next extend X to K 44 , K 43 , ..•• For K44 , we know that the extension 
Xo of Lemma 3.8 is unique, and it is then clear that 

-45 (7.1) xo(1 +x) = III o TrD/K(ro x). 

It is also not hard to check that if X is not conjugate to Xo' so that 
-I ~'-44 , 

X·Xo (l+x)=IIIoTrD/K(u_ 44ro x), Trk27/k3(~-44)=~-44=fO, 

then S2 = 44. Therefore X = Xo on K44. A similar argument shows that 
X = Xo on K 37 , where Xo is still given by (7.1). We also have 11(44) = ... = 
11(37) = 1Zl and E(37) = ... = E(45) . 

On K36 , however, we have more leeway. We need 

where ~-3611G;~ E E(37)· This is true if ~-36 E k. From Corollary 2 of Propos i-
tion 2.1 in [6], we may assume that ~~36 is a multiple of P18 . If, for example, 
~~36 = PI8 ' then 

9 
11(36) = 11(37) (I + ~ro ), 

where ~ = P26 + ... can be calculated as in (3.10). We shall instead take the 
easy way out and assume that ~-36 = o. Then we may also take ~~36 = 0, and 
11(36) = 11(37) = 1Zl , E(36) = E(37) . 

On K 35 and K 34 , we also assume that X = Xo' where Xo is given by (7.1); 
11(36) = 11(34) and E(36) = E(34)· At K33 , however, we have a jump index. We 
must have 

where ~-3311G!~ = ~_331Zl-33 generates a totally ramified field of degree 3 over 
E E S· (S -33)3 -99 d -99 E h I = (34)· mce u_331Zl = )I_331Zl an 1Zl E I' we must ave 
)I _ 33 E k x. By conjugation, we may then assume that ~ _ 33 E k X. We take 
~ -33 = 1. Then ~~33 = PI8 + any linear combination of po,··· ,PI7 ' as a 
computation (using results from §2 of [6]) shows. 
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We now need 11(33) = 111 (1 + 6w 12), where 111 = 11(34). Given a choice of 
6~33' we could compute 6 and 11(33) as in (3.10). We use another device here. 
We have 

(7.2) -45~' -33 X(1 + x) = VI 0 TrD/K[(w + u_33W )x], X E p33. 

So 11(33) must commute with W- 45 +6~33w-33modp-32, or (equivalently) 
. h 2( -45~' -33) 9~' 21 22 S h ~, WIt X W + u_33W = W + u_33W modP . 0 we c oose U_33 to 

make 11r33) == w 9 + 6~33W21 modp22. With 6 = P26 , 11r33) is of the desired 
form (though computing (33 isanunpleasanttask). Then 11(33) =w+Pi6wI3 , 

3 and E(33) = F[11(33)] . 
As before, we must have X = Xo on K 32 and K31 (at least after conjugating), 

so that X is given on K31 by (7.2). On K 30 , 
-I , -30 

X· Xo (1 + x) = VI 0 TrD/K(6_ 3011(31)x) , 11(31) = 11(33)' 

where 6-30 = Trk27/k3 6~30 is such that 6_3011~~1) E E(31). Therefore 6_30 E k, 
and we may take 6~30 to be any linear combination of Po, ... ,P24 . We shall 
take 6~30 = o. We have similar choices at K27 and K 24 , and we will assume 
that 6 27 = 0 and 6 24 = 1 • Then 11(25) = ... = 11(33) and 

(7.3) 
-~ , -D , -M M 

x(1 + x) = VI 0 TrD/K[(w + 6-33 11(34) + 6-24 11(25) )x], X E P ; 
9 21 

11(24) = 11(25)(1 + 6 1111)(1 + 6 0w ), 6 1 E k9' 60 E k27 · 

As in the analysis for K33 , we can finesse the computations by requiring that 
3 X-I -45~' -33 ~, -24 dP-23 h T ~, 1 

11(24) == W + u-3311(34) + u-24 11(25) mo , were rk27/k3 u_24 = . 
Setting 6 1 = Pg and 60 = - P26 fixes an appropriate 6~4. Then E(24) = F[11~24)] . 

For K 23 , we again have X = Xo and 11(23) = 11(24) , while X is given by (7.3). 

We now go on to H22 = K23(D~ n K22) , where DI = {l:yjw j : Yj E k9}. We 
can no longer describe X as before, since H22 is not obviously isomorphic to 
an additive subgroup of D. We could compute a central character X- of D~ 
agreeing with X on D~ n K 34 and then consider X(X-)-I on D~ , but that 
seems to be fairly complicated. We instead consider the extension Xo to H22 . 
(One can verify in other ways that xo(1 + yw 22 ) = 1 for all Y E k9 .) Since 
S3 '" 22, X = Xo on H22 (at least after conjugacy), so that 11(22) = 11(23) and 
E(22) = E(23) . 

On H21 = K23(D~ n K 21 ), we have a choice of extensions of X. We need 

-I -21 ~, 3) 
X· Xo (1 + Y11(22)) = VI 0 Trk9/k(u2IY , 
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where <5_ 21 = Tr ~/k3 <5~21 is such that <5 -2111~;; E E(22)' Therefore we need 
<5_21 E k, and <5~21 must be a linear combination of Po' ... , P6 • We will take 
<5~21 = 0, so that 11(21) = 11(22) and E(21) = E(22) . 

On H20 = K23(D~ n K 20 ), X = Xo (after conjugating) and 11(20) = 11(21)' 
23 x 19 E(20) = E(21)' On HI9 = K (DI n K ), X =F Xo because S3 = 19. We must 

have 
-I 19 I u- 19 

X • Xo (1 + 1'11(20)) = If! 0 Trk9/k(<5_191' ), 

where <5_ 19 = Trk9/k3 <5~19 is such that E(19)[<5_1911~~~1 is totally ramified of 
degree 27 over F. This is in fact true for any nonzero <5_ 19 , but there is no 
loss in assuming that <5_ 19 = ±1 , since the other choices are conjugate to these. 
We will choose <5_ 19 = -1. Some calculation shows that 

14 
11(19) = 11(20)(1 - 0:611(33)) 

commutes with X for an appropriate <5~19' We have E(19) = F[11(19)1. Let 
11(20) = 112' E(20) = E2 , etc. 

23 x IS -I IS I u- IS 
For HIS = K (DI nK ), we have X· Xo (1 +1'11(19)) = If!oTr~/k(<5_lsI' ), 

where <5_ IS = Trk9/k <5~IS is such that <5_ls110~~ E E(19)' This holds for all <5~IS' 
but there is no loss of generality in assuming that <5~IS is a multiple of Ps ' We 
will assume that O~IS = 0, so that X = Xo and l1(ls) = '1(19)' We will assume 
similarly that '1(17) = '1(19)' 

We now go to HI6 = K 23 (K 17 n D~)(KI6 n D;) and compare X with Xo 
there: 

-I 16 I U- 16 

X· Xo (1 + 1''1(17)) = If! 0 Trk3/k(<5_161' ), 

where 0_ 16 = Trk3/k <5~16 is such that <5-16'10~~ E E(17)' This is automatic, but 
we may take <5~16 to be a multiple of P2 • We will assume that <5~16 = P2 • 
Then 

'1(16) = '1(17)(1 + P2112)' 
as a calculation shows. We also have E(16) = F[11(16)1. We have similar choices 
for HIs' ... ,HIO = K 23 (K 17 nD~)(KlOnD;); we will assume that at each step 
X = XO' Then '1(16) = ... = 11(10) and E(16) = ... = E(IO) . 

We now have a satisfactory extension. So '1(10) = '13 and E(IO) = E3 . In our 
case, E3 = D3 . We extend X to a character of H = HIOE; , which we also call 
X , and induce to get 7l. 
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