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1. INTRODUCTION 

Let Mo and MI be compact Riemannian manifolds. In [20], Gromov in-
troduced the notion of Lipschitz distance between Mo and MI ' defined by 

dL(Mo,M1) = inf[llogdil/l + Ilogdil/-II], 
f 

where I: Mo -+ MI is a homeomorphism and dil I is the dilatation of I 
given by dill = SUPXt#2 dist(f(x l ), l(x2))/ dist(x1 ,x2). If Mo and MI are 
not homeomorphic, define dL(Mo,M1) = +00. Gromov [20] proves the re-
markable result that the space of compact Riemannian manifolds L(A,t5 ,D) 
of sectional curvature IKI :::; A, injectivity radius i M 2: t5 > 0, and diameter 
dM :::; D, is CI,1 compact with respect to the Lipschitz topology. By d ,I 
compact we mean that any sequence in L(A,t5 ,D) has a subsequence which 
converges, in the Lipschitz topology, to a COO manifold M with CO Rieman-
nian metric and C 1 ,I distance function p: M x M -+ R. Related but different 
proofs of this result obtaining a limit d ,n, a < 1, Riemannian metric on 
M appear in [19, 25]. A number of applications of the Gromov compactness 
theorem have now been obtained, for example in [4, 25]. For an interesting 
discussion of this result in the context of more general studies, we refer to [30]. 

An important antecedent of Gromov's compactness theorem is Cheeger's 
finiteness theorem [8] that the set L (A, v, D) of compact Riemannian mani-
folds of curvature IKI :::; A, volume V M 2: v , and diameter d M :::; D, has only 
finitely many diffeomorphism types (cf. also [31]). A basic step in this theorem 
is a lower bound estimate for the injectivity radius i M 2: c(IKI , d M ' V;; I). In 
particular, Gromov's compactness theorem may be strengthened to the state-
ment that L (A, v, D) is Cl,1 compact in the Lipschitz topology. 

In this paper, we study the question of Lipschitz convergence of compact 
Riemannian manifolds with bounds imposed on the Ricci curvature Ric in 

Received by the editors March 15, 1988 and, in revised form, October 24, 1988. 
1980 Mathematics Subject Classification (1985 Revision). Primary 53C25, 58G30, 53C20, 

58D17. 
Partially supported by NSF Grant DMS 8701137. 

455 

© 1989 American Mathematical Society 
0894-0347/89 $1.00 + $.25 per page 



456 M. T. ANDERSON 

place of bounds on the sectional curvature. Of course, this is interesting only if 
dimM~4. 

Besides its intrinsic interest, one motivation for this is the study of the ex-
istence and the moduli space of Einstein metrics on a compact manifold M. 
Recall that Einstein metrics are exactly critical points of the total scalar curva-
ture functional 91: .A; / 9 -+ R, 

91= fM'gdV g , 

where .A; is the space of Riemannian metrics of volume 1 on M, ~ is 
the diffeomorphism group, acting on .A; by pullback, and 'g is the scalar 
curvature. 91 may be viewed as a smooth function on .A; , and one has [5] 

d9!g = Ricg -('g/n)g. 

The existence of critical points of a functional can often (but certainly not 
always) be deduced if the functional satisfies a Morse or Lustemik-Schnirrelman 
theory. Crucial for this is a condition such as Condition C of Palais-Smale; 
namely, in this case, if gj is a sequence of metrics such that 19!(gj)1 ::; K and 
IId9!(g)1I -+ 0 as i -+ 00, then a subsequence converges to a critical point of 
91. Here the norm and topology may be given by a suitable Sobolev or sup 
norm on .A; . This condition then involves bounds on the Ricci tensor, but not 
on the sectional curvature. Similarly, on the moduli space of Einstein metrics 
on a given manifold, one has no a priori bounds on the sectional curvature. 

Another motivation is the recent result of L. Gao [14] that the space of +1 
Einstein metrics on a 4-manifold M is compact in the COO topology. This 
result, the first of its kind on Einstein metrics (known to the author), shows 
that one can control the geometry of M in terms of the injectivity radius. 

Our first result in dimension 4 is as follows. Let 1M be the length of the 
shortest inessential (Le., null-homotopic) nontrivial geodesic loop on the Rie-
mannian manifold M. (If no such loop exists, define 1M to be +00.) 

Theorem A. The space of compact 4-dimensional Riemannian manifolds M 
such that 

(i) I Ric I ::; c1 • 

(ii) sUPr~e r2(1-4/Ql UB(rl ID2 Ric IQ/2]2/Q ::; c2(e, q). for some q > 4. e > O. 
(iii) 1M ~ c3• 
(iv) volM ~ c4 • 

(v) diamM ::; c5 • 

(vi) dimH2(M,R)::; c6 

is C I ,a compact in the Lipschitz topology. 

Here in (ii), D2 Ric is the second covariant derivative of the Ricci tensor. 
The bounds (i) and (ii) are implied by a bound on the Holder space norm 
1IV'9!1I3 •a of the gradient of the total scalar curvature. We note that the bound 
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(iii) may be replaced by other bounds. For instance, it may be replaced by 
.9fM = inf{area 1:: [1:] =I- 0 E H2(M, Z)/Torsion} ? a > 0, cf. §6. If H2(M, Z) 
is torsion, this condition becomes vacuous. There is an analogous result in 
dimensions> 4 when the bound on the second Betti number b2(M) is replaced 
by a bound on the curvature integral f M IRl n/2 , where R is the curvature tensor 
of M. 

Theorem A'. (I). The space of compact n-dimensional Riemannian manifolds 
M such that 

(i) I Ric I ~ c1 ' 

(1'1') 2(I-n/q)[! ID2 R' Iq/2]2/q ( ) fi 0 sUPr~e r B(r) lC ~ C2 e, q , or some q > n, e > , 
(iii) 1M? c3' 
(iv) volM ? c4 ' 

(v) diamM ~ c5 ' 

(vi) fM IRl n/2 ~ c6 

is C1,Q compact in the Lipschitz topology. 
(II) If n is odd, condition (iii) on 1M may be dropped. 

Notice that in Theorem A no assumption is made regarding the sectional 
curvature, while in Theorem A' a comparatively weak assumption, namely 
a bound on the scale-invariant integral fM IRl n/2 dV , is made. The quantity 
in (ii) scales in the same way as the sectional curvature (or the norm of any 
(3, 1) tensor), and again may be replaced by a bound on 1IY'9f113,Q' Theorems 
A and A' apply naturally to Einstein manifolds, or their products, since then 
D Ric == 0, and lead to the following consequences, proved in §4. 

Corollary B. (1) (a) The space of Einstein metrics of Ricci curvature + 1 on com-
pact 4-manifolds M such that 1M? c1 ' volM ? c2' and b2(M) ~ c3 is compact 
in the COO topology. In particular, there are only finitely many diffeomorphism 
types. 

(b) On each component D of the moduli space of + 1 Einstein metrics on a 
given 4-manifold M, the function 1M : D -> R+ is a proper exhaustion function. 

(2) The space of Einstein metrics of Ricci curvature 0 or -Ion compact 
4-manifolds M such that 1M ? c1 ' volM ? c2' diamM ~ c3 ' and b2(M) ~ c4 

is compact in the COO topology. In this case, the function r;/ + diamM is a 
proper exhaustion function on each component D of the moduli space. 

These results hold with .9fM in place of 1M , 

(3) Results (1) and (2) above hold for the space of Einstein metrics on com-
pact n-dimensional manifolds M n , provided the bound on b2(M) is replaced 
by a bound on fM IRln/2. If n is odd, the lower bound on 1M may be dropped. 
Thus, for example, the function f M IRl n/2 is a proper exhaustion function on the 
moduli space of + 1 Einstein metrics on a given manifold M in this case. 
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(4) (Almost Einstein metrics) There is a constant 

6 = 6(1 Ric I, ~~~ r2(1-4/q)IiD2 Ric Ii B(r),Q/2' 1M , volM , diamM , b2(M» 

such that if M is a compact 4-manifold with fM 1 Ric -A.gl :5 6, then M admits 
an Einstein metric with Ric = A.g. The same result holds if M is a compact 
n-manifold with the bound on b2(M) replaced by a bound on fM IRl n/2 (and 4 
replaced by n). Again, if n is odd, the bound on 1M may be dropped. 

Before proceeding, we make some remarks on the hypotheses of Theorems 
A and A' , namely, whether any bound may be dropped in the presence of the 
others. 

Remarks. (i) It is very possible that the two-sided condition 1 Ric 1 :5 c1 can be 
weakened to a lower bound Ric ~ -c1 especially in the presence of the bound 
(ii). 

(ii) It is not known if the bound (ii) is necessary in Theorems A and A' , and 
it would be very interesting to know if, or to what extent, it can be removed. 
In spirit, it is similar to an a-Holder bound on the Ricci tensor. 

(iii) A condition of the type (iii) is necessary in even dimensions. In fact, 
Tian and Yau [35] construct a noncompact connected family of Kahler-Einstein 
metrics with c 1 > 0 (and so Ricci curvature + 1) on a simply connected 4-
manifold (CP2#8Cp2). The first Chern class degenerates at the boundary so 
there are sequences with no smoothly convergent subsequences. In particular, 
1M --+ 0 (and .NM --+ 0) for elements in this family; cf. also [27] and the 
discussion in §5. 

(iv) The lower bound on the volume is necessary, since for instance any 
manifold M = N X Sl collapses with bounded curvature, cf. [30]. 

(v) Similarly, a diameter bound is also necessary. The space of flat metrics 
on an n-torus with v M ~ C > 0 is still noncompact. 

(vi) In dimension 4, it is an interesting open question whether the assumption 
(vi) is necessary. It is possible that it is a consequence of the bounds (i), (iv), 
(v). In higher dimensions, the bound on the curvature integral is also not known 
to be necessary and it would again be interesting to replace this by a weaker 
curvature invariant, cf. §4. 

In §5, we tum to the question of the compactification of the space of Einstein 
manifolds. Consider for instance Corollary B(l)(b). One is led to study the 
behavior of metrics in the moduli space go+1 of + 1 Einstein metrics on a 
4-manifold M as 1M --+ 0, say at a point p EM. The methods developed 
in the proof of Theorems A and A' (cf., in particular, Theorem 3.5) tend to 
indicate that M develops a singularity near p; namely, a neighborhood of p 
is replaced by a cone on a spherical space form. In fact, the following result 
holds (conjectured independently by H. Nakajima). 
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Theorem C. Let {(Mi' g)} be a sequence of compact connected n-dimensional 
Einstein manifolds, normalized so that tr Ric E { -1 , 0, + I} such that 

(i) volMj ;::: c1 ' 

(ii) diamMj ~ c2 if tr Ric = -lor 0, 
(iii) b2 (M) ~ c3 if n = 4, fMj IRl n/ 2 ~ c3 if n > 4. 
Then a subsequence converges, in the HausdorjJtopology, to a connected Ein-

stein orbifold Moo with a finite number of singular points {pJ E Moo' If 
Goo == Moo - U{pJ, then Goo has a COO Einstein metric goo and there are COO 
embeddings Fi : Goo --> Mi' for i sufficiently large, such that (F)* gj converges, 
uniformly on compact subsets in the Ck,n topology on Goo' to goo . Each singu-
lar point Pj has a neighborhood which is homeomorphic to a cone on a spherical 
space form C(Sn-1/r). If the metric goo is lifted to B n - {O} via r, then there 
is a r-equivariant diffeomorphism ¢: B n - {O} --> B n - {O} such that ¢* goo 
extends smoothly over {O} to a smooth Einstein metric on Bn . 

Further, if n is odd, there are no singular points and Moo is an Einstein 
manifold diffeomorphic to Mj' for i sufficiently large. In this case, (Mj' gj) 
(sub)converges smoothly to (Moo' goo)' 
Remarks. (1) Condition (i) is automatically satisfied if Mi = M and gi are on 
a connected component of the moduli space of Einstein metrics on M. 

(2) The number of singular points {pJ and the orders of the local funda-
mental groups Irjl may be bounded above in terms of the bounds (i), (ii), 
(iii). 

(3) Parts of Theorem C have been proved independently by Nakajima [29], 
cf. also [2] for a sketch of a proof of Theorem C obtained later, but essentially 
similar to the proof here. 

(4) Recent work of Kobayashi-Todorov [27] indicates that Einstein orbifolds 
do actually arise as Hausdorff limits of Einstein metrics on K3 surfaces; cf. §5 
for further discussion. 

In §6, we study the moduli space of positive Einstein metrics on compact 
4-manifolds of low Euler characteristic. 

Theorem D. Let M be a compact 4-manifold with Euler characteristic 0 < 
X (M) < 4. Then each component of the moduli space ;g+ of positive Einstein 
metrics on M is compact in the COO topology. Further, there are only finitely 
many components of the space ;g+1 of + 1 Einstein metrics on M with volM ;::: 
c> O. 

This holds for instance for M = S4 or CP2. These results bear some re-
semblance with the compactness theorems of Uhlenbeck for the space of con-
nections [37] and the space of Yang-Mills fields [36] on principle bundles over 
a compact manifold. In the latter case, this is, of course, not surprising, since 
Einstein metrics yield Yang-Mills connections on the tangent bundles. How-
ever, spaces of Einstein metrics are likely to be more complicated than spaces 
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of Yang-Mills fields, since the (base) metrics may degenerate both locally and 
globally. The results above indicate what happens when the appropriate bounds 
are imposed, on the space of Einstein manifolds for instance. It remains open, 
for example, what happens in Theorem C when the volume of (Mj' g) --+ 0, 
or diam(Mj' gj) --+ 00. This behavior may actually occur on a given manifold 
M, as shown by the examples of Wang and Ziller [38]. 

The origin of this paper owes much to questions and discussions with L. Gao. 
His result [14] led the author to consider the more general questions here. 

The author would also like to thank S. Bando for enlightening him on the 
existence of the metrics in [7, 13]; this set the framework for the current work. 
Finally, I also thank H. Nakajima for his correspondence on these topics as well 
as the Taniguchi Foundation for making these latter contacts possible. 

2. PRELIMINARY RESULTS 

In this section, we will discuss several preliminary results that will be used 
for the proof of the main theorems. This section may be skipped and referred 
back to, when necessary. 

2.1. First, we unify the discussion of dimensions. Recall the formula of Avez 
[5] expressing the Euler characteristic X(M) of a compact 4-manifold in terms 
. of a curvature integral; 

1 1 2 . 2 2 (2.1) X(M) = -2 IRI - 41 RIC 1 + -r , 
871 M 

where -r is the scalar curvature. Clearly, X(M) :::; 2 + b2(M) and fM -r2 :::; 
4fMIRic12. Thus, a bound on fMIRicl2 and b2(M) implies a bound on 
fM IRI2. The Bishop comparison theorem (cf. §2.5) implies there is a bound 
volM :::; c(infRicM, diamM), so that the bounds (i), (v), (vi) imply a bound on 
fMIRI2. 
2.2. The hypotheses (i), (iv), (v) in Theorems A and A' lead to a lower 
bound on the isoperimetric and Sobolev constants of M. In fact, let hM be 
the isoperimetric constant given by 

(2.2) h = inf [volSt , 
M S [min(volM" volM2)t-' 

where S varies over closed hypersurfaces of M such that M - S = M, U 
M 2 • Croke [10, Theorem 13] shows that hM is bounded below by a constant 
depending only on a lower bound for the Ricci curvature and volume, and an 
upper bound on the diameter. In particular, if Bx(r) is a geodesic ball of radius 
r about x E M and Sx(r) = 8Bx(r) , v(r) = vol Bx(r) , then it follows that 
(v'(r))n/v(r)n-' ~ hM for v(r) < !volM. Integrating this inequality, one 
obtains 

(2.3) 



RICCI CURVATURE BOUNDS AND EINSTEIN METRICS 461 

if v(r) < !voIM. Also, it is well known that a lower bound for hM gives a 
lower bound for the Sobolev constant Cs of M. In fact, cf. [40], 

f 1 -2/n 
(2.4) II Ibn/(n-2):5 C IIdfll2 + volM IIflb, 

s 
for any Lipschitz function for M. Note that the bounds in (2.3) and (2.4) are 
scale invariant. 
2.3. A basic tool in the arguments to follow will be the equation for the 
(rough) Laplacian of the curvature tensor R of M. It is shown in [21, Lemma 
7.2] that 

AR = R * R + R * Ric+P2(Ric) , 
where A * B denotes a linear combination of tensors A, B obtained by con-
tracting A, B with the metric g and p2 (Ric) is a linear combination of 
second covariant derivatives of the Ricci tensor. In particular, one obtains 

(2.5) IARI :5 cI ID2 Ric 1+ c21RI2 , 
where c1 and c2 are constants depending only on dimension. One has (AR, R) 
+ IDRI2 = !~IRI2 = IRI~IRI + IdlRI12 . An application of the Schwartz inequality 
shows IdlRII2 :5 IDRI2 so that from (2.5) one has 

(2.6) ~IRI + cI ID2 Ric 1+ c21RI2 ~ O. 
Elliptic inequalities of this type have now been used in many geometric con-

texts to derive pointwise bounds, the basic idea going back to Uhlenbeck [32]. 
Since such a pointwise bound is crucial in our arguments, we will include a full 
proof, following the lines of [16, Theorem 8.17]. 
Lemma 2.1. There is a constant C = C(n,cs ) and to = to(n,cs ) such that if 
B(t) is a geodesic ball of radius t in M and 

(2.7) r IRln/2 dV < to' 
lB(t) 

then 

(2.8) sup IRI2 :5 C. [~r IRl n/2 + t26 [r ID2 Ric Iq/ 2] q/2] 
B(t/2) t2 1 B(t) 1 B(t) 

for a fixed q > nand 0 = 1 - i . 
Proof. It simplifies matters if we assume t = 1. Note that inequality (2.6), 
condition (2.7) and claim (2.8)·are all scale invariant, so that by rescaling the 
metric on M, we may assume that t = 1 . 

Let k = (fB(I) ID2 Ric Iq/2)2/q and let u = IRI + k. First multiply (2.6) by 
,2 uU , a ~ 1 ,where , is a cutoff function of compact support in B (1) , to be 
determined below. Integrating by parts, one obtains 

4a 2/ ,21 du(u+I)/2 12 - 2,uul d'ildul :5 c3 / ,2uu[ID2 Ric 1+ IRI2]. 
(a + 1) 
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By the Young inequality 

so that one obtains 

4(a - !1 / ,2 Idu(,,+I)/2 12 ~ c3 / ,2u"[ID2 Ric 1 + IRI2] + 2U,,+lld'12 . 
(a + 1) 

This gives the estimate 

/ Id,u(,,+I)/212 ~ c4 • a / ,2u"[ID2 Ric 1 + IRI2] + u"+lld(l2 , 

so that by the Sobolev inequality (2.4) 

(2.9) (' u(,,+I)/2)2n/(n-2) [/ ] 
(n-2)/n 

~ c5a / ,2 u"[ID2 Ric 1 + IRI2] + U"+I [ld '12 + ,2] . 

where c; is an auxiliary cutoff function with c; == 1 on supp'. Since J(c;IRDn/2 
~ eo' if eo < !c5(1- 1), this term may be absorbed into the left side of (2.9). 
Next, 

/ (,2 ID2 Ric Du(n-2)/2 ~ (/ ID2 Ric ,n/ 2r/n • (/ ,2Un/2 yn-2)/n 

~ voIB(1)I-n/Qk[II,2IRllin/2 + k](n-2)/n. 

Further, J u,,+lld'12 ~ c6 [eO + k], where c6 depends on Id'i. If we set Po = 
(n/2)(n/(n - 2)), the above estimates combine to give the bound 

(2.10) 

Now we return to (2.9) with a + 1 > 1. Note that 

u"[lRI2 + ID2 Ric 11 ~ U"+I [u + ID2 :iC I] , 

so that 

(2.11) f ,'u"URI' + ID' Ric II ,,11' (u + ID' :iC I) t, '"'U("+Il/'I~qf(q_,)' 



RICCI CURVATURE BOUNDS AND EINSTEIN METRICS 463 

Then 

II' (u + ID':"C I ) IL :5 lI,ull,/, + II'ID' Ric 111,/, .1< :5 c,[co + kJ, 

provided ~ ~ po. Further, using the interpolation inequality II/lIs ~ ell/lir + 
e-#II/III' where r > s > t, ~ = (f - f)/(f -1) with r = 2n/(n - 2), s = 
2q/(q - 2), t = 2, we obtain from (2.9)-(2.11) that 
(2.12) 
[I (,u(a+I)/2)2n l (n-2)] (n-2)ln ~ c9 • a[(ell,u(a+I)/2 112nl(n_2) + e -#II,u(a+1)/2 11z ]2 

+ 1 ua+l[ld'12 + ,2], 

where ~ = n / (q - n). If we choose e2 = i (c9a) -I , then the first term on the 
right side of (2.12) may again be absorbed into the left side. We set v = u(a+I)/2 
and X = n/(n - 2) and thus obtain 

(2.13) lI,vllzx ~ cJOa(1 + a#)[II(' + IdmvI12]. 
We may choose the cutoff function ,= '(r) , where r is the distance to 0 E 
B(I), and require '(r) == 1 for r ~ r- with r- ~ !, '(r) == 0 for r ~ r+ , 
where r+ ~ 1 and Id'i ~ c/(r+ - r-). Let T(p, r) = UB(r) t/)llp . Then (2.13) 
gives 

(2.14) ( 
# ) 21p - cllp{l + P ) + T(XP ,r ) ~ + _ T(p ,r ). 

r - r 
This inequality may now be iterated in the standard fashion. Let PI 
Pm = Xmp, r: = ! + 2-(m+3) , r~ = 1 - 2-(m+3) . We then obtain 

T( mn 1)« )2[l+Em;x- i1 T(n 1)< T(n 1) X '2' '2 - c12X I '2 ' - cJ3 . '2 ' . 
Letting m -+ 00 gives 

(2.15) sup u < c. (f Un12) 21n 
B(1/2) - J B(I) 

n 
'2 ' 

Lemma 2.1 then follows by applying the triangle inequality to the integral in 
(2.15). 0 

2.4. We will make frequent use of a local lower bound estimate on the injec-
tivity radius of a manifold, due to Cheeger, Gromov, and Taylor [9, Theorem 
4.3]. Namely, let N be a complete manifold and pEN. Let lp denote the 
length of the shortest geodesic loop in N based at p. If KN ~ A2 on Bp(r) , 
and r ~ Ip/2, then an estimate of Klingenberg [26, Lemma 1], implies that the 
injectivity radius ip of N at p satisfies 

(2.16) 



464 M. T. ANDERSON 

Now suppose IKNI ~ A2 on Bp(r) , where r ~ X. Choose any numbers ro 
and s such that ro + 2s ~ r, ro ~ ~ . Then one has the estimate [9] 

-A -I (2.17) Ip ~ ro[1 + v (ro + s)/vp(s)] , 

where vp(s) is the volume of Bp(s) and v-Aero + s) is the volume of the 
geodesic ball of radius ro + s in the space form of constant curvature -A. 

In particular, a lower bound on vp(s) and the bound IKNI ~ A2 imply 
a lower bound on the injectivity radius of N of p. Note that from (2.3), 
one obtains a lower bound for vp(s) (depending only on s), from bounds 
volN ~ c4 ' diamN ~ Cs (since IKNI ~ A2) . 

2.5. We will also make use ofthe well-known Bishop comparison theorem [6, 
9]. If M is a complete manifold with RicM ~ (n - I)A, then 

(2.18) vCr) ! 
vA(r) , 

where v(r) , vA(r) are as in §2.4. Clearly limr -+o v(r)/vA(r) = ron' the volume 
of the unit n-ball in Rn. If v(r)/vA(r) == ron for all r, then M is isometric 
to the simply connected space form of constant curvature A. We note, in 
particular, that if RicM ~ 0, then v(r)/rn !. 
2.6. We will need to apply a local form of the Gromov compactness theorem 
(related to [20, 8.2]) a' number of times. First, we give a definition. 

Definition. A sequence of Riemannian manifolds Y; converges uniformly on 
compact sets in the Ck ,a topology to a Riemannian manifold V if, for any 
compact domain D e V and i sufficiently large, there are compact domains 
Di e Y; and Ck ,a diffeomorphisms Fi : D - Di such thatthe pull-back (F/ gi 
of the metrics on D i to D converge, in the Ck ,a topology on D, to the metric 
on DeM. 

Theorem 2.2 (Gromov compactness). Let Y; be a sequence of closed COO Rie-
mannian manifolds and ni a sequence of domains in Y;, with smooth boundary 
ani' Suppose, for all i, 

(i) Iv' RI(x) ~ A(l). 1= 0, ... ,k • 
(ii) Inj(x) ~ c1 ' 

(iii) c2 ~ volni ~ C3 

for all x E ni , where v'R is the Ith covariant derivative of the curvature 
tensor on Y;. Then given e > 0, the Riemannian manifolds niCe) == {x E 
n i : dist(x, ani) > e} (assumed nonempty) have a subsequence which converges, 

;/: I . h Cka I Ck+1a R' . umJorm y on compact sets m t e 'topo ogy, to a 'lemanman man-
ifold noo(e). In particular. niCe) is diffeomorphic to noo(e) for i sufficiently 
large. 
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Although this specific form of the Gromov compactness theorem does not 
seem to appear in the literature, a number of proofs that do appear are easily 
adapted to give a proof of this situation. For completeness, we give a proof of 
Theorem 2.2, following closely the lines of [24]. 

First, we recall the following result from [23]. 

Fact. There are positive constants 00 and co' depending on the bounds (i), 
(ii), (iii), and e, such that for any 0:::; °0 , there is a harmonic coordinate chart 
H = (hi' ... ,hn): Bx(o) -+ Rn satisfying 

(1) c~ldist(x,y):::; IH(y)1 :::;codist(x,y), 
(2) c~lleI2:::; Egijeje j :::; co1e12, where gij = g(Vhi' Vh), 
(3) IIgij IICk+l.a(Bx(J)) :::; co' 
(4) if f is any harmonic function in Bx(o) , then 

IIfIl Ck+2.a(Bx(Jj2)) :::; colflco 

for any x E 0j(e) . 

Proof of Theorem 2.2. Let 01 = !c~S °0 , where co' 00 are chosen from the 
above fact, and we will also assume 00 < e/2. In each domain ° = 0j(e) , 
choose a maximal 0d2 separated set r of points {xj }. Thus, distn(xj ,xk ) > 
°1/2 and distn(x, r) < ° 1, In particular, the balls Bx/od4), Xj E r, are 
disjoint and the balls Bx(OI) cover 0j(e). By the Rauch comparison theorem, 

J 

voIBx (01/4) ~ c(A)· o~ and voIBx.(ol) :::; c'(A) . o~ . Thus, by (iii), there is a 
J J 

fixed upper bound Q to the cardinality of r and by passing to a subsequence, 
we may assume #r = #rj(e) = Q (e fixed). Let V = Vj = UJ=I Bx/ol ) , so 
that Vj covers OJ (e) , but is contained in 0j(e/2). 

For each x j ' we have harmonic coordinates Hj : B/x) -+ Rn satisfying 

Bn(c~lo) C Hj(Bx/o)) C Bn(coo) 

for ° < 00 and Bn(s) the ball of radius s about 0 in Rn. Let ( be a fixed 
smooth cutoff function satisfying ((t) == 1 on [0,°2 ]. ((t) == 0 on [03'00), 
where 02 = C~OI' 03 = C~OI . Define (j: V -+ R by (/x) = ((IHj(x)I) , so that 

S 2 supp(j C Bx.(os) and (J' == 1 on Bx.(04) , where Os = COOl' 04 = COOl' 
J J 

For each V = Vj ' we may define a smooth map Eu: V -+ RN (N = 
nQ+ Q), by 

Eu(x) = ((I (x) . HI (x), ... '(Q(x) . HQ(x) , (I (x), ... '(Q(x)), 

It is clear that Eu is an embedding of V into a ball BN(ro) of fixed size in 
RN. Now observe that for any Xj E r, Eu(Bx/04)) is naturally a graph over 

H/BXj (04)) C Rn = (RN)j eRN. Namely, for x E Hj(Bx/04)) ' 

Eu(Bx/04)) = ((.t; (x)FI (X) , ... ,!j_I(x)Fj_l(x),x,!j+I(x)Fj+I(x), 

... ,fQ(x)FQ(x) ,.t;(x) , ... ,JQ(x))} , 
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where Ei = HI 0 Hj- I and fi = WEi!). Further, note that there is a fixed 
lower bound on the size of H/BXj (d4»; in fact, H/Bx/d l » C Bn(Cod l ) C 
H j (Bx/d4». Clearly, the balls Bx/d4 ) cover U. Since the maps H j are 
harmonic, the maps Fj and fj have uniformly bounded Ck+2,a norms, by (4) 
of the fact. In particular, all maps Eu; have uniformly bounded C k +2 ,a norm. 

We will now identify Uj with its image D j in RN under Eu; and the metric 
gj on Uj with its image (call it again gj)' under the push forward (Eu).gj on 
D j • We then have a covering of D j by neighborhoods Nj = N/i) which are 
graphs over a fixed domain B n (d6 ) C (Rn/ eRN, with d6 = Codl ' by graphing 
functions with uniformly bounded Ck+2 ,a norm. We may apply the Arzela-
Ascoli theorem to each graphing chart and obtain a subsequence of {D j } which 
converges, in the Ck+2 ,a' topology, for ex' < ex to an embedded graph Doo of 
class Ck+2 ,a' • For i sufficiently large, any compact subset of D j may then be 
graphed over the normal exponential map Xoo to Doo ' so that, pushing forward 
the metric gj to Doo by Xoo ' we obtain a sequence of Ck+l,a' metrics, also 
called gj' on any given compact subset KeD 00 • 

We will now verify that this sequence of metrics has a subsequence, converg-
ing uniformly in the Ck+I,a topology on K, to a Ck+l,a metric on K. To 
see this, recall N = Qn + n and let pj be the orthogonal projection of RN 
onto (Rn)j, 1 ~ j ~ Q. Let n{ be the restriction of pj to the geodesic ball 
Bx.(d4 ) C Uj == D j C RN. Consider the sequence of metric tensors 

} 

j j (a a) hap = (nj ).gj aXa' axp 

defined on B n(d6 ) c (Rn)j. To compare these metrics, note that the maps 
¢{ = pj oXoo o(n{)-I are Ck+2,a diffeomorphisms from B n(d6 ) into Rn , with 
uniformly bounded Ck+2,a norm in i, for each fixed j. Thus, they converge 
to the identity in the Ck+2,a' topology. It follows that the Ck+l,a norms 
of h~p on Bn(d6 ) are uniformly bounded, so by the Arzela-Ascoli theorem, 
a subsequence converges to a Ck+l,a metric h:'p in the Ck+I,a' topology 
on Bn(d6 ). Taking then (n{)*h:; one verifies the claim, and this proves the 
theorem. 0 

3. PROOF OF THEOREMS A AND A' 

This section will be concerned with the proof of Theorems A and A' . Note 
that by §2.1, we may treat the cases dim M = 4 and dim M > 4 on an equal 
footing, so we will assume n = dim N is arbitrary. 

We will prove that conditions (i)-(vi) in Theorem A (A') imply a bound on 
the sectional curvature IKMI ~ A2 of M. The result then follows from the 
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Gromov compactness theorem. Suppose IKMI is not bounded on this set of 
Riemannian manifolds. Then there is a sequence of Riemannian n-manifolds 
(Mj' gj) such that (i)-(vi) hold uniformly for (Mj' gj) but 

(3.1) sup IKMI = Rj -+ 00 as i -+ 00. 
M; I 

It will be shown that this leads to a contradiction. Suppose the supremum above 
is achieved at Xj E M j and consider the sequence of rescaled metrics (Mj' h;) 
with 

(3.2) 

This sequence satisfies 

(3.3) 

(1) I Ric(h;) I :5 CdRj -+ 0, 

(2) sup r2(I-n/q)[ f ID2 Ric(h;)112/ q -+ 0, 
r$.eR; J B(r) 

(3) 
(4) 

(5) 

IK(hj)1 :5 1, 
IK(hj)(xj)1 = 1, 

1M; IR(h j)ln/2 :5 C6 ' 

(6) iM;(h;) ~ c3Rj -+ 00, 

(7) v(r)/rn = volh; Bx(r)/rn ~ CI ' 

(8) injM;(x) ~ co. 
Here (1)-(6) follow from the bounds on (Mj' gj) and scaling properties, (7) 

follows from (2.3) and scale invariance (we assume r:5 R;/2.vol(Mj' gj» , and 
(8) follows from §2.4 via (3) and (7). 

We wish to apply the Gromov compactness theorem (in local form) to the 
sequence (Mj' g;). However, a limit metric need only be C l ." and we require 
some curvature properties, in particular, an analogue of (4), to apply to the 
limit. Thus, it is useful first to smooth the metrics and then to pass to a limit. 

Let h = h j and consider the evolution equation of Hamilton [21] 

(3.4) 8h/8t = -2 Ric(h) 

on M = M j • It is shown in [3] that there is an e l > 0, depending only 
on dimension (since IK(hj)1 :5 1), such that solutions h(t) to (3.4) exist for 
o :5 t :5 e I ' and 

IIh(t) - hllco :5 C(t), with C(t) -+ 0 as t -+ 0, 

(3.5) IIDk R(t)lIco :5 C( + ,k) , k = 1,2,3, ... , 
IIR(t)lIco :5 1. 

One sees that the bounds (3.3)(3), (7) and thus (8) remain valid for h(t), for 
all i, t with t sufficiently small t :5 e l . We will show in a sequence of lemmas 
that the other bounds (except (2) and (6» are also preserved, with (4) replaced 
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by an analogue. In the following lemmas, we will suppress the dependence on 
i , but it is important to keep in mind that all estimates are independent of i. 
The "centerpoint" Xi e Mi will be denoted by Xo' 

Lemma 3.1. For the metric h = h(O), there are fixed positive constants ro' 00 
such that 

(3.6) 

Proof. Since IRI $; 1 , we may choose r sufficiently small to apply Lemma 2.1 
and obtain 

sup IRI2 $; C. [12 { IRln/ 2 + r2t5 ( ( ID2 Ric Iq/ 2) 2/q ] , 
Bxo (r/2) r 1 Bxo(r) 1 Bxo(r) 

where 0 = 1 - i . By (3.3)(2), the second integral converges to zero as i --+ 00. 
2 On the other hand, by (3.3)(4), sUPBxo (r/2) IRI = 1, so that 

( IRln/ 2 ~ c . r2 • 
1 Bxo(r) 

Again, since IRI $; 1 , the result follows. 0 

Lemma 3.2. For the metric h = h(O), there is a constant K such that 

(3.7) ( IVRI2 $; K 1Bx(l) 

for any X eM. 
Proof. From (2.5), it follows that one has the inequality 

(3.8) 

Let' = '(r) be a fixed cutoff function such that '(r) == 1 for r $; 1 and ,== 0 
for r ~ 2. Multiply (3.8) by , and integrate by parts to obtain 

{ IV RI2 $; { 'L\IRI2 + c1 { 'ID2 Ric I·IRI + c2 ( , IRI3. 
1Bx(l) 1M 1M 1M 

The latter two integrals on the right side are clearly bounded above. Noting that 
iM'L\IRI2 = iM IRI2L\' $; iM IL\'I, this term may also be bounded from above 
by the local geometry of M. 0 

Remark. Lemmas 3.1 and 3.2 are the only places where condition (ii) in The-
orems A and A' is required in the proof. 

Lemma 3.3. There is a constant L such that for 0 $; t $; e 1 ' 

(3.9) ( IV R(t)1 2 $; LeLt • 
1Bx(l) 
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Proof. It follows from equation (13.3) of Hamilton [21] that one has the in-
equality 

(3.10) 

Choose a locally finite cover of M by geodesic balls Bp/rl ) in the h = h(O) 
metric, where r l < ! injM(h(O)) and such that the balls Bp/rI/2) also cover 
M. There is a PI E {p}.} such that IB (r) IV RI2 ~ IB (r) IV RI2 , for all j. 

PI I Pj I 

Further, since for any Dc M, ID IV R(t)12 dV; is a continuous function in t, 
there is a tl ~ 81 and PI such that, for all j, 

(3.11 ) 

for t ~ t l . Let ,= '(r) be a fixed cutoff function with '(r) == 1 for r ~ rl/2 
and '(r) == 0 for r ~ 3r1/4. Multiply (3.10) by , and integrate by parts to 
obtain 

: f 'IVR(t)12dV;= f ':IVR(t)12dV;+ f 'IVR(t)12rdV; 
t 1 BpI (rd 1 BpI (rd t 1 BpI (rd 

~ f IV R(t)1 21.:\'1 dV; + c4 f 'IV R(t)1 2 dV; , 
1 BpI (rd 1 BpI (rd 

where r is the scalar curvature. One may bound 1.:\'1 ~ c5 by a constant 
depending only on the local geometry, so that 

:t f 'IV R(t)12 dV; ~ c6 f IV R(t)12 dV; 
1 BpI (rd 1 BpI (rd 

~ C7 f 'IV R(t)12 dV;, 
lBpl(rl) 

where we have used (3.11) in the last inequality. Setting 

f(t) = f 'IV R(t)12 dV;, 
1 BpI (rd 

we obtain r ~ c7f for t ~ t l • Thus, f(t) ~ f(0)eC7 / ~ K . eC7 / so that (3.9) 
holds for t ~ t l . Repeating this argument with tl in place of to = 0 and 
continuing by induction gives the result. 0 

Lemma 3.4. For all t ~ 81 there is a constant C such that 

(3.12) 

(i) 

(ii) 

(iii) 

f IR(t)12 dV; ~ C- I , 
1Bxo(l) 

1M IR(t)l n/2 dV; ~ c, 
I Ric(t) I ~ C'I Ric(h(O))I· 
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Proof. (i) Using equation (13.3) of Hamilton [21] again, one obtains the in-
equality 

:t IRI2 ~ ~IRI2 - 21V RI2 - c31RI3 

Choosing , as in Lemma 3.2 and integrating by parts gives 

:t f ClRI2 dV ~ - f I~'I- 2 f IVRI2 f 1RI3 J Bxo(l) J Bxo(1) J Bxo(1) J Bxo(1) 

The result then follows from Lemmas 3.1 and 3.3. 
(ii) From equation (13.3) of[21] one obtains 

·d 2 2 3 
dt lRI :5 ~IRI + c31RI , 

from which one deduces 

:t IRln/2 :5 ~IRln/2 + c3IRI(n+2)/2 . 

Integrating this inequality over (M, h(t)) , and using IRI :5 1 and (3.3)( 5) gives 
the result. 

(iii) From Corollary 7.3 of [21], the Ricci curvature satisfies 

:t 1 Ric 12 :5 ~I Ric 12 + c31RI·1 Ric 13. 

Taking into account that IRI :5 1 , the result follows by applying the maximum 
principle on M, cf. [3, 21]. 0 

Returning now to the sequence of metrics {hi} on Mi' the above results 
show that there are metrics hi(t), t:5 81 ' on Mi' such that 

(i) IIhi(t) - hilleo :5 C(t), 

(ii) IIVk Ri(t)lIeo :5 C( t ,k) , 
(iii) IIRi(t)11co :5 1, 

(iv) fM . IRi (t)ln/2 :5 C, 
(3.13) JA, 

(v) f IR;(t)12 ~ C- I , J BXj(1) 

(vi) 

(vii) 

-n -I volhj(t) B(r) . r ~ C , 

injh,(t) Mi ~ C- I 

We now apply the Gromov compactness theorem to the pointed manifolds 
(Mi'xi'hi(t)). By Theorem 2.2, the sequence (BXj(R),hi(t)) of Riemannian 
manifolds has a subsequence which converges, uniformly in the Ck,o topology 
for any k, to a COO Riemannian manifold (Bx (R), h (t)), provided t > 

00 00 

O. By choosing a sequence {R j} ~ 00 and taking a diagonal subsequence, it 
follows that a subsequence of (Mi' Xi' hi(t)) converges, smoothly on compact 
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subsets, to a COO Riemannian manifold N, with smooth metric hN(t), 0 < 
t < el ' satisfying 

(i) RicN == 0, 

(ii) L IRl n/2 < 00 , 

(3.14) 
(iii) v(r)/rn ~ C, 

(iv) 1 IRI2 > 0 
Bz(l) 

for some point ZEN. We note that (3.14)(i) follows from (3.3)(1) and 
(3. 12)(iii). 

Let us indicate briefly how the result (3.14) leads to the required contradiction 
in the proof of Theorems A and A I. We will show below, and this is the 
crucial result, that a complete Riemannian manifold V satisfying (3.14)(i)-
(iii) is asymptotic to a cone on a spherical space form Sn-I /r. Further, if V 
is simply connected at infinity, then V is flat. Below, we will use the bound (iii) 
in Theorems A and A', or equivalently (3.3)(6), to show that N, constructed 
above, is simply connected at infinity. Thus, N must be flat, contradicting 
(3. 14)(iv). 

Theorem 3.S. Let V be a complete, noncompact Riemannian manifold satisfying 
(3. 14)(i)-(iii) . Then given Z E V, there is an Ro such that V \ Bz(Ro) is 
diffeomorphic to (Ro' 00) X Sn-I (1) /r. where Sn-I (1) /r is a spherical space 
form. Further, V is asymptotically flat, i.e., the metric on V approaches the 
flat metric on (Ro' 00) X Sn -I ( 1 ) /r at a rate O( 1 / r2) . 

If V is simply connected at infinity, i.e., r = {e}, then V is isometric to 
Rn. 

Proof. First note that from Bishop's inequality (§2.5) and (3. 14)(iii), there is a 
constant Co such that C~I ::; v(r)/rn ::; co' It follows from an observation of 
Yau [40], based on the methods of Croke [10], that there is a global Sobolev 
constant Cs for functions of compact support on V, i.e., 

IIfIl 2n/(n-2) ::; cslldflb· 
Consider now the annulus A(!r, 2r) = {x E V: !r ::; dist(x, z) ::; 2r}. Since 
Iv IRl n/2 < 00, we have IA(r/2,2r) IRl n/2 -+ 0 as r -+ 00. We may apply Lemma 
2.1 and find there is an Ro > 0 such that, for all r ~ Ro ' 

sup IRI::; ~ r IRl n/2 == e(~) , 
S(r) r J A(r /2 ,2r) r 

where e(r) -+ 0 as r -+ O. In other words, the curvature of V decays 
faster than quadratically. It follows that the rescaled Riemannian manifolds 
(Ar , gr) = (A(r/2, 2r), g /r2) have sectional curvature satisfying 

(3.15) sup IRrl ::; 2e(r) -+ O. 
A' 
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Clearly, by Bishop's inequality, volA' ~ c6 • If B'(s) is a geodesic ball of radius 
s in A', then 

voIB'(s) = vol~(rs) = sn . volB(;S) 
r (rs) 

n 1. voIB(rs) n 
~ S 1m ()n = Cos. s-oo rs 

Note also that the diameter of A' is bounded above. 
These results imply by §2.4 that there is a uniform lower bound on the injec-

tivity radius inj'(x) in the g' metric at each x E A' , 

(3.16) inj'(x) ~ 60 > O. 

We may now apply the Gromov compactness theorem of §2.6 to an ar-
bitrary sequence of components of (A'i, g'i). It follows that a subsequence 
converges, in the C1,a topology, to a connected C1,a Riemannian manifold 
Aoo = Aoo (! ,2) of the same dimension. It is not difficult to verify that Aoo is 
flat. One way to do this is to use the smoothing procedure carried out above to 
obtain bounds on IDkRI and pass to a (different) limit (A OO )', which is then 
flat. However, more directly, as we will see in §4, since V (and so A') is Ein-
stein, there is a curvature bound of the form IDk RA,I ~ c(k, IRA,I, injA')' so 
that in fact (A'i, g'i) converges smoothly to its limit Aoo . By (3.15), it follows 
that Aoo is a smooth, flat Riemannian manifold. 

Clearly, this process may be carried out with the manifolds (A(r /n, nr), g /r2) 
for any n > 1 and by passing to subsequences, one obtains connected limit 
manifolds A;:' with A;:' c A;:' if m < n. Taking a sequence ni -+ 00, we 
obtain a limit flat connected, Riemannian manifold Boo (= Boo (0 ,00)) such 
that A;:' c Boo for any n. 

We claim that Boo is the cone on a spherical space form C(Sn-l(I)/r)-{O}. 
First note that Boo has a distinguished distance function p, namely the limit 
of the distance function r(x) to z on A(r/n,nr). The function p:Boo-+R+ 
is a Lipschitz function, with Lipschitz constant 1, with IV pi = 1 a.e. Let 
C(s) = {x E Boo: p(x) = s} so that C(s) is the limit of a sequence of geodesic 
spheres (S z (ris) , g'i) in V. Thus, {C( s)} is a family of equidistants in Boo' 
i.e., distBoo (C(s) , C(t)) = Is - tl, with Ip(x) - p(y)1 = Is - tl for x E C(s) , 
Y E C(t). We claim that diamBoo C(s) -+ 0 as s -+ O. To see this, let D( ~) = 
{x E Boo: dist(x,C(s)) ~ n and note that volD(~) ~ c1 ·sn. We may cover 
D(~) by a finite number, say Q, of balls BXi(~) in Boo with Xi E D(~) such 
that the balls B Xi ( i) are disjoint. Then vol B Xi ( i) ~ C2 • sn , so that 

Qc2sn ~ voID(s) ~ c3sn • 

Thus, Q is bounded from above by a constant independent of s. In particular, 
any two points in C(s) may be joined by a broken geodesic in D( ~) of length 
~ c4 ' Q·s. 
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It follows that if we attach a point 0 to Boo via p, then Boo = Boo U {O} 
is a complete length space in the sense of Gromov [20, 1.7]. In particular, 
p extends continuously over {O} and represents distance to {O} in Boo. Any 
point x E C ( I) may be joined to 0 by a minimizing geodesic y x (not necessarily 
unique), such that p(yx(t» = t. 

Let Boo be the universal cover of Boo. Since Boo is flat and simply con-
nected, the developing map D : Boo -+ Rn is an isometric immersion. In par-
ticular, D maps geodesics in Boo to geodesics (straight line segmen~) in Rn. 
Choose a geodesic y x in Boo as above and let y x be a lift of y x to Boo. Then 
D(y x) is a line segment in Rn which we may normalize to start at 0 E Rn • 

Let Y E C(I) and choose points Pi E C(Si) , with Si -+ 0, and curves (Ji'(J 
joining Pi to Yx n C(sJ and x to y, respectively. Let yyU) be minimizing 
geodesics joining Pi to Y in the homotopy class of the curves (J 0 Y x 0 (Ji. Then 
a subsequence of the curves yyU) converges to a minimizing geodesic yy join-
ing 0 E Boo and y E C ( I). Let y y be the lift of y y to Boo corresponding to 
Yx. Since dist(yx(t) , yy(t» -+ 0, as t -+ 0, dist(yx(t) , yy(t» -+ 0 also, so that 
distRn(D(Yx(t)) , D(Yy(t))) -+ O. 

If l:(s) is the inverse image of C(s) under n: Boo -+ Boo' then we see that 
the developing map D maps l:(s) into S(s) , the sphere of radius s about 0 
in Rn. It is clear that D is an isometric immersion of l:(s) onto a domain 
in S(s) , and since l:(s) is complete, D maps l:(s) onto S(s). Thus, D is a 
covering map and sinc~ n > 2 , it follows that D is a diffeomorphism and thus 
an isometry. 

It follows that Boo is isometric to Rn - {O} and r = 11:1 (Boo) acts by isome-
tries on Rn - {O} and thus on Rn fixing {O}. So r acts freely and isometri-
cally on Sn-I(1) so that Boo is isometric to Rn - {O}jr = C(Sn-1 jr) - {O}, 
as claimed. The manifolds A:;O c Boo are the domains A:;O = {x E Boo: ~ :::; 
p(x) :::; n}, so that A:;O is isometric to the truncated cone on Sn-I jr. In par-
ticular, by the Gromov compactness theorem, the original manifolds (A';, g) 
have subsequences which are diffeomorphic to (t, 2) X Sn-I ( 1 ) jr , for some r. 

We see there is an Ro > 0 such that, for all r ~ Ro ' A(rj2, 2r) is diffeo-
morphic to (t, 2) x Sn-I jr, where r may possibly depend on r. However, 
since the convergence A' -+ Aoo is smooth, we now see that IV p(x)1 > 0, for 
p(x) ~ Ro' where p is a smooth approximation of the distance function r. 
Since (t, 2) x Sn-I jr and (2,4) X Sn-I jI" are diffeomorphic only if r = I" , 
we have A(Ro' 00) is diffeomorphic to (Ro' 00) X Sn-I jr. The volume growth 
assumption (3.14)(iii), together with the Cheeger-Gromoll splitting theorem, 
implies that A(Ro' 00) is connected. 

This completes the first part of Theorem 3.5. To prove the second part, if V 
is simply connected at infinity, then r = {e}. However, the arguments above 
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imply 

1° vol Bz(r) 1° l' ( 1 ) 1m n ~ 1m vo A -r, r '-00 r '-00 m 

n n ( 1 ) = volB (1) - volB m ' 

for any m> 1, where Bn(r) is the Euclidean ball of radius r. Thus, 

10 vol Bz(r) 
1m n ~ ()In '-00 r 

so that the result follows from Bishop's inequality (§2.5). 0 

We may now complete the proof of Theorems A and A I. Recall that prior 
to Theorem 3.5, we constructed a complete, noncompact Riemannian manifold 
N satisfying (3. 14)(i)-(iv). By Theorem 3.5, it follows that N is diffeomorphic 
to the interior of a compact manifold N with boundary aN = Sn-I /r. 

So far, we have not used condition (iii) in Theorems A and A I , and we now 
use it to prove that r = {e}. First, from (3.14)(iii) and Proposition 1.2 of [1], 
it follows that 7C 1 (N) is a finite group. If we prove r = {e} for N, so that 
N = Rn , then clearly N = Rn also, since a finite group cannot act freely on 
Rn. Thus, we may assume 7C 1(N) = {e}. 

Recall that the manifold N is constructed as a limit (Mj' hj(t)) with 0 < t :5 
8 1 , The manifolds (Mj ,hj(t)) are close, in the Lipschitz topology, to the (un-
smoothed) manifolds (Mj' hj), hj = hj(O). Note that, by Gromov's compact-
ness theorem, a subsequence of {(Mi' hj)} converges, uniformly in the cl,ct 

topology on compact sets, to a complete Riemannian manifold (Moo' hoo )' with 
cl,ct metric hoo ' In particular, geodesics in (Mj' h) converge, uniformly on 
compact sets, to geodesics in (Moo' hoo )' Clearly, (Moo' hoo ) and (N, hoo(t)) 
are close in the Lipschitz topology, so in particular they are diffeomorphic. 

It follows that there is a sequence of domains Bj = Bx/R) c (Mj' hj), for 
an arbitrary but fixed R, such that Bj is diffeomorphic, and metrically close, 
to Bz(R) c (N, hN(t)) , for i sufficiently large. In particular, aBj ~ Sn-l/r 
and since B z (R) c (N, h N (t)) is a strictly convex domain, for R large, Bj C 
(Mj' h) is also (for i sufficiently large). Now there is an Ro > 0 such that if 
Bo = Bx;(Ro) C Bj' then 7C l (Bj -Bo) = 7C l (aB) = r. Suppose r~ {e}. Fix 
a point P = Pj E aBj and let Y = Yj be a curve of shortest length in Bj - Bo 
representing a nonzero class in 7C l (B j - Bo)' We claim that if WI > 3, then 
Y does not intersect Bo' and thus Y is a geodesic loop in Bj - Bo (since aBj 
is convex). To see this, if Y n Bo ~ 0, then for Ro sufficiently large, and 
R » Ro' /(y) ~ 2(R - Ro)' since the metric on Bj - Bo is close to the flat 
metric on A(Ro' R) C C(Sn-I/r). However, since the metric on aBj is close 
to the canonical metric on Sn-I(R)/r, there is a curve u in aBj of length 
/(u) ~ 27CR/WI. Since 27C/1r! < 2 if WI > 3, this shows y n Bo = 0, for Ro' 
R, and i sufficiently large. 
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Thus, in this case, Bi contains geodesic loops I' = Yi of a bounded length 
/(1') ~ 27t/WI . R. Since Bi is simply connected, these geodesic loops are 
inessential. However, by (3.3)(6), the length of an inessential geodesic loop in 
(Mi' h) (and thus in a finite cover of Mi ), satisfies 

(3.17) 

This contradiction shows that we must have Irl :5 3. In this case, we may 
argue as follows. By (3.17), and Morse theory for the length functional of the 
hi metric, it follows that 7tk (ot;) = 0 for all k, where ti = c3 • Ri and ot; 
is the space of loops of length < ti in the hi metric. Since the metrics hi 
converge smoothly to the metric hoo' the length functional converges also and 
it follows, for instance from the minimax characterization, that 7tk (O) = 0 for 
all k. (There are no critical points of the length functional of hoo associated 
to any homotopy class Sk --+ 0.) Thus, Q and so Bi ~ B is contractible. An 
elementary exact homology sequence argument for the pair (B ,oB), cf. also 
Lemma 6.3, shows that a B ~ sn-I/r is a homology sphere. Since Irl :5 3, 
this is only possible if r = {e} , as required. 

Theorem 3.5 now implies that N is flat, which contradicts property (3. 14)(iv) 
of N. This completes the proof of Theorems A and A' (I). To prove A' (II), 
note that we may take the oriented double cover of the manifold N satisfy-
ing (3.14)(i)-(iv) and obtain an oriented manifold, call it N again, satisfying 
(3.14)(i)-(iv). Now by Theorem 3.5, N has a well-defined boundary Sn-I/r 
at infinity. If n is odd, Sn-I is an even-dimensional sphere, so the only space 
forms are r = {e} or r = Z2' Since a N carries a canonical orientation, and 
RPn- 1 is nonorientable if n is odd, this case is ruled out. Thus, N is simply 
connected at infinity and the arguments above complete the proof. 0 

Remarks. (1) The condition / M ;::: c in Theorems A and A' could be dropped if 
the hypotheses of Theorem 3.5 implied that V is simply connected at infinity, 
and thus flat. However, this is false in even dimensions. In fact, a number of 
authors, [7, 13, 22] among others, have produced examples of Ricci-flat metrics 
on simply connected 4-manifolds, which are asymptotic to lens spaces at infinity, 
and so in particular are not flat. These are examples of gravitational instantons, 
or gravitational analogues of the self-dual Yang-Mills fields on R4. In higher 
dimensions, Calabi [7] has produced examples of Ricci-flat Kahler metrics on 
the canonical line bundle over Cpn-I. At infinity, these manifolds have the 
topology of S2n-I/Zn , and one may verify that their curvature tensor is in fact 
in L 2 for all n. 

(2) For the proof of Theorem A under the assumption .NM ;::: a > 0, we refer 
to the remark following the proof of Lemma 6.3. 

(3) It would be interesting to know if the bound on fM IR(/2 in Theorem A' 
can be replaced by a bound on a weaker curvature integral. For instance, is it 
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sufficient to bound sUPr>O r4- n fB(r) IRI2? If M is a Kahler-Einstein manifold, 
then this integral is related to topological invariants of M. 

4. PROOF OF COROLLARY B 

In this section, we will prove the parts of Corollary B. For the most part, the 
results follow in a straightforward way from Theorems A and A I • 

If (M, g) is an Einstein manifold, then RicM = A.g and we will assume in 
this section that the metric on M is normalized so that A. = -1, 0, or + 1 . 
Since Dg = 0, we have D Ric = 0 so that condition (ii) in Theorems A and 
A I is trivially satisfied. 

(l)(a) If RicM = +lg, then diamM :5 1C by Myer's theorem. Thus, by The-
orem A, the space g+ 1 (1M' V M ' b2 (M)) of + 1 Einstein metrics on compact 
4-manifolds such that 1M ~ C1 , volM ~ c2 ' b2(M) :5 c3 is CI,1 compact. 
Further, by the proof of Theorem A, the sectional curvature IK MI is uniformly 
bounded on g+I(lM ,vM ,b2(M)). By Cheeger's theorem (§2.4), there is a uni-
form lower bound on the injectivity radius. 

Thus, we have uniform lower bounds for the size of harmonic balls for met-
rics (M, g) in g+1 (1M' VM ' b2(M)) , and also uniform bounds Iigli " a for the 
metric tensor in these coordinates (cf. Fact of §2.6). Now in harmonic coordi-
nates, the Einstein equation is an elliptic system of partial differential equations 

(4.1 ) 

where the dots indicate lower order terms involving only one derivative of the 
metric, cf. [11]. It follows from standard elliptic theory [28] that one has 
bounds 

(4.2) 

so that all covariant derivatives of the curvature tensor Dk R have uniform 
bounds on g+ 1 (1M' V M ' b2 (M)). By the Gromov compactness theorem (Theo-
rem 2.2), we see that g+1 (1M' VM ' b2(M)) is thus compact in the Ck ,a topology 
for any k. 

( 1 )(b) Let D be a connected component of the moduli space of Einstein 
metrics on a compact manifold M. It is well known that, first, tr Ric is constant 
on D, and, secondly, that the volume function 

(4.3) vol(gO) = vol: D -+ R 

is a constant function on D [5]. In particular, the volume is bounded below on 
D so the result follows from (l)(a). 0 

(2), (3) These results follow in exactly the same way as in (1) above. 0 
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(4) We argue by contradiction. If the statement were false, there would exist 
a sequence (Mi' gi) satisfying the required bounds such that 

but the Mi have no Einstein metric Ric =}.g for all i. However, the bounds 
on (Mi' g) imply by Theorems A and A I that the sectional curvature on 
(Mi' g), IK(g)1 is uniformly bounded. Further, the metrics gi have a C1,a 
convergent subsequence to a C1,a metric g on a smooth manifold M. Clearly, 
M is diffeomorphic to Mil for a subsequence i' -+ 00. Note, however, that g 
is a weak (C1,a) solution of the Einstein equation (4.1). The regularity theory 
for elliptic systems [28] then implies that g is smooth and satisfies the Einstein 
equation Ric(g)= }.g. This contradicts the assumption, which proves the first 
statement. The other statements are proved in the same way. 0 

5. CONVERGENCE OF EINSTEIN METRICS 

This section will be devoted to the proof of Theorem C. The proof uses 
a number of methods and results from the previous sections. Some of these 
techniques are also used in [14, 29]; cf. also [33] for a very readable exposition. 
Let (Mi' g) be a sequence of Einstein manifolds satisfying the conditions of 
Theorem C. It follows from §2.2 that one has uniform lower bounds for the 
Sobolev constants Cs of (Mi' g) and also for the growth of small geodesic 
balls Bx(r) c Mi' namely v(r)jrn ~ co' by (2.3). 

By a theorem of Gromov [20, 5.3], (Mi' gi) has a subsequence which con-
verges, in the Hausdorff topology, to a compact length space (Moo' goo). In 
particular, (Moo' goo) is a connected metric space, and there is a well-defined 
notion of geodesic balls in Moo with the geodesic balls in Mi (sub)converging 
to geodesic balls in Moo in the Hausdorff topology. Further, the notion of 
length of a curve is well defined and between any two points in Moo' there is a 
minimizing geodesic. 

Let to be the constant of Lemma 2.1, determined by the bounds Ric M; = 
}.igi' volM/ ~ c1 ' diamM; :::; c2 on (Mi' g). We fix an r > 0 but small and 
let {xk } = {xk} be a maximal! separated set in M. Thus, the geodesic balls 
Bx)~) are disjoint, while the balls BXk (r) form a cover of Mi. We let 

where R = Ri is the curvature tensor of (Mi' g). Similarly, set 
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Then M j = G; U B; . Note that there is a bound on the number of balls Q; in B; , independent of i and r, namely, 

(5.1) Q~ < c3 • m 
1- e ' o 

where c3 is the bound (iii) in Theorem C and m is the maximal number 
of disjoint balls of radius ~ in M j contained in a ball of radius 2r. By 
the (relative) Bishop comparison theorem, there is a uniform bound on m, 
independent of i, r . 

Now, by Lemma 2.1, on each G; there is a uniform curvature bound IRj(x)1 
$ C (dist(x ,B;)) $ C (r -I). Clearly, vol G; is uniformly bounded above, since 
this holds for (Mj' gj)' From the bound above, on the volume growth of small 
geodesic balls, and from §2.4, it follows that the injectivity radius of M j at 
each x E G; has a uniform lower bound, depending only on r and the bounds 
on (Mj' gj)' Thus, the regularity result (4.2) implies a uniform bound on the 
covariant derivatives IDk RI(x) for x E G; . 

By Theorem 2.2, for r > 0 fixed, a subsequence of {G;} converges, in 
the Ck ,a topology on compact sets, to a smooth Riemannian manifold G' 
with Einstein metric g:'. In particular, G' and G; are diffeomorphic for 
i sufficiently large (in the subsequence) so that there are smooth embeddings 
F(: G' -+ M j such that (F()* gj converges uniformly in the Ck ,a topology to 

, G' goo on . 
We now choose a sequence {rj } -+ 0 with rj+1 < !rj and perform the above 

construction for each j. Let Gj(r/) = {x E Mj : x E G{, for some j $ /} so 
that one has inclusions 

(5.2) 

By the argument above, each {Gj(r/)}, for / fixed, has a smoothly convergent 
subsequence to a limit G(r/). Clearly, G(r/) c G(r/+ I ) and we set 

(5.3) 

with the induced Riemannian metric goo' In particular, (G, goo) is a smooth 
Einstein manifold. It follows that there are smooth embeddings F/: G(r/) -+ 

Mj' for i sufficiently large, such that (F/)* (g) converges, smoothly in the 
Ck ,a topology on G( r/) , to the metric goo' 

Let G be the metric completion of G. We claim there is a finite set of points 
{pJ, i = 1 , ... ,Q' , such that 

(5.4) G=Gu{pJ. 

To see this, we return to the sets B; C M j • Let {rj } be as above and recall 
from (5.1) that the cardinality of the number of balls in B{ C M j is uniformly 
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bounded in i, j; by passing to subsequences, we may assume it is constant, 
say Q. Thus, there is a finite set of disjoint geodesic balls {Bx/Q· r)}[l ' 
with Q' :5 Q, which, together with G/r) , form a cover of M j • In particular, 
every point of M j - G/r) is contained in a ball of diameter :5 2· Qrj. Using 
the embeddings F/: G(r,) -+ Mj' we see that for any fixed j, and i sufficiently 
large, arbitrarily large compact subsets of G - G(r) are almost isometrically 
embedded into Q' disjoint balls of radius :5 c· rj • Taking the limit as i -+ 00 , 

it follows that the Hausdorff distance between (G - G(rj) , goo) and the set 
of Q' distinct points {Pj} is :5 c· rj • Letting j -+ 00, it follows that the 
Hausdorff distance between 8G = G - G and {Pj} is 0, and thus these spaces 
are isometric. This gives (5.4). 

It is now easy to see that a subsequence of {MJ converges to G in the 
Hausdorff topology. In fact, if N = {xk } is any e -net in G, with xk f!. {pJ, 
then the embeddings Fj : G -+ M j give an e' -net N j in M j converging to N in 
the Lipschitz topology (cf. [20, 3.5]). Thus, G = Moo' so that G is a complete 
length space, with length function goo' which restricts to a smooth Einstein 
metric on G. 

Definition. The points {pJ~' are called the curvature singularities of Moo. 

We now examine the structure, topological and metric, of the smooth mani-
fold Nj = Bp/r) - {Pj} C Moo for r small, by essentially studying the tangent 
cones of Moo at Pj . We will drop the subscript j for convenience. First, note 
that there is a uniform lower bound for the Sobolev constant Cs (2.2) for func-
tions of compact support in N, since on any compact subset the convergence of 
M j is smooth and there is a uniform Sobolev constant for {MJ. In particular, 
it follows that v(s)/sn = vol Bx(s)/sn ~ co' for any geodesic ball Bx(s) eN. 

Now N is an Einstein manifold with IN IRl n/ 2 < 00. Let r(x) be the 
distance function to P in Moo and let N(s, t) = {t EN,s :5 r(x) :5 t}. It 
follows that 

r IRl n/ 2 -+ 0 as s -+ 0 J N(s/2,2s) 

so that there is an Ro such that for s ~ Ro' IN(s/2,2S) IRl n/ 2 :5 eo' where eo is 
the constant from Lemma 2.1. Thus, by Lemma 2.1, there is a function jl(s) , 
with jl(s) -+ 0 as s -+ 0 such that 

(5.5) sup IRI :5 jl(s)/i , 
S(s) 

where S(s) = {x E N: r(x) = s}. 
Now we proceed exactly as in the proof of Theorems A and A' , but blow-

ing the metric up instead of down. Namely, given any sequence Sj -+ 0, the 
Riemannian manifolds A(sJ2, 2sJ = (N(sJ2, 2sj ) , goofs;) have sectional cur-
vatures converging to zero by (5.5). Further, the volumes of geodesic balls in 
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A (s;/2 ,2s) have upper and lower bounds Co $ v(r)/rn $ C;I and thus by §2.4, 
the injectivity radius of points x E A (s;/2 ,2s) have a uniform lower bound. 
Let us estimate the number of components of A (s;/2 , 2si ). If J is a lower 
bound for the injectivity radius in A (s;/2 ,2si ) , consider a maximal ! separated 
set {xJ.} in A (s;/2 , 2s). Then the balls Bx.(!) are disjoint and the balls Bx (J) 

} } 

cover A (s;/2 ,2s;) . From the above volume bounds, it follows that the cardinal-
ityof {Xj} is uniformly bounded, independent of i. Clearly, points which lie 
in distinct components of A (s;/2 , 2s;) are (more than) J separated so that one 
obtains a uniform upper bound on the number of components of A (s;/2 , 2si ). 

As in the proof of Corollary B(l)(a), there are uniform bounds on the covari-
ant derivatives IDk RI of the curvature of the metric goofs; on A (s;/2 , 2si ) • 

It follows from Theorem 2.2 that a subsequence converges smoothly to a flat 
Riemannian manifold Aoo (! ,2) with a finite number of components. 

This process may be carried out for (N(s;/n, ns j ) , goo/s;) , for any given 
n , and gives rise, by passing to a diagonal subsequence, to a flat Riemannian 
manifold Boo with Aoo (~ , n) C Boo for all n. The proof of Theorems A 
and A I shows that each component of Boo is a cone on a spherical space form 
Sn-I (1) /r and as before, it follows that each component of N is diffeomorphic 
to (0, r) x Sn-I /r. 

We now show that N = Bp(r) - p is connected for all r small. In fact, 
we will show that aBp(r) = Sp(r) is connected. First, it is clear that Bp(r) 
is connected. Since M j ~ Moo in the Hausdorff topology, there are smooth 
connected domains D j C M j with D j ~ Bp(r) in the Hausdorff topology. 
Further, since the convergence M j ~ Moo is smooth away from p, aDj = Sj 
converges to Sp(r) in the Lipschitz topology. By the results above, Sp(r) is 
convex, so that each component of Sj is convex, i.e., has positive definite second 
fundamental form II w.r.t. the inward normal; in fact, II is approximately fI 
for i large. We will suppose Sp(r), and thus aDj , is disconnected and we 
obtain a contradiction. 

Let y be a geodesic in D = D j realizing the minimum distance between two 
distinct boundary components C1 , C2 of aD = aDj' A standard form of the 
second variational formula [6] then gives 

(5.6) 112(E2,E2)+III(EI'EI) = iIVTEI2-K(E,T), 

where IIj is the second fundamental form of C j (w.r.t. the inward normal), E 
is the Jacobi field along y determined by the boundary conditions E(O) = EI ' 
E(l(y)) = E 2 , and T is the unit tangent vector to y. By the basic inequality 
for Jacobi fields (since there are no focal points of the normal exponential map 
of aDj along y), 

(5.7) i IV TEI2 - K(E , T) $ i IV TX I2 - K(X , T) 
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for any vector field X along I' with the same boundary conditions. Choose 
X to be a parallel vector field along I' with initial condition E = E(O) a unit 
vector, and then sum (5.6) and (5.7) over an orthonormal basis of initial vectors. 
We then find 

H2 + HI :5 -/(1') . RicM ; , 

where Hi is the mean curvature of Ci at the endpoints of y. By the facts 
above, Hi ~ (n - 1)/r, so that 

2(n - 1) I( ) R' r ;S - I' . IC M; 

for i large. If Ric M. = 0 or + 1 , this is clearly impossible. If Ric M. = -1 , 
this is also impossibl~ for r sufficiently small. It follows that Bp(r) - pc Moo 
is connected and thus B p (r) ~ Bn (1) /r , the quotient of a ball in Rn by a finite 
group of orthogonal isometries. 

Remark. Of course, it is possible that r = {e} , so that there may be curvature 
singularities on Moo' as defined in (5.4), which are regular or smooth points of 
Moo' 

The arguments above prove that Moo has the structure of an orbifold with 
a finite number of curvature singularity points, each having a punctured neigh-
borhood which is diffeomorphic to a punctured cone on a spherical space form. 
We now examine the metric behavior of these singularities (N ,p) c Moo' It 
follows from the work above that the manifolds N((s/2, 2s), goo/r2) converge, 
in the Ck topology, to the flat metric go on Sn-l/r x (1 ,2) , as s - O. In 
particular, there are Ck diffeomorphisms ¢Js: Sn-I/r x (1,2) - N(s/2, 2s) 
such that 

(5.8) 

where e(s) - 0 as s - O. Further, the distance functions r = distN(x ,p) 
and ro = distsn-l/rx(o,t)(x ,0) converge, in the sense that (¢J;(r)/ro)(x) - 1, as 
s - O. Thus, 

* 2 2 (r 0 ¢J)2 2 2 
¢Jsgoo = (r 0 ¢Js) • go + (r 0 ¢Js) pes) = 2 s ro' go + (r 0 ¢Js) pes). 

ro 

This says that if we view ¢J;goo as a metric on Sn-I/r x (s/2, 2s), then 
2 * (ro¢Js) 2 (5.9) ¢Jsgoo = 2 go + (r 0 ¢Js) p(s) , 

ro 
where pes) - 0, as s - O. Now the diffeomorphisms ¢Js are not unique. 
However, we may view gs = gooIN(s/2,2s) as a smooth curve in the space of 
metrics on a fixed manifold, say N(so/2, 2so)' It is then clear that the dif-
feomorphisms ¢Js may be chosen to depend smoothly on s, satisfying (5.8). 
Now consider the smooth map cl>': Sn-I/r x (0, t) - N - {p} defined by 
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<1>( (J , s) = rp s ( (J) = rp s «(J , 1). Then <1>' may no longer be a diffeomorphism; 
however, this may easily be overcome as follows. Let p be a smooth ap-
proximation to the distance function r on N - {p}, such that I ~ - 11 :5 r2 . 
Note that V p is transverse to all the "level hypersurfaces" Hs = 1m <1>' (. , s) . 
Let 'l't(x) be the flow of Vp and consider <1>: Sn-1/r -+ N - {p} given by 
<I>«(J ,s) = 'l'f(8,s)(rps«(J». Here f«(J ,s) is uniquely determined by the require-
ment that <1>( (J , s) E Ls = P -I (s). It is then clear that <I> is a diffeomorphism 
onto its image. Note also that If«(J, s)1 :5 e(s) . s. Now it is easily seen that <I> 
also satisfies (5.9), i.e., 

* (r 0 <1»2 2 
(5.10) <I> goo = 2 .g+o(ro)· 

ro 
We may lift the metrics <1>* goo and go to the universal cover B n - {O} of N 
and C(Sn-1/r) - {O} and also lift <I> to a r -equivariant diffeomorphism <I> 
of Bn - {O}. Then (5.10) shows that the metric <1>* goo on Bn - {O} has a CO 
extension over {O}. It can actually be arranged that <1>* goo has a C l extension 
over {O}, but we will not do this here. 

It follows that <1>* goo ' which we will just call goo ' is a weak (Co) solution to 
the Einstein equation (4.1). At this stage, the regularity theory is not sufficient 
to imply that goo is smooth. However, we have IN IRl n/ 2 < 00, where R is the 
curvature tensor of goo . This situation has been treated by a number of authors, 
and we basically refer to these. For example, if n ~ 5, an elementary method 
ofSibner [34, Lemma 2.1, Proposition 2.4], which requires only a bound on the 
Sobolev constant on N - p , may easily be seen to apply to the present setting 
and shows that R E LP for some p > n12. If n = 4, using (5.5) and the 
Sobolev bound in N - p , one may verify step-by-step that the basic methods 
of Uhlenbeck [36, Theorem 4.1] remain valid here also, and show R E LP for 
some p > 2. It now follows from standard elliptic theory [28, Chapter 6; 36, 
Theorem 3.6] that goo does extend smoothly across O. For more details in the 
proof of this, we refer, for instance, to [2]. This completes the main part of the 
proof of Theorem C. 0 

We note that, even if Moo is a smooth manifold with smooth Einstein metric, 
it does not follow from the proof above that Mi -+ Moo smoothly. In fact, 
arbitrarily small neighborhoods of the points xk (i) E B~ c M i , with xk (i) 
converging to a curvature singularity Pk E Moo' will have nontrivial topology 
(as we shall see later). This topology is "squeezed" or "bubbled" off as i -+ 00 , 

regardless of whether Moo is a smooth manifold or not. 
For each curvature singularity p E {Pk} c Moo' there is a sequence Xi E Mi 

such that Xi -+ P and inf,>o sup{IKi(x)l: X E Bx;(r) c MJ -+ 00, as i -+ 00. 

Since the curvature of Mi remains bounded in bounded distances away from 
Xi' we may assume that Xi realizes the maximum Ri of IK(x)1 on Bx;(ro) 
for ro small. Now consider the pointed connected Riemannian manifolds 
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~ = (Bx; (ro), x j ' R:/2 ds~). We note that the curvature of ~ is uniformly 
bounded and IK(xJI = 1. Similarly, Jv; IRl n/ 2 :$ C and the Sobolev constants 
for {~} are uniformly bounded below, since this is true for M j itself. As in 
the proof of Theorems A and A I , it follows that a subsequence of {~} con-
verges, smoothly in the Ck topology on compact sets, to a complete connected 
Riemannian manifold V(=~) satisfying 

(i) Ricv = 0, 
(ii) volB(r)/rn ~ C, 

(5.11 ) 
(iii) Iv IRl n/ 2 :$ K, 

(iv) IK(xo)1 = 1, for some Xo E V. 
Definition 5.1. A complete connected Riemannian manifold V satisfying 
(5.11), obtained in the above manner, will be called an EALE (Einstein, asymp-
totically locally Euclidean) space associated to the curvature singularity p E 

Moo· 
We note that, a priori, there may be more than one EALE space associated 

with p E Moo. By construction, if ° is a domain with smooth boundary in 
V, then there are smooth domains OJ C M j and diffeomorphisms c/Jj: 0 -+ OJ 
such that c/J; (rjgjln) converges smoothly to (0, gv) , for an appropriate scaling 
rj -+ 00. Note that V cannot be diffeomorphic to a ball, by Theorem 3.5, so 
that OJ contains nontrivial topology squeezed off in the limit (cf. also Lemma 
6.3 for the 4-dimensional case). 

Now, to complete the proof of Theorem C, we recall from Theorem 3.5 that 
in odd dimensions, nontrivial, i.e., nonflat, EALE spaces do not exist, so that 
it follows that there are no curvature singularities in Moo. It follows that Moo 
is a smooth manifold and the convergence M j -+ Moo is smooth. 0 

Remark. Some statements of Kobayashi and Todorov [27] indicate that Theo-
rem C is sharp in the sense that they exhibit examples of sequences of Einstein 
metrics satisfying the bounds (i), (iii) (and apparently (ii)), which converge to 
an Einstein orbifold in the above sense. More precisely, let T4 = C2/Z4 , where 
Z4 is the standard (square) lattice in C2 • The antipodal map A: c2 -+ C2 pre-
serves the lattice and the quotient X = T 4/Z2 defines a flat orbifold, with flat 
singular metric g x having sixteen singular points, each a cone on Rp3 . If these 
sixteen points are blown up, one obtains a smooth 4-manifold Y which is a K3 
surface. Kobayashi and Todorov [27] then indicate that there are sequences of 
Ricci-flat Kahler metrics gj on Y such that gj -+ g x in the Hausdorff distance, 
with convergence gj -+ goo smooth away from the singular points. 

Finally, we note that by (5.1), the number of singular points of Moo is 
bounded above by the bounds (i)-(iii) of Theorem C. Similarly, the order 
Irjl of each group rj associated with a singular point Pj is bounded above. 
Namely, note that goo lifts to an Einstein metric on Bn \ {O}, which extends, 
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modulo Diff(Bn - {O}) , to a smooth metric on Bn. Thus, vol(Bo(r), goc,) ~ 
c1 • rn , where Bo(r) is the geodesic ball of radius r about 0 in the goo metric. 
Here we assume r ~ ro ' so that c1 = sinhn- 1 ro. Thus, if Bp(r) is the r-ball 
about p E Moo' then voIBp(r) ~ c1 rn /WI. However, by the bounds (i), (ii) in 
Theorem C, there is a uniform lower bound for the Sobolev constant and thus 
for the volume of small geodesic balls in M j . It follows that voIBx (r/4) ~ c2rn 
for x E Sp(f). This shows that Irl is bounded by c1 • c2 • 

6. COMPACTNESS OF MODULI SPACES 

In this section, we consider the question of the compactness, in a smooth 
topology, of the moduli space of positive Einstein metrics on compact 4-mani-
folds. Basically, the relation 

X(M) = ~ f IRI2 
8n 1M 

for Einstein metrics in dimension 4 leads to further consequences of Theorem 
C. 
Proposition 6.1. Let (Mj' gJ be a sequence of 4-dimensional Einstein manifolds 
satsfying the conditions of Theorem C. Then 

(6.1) 

where Q is the number of curvature singularities of Moo (cf. (5.4)) and ~ 
are associated EALE spaces (cj. Definition 5.1). Further, if limx(Mj) = 
sk IMoo IRI2, then Moo is a smooth manifold diffeomorphic to M j for i suffi-
ciently large, and the convergence M j --+ Moo is smooth. 
Proof. By Theorem C, a subsequence of (Mj' gj), also called (Mj' gJ, con-
verges to an Einstein orbifold Moo. Let G~ and B; be defined as in the proof 
of Theorem C, M j = G~ U B; . Then 

.lim f IRI2 = .lim f IRI2 + .lim f IRI2 = f IRI2 + .lim f IRI2, 
' ..... 00 J M; ' ..... 00 1 Gr ' ..... 00 1 Bi 1 Gr /-+00 1 Br 

since the convergence G~ --+ G' is smooth. On the other hand, since IIRI2 
is scale-invariant, lim j ..... oo IBr IRI2 ~ Iv; IRI2 ,where ~ is an EALE space as-

I 

sociated with Pj. Since r is arbitrary, this proves the first statement. For the 
second statement, the equality implies there are no nontrivial EALE spaces as-
sociated to Moo' and thus no curvature singularities of Moo. This implies by 
the proof of Theorem C that M j --+ Moo smoothly. 0 

Since the metric on Moo extends (smoothly in the local universal cover) over 
the singularities, (1/8n2 ) IMoo IRI2 may be identified with the orbifold Euler 
characteristic of Moo. Namely, if we excise small balls BPi (r) C Moo around 
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the singular points and let M, = Moo - UBpi ' then the Gauss-Bonnet theorem 
for manifolds with boundary [17] gives 

X(M,) = -;. f IRI2 + f OJ, 
81t JM, JaM, 

where OJ is a 3-form on 8M, depending on R and the second fundamen-
tal form of 8M,. Since IRI is bounded on Moo' IM,IRI2 --+ IMoo IRI2 and 
X(M,) = X(Mo) , where Mo = Moo - {pJ. Using the fact that each ball Bpi (r) 
is covered by a ball in Rn with smooth metric, one calculates that 

f OJ--+_t_l 
JaM, I Irjl 

as r --+ 0, where rj is the fundamental group of Bpj (r) - Pj' Thus, 

1 1 2 Q 1 (6.2) -8 2 IRI = X(Mo) + L -lr.1 = X(Moo) , 
1t Moo I J 

where X(Moo) is the orbifold Euler characteristic of Moo' 
Similarly, Iv IRI2 also admits a topological interpretation. If V, denotes a 

geodesic ball of radius r in V, then as before we have 

X(V,) = -;. f IRI2 + f OJ. 
81t Jv, Jav, 

For r sufficiently large, X(V,) = X(V) and clearly, Iv, IRI2 --+ Iv IRI2 . Since V 
is asymptotically flat, one may verify that 

/a v, OJ --+ I!I ' 
where 191 is the order of the fundamental group of V at infinity. Thus, 

1 f 2 1 (6.3) 81t2 Jv IRI = X(V) - 181 . 

Recall from Theorem 3.5 that 181 = 1 if and only if V is isometric to R4. 
Summarizing, we obtain 

Corollary 6.2. Let (Mj' gJ be a sequence of Einstein metrics as above. Then 

. Q 1 Q[ 1] 
hmX(MJ ~ X(Mo) + L 1fl + L X(V) -18.1 . 

I J I J 

(6.4) 

Lemma 6.3. If V is a 4-dimensional EALE space, then X(V) ~ 1, with equality 
if and only if V is isometric to R4 . 
Proof. Since V is open, X(V) = 1 - bl + b2 - b3. Since V is Ricci flat and 
asymptotically locally Euclidean, 1t1 (V) is a finite group [1], so that b l = O. 
By the exact homology sequence of the pair (V, 8 V) = (V ,S3 Ir) , one has 

0--+ H4(V ,8V) --+ H3(8V) --+ H3(V) --+ H3(V ,8V). 
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By Poincare duality, it then follows that H3(V) = 0, so that X(V) = 1 + 
b2 • Now suppose b2 = O. Then a finite cover V' of V is a manifold with 
boundary, with all Z -homology groups zero (since V' has no torsion in H2 ). 

For convenience, we drop the prime and assume V is an acyclic 4-manifold 
with boundary 8 V = S3 jr, r c SO( 4). It is easily seen that 8 V is a homology 
3-sphere, since, by the exact homology sequence, we have 

H 1(S3 jr;Z) ~ H2(V ,S3 jr;Z) ~ H 2(V;Z) = O. 

It is well known [39, p. 181ff.] that the only spherical space forms with perfect 
n 1 are S3 and the Poincare homology sphere S3 jr 0 ' where r 0 is the binary 
icosohedral group of order' 120. 

There are two methods of proof to rule out the second case. First, by (6.3), 
we have 

1 ( 2 1 1 
8n2 lv IRI = X(V) - Irol = 1 - Irol . 

On the other hand, one has a comparable expression for the signature T of V , 
cf., e.g., [15], 

0= r(V) = 121n2 Iv IR+12 -IR-12 + (-1 + I~ol) + 1'/(S3 jro) , 

where 1'/(S3 jro) is the eta invariant and R+ (R-) are the self-dual (antiself-
dual) components of R. One computes [15] that 1'/(S3 jro) = 1079j360. Thus, 

1 __ 1 __ 1079 = _1_ { IR+12 -IR-12 
Irol 360 12n21v 

> _~ (_1 ( IRI2) = _~ (1- _1 ) 
- 3 8n2 1v 3 Irol' 

i.e., 

~ (1- I~ol) ~ 13067~ . 
This is clearly impossible, so that S3 jr 0 cannot bound an acyclic EALE space. 

A second proof, purely topological, follows from work of Freedman and 
Donaldson. Namely, the Poincare homology 3-sphere cannot bound a smooth 
contractible 4-manifold, since it bounds a smooth 4-manifold W with definite 
intersection form, equal to the E8 lattice. In fact, W is obtained by plumbing 
the disc bundles over S2 with c1 = -2 according to the Dynkin diagram of 
E8 • (The interested reader may refer to [18, Problem section] to pursue this.) 

It follows that 8 V = S3 and the result follows from Theorem 3.5. 0 
Remark. Lemma 6.3 allows one to replace the hypothesis 1M ~ I > 0 by NM ~ 
N > 0 in Theorem A. Namely, proceeding as before in the proof of Theorem 
A, one obtains a nontrivial EALE space N. One then needs to show that 
the hypothesis NM ~ N > 0 leads to a contradiction. Now, by Lemma 6.3, 
b2(N) :f. 0, so that there is an integral2-cycle l: eN, with [l:] :f. 0 in H2(N; R) 
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and area 1: = A > o. Since N is a smooth limit of rescaled metrics on Mi' 
it follows that there is a sequence of domains Di diffeomorphic to N in Mi 
and integral 2-cycles [1:i ] =f 0 in H2(Di'R) , but area 1:i -+ 0, in (Mi' g) . 
Writing the Mayer-Vietoris sequence for the pair (Di' Mi - D), noting that 
8Di ~ Sn-I /r, one sees 

H 2(Di ;R) E9 H2(Mi - Di ;R) ~ H 2(Mi ;R), 

so that [1:i ] is a nonzero integral class in H2(Mi ; R). This gives the required 
contradiction. 

Returning to the discussion at hand, it follows from Lemma 6.3 that if V is 
a nontrivial EALE space then 

(6.5) x(V) - 1/181 ~ 3/2. 

The Eguchi-Hanson metric on TS2 [13] provides an example where equality is 
achieved. 

Theorem 6.4. Let M he a compact 4-manifold of Euler characteristic 0 < 
X(M) :::; 3 (e.g., M = S4 or Cp2). Then the space of +1 Einstein metrics 
g on M such that volg(M) ~ c > 0 is compact in the Ck topology. In partic-
ular, the components of positive Einstein metrics in the moduli space of Einstein 
metrics on M are compact. 
Proof. Let {gJ be a sequence of + 1 Einstein metrics on M such that volg; (M) 
~ c. It follows from Theorem C that a subsequence, also called {gJ, converges 
to an Einstein orbifold (Moo' goo). If the convergence (M, gi) -+ (Moo' goo) is 
not smooth, then by the proof of Theorem C, there are nontrivial EALE spaces 
V associated to the curvature singularities of Moo. By (6.4) and (6.5), one 
obtains 

1 3 
3 ~ X(M) ~ X(Mo) + 1: Irl + Q. "2 ' 

where Mo is Moo with the curvature singularities removed and Q is the num-
ber of singularities. Since 

1 1 1 2 X(Mo) + 1: lrl = -2 IRI ~ 0, 
8n Moo 

we see that Q:::; 2. If Q = 2, then for instance JMoo IRI2 = 0, so that Mo is 
flat. This is impossible, since the metric on Mo is a + 1 Einstein metric. If 
Q = 1, then 

(6.6) 

so that X(Mo) :::; 1. Note that by Theorem C, Mo is embedded as an open 
set in M. Further, Mo has a boundary of the form S3/r . Now since M 
carries a metric of positive Ricci curvature, Inl (M)I < 00 and the Seifert-Van 
Kampen theorem, applied to (Mo ,M -Mo)' shows that Inl(Mo)1 < 00 also. In 
particular, hI (Mo) = 0, so that X(Mo) = 1 . The homology sequence arguments 
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above show that there is a finite cover M~ of Mo with acyclic Z -homology and 
oM~ = S3 . Since X(M~) = 1 also, and the Euler characteristic is multiplicative 
under finite covers, we see Mo = M~. Thus, X(Mo) = 1, oMo = S3, which 
contradicts (6.6). 

Thus, Q = 0, so that there is no nontrivial EALE space associated to Moo' 
The result now follows from Proposition 6.1. 0 

Remark. The method above does not work for X(M) = 4. For instance, let 
M = S2 X S2 = TS2 U8TS2 _TS2 , where TS2 is the tangent bundle to S2. 
Then X(M) = 4 and M admits +1 Einstein metrics. We are not able to rule 
out the existence of a sequence of + 1 Einstein metrics converging to an orbifold 
with one singular point (corresponding to a collapse of TS2 to C(RP3)). 

Finally, we mention one further result along these lines. 

Theorem 6.5. Let M be a compact 4-mani/old. Then the space of +3 Einstein 
metrics on M with volume volM ~ «1 + 8)/2)· voIS4(1), for a fixed 8> 0, is 
compact in the C k topology. 
Proof. Let gj be a sequence of +3 Einstein metrics on M such that volg;(M) 
~ (1 + 8)/2. By Theorem C, a subsequence converges to an Einstein orbifold 
Moo' As above, if the convergence (M, gj) -+ (Moo' goo) is not smooth, then 
there is at least one nontrivial EALE space V associated with {gj}. If v(r) is 
the volume of a geodesic r -ball B(r) about Po E V, then lim,.....oo v(r)/r4 = 
voIC(S3(1)/r) ::::; !volB4(1), since WI ~ 2. Given 15 > 0, choose R such 
that v(r)/r4 ::::; (1 + 15)/2. voIB4(1), 'Vr ~ R. Now by construction, B(r) c V 
is embedded in M, with metric a scaled limit of {gJ. Since the ratio v(r)/r4 
is scale invariant, there are geodesic balls B j = B x; (8) C (M , gj) , with 8 j -+ 0 , 
such that 

vOlB~;(8j) ::::; 1; 15 voIB4(1). 
8 j 

Since the Ricci curvature of (M, gj) is +3, the Bishop comparison theorem 
implies that voIBx (r)/v+ 3(r) is monotone nonincreasing, where v+3(r) is the 
volume of a geodesic r-ball in S4(1). Now, by Myer's theorem, diamg;(M) ::::; 
diam(S4(l)) = n, so we obtain 

volM volBx (n) volBx (8) 1 + 15 4 84 
_~_= I < I < --voIB (l). I • 

voIS4(l) voIS4(l) - V+3(8) - 2 V+3(8j) 

Clearly, V+3(8j)/8~ -+ voIB4(l) as 8j -+ O. Since 15 is arbitrary, this contradicts 
the hypothesis, and thus gives the result. 0 

We remark that the major difficulty in extending the results above to Ricci-flat 
or negative Einstein metrics is obtaining control on the diameter of sequences 
of such metrics. 
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