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O. THE H-PRINCIPLE FOR HOLOMORPHIC MAPS 

Let X and Y be complex analytic manifolds. One says that holomorphic 
maps X -+ Y satisfy the h-principle (h for homotopy, see [GroD if every con-
tinuous map X -+ Y is homotopic to a holomorphic map. 

0.1. .Examples of the h-principle. (a) If either X or Y is contractible (e.g., 
X = en or Y = en ), then the h-principle is trivially satisfied as every continu-
ous map X -+ Y is homotopic to a constant map. 

(b) Let X c e be a connected open subset with finitely generated funda-
mental group and Y = eX = e - {O}. Then every continuous map X -+ Y is 
homotopic to a holomorphic map of the form X -+ TI7=, (x - af' for some 
points a" ... ,ak in e - X and some integers n" ... , nk • Notice that we 
use here the multiplicative group structure in eX . 

(b' ) If i!, (X) is infinitely generated, the above construction does not directly 
apply. Yet holomorphic maps X -+ eX do satisfy the h-principle for all open 
X c e. In fact, this h-principle remains valid for all open Riemann surfaces X 
and, moreover, for all Stein manifolds X (see 0.2 for definitions) by a theorem 
of Arens and Royden [Ar, Roy] which illustrates a special case of the Grauert 
theorem (see 0.4). 

(b") Let Y be the punctured disk, Y = D* = {y E q 0 < Iyl < I}, 
and X be a bounded domain in e with finitely generated fundamental group 
i!, (X). Then the scaled products x f--> e TIJx - af' for small e > 0 insure 
the h-principle of holomorphic maps X -+ D* . 

On the other hand, the h-principle may fail if i!, (X) is infinitely generated. 
For example, if X = D - S, where S is a closed countable subset in D, then 
every bounded holomorphic function on X extends to the disk D :J X. It 
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follows that there are at most countably many homotopy classes of holomorphic 
maps X --+ D* , while the homotopy classes of continuous maps are obviously 
uncountable. 

(c) Let Y c e be a connected open subset which is not simply connected. 
Moreover, assume Y cannot be made simply connected by adding a single point 
to Y (e.g., we rule out Y = D* , but every domain with noncyclic 7r1 will do). 

IJ holomorphic maps X --+ Y satisfy the h-principle then the cohomology 
HI (X; Z) vanishes. For example, if X c e, then 7r I (X) = O. 

ProoJ. Since the complement e - Y contains at least two points, Y is covered 
(uniformized) by the hyperbolic plane, and so Y admits a (unique) complete 
metric of curvature -1 , which is called the hyperbolic metric on Y. Moreover, 
the point adding condition shows that Y is not biholomorphic to D or to D* . 
It follows that there exists a closed geodesic, say y, in Y for the hyperbolic 
metric in Y. On the other hand, the Schwartz lemma bounds the length of 
curves in Y coming from X by holomorphic maps J: X --+ Y , length J( C) ~ 
const, where C is a closed curve in X and where the constant depends on 
C but not on J. Therefore, J( C) cannot be homotoped to a sufficiently 
high multiple of the above geodesic y. In fact, no geodesic (in particular, no 
multiple of y) can be shortened by a homotopy as the hyperbolic metric in 
Y has negative curvature. This clearly contradicts the h-principle unless every 
map of X to the circle is contractible, i.e., HI (X; Z) = O. Q.E.D. 

The first interesting case where the h-principle breaks down is that of X the 
annulus A(a, b) = {x E q a < Ixi < b} and Y the complex line with two 
punctures, Y = e - {O, I}. 

Remark. The failure of the h-principle for maps into Y is a sign of certain holo-
morphic rigidity, often called hyperbolicity, of Y . For example, if holomorphic 
maps A(a, b) --+ Y violate the h-principle, then the following (holomorphically 
invariant length) function lal on the conjugacy classes a in 7r1 (Y) is nontrivial 
(i.e., lal = 0 => a = [idJ), lal = inf(logb/a)-I , where inf is taken over all 
(a, b) for which there exists a holomorphic map A(a, b) --+ Y representing a. 

0.2. Stein Manifolds. The following properties of a complex manifold X say, 
in effect, that X has "sufficiently many" holomorphic maps J: X --+ e . 

St l . Every two distinct points XI and x 2 in X can be separated by some 
holomorphic function J on X, where the separation means J(x l ) i= J(x2 ). 

Furthermore, for every infinite divergent sequence Xi EX, there exists an J 
such that lim sup IJ(xi)1 = 00. 

i-HX) 

St2 • For every finite or infinite countable discrete subset {Xi} eX, there 
exists a holomorphic function J on X such that J(x) = ci for prescribed 
values ci E e. 

St3 . X is biholomorphic to a complex analytic submanifold in eN for 
some N = N(X). 

Proposition-Definition. The conditions St l , St2 , and St3 are equivalent and a 
manifold satisJying these is called Stein. 
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About the proof. The implications St2 ::;. St! and St3 ::;. St! are obvious. The 
implication St3 ::;. St2 is an elementary exercise. The difficult step St! ::;. St3 is 
due (up to some technical refinements by Grauert [Gra!]) to Narasimhan [Na] 
who bounds N = dim eN by N::; 2 dim X '+ 1 . (This bound was improved in 
[Fop Scha, and G-E2].) 

Example. Let X be an open subset in en. Then linear functions separate 
points in X. To get the second part of St! ' we assume that for each point z 
in the boundary of X c e there exists a complex hypersurface H in en lying 
in the complement en - X and containing z. (Notice that such an H always 
exists for n = 1; namely, H = {z}.) One knows that there is a holomorphic 
function Fz on en whose zero set is exactly H (see [G-R]) , and then one 
easily satisfies the second part of St! with the function Fz-! on X c en . In 
particular, every domain Xc e is Stein. 

0.3. Positive forms and convex functions. A real differential 2-form w on X 
is called positive if w(-r, A -r) > 0 for all nonzero tangent vectors -r on X. 
Next, a C2 -function p: X -> R is called strictly e-convex or just convex if the 
form dJdp is positive, where d is the exterior differential and J is the (real) 
operator on the cotangent bundle corresponding to the multiplication by A. 
The ordinary convexity in Rn is called, whenever no confusion is possible, R-
convexity, but we avoid "plurisubharmonicity" as much as "plurisublinearity." 

Every Stein manifold admits a proper positive convex function. In fact, the 
function IIzll2 on eN is obviously convex and proper on every submanifold. 
The converse is also true but not as easily seen. 

0.3.A. Theorem [Gra3]. If a complex manifold X admits a proper positive 
convex function, then X is Stein. 

0.3.B. An application. Using this theorem, one can show that every real ana-
lytic manifold Xo admits a complexification X :::> Xo which is Stein and which 
is diffeomorphic to the tangent bundle T(Xo)' It easily follows that every count-
able, locally finite, finite dimensional polyhedron P is homotopy equivalent to 
a Stein manifold X. In fact, by a recent result of Eliashberg, one can find such 
an X satisfying dime X = dim P . 
0.4. The h-principle of Grauert. If G is a complex Lie group and X is Stein 
then holomorphic maps X -> G satisfy the h-principle, that is, every continuous 
map X -> G can be made holomorphic by a homotopy. 

This result was proven in [Gra2] and then improved and generalized in [Ca2 , 

Ra, F-R, F02, H-L]. For example, the h-principle of Grauert extends to holomor-
phic sections of principle G-fibrations over X. Furthermore, this h-principle 
remains valid for every associated fibration whose fibers are G-homogeneous. 
In particular, one has the h-principle for holomorphic maps X -> Y ,where Y 
is a G-homogeneous space. 
O.4.A. The h-principle and Oka's principle. Oka's principle (as interpreted by 
the author) is an expression of an optimistic expectation with regard to the 
validity of the h-principle for holomorphic maps in the situation where the 
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source manifold is Stein. The above theorem of Grauert as well as more general 
results proven in the present paper confirm Oka's principle. 
O.4.B. Example. The space Y = en - {O} is GLn-homogeneous, and so holo-
morphic maps X ---- Y satisfy the h-principle for all Stein manifolds X. If 
we remove several points from en , then the resulting Y is no longer homo-
geneous, but the h-principle remains true for n ~ 2 (compare O.1.(c)), as we 
shall see later on. In fact, we shall prove the h-principle for holomorphic maps 
X ---- Y = en - Z for all algebraic subvarieties Z c en of codimension ~ 2 . 
0.5. Elliptic spaces and sprays. Intuitively, a space Y is elliptic if it contains 
"sufficiently many" e-lines that are holomorphic maps e ---- Y. Here is an 
instance of an elliptic property that insures "many" maps eN ---- Y . 

O.S.A. Spray spaces. Loosely speaking, an (N-dimensional) spray s over Y 
is a holomorphic family of hoi om orphic maps Sy : eN ---- Y such that Sy(O) = Y 
for all y E Y. More precisely, we have an (N-dimensional) vector bundle 
p : E ---- Y and a holomorphic map s : E ---- Y which is the identity on the zero 
section Y c E. Thus s = {Sy : Ey ____ Y} for the fibers Ey = p-l(y) (= eN). 
Call s dominating at y E Y if the differential of Sy : Ey ---- Y at 0 E Ey is 
a surjection Ey ---- Ty(Y). A spray is called dominating if it dominates at all 
points y E Y. 
O.S.B. Examples. (i) Suppose there are N one-parameter groups of biholo-
morphisms of Y denoted (t, y) ---- tioy for (t, y) E ex Y and i = 1, ... , N. 
If the vector fields on Y corresponding to these groups span the tangent bundle 
T(Y), then the composed spray s: Y x eN ---- Y defined by s(y, tl ' ... , tN) = 
t 1 0 t2 0 ... 0 t N 0 Y dominates everywhere on Y. 

(ii) The above construction provides dominating sprays for the complex Lie 
groups G (where one could also use s = exp: T( G) ---- G) and over the G-
homogeneous spaces. 

(iii) Here is a more interesting example (compare O.4.B). Let A c en be 
an algebraic subset of codimension ~ 2, and observe that for every linear 
map I: en ____ en- I , there exists a nonzero polynomial a on en- I such that 
10 alA = O. Denote by o{ a nonzero constant vector field on en parallel to the 
line Ker I c en , and observe that the field 0: = ao{ preserves Y = en - A and 
integrates to a one-parameter group. It is clear that there exist finitely many 
linear maps Ii such that the fields 0; span the tangent bundle of Y and thus 
provide a dominating spray over Y ~ en - A . 

(iv) Let Y be an algebraic manifold which is obtained from epn by a 
sequence of blow-ups along nonsingular subvarieties. Such a Y does not usually 
carry regular vector fields, and the group of biholomorphisms of Y is trivial. 
Yet there exist meromorphic fields which provide a dominating spray s: E = 
ffi;':1 H-mj ---- Y, where H is an ample line bundle over Y and m i are (large) 
positive integers. As in the previous example, the construction of s is purely 
algebraic (see 3.5) and makes sense over an arbitrary field in place of e. 
0.6. Main h-principle. Let X be Stein and Y admit a dominating spray. Then 
every continuous map X ---- Y is homotopic to a holomorphic one. Moreover, 
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the inclusion between the spaces of maps Rolo(X, Y) c Cont(X, Y) is a weak 
homotopy equivalence, that is, the induced homomorphisms on the homotopy 
groups are bijective. 

We prove this in §§2 and 4 along with a more general h-principle for elliptic 
fiber bundles over X. The idea of the proof is roughly as follows. Cover X 
by small convex neighborhoods Xp , and take a collection of holomorphic maps 
fp: Xp ~ Y. These maps do not have to agree on the intersections XpnXy and 
need not define any global map X ~ Y. In order to make the maps fp agree, 
we modify them using our spray x: E ~ Y. An individual modification of 
fp , called an s-deformation, is determined by a section, say 0: p , of the induced 
bundle f; (E) ~ Xp , and is defined as the composition of the following three 
maps, Xp ~n# f;(E) ~ E ~s Y, where the middle arrow is the tautological 
map. By applying appropriate s-deformations to fp , we are able to obtain new 
local maps, say .t;: Up ~ Y , which agree on the intersections Up n Uy and for 
which the resulting global map I : X ~ Y belongs to a given homotopy class. 

Remark. Our s-deformation process is similar to what was done in the original 
papers [Gra2l and [Ca2l while the arrangement of Up follows an idea in [R-Ll 
and uses a positive proper convex function on X. 

0.7. Essential applications of the h-principle. With the help of the h-principle, 
one reduces the study of the space Holo(X, Y) to that of Cont(X, Y), where 
many topological techniques are available. In particular, the following topolog-
ical property of X becomes very useful. 

O.7.A. Lefschetz Theorem. Every Stein manifold X has homotopy type of an 
n-dimensional polyhedron for n = dime X = ! dimR X . 
Sketch of the proof. The index of a critical point of a convex function on X 
does not exceed n by an elementary linear algebraic argument. Then the result 
follows by the Morse theory applied to a generic proper positive convex function 
on X. 

O.7.A'. Corollary. If Y is k-connected, that is, the homotopy groups 7r i (Y) 
vanish for i ~ k, then the space Holo(X, Y) is (k - n)-connected provided the 
h-principle applies. 

O.7.A". Example. Take Y = CN - A for an algebraic subset A of dimension 
m. Then, obviously, Y is k-connected for k = 2N - 2m - 2. If m ~ N - 2, 
the h-principle does apply and so the space Holo(X, Y) is (2N - 2m - 2 - n)-
connected. 

O.7.B. One can take an opposite point of view and regard the h-principle as 
a tool to express topological information on X in holomorphic terms. For ex-
ample, the h-principle for holomorphic maps X ~ C X provides the following 
description of the first cohomology group HI (X; Z) in terms of the algebra A 
of holomorphic functions a on X. Denote by A x c A the multiplicative sub-
group of inevitable elements in A, and notice that A x consists of holomorphic 
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maps a : X -> eX . The exponential map exp: A -> A X sends A onto the set 
of those maps X -> eX which lift to the universal covering e of eX mapped 
to eX by z -> expz. Hence 

AX / expA = no(Holo(X, eX)). 

If X is Stein, one can substitute" Cont" for" Holo" and then identify no 
with HI (X , Z). Thus 

I X H (X, Z) = A / expA. 
This observation is due to Arens and Royden [Ar, Roy] who proved the 

following version of (*) for an arbitrary Banach algebra B of functions on 
a compact space S such that S = Spec B. Here Spec B denotes the set of 
nonzero homomorphisms B -> e , and the equality sign refers to bijectivity of 
the evaluation map S -> Spec, where each s goes to h: B -> e defined by 
h(b) = b(s). 

O.7.B/. Theorem. The tech cohomology of S = Spec B satisfies 
~I X 

( ** ) H (S; Z) = B / exp B . 
Sketch of the proof. If B is generated by finitely many elements, say by b l ' ••• , 

bn, then these bi : S -> e embed S into en. The embedding property follows 
from the equality S = Spec B which also shows that the image of the embed-
ding, say Seen , admits a basis of neighborhoods U:::) S in en which are 
Stein and whose function algebras approximate B in an appropriate sense. 

Thus one deduces (**) from (*) applied to the algebra of holomorphic func-
tions on U, for all Stein neighborhoods U of S. Finally, one takes care of 
infinitely generated algebras by using a simple limit argument. 

O.7.B". The above theorem was generalized by Eidlin [Eid] (also see [No]) 
who gave a similar formula for jf<>dd(S)/Torsion and ileVen(S)/Torsion using 
holomorphic maps into GLoo and Grk(eOO ) for k -> 00. (The author first 
learned about Grauert's theorem from Eidlin in this context.) Yet no such 
formula is known for iii for i:::: 3. (For i = 2, one can use maps to Cpoo .) 
The difficulty stems from the following. 
Problem. Does there exist an elliptic space Y which is homotopy equivalent 
to a given compact polyhedron? Here "elliptic" signifies the validity of the 
h-principle of holomorphic maps X -> Y for all Stein manifolds X. 

Example. If we want to take hold of Hi (X; Z) , we need an elliptic space of 
homotopy type of (a finite skeleton of) the Eilenberg-Mac Lane space K(Z, i). 
If i is odd, say i = 2m - 1 , then a promising candidate is the symmetric 
product Yk = Skyo for Yo = em - {O} and large k -> 00. 

Unfortunately, Yk is singular for m :::: 2 and k :::: 2, and we cannot prove 
the desired ellipticity by our methods. 

Remark. It seems one can give a "holomorphic formula" for Hi by developing 
a kind of analytic etale cohomology theory. 
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Let US look at the structure of the paper. Our proof follows the usual route 
of soft nonlinear analysis, where the major problem is to keep track of domains 
of definitions of various maps and sections and a uniform control on certain 
norms of these sections. An abstract language for this purpose is suggested in 
[Gro], and a systematic use of that kind of formalism would have significantly 
shortened the length of the present exposition. We take here a less formal 
approach and do not state our theorems immediately in the most general form 
but show how these slowly develop from special key cases. On the other hand, 
we sometimes go into the anatomy of technical lemmas when we feel this may 
clarify the matter and be useful for future applications (such as indicated in 5.4). 
For a similar reason, we discuss in § 3 various generalizations and modifications 
of the idea of ellipticity without proving (or even stating) any theorem. 

1. BASIC PROPERTIES OF S-DEFORMATION 

From now on, we adopt the fiber bundles point of view, and we fix our 
fibration, that is, a holomorphic map h: Z -> X. We deal exclusively with 
vertical sprays s: E -> Z , where each fiber E z of E is mapped by s to a 
single fiber of Z -> X. In other words, h(e) = h(p(e)) for all e E E, where 
p : E -> Z denotes the implied projection of the vector bundle E over Z . 

1.1. s-Homotopies and fiber dominating sprays. A point z' E Z is called an 
s-deformation of Z E Z if it is contained in the image s(EJ C Z. Two 
points Z and z' are called s-homotopic if there exist intermediate points, say 
Zo = Z, ZI' Z2' ••• , z/ = z', such that Zj+1 is an s-deformation of Zj for 
i=O,I, ... ,I-I. 

1. LA. Proposition (Compare St2 in 0.2). Let fa: X -> Z be a holomorphic 
section, {Xj} eX, j = 1, 2, ... , a discrete subset, and let z~ E Z be s-
homotopic to Zj = fa(x) for j = 1, 2, .... If X is Stein, then there exists a 
holomorphic section f: X -> Z homotopic to fa, such that f(x) = z~ for all 
j. 
Proof. The s-homotopy of {z j} to {z~} can be achieved by a sequence of s-
deformations moving only one point at a time. We denote the result of the kth 
move by {Zj ,k}' let j(k) denote the (single) index for which Zj, k+1 =I- Zj, k ' 
and assume that j(k) is monotone in k = 0, 1, .... Suppose we have already 
constructed a section h: X -> Z such that h(x) = Zj,k' Since Zj,k+1 is 
an s-deformation of z· k ' there exists (by basic properties of vector bundles 

j, 

over Stein manifolds, see [G-R] and 1.1.A' below) a section cxk of the bundle 
p: E -> Z restricted to h(X) c Z, say cxk : X -> Ek = Elfk(X), such that 

(i) so cxk(x) = Zj,k+1 for j = j(k), 
(ii) cxk(x) = 0 for j =I- j(k), 

(iii) IIcxklll Xk S rk , 

where Xk c X are some compact subsets exhausting X and II II is a fixed 
norm in the bundle E -> Z . 

Now we take h+1 = s 0 cxk and f = limk -+oo h. Q.E.D. 
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loLA'. Remark. If the subset {xj } C X is finite, then (iii) above is redundant. 
The only property of vector bundles over X we need in this case is the existence 
of a holomorphic section a with prescribed values at the points x j • 

1.I.B. Submersions, vertical bundles, and sprays. Let us assume that h : Z --> 

X is a submersion, that is, the differential of h is everywhere surjective. In 
this case, the fibers h-I(x) C Z are smooth analytic sub manifolds in Z for all 
x EX. A vertical spray s : E --> Z is called fiber dominating if the differential 
of s at 0 E E z sends Ez (or rather To(Ez )) onto the tangent space of the 
fiber of Z through z for all z E Z. For fiber dominating sprays, the s-
homotopy obviously reduces to the fiber homotopy. Namely, points z and z' 
are s-homotopic if and only if they lie in the same connected component of a 
fiber of Z --> X. For example, if the fibers of Z --> Z are connected, then by 
1.I.A every section can be homotoped to another which takes given values on 
the set {x) eX. In particular, if Z = X x Y --> X and sections X --> Z 
correspond to maps X --> Y, one can start with a constant map fa and then 
get a holomorphic map I assuming given values on {xj }. 

1. loB'. Notations VT(Z) and Ds(O). The first is the vertical (or fiberwise) 
tangent bundle of h : Z --> X , that is, the kernel of the differential of h, 

VT(Z) = Ker Dh c T(Z) . 
The fiberwise property of s implies that the differential of s on the zero 

section Z c E sends E c T(E) I Z to VT(Z) c T(Z). This is denoted by 
D = Ds = Ds(O) : E --> VT(Z). 

Now the domination condition can be expressed by saying D is surjective. 

1.2. Homotopies and s-homotopies over compact subsets. An s-deformation of 
a holomorphic section fa : Xo --> Z , where Xo c X is a complex sub manifold, 
is defined as a map I: XO --> Z of the form I = s 0 a o for some holomorphic 
section ao of the fibration Elfa(X,o) over Xo = fa(Xo) c Z . Then I and r 
are called s-homotopic if there exi~t sections fa = I, 1; , ... , 1; = r such that 
1;+ I is an s-deformation of 1; for i = 0, ... , I - I . 

1.2.A. Let Xo c X be an open rdatively compact subset and I and r holo-
morphic sections of ZIXo. Let XI C X be a larger open subset containing 
the closure of Xo' and suppose I and r extend to holomorphic sections F 
and F' of ZIX I which are homotopic over XI by a homotopy of holomorphic 
section of ZIXI • Using such homotopy, we want to produce an s-homotopy 
between I and r in the case where h : Z --> X is a submersion and the spray 
s is fiber dominating, that is, the differential D = Ds(O) : E --> VT(Z) is a 
surjective homomorphism (compare 1. loB'). To clarify the ideas, we start with 
the following stronger assumption on D. 

1.2.A'. II D is bijective, then I and rare s-homotopic. 
Proof. Since D is bijective, the map s restricted to E J = EII(Xo) is a biholo-
morphism of some neighborhood of the zero section of E J onto a neighborhood 
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of f(Xo) c Z . It obviously follows that the map 0: f-+ so 0: is a bijection of the 
space of small holomorphic sections 0: of Elf(Xo) onto a neighborhood of f 
in the space of sections Xo -+ Z with the uniform topology. In other words, 
every small deformation of f is an s-deformation. Now we prove our assertion 
by dividing the homotopy between F and F' over Xl into sufficiently small 
steps which are reducible over Xo to s-deformations. 

1.2.A". Remark. "Division" of a deformation Ft , t E [0, 1], means a division 
of [0,1] into smaller intervals, say into [ti' ti+ l ], i = 1, ... , k. Then our 
s-homotopy is uniquely determined by sections O:i of E restricted to Ft (Xo) c 
Z. If the intervals [ti+ l , til are sufficiently small, then O:i is obtained as the 
unique small solution of the equation so O:i = Ft over XO' 

HI 

Notice that this O:i = O:i(Ft) depends continuously on Ft' 

1.2.B. Now we turn to the general case, where the homomorphism D = Ds : E 
-+ VT(Z) is assumed surjective but not necessarily bijective. 

If Xl (containing the closure of Xo eX) is Stein, then f and rare s-
homotopic over Xo' 

Proof. The easiest case is where the manifold Z is Stein. Then every surjective 
homomorphism over Z admits a right inverse (see [G-R]). In particular, there 
exists a holomorphic homomorphism 0: VT(Z) -+ E (inverting D) such that 
Doo = Id I VT(Z) , and our claim follows from 1.2.A' applied to s restricted 
to the image of 0 . 

In the general case where Xl rather than Z is assumed Stein, we may still 
construct 0 over Xl = F(Xl ) c Z. Moreover, if Ft is a homotopy of holo-
morphic sections over Xl between F and a, we can find (according to the 
standard theory of Stein manifolds) a continuous family of holomorphic homo-
morphisms, say 0t: ~ -+ Et ,where ~ denotes the restriction of the bundle 
VT(Z) to Xl = ~(Xl) C Z, i.e., ~ = VT(Z)!Ft(Xl ) and Et = VT(Z)I~(Xl) 
such that Do 0t = Id over Ft(Xl ) for all t. The existence of 0t implies that 
every small deformation of 1; = FtlXo is an s-deformation, and then by di-
viding the homotopy ~ into small steps as in 1.2.A', we construct the desired 
s-homotopy between f and r . 
1.2.B'. Remark. The essential ingredient of the above discussion is an implicit 
function theorem which allows us to pass from surjectivity (or bijectivity) of Ds 
to that of the map 0: f-+ sao: between pertinent spaces of sections. Let us indicate 
a more general implicit function theorem of this type for holomorphic fiber 
preserving maps a: Z -+ Z between submersions Z -+ X and Z -+ X. We 
consider holomorphic sections fa : X -+ Z and 10: X -+ Z , where 10 = ao 10 ' 
and we ask ourselves whether a small perturbation f of fa can be covered by 
a section j of Z close to fa. Here is an answer for Stein manifolds X. 

1.2.B". Let X be Stein, the map a a submersion, and take an open relatively 
compact subset Y eX. Then there exists a neighborhood Qo of fa in the 
space of holomorphic sections X -+ Z such that every f E Qo can be covered 
by a holomorphic section j of Z over Y. That is, j is a section Y -+ Z 
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such that a 0 io = fl Y. Moreover, one can choose j continuously (and even 
holomorphically) depending on f E no . 

The proof follows from the standard theory of Stein manifolds which shows 
that the map between the pertinent function spaces induced by a, that is, 
j --+ f = a 0 io, is a submersion in an appropriate sense. Then an implicit 
function argument delivers a section j satisfying a 0 io = fl Y . 
1.3. Composed bundles and sprays. Consider the holomorphic vector bundles 
PI: EI --+ Y and Pz: Ez --+ E I , and let Pz = PI opz : Ez --+ Y. This composed 
bundle Ez --+ Y does not have any canonical vector bundle structure (though it 
can often be given one; see 1.3.A' below). This remark suggests the following. 
l.3.A. Definition. A composed bundle over Y is a holomorphic fibration 
p: E --+ Y with a given decomposition p = PI 0 Pz 0 ••• 0 h for some vec-
tor bundles PI : EI --+ Y, Pz: Ez --+ EI ' ... , Pk: Ek = E --+ Ek_1 • 

1.3.A'. If Y is Stein, then every composed bundle E over Y admits a holo-
morphic vector bundle structure. 

This follows from the standard Stein theory which, in fact, provides a vector 
bundle structure which agrees in a natural way with the partial linear structure 
in E (this aspect is not relevant for the moment). 
1.3.B. Composed sprays. Consider two sprays over Z , say (EI' PI ' Sl) and 
(Ez' PZ ' sz) , and define the composed spray (E = EI *Ez ' p = PI *pz ' S = Sl *sz) 
as follows. 

E = {(e l ' ez) EEl x Ezi Sl (e l ) = pz(ez)}· 
In other words, E is the total space of the fibration s~(Ez) --+ EI induced 

by s I from Pz : Ez --+ Z . 
Next we define 

and 
Sl * sz(el ' ez) = Sl (ez)· 

Notice that the fiber E z is the total space of a vector bundle over a vector 
space. But E z is not a vector space although it is (noncanonically!) biholomor-
phic to one. Thus, in general, the composed bundle p : E --+ Z is not a vector 
bundle. However, according to 1.3.A', the restriction of E to any Stein sub-
manifold Y c Z does carry a structure of a vector bundle. In fact, this bundle 
is isomorphic to the Whitney sum EI EEl EzIY, where the implied isomorphism 
EI *Ez f-+ EI EElEz agrees with the partial linear structure and the decomposition 
inEI*Ez · 

1.3.C. Composition of deformation. Let (E(k) , p(k) ,e(k)) denote the com-
position of k copies of a given spray s over Z. Then an s-homotopy be-
tween sections divided into k s-deformations becomes an s(k)-deformation in 
a canonical (and obvious) way. 

1.3.D. Let us define the infinite composition E(oo) by embedding each E(k) 
to E(k+I) by the zero section and then by taking the union E oo = U::I E(k) . 
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This space is similar to the space of piecewise geodesic paths in a Riemannian 
manifold, and our lemma in 1.2.B furnishes a holomorphic version of the ho-
motopy lifting (Serre fibration) property of p(oo) : E(oo) ---+ Z over relatively 
compact subsets Xo eX. 

Question. Let X be Stein and s dominating (as in 1.2.B). Does p(oo) : E(oo) ---+ 

Z satisfy the holomorphic homotopy lifting property over X? That is, let 
1; : X ---+ Z, t E [0, 1], be a homotopy of holomorphic sections. Then are fa 
and 1; s-homotopic? 

We shall see in 3.S.G that this question has some points in common with 
the celebrated conjecture by Serre (solved by Suslin and Quillen) concerning 
projective moduli over the rings of polynomials. 

1.4. Runge approximation property. A fibration E ---+ X is called Runge over 
an open subset U eX, or, equivalently, U is called Runge for (sections 
of) E if every holomorphic section U ---+ E admits an approximate holo-
morphic extension to all of X. That is, the image of the restriction map 
Holo(X, E) ---+ Holo( U ,E) has dense image in Holo( U ,E) for the topology 
of uniform convergence on compact subsets in U. Here are some examples. 

l.4.A. Classical Runge Theorem. An open subset U c C is Runge for holo-
morphic functions if and only if C - U is connected (see [G-R]). 

This generalizes to higher dimensions with the notion of a (globally) C-convex 
subset as follows. 

l.4.A'. Runge for convex subsets in Stein manifolds. Let p: X ---+ R be a 
convex (see 0.3) function. Then the (level) subsets Xl = {x E X I p(x) < t} 
are Runge for all vector bundles (and hence for composed bundles) over X (see 
[G-R]). 

Another standard fact reads 

l.4.B. If X and U are both Stein, then the Runge property for functions X ---+ C 
is equivalent to that for sections of every vector bundle (and hence every composed 
bundle) over X. In fact, if we assume only U is Stein, then Runge for func-
tions implies that for sections of a vector bundle E ---+ X provided there exist 
holomorphic sections hi: X ---+ E, i = 1, ... , k which span the fiber Ex for 
all x E U. To see this, we view h = (hi' ... ,hk ) as a homomorphism of the 
trivial bundle of rank k to E. Since h is surjective over U, it admits a right 
inverse for U Stein (see [G-R]) and our claim follows. (Notice that if X is 
Stein, there exists such a surjective h over all X; see [G-R].) 

1.4.C. h-Runge property. The h-Runge (h for homotopy) property claims that 
the approximate extension of sections from U to X ~ U is invariant under 
homotopies of sections. Namely, if some holomorphic section fa over U holo-
morphically extends to a section 10 on X and if 1; can be joined with fa by 
a homotopy of holomorphic sections over U, then 1; can be approximated by 
holomorphic sections f which extend to holomorphic sections J on X and 
which can be joined with 10 by homotopies of holomorphic sections. Notice 
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that "h-Runge" is equivalent to "Runge" if the implied fibration is a vector 
bundle, and so any two sections are homotopic. 

l.4.C'. Runge for compact subsets. It is often more convenient to work with 
compact rather than open subsets in X. Given such a subset C eX, a holo-
morphic section over C (or near C) refers to a section defined in a (small) 
neighborhood U:J C in X. Two sections are called close if their restrictions 
to C are close in the uniform topology. With these preliminaries, we can speak 
of the Runge property for C eX. We also speak about h-Runge for C with 
the following additional convention: a homotopy of section over (i.e., near) C 
refers to sections 1; defined on afixed (independent of t) neighborhood U of 
C , and 1; is continuous in t for the usual topology in the space of sections 
on U (compare 1.5). Notice that the Runge and the h-Runge properties for an 
open subset U c X follow from those for compact subsets Ci eX, i = 1 , ... , 
such that U~I Ci = U. 

l.4.D. Theorem. Let Z -t X be a submersion with a spray s: E -t Z , and 
let C C X be a compact subset which is h-Runge for the composed bundles over 
X. Then C is h-Runge for Z provided one of the following two conditions is 
satisfied. 

(1) The differential D = D/O) of s (at the zero section) is an isomorphism 
E -t VT(Z) (compare 1.2.A'.). 

(2) D is surjective (i.e., s is fiber dominating), and C admits arbitrarily 
small Stein neighborhood U :J C in X (i.e., C admits a basis of Stein 
neighborhoods in X). 

Proof. We know in both cases that homotopy of sections over C implies s-
homotopy (see 1.2). Namely, if 1; is homotopic to fo over C, then 1; = 
S(k) 0 a, where a = (ai' ... ,ak ) is a section of the composed bundle E(k) 

restricted to foe U) for a small U :J C. In the first case, a depends continuously 
on the implied homotopy 1; by 1.2.A". Hence a is homotopic to the zero 
section (as 1; can be deformed to the constant homotopy 1; = fo by sending 
[0, 1] -t [0, 1 - r] and by moving r from 0 to 1), and the h-Runge for E(k) 

over fo(X) gives us an approximate extension a of a to X = fo(X). Then 
the composition s(k) 0 a provides the required approximate extension of 1; to 
X. 

In the second case, the section a is not unique (see 1.2.B), but as U is Stein, 
the composed bundle E(k) over foe U) admits a vector bundle structure, and 
a is homotopic to the zero section anyway. Therefore, the h-Runge for E(k) 

over fo(X) implies that for Z. Q.E.D. 

l.4.D'. Example. Let Y be a manifold with a dominating spray, let X be 
Stein, and Xo C X be an open globally C-convex (in the sense of 1.4.A') sub-
set which is also holomorphically contractible (see 2.1). For example, all these 
conditions are satisfied if X = en and Xo is R-convex (i.e., convex in the 
usual sense). Then every holomorphic map fo: Xo -t Y is holomorphically 
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contractible, and therefore, fa can be approximated by holomorphic maps ex-
tendable to X. In fact, Xo is Runge for vector bundles (see 1.4.A\ and so 
l.4.D applies. 

l.4.E. Remark. Let us indicate another version of the above argument which 
avoids composed bundles. First, we notice that the h-Runge property is an 
approximate version of the homotopy lifting property for the restriction map 

Holo(X, Z) -> Holo(&'.9 A, Z), 

where &'.9 stands for an "arbitrarily small neighborhood of" (compare 1.5). 
A well-known and obvious argument allows a localization of lifts as follows. 

Every path J; in Holo(&'.9 A, Z) is divided into (arbitrarily) small pieces by 
partitioning the interval [0, 1] into k + I equal pieces by tj = jlk , for j = 
0, ... , k , and large k. Then an arbitrarily small perturbation of J; lifts to a 
path 1; in Holo(X, Z) by induction on j as follows. We assume the existence 
of an approximate lift 1; for t E [0, t) , where 1;1&'.9 A is arbitrarily close to 
J; , and then we invoke our spray over X = Xj = J;. (X). Since the interval 

} 

[tj' tj+l ] is small and 1;1&'.9 A is close to J;, one can lift the homotopy J; 
} } 

for t E [tj' tj+d to E j = EIXj . Namely, there exists a homotopy of sections 
at : Xj -> E j for t E [tj' tj+d, such that so at = J; and where the sections at 
are close to the zero section &'.9 A -> Ej • Then the Runge property of Ej allows 
an approximate extension of at which yields the inductive step j => j + 1 . 

1.4.E'. Partial sprays controlled on A. The above argument uses the spray s 
only over f(X) c Z for pertinent holomorphic sections f: X -> Z. These 
partial sprays must dominate Z over &'.9 A, and "the quality of domination" 
must be uniform as J approaches f on A. In other words, the spray over 
1(&'.9 A) must be "controlled" by the behavior of J on A in order to insure 
the existence of e > 0 depending on J; but not on 1;. such that the above at 

} 

exists over the interval [tj' tj +e] E t. With these provisions, one can make the 
induction work for k > e -I . (We invite the reader to furnish precise definitions 
and proofs.) 

1.4.E". On removing the control condition. It seems plausible that the con-
trol condition is unneeded if one allows base change. That is, for every Stein 
manifold X' holomorphically mapped into Z, one requires the existence of 
a vector bundle E' -> X' and of a dominating spray E' -> Z over X' -> Z . 
This property (for the trivial bundle Z = X x Y -> X) is called Ell I in [Gro] 
where the Runge property is stated in Exercises (d), (e), and (e') in [Gro, p. 72]. 
As we could not solve these, we call them now conjectures rather than exercises. 

1.4.F. Lifts of homotopies to sprays. One can go around the control problem 
by using composed sprays as follows. Consider a holomorphic section Fo : X-> 
Z and a homotopy of Fo over C that is a homotopy of holomorphic sections 
J; : &'.9C -> Z such that fa = Fol&'.9C. We say that J; can be lifted to a 
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spray over X (compare 1.3.D) if there exist a vector bundle E --+ X and a 
holomorphic map F: E --+ Z with the following three properties 

1. F equals Fo on the zero section Xo = X c E . 
2. F sends fibers of E to those of Z . 
3. There exists a homotopy of holomorphic sections 1; : &.9C --+ E such 

that in = 0 and F 0 1; = 1; . 
One can slightly generalize this definition by allowing composed bundles E . 

Or one can be more restrictive and insist on trivial bundles E = X X eN --+ X . 
However, these modifications do not affect our applications where X is a Stein 
manifold, and one can easily pass from one class of bundles to another. 

1.4.F'. Using the above definition, the proof of the h-Runge Theorem can be 
divided into two steps. 

Step 1. Lifting 1; to some E over X. This is accomplished in §§ 1.2 and 
1.3 using a self-composition of a dominating spray over Z . 

Step 2. Descending the h-Runge property from E to Z. This step is com-
pletely trivial, but it is useful to have it separated from Step 1. 

1.5. eartan pairs. In what follows, we deal with holomorphic functions on a 
small non specified neighborhood U of a subset A eX, where U may become 
even smaller in the course of an argument. Such a small variable neighborhood 
is denoted by &.9 A c X and dealt with according to the obvious rules (see 
[Gro, p. 36]). Sometimes we speak of functions "near A" meaning functions 
on &.9A. 

1.5.A. Definition. A pair of compact subsets A and B in X is called Cartan, 
or a C -pair, if for every holomorphic function c near C = A n B there exist 
holomorphic functions a near A and b near B such that (a - b) I &.9C = c. 
We require, moreover, that a and b can be chosen in a sufficiently canonical 
manner. Namely, if ct is a continuous (holomorphic) family of sections, then 
the corresponding at and bt can be chosen continuous (holomorphic) in t. 
We also agree to take a = b = 0 whenever c = O. Since every function c is a 
member of the family tc for t E [0, 1], we can find a and b such that their 
Loo -norms are bounded by that of c. In fact, we require a and b to be such 
that lIalll &.9 A and IIblll &.9 A are bounded by const IIcll , where the constant 
depends only on A and B. 

1.5.A'. Cartan/or convex sets. It is well known that convexity of A and B 
implies Cartan's property (see [G-R]). We shall need this for globally convex 
sets (see 1.4.A') of the form {x E X I p(x) :::; const} for proper positive convex 
functions p on X, but Cartan's property holds even for locally convex subsets 
(which may be non-Runge). 

1.5.B. Consider a trivial fibration E' = X' X eN ---+ x' for X' = &.9 (A u B) c 
X. Let U c E' be a neighborhood of C = C x 0, and let rp: U --+ E' 
be a fiber preserving holomorphic map, i.e., rp(x', z) = (x' , If/(x' , z» for all 

, , N 
(x , z) E U C X xC. 
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I.S.C. Lemma. If (A, B) is a C-pair and rp is sufficiently close to the identity 
map U -> U c E', then there exist holomorphic sections a' : &91 A -> E' and 
p' : &91 B -> E' such that a' (C) C U and rp 0 a'l&g;C = P'I&g;C, where the 
required closeness of rp to Id depends on U as well as on A, B, and N. 
Proof. Start with the zero sections a~ near A and P~ near B and define cI 

near C by cI = rpoa~- p~. Now we invoke Definition l.S.A, write cI = al-bl ' 
and set 

a~ = a~ - a l and P; = P~ - b l . 

Then we define c2 = rp 0 a~ - P; and observe that the Loo -norm of c2 on &91 C 
is bounded by 

IICIII = IIrp 0 (a~ - a l ) - p~ + bIll = Ilrp 0 (a~ - al ) - p~ + a l - cI11 
= IIrp 0 (a~ - a l ) + a l - rp 0 a~1I ::; liD (0 - Id IllIalll + o(lIalll) , 

where the implied constant in o(lIalll) depends on IID~II over &g;C. When rp 
is close to Id, the same is true for the differentials D (0 and D~ (on a smaller 
neighborhood), and since Ilalll ::; const Ilclll , we can get 

IIC2 11 ::; ()llclll , 
for an arbitrarily small () > 0 by choosing rp sufficiently close to the iden-
tity. The same estimate remains true if we continue the iteration process with , , , , 
a 2 , a 3 , '" , and P2 ' P3 ' •••• Namely, 

Ilci+1 = rp 0 a: - P;II ::; ()llcill 
for a small (), say () = !. Therefore, a~ and P; converge to the required a' 
and p' as i -> 00 . Q.E.D. 

l.S.C'. Control on Ila'll and IIP'II. It is clear from the proof that a' and p' 
can be made arbitrarily small by choosing rp sufficiently close to the identity. 
In other words, if rp -> Id, then a' and p' converge to zero. 

l.S.C". Remark. The implicit function argument used in the proof of l.S.C 
is standard and similar to Cartan's proof of the multiplicative decomposition 
lemma stated below. 

l.S.D. Multiplicative decomposition. The classical multiplicative Cartan lem-
ma claims the C -property for holomorphic maps into a complex Lie group G. 
Namely, if c: &g;C -> G is a map close to the identity, then there exist a and 
b defined on &91 A and &91 B , respectively, such that ab I &g;C = c. A slight 
adjustment of the proof of Lemma l.S.C provides a similar decomposition for 
rp. That is, rp = rpl 0 rp2' where rpl is defined on &g;(A x 0) c E' and rp2 
on &g;(B x 0) c E' . Notice that the role of G is played here by the (infinite 
dimensional) pseudogroup of biholomorphisms of E' . 

One arrives at another instance of Cartan's lemma if one takes a complex 
subvariety X' C E' and takes for G the group of germs of biholomorphisms 
of &91 X' c E fixing X' . 
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1.6. Gluing sections over eartan pairs. Let us return to our submersion Z -+ X 
with a dominating spray s: E -+ Z, and let (A, B, C = A n B) be a C-pair 
in X. Consider holomorphic sections 0 0 : &.9 A -+ Z and Po: &.9 B -+ Z 
whose restrictions to &.9C are mutually close (this is made more precise later 
on), and try to construct s-deformations 0 of 0 0 and P of Po which are 
equal on &.9C, 

( * ) ol&.9C = PI&.9C . 

1.6.A. To make the ideas clear, we start with the case where 
(i) the bundle E over Z is trivial, say E = Z x em -+ Z ; 

(ii) dim VT(Z) = dimE. 
Since s is dominating, condition (ii) implies 

(ii)' the differential of the spray s: E -+ Z at the zero section of E is an 
isomorphism of E onto the vertical tangent bundle VT(Z) of Z -+ X. 

Next we consider the restrictions of E = Z x em to 0 0 (&.9 A) c Z and to 
Po (&.9 A) and thus get two trivial bundles, say 

E; = (&.9 A) x em -+ &.9 A = 0 0(&.9 A) 

and 
E~ = (&.9 B) x em -+ &.9 B = Po (&.9 B). 

We denote by Sl and S2 the restriction of s to these bundles and observe with 
(ii)' that these maps Sl : E; -+ Z and S2: E; -+ Z are bijective near their 
respective zero sections &.9 A -+ E; and &.9 B -+ E;. Now we invoke our 
condition of 0 0 being close to Po on &.9C c &.9 An &.9 B , which makes SI 
and S2 close over &.9 C. This means the maps S I and S2 are close on some 
neighborhood Uo c &.9C x em of C = C x 0 c &.9C x em . We may assume 
that S I and s2 are biholomorphisms on Uo and that there exists a smaller 
neighborhood U c Uo of C c U o such that 

S2(C) C SI (U) c S2(UO)' 

(The existence of U just needs SI and S2 to be close on Uo' which is achieved 
by assuming 0 0 and Po are sufficiently close on &.9C). Finally, we apply 
1.5.C to the trivial bundle E' = &.9(A x B) x em ~ &.9C x em ~ Uo and 
qJ = S;I 0 SI : U -+ Uo C E', thus obtaining sections 0 ' : &.9 A -+ E; C E' 
and p': &.9 B -+ E; c E satisfying p' = qJ 0 0 ' near C. Hence, S2 0 p' = 

I -I I I h' h . 1 h . d S2 0 qJ 00 = S2 0 S2 0 SI 00 = SI 00 , W IC IS exact y t e requIre agreement 
of 0 = SI 00' and P = S2 0 p' near C. Q.E.D. 

1.6.B. Here we still assume E is trivial, E = Z x em -+ Z , but we drop the 
assumption dim VT(Z) = dimE. Now we want to define qJ as a solution to 
the equation 

( **) S2 0 qJ = S I on Uo· 
Since S is dominating, the maps SI and S2 are submersions Uo -+ Z which are 
close to one another as we assume 0 0 and Po to be close on &.9C. Therefore, 
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(**) is solvable on a slightly smaller neighborhood V of C c Vo provided Vo 
is a Stein manifold (see 1.2.B"). Then with such a rp, the proof goes along as 
in 1.6.A. 

To complete the discussion, we notice that we have a great deal of freedom 
in choosing the neighborhood Vo of C = C x 0 c &'.9C x em . In particular, 
if &'.9C c X is Stein (i.e., if C c X admits an arbitrarily small Stein neigh-
borhood &'.9C eX), then one clearly can choose Vo Stein also. Thus the 
required s-deformations a and P do exist in the case where E -+ Z is trivial 
and &'.9C c X is Stein. 
1.6.C. Now we impose no triviality assumption on the bundle E -+ Z , and 
we try to replace E by a trivial bundle over a pertinent part of the space Z . 
Namely, we look for trivial bundles E; = &'.9 A x em -+ &'.9 A and E~ = 
&'.9B x em -+ &'.9B and holomorphic homomorphisms hi : E; -+ a~(E) = 
Elao(&'.9 A) and h2 : E~ -+ P; (E) = EIPo(&'.9 B) (where we identify &'.9 A = 
ao(&'.9 A) and &'.9 B = Po(&'.9 B)) such that hi and h2 are surjective over 
&'.9C and hi is close to h2 over &'.9C insofar as aD is close to Po over 
&'.9C. Let us give a list of conditions which is sufficient for the existence of 
hi and h2 • 

(i) &'.9C is Stein. In this case, there exist surjective homomorphisms of 
the trivial bundle &'.9C x em to Elao(&'.9C) and EIPo(&'.9C) which 
are mutually close. 

(ii) C satisfies the Runge condition (see 1.4.C) in &'.9 A ::J C for all vector 
bundles over &'.9 A , and the same Runge is satisfied by C c &'.9 B. This 
allows us to perturb the homomorphisms in (i) in order to make them 
extendible to required homomorphisms hi over &'.9 A and h2 over 
&'.9B. 

1.6.C'. Remark. Notice that in order to make the homomorphisms hi and h2 
close over &'.9C, it is enough to apply the Runge approximation only to one 
of them, say to h2 on &'.9 B . Thus the Runge requirement for &'.9C c &'.9 A 
can be relaxed to the following condition on the bundle Elao(&'.9 A) . 

(ii)' For every x E C and every vector e E E there exists a section g: &'.9 A 
-+ E such that g(x) = e. 

It is clear, that this, (ii)' together with Runge for &'.9 A ::J &'.9C serves as 
well as (ii). 

As soon as we have the homomorphisms hi and h2 at our disposal, we 
compose them with our spray and thus obtain maps s I : &'.9 A x em -+ Z and 
s2 : &'.9 B x em -+ Z which are submersions near &'.9C x o. Furthermore, 
these submersions are mutually close, and by the discussion in the previous 
section, they deliver the desired s-deformations of aD and po. 

Let us summarize the discussion in 1.6.A-1.6.C in the following. 
1.6.D. Lemma. Let (A, B) be a Cartan pair in X satisfying (i) and (ii) above 
(or (ii)' instead of(ii) ifone wishes) and Z -+ X be a submersion with afiberwise 
dominating spray s. Then any two sections a o : &'.9 A -+ Z and Po : &'.9 B -+ 

Z which are close over &'.9C can be s-deformed to sections a and P which are 
equal over &'.9C where the required closeness is made precise in the following. 
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1.6.0'. Remark. Let us fix some metric in Z . Then we can speak of e-close 
sections over a given subset in X for e 2: o. Now "close" above should be 
understood as " e-close," where e > 0 depends on the following data: 

(a) the fibrations Z -+ X, E -+ Z and the spray s: E -+ Z ; 
(b) the subsets A and B in X; 
(c) the behavior of a o and Po near C. This means for every compact 

set ~ of holomorphic sections of Z over &'.9C, there is an e > 0 
which serves all a o and Po whose restrictions to &'.9C are contained 
in ~, where we stick to the following convention concerning ~. All 
sections of ~ are defined on a fixed neighborhood of C, and then 
"compactness" refers to the usual topology in the space of sections on 
this neighborhood. 

1.6.0". Control on dist( a, a o) and dist(P, Po). These distances (over A 
and B) can be bounded from above in terms of e = distc(ao ' Po) on compact 
families of sections over A and B, respectively. Namely, let ~ be a compact 
set of holomorphic sections over A. Then distA(a, a o) 2: J = J(e, Ao) for 
all a o E Ao' where J -+ 0 for e -+ 0, and a similar property holds true for 
compact sets $0 of sections over B . Notice that the above J for a depends 
on ~ but not on $0. 

1.7. Gluing homotopic sections. Let us return to the starting point of 1.6 where 
we have two holomorphic sections a o : &'.9 A -+ Z and Po: &'.9 B -+ Z. 
Now instead of requiring a o and Po to be close on &'.9C, we assume there 
exists a homotopy ct of holomorphic section over &'.9C between a ol&'.9C 
and Pol&'.9C. Then we look for holomorphic homotopies at over &'.9 A and 
Pt over &'.9B which bring a o to a = a l and Po to P = PI such that 

al&'.9C = PI&'.9C . 

1.7.A. Lemma. Let A, B, Z, and the spray s be as in 1.6.D, and let us addi-
tionally assume that C = An B is h-Runge (see 1A.C) in &'.9 B for the fibration 
Z over &'.9 B. Then there exist homotopies at of a o and Pt of Po for which 
a = a I and P = PI agree on C, which means the above (*) on &'.9 C . 

Proof. By the h-Runge, one can bring Po by a homotopy to a section p~ whose 
restriction to &'.9 C c &'.9 B is as close to a o 1&'.9 C as one wishes. Then one 
can apply 1.6.0 to a o and p~, thus obtaining the required a and p. 

1. 7.B. Homotopy remark. Notice that the assumptions of the lemma contain 
homotopy cr between ao = a ol&'.9C and Po = Pol&'.9C , while the conclusion 
provides homotopies at and Pt whose restrictions to &'.9C are denoted at 

and Pt. Since a l = PI' we obtain a triangle of homotopies in the space of 
holomorphic sections &'.9C -+ Z. See Figure 1. This triangle is not a priori 
contractible. Yet it can be made contractible if one is careful with at and Pt ' 
and (a generalization of) this contractibility is important for our h-principle. On 
the other hand, the contractibility discussion can be avoided in many interesting 
cases as we shall see presently. 
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c/ 
ao t-------------fJ 710 

1.7.C. Control on lIa/1l and localization of the spray. Since we do not move 
ao while bringing PolC close to aolC, the needed perturbation of ao can be 
assumed arbitrarily small. In other words, we may claim in the conclusion of 
the lemma that at is as close to ao over A as we wish. In fact, it is useful at 
this point to recall that at = S 0 a~ , where a~ = (1 - t)a' for some section a' 
of Elao(&9' A), and that our bound applies to Ila'll. In other words, this a' 
can be chosen as small as we wish. 

Now since a' is small, we do not need much of our spray s: E ----> Z in 
order to define at = S 0 at. In fact, we need s only locally in an arbitrarily 
small neighborhood of the zero section of Elao(&9' A), and the existence of 
such a local s is automatic over Stein neighborhoods &9' A by the following 
standard. 

1.7.C'. Local Spray Lemma (compare 1.2.B"). Let Z ----> V be a submersion, 
where V is Stein, and let a: V ----> Z be a holomorphic section. Then there 
exists a neighborhood Eo of the zero section of the bundle E* = a*(VT(Z)) 
over V, that is, VT(Z)la(V), and a holomorphic map s: Eo ----> Z such that 
the differential of s on the zero section, say D: VT(Z) ----> VT(Z) over a(V), 
is the identity homomorphism. 
Proof. Since V is Stein, the identity map VT(Z) ----> VT(Z) over a(V) c Z 
extends to a holomorphic jet of infinite order, that is, a formal map E* ----> 

Z. Instead of proving convergence, we first extend this formal map to some 
nonholomorphic COO -map So : Eo ----> Z. Then again using the Stein property 
of V, we take some Hermitian norm lie II in the bundle E* ----> V of negative 
curvature, which means the convexity of the function lIell 2 on E* . Notice that 
this function is strictly convex away from the zero section, and the decay of 
convexity is bounded by a power of lIell. Then it is clear that the function 
z ...... IIs~ I (z) 112 is convex on Z near ao (V) C Z and strictly convex away from 
ao(V) . 

Now using this convex function, one can easily show that every compact 
convex subset A in V = ao( V) C Z is contained in some open convex subset 
in Z ,say Y C Z . As soon as one knows A admits a convex and, hence, Stein 
(see [Gra3]) neighborhood Y in Z, the construction of s is immediate over 
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A. For example, one can use the exponential spray of some affine connection in 
the (Z-fibers) n Y. (Affine connections are sections of affine bundles, and so 
their existence is no problem over Stein manifolds.) Finally, one can construct 
s over all of U by a simple "exhaustion by compact subsets" argument. We 
leave the details to the reader as we need s only over A anyway. 
1.7. e". Corollary. If &.9 A is Stein, then the conclusion of Lemma 1.7.A holds 
true if we assume only the existence of a dominating spray for Z 1&.9 B (without 
any assumptions on Z over &.9 A except submersivity). 

1.7.D. Remark. As we have seen in l.4.F, the role of dominating sprays re-
duces to lifting homotopies (to some composed sprays). In the present case, we 
need a lift of a specific homotopy, namely, clover &.9C (see the beginning of 
1.7), to some spray over &.9 B :::> &.9 C. Granted such a lift, the proof of the 
above corollary (as well as of Lemma 1.7.A) goes through with no additional 
spray condition on Z . 

2. THE H-PRINCIPLE FOR LOCALLY TRIVIAL FIBRATIONS 

Here the h-principle over A c X means the validity of the following prop-
erty: 

Every continuous section &.9 A -+ Z can be homotoped to a 
holomorphic section. 

Recall that &.9 A signifies a small nonspecified neighborhood of A eX. 
When we start the above homotopy, we can change &.9 and make it as small 
(but still open and containing A) as we wish. Yet, according to our convention, 
all sections in question (in particular, those constituting our homotopy) must 
be defined on a fixed &.9 A eX. 

In the following sections, we prove the h-principle over X = U:o Ai' where 
the h-principle is easy over Ao and where the passage from Ai to A i+1 = AiUBi 
is achieved with the gluing lemma of the previous section. Our argument is 
similar (but simpler) than that in [H-L], where the authors give a new proof of 
the original Grauert Theorem. 
2.1. The h-principle over small subsets. Let Z -+ X be a locally trivial fibra-
tion. Then a subset U c X is called small if Z is trivial over U, i.e., ZI U 
is biholomorphic to the trivial fibration Z 1 U = Zu x U -+ U . 

If U is small, then the h-principle over U is obviously valid if either U or 
the fiber Zu is C-contractible, which means a contracting homotopy of holo-
morphic self-mapping. For example, Cn is C-contractible as well as every star-
shaped subset in Cn • 

2.2. The h-principle over totally real submanifolds. A smooth submanifold Y 
c X is called totally real if the tangent subbundle T(Y) c T(X) contains 
no complex line, i.e., T(X) n JT(X) = O. If such a Y is real analytic and 
dimR Y = dimc Y, then the local geometry of Y in X depends only on 
Y. Namely, there exists a biholomorphism of a complexification CY :::> Y 
into &.9Y C X which is the identity on Y c CY. Therefore, holomorphic 
maps &.9Y -+ Z are in the one-to-one correspondence with real analytic maps 
Y -+Z. 
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One knows (see [Cad) that the h-principle is valid for real analytic maps. In 
fact, for an arbitrary submersion Z -+ X , every continuous section Y -+ Z can 
be approximated by real analytic ones. This yields the holomorphic h-principle 
over &.9 Y , as real analytic sections uniquely extend to holomorphic sections 
over &.9Y = CY by the very definition of CY :) Y. 
2.3. Local extension of the h-principle. A compact subset Al :) A in X is 
called a local extension of A if Al c Au B for some small compact subset 
B eX, where "small" signifies that the fibration Z in question is trivial over 
&.9' B eX. We say that such an extension is Cartan if (A, B) is a Cartan pair 
(see 1.5), and we recall that convexity of A and B is sufficient for the Cartan 
property. 
2.3.A. Local Extension Lemma. Let Al :) A be a local Cartan extension and 
B :) Al - A. Let the fiber Zx C Z, x E &.9' B , admit a dominating spray. Then 
in the following two cases the h-principle extends (as explained below) from A 
to Al c A UB. 

Case 1. The fiber Zx is C-contractible, e.g., Zx = Cn • 

Case 2. &.9' A is a homotopy retract in &.9' AI' and &.9'C for C = An B is 
C-contractible. 
2.3.A'. Explanation. The extension of the h-principle from A to Al refers 
to the following property: every continuous section of Z over &.9' Al that is 
holomorphic over &.9' A can be homotoped to a holomorphic section over &.9' AI. 

In fact, we shall prove below a stronger property, called Runge extension of 
the h-principle, where the implied homotopy can be made almost constant over 
A. In particular, the holomorphic section we obtain over Al can be assumed 
as close as we wish to the starting section over A. 

Proof. The dominating spray on Zx obviously induces a fiber dominating spray 
on ZI&.9'B. Then the homotopy gluing lemma (see 1.7.A and 1.7.C") gives us 
a pair of sections Q I ' PI which agree on &.9' C and where Q I is close to 
the original section on A. Thus we obtain the required section on A U B :) 
AI. Q.E.D. 

Notice that the Runge extension of the h-principle, which we have just proven, 
provides an approximate extension of holomorphic sections from &.9' A to 
&.9' AI' which is stronger than the h-Runge property for A C AI' since we 
do not assume beforehand the existence of any holomorphic sections over Al . 
Warning. One cannot extend the h-principle from A to A I using a holomor-
phic homotopy moving &.9' Al to &.9' A since no such homotopy, in general, 
exists. In fact, if U c X is a relatively compact open subset, then "almost all" 
holomorphic self-maps of U are contractible. 
2.3.B. A homotopy remark. To clarify the role of our assumptions, consider 
a more general situation where we want to extend the h-principle from A to 
Al = AuB assuming the validity of the h-principle over B, as well as the appli-
cability of the homotopy gluing lemma and corollary, 1.7.A and 1.7 .C". The h-
principles over A and B provide us with holomorphic sections Q o over &.9' A 
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and Po over &'.9 B in prescribed homotopy classes. Yet these h-principles do 
not insure the existence of a holomorphic homotopy between 0:0 1&'.9 C and 
Pol&'.9C (needed for the homotopy gluing lemma) though the existence of a 
homotopy by continuous section is immediate with our assumptions. The ad-
ditional conditions in Cases 1 and 2 ensure such a homotopy. 

Even if we can find the above holomorphic homotopy over &'.9C, we cannot 
be sure that the holomorphic section over &'.9 A I obtained with the gluing 
lemma is homotopic to the original continuous section. This problem does 
not arise, however, if the path triangle on Figure 1 is contractible in the space 
of continuous sections over &'.9C. For example, this triangle is necessarily 
contractible if &'.9C is contractible and the fiber Zx' x E &'.9C, is simply 
connected. 

Summing up the above discussion, we arrive at an extra case where the h-
principle does extend from A to A I = A U B . 

Case 3. The fibration Z satisfies the h-principle over B, the fiber Zx' x E 
&'.9C, is simply connected, and &'.9C is C-contractible. 
2.3.C. Remark on the role of the spray. According to the discussion in I.4.F, 
we do not need a dominating spray over Zx for the validity of Lemma 2.3.A but 
rather the following lifting property. For every holomorphic map Po: &'.9 B ~ 
Zx and every homotopy of holomorphic sections ct : &'.9C ~ Zx ' where Co = 
Po 1&'.9 C , there exists a lift of ct to some spray F: E ~ Zx ' where E ~ &'.9 B 
is some holomorphic vector bundle. 

2.4. Localizable extension. Consider a compact subset A eX, and say that X 
is a localizable Cartan extension of A if for an arbitrary covering A by open 
subsets Vj , j E J, there exists an increasing sequence of compact subsets 
Ao = A, Al ' A 2 , ••• , with the following three properties. 

(1) Localization. A i+1 C Ai UBi for some compact subset Bi which lies in 
a single open subset Vj for some j = j(i) E J. 

(2) Cartan. The pair (Ai' Bi), i = 0, 1, ... , is Cartan for an appropriate 
choice of the above (small) Bi • 

(3) Exhaustion. U:o Ai = X. 

2.4.A. Lemma [H-L]. Suppose there exists a proper smooth function p : X ~ 
R+ whose zero set equals A and which is strictly convex outside A. Then X is 
a localizable Cartan extension of A. Moreover, if p has no critical point outside 
A, then one can choose the implied Ai and Bi with the following additional 
properties: 

(4) &'.9 Ai is a homotopy retract in &'.9 Ai+1 :::) &'.9 Ai for all i. 
(5) &'.9Ci for Ci = Ai n Bi is C-contractible for all i. 

Proof. Start with the exhaustion of X by the level sets A; = p -I [0, t] eX, 
t ~ 0, and observe that all A; are compact convex (see 1.5.A') for t > 0 and 
the boundary {) A; is smooth for the noncritical levels. There obviously exists 
a perturbation of the sets A; by diffeomorphisms of X arbitrarily C2 -close 
to the identity which gives rise to a sequence Ai which satisfies (1) and (3) 
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as well as (4) and (5) in the noncritical case. Since C2 -small perturbations do 
not disturb convexity, these Ai can be assumed convex, and then with (small) , 
convex Bi , we have the Cartan property 1.5.A . 

2.4.A'. Corollary. Let Z -. X be a locally trivial fibration whose fiber admits 
a dominating spray. Then in the following two cases, the h-principle (Runge) 
extends from A = p-I(O) c X to all of x. 

( I ) The fibers of Z are e-contractible. 
(2) The function p has no critical points outside A eX. 

Proof. Lemma 2.3.A allows the Runge extension of the h-principle from Ai to 
A i+1 for all i = 0, 1, .... This gives us a sequence of holomorphic sections 
G. i : &.9 Ai -. Z which converge (because of Runge) on each Ai as i -. 00. 

Thus we obtain in the limit the desired holomorphic section over all X. 

2.5. The h-principle for em -bundles. Let Z -. X be a locally trivial fibration 
whose fiber is biholomorphic to em . 

2.5.A. Theorem. If X is Stein, then there exists a holomorphic section X -. Z . 
Proof. One applies (1) of 2.4.A' to some convex proper function p: X -. R+ 
with a single minimum point A = {a} = p -I (0) . 

2.5.B. Question. Does every em -bundle over a Stein manifold admit a vector 
bundle structure? 

2.5.C. Example. The simplest nontrivial case of Theorem 2.5.A is that of a 
flat fibration Z -. X coming from a holomorphic action of the fundamental 
group r = 1l"1 (X) on em. For such a Z, holomorphic sections X -. Z 
correspond to holomorphic r-equivariant maps of the universal covering i of 
X to em. For example, one can take an open Riemann surface for X (e.g., 
X = eX = e - {O}), where r is a free group and there is an abundance of 
holomorphic actions of r on em for m :::: 2 . 

2.6. Manifolds with totally real souls. Call a compact subset A c X a soul of 
X if there exists a proper function p : X -. R+ whose zero set {x E X I p(x) = 
O} equals A and such that p is convex and has no critical point outside A. 

2.6.A. Proposition. Let Z -. X be a locally trivial fibration whose fiber Zx' 
x EX, admits a dominating spray. If X admits a totally real analytic subman-
ifold A C X for a soul, then every continuous section X -. Z can be homotoped 
to a holomorphic section. 
Proof. The h-principle is valid over A by 2.2, and the extension to X is 
achieved with Case 2 of Lemma 2.3.A. 

2.6.B. Examples. (a) The circle SI = {x E q Ixl = 1} is a totally real soul in 
eX = e - {O}. 

(b) Every compact real analytic manifold A is a soul in same complexification 
X = eA:J A. 

(c) Let X be an open Riemann surface with finitely generated fundamental 
group and A C X a 1-dimensional subcomplex built of finitely many analytic 
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arks such that the natural (inclusion) homomorphism :n: I (A) ---+ :n: I (X) is an 
isomorphism. It is easy to see that A is a soul, and one can also show that 
every submersion Z ---+ X satisfies the h-principle over &'9' A (compare 2.2). 
Hence, the proof (and the conclusion) of 2.6.A applies to X. 

2.7. Totally real extensions. We say that Al :::> A is a totally real extension 
if Al = Au B , where B is a real analytic totally real submanifold. In our 
applications below, B is a (topological) ball of dimension k ~ dime X whose 
boundary sphere lies in A. 

Since B is totally real, the study of holomorphic sections &'9' B ---+ Z re-
duces to that of real analytic sections B ---+ Z (compare 2.2). In particular, we 
have the following obvious strengthening of the Runge property for an arbitrary 
submersion Z ---+ X . 

2.7.A. Lemma. Let bo : &'9' B ---+ Z be a continuous section whose restriction 
to &'9'C for C = An B is holomorphic. Then there exists a homotopy bt of 
b over &'9' B which can be chosen arbitrarily close to the constant homotopy 
bt = bo over B and such that bt is holomorphic over &'9'C for all t E [0, 1] 
while b i is holomorphic over all &'9' B . 

Now let us use Lemma 2.7.A instead of the h-Runge in the proof of Lemma 
1.7.A. What we gain is the control over IIPtll B as well as IlatllA. Namely, both 
homotopies at and Pt can now be assumed close to a o and po. In fact, we 
can even control the norm of the corresponding section P' of EIPo(&'9' B) 
(compare 1.7.C), and so we do not need much of the spray over &'9'B. In 
fact, we only need a local spray (see 1.7.C) over Po(&'9'B) c Z as well as over 
ao(&'9' A) c Z. Notice that one can always choose &'9' B Stein (since B is 
totally real), and so the existence of the local spray is automatic over Po(&'9' B) 
for all submersions Z ---+ X. Thus we arrive at the following strengthening of 
the homotopy gluing lemma (see Lemma 1.7.A) for Cartan pairs (A, B), where 
B is totally real. 

2.7.B. Lemma. Let Z admit a local spray over a o(&'9' A) c Z (this is so, for 
example, if &'9' A is Stein (see Lemma 1. 7. c:)). Then there exist homotopies 
of holomorphic sections at and Pt implied by Lemma 1.7.A (i.e., satisfying 
a I I&'9'C = PI I&'9'C) which now can be chosen arbitrarily close to a o and Po' 
respectively, for all t E [0, 1]. 

2.7.B'. Corollary. The h-principle extends from A to AI. Moreover, every 
continuous section ao : &'9' Al ---+ Z which is holomorphic over &'9' A admits a 
homotopy at arbitrarily close to ao such that at is holomorphic over &'9' A for 
all t E [0, 1] and a l is holomorphic over &'9' A I . 

2.8. Nicely localizable extensions. A localizable extension X of A c X (see 
2.4) is called nicely localizable if for every i = 0, 1 , ... either conditions (4) 
and (5) in Lemma 2.4.A are satisfied by (Ai+I' Ai) or Ai+I is a totally real 
extension of Ai. 

It is clear from the previous discussion that the h-principle (Runge) extends 
from A to X in the nice case provided the fiber Zx' x EX, admits a domi-
nating spray. 
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2.8.A. Lemma [H-L]. Suppose there is a proper smooth function p: X ---> R+ 
as in Lemma 2.4.A, that is, p-I(O) = A and p is convex outside A. Then X 
is a nicely localizable extension of A. 
Proof. We assume (as we may) that the critical points of pare nondegenerate 
and there is at most one critical point x at every level p -I (t) eX. Then 
we apply the usual Morse theory in order to see what happens when we go 
from a subcritical level At_ e = p -I [0, t - e] to At+e across the critical point 
x E p -I (t). Then by Morse theory, At+e is obtained first, by adding a k-
dimensional disk B to At _ e (where k = index) and then by slightly thickening 
A t_ e U B. Moreover, due to the convexity of p, the disk B can be assumed 
totally real and, if we wish, real analytic. The implied thickening process is of 
the same nature as going across a noncritical point, and so the localization is 
possible with properties (4) and (5). Summing up, we have Ai+1 C Al UBi with 
properties (4) and (5) of Lemma 2.4.A if Bi contains no critical point of p, 
and we have the totally real extension otherwise. 

2.8.B. Corollary. If the fiber Zx for x E X admits a dominating spray, then 
the h-principle extends from A to X. 

Remark. Notice that the local triviality of Z ---> X and the domination property 
are needed only over X - A . 

2.9. The basic h-principle for Z ---> X. Let X be a Stein manifold and Z ---> X 
a locally trivial fibration such that the fiber Zx' x EX, admits a dominating 
spray (see 0.5.A). Then holomorphic sections X ---> Z satisfy the h-principle. 
That is, every continuous section is homotopic to a holomorphic section. 

The proof follows from Corollary 2.8.B and the existence of a proper convex 
function X ---> R+ with a single minimum. 

2.9.A. Remark. Instead of the existence of a dominating spray over Zx' one 
may require the validity of the lifting property of l.4.F for pairs (B, C) , where 
B is a ball in Cn (for n = dimX) and C is a convex subset in B. This is 
clear from our discussion in 1.4.F and Remark 1. 7.D. 

2.9.B. The parametric h-principle. The argument we used to prove the above 
h-principle can be applied to continuous families of holomorphic sections. Thus 
we can obtain the parametric h-principle (compare [Gro, p. 16]) which says that 
the inclusion between the spaces of sections 

Holo(X, Z) ---> Cont(X, Z) 

is a weak homotopy equivalence. In particular, if two holomorphic sections can 
be joined by a homotopy of continuous sections, then there also exists a homo-
topy of holomorphic sections between the two. In other words, the inclusion 
Holo ---> Cont is injective (as well as surjective) on the sets of the connected 
components of our spaces. 

Notice that there are more delicate situations (see §4 of this paper and [Gro, 
pp. 17, 18, and 76]), where parametric considerations enter in a crucial way 
even when we are interested in only the nonparametric h-principle. 
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2.9.C. Extension from analytic subsets. Let Y c X be a complex subvariety 
and rp: Y --+ Z a holomorphic section. Then we look for a holomorphic 
extension of rp to X provided we are given a continuous extension. More 
generally, let Crp c cont(X, Z) consist of sections which are equal to rp on 
Y and Hrp = Holo ncrp' It is easy to see that our basic constructions can be 
performed in the subspace Hrp c Holo. This yields the parametric h-principle 
for Hrp: the inclusion Hrp --+ Crp is a weak homotopy equivalence. The same 
conclusion remains valid for holomorphic sections X --+ Z with a prescribed 
rth jet along Y. Thus Y satisfies E1l2 (see [Gro, p. 73]) as well as Elloo in 
3.1. 

2.9.0. Singular spaces. The h-principle over a singular Stein variety can be 
proven by repeating our nonsingular arguments with minor adjustments. Alter-
natively, one may use induction by dimension and assume the validity of the 
h-principle for Z over the singular locus of X. Then the remaining extension 
problem (to all X) essentially concerns only the nonsingular part of X as in 
our original argument. 
2.10. Homomorphisms and holomorphic maps of rank > r. Let us give an 
application of our h-principle. 
2.10.A. Theorem. Let A and B be vector bundles of ranks a and b over an 
n-dimensional (possibly singular) Stein variety of dimension n. If an integer 
r ~ min(a, b) satisfies 2(a - r)(b - r) > dim X, then there exists a holomorphic 
homomorphism h : A --+ B whose rank everywhere is > r . 
Proof. The homomorphisms of rank > r are sections of a fibration whose fiber 
Zx is of the form Zx = Cab -1:, ' where 1:, C Cab is the variety of linear maps 
Ca --+ Cb of rank ~ r, which has codim 1:, = (a - r)(b - r). If a = band 
r = a-I, then Zx = GLa C, and apart from this case, codim 1:, ~ 2. Hence 
Zx always admits a dominating spray (see Examples 0.5.B). Next we observe 
that Zx is k-connected for k = 2 codim 1:, - 2 and recall that X is homotopy 
equivalent to an n-dimensional polyhedron for n ~ dimc X by Lefschetz's 
Theorem (see Theorem 0.7.A). This insures the existence of a continuous ho-
momorphism of rank > r which can be made holomorphic according to the 
h-principle. 
2.1O.B. Corollary. Every Stein manifold X (now nonsingular) of dimension n 
admits a holomorphic map X --+ cm of rank > r provided (m - r - 1) (n - r) ~ n . 
Proof. Combine the above with the holomorphic h-principle for maps of rank 
> r (see [G-E2] and [Gro, p. 70]). 

3. DIFFERENT NOTIONS OF ELLIPTICITY 

There are several a priori different notions of "ellipticity" of a complex space 
Y reflecting the idea of an abundance of holomorphic maps C --+ Y and 
more generally of maps CN --+ Y. Eventually, we want to construct "many" 
maps X --+ Y, where X is a (possibly singular) Stein variety. The strongest 
possible property of this type is expressed by the following axioms (compare 
[Gro, p. 73]). 
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3.1. Elloo -spaces. The Elloo -property of Y refers to the h-principle for holo-
morphic maps I: X ~ Y , where X is Stein and where the behavior of I is 
prescribed over certain subsets in X. Namely, we consider Xo c X such that 
Xo = X~UX~ , where X~ is an analytic subset in X and X~ is a compact convex 
subset (which, as we know, satisfies the Runge approximation property for func-
tions X ~ e). We want to formulate now a certain parametric h-principle for 
holomorphic maps I: X ~ Y which agree on X~ (with certain order r) with 
a given holomorphic map 10 : &,9 X~ ~ Y and which are arbitrarily close on 
X II r" X" Y S· . h . o to some map Jo: 0 ~ . Ince we want parameters In t e pIcture, our 
starting object is a family rather than a single map, fa: X x P ~ Y , where P 
is a finite polyhedron and where fa is x-holomorphic over &,9(Xo) eX. That 
is, for every fixed PEP, the map I(x, p) is holomorphic in x for x running 
over &,9 Xo eX. We also assume that for some subpolyhedron Po c P, the 
map lIFo is x-holomorphic on X. That is, for every fixed Po E Po the map 
I(x, po) is holomorphic over all of X 3 x. 

Finally, we fix an integer r = 0, 1 , ... , a real number e > 0, and we insist 
that there exists a homotopy J; : X x P ~ Y for t E [0, 1] with the following 
six properties. 

(0) The word "homotopy" means continuous for the implied map X x P x 
[0, 1]~Y. 

(1) The homotopy J; is fixed over Po' i.e., J;(x, po) = fa(x, po) for x EX, 
Po E P , and t E [0, 1]. 

(2) The homotopy J; is x-holomorphic over &,9(Xo) eX, i.e., J;(x, p) is 
holomorphic in x E &,9 (Xo) for all t and p. 

(3) The homotopy J; is fixed over X~ with order r. That is, for every pair 
(p, t) the two holomorphic maps J;(x, p) and fa (x ,p) for x E &,9 X~ are 
equal on X~ with order r. (If X and Yare smooth, this is equivalent to the 
equality of jets f J;(x, p)IX~ = f fa (x ,p)IX~. Then the definition of the order 
for singular X and Y reduces to the nonsingular case with local embeddings 
of X and Y into en .) 

(4) The homotopy J; is e-fixed over X~' . That is, dist(J;(x, p), fa(x, p)) ::; 
e for all x E X~' , PEP, t E [0, 1] and some metric on Y given beforehand. 

(5) The result of the homotopy, the map 1; : X x P ~ Y, is x-holomorphic 
on X. 

Let us sum up the above discussion in the following. 

3.1.A. Definition. Y is called an Elloo -space if for arbitrary X, Xo ' P, Po' 
r, e, and fa there exists a homotopy satisfying (0)-(5). 

3.1.B. Remark on singular spaces Y. Our extendability condition (3) allows 
holomorphic extension of maps from X~ to X provided such an extension is 
possible to &,9 X~ eX. If we had required an unconditional extension, we 
would have ruled out singular spaces Y. In fact, the existence of holomorphic 
retraction y' ~ Y of an ambient nonsingular space y' :J Y ("retraction" 
means an extension of the identity map Y ~ Y ) is impossible (by an obvious 
argument) for the singular subsets Y C y' . On the other hand, we have here no 
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example of a singular Elloo -space. The first candidate to look at is X = C2 /Z2 

for the action y 1-+ Y of Z2 on C2 • 

3.2. Ellipticity of the spray spaces. One of the main results of the present paper 
claims (see 2.9.C) that if Y is a nonsingular space with a dominating spray, then 
Y is Elloo . 
3.2.A. Remark. If Y is a Stein manifold, then the converse is true. 

If Y is Elloo ' then there exists a dominating spray s: E --. Y . 
Proof. Since Y is Stein, it admits a holomorphic affine connection. In fact, 
connections correspond to sections of an affine bundle over Y, and the Stein 
property allows such sections. Then we recall the exponential map associated 
to a connection. This map, say so' is defined in a small neighborhood of the 
zero section Y = Yo c E = T(Y), say so: &'9'Yo --. Y, and the differential of 
So restricted to EIYo, say Do: E --. T(Y), is the identity homomorphism. 

Now if Y is Stein, then so is (the total space of the bundle) E, and by Elloo 
(see (3) in 3.1), there exists a holomorphic map s: E --. Y whose differential 
on EI Yo equals Do. Q.E.D. 

3.2.A'. Holomorphic sprays on complex projective manifolds (compare 3.5). 
Let E --. Y be a "sufficiently negative" bundle of dimension N large com-
pared to dim Y. For example, if I is an ample line bundle over Y, then rk 
is "sufficiently negative" for large k, and one can take N rk for E if N is 
large enough. Let us indicate the properties of negative bundles which we need 
for our purpose and which are known to be true for E = Nrk . 

(i) There exists a surjective homomorphism t5o : E --. T(Y). 
(ii) Denote by (Y =) Yo c E the zero section of E, and let &'9'Yo c E 

be an "infinitely small" neighborhood of Yo as earlier (see 1.5). Then one can 
choose the above surjective t50 such that it "extends" to a holomorphic map 
(local spray) so: &'9'Yo --. Y. That is, the differential of So on EIYo equals 
t5o· 

(iii) There are "many" convex functions p: E --. R+ vanishing on Yo. In 
particular, if Y is compact, there exists a proper convex function p whose zero 
set equals Yo (here, "convex" means strictly convex on Y - Yo ). 

Using such a proper convex p and Elloo -property of Y, one can Runge ex-
tend So to the desired spray s: E --. X. In fact, one may use essentially the 
same local extension argument as in §2, where one should replace the construc-
tions based on sprays by existence theorems appealing to Elloo . The details are 
left to the reader. 
3.2.A". Question. The above discussion extends to manifolds Y, x Y2 ' where 
Y, is Stein and Y2 is compact (and necessarily projective in the presence of 
a "negative" bundle). Moreover, one can generalize further to holomorphically 
convex manifolds Y. The next natural class of examples where the above may 
apply is constituted by quasiprojective manifolds and, more generally, by locally 
closed submanifolds in CpN. Yet, it is not at all clear if 

Elloo => (3 a dominating spray) 
for all complex manifolds Y. 
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3.3. Sprays over maps X -+ Y. Consider a holomorphic map f: X -+ Y and 
a vector bundle E -+ X . A holomorphic map s: E -+ Y is called a spray over 
X -+ Y if the restriction of E to the zero section X = Xo c E equals f. We 
say as earlier that s is dominating if the differential of s restricted to EIXo is 
surjective. Notice that we recapture our earlier definition of a dominating spray 
E -+ Y if we take f = Id: Y = X -+ X and observe that every dominating 
spray over Y induces that over all X -+ Y . On the other hand, if Y is Elloo ' 
then a slight modification of the proof of 3.2.A' provides dominating sprays 
over all Stein spaces X (now singular ones are allowed) mapped to Y. Let us 
generalize this to families of holomorphic maps X -+ Y . 

3.3.A. Sprays over maps X x P -+ Y. Now we consider continuous x-holo-
morphic maps (see 3.1) and x-holomorphic (in the obvious sense) bundles E -+ 
PxX. Then we can speak of x-holomorphic sprays over (x-holomorphic maps) 
P x X -+ Y. Furthermore, these notions obviously generalize to open subsets 
U c P x X. Namely, one may speak of x-holomorphic maps U -+ Y, x-
holomorphic bundles over U, etc. (A further natural generalization refers to 
holomorphic foliations, but we do not consider these in our paper.) In fact, 
almost all notions of complex analysis naturally extend to the x-holomorphic 
situation. In particular, one can define x-Stein spaces U and the Elloo -property 
of Y for x-holomorphic maps U -+ Y. Then one can prove that the ordinary 
Elloo -property of Y implies the" x -holomorphic Elloo ." (This is nearly obvious 
as Elloo refers to families of maps X -+ Y in both cases.) 

3.3.B. Parametric lifting property (compare 1.4.F). Consider an x-holomor-
phic map Fo: X x P -+ Y and a homotopy of Fo over a compact subset 
C eX, say 1;: &'.9C x P -+ Y for fo = Fol(&'.9C) x P. Next take an 
x-holomorphic spray over Fo' that is, a fibration i!; -+ X x P and an x-
holomorphic map F : i!; -+ Y which extends Fo on the zero section X x P c i!; . 
Then a homotopy of x-holomorphic sections, 1;: &'.9C x P -+ i!; , is called a 
lift of 1; if 10 = 0 and F 0 1; = 1; . 

3.3.B'. Proposition. Let Y be E11oo ' X be Stein, and C c X be a compact 
convex (see 1.5 .A') subset. Then the above lift is possible for all Fo and 1; where 
the implied i!; and F depend on Fo and 1;. 

Since we do not use this proposition in this paper, we omit the proof (which 
is trivial, though tedious). What is more interesting for us is the converse to 
Proposition 3.3.B'. 

3.3.C. Theorem. The existence of the above i!;, F, and 1; for all X, P, C, 
Fo' and 1; implies the Elloo -property for Y. In fact, to ensure Elloo ' one needs 
the lifting property only for quite special X, C, and P, namely, for the unit 
open ball B in en ,for all n = 1 , 2, ... ,for R-convex subsets C c B = X, and 
for P (homeomorphic to) the unit closed ball in Rm , for all m = 0, 1, 2, .... 
Proof. The nonparametric case has been discussed in Remark 2.9.A, and pa-
rameters bring no complication. 
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3.3.C'. Corollary. Consider a locally trivial holomorphic fibration Y1 -> Y2 
with Elloo -fibers. Then (Elloo for Y1) {::} (Elloo for Y2) • 

Proof. Since the fibers are Elloo ' the fibration itself is Elloo over every Stein 
manifold X mapped to Y2 • With this, one easily sees the implication "-<=" 
(compare B in [Gro, p. 73]). Now we prove "~" by observing that the lift-
ing property required in Theorem 3.3.C descends from Y1 to Y2 as pertinent 
homotopies may be (first) lifted from Y2 to Y1 • 

3.3.C". Example. If the universal covering Y of Y admits a dominating 
spray, then Y is Elloo . 

Remarks. (a) Sprays can be obviously lifted from Y to Y, but there is no push 
forward of sprays. Yet the spray-lifting property can be trivially pushed forward 
if the underlying Stein manifold is simply connected and holomorphic maps 
X -> Y lift to Y. 

(b) One does not need Proposition 3.3.B' to prove Example 3.3.C", but The-
orem 3.3.C is needed. 

3.4. Weaker notions of ellipticity. We start with the weakest condition we can 
imagine. 

(A) Vanishing of the Kobayashi metric of Y. This is equivalent to the fol-
lowing property. 

For every nonconstant continuous function d: Y -> R, there exists a holo-
morphic map f of the unit disk DeC to Y such that the composed map 
d 0 f: D -> R satisfies 

Idof(!)-dof(O)I> !. 
(B) C-connectedness. This means that every two points in Y lie in the image 

of some holomorphic map C -> Y . 
Obviously (B) ~ (A), but the implication (A) ~ (B) seems to be unknown 

even for compact (algebraic) manifolds Y (where some holomorphic C -> Y 
can be obtained with Bloch-Brody limit argument). 

(C) Sub-Euclidean. This means the existence of a surjective holomorphic 
map (J: CN -> Y for some N. This is clearly stronger than (B). 

(C') Densely sub-Euclidean. This is a weakening of (C) above, where the map 
(J is required to contain only an open dense set in the image. 

Further modifications of the definition are obtained by requiring (i) (J to be 
an immersion, (ii) (J to be a submersion, or (iii) the complement Y - (J(Cn ) to 
be contained in an analytic subset in Y of positive codimension. Or one can 
require that Y is covered by the images of several maps (Jj : Cn -> Y . 

(D) Runge spaces. This refers to the Runge property for a class of domains 
B C CN • For example, one may insist that every holomorphic map of the unit 
ball B C CN to Y extends to all CN after an arbitrary small perturbation. 

Again we have obvious implications Elloo ~ (D) ~ (C) ~ (B), but we do 
not know when these arrows can be reversed. 

(E) Extension properties. One may require, parallel to Runge, extendability of 
the holomorphic map A -> Y from analytic subvarieties A c CN to all of CN , 
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and by varying the class of admissible subvarieties, one arrives at different (?) 
ellipticity conditions. The narrowest interesting class is formed by subvarieties 
A = Al U A2 ' where A 1 and A2 are linear subspaces in CN . 

(F) Examples. Smooth hypersurfaces Y of (small) degree d in Cpn+l. If 
d = 1 or 2, then Y is homogeneous and, hence, Elloo . The first interesting 
case is that of cubics. If n = 1 , these are elliptic curves which are Elloo ' since 
they are homogeneous. If n = 2, then Y is obtained from CP2 by blowing 
up six points and, hence (see 3.5.D), is Elloo . If n = dim Y = 3, then Y 
is known to be unirational (but not rational) and, hence, sub-Euclidean. This 
Y is probably Elloo . On the other hand, cubic k-folds for k ~ 4 are often 
(always?) rational, and by local homogeneity (see 3.5.EIII ), they are Elloo . 

Curves Y of degree 4 in Cp2 are far from being elliptic. In fact, they are 
hyperbolic (i.e., the Kobayashi metric on Y does not degenerate, and all holo-
morphic maps C -- Yare constant). Quartic surfaces in CP3 are special K3 
surfaces. These cannot be covered by rational curves as they admit a nonzero 
holomorphic form. Yet some K3 are rationally dominated by complex tori 
C21Z4, and these are densely sub-Euclidean by the argument in 3.5. We do not 
know if some (or all) K3 are Elloo . 

One knows that the hypersurfaces Y of degree d > dim +2 are of general 
type, and every holomorphic map f: Cn -- Y has rank f < dim Y which 
makes Y non-Elloo . 

If d ~ dim + 1, then every two points in Y can be joined by a chain 
of rational curves which makes the Kobayashi metric zero. Furthermore, if 
dim X ~ 2d ! ,then Y is generally unirational (see [Ci] for a sharper result) and, 
hence, densely sub-Euclidean. 

The case d = dim +2 is similar to that of K3. 
The most optimistic conjecture concerning ellipticity of projective algebraic 

varieties over C is as follows. Y is Elloo unless there exists a rational dominat-
ing map Y -- y' ,where y' has general type (i.e., dim Y equals the Kodaira 
dimension where the case dim Y = 0 is excluded). 

3.5. Algebraic ellipticity. The ellipticity conditions from the previous section 
(except Runge) can be reformulated in the category of algebraic varieties and 
regular algebraic maps. One may also speak of algebraic sprays, and now we 
use these to define Elloo . This is motivated by Localization Lemma 3.5.B and 
the discussion in 3.2. 

3.5.A. Algebraic Elloo . This refers to a dominating algebraic spray E -- Y 
for a vector bundle E -- Y. It is clear that the algebraic Elloo implies the 
analytic one, but the converse is by no means true. For example, CX and 
Abelian varieties are not algebraically Elloo . In fact, a linear algebraic group 
is Elloo if and only if it is generated by unipotent elements (the proof is easy), 
though all groups are analytically Elloo due to the exponential map. (This 
discussion suggests a generalized algebraic Elloo ' where E is a group scheme 
over Y.) 
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3.S.B. Localization Lemma. If each point y E Y admits a Zariski neighbor-
hood U c Y and a spray s over U (i.e., a bundle E - U with s: E - Y) 
dominating at y, then Y is Elloo . 
Proof. One can assume that the implied bundle E - U extends to Y. In fact, 
by making U small enough, one may have E trivial. One may also assume 
U = Y - D for an effective divisor (i.e., a hypersurface) DeY. Then one 
considers the line bundle L = LD whose (local) sections represent a function on 
Y vanishing on D, and one observes that the natural homomorphism h j : E ® 
L j - E, i = 1, 2, ... , is isomorphic over U and vanishes with order i along 
D. It follows that the composition Sj = sohj is defined over all of Y and regular 
for all sufficiently large i; thus Sj defines a spray over Y dominating at Y. 
Then a composition of finitely many such Sj corresponding to different points 
y E Y gives us the desired dominating spray over Y. 

3.S.B'. Corollary. If each point y E Y admits an E1100 -neighborhood, then Y 
is Elloo . 

3.S.B". E1100 for fibrations. Let Y, - Y be a Zariski locally trivial fibration. 
Then one immediately sees with Lemma 3.S.B that 

(Elloo for Y,) ~ (Elloo for Y) . 

Conversely, let Y and the fibers be Elloo . If the structure group of the fibration 
can be reduced to GLm for some m, then Y, is Elloo . 

Proof. One may assume Y = Cn for some n and then invoke the Serre con-
jecture (solved by Suslin and Quillen) claiming that all GLm-fibrations over Cn 

are trivial. 
Questions. Is the above GLm -condition essential? Does implication (*) re-
main valid for etale locally trivial fibrations? For example, let Y, - Y be an 
unramified covering map. It is obvious that 

(** ) 
but the converse is unknown to the author. The most optimistic (and not very 
realistic) conjecture here reads: if Y, - Y is a dominant morphism (i.e., the 
image is Zariski dense in Y), then 

(E11oo for Y,) ~ (Elloo for Y) . 

From this and the discussion in the next section, one could easily derive that 
a projective manifold is Elloo if and only if (the "only if' is trivial) it is uni-
rational. 

Notice that one does not even know if all rational projective manifolds are 
Elloo . On the other hand, there are uni-rational affine manifolds of the form 
C /r for a linear algebraic group G and a finite subgroup r in G (see [Bo]). 

3.S.C. Removal of subvarieties of codimension ~ 2. If a Zariski closed subset 
Yo c Y has codim Yo ~ 2, then 

(E11oo for Y) ~ (Elloo for Y' = Y - Yo) . 
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Proof. Let s: E -> Y be a dominating spray. Denote by s' the restriction of 
s to E' = EI Y' , and let us modify s' in order to eliminate the intersection 
between s' (E') and Yo. According to Localization Lemma 3.5.B, it suffices 
to make such a modification over each affine neighborhood U c Y' such that 
E is trivial over U, i.e., E 1 U = CN X U -> U. Since the manifold X = 
CN X U is affine, the spray s: X -> Y can be brought into general position 
(see 3.5.C' below) with respect to Yo by a "small" perturbation, say a : X -> y 
of s, such that a -I (Yo) C CN X U meets every fiber CN x U across a subset 
of codimension ~ 2. Then by arguing as in (iii) of O.5.B, we construct a 
fiber-preserving self-mapping X -> X whose image misses a-I (Yo). This self-
mapping composed with s gives us the desired modification of the spray if we 
take care not to change s on the zero section 0 x U C X and keep the new 
spray dominating at a fixed point Y E U . 

3.5.C'. Transversalitydiscussion. Let /: X -> Y bea regular map and Ef -> 

X the bundle induced from our E over Y. Then every section X -> Ef 
defines a "deformation" of / which is just a composition of this section with 
s. If X is affine, then sections of vector bundles over X enjoy all forms of 
transversality (or general position) properties, and if Y is Elloo ' these descend 
to similar properties of maps Y -> X . 

3.5.D. Blow-up. Call a point y E Y regular if there exists a birational equiv-
alence rp: Cn -> Y such that rp -I is biregular on some Zariski neighborhood 
of Y. If, moreover, rp is regular on the complement of some subvariety of 
co dimension ~ 2 in Cn , we say that Y is Ell-regular. According to 3.5.B and 
3.5.C, the Ell-regularity of the points y E Y implies the Elloo -property of Y. 
Also notice that regularity implies Ell-regularity if Y is projective. 

3.5.D'. Example. Let Y be obtained from Cn by blowing up the origin, and 
let pn-I C Y be the projective space which is the blow-up origin of Cn . All 
points y E Y - pn-I obviously are Ell-regular, as the blow-up map a -I : Cn -> 

Y is a birational equivalence of Cn - 0 onto Y _ pn-I . 

Now we recall that Y equals the total space of the canonical line bundle over 
pn-I and let p: Y -> pn-I be the implied projection. This bundle is trivial 
on the complement of each hyperplane in pn-I and, therefore, each point in 
Y has a neighborhood Y' C Y of the form Y' = p-I(pn-I - pn-2) which is 
biregular to Cn . Notice that the blow-down map a: Y' = Cn -> Cn is given 
(in appropriate coordinates) by (YI' ... , Yn) 1-+ (YI ' YIY2' ... , YIYn)· 

3.5.D". Corollary. Ell-regularity is stable under blow-up o/points in Y. Name-
ly, if Y -> Y is such blow-up and .p E Y projects to an Ell-regular point in Y, 
then .p is Ell-regular in Y. 

3.5.E. Blow-up o/subvarieties. Fedya Bogomolov explained to the author how 
to prove the following. 
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Proposition. Regularity is stable under blow-ups with nonsingular centers. 
Proof. One immediately reduces the general case to that of en blown-up along 
a smooth connected subvariety Z c en of some dimension m :::; n - 2. Then 
one observes that Z can be moved into e m+1 c en = e m+1 xek , k = m+ l-n, 
by a birational automorphism of en regular at a given point Z E Z. In fact, 
if the projection of Z to em +1 has dimension m, then Z can be (obviously) 
moved to this projection. Now assuming Z C em+1 c en , we consider the 
blow-up manifold Y and denote by (J: Y --+ en the blow-down map. Let 
us construct a neighborhood Y' C Y which is biregular to en and on which 
the map (J takes the form (x, y) 1--+ (x, yf(x)) , where x = (XI' ... ' x m+ I ), 

y = (YI' ... 'Yk) for k = n - m - I, and f is an irreducible polynomial 
on em+1 whose zero set equals Z. First we observe that Z is defined in 
en em+1 b h . :::> y t e equatIons 

{f = 0, xm+2 = 0, ... , xn = O} 

and that Y equals the Zariski closure of the graph of the map en --+ pk given 
by (XI' ... , xn) 1--+ (Yo' ... , Yk)' where Yo = f(x) and Yi = X m+l +i for i = 
I, ... , k. If we remove the hypersurface Yo = 0 from en x pk , we obtain 
Y' = Y - {Yo = O} c en+k defined as follows: 

i = I, ... , k. 

It is clear that (XI' ... , xm+1 ' YI ' ... 'Yk) give us the required biregular cor-
respondence en +-+ Y' . 

Let us return to the general case of a smooth Y c en. Then the above 
construction of Y' depends on a projection 7r of Y to a linear subspace L = 
L m+ I in en . If we fix a point Y E Y and then take generic (L, 7r : en --t L) , 
then our Y' will contain Y as a regular point, which concludes the proof of 
3.5.E. 

3.5.E'. Remark. The above argument fails to prove Ell-regularity as birational 
transformations moving Y back from L to en may (and usually do) have 
poles. However, Ell-regularity follows from regularity in the projective case, 
and, therefore, we have the following. 

3.5.E". Proposition. Ell-regularity is stable under blow-ups of projective mani-
folds along nonsingular subvarieties. 

3.5.E'''. Remark. It is unclear if all points in a smooth rational (projective) 
manifold are regular (and, thus, Ell-regular in the projective case). It is also 
unclear if the Elloo -property is a birational invariant of projective manifolds. 
On the other hand, the birational invariance of regularity is immediate for lo-
cally homogeneous manifolds where every two points have isomorphic Zariski 
neighborhoods. For example, every smooth cubic Y c epn+1 is locally ho-
mogeneous. In fact, Y can be birationally reflected in every point Yo E Y by 
mapping each y E Y to the third intersection point of Y with the line (YoY). 
If Yo is generic relative to given points y and y' , then this involution is regular 
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on some neighborhoods of y and y'. Notice that a similar argument proves 
local homogeneity of the intersection of two quadrics in Cpn+2 . 

3.5.F. Homogeneous manifolds. If Y = G/H, where G is a linear algebraic 
group which is generated by unipotent elements, then, clearly, Y is Elloo ' In 
some cases, one can even find a unipotent subgroup U c G whose action on 
Y has an open orbit, say UYo c Y. Such an orbit (clearly) is biregular to Cn 

and, consequently, Y is Ell-regular in these cases. 
A large number of nonhomogeneous Elloo -manifolds can be obtained starting 

from homogeneous examples and then by blowing-up and removing subvarieties 
as well as by taking fiber bundles. Furthermore, if we divide such a manifold by 
an infinite discrete group of holomorphic (e.g., algebraic) automorphisms, we 
obtain an Elloo -manifold in the holomorphic category. Thus one obtains nearly 
all known examples of complex analytic Elloo -manifolds. 

3.5.G. Algebraic homotopies and s-homotopies. One may expect that Elloo -
manifolds Y have reasonable homotopy theory in the sense of Volodin (see 
[Yo]). Namely, one defines n-simplices in Y as regular maps a: L ---t Y, 
where L = L n is an n-dimensional affine space spanned by n + 1 given points 
10 , ••• ,In in L in general position. The set of all simplices in Y naturally 
forms a (semi)simplicial complex whose geometric realization, denoted H(Y), 
represents the algebraic homotopy type of Y. 

If Y comes with a spray s: E ---t Y, then there is a natural subcomplex 
H(Y, s) c H(Y) consisting of s-contractible simplices, where a map a: L ---t 

Y is called s-contractible if it factors through a map into a fiber of the iterated 
spray l : Ek ---t Y (see 1.3) for some k = 1, 2, .... That is, there exists a 
map a- : L ---t E: c Ek for some y E Y such that loa- = a . 

Example. Let Y = SLm and s be the spray corresponding to the unipotent 
subgroups. Then every simplex is s-contractible for m ~ 3 (see [Sus]), and 
there is a counterexample for m = 2. Namely, Cohn has shown (see [Co]) that 
the matrix 

does not decompose into the product of unipotent matrices. 
Remark. One can also ask the s-contractibility question for holomorphic maps 
a: Cn ---t Y (where the spray s: E ---t Y is assumed dominating), but one does 
not know the answer in most (if not in all) interesting cases. For example, one 
has the following. 
Vaserstein Problem. Does every holomorphic map Cn ---t SLm decompose into 
a finite product of holomorphic maps sending Cn into unipotent subgroups in 
SLm? 

3.5.G'. Using simplices a: X x L ---t Y in the space of maps X ---t Y, one 
defines the homotopy space of the maps H(X ---t Y) as well as the s-part 
H(X ---t Y, s) c H(X ---t Y) corresponding to s-deformations and s-homot-
opies. This definition looks reasonable if X is an affine variety while in the 
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FIGURE 2 

general case one should localize with respect to some Grothendieck topology 
(Zariski, etale, etc.). Namely, a "map" I: X -+ Y should be defined by the 
following data: 

(1) a finite covering of X by Vi in the chosen topology, 
(2) a regular map 1;: Vi -+ Y for all i, 
(3) an m-simplex of maps for every intersection VI = Vi n Vi n··· n 

o I 

Vim' that is, a regular map ~: VI X L m -+ Y such that ~IVJ = IJ 
for all multiindices I and J representing the faces of the simplices 
in question, where I c J and the inclusion refers to the faces. For 
example, if m = 1, we have homotopies 1;j: (Vi n V) x L -+ Y, 
for L = C between II Vi n Vj and fjlVi n Vj . Then we have triangles 
1;jk: (Vi n Vj n Vk) xL 2 -+ Y filling in triples of homotopies (see Figure 
2 and compare Figure 1), etc. 

(The above notions of coverings and intersections can be taken literally only for 
the Zariski topology but not for general Grothendieck topologies.) 

If X is an affine variety, this localized definition seems to give the same 
homotopy type as the nonlocalized H(X -+ Y) (or H(X -+ Y, s) if one is 
concerned with s-homotopies), at least if one uses the Zariski topology. This 
equivalence of the two homotopy types is somewhat similar to our holomorphic 
h-principle. A deeper generalization of this h-principle (as well as of the s-
contractibility problem for simplices) should refer to the relationship between 
the homotopy types of spaces if\x -+ Y) (or ift(X -+ Y, s)) and maps 
(Xet -+ yet), where H et denotes the space of "maps" localized in the etale 
topology and X et and yet denote the Cech-Grothendieck complexes (nerves) 
of X and Y for the etale coverings. 

4. THE H-PRINCIPLE FOR SUBMERSIONS 

We shall see in this section that the gluing lemmas over C-pairs (see 1.7) fit 
into the framework of continuous sheaves in [Gro]. This allows us to extend our 
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holomorphic h-principle to nonlocally trivial submersions with fiber dominating 
sprays. 

4.1. C -fibrations. Consider topological spaces S1', g ,%' and continuous 
maps S1' ---- %' and g ---- %'. Let 9 c S1' x g denote the product over 
%' , that is, the set of the pairs (a, b) such that the images of a and b in %', 
denoted a and 0, satisfy a = o. Then the path product of S1' and g over 
%' is the space g* = {a, b; p} for all (a, b) E S1' x g and all paths p in %' 
joining a and 0, and we observe that 9 is naturally embedded into g* . 

4. LA. Definition. The diagram S1' ---- %' f- g is called a C -fibration (C for 
Cartan) if the inclusion 9 c g* is a weak homotopy equivalence, that is, the 
relative homotopy groups 7C i(g* ,g) vanish for i = 0, 1, .... 

4.1.B. Example. If S1' ---- %' is a Serre fibration, then, obviously, S1' ____ %' f-
g is a C -fibration. 

4.2. Continuous sheaves. Recall that a topological presheal CI> over a topo-
logical space X is a contravariant functor from the category of open subsets 
and the inclusion maps in X to the category of topological spaces. A presheaf 
<I> is called a sheal if it satisfies an axiom which mimics property (*) in the 
following. 

4.2.A. Basic Example. Let Z ---- X be a fibration. Assign to each open set 
U C X the space of sections U ---- Z , call it <1>( U) , and assign to each inclu-
sion I: U1 C U2 the restriction map on sections <1>(1) : <1>( U2 ) ---- <1>( U1) for 
<1>(1)(/) = II U1 for all I E <1>( U2). This is clearly a presheaf which satisfies 
the following (sheaf) localization property for coverings of U c X by smaller 
open subsets Up. cU. 

(*) If a collection of sections ip E <1>( Up.) satisfying 1p.1 Up. n Uv = ip I Up. n Uv 
for all pairs of the covering sets Up., then there exists a unique I E <1>( U) such 
that IIUp. = Ip.. 

4.2.B. It is convenient to define <I>(A) for closed subsets A c X by setting 
<I>(A) = <1>(&9' A) for an "arbitrarily small" neighborhood &9' A c X of A 
(compare 1.5). In other words, <I>(A) is the direct limit of the spaces <I>(U) 
over the neighborhoods U:J A. Since the topological structure behaves rather 
badly in direct limits, one equips <I>(A) with a quasitopology which allows one 
to speak of continuous maps P ---- <I>(A) that are continuous families of sections 
Ip E <1>(&9' A) (see [Gro, p. 36]). 

4.2.C. Cartan pairs. A pair of compact subsets A and B is called Cartan 
relative to a given sheaf <I> over X if the diagram 

<I>(A) ---- <I>(A n B) f- <I>(B) 

is a C -fibration. 
4.2.C'. Example. The old Cartan property (in the sense of 1.5) immediately 
implies the new one relative to (the sheaf of) holomorphic functions on X. 
Moreover, this and the parametric h-Runge for A nBc B imply the Cartan 
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property for holomorphic sections of a submersion Z over X, provided Z 
admits a dominating spray. This is a reformulation of Lemma 1.7.A. 

4.2.D. Consider a string of subsets A = (Ao' ... ,Am) in X, and let A] for 
1= (io' ... , ik ) denote the intersection Ai n··· n Ai . Then for a given sheaf 

o k 

<I> over X , we denote by <1>* (A) the space of the collections of maps h: 111-> 
<I>(A]) ,where III denotes a geometric realization of the k-simplex spanned by 
(io' ... , ik ) such that for all IJI c III the restriction hlIJI: IJI-> <1>] equals 
<I>(Incl( V] C VJ )) 0 fJ (compare 3.5.G). 

Example. If m = 1 , this <1>* is the same thing as ~* in 4.1. 

4.2.D/. Cartan property for (Ao' ... , Am) . This is defined by induction on m 
starting from m = 1, where we use the definition of 4.2.C. Then (Ao' ... , Am) 
is called Cartan for m ~ 2 if the sequences A' = (Ao' ... , Am_I) and An = 
(Am n Ao' Am n AI' ... , Am n Am_I) are Cartan and the pair (Ao U AI U··· U 
Am_I' Am) is Cartan. Notice that this definition depends on the ordering of Ai 
and that it extends to infinite sequences Ao' AI ' ... , Am' ... , where the Cartan 
property by definition means Cartan for (Ao' ... ,Am) for all m = 1, 2, .... 

4.2.D". Proposition (Compare [Gro, p. 76]). If A = (Ao' ... ,Am) is Cartan, 
then the natural embedding of <l>m = <I>(Ao UA I u··· UAm) to <I>*(A) is a weak 
homotopy equivalence. 
Proof. First we observe that <1>* (A) equals the path product (see 4.1) of <1>* (A') 
and <I>(Am) over <1>* (An) . Then we look at the diagram 

where 

<l>m_1 -> <I>~-I 

'" n n <I>(Am) 
/ 

<1>* (A') -> <1>* (An) 

<l>m_1 = <I>(Ao U··· U Am-I)' 
n 

<l>m_1 = <I>(Am n (Ao U··· U Am-I))' 

and where the (vertical) inclusions are weak homotopy equivalences by induc-
tion on m. Since <l>m equals the fiber product of <l>m_1 and <I>(Am) over 
<I>~_I and this is weakly homotopy equivalent to the path product, the desired 
weak homotopy equivalence property of the inclusion <l>m -> <I>*(A) follows 
from the obvious homotopy invariance of path products. 

4.3. The deformation space <1>* (A). For every finite covering of a compact sub-
set A eX, say A = U: I Ai' consider the above space <1>* = <I>*(Ao' ... , Am) 
associated to this covering and denote by <1>* (A) the direct limit of these spaces 
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<1>'" over all such coverings. Using 4.2.D', we have 
4.3.A. Lemma. If A admits arbitrarily fine Cartan coverings, then the natural 
embedding <I>(A) -+ <1>'" (A) is a weak homotopy equivalence. 
4.3.B. Example. Let <I> be the sheaf of holomorphic sections of a submersion 
Z -+ X. Then the space <1>'" (A) is weakly homotopy equivalent to the space 
of continuous sections &'!Jl' A -+ Z . To see this, we denote by <1>0 the sheaf of 
continuous sections of Z and observe that the embedding a: <l>o(A) -+ <I>~(A) 
(obviously) is a weak homotopy equivalence (one way to see it is to use Lemma 
4.3.A and observe that all pairs of compact subsets are Cartan for continuous 
sections). Next we look at the embedding p: <I>'"(A) -+ <I>~(A) corresponding to 
the natural embedding of sheaves <I> -+ <1>0' Since <1>'" (A) is built of continuous 
families of local holomorphic section, the weak homotopy equivalence property 
of the map p follows from the fact that the stalks of the sheaves <I> and <1>0 
are (obviously) weakly homotopy equivalent at all points a EA. (Compare the 
local h-principle in [Gro, p. 119].) Now we obtain the required weak homotopy 
equivalence by taking a 0 p-l . 
4.4. Convex coverings of Stein manifolds. A covering X = U:o Ai is called 
convex if all subsets Ai are convex and the finite union U:o Ai is convex for 
all m=O, 1, .... 
4.4.A. Lemma. A Stein manifold X admits an arbitrarily fine locally finite 
convex covering by compact subsets Ai' 
Proof. Use a convex function on X as in Lemma 2.4.A. 
4.5. Main Theorem. Let Z -+ X be a holomorphic submersion, where X is 
Stein and where Z admits a fiber dominating spray over a small neighborhood 
of each point in X. Then the inclusion between the spaces of holomorphic and 
continuous sections 

Holo(X, Z) c Cont(X, Z) 
is a weak homotopy equivalence. 
Proof. The above discussions and gluing of homotopies over Cartan pairs (see 
1.7) show that the inclusion 

Holo(&'!Jl' A, Z) c Cont(&'!Jl' A, Z) 
is a weak homotopy equivalence for all compact convex subsets. Granted this, 
the proof can be concluded by the argument in §2, or by somewhat stretching 
the sheaf theory in order to include h-Runge. 
4.5.A. Remark. One can sharpen the above theorem as in §2 and 3.1 by bring-
ing forth the Runge approximation and the control of sections X -+ Z along 
given subvarieties in X . One can also somewhat relax the spray condition along 
the lines indicated in Remark 2.9.A. 
4.6.B. Examples. (a) Let G be a complex Lie group and rx eGa discrete 
subgroup holomorphically depending on x EX. Then the resulting fibration 
Z -+ X with fibers Zx = Gjrx is not, in general, holomorphically trivial and 
so the (locally trivial) theorem 2.9 does not apply here while 4.5 above does. 
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(a/) Let Y be an arbitrary Elloo -space and r x a discrete group of biholomor-
phisms freely acting on Y. Then we have a similar Z --+ X with Zx = Yjrx ' 
where 4.5 applies in view of Example 3.3.C". 

(b) Start with a vector bundle V --+ X , and remove a complex submanifold 
~ c V whose intersections with the fibers ~ are algebraic subvarieties of 
codimension :::: 2. Moreover, assume that for a generic homomorphism of V 
to a vector bundle Vi over X with dim Vi = dim V - 1 , the image of S in Vi 
is contained in a complex subvariety of positive codimension in Vi. (In fact, 
we need such homomorphisms only locally, i.e., in a small neighborhood of each 
point x EX.) Then we can construct a fiber dominating spray as in (iii) of 
Examples 0.5.B and apply the h-principle. Notice that for the validity of the h-
principle, the resulting submersion Z = V - ~ --+ X need not be locally trivial 
even topologically, but topologically locally trivial fibrations behave better as 
far as continuous sections are concerned. For example, if 2 codim ~ > dim X, 
one knows there exists a continuous section X --+ Z , assuming Z --+ X is 
topologically locally trivial and X is Stein (compare 2.10). Then the h-principle 
provides a holomorphic section X --+ Z. Yet one can bypass the topological 
local triviality if one assumes that ~ c V is stratified over X (which is the case 
in most interesting situations) and, consequently, X admits a stratification such 
that Z is topologically locally trivial over each stratum. If each stratum in X 
has dimension less than 2 codim(~ n Vx c ~) for x in this stratum, then one 
can construct a continuous section ({J : X --+ Z = V - ~ using a simple induction 
by strata and Lefschetz Theorem 0.7 .A. Furthermore, if codim(~n Vx c Vx ) :::: 2 
for all x EX, one can apply the h-principle and homotope ({J to a holomorphic 
section. 

(c) Go from Z to Z by blowing up a subvariety in Z. By generalizing the 
discussion in 3.5.D, one obtains in this way many examples of non locally trivial 
fibrations (say, with projective fibers) where the h-principle applies. 

5. THE H-PRINCIPLE OF ELLIPTIC SHEAVES AND FURTHER GENERALIZATIONS 

The notion of the h-principle makes sense for an arbitrary continuous sheaf <l> 
over X. In fact, this h-principle means that the embedding <I>(X) --+ <1>* (X) is a 
weak homotopy equivalence for <1>* defined in 4.3. (One can also use <1>* from 
[Gro, Chapter 2.2] which leads to the same notion if the underlying space X can 
be locally triangulated at each point x EX.) Then one can axiomatize the proof 
of our h-principle by introducing a notion of an elliptic sheaf which signifies 
the existence of "sufficiently many" homomorphisms <l>N --+ <1>, where <l>N 
denotes the sheaf of holomorphic maps X --+ eN . The resulting general theory 
is somewhat heavy (it contains, for example, basic results of [Gro, Chapters 
2.1 and 2.2] as special cases), and we restrict ourselves in this paper to a brief 
survey of a few simple examples. 

5.1. Stratified submersions. Let X = Xo :J XI :J X 2 :J ... :J Xm be a de-
scending sequence of analytic subvarieties, let Zi --+ Xi be an analytic fibra-
tion for i = 0, 1 , ... ,m (here fibration means a holomorphic map) and let 
hi: Zi --+ Zi_IIXi be holomorphic fiber preserving maps. We consider the sheaf 
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q, of strings of holomorphic sections J;: Xi --+ Zi' i = 0, ... , m, such that 
hi 0 J; = J;-IIXi for all i. 

5.1.A. Example. Take a single fibration Z --+ X and a section 1; : Xl --+ Z 
for Xl eX. Then the sheaf of sections f: X --+ Z satisfying fl X I = 1; is 
an instance of the above q,. 

5.l.B. Theorem. Suppose the fibrations Zi over 1:i = Xi - X i+ l C Xi' i = 
0, ... , m, are submersions admitting fiber dominating sprays. If X is Stein, 
then the embedding q,(X) --+ q,* (X) is a weak homotopy equivalence. 
Proof. An obvious induction by strata 1:i reduces the general problem to that 
of extensions of sections from Xl to X as in Example 5.l.A. To prove the h-
principle for this extension by our earlier argument, we need, besides a (global) 
spray over X - Xl ' a "local spray" over all of X (or rather over compact subsets 
A C X which, in general, meet Xl; compare l.7.C). In other words, we need 
sufficiently many small holomorphic deformations of sections f: X --+ Z, 
which come from holomorphic sections of a (trivial) vector bundle over X and 
which are fixed over Xl. To construct these deformations, we may integrate 
vertical holomorphic vector fields in Z vanishing over Zl which are defined 
near a given section X --+ Z. Notice that Z may not be a submersion over 
Xl (it may even be singular over Xl ), but these fields make sense all the same 
became of the vanishing on Xl condition. Moreover, these fields span all 
vertical tangent spaces of Z over X - Xl and thus give us just as many local 
deformations as we need for the proof. At this point, we invite the reader to 
fill in the details. 

5.l.B'. Remarks. (a) The above h-principle implies its more concrete counter-
part referring to the embedding of q,(X) to the corresponding sheaf of strings 
of continuous sections Xi --+ Zi (compare Example 4.3.B). 

(b) The above h-principle extends to certain subsheaves in cI>, where the 
sections are restricted by prescribing the behavior of the sets J'i J; on X i+l in 
the directions "transversal" to hi+l (Zi) C Zi+l (compare [Gro, pp. 45 and 67] 
below). 

5.2. Open subsheaves of coherent sheaves. We shall treat here only one partic-
ular example which is important for embeddings of Stein manifolds into eN . 
We start with a manifold Y and take the symmetric square Y x Y /Z2 for X . 
Notice that this X is singular if dim Y ;::: 2. We denote by q,N the sheaf 
whose sections f correspond to holomorphic maps j: Y --+ eN satisfying 
j(y" Y2) = - j(Y2' Yl)· Notice that this q,N is a coherent sheaf over X which 
is not locally free for dim Y ;::: 2. Then we consider the maximal (open) sub-

~ N sheaf q, c q, N whose sections correspond to maps f: Y x Y --+ e such 
that 

(a) j(YI' Y2) f:. 0 unless Yl = Y2 and small perturbations of j have the 
same property. 

To understand better the "small perturbation" condition, we restrict our sheaf 
q, N to the diagonally embedded Y c X and observe a natural homomorphism 
from q, N I Y to the sheaf q,' of holomorphic homomorphisms of the tangent 
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bundle T(Y) to the trivial bundle LN = CN X Y ---+ Y. Now we can define <I» 
by the conditions 

(a') l(y l , Y2) =f. 0 for YI =f. Y2; 
(a") the homomorphism f: T(Y) ---+ LN is injective over all Y E Y. 

5.2.A. Example. Every map rp: Y ---+ CN defines a section f of <I» for 
I(YI 'Y2) = rp(y l ) - (Y2)· The homomorphism r equals here the differen-
tial of f. Thus condition (a") says that rp is an immersion while (a') makes 
rp one-to-one. 

5.2.B. Theorem. If Y is Stein, then the embedding <I»(X) ---+ <1»* (X) is a weak 
homotopy equivalence. 
Proof. One proceeds in two steps. First one proves the h-principle over Y c 
X, where the matter reduces to the (already known) h-principle for injective 
homomorphisms T(Y) ---+ LN. Then one extends the h-principle to X J Y as 
in 5.1. Now the "small deformations" one needs come from coherency of <l»N' 
which ensures many homomorphisms of the sheaf of holomorphic functions to 
cI>N J <1», and the openness of <I» keeps the images of "small" functions in <l»N 
inside <1». These give one the required deformations. Here again, we leave the 
details to the reader. 

5.2.B'. Remark. If we decipher the above h-principle and pass to continuous 
objects, we shall have pairs (J, I'), where I: Y x Y ---+ CN is a continuous an-
tisymmetric map satisfying (a') and I': T(Y) ---+ LN is a continuous injective 
homomorphism such that I and f agree near Y c X in an obvious way. 

5.2.B". Corollary. If N > max(n, ~n - 1) for n = dim Y, then cI> admits a 
section over X. Moreover, if the tangent bundle T(Y) is trivial, then <I» admits 
a section for N > n . 

5.2.C. The h-principle for <I» C <l»N extends to the following more general 
situation. Suppose we are given some holomorphic section fo E <l»N for No < 

o 
N and we look for fl E <l»N ' where NI = N - No such that f = fo EB 1;. E <l»N 

I 

is contained in our <I» (compare [G-E2D. These sections 1;. form a sub sheaf 
<1»1 c <l»N (depending on fo) which is "stratified" by "singularities" of fo, and 
the proof of the h-principle for <1»1 can be obtained by induction on the strata 
as earlier. 

5.3. Removal of singularities. We want to explain here how the removal of 
singularities (see [G-Ep G-E2' GroD fits into the philosophy of elliptic sheaves. 
We consider as the simplest example the sheaf <I» of holomorphic immersions 
f: X ---+ C N • If N > dim X, we have sufficiently many deformations of f 
coming from (the sheaf of) holomorphic functions X ---+ C as follows. Take 
a generic projection of an immersed manifold f(X) C CN to CN - I , call the 
resulting map fo: X ---+ CN - I , and write f = fo EB 1;. for the remaining (coor-
dinate) function 1;. : X ---+ C. If N - 1 ;::: dim X , the map fo is an immersion 
away from a subvariety 1:0 c X of positive codimension, and so there exists 
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a nonzero function 'flo on X whose first-order jet vanishes on }:. Then ev-
ery holomorphic function rp on X gives us a "deformation" of f, namely, 
frp = 10$(1; + 'fIorp) which is an immersion of X to eN. Using these deforma-
tions for various rp and an induction on strata, we can reduce the h-principle 
for immersions to Grauert's h-principle (see [G-E2' Gro]). Moreover, we can 
incorporate the constructions in [G-E2] and [Gro] into the framework of the 
present paper and thus obtain the h-principle for immersions X -+ Y, where 
Y is an Elloo -manifold which admits "sufficiently many local splittings" of the 
form Y = Yo x e. We postpone a detailed discussion with definitions and 
proofs until another paper. Here we mention only that the (not defined) split-
ting condition is satisfied by 

(a) the complex Lie groups Y, 
(b) certain homogeneous spaces, such as the projective space and the Grass-

man manifold, 
(c) eN -}: for algebraic ~ with codim~ > 2. 

5.3.A. Remark. The removal of singularities applies to embeddings X -+ eN 
only in a limited way and yields no definite result for N ~ j dim X (see [G-
E2]). On the other hand, the removal of co dimension two subvarieties dealt with 
several times in this paper suggests the h-principle for holomorphic embeddings 
of Stein manifolds X into eN for N ~ dim X + 2, where "embedding" may 
(or may not) include the (quasi)properness in the definition. For example, if the 
tangent bundle T(X) -+ X is trivial, we may expect an embedding X -+ en+2 

for n = dim X . On the other hand, one-to-one maps X -+ en+1 seem to 
display a great amount of "hyperbolic rigidity" which make the h-principle not 
very likely. (Notice that embeddings form a presheaf rather than a sheaf, but 
we can define the h-principle just the same.) The following is a test problem. 
Let 1; be a holomorphic embedding of the unit ball B into eN . When does 1; 
Runge extend to an embedding of the concentric ball of radius two? We expect 
the positive answer for N ~ n + 2 and, in general, negative for N = n + 1 . 
(We may also look at N = n, but this appears to be an easy case.) 

5.4. Algebraic and holomorphic solutions ofthe undetermined partial differential 
equation. Solutions f of certain partial differential equations over X can be 
deformed with functions rp on X in much the same way as immersions were 
deformed in the previous section. 

5.4.A. Example. We denote by go the standard quadratic differential form 
L~=I dz; on eN, and study holomorphic maps f: X -+ eN which are iso-
metric for a given form g on X. That is, .f* (go) = g, which can be equally 
expressed in local coordinates by partial differential equations 

(aJ, ajf) = gij' 

or by the relation 

i, j = 1, ... , n = dim X 
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for the components Iv: X --+ e of J. Given such an J, we consider the 
following system of algebraic equations for 1If: X --+ eN , 

(llf , oJ) = 0, 
(1If, Oij!) = 0, 

(1If, 1If) = 0. 

i=1, ... ,n, 
i,j=1, ... ,n, 

Notice that the first two groups of equations are linear and indicate that IIf is 
go-orthogonal to the osculating bundle of J(X) c eN, while the last makes IIf 
go-isotropic. It is easy to see that the above system admits a nonzero solution 
lifo if N > n(n + 3). Then qJllfo is also a solution for all qJ: X --+ e, and 
a straightforward computation (compare [Gro, pp. 116 and 147]) shows that 
the map JIP = J + qJ lifo satisfies 1; (go) = J* (go) = g. These "deformations" 
of isometric maps by functions allow one to develop a holomorphic (and also 
algebraic) theory of isometric immersions (X, g) --+ eN for large N. Further-
more, similar ideas apply to isometric symplectic immersions (compare [Gro, 
Chapter 3.4]) and to connection inducing maps (compare [Gro, 2.2.6]). In fact, 
one can introduce a rather general class of Elloo -equations where the role of 
the spray is taken over by an appropriate differential operator s(f, qJ) which is 
defined on some space of jets associated to the equation. We shall pursue this 
in another paper. 

5.5. The h-principle for nonholomorphic maps. The h-principle is known for 
many nonlinear partial differential equations (see [Gro]), but apart from the 
Cauchy-Riemann system (studied in this paper) the author knows of only one 
nonlinear elliptic (in the ordinary sense) system where the h-principle is valid. 
Namely, the argument we used for holomorphic maps (or rather a drastically 
simplified version of this argument) leads to the following. 

5.5.A. Proposition. Let X be a Riemannian manifold and Y an affine flat 
manifold. Then harmonic maps X --+ Y satisfy the h-principle provided X is 
open and Y geodesically complete. 

Remarks. (a) Harmonic maps into affine flat manifolds make sense since har-
monic functions on X constitute a linear space containing the constants. With 
this in mind, one can extend Proposition 5.5.A to more general elliptic equa-
tions. 

(b) Recall that X is open if each component of X is either noncom pact or 
has nonempty boundary. 

(c) The h-principle claimed by the proposition says, in effect, that every con-
tinuous map X --+ Y is homotopic to a harmonic map. (The "parametric" part 
of the h-principle is trivial in this case by the linearity of the harmonic equation 
for maps of X to the universal covering of Y which is an affine space.) 

5.5.B. It seems there is no single "truly nonlinear" elliptic equation where one 
can prove the h-principle. Here are some candidates: 

(i) harmonic maps of open Riemannian manifolds X to compact Rieman-
nian manifolds Y of positive curvature, for example, maps to compact 
symmetric spaces Y, 
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(ii) holomorphic maps of open Riemann surfaces into almost complex man-
ifolds (Y, J), where the structure J is a small perturbation of a com-
plex structure Jo such that (Y, Jo) is Elloo ' 

(iii) minimal immersions of smooth open manifolds X (with no additional 
structure) into, for example, Euclidean spaces and spheres of high di-
menSIOn, 

(iv) Einstein metrics on open manifolds, and 
(v) Yang-Mills over R4 and over more general open Riemannian 4-mani-

folds. 
Also notice that practically all "soft" properties related to the h-principle 

(Cartan, Runge, extension from sub manifolds of codimension 2': 2, etc.) re-
main unknown for these equations. 
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