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1. INTRODUCTION 

Let G be a reductive algebraic group over an algebraically closed field of 
characteristic zero, and let W be a finite-dimensional representation of G. 
Then G acts on the polynomial ring k[W], and the Hochster-Roberts Theorem 
[8] tells us that k[W]G is Cohen-Macaulay. 

A primary objective in this paper will be to study a situation that looks very 
similar. Let U be another finite-dimensional G-representation. Then U ®k 
k[W] is a free k[W]-module, and a natural generalization of the Hochster-
Roberts Theorem would be that (U ®k k[W])G is a Cohen-Macaulay k[W]G_ 
module. 

Unfortunately, it is easy to see that this cannot be true in general (see Example 
3.1). There is, however, a conjecture due to Stanley [20] that gives at least some 
cases under which the above statement is true. 

We will not say anything about Stanley's original conjecture. Instead, we will 
replace it with a slightly weaker version (Conjecture 3.4'). 

The first main result in this paper is that we prove Conjecture 3.4' for certain 
pairs (G, W). Namely, if X = Speck[W] and XU is the locus of the G-
unstable points in X, then we require that XU be constructible, i.e., that it 
can be built up from smaller manageable parts in a sense explained in §6. As 
a corollary, we immediately obtain that Conjecture 3.4' holds if G = SL2 
(Theorem 6.1.11). 

Another situation that can be handled by the methods developed in this paper 
is 
(1) G = SL(V) and W = End(V)m". 
In the last section of this paper, we will show that in this case XU is constructible 
and hence Conjecture 3.4' holds. 

Our main motivation for studying (1) lies in our interest in the trace rings 
of generic matrices. Let Mn be the variety of n x n-matrices. (Mn)m will be 
the m-fold product (over Speck) Mn x Mn x ... x Mn' Let G = SLn . Then 
we define 
(2) Tm,n = {f: (Mn)m -+ Mnl f polynomial and G-equivariant}. 
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T m, n is a noncom mutative ring (using the multiplication in Mn) , and its center 
is given by 

Zm n = {f: (Mnt ----> Speckl f polynomial and G-equivariant}. 

Zm n is the commutative and T m n is the noncommutative trace ring of 
m generic n x n-matrices. They w'ere first extensively studied by M. Artin 
and C. Procesi. Artin and Schelter proved that the maximal ideals of Zm ,n 
parametrize semisimple representations of dimension n of the free algebra 
k(X1 , ... , Xm), and the two-sided maximal ideals of Tm,n correspond to the 
simple components of such representations [1, 2]. 

Let Xi be the projection of (Mn)m onto the ith factor, and let 

Tr(X. ... x. ): (M )m ----> Spec k 
II lu n 

be the corresponding trace maps. Procesi proved Artin's conjecture that Zm n is 
generated over k by the trace monomials Tr( Xi ... Xi ) and T m n is gener'ated 

I u ' 
as a module over Zm n by the monomials in the X/s [16]. Furthermore, he 
proved that all the relations between those generators can be obtained from the 
Cayley-Hamilton polynomial (explaining the terminology of trace rings). 

From this, we easily deduce that T is a generic object in the category m,n 
of k-algebras with a trace map. To be more precise, let A be a k-algebra, 
equipped with a further unary operation T: A ----> A, called trace, satisfying 
the list of conditions in [17, p. 194]. Assume, furthermore, that T satisfies the 
Cayley-Hamilton identities of n x n-matrices. Let al ' ••• , am EA. Then there 
exists a unique map T m ,n ----> A commuting with trace and sending Xi to ai . 

If n = 1, then T m n is a polynomial ring, and hence it has finite global 
dimension. A first nat~ral question would be whether T always has finite m,n 
global dimension (being a generic object). However, the complete, somewhat 
disappointing result is given below. 

Theorem 1.1 [5, 11, 12, 18]. T m n has finite global dimension if and only if 
n=l, m=l, (m,n)=(2,2), (m,n)=(3,2),or (m,n)=(2,3). 

After computations in low dimensions, L. Ie Bruyn conjectured that T m ,n is 
always a Cohen-Macaulay Zm, n -module. This was proved by him in the case of 
2 x 2-matrices. Later, he and Procesi proved that (T m ,n) p is Cohen-Macaulay if 
P E Max Z corresponds to a semisimple representation of k(XI ' ... , Xm) m,n 
having distinct irreducible components [11]. 

As the title of this paper indicates, we will prove that T m n is Cohen-
Macaulay in general (Theorem 7.3.6). This is done as follows. 'From (2), it 
is clear that 
(3) 

Tmn=(U®k[W])G whereG=SL(V), W=End(V)m*, U=End(V). 

Hence, we are in the situation of (1), and Conjecture 3.4' applies. Since it is 
easy to see that the hypotheses of Conjecture 3.4' are satisfied in this case, we 
are done. 
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This paper is organized as follows. 
In §2, we introduce some often used notation. 
In §3, we review Stanley's conjecture, and we introduce the weaker version, 

Conjecture 3.4'. 
In §4, we outline our method for verifying the Cohen-Macaulayness of 

(U ® k[W])G. I.e., we relate this problem to the cohomology modules 
H~u(X, &'x)' 

In §5, we introduce a spectral sequence (Theorem 5.1) that may be interesting 
in its own right. It allows us, in some cases, to estimate the cohomology modules 
introduced above. 

In §6, we try to break up XU into manageable pieces that can be handled 
by the main result of §5. This leads us to the notion of constructibility. We 
prove Conjecture 3.4' for G = SL2 (Theorem 6.1.11). In the last subsection, 
we introduce a combinatorial method for verifying constructibility. 

Finally, in §7, we use the combinatorial criterion derived in §6 to show that 
XU is constructible in (1). We obtain that Tm n is Cohen-Macaulay in general 
(Theorem 7.3.6). ' 

2. NOTATION AND CONVENTIONS 

In the sequel, k will always be an algebraically closed field of characteristic 
zero. 

If G is a linear algebraic group over k, then ~ will be the Weyl group of 
G. Y (G) will be the pointed set of one-parameter subgroups of G. An irre-
ducible representation of G defines a character G ~ G m' This is a polynomial 
map, invariant under conjugation (we will always assume that characters are 
characters of irreducible representations). If T is a torus, then the characters of 
T are homomorphisms, and they form an abelian group in the usual way. This 
group will be denoted by X(T) , and the group law will be written additively. We 
define X(T)Q as Q®zX(T). Since T is a torus, Y(T) also carries an abelian 
group structure, and there is a natural pairing Y(T) x X(T) ~ X(Gm ) = Z 
given by composition. This pairing will be denoted by ( , ). 

Characters of T will be identified with one-dimensional representations of 
T. Hence the notation XI EBX2 for XI 2 E X(T) stands for the two-dimensional 
representation of T which is the direct sum of the one-dimensional represen-
tations determined by XI and X2' This is not to be confused with XI + X2' 
which is just the sum of XI and X2 in X(T). 

If PeG is an algebraic subgroup of G and X is a scheme with a P-action, 
then G x P X = G x X/P. There is a natural projection map G x P X ~ G/P 
given by (g, x) 1-+ g with fibers isomorphic to X. Taking the fiber over [P] 
in G / P induces an equivalence between the category of quasicoherent &'Gx P x-
modules with a G-action and the category of quasi coherent &'x-modules with 
a P-action. The inverse of this equivalence will be denote by ~ . 

Let R be a Z-graded Noetherian commutative ring of the form k EB RI EB 
R2 EB ... , and let M be a finitely generated graded R-module. The Poincare 
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series of M will be defined as 
+00 

P(M, t) = L dim(Mn)tn . 
n=-oo 

When we say that M is Cohen-Macaulay, we always mean that M is maxi-
mal Cohen-Macaulay. This is equivalent to the fact that R contains a graded 
polynomial ring R' over k such that M is a finitely generated free R' -module. 

3. A CONJECTURE OF STANLEY 

In this section, we will disucss a natural generalisation for the Hochster-
Roberts Theorem on Cohen-Macaulayness of invariant rings. Unfortunately, 
this generalisation is not true in general. There exists, however, a conjecture due 
to Stanley [20] which gives at least some cases under which the generalisation 
is true. 

Let G be a reductive group over k , and let V, W be two finite-dimensional 
representations of G. Define R = k[W], d = dim W, and h = dimRG . Then 
G acts in a natural way on the free R-module V ®k R. 

By the Hochster-Roberts Theorem [8], RG is Cohen-Macaulay. It is, there-
fore, natural to ask whether (V ®k R)G is a Cohen-Macaulay RG -module. This 
is not always true. Here is a simple counterexample. 

Example 3.1. Let G = T = Gm , and let X be a generator for X(T). Define 
V = X-I and W = X EB X EB X-I. Then R = k[x, y, z], M = k[x, y, z], and 
G m acts on Rand M as follows: let a E G m' fER, and gEM. Then 
a· f = f(ax, ay, a -I z) and a· g = a -I g(ax, ay, a -I z). Hence, RG = 
k[xz, yz] and MG = (xz, YZ)Z-I. Clearly, MG is not a Cohen-Macaulay 
RG-module: 

It is no restriction to assume that V is irreducible because if V = VI EB ... EB 
Vu ' then clearly (V ® R) G = (VI ® R) EB ... EB ( Vu ® R) G • Hence, from now on 
we will make this assumption. In that case, V· is determined by its character 
X:G-Gm · 

For an arbitrary character of G, Stanley defines R~ as the sum of all irre-
ducible subrepresentations with character X [20]. Clearly, R = EBxR~ , where 
X runs through all characters of G. The proof that RG is finitely generated 
also works for R~, and since R~ is obviously torsion free, we deduce that 
dimR~ = dimRG if R~ =1 O. 

Lemma 3.2. If X is the character of V· , then R~ ~ V· ® (V ® R)G . 

Hence, the question whether (V ® R)G is Cohen-Macaulay is equivalent to 
the question whether R~ is Cohen-Macaulay. 

Assume now that G = T is a torus, X E X (T) , and let the weights of W be 
given by ai' ... , ad E X(T). Then we say that X is critical [20] for (T, W) if 
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the system Zlal +- --+Zdad = X in X(T)Q has a rational solution (aI' ... , ad) 
with the following properties. 

(1) ai::;O. 
(2) If (b l , ... ,bd) is an integer solution of zlal + ---+ zdad = X such 

that bi 2: ai ' then bi 2: 0 for all i. 

Theorem 3.3 [20]. Assume that X is critical for (T, W) _ Then RT is Cohen-x 
Macaulay_ Furthermore, there is a functional equation 

(4) 

where IjI = (X detx)*· Here • denotes the dual character, and detx is the 
character of the highest exterior power of the representation corresponding to X-

A character is clearly critical if it is of the form L.1=1 aiai ' where -1 < ai ::; 
O. We will call such a character strongly critical. This notion is useful because 
it is somewhat easier to check that a character is strongly critical than that it is 
critical. 

Assume now that G is arbitrary again, and let T c G be a maximal torus. 
Assume that X: G -+ Gm is a character. Then xlT = XI E9 - -- E9 Xu' where 
Xi E X(T). Let (PI' ... , Pr ) be the set of roots of G. Then Stanley [20] calls 
X critical for (G, W) if Xi - L.jES Pj is critical for (T, W) for all 1 ::; i::; u 
and for all S c {I , ... , r}. He proves that if X is critical, then R~ satisfies 
the functional equation (4). This leads to a natural conjecture. 

Conjecture 3.4. If X is critical for (G, W), then R~ is Cohen-Macaualy. 

Of course, a weaker version of this conjecture can be obtained if we require 
that all the Xi - L.jES Pj are strongly critical. A character with this property 
will be called strongly critical for (G, W). In the sequel, we will refer to the 
weaker version of Conjecture 3.4 as Conjecture 3.4'. 

4. THE METHOD 

As in the previous section, G will be a reductive algebraic group over k. 
R = k[ W] and d = dim R; h = dim RG . X will be some character of G. We 
define 1= R(RG )+ . 

The following lemma will be basic in this paper. 
• G • G • G 

Lemma 4.1. H(RG)+(Rx) = H[(R)x' (Here H[(R)x has the obvious meaning. ) 

Proof. Let It, ... ,fu be a set of generators for (RG)+. Then the (J;)i are 
obviously also R generators for I. Let K" (R, It ' '" , fu) be the complex 

0-+ EBRr, -+ EB Rr,.t; -+ - - - -+ Ril/u -+ 0 
I I_ J 

i<j 
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. • G •• G with the standard boundary maps. Then H[(R)x = H (K (R, 1; , ... , fJ)x . 
But using the fact that G is reductive, we easily deduce 

• • G· • G 
H (K (R, 1;, ... , fu))x = H (K (R, 1;, ... , fJ x ) 

• • G 
= H (K (Rx ,1;, ... , fu)) 

. G 
= H(R G )+ (Rx )' 0 

G . G 
Corollary 4.2. Rx is Cohen-Macaulay if and only if H;(R)x = 0 for 
i=O, ... ,h-l. 

Proof. This statement is vacuous and hence true if R~ = o. So assume 
that R~ t- O. It is well known that R~ is Cohen-Macaulay if and only if 
H/RG)+ (R~) = 0 for i = 0, ... , h - 1. Then the result follows from Lemma 
4.1. 0 

Let X = Speck[W], and let T be a maximal torus in G. The radical of 
the ideal I is the defining ideal of the G-unstable locus in X which will be 
denoted by XU . I.e., 

XU = {x E XI ° E Gx}. 

XU may be described more conveniently using the Hilbert-Mumford criterion 
[14] which says that every point in XU is unstable for some one-parameter 
subgroup of G. I.e., if A E Y(G), then we define 

XI. = {x E XI limA(t)x = O} 
1--->0 

and 

G(A) = {g E GI limA(t)gA(t)-1 eXists} . 
1--->0 

Then G(A) acts on XI.' and G(A) is a parabolic subgroup of G [14, Proposition 
2.6]. Then it follows from the Hilbert-Mumford criterion that 

(5) X U= U GXA· 
AEY(T) 

G XI. is the image of G x G(A) XI. in X under the canonical map. This map 
factors through the projection map G/G(A) xX --t X, and hence it is projective. 
Therefore, its image is closed (this is a well-known argument, see for example 
[13]). 

Clearly, GXA = GXW(A) if W E ~. Therefore, we can restrict the union in 
(5) to a Weyl chamber in Y(T). Let B be a Borel subgroup of G containing 
T. Then we have proved the following (well-known) fact. 

Lemma 4.3. With notation and assumptions as above, 

(6) XU = U GXA. 
AEY(T) 
G(A)~B 
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5. A RESULT ON COHOMOLOGY WITH SUPPORT 

In Lemma 3.2, we saw that to check Cohen-Macaulayness of modules of 
invariants, it is important to be able to compute cohomology with support in 
the unstable locus. 

Our two main tools to handle this problem will be the standard long exact 
sequence for cohomology with support and Theorem 5.1 below. 
Theorem 5.1. Assume that we are in the following situation: 

S'~X' 

s~X 
where 

( 1) X, X' are smooth over k, and 7C is a smooth projective map. 
(2) i and j are closed immersions. 
(3) ¢ is the restriction of 7C to s' , and it is set-theoretically a bijection. 

Let L be a quasicoherent sheaf on X. Then there is a spectral sequence 

(7) Efq: Hi, (x', 7C·L®I\Po'x'lx) =>H;+q-2dim(X'IX)(X,L). 

The rest of this section will be devoted to the proof of this theorem. 

Lemma 5.2. Let I, I' be the defining ideals of S ,S' in X, X' . Define K; s x 
as the complex of &'x-modules ' , 

mY / It) do mY / 'I-I r\ ) d l 7C.(ox' I ---+ 7C.(ox' I ®&x l UX' IX ---+ 

dq _ 1 (mY / 'I-q 1\ q r\ ) dq "'---->7C oIl ® UI ---+ ... • X &x' X IX ' 
where dq is obtained from the exterior differentiation 

I\q I\q+1 d : 0 x'I x ---+ 0 x'I x . 

The canonical map &' x / t ...!!..... 7C. (&' x' / J'I) defines a complex 

( mY 1 U • 
8) 0 ---+ 0x/I ---'> K1,s,x' 

Let .9" be a quasicoherent injective &'x-module. Then the complex obtained by 
applying lim Hom( -,.9") to (8) is exact. 

---'> 
1 

We will not prove this lemma directly. Instead, we will treat a special case 
first. 
Lemma 5.3. If ¢ is an isomorphism and S is smooth, then (8) is exact. 
Proof. 7C. is exact on coherent modules with support in S' . Hence, (8) may 
be filtered in such a way that the associated graded complexes are of the form 

(9) 0 ---+ Is-I / IS ..E... 7C. (I,S-I / !'s) ~ 7C. (I,s-2 /!'S-I ® Ox' IX) ~ .... 
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Then for (8) to be exact, it is sufficient that (9) is exact for all s. Furthermore, 
the hypotheses imply that the sequences (9) are sequences of vector bundles on 
&'s· 

Since Sand S' are smooth, we know that [s-I / [s = Ss-I ([/[2) and 
[ 'S-I/['S SS-I (['/['2) W· h h ·d ·ft· h d·ffi .. d-· = . 1t t ese 1 entl catlOns, t e 1 erentlatlOn q 1S 
given by (on an affine open set) 

(10) dq (a I Sa2 ··· SaS _ q ® db l /\ ... /\ dbq ) 

s-q 

= ""'a S···Sa.s···Sa ® da./\db /\· .. /\db L...J 1 I s-q I 1 q . 
i=1 

For s = 1, the sequence (9) reads as 

which is obviously exact. 
For s = 2 , we obtain 

2 "2 
( 11 ) 0 - [ / [ - 7r. (I / [ ) - 7r. (.ox' I x ® &'S') - 0 . 

Exactness of this sequence is obtained from the following diagram: 
0 

r 
7r. (.0 x' I x ® &'S' ) 

r 
o ----+ 7r. (I' / ['2) ----+ 7r.(.oX'lk ® &'S') ----+ 7r.(.oS'lk) ----+ 0 

r r II 
o ----+ [/ [2 ----+ .oXlk ®&'S ----+ .oSlk ----+ 0 

r 
0 

Here the vertical exact sequence is obtained by applying 7r* (- ® &'s') to the 
standard exact sequence 

0- 7r*('oXlk) - .oX'Ik - .oX'Ix - 0 
for smooth maps. 

Finally, for s ~ 2, we deduce from (l0) that (9) is obtained from (11) by 
taking exterior powers. Hence, (9) is exact for s ~ 2. 0 

Proof of Lemma 5.2. Our proof will be by induction on the dimension of S. , 
We may clearly reduce to the case where Sand S are reduced. In that case, 
there will be an open subvariety S; of S' such that 4>IS; is an isomorphism. 
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By making S; smaller if necessary, we can also assume that S; is smooth. 
Define S~ = S'\S;, SI = ¢(S;) , S2 = ¢(S~), XI = X\S2' and X; = n-I(XI). 

By our induction hypothesis and by Lemma 5.3, we may assume that Lemma 
5.2 has been proved in the situations 

S ' , 
I --tXI S~ --t X' 

SI --t XI S2 --t X 
To complete our induction step, we need another lemma. 
Lemma 5.4. Let X be a Noetherian scheme, and let U c X be an open subset. 
Let I be the defining ideal of X\ U. Then for a quasicoherent injective &x-
module :T and a coherent &x-module vI(, the following sequence is exact. 

o --+ lim Hom& (vi(I t vi( , :T) ---t Hom& (vi(, :T) 
---+ x x 

s 
--+ Hom&u(vI(IU, :TIU) --+ 0, 

where the maps are the obvious ones. 
Proof. Well known and easy. D 

Now let 12, I~ be the defining ideals of S2' S~ in X, X' . From the lemma, 
we obtain exact sequences 

o --+ ~~Hom&x (n. (&xIIII/ ® /\q !lx'/X) ®&xll~,:T) 
1 s 

--+ ~Hom&x (n. (&XIII'I ® /\q !lx,/X) ,:T) 
1 

--+ ~Hom&x (n. (&XIII'I ® /\q !lX,/X) lXI' :TIXI) --+ o. 
1 I 

But by a standard argument, 

~~Hom&x (n. (&XIII'I ® /\q (lx,/X) ®&xll~,:T) 
1 s 

= ~Hom&x (n. (&XIII'I ® /\q (lx,/X) ®&xll~,:T) 
1 

= ~Hom&f (n. (&X II(I'I + n· I~) ® /\q (lx,/X) ,:T). 
1 

But the chains of ideals (11/ + n· I~)I and (I~\ are cofinal in each other. 
We obtain exact sequences 

o --+ ~Hom&x (n. (&xIII~1 ® /\q (lx,/X) ,:T) 
I 

--+ ~Hom&x (n. (&x I 11'1 ® /\ q (lx'/X) ,:T) 
I 

--+ ~Hom&fl (n. (&x I II'I ® /\ q (lX,/X) lXI' :TIXI) --+ O. 
I 
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In a similar but easier way, we obtain from Lemma 5.4 that 

o ~ lim Hom~ (&x I I~ , :T) 
--+ x 

t 

~ limHom~ (&xll,:T) 
--+ x 

t 

~ limHom~ (&xllIX" :TIX,) ~ 0 
,... XI 

is exact. 
We can combine these sequences into a diagram: 

o 0 

1 1 
o -- ~ Hom~x (&x I I~ , :T) -- limHom~ (K; s x,:T) 

---t X '2' 
I t 

1 1 
o -- limHom~ (&xlt,:T) ----+ x lim Hom~ (K; s x' :T) --+ x' , 

t t 

1 1 
o -- limHom~ (&x II:, :TIX,) 

,... XI I 
-- limHom~ (K; s x ,:TIX,) 

,... XI' 1'1 

1 1 
o o 

It follows now from our induction hypothesis that the middle complex is 
exact. 0 

Proof of Theorem 5.1. We start with an injective resolution 0 ~ L ~:T. We 
then obtain a double complex 

( 12) lim Hom(K; s x' :T'), --+ , , 

which we think of as lying in the first quadrant such that the maps obtained 
from K; s x are horizontal, and such that the lower left-hand corner is , , 

r H (Kdim(X'IX) :To) E!! om t ,s ,x ' . 
I 

To compute the homology of (12), we use the first filtration. By Lemma 5.2, 
we obtain the complex 

(13) 

at horizontal position dim(X' I X) and zeros everywhere else. The homology 
of (13) is clearly H;(X, L) at position (dim(X'IX) , q). Hence, (12) has 
homology H;(X, L) at position q + dim(X' I X). 
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To use the second filtration, we have to compute the homology of the com-
plexes 

n-p P • ( ( , , ) ) Hom&,x 7C* &x,II ®&'x'/\ !lx'/x ,!T , 

where p' = dim(X' I X) - p . 
We obtain 

Ext~x (7C* (&x,lI't-P' ®&'x,I\P' Ox,/x) ,Af) 
which is by duality [6, Theorem III.11.1] 

q+dim(X' IX) ( ,t-p' I\P' * ) 
(14) Ext&,x' &x,II ®&'x' !lx'/x' 7C Af ® wX'/x ' 

where we have used the fact that R7C* = 0 on modules with support in S' . 
Simplifying (14) further, we obtain 

q+dim(X' IX) (~ n-p' I\P' n * .u ) Ext&,x' (7x,II ®&'x' :'''x'/x' 7C./n ®wx'/x 

Q+dim(X' / X) (~ I n-p' *.u (I\P' n ) *) = Ext&,x' (7x' I ,7C ./n ® wX'/x ® ux'/x 

_ E tQ+dim(X' IX) (~/In-p' *.u IO.l\dim(X' /X)-p' n ) 
- X &'x' (7 x' , 7C ./n VY U x' / x . 

Hence, after taking homology for the second filtration in (12), we obtain a 
diagram with 

H q+dim(X' / X) (x' *.u 10. I\P n ) 
s' ,7C vn VY&'x' :'''x'/x 

at position (p, q) . After reindexing, we obtain (7). 0 

6. CONSTRUCTIBILITY 

In this section, we will use Theorem 5.1 to get some results on cohomology 
with support in the unstable locus. Roughly speaking, we will decompose the 
unstable locus as a union of a closed and a locally closed subvariety, which can 
be handled by Theorem 5.1. Then we use induction. It would be natural to try 
to use the well-known stratification into smooth subvarieties, due to Hesselink 
[7], Kirwan [9], and others. Unfortunately, this stratification turns out to be 
too fine for our purposes. The decomposition we must use is much coarser, and 
the parts are not necessarily smooth. What is worse, however, is that it does 
not always work! This leads us to a concept we call constructibility, which is 
introduced below. 

As usual, G will be a reductive algebraic group with a Borel subgroup BeG 
containing a maximal torus T c G. W will be a G-representation, and R = 
k[W]. We define, furthermore, X = SpecR, XIG = SpecRG , d = dim W, 
h = dim RG. The roots of B will be the negative roots, and <1>+ will denote 
the set of positive roots. 
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6.1. Reduction pairs and constructibility. In the sequel, a pair (P, Y) will 
consist of a parabolic subgroup PeG containing B and a linear subspace Y 
of X which is preserved by B. 

Definition 6.1.1. A reduction pair for (P, Y) is a pair (PI' YI ) such that 
( 1) PI C P, YI C Y , and the inclusions are strict. 
(2) (P\PI)Y nYc PI YI . 

We first have to introduce some more notation: if P is a parabolic subgroup 
of G, then /: G x P X -+ G / P will be the natural projection map (g, x) t-+ g . 

If P2 :::> PI are parabolic subgroups of G, then for I ~ 0, we will denote 

with a~p2/p.J the &G/p,-module 1\1 a(G/p,)/(G/P2). 
From the fact that there is a commutative diagram 

G x P X -----t (G/P) x X 

1 1 
G/P G/P 

1\1 r I for any subgroup P of G, we deduce that n(GX p'X)/(Gx P2X) =} a[P2/p.J. 

The quotient map G / PI -+ G / P2 will be denoted by 1t;' • The same notation 
2 

is used for the analogous map G x P' X -+ G x P2 X. 
I(P2/PI ) will be the biggest u such that there is a chain P2 = p(u) :::> p(u-I) :::> 

••• :::> p(O) = PI of parabolics, such that all inclusions are strict. Clearly, I (G / B) 
is the rank of the semisimple part of G. 

Finally, if Pu :::> Pu- I :::> ••• :::> Po is a chain of parabolic subgroups of G, 
then we define a/[~./.~ ... /P.l for natural numbers (lJi as 

U u-I 0 

ai, ® 1t Po* a /2 ® ... ® 1tPo* alu [PI/Pol P, [P2/Pd Pu-, [Pu/Pu-,l· 

Lemma 6.1.2. Assume that (P, Y) is a pair and that (PI' YI ) is a reduction 
pair. Let L be a G-equivariant, quasicoherent &GxPX-module. Then every G-

representation that occurs in H~Xppy(Gxp X, L) occurs in one o/the/ollowing 
G-modules: 

. P 
(1) H~Xppy(Gx X,L), , 
(2) H i,+2dim(p/p')(G P, X P,* H rnJ2 ) h . . . Gxp,P,Y x, 1tp vn ®} u[P/Pd ' were 'I + '2 = I, 

(3) H i,+1+2dim(p/p')(G P, X P,* H,o.. rnJ2 ) h . +' - . Gx p, P, Y, x, 1tp At VY} u[P/P.J ,were 'I '2 -I. 

Proof. By the standard long exact sequence for cohomology with support, any 
representation occurring inH~xppy(GxpX, L) occurs in H~Xppy (G x P X, L) , 
also or in 

( 15) 
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By (1), we have to concern ourselves with only the latter case. We first prove a 
sublemma. 

Lemma 6.1.3. The commutative diagram 

G x PI PI Y -----+ G x PI X 

1 1 
-----+ 

restricts to a diagram 

Gx PI (PIY\PIYI ) ~ GxPI (X\PYI ) 

( 16) 1 
G x P (PY\PYI ) -----+ G x P (X\PYI ) 

where 0: is a closed immersion and P is a bijection. 
Proof. This can be deduced from (2) in Definition 6.1.1. We first show that 
Y\PYI = Y\PI YI which is equivalent to Y n PYI = Y n PI YI . 

Y n PYI = (Y n PI YI ) U (Y n (P\PI)Y) 
= YnPIYI· 

From this, it follows that 0: and p are defined. For 0:, we have to show that 
PI Y\PI YI is a closed subset of X\PYI . But 

PI Y\PI YI = PI (Y\PI YI ) = PI (Y\PYI ) 
= PI Y\PYI C X\PYI ' 

and the last inclusion is closed. 
Similarly, for P , we first have to show that P(PI Y\PI YI ) C PY\PYI . Again, 

P(PI Y\PI Y1) = P(Y\PI YI ) = P(Y\PYI ) = PY\PYI · 

This also shows that P is surjective. 
To show that P is a bijection, let y E Y\PYI . Any other element in G x P 

(PY\PYI ) is in the G-orbit of such an element. A quick check then shows (~ 
means "there is a bijection") 

Hence 

p-l(y) ~ {p E PI p-Iy E PI Y\PI YI}/PI 

~ {p E PI p-Iy E PI Y\PYI}/P1 (as above) 
~ {p E PI y E PPI Y\PYI}/P1 

~ {p E PI Y EpPI Y}/PI (since y ¢. PYI by hypothesis.) 
~ singleton (using (2) in Definition 6.1.1). 0 
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Remark 6.1.4. We can actually prove that the existence of diagram (16), to-
gether with the fact that P is a bijection, is equivalent to condition (2) in 
Definition 6.1.1. 

Now we continue with the proof of Lemma 6.1.2. 
By Theorem 5.1 and diagram (16), every representation that occurs in (15) 

must occur in one of the representations 

(17) Hil+2dim(PjPI) (G PI (X\PY) PI*./{ f*ni2 ) 
GxPI(PIY\PIYI) x I ,1tp ® [PjPd' 

where i I + i2 = i . 
But GxPI(X\PIYI ) is an open subset of GxPIX containing GXPI(X\PYI ), 

and G x PI (PI Y\PI YI ) is still a closed subset of G x PI (X\PI YI ). Therefore, 
(17) is equal to (excision) 

(18) Hil+2dim(PjPI) (G PI (X\P Y) PI*./{ f*ni2 ) 
GxPI(PIY\PIYI) x I I ,1tp ® [PjPd' 

Invoking again the long exact cohomology sequence yields that any representa-
tion occurring in (18) must occur in 

Hil+2dim(PjPI)(G x PI X PI*./{ ® f*Qi2 ) 
GxPIPIY ,1tp [PjPI] 

or in 

Definition 6.1.5. A pair (P, Y) is constructible if and only if one of the fol-
lowing holds. 

(1) PY = Y and Y = X A for some A. E Y(T) (including 0) belonging to 
the Weyl chamber determined by B . 

(2) There exists a reduction pair (PI' YI ) for (P, Y) such that (PI' YI ), 
(PI' Y), and (P, YI ) are constructible. 

Proposition 6.1.6. Assume that the pair (G, Y) is constructible. Then any G-
representation occuring in Hby(X, &'x) occurs in some 

H~XByI(G x B X, f* 1t;,*n;~u·i~u_I/-.-!Pol)' 
where 

(1) (P',Y') isapairsuchthatp'cG, y'cY, Py'=y', Y'=XA,and 
A. is in the Weyl chamber determined by B. 

(2) Pu ::) Pu- I ::) ... ::) Po is a chain (with strict inclusions) such that G = Pu' 

P' = Po· 
(3) i 5:. j + i l + ... + iu 5:. i + u + 2dim(G/P'). 

Proof. This follows by induction from Lemma 6.1.2 and the observation that 

H~/ yI(GXPI X, f*n;~u·i~u_I/- .. jPo]) = H~XByI(GxB X, f* 1t;,*n;~u·i~u_I/-.-!Pol)' 0 

Proposition 6.1.7. Let (G, Y) be a constructible pair, and let X E X(T) be 
a dominant character (with respect to <1>+). Assume that X - W(LpES p) is 
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strongly critical Jor (T, W), Jor all W E 'YFa, s C -<1>+. Then there will 
be no G-representation with highest weight X in H~y(X, &'x) Jor 0 SiS 
d -1(GjB) - 2dim(GjB) - 1. 
ProoJ. By Proposition 6.1.6, it is sufficient to prove the same statement for 

( 19) 

where 

OSj+iu+"'+i, 
S d -1(GjB) - 2dim(GjB) - 1 + u + 2dim(GjP') 
S d-1. 

This is obviously true if Y' = {O}. Hence, we assume that y'::F {O}. 
(19) is equal to 

If we take the fiber of 1l:,·n;~./~'/Pol over [B], then we obtain 

(20) 

where P j is the Lie algebra of Pj • 

(20) is a B-representation which has a filtration whose associated quotient 
representations are T-characters of the form 

X~s) = L p, where S c -<1>+ . 
pES 

Using Lemma 6.2.1 of the next section, it is sufficient that X - W X~S) is strongly 
critical for (T, W) for all W E'YFa and for all S C -<1>+ . But this was exactly 
the hypothesis. 0 

It is well known that every fiber of X -+ XjG contains a unique closed 
orbit. A point x E X is called stable if for all A E Y (G) neither limt-+o A(t)X 
nor limt-+oo A(t)X exists. Stable points have finite stabiliser and closed G-orbit. 
They form an invariant open subset of X. 

Hence, we deduce that dimX = dim(XjG) + dimG if there is at least one 
stable point in X. 

Let us also recall the following theorem. 

Theorem 6.1.8 [15]. Assume that a semisimple group G acts on an affine variety 
X with Jactorial coordinate ring such that the generic stabiliser is finite. Then 
X has a stable point. 

To simplify the notation a bit, we will say that XU is constructible if it is of 
the form G X). , where (G, X)) is a constructible pair. 
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Theorem 6.1.9. Let G be semisimple, and assume that XU is constructible. 
Assume, furthermore, that X has a G-stable point. Then Conjecture 3.4' is 
true. 
Proof. Let X be a character of G, and let X I E X (T) be the highest weight of 
its corresponding G-representation. The hypotheses for Conjecture 3.4' imply 
that XI - W("£pES p) will be strongly critical for (T, W) for all W E '7Fa, 
S C -<1>+. Hence, by Proposition 6.1.7, there will be no representation with 
character X in H~u(X, &'x) for 0 ~ i ~ d -1(GjB) - 2dim(GjB) - 1. 

However, since G is assumed to be semisimple and X has a stable point, 
I(GjB)+2dim(GjB) = dim G, and d-dim G-1 = h-1 . Hence, the conditions 
for Corollary 4.2 are satisfied, and, therefore, R~ is Cohen-Macaulay. 0 

Remark 6.1.10. Note that in Proposition 6.1.7, we actually prove more than in 
Theorem 6.1.9. However, the author has no example of where this makes any 
difference. 

Theorem 6.1.11. Conjecture 3.4' is true in the case G = SL(V), dim V = 2. 
Proof. We may assume that W does not contain trivial representations. 

Assume first that W = V or W = S2V. Then k[W]G is a PID. Hence, 
R~ is a torsion free module over a PID, and, therefore, Cohen-Macaulay. This 
means that Conjecture 3.4' is vacuous and, hence, true. 

Assume now that W =f. V and W =f. S2 V. Then X has a stable point by 
Theorem 6.1.8. From the fact that X(T) = Z, we deduce that XU = GX;., 
where 

From Definition 6.1.1 or else from (26) below, we deduce that (B, {O}) is 
a reduction pair for (G, X;.). Since (B, X;.), (G, {O}), and (B, {O}) are 
constructible by the first condition of Definition 6.1.5, we deduce that (G, X;.) 
is constructible. 0 

6.2. Some computations. The following lemma was used in the proof of Propo-
sition 6.1. 7. This subsection will be devoted to its proof. 

Lemma 6.2.1. Assume that A E Y(T) belongs to the Weyl chamber determined 
by B . Let X, X I E X (T) , where X is dominant and X - W X I is strongly critical 
for (T, W), for all W E '7Fa. Assume, furthermore, that X has a stable point. 
Then no G-representation with highest weight X occurs in 

• B 
(21) HGxBx(Gx X'&'GXBX®& XI)' 

A GIB 

Proof. Let Y = X;., There is a spectral sequence 

(22) 

E~q: HP(~qxBy(G x B X, &'GxBX ®& XI» 
GIB 

p+q B ~ ~ 
=;.HGxBy(GX X,C7GxBX ®& XI)' 

GIB 
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Furthermore, it is easy to see that 

~qxBy(G x B X, &Gx B X ®e: X,) = ~qxBy(G x B X, (&x ®k X,)~) 
GIB 

(23) = (H;(X, &x) ®k X,)~ 

as &G/B-modules. 
Let J be the defining ideal of Y. J is generated by a subspace W' of W . 

Define W" = W jW' , d ' = dim W' . We need the following result. 

Lemma 6.2.2. H5(R) = 0 if i =I d' . 
(2) Hf' (R) is, as a T-representation, isomorphic to 

(I\d' W't ® EBSn(W'* EB W"). 
n=O 

Proof. The first statement is clear since J is generated by a system of param-
eters. 

d' t For the second statement, we use the fact that H J (R) = ~ I ExtR(Rj J , R) . 
We first compute 

( Ij 1+' ) '" (I ')* i (j ) ExtR J J ,R = S W ® ExtR R J, R . 

Again Ext i (Rj J ,R) = 0 if i =I d' . On the other hand, using the Koszul 
resolution for Rj J , we easily compute that 

Ext~' (Rj J , R) ~ (1\ d' W') * ® Rj J . 

Hence, as T-module, 

H~(R) = E9 E9 (1\ d' W't ® (Sl W')* ® Sl' W" 
I I' 

= (I\d' W't ®E9St (W'* EB W"). 0 
I~O 

Now assume that W = a, EB a 2 EB ... EB ad as T-representation, where a i E 
X(T). Define I = {i E {I, ... , d}I(A., a i) ~ O}. Then by construction, the 
weights of W' and W" are resp. (ai)iEI and (ai)i ff- I' Thus, H;' (X, &X)®X, 
has a filtration (as B-representation) whose associated graded quotients X' are 
by Lemma 6.2.2 of the form 
(24) - Eai - Eaiai + Ebiai+x" 

iEI iEI iff-I 
where ai' bi EN. 

Hence, they have the property that 

(A., X' - X,) = (A., - Eai) - Eai(A., a i) + Ebi(A., a i) 
iEI iEI iff-I 

(25) :5 - E(A., a i)· 
iEI 

Let P E X(T)Q be half the sum of the positive roots. 
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Now assume that X does occur in (21). Then it must also occur somewhere 
in the E2-term of the spectral sequence (22). Hence, by Bott's Theorem [3] and 
by (23), it must be of the form w(x' + p) - p, where W E ~ , and x' is of 
the form (24). 

From (25), we deduce 

- ~)A, (Xi) ~ (A, w-I(X + p) - P - XI) 
iEI 

-I -I 
= (A, w (X - w X I) + w p - p) 

-I -1_ _ =(A,W (X-wXI))+(A,W p-p). 

However, by Lemma 6.2.3 below and by the hypothesis, w-I(X - WXI) is 
strongly critical for (T, W). Hence, we will deduce that (Lemma 6.2.4) 
(A, w-I(X - WXI)) > - 2:iE1 (A, (Xi)· 

Since, furthermore, (A, W -I P - p) ~ 0 (Lemma 6.2.5), we obtain a contra-
diction. 0 

Now we will fill in the few missing steps in Lemma 6.2.2. 

Lemma 6.2.3. If X is strongly critical for (T, W) and W E ~, then W (X) is 
also strongly critical for (T, W). 
Proof. True, because ~ permutes the weights of W. 0 

Lemma 6.2.4. Assume that X is strongly critical for (T, W) and A E Y (T) . 
Assume, furthermore, that X has a stable point. Define 

I = {i E {I , ... , d}1 (A, (Xi) ~ O} . 

Then (A, X) > - L:iE1(A, (Xi). 
Proof. The fact that X has a stable point implies that there exists an such 
that (A, (X) > O. By definition, X = 2:1=1 ai(Xi' -1 < ai ::; O. Hence, 

(A, X) = Lai(A, (Xi) + Lai(A, (Xi) 
iEI iff.! 

>-L(A'(Xi). 0 
iEI 

Lemma 6.2.5. Let A E YeT) belong to the Weyl chamber determined by B. Let 
p be as in the proof of Lemma 6.2.1. Then (A, W P - p) ~ 0 for all W E ~ . 

Proof. Since A belongs to the Weyl chamber determined by B, we deduce 
easily that (A, p) ::; 0 for all p E <1>+ • On the other hand, the definition of p 
immediately implies that w p - P is a sum of negative roots. 0 

6.3. A combinatorial criterion for constructibility. To verify whether a pair 
(PI' YI) is a reduction pair for some other pair (P, Y), we need some way 
of checking condition (2) in Definition 6.1.1. A simple criterion that can be 
checked on the weights of W is given below. 
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Proposition 6.3.1. Assume that (PI' YI ), (P, Y) are pairs such that PI C P, 
YI C Y , and the inclusions are strict. If 

(26) Vw E 'Wp \'Wp : wY nYc U w'YI , 
I I 

W EWpI 

then (PI' YI ) is a reduction pair for (P, Y). 
Proof. Assume that (26) holds. By the Bruhat decomposition, 

PI = B'Wp B 
I 

and 
P\PI = B('Wp \'Wp )B . 

I 

Hence, 
(P\PI ) Y n Y = B('Wp \'Wp ) Y n Y 

I 

= B(('Wp \'Wp)Y n Y) 
I 

7. THE CASE OF MATRIX CONCOMITTANTS 

In this section, we will verify the major hypothesis of Theorem 6.1.8 for 
T m. n ' namely, that XU is constructible. Using (26), this can be done combina-
torially. As a consequence, we obtain that T m n is Cohen-Macaulay in general 
(Theorem 7.3.6). . 

We define G = SL(V) , where dim V = n, W = End(V)m* , and X = 
Speck[W]. T c G will be a maximal torus. We will choose a basis in V such 
that the action of T on V is diagonal, i.e., of the form diag(zl"'" zn)' 
where Z i E k and Z I ... Z n = 1 . 
7.1. Ordered partitions. If n is an integer, then an ordered partition v of n 
will be a tuple (vI' v2 ' ... ,vu ) such that E~=I vi = n, vi E No' If v is an 
ordered partition of some unspecified number, then that number will be denoted 
by E vi' We will also use the empty tuple () as the unique ordered partition 
of O. 

If ( (i)) d d . . h (i) ((i) (i)) h V i=I ..... v are or ere partlttons, were v = VI , ••• , vU; ,t en 
( (I) (V))' h d d .. ((I) (I) (2) (v)) v , ... , V IS t e or ere partltton vI , ... , Vu ,vI , ... , Vu • 

I " If '1, v are two ordered partitions, then we say that '1 is a refinement of v 
(notation: '1 <l v) if '1 = ('1(1) , .•. , '1(V)) , where the '1 (i) are ordered partitions 

'" (I) '" (v) and v = (L.,., '1 , •.. , L.,., '1 ). 
The ordered partitions of n, ordered by <l, form a partially ordered set with 

minimal element '1min = (1, ... , 1) and maximal element '1max = (n). 
Let B be the Borel subgroup of G consisting of the upper triangular matrices. 

Then any A E Y(T) belonging to the Weyl chamber determined by B will be 
of the form 
(27) d · ( i l i l i2 i2 iu iu ) Z-+ lag Z , ... ,Z ,Z , ... ,Z , ... , Z , ... ,Z , ----- ----- -----112 times l1u times 
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where i l > i2 > '" > iu and '71 i l + '72i2 + ... + '7uiu = O. With a slight abuse 
of notation, we will denote this one-parameter subgroup by A'1 ,where '7 is the 
ordered partition of n given by ('71' ... , '7u ) • This notation is justified in this 
context by the fact that if AI' A2 E YeT) are of the form (27) with the same 
numbers '71' .,. , '7u ' then G(A I ) = G(A2) and X... = X .... 

I 2 

Clearly, B = G(A'1m) and G = G(A'1m) . 

Lemma 7.1.1. If '7 <J v, then 
(I) G(A'1) C G(AJ . 
(2) X ... :::> X .... 

~ v 

(3) G(A'1)X",v = X"'v . 

Proof. This follows by inspection. 0 

Lemma 7.1.2. XU = GX ... 
"min 

Proof. This follows by Lemmas 7.1.1 and 4.3. 0 

Now define Q = {I , ... , n}. If v is an ordered partition of n , then Qv will 
be the partition of Q given by {{I, ... ,vI}, {VI + 1, ... ,vI +v2}, ... , {VI + 
... + V u-I ' ... , n}}. The elements of Qv will be indexed as Qv, i' where 
Qv i = {VI + ... + vi_I' ... , VI + ... + vJ. 

if T is an arbitrary set, then ST will be the permutation group of T. If 
Q is a partition of Q, then SQ = I1TEQ ST' QO will be the set U· . Qv I' X 

V II II v }>l , 

Qv,j c Q x Q. 
It is easily verified that if v is an ordered partition, then 

(28) 

and the weights of X... (considered as a subspace of W*) are 
v 

(29) 

Lemma 7.1.3. Let ('71' vI)' ('7, v) be pairs of ordered partitions. Assume that 
"1 <J ", v <J v I ' and "1 =f:. ", V I =f:. v. Suppose that 

(30) W S \S ::J' S QO QO 'Qo vW E Q Q:::Jw E Q : W v n v c W v' 
~ ~I ~I I 

Then (G(A'1)' X... ) is a reduction pair for (G(An) ' X ... ). 
I VI II 

Proof. This is just a translation of (26) to the present situation using (28) and 
(29). 0 

7.2. Set-theoretic computations. In this subsection, we will verify (30) for cer-
tain special pairs of partitions. 

For the sequel, let" = (,,(1) , ,,(2) , x), v = (v(l) , a, 1, v(3)) be fixed ordered 
partitions of n where 

(a) ,,(1), ,,(2) , v(l) , v(3) are ordered partitions. 
(b) x,aENo' 
(c) ,,(1) <J v(l) . 
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(d) 1)3) consists entirely of ones. 
(e) x + a> n - L y(l) . 

795 

Then we define '11 = ('1(1), '1(2) , x - n + L y(l) + a, n - L y(l) - a), YI = 
(y(l) , a + 1, y(3)). To simplify the notation, we write K = Q'1' KI = Q'11 ' 
L = Qv' LI = Qvl ' and ~ = SK' ~ = SKI' 

Lemma 7.2.1. 'Vw E ~\~: 3w' E ~: wLo n LO c w'L;. 
Proof. We will denote the position of a in y by a. The beginning of '1(2) in 
'1 will be at position p' , and x will be at position p . 

First we make a few remarks which follow either from the definitions or else 
by counting. 

(1) U, L, = U, p' K ," and the second decomposition is a refinement of 
I<a 1 1< 

the first. 

(2) U,> L, = KI PI' l_a+1 I , + 

(3) La = UP'~i~P K I , i' 

(4) ~\~ = I1 i -,p SK X (SK \(SK X SK )). r,p I,p I,P+I 
(5) L; = r\(La X La+I ). 

Now we will try to bound the sets wr n r ,where w E ~\~ . To this end, 
we compute 

L ° = (U, Li X L j) U (U Li X L j ) 
1<) 1<) 
i<a i"2a 

Using (1), we see that U, " L ,' X L) , and U '> L ,' are ~ -invariant. 
»I,I<a I_a 

Furthermore, by (2) and (4), U j"2a+1 Lj cannot be ~-invariant if w E 

~\~ . Hence, there exists a p in U j"2a+1 L j such that 

(31) LO nwLo c (U Li X LJ U [( U Li x Lj)\CU Li x {P})]. 
I<a I>a. I>a j>i }>i -

We will now show that the right-hand side of (31) is contained in some w'L; 
for w' E ~. Assume that La+1 = {q}. We define w' = (p, p - 1, ... , q). 
By (2), we see that w' E ~ . We will now decompose L; (using (5)). 

L ~ = (i~ L i X L j) U [( i~ L i X L j) \ (Lax {q})] U (i~ L i X L j) . 
»1 »1 »1 
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Here 
U L i xLj ={(PI'P2)l p I'P2 E Q, P2>P1 ~q}. 

Therefore, 

i>OI j>i 

(32) W'( U Li X L j ) J (U Li x Lj)\eU Li x {p}). 
1>01 1>01 1>01 j>i j>i 

(This is the key point.) 
Using (2), (3), and (32), we deduce that 

w'L'o J (s: Li X Lj) U [(~ Li X L j) \ (LOI x {P})] 
»1 »1 

U [(~ Li X Lj ) \ (lda Li x {P})] 
»1 

= (u Li X Lj ) U [eu Li x Lj)\(U Li x {P})] , 
1<01 1>01 1>01 j>i j>i -

which is precisely the right-hand side of (31). 0 

Corollary 7.2.2. (G(A" ,X;. ) is a reduction pair for (G(A,,) , X;. ). 
'f! VI 'I II 

Proof. Immediate from Lemmas 7.1.3 and 7.2.1. 0 

7.3. Good pairs of ordered partitions. In this subsection, we will prove that for 
certain pairs of partitions ('1, v), the pair (G( A ), X;.) is constructible. We 

1/ v 
will build upon the result obtained in Corollary 7.2.2. 
Definition 7.3.1. Let ('1, v) be a pair of ordered partitions of n. Then we say 
that ('1, v) is good if one of the following holds: 

(1) '1<Jv. 
(2) '1 = ('1(1) , '1(2) , x), v = (V(I) , a, V(2)) , where 

(a) '1(1) , '1(2) , v(I) ,v(2) are ordered partitions. 

(b)x,aENo· 

(c) '1(1) <J v(I) • 

(d) v(2) consists entirely of ones. 

(e) a+x > n - Lv(I). 

Lemma 7.3.2. Assume that '1 = ('1(1) , '1(2) ,x) and v = (v(I) ,a) are ordered 
partitions of n such that '1(1) <J v(I). Then '1 <J v. 
Proof. Clear. 0 
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Lemma 7.3.3. Let rt = (rt(l) , rt(2) ,x) and v = (v(l) , a, v(2)) be ordered parti-
tions of n such that rt(l) <J v(l) and v(2) consists entirely of ones. Assume that 
a + x = n - 2: v(l). Then the pair (rt, v) is good. 
Proof. By Lemma 7.3.2, we may assume that v(2) = (1, v(3)). We deduce 
a + x = n - 2: V(I) = n - 2: rt(l) = 2: rt(2) + x or 2: rt(2) = a. Hence, 
1](3) = (1](1), 1](2)) <J (v(I), a) = v(4). We then rewrite rt = (rt(3) , x), v = 
(v(4) , 1, v(3)). Now we see that (rt, v) satisfies the first four conditions of 
Definition 7.3.1 (2) (making the appropriate translations). 

To check condition (2)(e), we observe that 1 + x > n - 2: v(4) since n-
2: v(4) = n - 2: v(l) - a = x. 0 

Assume now that we have a good pair of partitions (I], v) , but not I] <J v . 
Then I] = (rt(l) , 1](2) , x), v = (v(l) , a, v(2)) as in Definition 7.3.1. Further-
more, by Lemma 7.3.2, v(2) is non empty and hence v(2) = (1, v(3)). We can 
h d fi ( ) . 7 2 . ( (I) (2) "" (I) t en e ne 1]1' vI as m ., 1.e., 1]1 = rt ,rt ,x - n + u v + a, n -
2: v(l) - a) and vI = (v(l) , a + 1, v(2)). 

Lemma 7.3.4. (I], vI)' (rt l , v), and (1]1' VI) are good. 
Proof. (1) (I], V I) is good because a + 1 + x > n - 2: v (I) (using Definition 
7.3.1). 

(2) (1]1' v) is good because n - 2: v(l) - a + a = n - 2: v(l) . Hence, we can 
apply Lemma 7.3.3. 

(3) (rt I ' VI) is good because n - 2: v (1) - a + a + 1 > n - 2: v (1). 0 

Corollary 7.3.5. If (rt , v) is a good pair of ordered partitions of n , then (G(A.rJ) ' 
X"v) is constructible. 
Proof. Clear from Corollary 7.2.2, Lemma 7.3.4, and the fact that eventually 
(1) of Definition 7.3.1 must become true. 0 

Theorem 7.3.6. Tm n is Cohen-Macaulay for all (m, n). 

Proof. As we saw before (eq. 3), Tm n = (End(V) (9 k[W])G. The case n = 1 
is trivial. Furthermore, it is easily ve~ified that TIn is a free module over its 
center which is a polynomial ring. Hence, the result is clear. T 2 2 was treated 
in [5], [18]. ' 

Hence, it remains to consider the cases (m, n) :::: (2,3) and:::: (3,2). 
It is well known that End(V) = kEBEnd(V)o , where the elements of End(V)o 

are those endomorphisms of V having trace O. This is an irreducible G-
representation. Since k[W]G is Cohen-Macaulay by the Hochster-Roberts The-
orem, it suffices to look at the case U = End( V)o. It is easy to verify that the 
character of U* isstronglycriticalfor (G, W) if (m, n):::: (2,3) or:::: (3, 2). 
Furthermore, if m :::: 2 , then the action on X is generically free, and hence X 
has a stable point by Theorem 6.1.8. Hence, the only thing that has to be proved, 
to apply Theorem 6.1.9, is that XU is constructible. However, by Lemma 7.1.2, 
XU = G(A." )X" ' and according to Definition 7.3.1, (I] ,I]n) is a good 

'/max "min max IDt 
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pair of ordered partitions (11(1), 11(2) , and V(I) are empty in this case). Hence, 
we may apply Corollary 7.3.5. 0 

Remark 7.3.7. It may be somewhat surprising thatthe cases m = 1 and (m, n) 
= (2, 2) playa special role in the above argument. However, it is easily verified 
that 

and 
1 P(T t) - --.,--------;, 

2,2 ' - (I _ t) 4 (I _ t2) • 

Hence, they satisfy the functional equations 

P(T1,n' lit) = (_I)n t(n2-n+2)/2 p (T1,n' t) 

and 
6 P(T2 2' lit) = -t P(T2 2' t) , , 

which are different from the functional equation for (m, n) > (2, 3) or > 
(3, 2) (as predicted by (eq. 4)), 

P(Tm,n' lit) = (_I)(m-l)n2+ltmn2p(Tm,n' t). 

For other proofs of this functional equation, we refer to [4], [10], [21]. However, 
these authors seem to have been unaware of the general result in [20]. 
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ABSTRACT. In this paper, we prove that trace rings of generic matrics are Cohen-
Macaulay (Theorem 7.3.6). This is done by relating this problem to a conjecture 
of Stanley about modules of invariants under a reductive group. 

We prove a slightly weakened version (Conjecture 3.4 ') of this conjecture 
in special cases (Theorem 6.1.8). In particular, we obtain that Conjecture 3.4' 
is true for SL2 (Remark 6.1.10). 
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