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TWO ELEMENTARY PROOFS OF THE L 2 BOUNDEDNESS 
OF CAUCHY INTEGRALS ON LIPSCHITZ CURVES 

R. R. COIFMAN, PETER W. JONES, AND STEPHEN SEMMES 

1. INTRODUCTION 

Let r = {X + iA(x): X E R} be a Lipschitz curve in the complex plane C so 
that A' E L 00 • A well-known theorem (see [2]) asserts that the Cauchy integral 
operator is a bounded operator on L 2 (r) . This result, first proved by Calderon 
[1] under the constraint IIA'IID'" < eo' now has myriad proofs. See, e.g., [4-6], 
as well as the books of Joume [9] and Murai [12]. In this note, we present two 
proofs which are considerably shorter and simpler than other previous proofs. 

The first proof uses complex variables and is presented in this section and 
the next. The second approach gives not only estimates for the Cauchy integral, 
but also a simple proof of the T(b) theorem [6, 11]. The formalism needed for 
this approach can be cast nicely in terms of martingales with respect to com-
plex measures, or in terms of adapting the Haar functions on R to a complex 
measure. The two proofs run exactly in parallel. Lemma 1.1 corresponds to 
Lemma 3.1, and Lemma 1.2 corresponds to Lemma 3.2. The philosophy of our 
second proof, where the idea is to find a suitable frame for L 2 , was heavily 
influenced by work of Tchamitchian and Meyer which they presented at the 
1987 Conference on Fourier Analysis, EI Escorial, Spain. 

Define n± = {x + iA(x) ± y: y > O} to be the two domains lying above or 
below r, and let 

Cg(z) = ( g(')d', lr z -, 
be the Cauchy integral of gEL 2 (r). Then the theorem we shall prove is that 
the boundary values 

Cg(z) = lim Cg(z + iy), 
y-+o+ 

lie in L2 and IICgllu(r) :5 Constilgllu(r)' Our proof yields this inequality 
when both A' and g are COO functions with compact support. Since all 
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constants depend only on IIA/IIL'x" the usual arguments (which we do not give) 
can be used to extend to the case of general A and g. The first proof uses only 
Hilbert space duality and two rather easy lemmata. Let ~ denote the Hilbert 
space of all complex valued, measurable functions on Q+ with norm 

where d (z) = distance( z , r). Let ( , ) X+ denote the inner product in ~. The 
Hilbert space ~ of functions on Q _. is similarly defined. Our first lemma is 
a special case of a more general result due to Kenig [10]. A short proof is given 
in §2. 

Lemma 1.1. Suppose F is holomorphic in Q± and decays to zero at 00. Then 

where d s denotes arclength. 

The converse inequality in Lemma 1.1 is also true [10], and this follows from 
the argument given at the end of this section. 

The idea of our proof is to use Lemma 1.1 to estimate IICgII L2(r)' 

To implement this philosophy we require some auxiliary functions whose 
L 2 (r) norms are rather simple to bound. The proof of our next lemma is also 
delayed until §2. It should be pointed out that this lemma is merely a disguised 
form of well-known results in the theory of Bergman spaces. See, e.g., [3] where 
calculations of this type are carried out in much greater generality. 

Lemma 1.2. Let ! E ~ and define 

T!(,) = ff !(z)d(z)dxdy, 
) }o.+ (z _ ,)2 

,Er. 

The above two estimates can now be combined to yield a proof of the the-
orem. Let B = {! E ~: II!II~ ~ 1, ! compactly supported in Q+}, so 
that for any G E ~, IIGII~ = SUP/ED I(G ,f)~I. Fix g E L2(r), define 
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C' g(Z) = dCg(z)jdz, and invoke Lemma 1.1 plus Fubini to obtain 

(Ir ICgl2 ds y/2 :5 CIIC' g(z)lI~ 
= Csup I(C' g ,1)% I 

fEB + 

= csupl {{ {- { g(C)d~}f(Z)d(Z)dXdYI 
fEB 110.+ 1r (z - C) 

= csup / ( g(C)T(/)(C) dC/ 
fEB 1r 

:5 C sup IIgllv(r) II T(/)lIv(r) 
fEB 

:5 C'lIgIlL2(r) ' 

the final inequality following from Lemma 1.2. 

2. PROVING THE LEMMATA 

555 

We first tum our attention to Lemma 1.1. Our proof is similar to Gamelin 
[7]. Let cI>: R! -+ Q+ denote a conformal mapping so that cI>(R) = rand 
cI>(oo) = 00. Then pulling back fr 1F12 ds to R by cI> and invoking the Koebe 
! theorem (cI>'(z)y '" d(cI>(z))) , we see that Lemma 1.1 is equivalent to the 
estimate 

(2.1) A= hIGI2Ic1>'ldx:5C fh2Id(z)12Ic1>'(Z)lydXdY=CB, 
+ 

for functions G dying at 00. We first require some standard (and well-known) 
Littlewood-Paley estimates. 

Lemma 2.1. Let Hand D be holomorphic on R! and suppose ID(z)1 :5 1, 
z E R!. Then if H dies at 00, 

(2.2) 

and 

(2.3) 

Proof. The first equation is simply Green's theorem. To obtain (2.3) we use 
(2.2) to obtain 

1 2 1 2 l' ,2 IHI dx ~ IHDI dx = 4 IH D+HD I ydxdy. 
R R ~ 

The estimate now follows from the triangle inequality, (2.2), and the inequality 
IH'DI :5 IH'I. 0 



556 R. R. COIFMAN, P. W. JONES, AND STEPHEN SEMMES 

Returning to the proof of (2.1), we use the standard trick that A ~ CB is 
equivalent to the a priori estimate A ~ C(B + Al/2 B 1/ 2). We observe that 
since r is Lipschitz II arg<1>' IILoo < nl2 - e, where e = arccot(IIA'IlLoo) > o. 
Consequently, 

l1G12 1<1>'1 dx ~ C IlIGI2<1>' dxl ' 
so by Green's theorem, 

A = l1G1 21<1>'ldX ~ C Ill! d(GG<I>')YdXdyl 

= 4C Il! (I G' 12<1>' + GG <I>")y dx dyl 

~ CB+C Il2IGG<I>",YdXdY. 
+ 

Now let <1>' = eV so that <1>" = V'ev = V'<I>'. Since IImV(z)1 < n12, 
1<1>"1 ~ e7r / 2 jV'eiV <1>'1 = e7r / 2 ID'<I>'I, where D = eiV. Then by Cauchy-Schwarz 

Il2 IGG'<I>"ly dx dy 
+ 

~ (fIR! Idl'I<I>'IYdXdY) II' (fIR! IGI'W'I'I<I>'IYdXdY) II' 

~ BI/'."I' (11.\IG(<I>'l 1/'I'ID'I'y dx dY) II' 

~ e7r Bl/2Al/2, 

where the last inequality flows from (2.3) because IIDIlHoo ~ e7r/2. 0 

The estimates needed to prove Lemma 1.2 are so crude that virtually any 
reasonable method will work. We give here a proof by Schur's lemma. By 
Lemma 1.1, 

(2.4) 

because T f is holomorphic in n_. Now 

IT/(w)1 = 1(-2) ff f(Z)d(Z)dXdYI 
11n+ (z-w)3 

< 2/" f If(z)ld(z) dx dy. 
- 1n+ Iz-wl 3 

Let L~ denote the space of functions on n± satisfying 

IIFIIL, ~ (fL. IF( zll' dx dY)'" 
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Then by our last inequality, (2.4) follows from the boundedness (from L! to 
L:J of the operator S defined by 

SF(w) = d(W)I/2 jr ( F(z)d(z):/2 dx dy 
10+ Iz -wi 

= fln+ K(z,w)F(z)dxdy, 

where K(z, w) = d(Z)I/2d(w)I/2Iz - wl- 3 • Now for WE n_ fixed, a simple 
calculus computation shows 

fln+ K(z,w)dxdy ~ 4n 

because d (z) ~ Iz - wi. The same computation yields 

f 10_ K(z, w) dA(w) ~ 4n. 

By Schur's lemma (or interpolation between LI and L oo ), S is a bounded 
operator from L! to L~ and IISII L 2 L2 ~ 4n . 

+, -
Our argument yields 

, 2 
IICgIIV(r) ~ C(I + IIA IILoo) IIgllv(r)' 

which is very close to the optimal estimate C(I + IIA'II L oo)3/2 due to Murai 
and David. (See, e.g., Murai's book [12].) This argument can be modified to 
yield David's theorem [4] that C is L2 bounded if and only if r is an Ahlfors 
regular curve (see [8]). 

3. THE SECOND APPROACH 

Let r be a rectifiable Jordan curve passing through 00, and let z(x) denote 
its arclength parameterization. We define the corresponding Cauchy integral 
operator T = Tr by setting 

Tf(x) = lim 100 z'(y). , f(y)dy. 
6-+0+ -00 z(y) - z(x) - uSz (x) 

We wish to show that if r is a chord-arc curve, T is a bounded operator on 
L 2(R). (Recall that r is called a chord-arc curve if there is a constant k so 
that 

Is - tl ~ (I + k)lz(s) - z(t)1 
for all s, t E R. Of course, any Lipschitz graph is a chord-arc curve.) Note 
that if f is a finite linear combination of characteristic functions, then T f 
is defined almost everywhere. Furthermore, if such an f has T f ELI (R) , 
Cauchy's theorem applied to one of the domains complementary to r yields i: Tf(x)z'(x)dx = o. 
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To explain our approach we start with the case of the Hilbert transform, i.e., 
when r = R, and use a variation of well-known methods for treating singular 
integrals via Littlewood-Paley theory. Let !T denote the collection of all dyadic 
intervals in R, and let hI denote the Haar function corresponding to I. That 
is, hl(x) = 111- 1/2 on the left half of I and hl(x) = _111-1/2 on the right half 
of I. Then {hI} is an orthonormal basis for L 2(R). We can then analyze 
the Cauchy integral operator To by viewing it as a matrix operator relative to 
{hI}, i.e., 

Tol = L (Thl' h J}h J(/, hI) . 
I,JE.'T 

Here (.,.) denotes the standard inner product on L 2(R). Suppose we establish 
the inequality 

(3.1) SUP{L I(Tohl'hJ}I+ L I(TOhJ,hl}l} <00. 
I J E.'T J E.'T 

Then To is a bounded operator because of Schur's lemma: a nonnegative matrix 
defines a bounded operator on P if its row and column sums are uniformly 
bounded. The last inequality can be verified by an explicit computation. 

For a general chord-arc curve r, we must modify the Haar system and the 
inner product (.,.). Fix a dyadic interval I and write I = II U I r , where II 
and Ir are the left and right halves of I. Define 

1 ( , 
m(J) = TJT lJ z (x)dx 

to be the mean value of z' over an interval J, so that (1 +k)-I ~ Im(J)1 ~ 1, 
because of the chord-arc condition on r. Set 

-1/2 (m(ll)m(Ir)) 1/2 {-I -I} 
PI(x) = III m(l) m(ll) XI/(X) - m(Ir) XI, (x) , 

where the choice of the square root above is arbitrary. Also let (', '}r be the 
bilinear form defined by 

(I, g}r = i: I(x)g(x)z' (x) dx . 

Then each PI is supported on I and is constant on II and I r . Furthermore, 

(PI' P J}r = 0 if 1# J. 
Our first lemma asserts that {PI} behaves like an orthonormal basis with respect 
to the weight z'(x)dx. 

Lemma 3.1. II IE L2(R) , then 1= E/(/, P/}rPI and 

1 2 ~ 2 2 C II/lb ~ ~ 1(1, P/}rl ~ Cll/lb· 
I 

Our second lemma is the analogue of inequality (3.1). 
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Lemma 3.2. 
sup L {1(TPI'PJ}rl + I(TPJ ,PI}rl} < 00. 

I JE7 

If we accept the above two lemmas, then by Schur's lemma T is bounded 
on L 2(R). 

Proof of Lemma 3.1. Let 9k denote the collection of dyadic intervals oflength 
2-k and define the "expectation" operator Ek by 

XEIE9k. 

Then standard reasoning shows that if f E L2, Ekf -+ f as k -+ +00, and 
Ekf -+ 0 as k -+ -00. Setting 11k = Ek+1 - Ek we obtain 

2 fEL. 

Since I1kf = EIE.9'k (f, PI}rPI ' the first conclusion of the lemma is verified. 
Now consider the case where r = R and change notation so that Ek is 

replaced by Pk and 11k is replaced by Qk. Then 

Qkf = L (f, hI}hI 
IE.9'k 

and since {hI} is an orthonormal basis for L2, 

(3.2) 
00 foo 2 2 L J _ IQkfl dx = IIfllz· 

k=-oo -00 

Expanding out 11k , one sees that 

Il1kfl = IEk+J - Ekfl 

(3.3) 
, -I' Qk(Z') , 

= IPk+1 (z) Qk(Z f} - Pk(z')Pk+1 (z') Pk(z f}1 

:5 ClQk(Z' f}1 + ClQk(z')IIPk(z' f}1, 

because by hypothesis IPk(z')1 :?: c > o. To show that 

note that (3.3) plus an application of (3.2) to z' f reduces us to verifying that 

(3.4) 00 100 , 2 , 2 2 L IQk(z)1 IPk(z f)1 dx:5 ellfllz· 
k=-oo -00 
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Experts will note that this is simply Carleson's theorem on Carleson mea-
sures. We outline the well-known proof. The maximal function F*(x) = 
sUPk IPkF(x)1 satisfies IIF*lIv ~ ClIFIIL 2. Then since IIz'IIL<>O = 1, (3.2) yields 

,,",,' 2 L...t I(z ,h/)1 ~ 1'1 
I<;J 

for any interval 'E!F, and consequently 

""" ' 2 L...t I(z ,h/)1 ~ 1&1 

for any set & c R. Now let &n = {x: (z'ff > 2n} so that 
00 

L 22nl&nl'" IIz'fll; = IIfll;. 
n=-oo 

Then the left-hand side of (3.4) is bounded by 

k=-oo le!7k n=-oo I<;lf. 
00 

= 4 L 22n L I(z' ,h/ )12 

n=-oo le!T 
I<;lf. 

00 

~ 4 L 22n I&nI ~ Cllfll;. 
n=-oo 

Having shown that E/ I(f,P/)1 2 ~ Cllfll;, the converse now follows from 
a standard polarization argument. Let IIflb = 1 and let g = z' J so that 
Ilglb = 1 . Then 

1 = IIfll; = (f,g)r = L(f,P/)(g ,PI) 
I 

::; (~I (f, P/>r!') '/2 (~I(g, p/>r!' ) '/2 

::; c (~l(f'P/>rI'r2. 0 

Notice that the operator Ek defined above is a conditional expectation in 
the sense of probability theory, but defined relative to the complex measure 
z' (x) dx. The point of the proof of Lemma 3.1 is that the expectation operator 
relative to a complex measure still has many of the same properties as in the case 
of a positive measure, although the proofs of some estimates (like the quadratic 
estimates in Lemma 3.1) are more involved. 

Proof of Lemma 3.2. The computations needed for the proof are fairly standard 
and are similar to calculations in the proof of the T( 1) theorem of David and 
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Journc. Although the arguments we give will use the explicit form of the kernel 
of T, similar arguments can be given in much greater generality. The methods 
of this section can be used to give a new proof of the T(b) theorem [6]. We 
shall discuss this more fully after proving Lemma 3.2. 

Let us first collect some estimates for T(PI ). We have 

(3.5) IT(PI)(x)1 :5 Clx - x/l-21/13/2 

if x rt 2I, and otherwise 

(3.6) -1/2 101/1 
IT(PI)(x)1 :5 Cl/I log. {I I I I I I} , mm X-XI' X-YI ,X-WI 

where XI' Y I ' and WI are the two endpoints and center of I. 
To prove (3.5) we use f PI(x)z' (x) dx = 0 to obtain 

IT(PI)(x)1 = If (Z(X) ~ z(y) - z(xI ) ~ Z(yJ z'(Y)PI(Y) dyl· 

An easy calculation using the definition of PI and the chord-arc condition on 
r gives (3.5). 

The proof of (3.6) can be obtained most directly by explicit computation, 
which we omit. 

To prove Lemma 3.2, it suffices to show that 

(3.7) L I(T(p[O,l) ' P ,}rl :5 C, , 
where C depends only on the chord-arc constant of r. That this is enough 
follows from symmetry and a rescaling argument. 

When IJI ~ /0' we get from (3.5) and (3.6) that 

I(T(p[O,l) ' P,}rl :5 ClJI- 1/ 2 if [0,1] n 2J t 0 

:5 ClJ13/21x ,1-2 if [0,1] n 2J = 0. 

From here it is easy to check that the IJI ~ /0 piece of (3.7) is all right. 
Assume now that IJI :5 1~ but J n [-1 ,2] = 0. We apply (3.5) with I 

replaced by J to get 

(3.8) I(T(p[O,l),P,}rl = I(T(P,)'P[O,l)}rl:5 ClJI 3/ 2Ix,I-2. 
The corresponding piece of (3.7) is again easily checked to be bounded. 

We are left with the case IJI :5 to, J ~ [-2,3]. We may as well assume 
that J is closer to 0 than to ! or 1, so that J ~ [-2 , i]. (The other cases are 
similar.) By definition, P[O,l) is a linear combination of X[O,l/2) and X[l/2,l) , 
and the contribution of the second can be controlled exactly as in (3.8). Thus, 
we may as well replace P[O,l) by X[O,l/2) for this estimate. 

Suppose first that J ~ [-2,0]. Using (3.5) with I replaced by J, we get 

(3.9) I(T(X[O,l/2) , P ,}rl = I(T(P,)' X[O,l/2)}rl 

:5 ClJI3/2(1x,1 + IJI)-l , 
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at least if 0 is not an endpoint of J. Even if it is, (3.9) still holds. This can be 
seen by using (3.6) instead of (3.5) for the XIO,IJIl part of XIO,I/2)' 

Now suppose that J ~ [0, i]. Using Cauchy's theorem, it is not hard to see 
that (T(l),PJ}r = f~oo T(PJ)(x)z'(x)dx = 0, so that 

(T(XIO,I/2)) , P J}r = -(Tr (XR\IO,I/2)) , P J}r· 

Using this, we can check that (3.9) holds also when J ~ [0, i]. 
The J ~ [-2, i] part of (3.7) can now be estimated using (3.9) and elemen-

tary computations. This completes the proof of Lemma 3.2. 

Let us make some comments that relate the preceding proof of the L 2 -

boundedness of T to the T(b) theorem. 
With !J..k as in the proof of Lemma 3.1, we have the identity 

(3.10) 

This follows from !J..~ = !J..k , which is easily seen from the interpretation of 
Ek as an expectation. Alternatively, it can be derived from the orthogonality 
properties of the PI'S. 

The analysis of T could have been carried out in terms of the !J..k 's instead 
of the PI'S. Using the formula 

T = L!J..k(!J..kT!J..)!J..j , 
j,k 

the L 2 -boundedness of T is reduced to 

s~p L lI!J..kT!J..jll + sup L lI!J..kT!J..jll, 
J k k j 

(3.11 ) 

where the norm denotes the L 2 operator norm. The proof of this estimate is 
similar to the proof of Lemma 3.2. 

It was not observed in [6] that one could find operators !J..k as above that 
satisfy (3.10). Instead, different operators were built that had much the same 
qualitative properties as our !J..k 's, and the main difficulty was to find a substitute 
for (3.10). (Note, however, that the analogue of the !J..k's in [6] had better 
smoothness properties on their kernels.) 

Let us end with an indication of how the methods of this section can be used 
to give a new proof of the main theorem in [6]. For this we assume the reader 
is familiar with [6]. 

Let us say that bEL 00 (Rn) is dyadic pseudoaccretive if there is a t5 > 0 so 
that 

I,~, fo bl ~ t5 
for all dyadic cubes Q. The operators Ek and !J..k can be defined as before, 
and there are also versions of the Haar functions hI and the PI'S. The T(b) 
theorem can be proved for such a b in the same way as in [6], with the following 
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minor technical changes. (Note that what we call !J.k here was called Ek in 
[6].) 

Let T be an operator associated to a standard kernel that satisfies the weak 
boundedness property and also T(b) = 0, Tt(b) = o. We analyze T using the 
formula 

T = L!J.jk(!J.kTMb!J.)!J.jM;1 , 
j,k 

where Mb! = b!. A slightly more general version of the Schur criterion than 
the one we have used before tells us that T is bounded on L 2 if 

(3.12) s~p 2-aj L 2kall!J.kTMb!J.)1 + sup 2-ak L 2ajll!J.kT Mb!J.jll 
J k k j 

is finite for some a E R. In this case, the choice of a depends on the exponent 
of Holder continuity of the second standard estimate on the kernel of T. (If 
that exponent is 1, as it is for the Cauchy integral, you can take a = 0.) 

The proof of (3.12) is like the proof of Lemma 3.12, but more technical. 
Similar estimates were obtained in [6], except that here we have discontinuities 
in the kernel of !J.k . This difference is not serious. 

In the case where T(b) '" 0 or Tt(b) '" 0, we reduce to the previous case by 
subtracting off paraproducts. These paraproducts are built out of the Ek 's and 
!J.k 's, and hence they will not have standard kernels. However, their kernels will 
be close enough to standard so that the same proof techniques apply. 

A more interesting issue arises when we try to deal with the case where b is 
merely para-accretive. This means that there are constants ~, e > 0 so that 
for every dyadic cube Q there is a subcube Q1 such that IQ11 2:: ~IQI and 

II~II 101 bl2:: e. 
The following modification of our argument (observed by David) allows us 

to handle this case. The idea is to change the sequence of a-algebras so that 
the same argument works. 

Let.9k be the a-algebra generated by the dyadic cubes oflength 2-k • Before 
we took Ek (!) to be the conditional expectation of ! relative to .9k and 
b(x) dx . This time we must be more careful in our choice of a-algebras. 

Choose L E Z so that 2-L ~ ~. Define a-algebras ~ as follows. If Q is 
a dyadic cube of sidelength 2-Lj such that 

II~tI 10 bl2:: /o~ne, 
then we put Q in ~. Otherwise, we choose Q1 ~ Q as in the definition of 
para-accretivity, and we put Q1 and Q\Q1 in ~. In this case, we have 

I'Q~Qll1a\Q' hi" iJ " 
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We define .9ij to be the a-algebra generated by these sets we have chosen. 
The .9ij 's form an increasing sequence of a-algebras in Rn , and we can define 

expectation operators Ej relative to .9ij and b(x) dx. Using these operators, 
the T(b) theorem can be proved for this b as before. 

The authors thank John Garnett, Carlos Kenig, Yves Meyer, Takafumi Murai, 
and Carl Sundberg for comments on early drafts of this paper. 
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