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TRANSCENDING CLASSICAL INVARIANT THEORY 

ROGER HOWE 

1. INTRODUCTION 

Let SP2n(R) = SP2n = Sp be the real symplectic group of rank n. Let Sp 
denote the two-fold cover of Sp. There is a unitary representation, constructed 
by Shale [Sh] and Weil [WA], of Sp that is of considerable interest in the 
theory of automorphic forms. We denote this representation by wand call it 
the oscillator representation. The purpose of this paper is to establish about w 
a fact that should be useful for clarifying the structure of spaces of automorphic 
forms constructed using w. 

We begin by formulating the result. Let E be a reductive subgroup of Sp, 
and let £ denote the inverse image of E in Sp. Denote by .9l (£) the set of 
infinitesimal equivalence classes of continuous irreducible admissible represen-
tations of £ on locally convex spaces. Let WOO be the smooth representation 
of sp associated to w. Let w be realized on a Hilbert space 'Y, and let 
the subspace of smooth vectors, on which space WOO is defined, be written 
'Yoo . Denote by .9l(£, w) the set of elements of .9l(£) which are realized as 
quotients by woo(£)-invariant closed subspaces of 'Yoo . 

Consider a reductive dual pair (G, G') ~ Sp [H2]. It is not hard to show that 
- -, 00 - -, G and G commute with one another. Hence, we may regard wiG· G as a 
representation of Gx G' . It is well known [F] that .9l(GxG') ~ .9l(G) x.9l(G'). 
The identification associates to p E .9l(G) and p' E .9l(G') the tensor product 
p ® p'. (We note that p ® p' is not defined as a topological vector space; 
nevertheless, the infinitesimal equivalence class of P®P' is well defined.) Select , - -, , - -, P ® P E.9l (G x G ). Suppose that, in fact, p ® P E.9l (G· G ,w). Then clearly - , -, - -, P E .9l(G, w) and p E .9l(G ,w). Hence, .9l(G· G ,w) defines the graph of a 
correspondence between certain subsets of .9l (G , w) and .9l (G' , w). In fact, 
the situation is quite precise. 

Theorem 1. The set .9l (G . G' , w) is the graph oj a bijection between (all oJ) 
.9l(G, w) and (all of) .9l(G' ,w). Moreover, an element p® p' oj .9l(G. G' ,w) 
occurs as a quotient oj WOO in a unique way. 

Received by the editors November 18, 1988. 
1980 Mathematics Subject Classification (1985 Revision). Primary 22E45. 

535 

© 1989 American Mathematical Society 
0894-0347/89 Sl.oo + S.25 per page 



536 ROGER HOWE 

The proof of Theorem 1 will be given in §§2-5. Here we give a variant 
formulation of the result and some comments. 

Given P E .9f (G , OJ) , it probably will be realizable as a quotient,..?f ~oo in 
more than one way. That is, there may be more than one closed G -invariant 
subspace ~ ~ ~oo such that ~oo /~ ~ p. Let ~ denote the intersection 
of all such spaces ~. Then ~oo /~ will not be simply a G module, but a - -, G . G module. It is easy to see that we can write 

(1.1 ) 

where P~ is a G' module. Theorem 1 states that P~ has a unique irreducible 
quotient. It is of interest to know as much as possible about the structure of 
P~ . We can, in fact, say a little more about it. 

Let E be a connected reductive Lie group and p a representation of E. 
Recall that Harish-Chandra calls p quasisimple if % W' (W) , the center of the 
universal enveloping algebra of the Lie algebra W of E , acts by scalar operators 
on the space of p. Some members of dual pairs are not connected. If E is 
a nonconnected reductive Lie group, let %W'(W)o denote the subalgebra of 
%W'(W) whose elements are invariant under the adjoint action AdE (and 
not merely under the adjoint action of the identity component of E). Then 
a representation p of E will be called quasisimple if p sends % W' (W) ° to 
scalar operators. 

Theorem IA. The representation p~ is a finitely generated admissible quasisim-
pie representation of G' . Furthermore, P~ has a unique irreducible G' quotient 
p' so that p ® p' E.9f ( G . G' , OJ) . 

Remarks. (a) In this result, "finitely generated" means that if j(' is a maximal 
compact subgroup of G' , then the j(' -finite vectors in p~ are finitely generated 
as a W'(g')-module. 

(b) If G or G' is compact, then Theorems 1 and lA are already known and 
have been treated by several authors [G, GK, HI, KY, Sa). In fact, they then 
essentially amount to a version of Classical Invariant Theory [HI, H2, WH). 
This special case will be a stepping stone to the general result. 

(c) An analogue of Theorem lA in which one takes p unitary and looks 
not at quotients of p~ but at unitary subquotients has been considered and 
established in some cases by Rallis [R). It is possible for p~ to have unitary 
constituents when the quotient p' is not unitary. It is of interest to describe 
these. 

(d) As we will see in §6 (Theorem 6.1), Theorem 1 has an L2-version which 
may be formulated in terms of von Neumann algebras. 
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I would like to thank Tom Enright for posing a catalytic problem and M. 
Takesaki for providing a reference in §6. 

2. ALGEBRAIC FORMULATION 

Theorems 1 and lA are in some sense distribution theoretic. However, the 
proofs we give for them below are purely algebraic. We therefore begin by 
stating yet another, this time suitably algebraic, version of these results. 

Let K and K' be maximal compact subgroups of G and G' , and let g and 
g' be the Lie algebras of G and G'. We will work in the standard current 
formalism of (g, K) modules. Recall [D] that a (g, K) module is a vector 
space V which 

(a) is simultaneously a module for g and for K; 
(b) is a direct sum of subspaces invariant and irreducible under K; 
(c) is such that the actions of g and K are compatible, i.e., 

(i) the differential of the K action is given by the inclusion of t, the 
Lie algebra of K in g, and 

(ii) the action of K on End V by conjugation normalizes the image 
of g in End V and induces the adjoint action of K on g. 

The point is, of course, that (g, K) modules are algebraic versions of G mod-
ules. It is an old theorem of Harish-Chandra [D] that if p is an irreducible 
quasisimple representation of G, then the K -finite vectors in the space of p 
define an irreducible (g, K) module, and all irreducible (g, K) modules arise 
in this way. 

The maximal compact subgroup of Sp = SP2n is U = Un' the unitary group 
in n variables. Let sp be the Lie algebra of Sp, and u the Lie algebra of U. 
Let 
(2.1) sp = uE9 q 

be the Cartan decomposition of sp. The (sp, U) module associated to w is 
made explicit by the realization of w known as the Fock model [C, H3, Sg]. 
Using it, one sees that the U-finite vectors in w form a space isomorphic to 
9'(Cn) = 9'n = 9' , the space of polynomials on Cn . When this identification 
is made, we have 

w(spc) = Sp(l,l) E9sp(2,0) E9sp(O,2), 

sp(l,l) = span of {~(Zja~j + a~j Zj)} , 
(2.2) (2,0) sp = span of {ZjZj} ' 

(0,2) sp = span of { aZ~;Zj } . 
Here sPc indicates the complexification of sp. The indices i and j vary 
from 1 to n. Note that while sp is a real Lie algebra, the sp(a ,b) are complex 
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subalgebras of sPc' The relation between decompositions (2.1) and (2.2) is 

w(ud = Sp(l ,I) , 

w(qd = sp(2,O) Eesp(O,2). 
(2.3) 

We may suppose G and G' are embedded in Sp in such a way that the 
Cartan decomposition (2.1) of sp also induces Cartan decompositions of 9 , 
and 9 . Thus, 

(2.4) 
t=ung, p=qng, , , , , 
t=ung, p=qng. 

, , , 
g=tEep, 

Then .9 is a (g, i) module and a (g', i') module. We can define the ana-
logue of g; (a, w). Let g; (g , i , w) denote the set of isomorphism classes of 
irreducible (g, i) modules which can be realized in the form .9 I.IY , where 
.IY S;.9 is a 9 and i-invariant subspace. For PEg; (g , i , w), let ~ be 
the intersection of all subspaces .IY S;.9 such that .9 I.IY is a (g, i) module 
isomorphic to p. Then .9 I~ is a (g Ee g' ,i. i') module and has the form 

(2.5) .9/~ ~ P ® p~, 

where p~ is a (g', i') module. 

Theorem 2.1. The (g', i') module p~ is finitely generated, admissible, and qua-
sisimple. Furthermore, p~ has a unique irreducible (g' ,i') quotient p', and the 
correspondence p -+ p' defines a bijection from g; (g , i , w) to g; (g' ,i' , w) . 

It is actually this theorem which will be proved in this and the next three 
sections. Our analysis will reveal some further information about the bijection 
p +-+ p'. These supplementary facts will be pointed out as they arise. Before 
beginning the proof of Theorem 2.1, we will show it yields Theorem 1. 

Lemma 2.2. Theorems 1 and 1Afollow from Theorem 2.1. 
Proof. The main point is simply that .9 is dense in Y . Choose PEg; (a, w) . 
0--Let p be the associated (g, K) module defined by the K -finite vectors. Let 

$/; S; yoo be a a-invariant subspace such that yoo I$/; ~ p. Then the image 
of .9 in yoo I$/; is dense, and the projection .9 -+ yoo I$/; is a homomor-
phism of (g, i) modules. Since the K -isotypic components of p are finite 
dimensional, it follows that .91.9 n $/; ~ l. Hence, lEg; (g ,i , w). Also 
.9 n $/; ;2 ~o . Therefore, the quotient map yoo -+ yoo I~ defines a map 

(2.6) .9 I~o -+ yoo I~ 
with dense image. Since by Theorem 2.1 the left-hand side of (2.6) is admissible 
as a (g Ee g' ,i. i') module, the i· i' -isotypic subspaces are finite dimensional. 
Since the mapping (2.6) has dense image, the i· i-isotypic subspaces on the 
right-hand side must also be finite dimensional, and the mapping (2.6) must 
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carry .9 onto the space of i· i' -finite vectors in 'Yoo /'J/p. Hence, 'Yoo /'J/p 
is finitely generated, admissible, and quasisimple. Furthermore, if X is any 
irreducible G' -quotient of p~ , then the i' -finite vectors in X must be a quo-
tient of (p~)o , and, therefore, X is uniquely determined by Theorem 2.1. This 
proves Lemma 2.2. 

Since G modules will not enter the discussion from here on, we will no longer 
put o's above (g, i) modules and will simply denote then by p. 

The proof of Theorem 2.1 is not difficult. It follows by general considerations 
from a few key facts about the structure of .9 as a (gEBg' ,i. i') module. These 
structural results follow in tum from some remarkable relationships between 
(g ,g') and three other dual pairs in sp. In an attempt to make the structure of 
the argument as evident as possible, we have divided it into three parts. In §3, 
we will state the facts we need about dual pairs, giving the basic pair (op,q ,sP2n) 
as an example, and we will use these facts to establish the relevant structural 
results about .9. These will be used in §4 to deduce Theorem 2.1. Then §5 
will be devoted to proving the facts about dual pairs stated in §3. 

3. STRUCTURE OF .9 AS 9 EB g' MODULE 

Let (g, g') ~ sp be a reductive dual pair. Let t and t' be the Lie algebras 
of the maximal compact subgroups K and K' of G and G'. Let t and t' be 
chosen as in §2 so that the Cartan decompositions of 9 and g' are compatible 
with that of sp, as in equation (2.4). 

Example. Let RP+q be endowed with the indefinite inner product 
p p+q 

LX~-Lxr 
j=i j=p+i 

Let R2n be endowed with the symplectic form 

Then on R2n(P+q) ~ RP+q ®R2n we can define a symplectic form to be the tensor 
product of the forms on R P+q and R2n . Clearly, the isometry groups Op ,q and 
SP2n will act on R2n(P+q) by acting on the appropriate factor W'+q or R2n , and 
will preserve the symplectic form. They clearly also commute with each other. 
The pair (Op,q' SP2n) forms a reductive dual pair in SP2n(p+q) ' and the pair 
(op,q ,sP2n) of their Lie algebras forms a dual pair in sP2n(p+q)' The maximal 
compact subgroup of Op,q is Op x 0q' and the maximal compact subgroup of 
SP2n is, as we have already noted, the unitary group Un' 

Fact 1. The Lie algebras t and t' are themselves members of reductive dual 
pairs (t, m') and (m, t') . 
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Thus, we have sequences of inclusions 

(3.1) m':::> ':::> t' - 9 -
and the pairs of similarly placed algebras form dual pairs. 

Example. For the pair (0 p ,q ,sp2n) we have, if pq :f:. 0, m' = sp2n X sP2n and 
m = Up,q , the indefinite unitary group of signature p, q . 

Since t ~ u, ad t preserves each of the spaces sp(a ,b) of equation (2.2). 
Since m' is the full centralizer of t in sp, we have the decompositions 

, ,(1,1) l!:> '(2,0) l!:> '(0,2) ,(i,j), n (i,j) 
mc=m '17m '17m , m =mc sp , 

(3.2) 
(1,1) i'I'> (2,0) l!:> (0,2) (i ,j) n (i ,j) 

mc=m '17m '17m , m =mc sp • 

The decomposition (3.2) is a refinement of the (complexified) Cartan decom-
position. In particular, m,(I,I) is the complexification of the Lie algebra of the 
maximal compact subgroup of M' , the group with Lie algebra m'. On the 
other hand, m,(I,I) is the centralizer of t in Sp(l ,I) • Hence, m,(I,I) must be a 
product of g( Lie algebras, or m,(1 ,I) n sp = md l ,I) , a real form of m,(1 ,I) , is a 
product of unitary Lie algebras. 
Fact 2. The pair (m~1 ,I) ,m~{I ,I») is a dual pair in sp. 

Example. With the pair (op,q ,sp2n)' one has m = Up,q and m' = sp2n X sp2n . 
'(I I) (I I) (I I) '(I I). . Thus m ' ~ U x U and m ' ~ U x U Thus (m' m ' ) IS a duect '0 n n' 0 p q' '0' 

sum of the dual pairs (up' un) E sp2np , and (uq , un) ~ Sp2nq • 

Thus, we can expand the sequence (3.1) to 
(1,1) 

mo 
'(I ,I) 

mo 

Cr ~ ~ ~ 

(3.3) t 
, t' m m 

~ y. ~ ~ , 
9 9 

The pairs of Lie algebras similarly placed in the two diamonds are dual pairs. 
Note that m(l ,I) em(O,2) is a parabolic subalgebra of mc' From the descrip-

tion (2.2) of sPc' we see that m(I,I) consists of degree-preserving operators on 
,9J, and m(O,2) consists of degree-decreasing operators. 
Fact 3. One has 
(3.4) ( (1,1)l!:> (0,2»)+ ' (,(1,1) ,(0,2») , 

mc= m '17m gc' mc= m em +gc' 

Actually, somewhat more precisely, one has 
(2,0) l!:> (0,2) l!:> (0,2) (2,0) l!:> 

m '17 m = Pc '17 m = m '17 Pc ' 
'(2,0) l!:> '(0,2) , l!:> '(0,2) '(2,0) l!:> ' 

m '17 m = Pc '17 m = m '17 Pc • 
(3.5) 
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Here l' and 1" are the -1 eigenspaces for the Cartan involutions of g and g' , 
as in (2.4). 

Example. It is less straightforward to illustrate Fact 3 than the first two facts, 
since it depends on knowing something about how g sits in m, or g' in m'. 
However, consider again the pair (op,q ,sP2n). Then as we have noted, m' = 
sP2n X sP2n . Let Pi' i = 1 ,2, be a projection of m' onto its ith factor. It is not 
hard to see that Pi is an isomorphism from g' = sP2n to each of the two factors. 
However, one of the Pi is "holomorphic" and the other is "antiholomorphic" 
in the following sense: 

(p-I ( ,(2,0)) n ')) c '(0,2) P2 1 m gc _ m , 
(p-I( ,(0,2)) n ')) C '(2,0) P2 1 m gc _ m . 

From these relations we can see that g' n m,(2,0) = {O} = g' n m,(0,2). The 
decompositions (3.5) then follow from this by dimension counting. The relation 
between g = 0p,q and m = Up,q is similar. 

These are the facts we need to describe the structure of .91 as a g x g' module. 
We will also use the known structure for a dual pair (L, L') for which L is 
compact [HI]. Let us recall the essential aspects of these results. We assume 
again that L S; U, where as before U is the maximal compact of Sp used to 
define the Cartan decomposition (2.1), and in terms of which the Fock model 
with which we are working is defined. Then we can write ~ = (I ,1)E9(2,0)E9(0,2) 

with (i ,i) = [C n sp(i ,i) as usual. We set 

(3.6) K(L) = {P E .91: I'(P) = 0 for alII' E (0,2)}. 

Consider the isotypic decomposition of .91 as an L-module: 

(3.7) .91= L ~. 
(1E.9l(L ,co) 

Here any L-invariant and irreducible subspace of ~ defines a representation in 
the isomorphism class of (J. Since co(L) preserves the degree of polynomials, 
the spaces ~ are the sums of their homogeneous components. Let deg( (J) be 
the smallest possible degree of nonzero polynomials occurring in ~. 

Since L commutes with (, in particular with (0,2), it is clear that K(L) 
is invariant under L. Thus, 

Write, for (J E .9P(L, co), 

(3.8) 

K(L) = LK(L) n~. 
(1 

K(L)(1 = K(L) n~. 

Since ( commutes with L, it is clear that ~ is invariant under (, so that 
~ is actually an Lx [' module. In particular, ~ is invariant under [,(0,2). 
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Since the operators in ((0,2) reduce degree, the polynomials of the smallest 
degree in ~ must be in K(L)q. Thus, if ~ "# {O} , then also K(L)q "# {O} . 

Since [,(1,1) normalizes [,(0,2), we see that K(L) will be invariant under 
[(1,1) • Then also each space K(L)q will be invariant under ((1,1) • 

From Classical Invariant Theory, one may derive the following conclusions, 
as explained in [HI]. 
(3.9) 

(a) The joint action of LxI' on ~ is irreducible for each (J E 9f(L, w). 
(3.9) 

(b) The space K(L)q consists precisely of the space of polynomials of 
lowest degree deg( (J) in ~. 

(c) One has ~ = ~«((2,0) • K(L)q' where ~(['(2,0) is the universal en-
veloping algebra of ((2,0) • 

(d) The group L and the Lie algebra ((1,1) generate mutual commutants on 
K(L). Equivalently, each K(L)q is irreducible under the joint action 
of L x [,(1,1) , and if we write K(L)q == (J ® r' for r' E 9f{l'(1 ,I) ,w), 
then (J determines r' and vice versa, so that (J --+ r' is an injection 
from 9f(L, w) into 9f«((1 ,I) ,w). 

To first apply these facts, let L be K or K' , the maximal compact subgroups 
of G or G'. (We will no longer distinguish between K and K, etc. This 
should not cause confusion.) Then L' will be M' or M, respectively. We may 
consider the harmonics K(K) and K(K'). We will denote a typical element of 
9f(K, w) by (J and one of 9f(K' ,w) by (J' . Keeping in mind that K(K) will 
be stabilized by m,(1 ,I) EB m'(0,2) , we observe that combining statement (3.9)(c) 
with Fact 3 «3.4) and (3.5» immediately yields the following result. 

Proposition 3.1. The space K(K) generates .9 as a g' module, and similarly 
for K'. That is, 
(3.10)(a) .9 = ~(g') . K(K) = ~(g) . K(K') , 

where ~(g') is the universal enveloping algebra of g'. Thus, for any (J E 
9f(K, w) or (J' E 9f(K' ,w), one has 

(3.10)(b) ~ = ~(g') .K(K)q' ~, = ~(g) .K(K\. 
Here ~ is the (J-isotypic subspace of .9, and likewise for ~,. 

Consider the pair (m~1 ,I) ,m;? ,1), which we know is a dual pair by Fact 2. 
Let (M(I ,I) ,M,(I ,I) be the associated pair of groups. As we observed, both 
M(1,I) and M,(I,I) are products of unitary groups. In particular, they are 
both compact. Thus, the statements (3.9) for this pair simply amount to the 
statement that if 
(3.11 ) .9= 

TE.5f(M(1 ,I) ,w) T'E.5f(M'(I,I) ,w) 
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are the isotypic decompositions of .9 for M(I ,I) and for M'(I ,I) , then there is 
a bijection 

(3.12) 

such that 

(3.13) 

!JII(M(I ,I) ,co) +-+ !JII(M'(I ,I) ,co), 
I r+-+r 

fr =fr,· 
We will call this common isotypic subspace fr ,r' . Thus, the fr ,r' are finite di-
mensional and irreducible for the action of M(I ,I) x M'(I ,I) • The representation 
of M(I ,I) x M'(I ,I) on fr ,r' is, of course, r ® r' . 

Since K ~ M(l ,I) , the space fr ,r' is invariant under K. The action of 
K x M'(I ,I) on fr ,r' is of course (rIK) ® r' . Thus, if one has rlK ~ Eu ar ,uu , 
then 

dim(~ nfr r') = ar u dimu dim r/. , , 

Note that 

fr,r' = Lfr,r' n~. 
u 

Consider the space 71'( K) n fr , r" Since 71' (K) is invariant under M '( I , I) 

and fr ,r' is isotypic for M'(I ,I) , we have 

71'(K) = L7I'(K) nfr,r" 
r' 

Observe that fr ,r' will consist entirely of polynomials homogeneous of degree 
deg r = deg r' . Thus, we can have ~ nfr r' # {O} only if deg u $ deg r. From 
statement (3.9)(b), we see that if ~ n~,r' # {O}, then 71'(K)u nfr,r' # {O} 
if and only if degu = deg r. Furthermore, since fr r' is isotypic for M'(I ,I) , 

we see from statement (3.9)(d) that 71'(K) nfr r' must be irreducible. Thus, 
we have ' 

Lemma 3.2. Either 71' (K) n fr r' = 0 or there is a unique u E !JII (K , co) such 
that deg u = deg r' and one ha,; the K -module decomposition 

(3.14) fr r' = 71'(K)u EB L ~ nfr r" 
degu<deg r' 

The analogous statement holds for K' . 
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If we combine the decomposition (3.14) with the analogous one for K' , we 
find 

Lemma 3.3. If fe T' n K(K) =j:. {O} =j:. fe T' n K(K'), then under the action of 
K x K' the space j;,T' has the decomposition 

(3.15) fe,T' = K(K)a nK(K')a' ffi L ~ nK(K')a' 
degu<degT' 

degu'<degT 

ffi L Jq n~, nfe,T" 
deg u , deg u' <deg T 

Moreover, one has deg (J = deg (J' = deg't' = deg't" and (J and (J' are uniquely 
determined by 't' and 't", and vice versa. Also the space K(K)a n K(K)a' is 
irreducible under the action of K x K' . Final/y, (J and (J' determine each other, 
so that K and K' generate mutual commutants on K(K) n K(K') . 

Finally, we have 

Proposition 3.4. The space K(K) n K(K') generates ,9' as a 9 x g' module. 
That is, we have 
(3.16) ,9' = ~(g)~(g')(K(K) n K(K')). 
Proof. We argue by induction on deg't' = deg't" that fe ,T' is contained in 
the right-hand side of (3.16). For a given d, let ,9'(d) denote the space of 
polynomials of degree at most d, and let y(d) denote the 9 x g' submodule 
of ,9' generated by ,9'(d). We may assume inductively that y(d) is, in fact, 
generated by ,9'(d) nK(K) nK(K'). This is automatically true for d = 0 since 
the constants are both K and K' harmonic. 

Consider the decomposition (3.15) of fe ,T" According to Proposition 3.1 
and statement (3.9)(b), we have 

~ nK(K\, ~ ~(g')K(K)u ~ y(d) , 

where d = dega. A similar fact holds for K(K)a n~ and for ~ n~, . This 
leaves only K(K)a nK(K\, to account for, but the result is automatic here. 
The proposition follows. 

4. PROOF OF THEOREM 2.1 

Let ./Y ~,9' be an arbitrary subspace of ,9' which is invariant under g, g' , 
and K· K' , and consider the (g x g' ,K . K') quotient module ,9'/./Y. Recall 
that ,9'(d) denotes the space of polynomials of degree at most d , and y(d) the 
(g x g' ,K . K') module generated by ,9'(d) . Let t5 (./Y) be the largest integer d 
such that ,9'(d) (hence y(d)) is contained in ./Y . 
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Lemma 4.1. (a) The number c5 (f) is determined solely by the structure of .91 f 
as a K module, or as a K' module. Specifically, one has 

1 + c5(f) = min{dega: a E 9i(K ,.9 If)} 
= min{dega': a' E 9i(K' ,.9 If)}, 

( 4.1) 

where 9i (K ,.9 I f) is the set of irreducible representations of K occurring in 
.9 If, and likewise for 9i(K' ,.9 If). 

(b) If a E 9i(K ,.9 If), then one of the finite number of a' E 9i(K', co) 
such that Jl'(K)(/ n~, "# {O} occurs in .9 If. 

(c) If a E 9i(K ,.9 If) and dega = c5(f) + 1, then Jl'(K)(/ n Jl'(K') "# 
{O}. If Jl'(K)(/ n Jl'(K') ~ a ® a', then a' E 9i(K' ,.9 If), and no other 
representation of K' occurring in Jl'(K)(/ occurs in .9 If. 
Proof. Consider a in 9i(K ,.9 If). Let (.9 If)(/ denote the a-isotypic com-
ponent of .9 If. Then (.9 If)(/ is a K x (g' ,K') module and is a quotient 
of ~, the a-isotypic component of .9. Precisely, one has 

(.9lf)(/ =~/(fn~). 
From Proposition 3.1, especially equation (3.10)(b), we see that Jl'(K)(/ rt f, 
so that the image of Jl'(K)(/ in .9 If is nonzero. Hence, c5(f) < dega. 
Thus, the left-hand side of equation (4.1) is not greater than the right-hand 
side. The reverse inequality is trivial. Hence, (a) of the lemma follows. 

From the observation that if a E 9i(K ,.9 If), then Jl'(K)(/ has non-
zero image in .9 If, part (b) of the lemma is immediate. To prove part 
(c), suppose Jl'(K)(/ n~, has nonzero image in .9lf. Then equation (4.1) 
implies dega' ~ c5(f) + 1 = dega. Hence Jl'(K)(/ n~, = Jl'(K)(/ nJl'(K')(/, . 
This finishes the lemma. 

Now fix p E 9i(g,K, co) and set f = ~ as in (2.4). Pick a a E 

9i(K ,.9 I~) such that (4.1) holds. Let a' be the associated representation of 
K', as in Lemma 4.1(c). Write Jl'(K)(/ nJl'(K')(/, = ~'(/'. According to the 
proof of Lemma 4.1, we know that ~,(/' generates (.9 I~)(/, the a-isotypic 
component .9 I~, as a g' module. (2.4) tells us that 

(.9 I~)(/ ~ PrJ ® p~ . 

It follows that p~ is generated as a g' module by (p~ )(/, , its a'-isotypic com-
ponent for K' . Furthermore, since p is irreducible, it follows that ~ (/, gen-
erates .9 I ~ as a 9 x g' module. ' 

Let l' and 1" be the representations of M(I,I) and M,(I,I) corresponding 
to a' and a, respectively, via statement (3.9)(d). We have seen (Lemma 3.3) 
that ~,O" = .Yr,T' nJl'(K) nJl'(K'). Here .Yr,T' is as in (3.13). Let eyT,T' be 
the 9 x g' module generated by .Yr,r' . Set d = dega - 1 = c5(~), and define 

(4.2) :zT,T' = (eyr,r' + ey(d))ley(d) . 
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We have just seen that g; /~ is, in fact, a quotient of ::E' ,,' . This leads us to 
, " study some features of ::E' . 

We recall some well-known general facts about (g, K) modules [D]. Let ./f 
be a (g, K) module, and let J.l: W(g) ---+ End(./f) be the associated action of 
W(g). Let W(g)K be the centralizer of K, and let Ea be the projection of ./f 
on ./fa' Then one has an isomorphism 

(4.3) 

Return to consideration of ::E' ,,' . Abbreviate ::E' ,,' =::E. We wish to con-
sider the O'-isotypic component for a , ::Ea ; the a' -isotypic component for K' , 
::Ea, ; and their intersection ::Ea n::Ea, = ::Ea ,a' , which is the 0'0 O"-isotypic com-
ponent for K· K' . Of course, -2;,. is a (g', K')-module, so we may consider its 
K'-isotypic components, and similarly for ::Ea,. We have the obvious equalities 

(4.4) 

We abuse notation to let Jra ' also denote the image of Jr , in ::E. Com-p ap 
bining (3.9)(c) with Lemma 4.1(c), we have 

(4.5) 

Combining (4.3), (4.4), and (4.5) yields 

(4.6) K ,K 
::Ea,a' = W(g) '~,a' = W(g) '~,a" 

Since ~ a' is irreducible under K . K' , we have a canonical isomorphism 

(4.7) 

defined by the map 

T0h---+T(h), hE~,a" TEHomK'K,(~,a,,::E)· 

It is clear that under the isomorphism (4.7), the algebras W(g)K and W(g,)K' 
act on the second factor HomK'K,(~,a' ,::E) = Za,a" Let eo be the distin-
guished vector in Za ,a' defined by the identity map on ~ ,a' . Then (4.6) may 
be restated as 

(4.8) 

(4.8) is the key to proving Theorem 2.1. We note a very simple lemma. 

Lemma 4.2. Let A and B be algebras which act on a vector space V. Suppose 
A and B commute with one another. Suppose also there is a vector Vo E V 
which is a simultaneous cyclic vector for A and for B; that is, 

A(vo) = V = B(vo)' 

Then B is the full commutant of A in End V and vice versa. 
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Proof. Suppose T E End V commutes with A. Since B(vo) = V, we can find 
bT E B such that T(vo) = bT(vO)' We will show T = bT . Consider v E V. 
Since A(vo) = V, we can find a E A such that a(vo) = v. We compute 

This proves the lemma. 

Now we prove Theorem 2.1. Suppose 9' / ~ allowed two irreducible quo-
tients, isomorphic respectively to p ® p' and p ® p" as (g x g' , K . K') modules. 
Each of these modules, and their direct sum, will be a quotient of ~ r' . Con-
sider the (1 ® (1' -isotypic component for K . K' in p ® (p' EB p") and' consider 

. K , K' o/~ , II the actlOn of CfI (g) and of CfI (g ) on HomK.K, (.n: a ,a' , p ® (p EB P )) = X . 
Let eo be the image in this space of the vector eo in (4.8). Since we are dealing 
with a quotient of.z " we see this eo is again a cyclic vector for the action r ,r 

K , K' of CfI(g) and of CfI(g ) on X. Applying Lemma 4.2, we find the two alge-
bras must be mutual commutants in End(X). On the other hand, projection of 
p ® (p' EB p") on the first summand p ® p' will induce on X a transformation 
which commutes with CfI(g')K' but does not belong to CfI(g)K. This contradic-
tion shows it is impossible to have two distinct irreducible quotients of 9' /~. 
This is the second and main statement of Theorem 2.1. 

We have already seen that p~ is generated by the (g', K') module ~ ,a' . 

Since p is irreducible and admissible, it is quasisimple, so that % CfI (g)K acts 
by scalars on p. It follows by the remark in [HI, §5a] that p~ is also qua-
sisimple; in fact, % CfI(g')K' acts by scalars in a way determined by the action 
of .z CfI (g)K . Hence, p~ is finitely generated and quasi simple. It then follows 
from a general result [D] that p~ is also admissible. This finishes Theorem 2.1. 

5. STRUCTURE OF NONCOM PACT DUAL PAIRS 

In this section, we verify Facts 1, 2, and 3 about dual pairs used in §3. There 
should be a very slick way of doing this, but I unfortunately do not have it. 
We must, at least to some extent, resort to the classification of reductive dual 
pairs, cf. [H2, MVW]. Similarities between several classes of pairs permit one 
to avoid excessive tedium. 

It is clearly enough the prove the facts for irreducible dual pairs, of which 
there are seven families. As described in [H2], irreducible dual pairs may be 
divided into two types, type I and type II. Those of type II correspond to division 
algebras, of which there are three containing R, namely, R itself, the complex 
numbers C, and the quaternions H. To each of these corresponds a family of 
irreducible pairs of type II. A list of them follows. 
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(5.1 ) 

(i) 
(ii) 

(iii) 

Division algebra 
R 
C 
H 

ROGER HOWE 

Dual pair family 
(GLm(R), GLn(R» ~ SP2nm(R) 
(GLm(C)' GLn(C» ~ SP4mn(R) 
(GLm(H) , GLn(H» ~ SP8mn(R) 

Irreducible pairs of type I are associated to division algebras with involution. 
There are four of these containing R, namely, R with the trivial involution, C 
with the trivial involution, C with complex conjugation, and H with quater-
nionic conjugation. Again we list the families of dual pairs. 

(5.2) 

(i) 
(ii) 

(iii) 
(iv) 

Division algebra 
with involution 

(R,I) 
(C,I) 
(C, -) 
(H, -) 

Dual pair family 

(0 p ,q , SP2n (R» ~ SP2(p+q)n (R) 
(Op(C) , SP2n(C» ~ SP4pn(R) 
(Up,q' Ur) ~ SP2(p+q)(r+s)(R) 
(Spp,q ,O;n) ~ SP4n(p+q) (R) 

In (5.2), the notation for the groups are consistent with Helgason [HI, Chapter 
IX], except our SP2n(R) and SP2n(C) are his Sp(n ,R) and Sp(n ,C). The -
in (C, -) and (H, -) indicates the appropriate conjugation. 

Observe that in (5.2), except for the family (5.2)(ii), the first group in each 
pair is capable of being compact (if p = 0 or q = 0), and the second group 
has Hermitian structure. If the first member of the pair is noncompact, its 
maximal compact subgroup is a product of two groups of the same type. Thus, 
the maximal compact subgroup of Op,q is Op,o x 00,q' and so forth. It is 
therefore clear that these groups belong to dual pairs, the second member of 
which is a product of two copies of the second member of the original pair. 
(Note that this pair is reducible.) 

The maximal compact subgroup of the second member of the pair is a unitary 
group (or in the case of family (5.2)(iii), whose first and second members are 
not really distinguishable, a product of unitary groups). It belongs to a dual pair 
of type (5.2)(iii). 

The other pairs can be checked similarly. We compile in (5.3) a table of the 
families of pairs, their maximal compact subgroups, and the pairs to which they 
belong. Here we use the notation G, K ,M ,M(I ,I) as in §3. 

(5.3) exhibits some regularities which are worth noting. First, as we observed, 
me will always allow the decomposition (3.2), that is, it will be a graded subal-
gebra of sPe with respect to the grading (2.2). In fact, it is the smallest graded 
subalgebra of sPe containing g. This, in fact, is the content of Fact 3. Second, 
the group M( I , I) is the intersection with the unitary subgroup (of the large Sp 
containing (G, G'» with the algebra (of operators on the symplectic space W 
on which Sp is acting) generated by K. This makes it clear that M(I,I) and 
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M/(I,I) will commute. (Since K and K' commute, so do their linear spans, 
hence, so do the intersections of these spans with the unitary group.) Then 
verifying that (M(I ,I) ,M/(I ,I)) form a dual pair is a simple dimension check. 
Another way of expressing this is that if W is given the complex structure 
corresponding to the unitary structure defining decomposition (2.1), then K 
and K' generate mutual commutants inside EndC<W). No doubt these facts 
can be established a priori. 

In any case, Facts 1,2, and 3 can be read off from (5.3), and there is perhaps 
some virtue in having the data it contains written down for reference. 

6. UNITARY VERSION 

The representation w is, we noted at the beginning, a unitary representation 
of sp. Theorem 1, however, takes no notice of this. It is couched in terms of 
the smooth vectors, and the elements of .9f(G, w) can and will be nonunitary. 
There is also a unitary version of Theorem 1. It is not as precise, because as 
with most results involving L 2 , it involves direct integrals and the consequent 
"almost everywhere" qualifications. This makes it inadequate for the purposes 
of automorphic forms. However, because of the intrinsic interest of the unitary 
case, and because of the cleanness of the result, we treat it. 

I -~ -Theorem 6.1. Let (G, G) ~ Sp be a reductive dual pair, and let (G, G) ~ Sp 
be the inverse image pair in the metaplectic cover Sp of Sp. Then under the 
oscillator representation w of Sp, the von Neumann algebras generated by w( G) 
and w( G') are mutual commutants. 
Proof. The proof is an adaptation of the proof of Theorem 2.1. Let .9 denote 
the Hilbert space completion of the polynomials .9 endowed with the norm 
with respect to which sp acts by skew-Hermitian operators. Similarly, let r(d) 

-(T T') - (d) T T' and $I' ' , etc. be the closure in .9 of the spaces $I' , $1" , etc. used in 
§4. In analogy with the definition given in (4.2), let us set 

(6.1) :zT,T' = (rT,T' + r(d))- 1$1' (d) . 

Then the image of r T ,T' in :zT ,T' is dense, and so the reasoning following 
(5.2) applies to show that 

- I - [( - I -, [(' -
(6.2) :Z(1,(1' = (L (G) .~,(1') = (L (G) .~,(1') . 

I - I . - I - K Here L (G) is the L group algebra of G and L (G) is the subalgebra of 
elements that commute with K. (Since we are now working with the full groups, 
we write K, instead of K as we did in §§3-5.) Continuing, we conclude 

- I - [( - I -, [(' -
Z(1,(1' = (L (G) (eo)) = (L (G) (eo)) . 

Now we need an analogue of Lemma 4.2. The most obvious analogue of 
Lemma 4.2 is false. However, there is an analogue which applies in our case. Let 
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, 1 - K 1 -, K' A and A be the von Neumann algebras generated by L (G) and L (G) , 
respectively, by their actions on Z u ,u" Then the well-known fact [D] that 
irreducible representations of K occur in irreducible representations of G with 
uniformly bounded multiplicity tells us that A and A' are finite von Neumann 
algebras of type I. Thus, the following lemma applies. 

Lemma 6.2. Let A and A' be mutually commuting von Neumann algebras of 
finite type acting on a Hilbert space Z. Suppose there is a vector eo E Z such 
that 

Z = (A(eo))- = (A'(eo))-' 

That is, eo is a cyclic vector for both A and A'. Then A and A' are mutual 
commutants. 
Proof. This follows directly from [Kd, Lemma 2]. 

I am grateful to M. Takesaki for this reference. 
1 - K 1 -, K' It follows, of course, from the lemma that L (G) and L (G) gener-

ate mutual commutants on Z u ,u" Since :z u ,u' is cyclic for :z = :zr ;r' , it 
follows [D] that G and G' generate mutual commutants in :Z. We may as-- -, nmd ) sume by induction that G and G generate mutual commutants on y . It 
is clear from Lemma 4.1 that :zr ,r' is characterized as a G submodule of 
(yr,r' + y(d»)- by the fact that all its subrepresentations contain the K-type 
(J, but contain no K -type i1 with deg i1 < deg (J. Hence, the projection of 
(yr,r' + y(d»)- onto :zr,r' is in the von Neumann algebra generated by G. 
(It will likewise be in the von Neumann algebra generated by G' .) From this we 

- -, r r' (d) see that G and G generate mutual commutants on (y' + y ) - . Repeti-- -, tion of this argument shows then that G and G generate mutual commutants 
on y(d+l) . Then Theorem 6.1 follows by a trivial induction. 

7. CONCLUDING REMARKS 

r r' (a) In the proof of Theorem 2.1, a key role was played by the spaces Z' , 
defined by (5.2). The obvious next step in understanding the correspondence 
whose existence is established by Theorem 2.1 is a finer analysis of the spaces 
:zr,r'. It seems conceivable that in some cases the action of ~(g)K and of 
~(g')K' on the associated space Zu,u' (see (4.8)) is actually multiplicity free. 
It also seems possible that in some interesting cases Zr ,r' may be irreducible 
as a 9 x g' module. In any case, these spaces bear further study. 

(b) Our analysis has shown that the bijection p +-+ p' between .9l (G , w) and 
.9l (G' ,w) has subordinated to it a bijection (J +-+ (J' between certain subsets 
of .9l(K, w) and .9l(K', w), defined by the action of K. K' on the joint 
harmonics K(K) n K(K'). These corresponding representations (J and (J' 

are the K (resp. K') types of lowest degree (in the sense of degree in the 
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polynomial ring .9) in the mutually corresponding representations of 9 and 
9' occurring in %f ;r' • These K -types of "lowest degree" will not in general be 
the "lowest K-type" in the sense of Vogan [V] or others, but there should be a 
strong relation between the two notions. It is not difficult to compute explicitly 
the correspondence a +-+ a' of simultaneous harmonics, but we will not do so 
here. 

(c) The proof of Theorem 2.1 given here was suggested in part by the proof 
of the analogous result (see [H2] for a sketch) in the case of spherical represen-
tations for p-adic groups. In tum, this proof suggests a way of extending the 
p-adic results from the spherical case. This has been done in many cases. See 
[MVW, Wa]. This would then establish some global results about "lifting" in 
the theory of () -series. 
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