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INTRODUCTION

0.1. Let Hvo be an affine Hecke algebra with parameter v, € C* assumed
to be of infinite order. (The basis elements 7, € Hv0 corresponding to simple

reflections s satisfy (7, + 1)(T, - vgc(s)) = 0, where ¢(s) € N depend on s
and are subject only to c(s) = c(s’) whenever s, s’ are conjugate in the affine
Weyl group.) Such Hecke algebras appear naturally in the representation theory
of semisimple p-adic groups, and understanding their representation theory is
a question of considerable interest.

Consider the “special case” where c(s) is independent of s and the coroots
generate a direct summand. In this “special case,” the question above has been
studied in [1] and a classification of the simple modules was obtained. The
approach of [1] was based on equivariant K-theory.

This approach can be attempted in the general case (some indications are
given in [5, 0.3]), but there appear to be some serious difficulties in carrying it
out.

0.2.  On the other hand, in [5] we introduced some algebras ﬁr , depending
on a parameter 7, € C, which are graded analogues of Hv0 . The graded algebras
H s, are in many respects simpler than Hvo , and in [5] the representation theory
of H, is studied using equivariant homology. Moreover, we can make the
machinery of intersection cohomology work for us in the study of H,, while
in the K-theory context of Hvo it is not clear how to do this. In particular, the
difficulties mentioned above disappear when H, is replaced by H, .

For this reason, 1_t seemed desirable to try to connect the representation the-
ories of H, and H - In this paper, we shall prove that the classification of
simple Hvo-modules can be reduced to the same problem, where Hvo is replaced
essentially by 7-1_,0 . This makes it possible to study the representation theory of

Hv0 without K-theory but with the aid of Tfro . (This is analogous to studying
the representations of a Lie group using the theory of Lie algebras.) It should
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600 GEORGE LUSZTIG

be pointed out that this approach fails when v, is a root of 1, other than 1.
This is a very interesting case which has been studied very little.

0.3. In an unpublished work, Bernstein (partly in collaboration with Zelevin-
skii) described a large commutative subalgebra of H, and the center of H,
(in the “special case” above). We extend these results to the general case. A
number of new difficulties arise, most of them caused by the simple coroots
which are divisible by 2. This extension is done in §3, based on the preparation
of §§1 and 2.

In §4, we introduce a filtration of an affine Hecke algebra and show that
the corresponding graded algebra is the one introduced in [5]. §§5-7 are again
preparatory. In §8, we show that the completion of an affine Hecke algebra
with respect to a maximal ideal of the center is isomorphic to the ring of n x n
matrices with entries in the completion of a (usually smaller) affine Hecke alge-
bra. In §9, we define a natural homomorphism from an affine Hecke algebra to a
suitable completion of its graded version, which becomes an isomorphism when
the first algebra is completed. This homomorphism is of the same nature as the
Chern character from K-theory to homology. In §10, we combine the results of
§§8 and 9 to get our main result (see 10.9), comparing the representation theory
of an affine Hecke algebra with that of a graded one.

0.4. Most of the work on this paper was done during the Fall of 1988 when I
enjoyed the hospitality and support of the Institute for Advanced Study, Prince-
ton. I acknowledge partial support of N.S.F. grant DMS-8610730 (at IAS) and
DMS-8702842.
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1. ROOT SYSTEMS AND AFFINE WEYL GROUPS

1.1. A root system (X,Y,R,R II) consists of

(a) two free abelian groups of finite rank X, Y with a given perfect pairing
(, ) XxY—>1Z,
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(b) two finite subsets R ¢ X, R c Y with a given bijection R — R
denoted a < &, and

(c) asubset IICR.

These data are subject to requirements (d)-(f) below.

(d) (a,a)=2 forall a€R.

(e) For any o € R, the reflection 5,: X — X, x — X — (x,&)a (resp.
5, Y=Y, y—y—(a,y)a) leaves stable R (resp. R).

(f) Any @ € R can be written uniquely as a = pen o p B, where
n,,€Z areall > 0 orall <0. (Accordingly, we say that a € R* or
a€R )

Throughout this paper we will fix a root system (X,Y,R,R,II).
The subgroup of GL(X) generated by all 5, (a € R) may be identified with
the subgroup of GL(Y) generated by all 5, (a € R) by w — ‘w™". This is the

Weyl group W), of the root system. It is a finite Coxeter group on generators
{s la €Il}.

1.2.  Consider the partial order < on R defined by & <&, a,—a isa
linear combination with integer > 0 coefficients of elements of {&|a € IT}.
Let I1,, be the set of all € R such that f is a minimal element for <.

1.3.  We shall assume throughout the paper that (X,Y,R,R,II) is reduced,
ie, a€R=>2a¢R.

1.4, Let W be the semidirect product W, - X . Its elements are wa* (we

’ 1 ’
W, x € X) with multiplication given by wa”* - w'a® = ww'a¥ O ; aq is

a fixed symbol. W acts on Y x Z by wa”: (y,k) = (wy),k - (x,y)). Let
R=R"UR™ CY xZ be defined by
R' ={(&,k)|laeR, k>0}U{(a,0)|acR"},
R ={(&,k)|laeR, k<0}U{(a&,0)|aeR}.
Then R isa W-stable subset of Y x Z .
Define /: W — N by
(a)
l(wa™) =#{A € R"|(wa")(4) e R}

= Y a1+ Y L@l

a€ER* a€ER?
w(a)ER™ w(a)ERY

Let _ -
M= {&,0)acl}u{@,l)aecll }cR",

S={sJacl}ui{s,a’lacll }CW.
We have an obvious bijection II & § (A < s,). An element of S maps the
corresponding element of IT to its negative and it maps the complement of this
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element in R into itself. It follows that for z € W , A€ I , we have
(b)
l 1, ifz7'(4)eR",
I(s,2) = (z) + 1 2_1( )€ R
l(z)-1, ifz (A eR .
It is clear that
) l(w)=Ilw™") (wew).
We deduce that for x € X, a € I, we have
dl) (x,&)>0=>I(s,a’)=1@")+1, l(a*s)=1(a")-1.
(d2) (x,a) <0=I(s,a”)=1(a")-1, l(a*s,)=I(a")+1.
(d3) (x,0)=0=>I(s,a")=1(x)+1, l(a"s)=1(x)+1.
(e) Let
Xyom = {x € X|(x,a) >0, Va eI}
={xeXl|(s,a’)=1(a")+1, YaeII}.

We have, using (a) and (e),
O weW,, xeXy,=>1@")=Y p(x,8), (wa")=l(w)+1a).
It follows that

(8) x,x" € X, =Ila" @) =1(a*) + 1(a*).

1.5. Let Q be the subgroup of X generated by R. The subgroup W,Q
of W is a Coxeter group with S as the set of simple reflections, the length
function being the restriction of /. This subgroup is normal in W and admits
a complement Q = {w € W|w(Il) = I} = {w € W|l(w) = 0}. It is known
that Q is an abelian group, isomorphic to X/Q.

1.6. The notion of direct sum of root systems is defined in an obvious way.
We say that (X,Y,R,R,II) is primitive if either (a) or (b) below holds.
(a) a¢2Y forall a€R.
(b) There is a unique a € II such that & € 2Y ; moreover, {w(a)lw € W}
generate X .

Lemma 1.7. In general, (X,Y ,R,R,II) is (uniquely) a direct sum of primitive
root systems.

Proof. We may assume that we can find o € IT such that & € 2Y. Let X’
be the subgroup of X generated by {w(a)|lw € W}, Y' the subgroup of Y
generated by {Jw(a)|lw € W},

X' ={xeX|(x,y)=0,weY'},
Y'={yerv|(x',y)=0, vx' € X'}.
It is easy to see that ( , ) defines by restriction a perfect pairing X "'xY - Z.
Hence, we have X = X' @ X", Y=Y @Y"”, and (, ) also defines a perfect
pairing X" xY”" - Z. Let R = RnX', R =RnY, ' =nXx',
R'=RnXx", R"=RnY", I" =NnX". Itis clear that (X,Y,R,R,II) isa
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direct sum of the root systems (X',Y’, R’ R',IT') and (X",Y",R",R",11"),
the first of which is primitive. We can repeat this procedure if necessary and
the lemma follows.

2. THE BRAID GROUP

2.1.  Let B be the group with generators 7, (w € W) and relations
(a) T, T, =T,,, whenever l(w)+I[(w') =l(ww').
We say that B is the braid group of W .
Lemma 2.2. Let x € X, o € Il be such that (x,i4) =0. Let s =s, . Then
T,T,=T,T, in B.
Proof. Using 2.1(a) and 1.4(d3), we have T, T, =T, =T,

axs sax TsTa" :
Lemma 2.3. Let x € X, ., o €Il be such that (x,a) =p > 1. Let s =5,
w =sa*sa”. Then

(a) I(a*s)=1(a")-1.

(b) l(a“sa*)=20(a")-2p+1.

(€) l(w)=2l(a")-2p, w=a"", and 2x —pa€ X, .

d) If p=1, then T, 'T, T, 'T,, =T, in B.

Proof. Let I(x) = A. Now (a) follows from 1.4(d1). We have sa*sa* =
@’ = g P 0x —pa, B) = 2(x, B) - pla, B) (BeTl). If B +#a,then
(a,B)<0 so 2x—po,B)>0.1If Bf=0c,then (2x —pa,B)=2p—-2p=0.
Hence, 2x —a € X, By 1.4(f) we have

om *

I(sa*sa™) = Y (s(x)+x,B)

BERT

=Y (s(x), B+ > (x,B)
BER+ BERT

=Y (x.s(B)+ D (x.B)
BERt BERT

=2 ) (x,B) - 2(x,4)

BER*
=2l(a")-2p
=2A-2p,

hence (c).
Now (b) follows from (c) using 1.4(d1).
From (a)-(c) we have (for p = 1)

TsTw = Tsw = Ta"sa" ’ Ta"s
hence (d).

2.4. Weshallregard S as the set of vertices of the Coxeter graph of (W,Q,S)
in the usual way. For a € Il, let S(a) C S be the connected component of

T,=T,, T,T,=T

a axs” a* a*sa* ’
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s = s, in this graph. Assume that & € 2Y . Then S(a) is a Coxeter graph of

affine type 5, (r > 1). Hence, it has a unique nontrivial automorphism ~
Let § =3 € S(a). We can now state

Lemma 2.5. In t{ze setup of 2.4, there is a unique element x € Q such that
(x,a) =2, (x,B) =0 forall B €Il-{a}. Moreover, there exist elements
w',w" € WyQ C W such that

T =Ty » =71,1,17,,, T,T,=T, T T, (in B).
Proof. We may assume that X = Q and S = S(a) (see 2.4). Let Y, be the
subgroup (of index 2) of Y generated by R. Let X , = Hom(Y,,Z). Then
X is naturally a subgroup (of index 2) of X, . Clearly, (X,,Y,,R ,R,II) isa
root system. We denote W, = W - X| with /: W| — N as in 1.4(a) extending
I: W — N and let B, be the corresponding braid group. Then W c W,
B C B, in a natural way; moreover, if Q denotes the set of elements of length
0 of W,, then Q = {1,w} is a group of order 2 which is a complement of W
in W, and {1,7,} is a complement of B in B,. Now conjugation by w is
the nontrivial automorphism of S (as a graph). Hence, wsw ' =§ (see 2.4).
Let x, € X, be defined by (x,,a) =1, (x,,8) =0 for g €1-{a}. We
have x; € X . Indeed, if we had x, € X, then from & € 2Y it would follow
that (x,,&) € 2Z, contradicting (x,,&) = 1.
Set x = 2x,. Then x € X, since X has index 2 in X, . Moreover, (x,&) =
2, (x,B) = o for eIl— {a}
Let o' —a"sweW,, v ewa3x‘_“eVIfl.
Since x, € X, — X, we have atewW, M e oW . Hence, w',w" € W .
We set [, = I(x,). Applying Lemma 2.3 to x, instead of x, we see that
(@) l(w') =1(a"s) = I, -1.
(b) I(w") = 1@ -a*™ %) = 1(@™) + [(a™ %) (see 1.4(g))
=1 —1-211—2=311 -2.
(c) l(a") = l( @) =2l(a™) =21, (see 1.4(g)).
(d) l(a™'s)=Il(a )—1—21 —1 (see 1.4(dl)).
() l(a"'s)=1(a")—1=1 —1 (see 1.4(d1)).
) (@) = l(@™ az""“) =@+ (@) =21, +2] -2 =4l 2.
Applying Lemma 2.3(b) to x, we see that
(2) l(a“sa™) =4l —1-3.
Next we note

T

qx—a —

! X1 3x—a x; s(x;)  2x—a
ww =a sa =a a sa

2x1—a _ 2x|—a 2x;,  a 2x1—a
=a sa =a saa

2x,  2x; X x
=a'sa™ =a’sa".
By (a), (b), and (g) we have /(w') + [(w") = [(a"sa”) = 4/, — 3. Hence,
r,T,=T

w a*sa* °
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We have
r. N X1 ~ 3x—a X1 3X1—CK 2x—a
w'sw" = a" swSwa =a"-a =a
By (a), (b), and (f) we have [(w') + [(§) + [(w") = {(@™ ™) = 41, - 2.
We have

T.T7T.=T7T,T..T.T (see (d), (e))

axs” ax a*1 “a*ts T a*1 * gX1
=TT T T, T, (see 1.4(d1))

a*1 £ gx1 a*t 1 g%

=T, T,T, ., (see Lemma 2.3(d))
=T, T, T, g (s€€ 1.4(g))
=T, T T,Ty, -. (seel.4(dl))
=7,TTTTT,.,
=T,T'T,,.
The lemma is proved.
2.6. We define, for any x € X, an element Tx € B as follows. We write

x =x,-x, with x,,x, € X, ,andweset T =T, Ta'le . This is independent

of the choice of x,, x, since T, T, = T Ty = Ty for x',x" € Xy
(see 1.4(g)).
Lemma2.7. (a) If x€ X, ,then T =T,.

(b) Wehave T, T, =T, for x ,x" e X.

(c) If xe X, ael satisfy (x,&)=0 and s,=s, then T,T =T, T,.
(d) If xeX, acll satisfy (x,6)=1 and s, =s, then T = STS(X)TS.
() If x € X, a € I satisfy (x,&) =2, & € 2Y, and s, = s, then

there exist elements y,y' € B such that T T, = v, T, =7T,
T T, ' =yT}; (5 asin2.4).

Proof. (a) and (b) follow immediately from the definition. In (c), we can write
X =X, —X,, where x,,x, € X,  satisfy (x, , &) = (x,,&) =0, and it remains
to observe that T, , T,,, commute with 7, by Lemma 2.2.
In (d), we can write x = x, — x,, where x,,x, € X, = satisfy (x ,&) =1,
(x,,a) =0. We have
Ts lTsz lTx = Ts 1Ta“‘l Ta"zl

=T 'T, T 'T,. T, (using Lemma 2.2 for x,)

s a1 s a*1 =~ a*2

=T

sa*1sa*1

T
T

];—IT T—l

a*t = a*2

Ta_lez (using Lemma 2.3(d))

-1
ale —a Ta2x2
= T2x1 —a—2x;

= Ts(x) T

X

=T, _, (seeLemma 2.3(c))

(see (b)).

We now multiply on the right by T;l and (d) follows.
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We fix a €Il with & €2Y .

Assume that (e) holds for some x € X with (x,a)=2.

Now let x' € X be such that (x’,&) = 0. Then (e) holds for x +x' instead
of x, with Tx,y, 7' instead of y, 7 (we use (b) and (c)). Thus, it is enough
to prove (e) for a single x, namely, that given by Lemma 2.5. In this case,
weset y=T,, 9 =T ,T.', where w', w” are as in Lemma 2.5. Using

w w' “ax
Lemma 2.5, we are reduced to verifying the following identities:

(f) Ta"sa*r ' Ta—"1 = rs'Ts(x) :
(g) Taz"“x Ta-;l = Tx—a .
(h) Ta"s = Tsz—] :
Now T, 'T,. .. = T,p.p (see Lemma 2.3(b) and (c)) and sa*sa” = a’™**.
Hence, (f) is equivalent to T ,,),, -Ta_,tl = TS(X) which follows from the definition
of Ts(x) and the fact that s(x)+x =2x -2a € X, _ (see Lemma 2.3(c)). We
and (g) is equivalent to

dom
also have that x —a € X, . Hence, T, __ =T,

T, -T,..= T,. ., which follows from 1.4(g). Finally, (h) is equivalent to
T

ax*(l
s 1, = T, which follows from 1.4(d1). The lemma is proved.

Lemma 2.8. Let B' be the subgroup of B generated by T, forall x € Xy,
and by T, forall a €I1. Then B' =B.

Proof. Let a €Il ,let A= (a,l1)€ I, s,=sa"€S (see 1.4). Now —a €
X, (since a €Il ). We have a®(4) =a®(&,1) = (&, — 1) € R~ . Hence, by
1.4(b), we have [(s,a”*) =1(a”*)~1. Thisimplies T, . =T, T, , . =T, T, .
Hence, 7, =T, T, ' € B'. Thus, T, € B' forall s € S. Hence, T, € B'
for all w € W,,Q, since such w are of the form s,5,---5, (5, €S, p= l(w)).
Now let w € Q. We can find x € X, such that x-w€ W,Q and T, € B .
We have 7,7, =T, . Hence, T, =T, . T, € B'. Since B is generated by
the elements T, (w € Q) and T, (w € W,Q), we have B'=B.

3. THE HECKE ALGEBRA
3.1. Consider the following three kinds of data:

(a) a function L: W — N such that L(ww') = L(w) + L(w') whenever
w,w' € W satisfy l(ww') = l(w) + [(w'),
(b) afunction L,: S — N such that L (s) = L,(s") whenever s,s' €S are
conjugate in W,
(c) a function A:IT — N such that A(a) = A(a') whenever a,a’ € II
satisfy (o', &) = (o,d’) = —1, together with a function A*: {a € l|d €
2Y} — N.
We have a natural bijection between the set of functions as in (a) and the set
of functions as in (b) and also a natural bijection between the set of functions
as in (b) and the set of pairs of functions as in (c). The first bijection is defined
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by L— L, =L|,thesecondby L, — (A,A"), where A(a) =L,(s,) (aell),
A(@)=L,(5,) (a€Il, a€2Y, §, asin 2.4). To see that it is a bijection, we
use Lemma 1.7.

Hence, a datum of type (a) is equivalent to a datum of type (b) or one of
type (c). Such a datum is called a parameter set for the root system.

We shall assume that a parameter set for our root system has been fixed.
Hence, L, L,, A, and A" are defined.

We denote by L:B — Z the unique homomorphism such that z(Tw) =
L(w) forall we W.

Many results in this section are due to Bernstein and Zelevinski, or Bernstein,
in the “special case”mentioned in 0.1 (see [4, 4.3, 4.4]).

3.2. Let v be an indeterminate and let &/ = C[v ,v—l] . The Hecke algebra
H (over &) is defined to be the quotient of the group algebra (over &) of
the braid group B by the two-sided ideal generated by the elements

(T, +1)(T, - v*"),  ses.

The image of 7, € B (resp. T, € B, see 2.6) in H is denoted again T,
(resp. T,).

It is well known that

(a) the elements T, € H (w € W) form a basis of H as an &/ -module.
We have the following identity in H :

2L(s)y _

(d) (T,+1)(T,-v""")=0 (s€S).
3.3. For any x € X , we define

(@) 6, =v"""™T eH.
From Lemma 2.7(b) we see that

(b) 6.6, =6 forall x,x' € X, 6,=1.

Lemma 3.4. (a) The elements T, 0 € H (w € W,, x € X) are linearly
independent over & .

(b) The elements 6 T, € H (w € W, x € X) are linearly independent over
& .

Proof. Assume that we have a relation Y- f,7,, 6

Xi

xX+x'

=0, where (w,,x,), ...,

(w,,x,) (n>1) are distinct elements of W, x X and f,...,f, €& - 0.
We can find x € X, suchthat x +x, € X, for i=1,...,n. Multiplying

our relation on the right by 6, , we obtain ZL, fiTwi() = 0. Hence,

Xi+Xx

n
—L( x+x,-)
Z fo ™ T, Ty =0.

i=1

Using 1.4(f), we deduce Y7 fv "™, ... =0, contradicting 3.2(a). This
proves (a). The proof of (b) is similar and will be omitted.
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3.5. Let & be the & -submodule of H generated by the elements 6 (x €
X). This is a subalgebra of H. From Lemma 3.4, we see that

(a) Z[X] - &, (x — 6,) is an & -algebra isomorphism. (&[X] is the
group algebra of X over & .)

(b) Let K be the quotient field of the algebra & . If x € X and a €11, the
element (6, — Gsa(x)) /(1 —06__) € K actually belongs to & . Indeed, it is equal
to 6,.(1— 6" )/(1-6_), where n= (x,Ex) . Similarly, if o €I is such that
& € 2Y , then the element (6, — 6 _ (x))/ (1-6_,,) € K actually belongs to &.

It is equal to 6, (1 — Of'za)/(l
state the following resuit.

), where n' = 4(x,&) € Z. We can now

—2a

Proposition 3.6. Let x € X, a €11, s =5, . We have the following identity in
H:
0 —
@ -5, fag2y,

—a

0, Gs(x)
6-—20 ’
ifae2Y.

osz_Tsos(x) = ((,UZII(a) _ l) +6 (,U).(a)+l‘( a) (a) —A* (a)))

(Recall that A(c) = L(s), A"(a) = L(3), where § =3§_ is as in 2.4.)
Proof. Assume that o is fixed and that the identity above is known for two
elements x, x' of X. Then we see immediately that it also holds for x + x'
and for —x. Hence, it is enough to prove the identity for x in a fixed set of
generators of the abelian group X .

If & ¢2Y, wecan find x; € X such that (x &) =
by x, and by the elements x' € X such that (x', &)

If & €2Y, we can find x2 € X such that (x2 &)
by x, and by the elements x' € X such that (x',d&)=0.

If (x,&) =0, we have sx = x, and our identity reduces to 6, 7, = 7,6,
which follows from Lemma 2.7(c). Therefore, it remains to prove our identity

for x € X such that
A 1, ifag?2y,
b, ) = { 2, ifaeay.
Assume first that & ¢ 2Y and (x,&) = 1. From Lemma 2.7(d), we have
T,=T,T,,T, in B. Applying L to this, we obtain L(T ) = L( Ty +2L(s).

Hence, vL(T”)G T p Tl X)TS in H,so that v*'¥0,. T ' =T, . We

substitute 7' = 'v_ZL IT, + (™29 — 1) (see 3.2(b)), and we obtain 6,7, —
T,60 (v (s -1)6, whlch verifies the desired identity.

Aig;)ume next that & €2Y and (x,&) =2. From Lemma 2.7(¢), we have
(a) TTS(X =y, T, =7T, TXTS'l =yT}y' for some 7,7 € B.
Applying L, we obtain 5

(b) L(Ts(x)) =V~ L(s), L(T _a) =V +L(3), L(T,) =vy+ L(s)+2L(3),

where v, = L)+ L@y).

and X is generated

1,
0.
2, and X is generated
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In the group algebra of B over &/ we have

o § e 2L(3) 77 2 2L(S 2L(3
Tsz - (UZL(S) - I)Tx—a -v (S)T;Ts(x) = y(]} - (’U o 1)T§ —v (S))yl'

The last expression has image equal to zero in H (see 3.2(b)). Hence, in H
we have T T, ' - @ _ T vVEOTT 2Ty = 0, or equivalently

X—a
LT, -1 2L L(Teea 2L .
6,77 - @™ — 1yt Trlg oy Ty o,
Using (b), this becomes
vL(s)+2L(§)0sz—l _ (sz(s) B l)vm)ex—a _ p2LO=LS) 7,0, =0.

We again substitute 7, ' = v~ "7, + (072 _ 1), and we obtain
L(s)+L(3) L( )‘L(~) 2L(s)
6.7, — T,0,,y = (0" 0079 4™ 1)

which verifies the desired identity. This completes the proof of the proposition.

X

Proposition 3.7. (a) The elements T,6, € H (w € W,, x € X) form an
& -basis for H .

(b) The elements 0 T, € H (we W,, x € X) form an &/ -basis for H .
Proof. Let H, (resp. H,) be the ./-submodule of H generated by the ele-
ments in (a) (resp. in (b)). Using Proposition 3.6 and induction on /(w), we
seethat 7, 0 € H,, 6. T € H forany w € W,, x € X. Hence, H, = H, .
Now H, is stable under left multiplication by elements T, , while H, is stable
under left multiplication by elements ¢, . Hence, H, = H, is stable under left
multiplication by elements T, , 6, (w € W, x € X). But these elements
generate H as an &/ -algebra, by Lemma 2.8, and 1 € H; = H, . It follows that
H, = H,= H. It remains to use Lemma 3.4.

3.8. We define for any o € Il an element £(a) € K (see 3.5(b)) by

g v?@ _ 1
Y T fagay,
Z(a) = 0,—-1
- Ma)+A™(a) _ Ma)—A* ()
(0,0 D6, D ifacoy.
0,,—1

(This is reminiscent of the cy-function in [6, p. 51].)
We can reformulate the identity in Proposition 3.6 as follows.

Proposition 3.9. In the setup of Proposition 3.6 we have
0, (T, +1)— (T, + )b, = (6, — Os(x))?(a).
(The right-hand side is in @ .)
Corollary 3.10. If x€ X, a €Il, then 6, + Gsa(x) commutes with T .
Proof. We write the identity in Proposition 3.9 for x and for s (x) and add
the results. We see that 6 _+ 03 () commutes with T, +1, hence the corollary.

The following result is due to Bernstein, in the “special case” (see 0.1).
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Proposition 3.11. Let .Z be the center of H. Then Z is the free &/ -submodule
of H with basis (zy, =) ), 0,), where M runs over all W-orbits in X .

Proof. From Corollary 3.10, we see that z,, commutes with T, forany « € I1.
It clearly commutes with 6 , for any x" € X. Hence, by 2.8, Z, isin Z .
The linear independence of the elements z,, is clear from 3.5(a). The fact
that they generate .Z* as an . -module is proved by a specialization argument
(reduction by v — 1 to the case of the group algebra C[W¥]) as in [3, 8.1].

3.12.  We have a natural &/ -linear action w: f — w(f) of W, on & such
that w(6,) = Gw(x) for x € X, and the previous proposition implies that
Z=0" (the W-invariants). This action extends to an action w: f — w(f)
of W, on K (by field automorphism). Let F be the quotient field of Z". We

have
Zcdo

n n
F cKkK

We have a natural isomorphism

(@) @, F 5K, (o f—Ef.

(We must show only that, given any element & € @ — 0, we can find ¢ € @ -0
such that &&' € Z . It is sufficient to take &' = Oemwe W©)2)

Let H. be the F-algebra H®., F. It contains H as a 2 -subalgebra.
We identify the subspace & ®., F of H, with K using (a). Thus, we have
KCH.

We have two decompositions

(b) H= @we% T,0= @we%é’Tw
(cf. Proposition 3.7). Tensoring with F over .Z°, we obtain two decomposi-
tions,

(C) HF = ®w€W0 TwK = ®w€W0 KTw .

In the F-algebra H,, we have

(d) ST, +1) = (T, +1)s,(/) = (f - 5,(N)¥ (@)
for any f € K, o € Il1. Indeed, by (a), we can write f = f|/z, f, € O,
z € Z -0 and we are reduced to the case where f € &, in which case we may
use Proposition 3.9.

3.13.  For later reference, we define for any a € R: Aa) = A(a'), Z(a) =
w(¥(a')), where o' isarootin IT and w € W), is such that & = w(a’). (It
is easy to see that this is independent of the choice of o' and w.) Similarly,
for any a € R such that & € 2Y, we set A"(a) = A"(a'), where o' € II,
wew,, a= w(a') . Then the formula for £(a) given in 3.8 remains true for
any a € R.

3.14. Let J bethetorus Y C*. If x € X, we shall identify the basis
element 6_ of & with the character § :.9 —C*, 0 (y®() = (" ey,
LeCh.
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Hence, we may identify the C-algebra & with the coordinate ring of the torus
TxC”: to the basis element v'6  of & corresponds the character TxC* — C*,
(t,¢)~ {{Ox(t). In particular, v corresponds to pr,: .9 xC* — C". Then K
becomes the field of rational functions on .7 xC* . We may also identify Y with
the group of all algebraic homomorphisms C* — .7 ; to y € Y corresponds
h:C =T, h()=yel.

Now W, actson J by w:y®{— w(y)®{ and on I xC" by (1,¢) —
(w(t),¢,). This induces on functions the action of W, on & and K consid-
ered in 3.12. We have

(a) s,(t) =th(0.(1)"" (a€R,teT).

We note also that if « € R, then

(b) .
{1, if & ¢ 2v,

k 2 C 5 T) =
er(hy: € ) {{1,—1}, ifae2y.

Lemma 3.15. Let t € 7 . Then t is Wy-invariant if and only if for any o € I1
we have

(a) .
{ 0.()=1, ifag2y,

0 (1)==+1, ifae2y.

Proof. Condition (a) is equivalent to s _(¢) = ¢ (by 3.14(a) and (b)), and it
remains to use the fact that W), is generated by {s |a € IT}.

4. THE GRADED HECKE ALGEBRA

4.1. We assume that a parameter set for the root system (X,Y,R,R,II) has
been fixed. In addition, we assume given a W-invariant element 7, € 7 .
To t, corresponds a C-algebra homomorphism 4: & — C defined by h(v)
=1, h(6,)=16.(,) (xe€X).ByLemma 3.15, we have for any a €II,
(a)
h(8,) =

a

{1, ifag2y,
+1, ifaeY.

Let / be the kernel of 4 (a maximal ideal of ). Let & =1I'/I'"" (i > 0),
and let & = @, &' . This is a commutative graded C-algebra in a natural
way. The action of W, on & induces an action of W, on & since I is W-
stable (recall that ¢, is W-invarant). For any f € &, we denote by d(f) the
image of f—h(f)1 in I/I* =& . We have

(b) d(ff) =h(NA(f)+h(f)d(f) for f,f €®.

If we regard H as a left @-module (see 3.12(b)), we can consider the filtration
(c) H>IH>PPH> .

Lemma 4.2. The filtration 4.1(c) is compatible with the multiplication in H , i.e.,
I'H-PHcI'H (i,j>0).
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Proof. We first show

(@) T,-I’ c’H for j>0, weW,.

We use induction on /(w). We see that it is enough to consider the case where
w =5, (a€ll). We can also assume that j > 1. Using 3.12(d), we see that
it is enough to check that for f € I, we have

(b) s,(Hel.

(c)

f—_c—ﬂ’(—f) er’™", wherec= {
6 -1

d 60 —1erif g¢2v.

(€) 6 v e _pg el if ae2y.
(Recall that if & € 2Y, we have h(6,) = £1 and that the expression in (e) is
one of the two factors of the numerator of & (a) in 3.8.) Now (b), (d), and (e)
are obvious. To verify (c). we note that

fr=s,(ff =fJf”—sa(f”) N [ =5, o
6 -1 0; -1 -1
which reduces us to the case where j = 1. We have forany f €&,
(f=s,(N/O, -1 el
(see 3.5). Thus (a) is proved. It implies H - I c IjH? where, in. HI , H is
regarded as a right @-module. Similarly, we see that I’H c H - I’ . Hence,
() PH=HI .
We have, using (f),

1, ifag?2y,
2, ifae2y.

I'H-PHcI''HH=TI"H.

The lemma is proved.
4.3.  From the previous lemma, we see that

(a) H=@,.,H , where H =I'H/I'"'H
inherits from H an associative C-algebra structure (the graded algebra asso-
ciated to the filtration 4.1(c)). Moreover, @ is naturally a subalgebra of H .
(From 3.12(b), we see that I' N I'"'H = 1" )

Let ¢, betheimageof T, in H/IH =" (w e W,),andlet r =d(v) s
(see 4.1). Then ¢, is the unit element of H. Let K be the quotient field of
"

Proposition 4.4. We have
(@) H=@,ew, @ "1, = Puew,tw C

(b) 1ty =ty (W,w' € Wy).
(© ¢-t, —t, 5.(¢)=(0—5,(9)(g) - 1)(Vp€F, a€ll), where
d(8,) + 2A(a)r .
—d(o;)—'— s lfa ¢ 2Y, _
g(a)= (g(a) €K).

d(8.) + (Aa) + h(8,)A" (a))r
d(6) ’

a

ifaeyY,



AFFINE HECKE ALGEBRAS AND THEIR GRADED VERSION 613

Proof. (a) follows easily from definitions and from 3.12(b). To prove (b) we
may assume that w =s_ (a € II). We have

T, ifls,w)=1w)+1,
I, T, = : 2A(a) ) , ,
’ s T =T, + T ), ifl(s,w)=(w)-
Now v*@ _1¢7. Taking images under H — " , we find (b). To prove (c),

we note that & is generated as a C-algebra by Z' and that if (c) is true for ¢
and ¢’ in @, then it is also true for ¢¢’ . Thus, it is enough to check (c) for
$ec@ or & . For ¢e(7’0, (c) is obvious. If €@ , we can write ¢ =d(f)
for some feI. Apply IH — IH/I’H = H' to the identity

@ fT, =T, s,(f)=(-s,(NE(@)-1).
The left-hand s1de of (d) is mapped to ¢¢, —1 s, (f), and it remains to show
that the right-hand side of (d) (an element “of é’ NIH = 1) satisfies

(€ d((f = s,(NE (@) - 1)) = (¢ = 5,(8))(g(a) - 1).
Let f= (f—sa(f))/(GZ, —1) (c asin 4.2(c)). From 4.2(c) we see that f €@ .
By 4.1(b), we have

¢—s,(8) =d(f —s,(f) =d(f(8 - 1))
= h(f)d(6; - 1) +d()Hh; - 1)
= h(f)d(8.) = ch(f)d(6,).

Hence,

(f)

(&= 5, (#)(8(@) = 1) = (= 5,(#) 7o
=cnh(f)r = cnh(fHd(w — 1) =d(cnf(v - 1)),

where
_{2,1(a), ifag2y,
T\ A@) +h(0)4 (), ifae2Y.

Now nf(v—1) €I, and from (f) we see that (e) is equivalent to the following
statement:

@ (f —5,(NE (@) - )-enfw-1)el.
Since f-s5,(f) = f (0 —1) and f € @, we see that (g) would be a consequence
of the following statement:

(h) (65-1)-(F(a)-1)—cn(v-1)el’.
Assume first that & ¢ 2Y . Then the left-hand side of (h) is

,Un

Oa(v"—1)—n(v—1)=(0a—1)(v"—l)+(v__ll ——n)(v—l)elz.
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Assume next that & € 2Y . Then the left-hand side of (h) is
gza(vﬂ(a) -1+ 90(11'1('1)“‘(0‘) - v“a)—”(a)) —2n(v-1)
= (0, — D™ = 1) + (6, - h(8,) ("W — H )
2AM(a)
v -1
+ (ﬁ - 2/1(&)) (’U — 1)
He)+4"(0) _ |

+h(6,) (v? () +1*(a))) (v-1)

Ma)=4"(e) _
- h(6,) <U—W1‘ = (Aa) = i*(a))> w-1el,

since 2n = 2A(a) + h(6,)(A(a) + A (a) - h(6,)(A(a) — 2*(a)). Hence, (h) is
verified and the proposition is proved.

Proposition 4.5. Let Z be the center of H. Then Z =8"° (W,-invariants in
o).

The proof is the same as that of [5, 6.5].

4.6. Let F be the quotient field of Z . As in 3.12(a), we have

(a) e ®§’_F =ZK.
Let Hz be the F-algebra H ®= F. It contains H as a .Z-subalgebra. We
identify the subspace & ®= F of Hy with K using (a). Thus, we have K C
Hg.

Tensoring 4.4(a) with F over Z , we obtain two decompositions

(b) Hf_= @we%t_w ‘K=@,en,K-1,-

In the F-algebra Hy, we have

(©) o(t, +1)=(t, + )s,(¢) = (¢ —s,(¢))g(e) (p€K, aell).
(Note that the W -action on @ extendsto a W,-action on K by field automor-
phisms.) This is deduced from Proposition 4.4(c) in the same way that 3.12(d)
is deduced from 3.9.

5. THE ELEMENTS T, AND T

5.1.  We preserve the setup of §§3 and 4. For any a € I1, we define t* € H,.,
% e ﬁf by

(@) ©*+1=(T, + NZ()™", "+ 1=(1, +1)g(a)”".
Proposition 5.2. (a) There is a unique homomorphism t: Wy — (group of units
of H.) (resp. T: Wy — (group of units of Hg)) such that s, — t* (resp. s, —
%) forall a €11.

(b) Let 7, = 1(w), 7, =T(w) (w € W,). For any f €K (resp. p €K),
we have ft1, = tww"l(f) in H. (resp. 7, = fww_‘(q&) in Hg).

The proof is based on the following lemma.
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Lemma 5.3. (a) Let ® = ¥, pp. (1) v™*"")T, € H and let h € Hy be
such that ®fh =0 (in Hp) forall fe€e&. Then h=0.

(b) Let ® = Lwew (= )I(M)tw € H and let h € Hy be such that ®¢h = 0
(in Hg) forall €& . Then h=0.
Proof. Multiplying & (resp. &) by a suitable element of Z (resp. Z), W
may assume that 4 € H (resp. h € H). We shall assume statements (c) and
(d) below:

(c) If h e H satisfies Dfh e (v—1)H forall f€&,then he(v-1)H

(d) If h e H satisfies ®ph € rH forall p €&, then herH.
Using (c) and (d) and the assumpuons of (a) and (b), we see that 4 = (v — 1)A’
(resp. h = rh') for some h' € H (resp. k' € H) But then (v — 1)®fh’ =0
for all f € @ (resp. r®ph’ = 0 for all ¢ € &). Hence, ®fh' = 0 for all
f €@ (resp. Dph’' = 0 for all ¢ € &), and using (c) and (d) again, we see
that ' € (v — 1)H (resp. k' € rH), so that he - 1) H (resp. her H)
Continuing in this way, we see that h € (v—1)'H (resp. h € r'H) forall i > 1.
Hence, h=0 and A7 =0.

It remains to prove (c) and (d).

First note that

fT, -T,s,(f)e(-1H, ot — 1, 5,(9) € rH

forall fe@, aell, ¢ €@ (see Proposition 3.6 and Proposition 4.4(c)).
Hence, by induction on /(w'), we have

(©) |
{ T, -T,w (f)ew-1)H,
$t, —t, w0 (§)erH

for all w' € W},.

Let A, h be asin (c) and (d).

We can write uniquely 2 = 3 ey TSy s B = Zpem tw b (i €C,
¢, €7). See 3.12(b) and Proposition 4.4(a). By assumption, we have

Y ®fT,.f,c(v-1)H (NfeO),

> ®¢t,. ¢, €rH (Vpeb).
wl
Hence, using (e), we have

Zcb TN, ew-1D)H (Vfed),

Y, w (¢)¢,, €rH (Vped).



616 GEORGE LUSZTIG

Now T, T, —T,, €w-1H, v _1e@-1)H forall w,w eW.

w”w! w
Hence, we deduce

S 0T, W (N, ew-DH (Vfeed),

w,w’

S =) w98, €rH (VEF),

w,w’

. / "
or, setting ww =w ,

S 0T W T (N, € - DH (Y ed),

w' ’wll

S =00 (9, € H (V).

w’ ,w”

Using 3.12(b) and Proposition 4.4(a), we deduce that

(0) T (D' (NS, €18 (Vfed),

(8) LoD (9)8,, €18 (¥pe®).

We write (f) (resp. (g)) for f = 0;, i=0,1,...,[W|—1 (resp. ¢ = ¢>i,
i=0,1,...,|W|—1), where x € X (resp. ¢, € &) is fixed such that
x # w(x) (resp. ¢, # w(¢,)) for all w € W,. Using Cramer’s rule, we see
that for all w’ € W, we have

(h) 61, € (v—1)& (resp. 6¢,, €rT),
where J is a Vandermonde determinant in the variables w_l(ex) , w e W,
(resp. w_'(qbl), w € W,). Hence, § (resp. §) is a product of elements of &
(resp. &) of the form w:'(6,)—w; '(6.), w, # w, (resp. w; ' ($,)—w; ' (4,),
w, # w,). These factors of J (resp. J) are nonzero and are not divisible by
v—1 (resp. r). Since & (resp. &) is a unique factorization domain, from (h)
it follows that f , € (v —1)& (resp. ¢, € r@) for all w' e W, , and (c) and
(d) follow. The lemma is proved.

5.4. Proof of Proposition 5.2. If ® is as in 4.3(a), we have clearly

(a) ®(T, +1)=0 forany a€ll.

If feK, aell, we have (in Hy)

Bf(t"+1) = Of(T, +1)Z(a)”
= (T, + 1)s,(f) + (f =5, (/NZ(@)F ()" (see 3.12(d))
=®(f -s,(f) (see(a)).
Hence, ®f1* = -®s_(f).
Applying this identity repeatedly, we get

(b) ®frT 7 = (1) ®s, 5,5, (f)
for any sequence «,,a,,...,a, in II. Assume now that s s ---s =1 in

p a) a2 Qp

W,. Then p must be even and we also have S0y SaySay = 1 in W,. From
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(b), we deduce that t*'t**...7® = 1. This proves Proposition 5.2(a) for .
We now rewrite 3.12(d) using 5.1(a):

[+ DE (@) - (" + DZ(a)s,(f) = (f = 5,(NZ(a).

Cancelling & (), we obtain f7® = %5 (f) (f € K, a €Il) and Proposition
5.2(b) follows (for 7). The proof for 7 is completely similar.
Proposition 5.5. (a) Hy =@, cp, Ty K = Dyew, K - 7, -

(b) Hg = ®w€W0 T,K= @weWo K1,
Proof. Let H} = EwGWO 7,-K . We show by induction on / (w') that T, C H}
for any w’ € W,. It is enough to show that 7, H, C H, forany « €I or,
using 5.1(a), that t°H, C H, and KH, C H,. Now t°H, C H, follows
from the definition of 7, and KH; - H;, follows from Proposition 5.2(b).
Thus, T, C H, forall w' € W,. Hence, 3, T, K C Hy,. Hence H, = H,
(see 3.12(c)). Now T, (w € W) form a basis of H, as a right K-vector
space, and we have just seen that 7, (w € W) form a set of generators of H,
as a right K-vector space. It follows that 7, (w € W) form a basis of this
vector space. Hence, H. = @,,cy, 7, - K. The equality H, = ) K-t
and the equalities in (b) are proved similarly.

weW

6. SOME BRAID GROUP RELATIONS

6.1.  This section contains a result which is needed in the proof of Theorem
8.6. We fix a# f# in II. Let %“ﬂ be the subgroup of W, generated by s,
Sg5 and let m be the order of the product 5,55 - We assume given a finite set
2 on which Woc”sr acts by permutations and an element ¢ € . We define
elements ¢,,&,,...,n,,",,... in H, by

T, , ifs,(c)=c, Ts,, , ifsg(e) =c,
é‘z{r", if s, (c) # ¢, "‘z{zﬂ, if s,(c) # ¢,
~ Ts,, , if sﬂsa(c) =s5,(c), B T, , if sasﬂ(c) = sﬂ(c) ,
b= { P, if $55,(¢) # 5,(¢), = { ™, ifs,sp(c) # s4(c),
T, , ifs,sps,(c) =s45,(c), T, , ifsgs,sp(c) =s5,54(c),
&= { ™, if 5,8,5,(0) # 545,(c), 37 { o if $55,55(C) #5,54(C)
etc.

Proposition 6.2. We have {\&,---¢, =mnn, -1, in He.

Proof. Let Z be the set of reflections in Woaﬂ which keep ¢ fixed.

To simplify notation, we set ° =1, t* = 7, T, =T, T, = T'. Assume
first that Z is empty. Then the identity to be proved is

(@) t7't---=1'1t'--. (m factors).
This is known from Proposition 5.2(a). We denote by 7 the two sides of (a).
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When Z contains m reflections, the identity to be proved is

®) TT'T--- =T'TT' ...
which follows from the definition of H .

Assume now that Z = {s_} . The identity to be proved is

() Tt =1'T (if m=2), Tt =77 (if m=3), TT'tr' =717 T (if
m=4), Tttt ='1'cd'T (if m=6).
A simple computation using Proposition 5.2(a) and (b) shows that both sides
of (c) are equal to

1+ (1-Z(B) )T (B), ifm=3,
F1+1°(1-Z(@) )% (), ifm=2,4,0r6.
The case where Z = {s ﬂ} is entirely similar. We can assume from now on that
m > 3. Assume that Z = {s_s;s_}. The identity to be proved is
(d) tT't = 7Tt Gf m=3), 1Tt = 7tT'c (if m=4), 1T'td't7' =
/ / ! .
trrtl T (if m=6).
2
This can be formally deduced from (c) using the fact that ? =17 =1. More
generally, the case where Z consists of a single reflection follows formally from

(c). We can assume from now on that m > 4. When m = 4, it remains to
consider the cases where Z = {s;,s,5zs,} and Z = {sa,sﬂsasﬂ}. We can

assume that (o,B) = —1, (B,&) = —2. The identities to be proved are,
respectively,

(e) tT'tT =T'tT't, 'TI'T =T7T7 .
A simple computation using Proposition 5.2(a) and (b) shows that both sides
of the first identity of (e) are equal to

1+ -2 )+ P01 -2Qa+ )7
+H1-Z(B)7 )1 -FQ2a+ ) )NEBF2a+p)
and both sides of the second identity of (e) are equal to
t(1+17°0 -2 H+ PP -2+ 87"
+#1-F(a) )1 -F(a+ ) )NE()F(a+h);
we have
EQ2a+p)=s5,Z(B), Fla+p)=s((a)),

sﬂ(?(Za +B)=%2a+p), 5. (Z(a+p)=Z(a+p) (see3.13).
When m = 6, we can assume that (a,f) = —1, (8,4 = —3. It remains to
consider the cases where

Z ={s, ,sﬂsasﬂsasﬂ} , Z= {s[f ,sasﬂsasﬂsa}, Z= {sasﬂsa,sﬂsasﬂ},
Z ={s, +5,555, ,sﬂsasﬁsasﬂ}, Z ={s, +555,55 ,sasﬂsasﬂsa}.

The identities to be proved are, respectively,

O Tt tT' vt =17t T, 1/ T'<T = T'td' T1't, o' T = 7' T7'<T't,
tT'tT'tT =T'<T'tT'r, 7' TIT{T=T7T7T7 .
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These can again be verified using Proposition 5.2(a) and (b). We omit the
details. (Note only that the first three identities in (f) are formally equivalent
to each other.)

7. COMPLETIONS

7.1.  We preserve the setup of §§3 and 4.

Let t=Y®C. Any element x € X may be regarded as a linear form t — C,
y®z — z{x,y). This linear form will be denoted again by x. We shall denote
by X the composition

teCB S C.
There is a unique isomorphism Hom(t®C,C) 5 7 =1 /1 2 (see 4.1) such that
x—d(6,), pr, — r. We shall identify these two vector spaces. In particular,
we shall identify r with pr,: t® C — C. This identification is compatible with
the natural Wj-actions. It follows that @ may be identified with the algebra of
regular functions t®& C — C.

7.2. By Proposition 3.11 (resp. Proposition 4.5), 2 =& "o (resp. Z = ?Wo)
may be identified with the coordinate ring of (I x C*)/W, = (7 /W,) x C*
(resp. (t® C)/W, = (t/W,) x C) so that the inclusion 2" C & (resp. Z C &)
corresponds to the orbit map 7 xC" — (7 xC")/W, (resp. t&C — (1&C)/W,).
Hence, the maximal ideals of .Z" (resp. Z°) are of the form

(@) Sz, =1/ €ZIf(t.0) =0, V€T
(resp. J():’ro {$ € Z|o( $,ry)=0,¥%e T}, where I (resp. X) isa W,-orbit
in J (resp. tyand v, € C" (resp. r, €C).

7.3.  We now fix (Z,v,) (resp. (f,ro)) as in 7.2. We denote by z (resp.
Z) the J; , -adic (resp. J 5 , -adic) completion of Z (resp. Z). We define

Then &, H (resp. ? ﬁ) are naturally Z- (resp. % -) algebras and the
imbeddings 2 C & C H (resp. Z c @ c H) give rise to imbeddings 2 C

& cH (resp .2‘ C @’ - H ). We shall regard @ and H as .Z-subalgebras of
ﬁ and H in the obvious way. We also regard @ and H as Z-subalgebras of
(ﬁ and H. We note that the Z- hnear (resp. Z-linear) W,-action on @ (resp.
@) extends to a Zlinear (resp. Z’ linear) W)-action on @ (resp. ﬁ) and we
have . w

(a) Z=6™, Z=0

Let F (resp. F ) be the quotient field of z (resp. _"Z' ). R

(resp X ) be the full r1ng of quotients of g (resp. @). We have

FcR,#ck, FcK ﬁcK
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Just as in 3.12(a), we see usmg (a) that
(b) ﬁ@AF—»K ﬁ@AF-—»K
This is defined by multlphcatlon in K or K Using the definition of ﬁ we
obtain K = ﬁ@z Fx O, F®, F . Hence,
(c) K=K ® F F
(see 3.12(a)). Similarly,
(d K=K®sF.
7.4. We consider the F-algebra H =H®, F = H ®p F (resp. the F-

algebra H =H Q% F H— ®F F ). We can naturally regard H (resp.

Hf) as an F-subalgebra of HF (resp. F-subalgebra of TA{_F). Moreover, the
imbedding K C H, (see 3.12, resp. K C H (see 4.6)) induces an imbedding

K=K®,F cH, (resp. K = K®, F C Hy). From 3.12(c), 4.6(b), and
Proposition 5.5, we deduce that

(a) R R R N
H —-GBt K=K, =T K=K -T,,
=@, K= EBKT =@, K=@K:,.
From 3.12(b) and Proposmon 4.4(a), we deduce that
(b) ~ - ~
{ H=T,Z=0cT,,
H=91,6 =061,
(all direct sums are taken over w € W) .
7.5. Forany tc€X and 7e X, we define
={feﬁ|ft vy,) = 0}, a maximal ideal of &,
={¢pe€|¢(f,ry) =0}, amaximal ideal of &,

f)
@? = I adlc completion of &,
? -ad1c completion of & .

We have Ji; .\ C I(I) (resp. 7(5’%) C 1) Hence, the identity map & — &
(resp. @ — @) extends continuously to a homomorphism of completions & —
ét (resp. ? — ?i) . Taking the direct sum over ¢ (resp. {), we obtain an
isomorphism of .Z -algebras

(a) f = ®t€}:éz .
(resp. an isomorplgsm of Z-algebras

(b) 5 P59
(In a direct sum of algebras, the product of two elements in different summands
is defined to be zero.)
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The natural action of W, on g (resp. ?) (see 7.3) corresponds under (a)

and (b) to a W-action which permutes the summands 05’; (resp. ?t-) according
to the transitive Wj-action on X (resp. X).

7.6. In the setup of 7.5, let @™ (resp. & ) be the algebra of holomorphic
functions 7 x C* — C (resp. t® C — C), let ;] (resp. I ) be its max-

(1)
imal ideal defined by (¢,v,) (resp. (f,7,)), and let & (resp. ?:m) be the
corresponding 1;-adic (resp. 7 j-adic) completion.
It is clear that we have natural isomorphisms
() =0, 0,=26".

8. FIRST REDUCTION THEOREM

8.1.  In this section, we preserve the setup of §3. We assume given a W-orbit
Z in 9 and an element v, € C". Let (v,) be the subgroup of C” generated
by v,, and let I (v,) be the subgroup Y ® (v,) of ¥ ® C* = .7 . Clearly,
T (v,) is W-stable.

For any t €.9 , we define
0.(t) vy, ifagy
0.(t)ex(vy), ifae2y [’
R,={d€RlaeR},
R/ =R,NR",

IT, =setof all a« € R;L which are not of the form o' + " witha',a” € R;L s

Rt={a€R

Wg = subgroup of W), generated by the s, (a € R,),
Wy = {w e Wylw(t) = 1},
T, = {weWy|lwR)=R/}.

Note that (X,Y,R, ,R, ,I1,) is a root system. (We must check that o, €
R, = sﬂ(a) € R,. We have

osﬁ(a)(t) = Ha(sﬁ(t)) =0, hﬁ(ﬂﬂ(t))—l) = oa(t)gﬂ(t)‘(a»ﬁ) )

We have ()ﬁ(t)"<" P e (vo) since B € R, . Hence, 0 ,\(¢) € 6,z * (Vo) and our
assertion follows.) Note also that I1, ¢ IT in general. Clearly, Wb’ is a normal
subgroup of W;’ with complement T, .

Note that

(a) R, ,Rt ,...,I', depend only on the J (v,)-coset of 7, not on ¢ itself.

We define an equivalence relation on X as follows. We say that ¢, el
are equivalent if ¢, ¢ are in the same J (v,)-coset and ¢ = w(t) for some
weW,= VI/O" )
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Let % be the set of equivalence classes. It is clear that if ¢, € I are
equivalentand w € W, then w(?), w(t') are equivalent. Hence, W, permutes
(transitively) the sets in & . For c € £, let

W,(c) = {w € Wjlwe = c}
be the isotropy group of c. s
If ce P, weshallwrite R, R, R}, I, Wy, W, I, instead of R,,
R, RS, 1, W, W, T, for t € c (see 8.1(a)). Clearly, Wy C Wy(c)C W .
Let
I(c) = Wy(c)nT,.
Then W(c) is a semidirect product of I'(c) and the normal subgroup W(f.

Lemma 8.2. (a) If Y, is the subgroup of Y generated by R, then we have t€ X,

we Wy = w(t) ' e image(Y, ® (v,) % Y®C") (¢ is the natural map).
(b)If a€R, c€E P, then a € R, & 5,(c)=c.

Proof. We prove (a). Since Y, is stable under W, we may assume that w = s 5

(BeR,). Wehave s,(1)t™" = hy(0,()”") = hy(vvg), where n € Z and

1, if g2y,
”‘{ +1, iffe2y.

If B € 2Y, we have hﬁ(—l) = 1. Hence, in any case, hB(I/) =1 and
sp(0)t = hy(—1) = B ®v; , as required.

We now prove (b). The implication = is obvious. We prove the converse.
Assume that s (c) = ¢ and choose ¢ € ¢. Then ¢,s (f) are in the same Wb’-
orbit, i.e., s (f) = w(t) for some w € WOI. Using (a), we have sa(t)_1 =
w(t) - e image(¢). We set u = 00(1)_1 €C". Then a® u, € image¢. In
particular, d®u, € Y ® (vy). If & ¢ 2Y, then & is not divisible in Y and it
follows that u_ € (vy), 1.€., @ € R,. Assume now that & € 2Y . Using Lemma
1.7, we can assume that our root system is primitive. By properties of root
systems of type C, we see that we can number the roots in I as o, ... ,q,
such that & = &, +¢,&,+¢36,+ - +¢,a, (c,,...,c, areintegers > 0), where
&, € 2Y and %d] ,&y,084,...,&, formabasis of Y. From ¢®u € image¢,
we have (writing now the operation in Y ® C* as addition),

& ®u, +an ®u, —Zdl.ébvgi d eZ).
Hence,
. d
7‘®u2+2a,®ug ®v§'+z ,® v .

Since &,/2, &,,...,a, form a basis of Y, it follows that ua = vzd‘

, so that
u,= :tvg ' and o € R,. The lemma is proved.
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8.3. For c € &, we denote by H, the Hecke algebra defined in terms of the
root system (X,Y,R_, R .»I1,) and the parameter set (see 3.1(c)),

Afa)=A(e) (a€Il),
Ala)=2"(a) (a€Il, &ae2Y)

4

(Al@), A"(a) as in 3.13) in the same way that H was defined in terms of
(X,Y,R,R,II) and the parameter set A, A" .

Since I'(c) acts on (X,Y,R, R ,I1.) compatibly with the parameter set
(since I'(c) C W), it also acts naturally onthealgebra H : if ) 0 (we€ Wy,

w,c X
x € X) are the basis elements of H, analogous to the basis elements T,

(weW,, xeX) of H and yel"(c) we have (T, =T _,. 0

w,c x) ywy~t,ely(x) "

8.4. Consider the maximal ideal J():,vo) of Z (see 7.2(a)). Similarly, for
c € P, we consider the maximal ideal

={feZ|f(t,v)) =0, Vtec}

cvo

of Z_ = o = center(H,). (Note that ¢ is a Wj-orbit in .7°.) In 7.3, we
introduced the J(}: v )-adic completions z , @, H ofthe -algebras 2, @,
H . Similarly, let fZ‘C , ﬁc , H . be the J( c ’vo)-adic completions of the Z -algebras
Z,0, H,.

We shall also need K, ﬁF of 7.3 and 7.4.

The action of I'(c) on H_ extends continuously to an action of I'(c) on
ﬁc , since I'(c) leaves stable the maximal ideal I ) of Z_ . (Recall that
I'(c) € Wy(c) )

8.5. If A4 is an associative ring with 1, denote by A4, the ring of all n x n
matrices with entries in 4. If a finite group I acts on 4 by ring automor-
phisms, we can define formally a new ring A[I'] = @ ser A+ with multiplication

(ay)(@'y') = (ay(@'))-(yy") . (The group algebra of I overafieldisa special case
of this.) In particular, the action of I'(c) on H gives rise to a ring H [F( )]

This is not, m general aZz. _-algebra since I'(c) may act nontrivially on :Z
is only a 2’6 algebra.

We have 20 ) = (@%)1© = @™ Thus, A[[(c)] isa G- algebra.
The identity map & — & extends contlnuously to aring homomorphlsmAﬁ —
&, (since J(,_ ) © J(C " )) This restricts to a ring homomorphism i: @ Mo
") (since W,(c) C W,). It is clear that i is an isomorphism. (By 7.5(a)
and its analogue for ﬂi , both @™ and ﬁ:%(c) are isomorphic to the ring of
invariants on @, (for some ¢ € ¢) with respect to the stabilizer of 7 in W, (or
in Wy(c)). Via i, we can regard FIC[F(C)] also as a @ -algebra.
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We can now state

Theorem 8.6. If ¢ € P, there exists an isomorphism of & W"-algebras H =
H [T(c)],, where n = #%.

The proof will occupy most of this section.

8.7. Recall the decomposition & = D, 7, 7 (in 7.5(a)). For any t € X, we
denote by 1, the unit element of @’ We also regard 1, as an element of &.
Then the umt element 1 of @ and of H satisfies 1 = Ztez 1,,1,-1,=96
(t, €X) and w(l,) =1 (weW,, tez).

Let c € . We define R

@) l,=2,.,EOCH.

We may identify @A’C (see 8.5) with the subring lc(?? = .=
obvious way.

It is clear that

) 1= epl, 1, 1,=06,,-1, (c,c €P), w(l)=1,, (weW,
ceP).

For c ¢ € P, we define

(c) H,=1H1,cH,

From (b), we see that

d) 6=@,.»0.,06cb,66, = 0if c#c.

e H=@, s A, H,  H,c H,, H

¢ ctter et ter ¢ ¢ttt * C c!

tt" t

w(t)

tecﬁt in the

H,=0if ¢ ;écl

8.8. Let aell, c e &. We define an element TSC € FIF by
(a) . . .
- { 1T, =T, 1, (c), ifa€Rr, (ie,ifs(c)=c¢),
o 1,1%=1"1 (c), ifagRr, (ie.,ifs,(c)#c)

(weuse 5, (1,)=1 and Lemma 8.2(b)).

Sa(€)
Lemma 8.9. (a) If a € I, o &€ R_, then the rational function & (a) on I is
regular and nonzero at all points of cUs_(c).

(b) We have T, ec (o Jorall a eIl

Proof. Let a € I1, a ¢ R, and let ¢ € c. We show that the numerator and
denominator of & (a) (see 3.8) do not vanish at ¢ and s, (1), i.e.,

0, () v ~14£0, 6,0 -1#£0, ifag2y,
a(t):!:l 3(0)4—1 (a) -1 ;é 0’ ea(t)ilvg(a)—l‘(a) +1 # O, 0;*:2(1‘) -1 # O,
if a €Y.
(We have 6 (s (1)) = 0 (t)_ .) But this follows from o ¢ R,. This proves

(a). Now (b) is clear if o € R,. Assume now that o € R, . We have Tca =
17° o = L.+ D1 (smce 1.1, ,, = 0). Hence, using 5.1(a), T, =

¢~ salc) K
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1(T, + 1)?(a)_115a(c) . From (a), we see that ?(a)'llsa(c) € ﬁs ()
follows.
8.10. Given c €& and w € W, we define

(a) Tc Tsc Tssa, (o) | T:a,,-~~sazsa. () ,
where o, ,a,, .l. Sa, is an)’; sequence in I1 such that w = S0Say " Saps P =
l(w).

From Lemma 8.9 and 8.7(e), we see that

(b) T‘lfl € cHw“ c
Proposition 8.11. The element Tfu is well defined (it is independent of the choice
of a;,a,y, ... ,ap).
Proof. For any o € I1, we define

=) T, €H.

and (b)

We first show that for any a # B in II such that 5,55 has order m, we
have

@ 71,7 - =T,T,T,
(both products have m factors).

This is equivalent to the identity

Z(T:GT:; psa(c . E(T;T;? c)TSaSp(C) Y,
cEP CEPR
where all products have m factors. (We have used Lemma 8.9 and 8.7(e)).

Therefore, to prove (a) it is enough to show that for any fixed ¢ € &, we have

€ 75O s8sa€) | _ ¢ 7980) Tsasp @,
Sa Sp Sa

Sﬂ Sa
Using the definition 8.7(a), we see that this is equxvalent to
1c’i’:l€2 o 'ém =1.mny 1y,
where ¢;, 7, are as in Proposition 6.2. (We have used 8.7(b).) This is a

consequence of Proposition 6.2. Thus, (a) is proved. By a well-known property
of the braid group of W, we see from (a) that we can define for w € W

T—TT'TGH

s"l S°2 Sop
where @, ,a,, ... ,a, isany sequence in II such that w =s, s, ---s, , [(w) =
p (and this is mdependent of the ch01ce) Then T, as defined in 8 10(a) is
the pro;ectlon of T onto the w=1(c) -summand in the decomposition H =
@ H.. Hence, it is mtrmswally deﬁned. This completes the proof of the
proposition.

Lemma 8.12. Let c € &, and let a € 11, be such that I(s,) > 1 (length in
W,). Then

(a) there exists B €Il such that | (sﬂsasﬂ) =1(s,) -2

(b) If B isasin (a), then B &R .
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Proof. (Compare [2].) Being a reflection, s, has odd length. Hence, I(s,) > 3.
Let B €Il be such that l(sﬂsa) =1(s,)—1. Then l(sasﬂ) = l(sﬂsa) =1(s,)—-1.
We can find a sequence o, ... ,a, in II such that 5 = 84S0y Say S > I(s,) =
p+1. Since I(s,s5) = I(s,)— 1, we see from the exchange condition that either
there exists m > 1 with

samsamﬂ o sap - sam+lsam+2 o Sﬂpsﬂ

or
885050, S0y = SaySay 50,58

In the first case, we have s, = 5880, Sam_1SamirSames 5,58 and (a) follows.
In the second case, we have s, = 5,8, "5, 55 = 555,55 = Sy, Hence,
a,sﬁ(a) are proportional. Hence, sﬂ(a) = t+a. We cannot have sﬂ(a) =—
the only positive root taken by Sg toa negative one is § (recall that o ¢ II,
so a # f). Hence, sﬂ(a) =a,so (a,B)=0. But then (f,d) = 0. Hence,
s,(B)=B € R",s0 !/ (8,85) = I(s,) + 1, a contradiction. Thus, (a) is proved.
We now prove (b). Assume that § € R: . From l(sasﬂ) =1(s,) — 1, it follows
that s_(B) € R™ . Thus, s, carries two nonproportional roots in R: (namely,
a and fB) to negative ones. This contradicts the fact that o € I, . The lemma
is proved.

Lemma 8.13. Let c€ P, yeI(c), and let | ,a,, ... o, € IT be such that
Y= S80S0y Sy I(y)=p. Then

(@) c#s,(c) # sazsal(c) # o # Sa, 8,8, () (le, ay €R., s, (a,) €

R, ... ,soqsa2 p_l(ap) €R,).
(b) 7, =1,77%. <1
(o) T,T,=T,,, TTC— forallweWoc.
d T, 1. =1, y(f)TC forallfe(ﬁ’

Proof. We first note

(e)if y € Wy, B€Il, sg(c) # ¢, then rﬂT; = T;:’)fc).
Indeed, if 1(sﬂy) = Il(y) + 1, this follows from definitions (8.8 and 8.10). If
I(sgy) = I(y) - 1, the same deﬁnitions show that Tyc =1 Y;f;’y(c). Multiplying

on both sides by t? and using =1 , we again find (e).

Assume now that we have é = sa Say -~sa'__l(a,.) € R, for some i €[1,p].
Since (s, ---s,) = i, we have € R". Hence, § € R’. We have o, =
Sary " Say(B). Now s, --os, (a;) € R™ since I8, Sy, @) =P —1i+1.
Hence, y~'(6) = 8oy S 50, (0) =5, S Sag (@) = =8, o5, (@) € R

By assumption, y € I,. Hence, y(R:) = R} . This contradicts y~'(J) € R~
This contradiction proves (a). Now (b) follows from (a) using the definitions
8.8 and 8.10. Using (e) repeatedly, we see that (c) follows from (b). Using the
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identity f7% = 1% (f) in ﬁp (f€@, acll), we see that (d) follows from
(b). The lemma is proved.

Lemma 8.14. Let c€e #, a€ll,.

(a) We have (T + 1)(T —v*®) =0 in H (A(a) as in 3.13).

(b) If w e W is such that w™'(a) € R}, then ST, =T;,

(©) If fEP, then fT. =T:s,(f)+1.(f—s,(/)E&)-1) in H.
Proof. We argue by induction of /(s ). If I(s,) = 1, we have Tc = 1T,
Hence, (a) and (c) follow from 3.2(b) and 3.12(d) (b) follows from 8. 8(a) and
8.10(a). Now assume that /(s ) > 1. Choose g € II so that o = sﬂ(a) satisfies
I(s,) =1(s,) — 2 (see Lemma 8.12(a)).

Set ¢’ = sg(c). By Lemma 8.12(b), we have 8 ¢ R . Hence, sg(R}) C R™.
(Recall that the only positive root taken by s p toa negative one is #.) Hence,
sg(R}) = R}, and s5,(I1,) = I, . In particular, o’ €II, . We may assume that
the lemma is true for (a’,c’) instead of (a,c), since I(s,,) <I(s,).

We have .

@ 17 =17 f
(using ¢ # sﬂ(c) = ¢’ which follows from Lemma 8.12(b) and using 8.10(a)).

Now (a) and (c) follow from the corresponding identities for Tfll using (d)

and %7 = 1. We now prove (b). Let w' = SpWs, € WOC'.
We have

w (a )-sw sﬂ(a)—sﬂ( ())Csﬂ(Rj)=Rj,.
Hence, Tf -7:

le b

From the deﬁnmon 8.10(a), we see, using ¢ # sg(c) = ¢’ (just as in 8.13(e)),
that

using the induction hypothesis.

TcztﬂTc ‘rﬁ.

w w'’

We now compute
B’ By, B B B e’ B B
T, T, =(t Tscu,r (TT, ) =1 TSZTCT =1 T w,‘t =T,
The lemma is proved.
Lemma 8.15. Let ¢,c' € P. Then H, = By wie—c @.-T).
Proof. We shall prove by induction on /(w) that
(@) 1,T,1,C H (Vw e W),

c ¢!
where
(0) Ho = ey uriermc G T
When w = 1, (a) is trivial. Hence, we may assume that w = s w, , where
a€ll, l(w)=1I(w,)+1 and that (a) is known for w, instead of w. Assume
first that a € R, . Then
1T 1 lCTSaTwllc, =T, 1T, 1,€T, H

cTw ¢ Sqc” !t
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We have Tsaf C é‘\Tsa +&. Hence, Tsaﬁ: C Ji’Ts,, +JZ and 1.7 1, €

ctwc
YOI, T, +%,0.T, (w()=c inthe summation). If /(s,w') =
I(w')+1,wehave T, T,, =T, .. If I(s,w') =I(w") -1, we have T, T,, =

TETETE,, = W2 — 1)TE, + v Te

Sa " Sa saw’ saw’

1.T,1,c H

c et

Assume next that o ¢ R, . Then
17,1,=1TT,61,= lc(r"?(a) +(Z(a) - 71,1,
= r“?(a)lsa(c)Tw]lc, +E(@-D1.T,1,

¢ wy

€ 1°(a)s,(O)H, + (Z(a) - 1) H,.
Now Z(a) is regular at all ¢ € cUs,(c) (see Lemma 8.9(a)). Hence, &(a)
can be absorbed in H, and H Thus, 1. 7.1, €1 H,+ H,. It

Sa(c)" 7! N (3 < cTw e Sa(c) ¢! c !

remains to show that t* sa(c)Hc, C .H,, . This follows from the equality 8.13(e).
Thus, (a) is proved. We now show that the sum defining CI~{ .. in (b) is direct.
It is enough to show R

(c) a relation ZM,GWO f,T.,=0 (f, €0, implies that all f,, are zero.

Assume that there exists a relation as above with not all f, equal to zero.
Let [, be the maximum length of an element such that f, # 0. From the
definition (8.10) of T, , we have that

Tz], = 10 Z ‘J’w, ’wllTwlI ]

w” €W,

(see Lemma 8.14), and we see that

where 7,, .., € K are such that y,, ,,, = 0 unless w” < w' in the Bruhat
order and y,, ,, # 0. Hence, from (c) it follows that

(d) Ew’eWo;l(w’)SIO S Ty =0 (in Hp),
where f, € K are such that f,, = f,, - for l(w') =1,.

The product in K of a nonzero element of é; with a nonzero element of
K is nonzero, since the natural homomorphism & — é: is injective and (5’; is
an integral domain for any ¢ € c¢. It follows that fw, # 0 for some w’ with

l(w') = I, and, therefore, (d) contradicts 7.4(a). This contradiction proves (c).
The proposition is proved.

8.16. Proof of Theorem 8.6. Recall that c € & is fixed.
For any ¢’ € &, we choose a sequence {(¢') = {@,,a,,...,a,} in II such

that C#Sap(c);ésap S (c)¢"'#Sa|saz.“sap(c)=c,-

-1 p

/ " - 75
Forany ¢',c’ € &, we define A, ..: H — ,H, by

c

w' w'

Ac, C"(h) = ‘tal ‘taz . -taphtﬁp' Tﬂp’—l . Tﬂl

= (Tcl ]"’“l(cl)...)h(]'; Ts’p'(c)...),

sal saz ’ s’p'—l

where C(CI) = {al sQy s enn sap}> C(C”) = {ﬂ] ’ﬂz’ ,ﬂpl}°
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A
cl
We have clearly for 4,k € CIA{C s

. 1s an isomorphism since 7°t* =1 for a €II.

Ay o(hH), if " =c},

Ber on (WA cr(hy) = { 0 if ¢ # ¢
b 1 .

Hence, the map which associates to any square matrix (h, o
H_, indexed by (c',c") € Zx P, the element Yo emempxa A
defines a ring isomorphism

(@) (H,), 5 H (see 8.7(¢)).

Here (.H,), is the ring of n x n matrices (n = #&) with entries in the ring
H_. By 7.4(b) for H(c) instead of H, we have H(c) =D o1, e (T,
is as in 8.3).

By definition of H_[I'(c)], we have

fIc[F(c)] = @ &iTw o

weWy
y€l(c)

) with entries in
(h, ,)eH

cl ’cll C' ,C”

wewy

We define an isomorphism ﬁc[F(c)] it CFIC by sending [T, v (f € é;) to
T, T; . From Lemma 8.13(c) and (d) and Lemma 8.14, we see that this is
compatible with the ring structures. Combining this with (a), we get a ring
isomorphism H [I'(c)], = H . From the definitions, it follows easily that this is
an isomorphism of & W"-algebras.

8.17. Remark. The isomorphism we have constructed depends on the choice
of sequences {(c'). However, another choice will only change the isomorphism
into its composition with an inner automorphism of H (0)[T'(c)], defined by an
n x n diagonal invertible matrix.

9. SECOND REDUCTION THEOREM

9.1. We preserve the setup of §3. Assume that we are given a W-orbit X in
& and an element v, € C* of infinite order. Let (v,) be as in 8.1.

We make the following assumption:

(a)if t€e X and a € R, then

0.(t) € (vy), ifag2y,
{Ga(t)e:l:(vo), ifae2y.

9.2. The exponential map e: C — C* (z — e(z) = ¢°) induces a homomor-
phism of complex Lie groups t=Y ®C '8¢ y @ C* =.7 which will be denoted
e. It is W-equivariant.

We select r, € C such that v, =e”.

We define a map X — t as follows.
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Let t € £. Forany o € R, let n, € Z be such that 6 (1) = +v;* (see
9.1(a)). Since v, is of infinite order, we have

{ N,.p="n,+ng, whenevera,f,a+f€R,
n,+n_,=0, foralla€R.

Hence, there is a unique element 7 in the C-subspace of t generated by R
such that a(f) = n_r, forall a € R.

Then ¢+ 7 is the required map X — t. This map is clearly W -equivariant.
Hence, its image X is a Wj-orbit in t.

We now define for any ¢ € £ an element ¢, €5 by ¢, = t-e(t’)"l . The map
LT, tet, is clearly Wj-equivariant. On the other hand, for each 1€ X,

(a) t, is W-invariant
(see below). Hence, ¢, is necessarily independent of the choice ¢ (it depends
on X). Let us prove (a). From the definitions, we have for any a € R,

1, ifag2y,

6,(t,) = 6,(16,(e(5) ™" = 6 (ty; ™ = { +1, ifae2y

so that (a) follows from Lemma 3.15.
We can now define
(b) 2= X (T t4e(D)),

where ¢, is defined as above in terms of any ¢ € £. Then
(c) the map (b) is a Wj-equivariant bijection.

(Its inverse is ¢t — {.)

We shall use the notation (H,Z,...) and results of §§4 and 5 for the par-
ticular 7, € 7 considered above. We shall also use the notation and results of
§7 relative to £ and T as above. We can state the following result.

Theorem 9.3. There are natural isomorphisms of C-algebras ZTEF 620,
EV\ Z H . Moreover, the last two isomorphisms are compatible with the Z - and
Z -algebra structures, via the first isomorphism.

9.4.  For the proof, we shall need a lemma. We fix a € II, and we regard
Z(a) (resp. g(a)) as a meromorphic function on 9 xC* (resp. txC) (see 3.8
and Proposition 4.4). Composing £ (a) with the holomorphic map y: txC —
T xC", (&,2) — (t,e(£),e”), we obtain a meromorphic function f?(a) on
txC.

Lemma 9.5. The merom_orphic function 7 (oz)g(a)_l is holomorphic and nonva-
nishing at all points of X x {ry}.



AFFINE HECKE ALGEBRAS AND THEIR GRADED VERSION 631
Proof. We have for (£,z)etxC,
(€ (e)gla) )¢, 2)
o MO+ 2@z _ (&)
a(&) +24(0)z @ 1’
= (0 (l ) a(f +(Aa)+1"(a))z 1)(0 (to)e (&) +(A(a)—1"(a))z + 1) a(C)
a(&) + (Aa) + 0, (t)A" (@) 2 e2® _ 1’
if 8 €2Y.
Recall that 6_(¢z)) = £1 if & € 2Y . Hence, in that case we can also write
(& (a)gle)™ )¢, 2)
ea(f)+(/1(a)+0a(to)/1'(a)) ~1
a(&) + (Al@) + 6,(t)A" ()2

To show holomorphicity, it is enough to show that for all fe X

(a)

ifag2y,

a(S)

() +HA(@)~ 0alt0)A" (@) 2
(e ® _ 1

+1)2

2niZ — {0}, ifae?2Y,
ae{ e
niZ - {0}, ifaeY.
To show nonvanishing, it is enough to show that for all fe X
(b)
a(f) + 2A(a)ry & 2miZ — {0}, if & ¢2Y,
a(f) + (Ala) + 6, (t)A" ()1, & 27iZ — {0}
a(f) + (A(@) = 0, (t)A" (a)ry & 27i(Z + §)
Substituting a(f) = nr, (n € Z), we see that if one of the statements (a) or (b)

is violated, we would have r, = 2min’/n" for some nonzero integers n’, n".
Hence, v, = ™ would be a root of 1, contradicting our assumptions in 9.1.
0

}, ifaeY.

9.6. Proof of Theorem 9.3. Since in 9.4 is locally a holomorphic isomor-
phism, it defines for each 7€ X an isomorphism

é’t Vo ﬁl_ ro’
where ¢ = f,e(f) . Taking the direct sum over all 7 € T and using 9.2(c) we get
;an
an isomorphism EB,G):@;"LO D5, - Usmg 7.6(a) and 7.5(a) and (b),

this can be regarded as an 1somorph1sm ﬁ ﬁ This is clearly compatlble
with the W-actions. Taking W, -mvanants, we get an isomorphism 5 2’

We also get an isomorphism j: K > X of the full rings of quotients of é’ e?‘
which is again W-equivariant. We define j H — H by

' (E kwtw) = Zj(kw)fw (k, € K) (see 7.4(a)).



632 GEORGE LUSZTIG

This is compatible with multiplication:

J ey Ty k) = J (ki wiky, )T, T,0) = 5 (ki w(ky, ) Tyy)
= J(ky W (k) Ty = J (k)W (i (K )) T, Ty
= ke, )y iy )T, = J (K T, )i (ke Ty
(We have used Proposition 5.2.)
We will show that j' maps Iz (c ﬁF) isomorphicAally onto H (c I?_IF—).
From 7.4(b), we know that H is the subring of H, generated by 7, +1

(e € IT) and by & and that H is the subring of H p generated by 7 + 1

(a € IT) and by z? Moreover, by definition, j' defines an isomorphism ﬁ — ﬁ
and

J (T, +1) ="+ 1)Z()
= (" + 1)j(Z(a))
= (t, + g™ j(Z(a)).

Hence, it is enough to show that j(Z(a)) g(a)'l € K is an invertible element of
@ , for any a € I1. But this follows from Lemma 9.5. The theorem is proved.

9.7.  In the previous results we have assumed (see 9.1) that v, is of infinite
order.

Analogous results hold for v, = 1. In this case, if  is a W-orbit in g
satisfying 9.1(a), then by Lemma 3.15, X consists of a single (W -invariant)
element ¢,. We define r, =0 and T = {0} C t. The bijection 9.2(b) continues
to hold.

The proof of Lemma 9.5 applies without change (the left-hand sides of 9.5(a),
(b) are all zero). Hence, the statement (and proof) of Theorem 9.3 continues
to hold (without change).

10. ON SIMPLE H-MODULES

10.1. For any ring A, we denote by Irr 4 the set of isomorphism classes of
simple A-modules. If M is an A-module, then M & ---®& M (n copies) can
be regarded in an obvious way as an A4, -module (4, as in 8.5), and M —
M&---& M defines a bijection

(@) Ird STIrr A, .

10.2. We preserve the setup of §3. If M is a simple H-module, then .Z° acts
on M by scalars (by a well-known version of Schur’s lemma due to Dixmier)
Hence, there is a unique maximal ideal J; , o) of Z (see 7.2) such that Jiz vyM
= 0. This defines a partition

(a) IrrH = Hz o) Irrg 0 H
where X runs overall W-orbits in 9 and v, runsover Cc*; Irr(z’vo)H consists
of those M for which J(}:,uo)M =0.
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10.3.  We now fix (Z,v,) as above, and let z , H be the corresponding
completions of 2", H (see 7.3). We denote by j;,_ ) the unique maximal ideal
of 2. For any .?—algebra A, we denote by Irry 4 the set of all M elrr4
for which Jz , M’ =0. We have

H/J,

(a finite-dimensional algebra over C). This defines a bijection
(a) Irrg , H S I H.

sl = H/ g y)H

10.4.  We now assume that v, is of infinite order in C*. We select r,€C
such that e" = v,. We partition X in equivalence classes (in terms of v,)
as in 8.1, and we ’s\elect an equivalence class ¢. By Theorem 8.6, we have an
isomorphism of .Z -algebras

(a) H= H [I'(c)], (n=#%,asin8.1).

By definition of ¢, the hypothesis of §9 (see 9.1(a)) is satisfied if H, W,
X, v, are replaced by H_, Woc, ¢, v,. Hence, the constructions of §9 are
applicable. In particular, the construction in 9.2 applied to ¢ instead of X
provides us with an element ¢, € " and a W orbit ¢ C t (instead of I)
such that e: ¢ 5 ¢. We define the graded algebra T-I_c associated to H, and
this 7, as in §4. Let ?E (resp. ﬁc or ?L,) be the completions of the center
Z, of H, (resp. of H_ itself or &) with respect to the maximal ideal J of
Z, determined by (¢,r,) (asin 7.3).

Similarly, let é’: , fIc be the completions of Z,, H, with respect to the
maximal ideal of Z determined by (c,v,).

By Theorem 9.3, we may identify naturally é’: = 7: , and we have a natural
isomorphism

(b) H =H,
of .§‘;— (or Z,-) algebras.

Now I'(c) actson H,, and this induces an action of I'(c) on H .. Moreover,
from the definition of I'(c) and of #,, we see that ¢, is I'(c)-invariant. Hence,
the I'(c)-action on H, induces a I'(c)-action on the associated graded algebra
H, andon H,.

Now (b) is compatible with the I'(c)-actions (using the definitions). Hence,
it extends to an isomorphism

(c) H,[T(c)] = H,[T(c)]
taking 1-y to 1-y for y €I'(c). Then (c) is an isomorphism of algebras over
=T(c) —~

=ZTO = F (see 8.5).

To simplify notation, we denote by H' the C-algebra H,[I'(c)]. Let 2" be

the center of H'.
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Lemma 10.5. We have &' =& (Wy(c) as in 8.1).

This is a result of the same type as Proposition 4.5. Its proof follows almost
word for word the proof of [5, 6.5].

10.6. From 10.5, we see that the maximal ideals of 2" are in 1-1 correspon-
dence with the W(c)-orbitsin txC. Now (C,r,) issucha W(c)-orbit. Hence,
it defines a maximal ideal J' of Z".

Let 2, & , H' denote the J'-adic completions of the .Z"-algebras 2",
@, H,and let J' be the unique maximal ideal of 2 .

= = =/ =
We have as in 7.5(b), &, = @;,7; and similarly, & =D, &;. Hence,

(@) @ =7,.

Taking W (c)-invariants in (a), we obtain

b) Z'=(Z,).

As we have seen in 10.4, we have (Z c)r"(c) = (fZ‘:)nC) = Z . Hence, from
(b) we deduce

c Z'=%.

In particular, J' = .7;,_’%).

Now (a) shows that the J-adic and J'-adic completions of & coincide. Since
F‘, is a free left &-module, it follows that the J-adic and J'-adic completions
of H, coincide.

It also follgws that

(d) H =H,[I(c)].

Let Irr, H' be the set of all M’ € Irr H' such that J'M’ = 0. We have

H)JH =H|T'H

(a finite-dimensional algebra over C). Hence, we have a natural bijection
(€) Irr, , \H ~Trry H'.

c,ro)
10.7. From 10.4(c), 10.6(d) and (e), we obtain a natural bijection
Irry A [T(c)] = Irr, ,  H'

(¢,r0) .

Using 10.1(a), this gives rise to a bijection

Irry A [T(c)], = Irr, , H'

(€,r) '

Combining this with 10.4, we obtain a bijection

~

Irry H = Irr H

(¢.ro) .

Using this and 10.3(a), we obtain the main result of this paper.

Corollary 10.8. Recall that v, is assumed to have infinite order. There is a
natural bijection

II‘I'(Z o) H= Irr(c o) ﬁc[r(c)] .
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10.9.  The same proof provides (for v, of infinite order) an equivalence of
categories between Mod(z ) H (the category of H-modules of finite dimension
over C, annihilated by some power of J():,vo)) and Mod(c,ro) TI—z[I’(c)] (the
category of ﬁf[r(c)]-modules of finite dimension over C, annihilated by some
power of J'). The dimension of the module in the first category is #dim %
times the dimension of the corresponding module in the second category.

This remains true when v, = 1 (we then take r; = 0), see 9.7. In this case,
we have ¢ = {0}, I'(c) ={1}.
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