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1. INTRODUCTION 

In this article, we give an explicit elementary proof of a local version of res-
olution of singularities in characteristic zero. "Local" means that the centres 
of blowing up are chosen locally, so that a finite number of finite sequences of 
local blowings-up may be required to cover a neighbourhood of a given point. 
(Hence we use the term "uniformization" rather than "local desingularization," 
although uniformization in our sense is considerably stronger than the original 
idea of Zariski [16].) In the last two decades, several mathematicians (notably 
Abhyankar [1], Hironaka and Spivakovsky [12], and Youssin [14, 15]) have 
proposed simpler or more explicit versions of the inductive procedure in Hi-
ronaka's proof of his great theorem [8]. These approaches would seem to lead 
to some form of uniformization, though full details of none of them have yet 
appeared. The idea of seeking an explicit local procedure to determine the 
centres of blowing up is that a sufficiently good local choice should globalize au-
tomatically. (Our method, for example, gives global resolution of singularities 
of surfaces in any codimension.) 

Throughout this paper, K denotes either the field of real numbers R or the 
field of complex numbers C. We will work in the category of analytic spaces 
over K, although our techniques apply as well to algebraic spaces over a field 
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of characteristic zero. Let M be a smooth analytic space. A family of analytic 
mappings {1C j: M j ---- M} will be said to form a locally finite covering of M 
if: 

(1) The images '!r)M) are subordinate to a locally finite covering of M 
by open subsets. 

(2) If K is a compact subset of M, then there are compact subsets K j of 
M j such that K = U 1C i K). (The union is finite, by (1).) 

Theorem 1.1 (Embedded uniformization). Let X be a closed analytic subspace 
of M. Suppose that X is reduced. Then there is a locally finite covering 
{1C j : M j ---- M} of M such that: 

( 1) Each 1C j is a composite of finitely many local blowing-ups with smooth 
centres in Hilbert-Samuel strata of the successive strict transforms of X . 

(2) For each j, let Xj denote the (final) strict transform of X by 1Cj . Then: 
(i) Xj is a smooth analytic subspace of M j ; 

(ii) 1Cj'(X) = Xj U 1Cj'(SingX) , as sets; 
(iii) Xj and 1Cj' (SingX) simultaneously have only normal crossings. 

The terms used in Theorem 1.1 (which are standard in works on resolution of 
singularities) will be defined in the course of the paper. The singular subspace 
Sing X of X denotes the smallest analytic subspace outside of which X is 
smooth. Conditions (1) and (2)(ii) of the theorem imply that each 1Cj'(SingX) 
(as a set) is a hypersurface given by the union of the inverse images of the centres 
of all the local blowing-ups which make up 1C j' In particular, 1C j restricts to 
an open embedding 

Xj - 1C j' (Sing X) ---- X - Sing X . 

Condition (2)(iii) means that, locally, each M j admits a coordinate system 
(x, ' ... , xn) in which 1Cj' (Sing X) is given by a monomial equation X~l ... x;n 
= 0 , and Xj is defined by the equations Xi = 0 , for certain i. 

We will, in fact, prove a result stronger than Theorem 1.1 which applies to 
analytic spaces that are not necessarily reduced and specifies more precisely the 
centres of blowing up (Theorem 8.6). Local finiteness of the covering {1C j } is 
a direct consequence of our explicit local description of the centre. 

The Hilbert-Samuel function was first used by Bennet [4] and Hironaka [9] 
as a local measure of singularity. Let & = & M denote the sheaf of germs of 
analytic functions on M, and let .fx denote the coherent sheaf of ideals in & 
which determines X (cf. §2). The Hilbert-Samuel function Hx ,x associated to 
X at the point x is defined as 

Hx x(k) = dimK &x k " , .fx x + mx+ 
kEN, 

where mx denotes the maximal ideal of &x. (N always denotes the nonneg-
ative integers.) As a function of x, H x, x is upper semicontinuous in the 
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analytic Zariski topology (Corollary 5.1.3). The Hilbert-Samuel stratum of X 
containing a point Xo is 

The strategy is to cover a neighbourhood of Xo by finitely many finite sequences 
of local blowings-up as in Theorem 1.1 (1), with respect to which the Hilbert-
Samuel functions of the strict transforms of X at Xo necessarily decrease (§§7 
and 8). 

Our theorem will be proved first in the case that X is a hypersurface, in §3. 
We formulate a new resolution problem for principal divisors and obtain the 
hypersurface case (Theorem 3.17) as a consequence of a solution of this general 
problem (Theorem 3.2). When X is a hypersurface, .fx is principal. In this 
case, the Hilbert-Samuel stratum S coincides with the equimultiple locus of 
X through xo' {x EX: /.l(.fx ,x) = /.l(.fx ,xo)} , where /.l(.fx ,x) denotes the 
order (or multiplicity) of .fx,x . 

§§4-8 (which can be read independently of §3) are devoted to proving our 
main theorem by a reduction to the hypersurface case. Hironaka's proof of reso-
lution of singularities [8] does not simplify in the case of a hypersurface because 
the inductive procedure involves passing to higher codimension. In [11], Hi-
ronaka introduced a method to reduce the general problem to the hypersurface 
case by describing X, in a neighbourhood of a given point, as the intersection 
of certain special hypersurfaces whose strict transforms can be traced until the 
Hilbert-Samuel function of X decreases. We realize this scheme in a different 
way. Our approach involves three important technical ideas: 

(1) The "diagram of initial exponents" associated to an ideal in a ring of for-
mal power series (§4); in particular, the relationship between differential prop-
erties of the ideal and combinatorial properties of the diagram. What we call 
the "standard basis" of an ideal (Corollary 4.2.1), which is obtained using the 
diagram and Hironaka's division algorithm (Theorem 4.1.1), is a stronger no-
tion than "standard basis" in the sense used by Hironaka and other authors, and 
obeys a particularly simple law of transformation by blowing up with suitable 
centre when the Hilbert-Samuel function does not decrease (Theorem 7.3). 

(2) Variation of the diagram in analytically parametrized families of ideals 
(first studied in [5]). Upper semi continuity of the diagram with respect to the an-
alytic Zariski topology (Theorem 4.3.2) is elementary, and immediately implies 
semicontinuity of the Hilbert-Samuel function (§5.1). Our techniques provide 
a direct identification of the Hilbert-Samuel stratum and the equimultiple locus 
of the standard basis (§5.3). 

(3) Our elementary notion of "essential variables" of a homogeneous ideal 
(§6). The essential variables of the initial ideal of .fx x and their relationship 

, 0 

with the Hilbert-Samuel stratum of X containing Xo (§7) in some sense replaces 
Hironaka's theory of "maximal contact." 

This article is self-contained apart from our use of the division algorithm and 
of semicontinuity of the diagram of initial exponents. Nevertheless, the reader 
might find that our earlier work on transforming an analytic function to normal 
crossings by blowings-up [7, §4] helps to motivate the proof of the hypersurface 
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case. We express our gratitude to the mathematicians (particularly S. S. Ab-
hyankar, H. Hironaka, M. Spivakovsky, B. Youssin) with whom we have had 
conversations which helped to clarify our ideas on resolution of singularities. 

2. ANALYTIC SPACES AND BLOWINGS-UP 

Throughout this section, M denotes a smooth analytic space (over K), i.e., 
an analytic manifold (over K) regarded as a ringed space (IMI, & M)' where 
IMI is the underlying point set of M and & = & M denotes the sheaf of germs 
of analytic functions on M. 

2.1. Analytic spaces and normal crossings. An open (analytic) subspace U of 
M is a ringed subspace (lUI, &u)' where lUI is an open subset of IMI and 
&u denotes the restriction of & to lUI. A closed analytic subspace X of M 
is a ringed subspace (lXI, &x) determined by a coherent sheaf of ideals J in 
&; i.e., IXI is the support of & /J and &x is the restriction to IXI of & /J . 
We write .fx for J. We will usually not distinguish in notation between X 
and its underlying point set IXI. Let Xo EX. We say that X is smooth at 
Xo if Xo admits a neighbourhood in M with coordinates (Xl' ... ,xn ) such 
that .fx x is generated by some of the Xi' Thus X is smooth if and only if 

, 0 

it is smooth at every point. The singular subspace Sing X of X denotes the 
smallest closed analytic subspace Z of X such that X is smooth at every point 
of X -Z. 

A closed analytic subspace X of M is said to be reduced if, for all X EX, 
&x x contains no nilpotents. Let X be a closed analytic subspace of M. Let 
Xre~ denote the smallest closed analytic subspace Y of X such that I YI = IXI . 
Clearly, Xred is reduced. If K = C, then Xred is the unique reduced analytic 
subspace Y of X such that I YI = IXI. If K = R, there is not, in general, a 
unique reduced analytic subspace Y such that I YI = IXI . 

Let J be a coherent sheaf of ideals in & , and let X be the closed analytic 
subspace of M determined by J. We say that J is a principal divisor (or 
that X is a hypersurface) if Y; is principal for all X EM. A hyperplane 
means a smooth hypersurface. Suppose that J and f are principal divisors. 
We say that J is divisible by f if there is a principal divisor Jt? such that 
J = Jt? f . We write Jt? = J . f- l . (Whenever we write this expression, it 
is implicit that J is divisible by f .) 

Let J c & be a principal divisor, and let X be the hypersurface determined 
by J. Let Xo EM. We say that J or X has only normal crossings at Xo if 
M admits a local coordinate system (Xl' ... ,xn ) centered at Xo in which Y;o 
is generated by a monomial X~I ... x~n . Let Z be a closed subspace of M. We 
say that Z and X (or Z and J) simultaneously have only normal crossings 
at Xo if M admits a local coordinate system centered at Xo in which Y; is 

o 
generated by a monomial and..Y..z is generated by a family of monomials ,Xo 
(therefore, by some of the Xi in the case that Z is smooth at xo)' When 
the conditions above hold at every point of M, we say more briefly, "has only 
normal crossings" or "simultaneously have only normal crossings." 
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Let N be a smooth analytic space and let cjJ: N -+ M be an analytic map-
ping (morphism of analytic spaces). Let J C &'M be a coherent sheaf of ideals, 
and let X denote the corresponding analytic subspace of M. Then cjJ -I (J) 
denotes the coherent sheaf of ideals in &'N generated by J via cjJ (i.e., gener-
ated by the pull-back cjJ*(J» and cjJ-I(X) denotes the corresponding analytic 
subspace of N; i.e., IcjJ-\X)1 = cjJ-I(IXI) and &'q,-I(X) is the restriction to 

IcjJ-I(X)1 of &'NN-I(J). If YEN, then &'q,-I(X),y = &'x,</J(y) ®&M,.p(y) &'N,y· 

2.2. Zariski semicontinuity. Let X be an analytic subset of M and let 1: be 
a partially ordered set. A function r: X -+ 1: is upper semicontinuous in the 
analytic Zariski topology of X (Zariski semicontinuous, for short) if: 

(1) r(x) takes only finitely many values, for x in a compact subset of X. 
(2) For each Xo EX, {x EX: r(x) ;::: r(xon is a closed analytic subset of 

X. 

2.3. The order of an ideal or of a function. Let J be a coherent sheaf of ideals 
in &'. Let x E M and mx denote the maximal ideal of &'x. The order 1l(J;) 
of J at x is the largest integer Il such that J; C m~ . 

Remark 2.3.1. (As a function M -+ N) 1l(J;) is Zariski semicontinuous. 

Suppose that U is an open subspace of M and that f E &'(U). Let x E U. 
The order (or multiplicity) Ilx(f) of f at x likewise means the largest Il such 
that the germ of f at x belongs to m~. (We put Ilx(f) = 00 if the germ of 
f at x is 0.) Suppose that C is a smooth closed analytic subspace of U and 
that x E C. The order Ilc x(f) of f along C at x is the largest Il such that 
the germ of f at x belongs to J! x . 

Remark 2.3.2. Let Xo E C. Clearly, Ilc ,Xo (f) is the generic value of Ilx(f) for 
x in a small neighbourhood of Xo in C. Since Ilx (f) is upper semicontinuous, 
Ilc x (f) = Ilx (f) if and only if Ilx(f) is constant on C near xo· 

, 0 0 

2.4. Blowing up and local blowing up. For each positive integer m, let pm-I (K) 
denote the (( m - 1 )-dimensional) projective space of lines through the origin 
in Km. 

Let V be an open neighbourhood of 0 in K m . Put 

Vi = {(x, l) E V X pm-I(K) : x E I}, 

and let 1t: Vi -+ V denote the mapping 1t(x, I) = x. Then 1t is proper, 1t 

restricts to a homeomorphism over V - {O}, and 1t- I (O) = pm-I(K). The 
mapping 1t: Vi -+ V is called the blowing-up of V with centre {O}. 

In a natural way, Vi is a smooth (algebraic) subspace of V X pm-I(K): Let 
(XI' ... ,xm) denote the affine coordinates of Km , and let ~ = [~I ' ... , ~m] 
denote the homogeneous coordinates of pm-I (K). Then 

Vi = {(x , ~) E V X pm-I (K) : Xi~j = Xj~i' i, j = 1, ... , m}. 
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We can cover V' by coordinate charts 

~' = {(x, c;) E V' : c;i '" A}, i = 1, ... , m, 
with coordinates (Xii' ..• , X im ) , for each i, where 

With respect to these local coordinates, 1C is given by 

Suppose that n > m and that W is an open subspace of Kn- m • Then the 
mapping 1C x id: V' x W -+ V x W is called the blowing-up of V x W with 
centre {O} x W. 

In the same way, if C is a smooth closed analytic subspace of M, we define 
the blowing-up 1C: M' -+ M with centre C: M' is a smooth analytic space 
and 1C is a proper analytic mapping such that: 

( 1) 1C restricts to an isomorphism M' - 1C - I (C) -+ M - C . 
(2) Let V c M be a chart with coordinates given by an analytic isomor-

phism ¢>: V -+ V x W ,where V, Ware open neighbourhoods of the origins 
in Km , Kn- m (respectively), and ¢>( C n V) = {O} x W. Let 1CO : V' -+ V 
be the blowing-up of V with centre {O}. Then there is an isomorphism 
¢>': 1C -I (V) -+ V' x W such that the following diagram commutes: 

V'xW 

V ~ VxW 

Conditions (1) and (2) above define 1C: M' -+ M uniquely, up to an iso-
morphism of M' commuting with 1C. 

Suppose that V is an open subspace of M and that C is a smooth closed 
analytic subspace of V. Let 1C: V' -+ M denote the composition of the 
blowing-up V' -+ V with centre C, and the inclusion V <.....t M. We call 1C a 
local blowing-up of M (over V, with smooth centre C). 

We will consider mappings 1C: N -+ M obtained as the composition of a 
finite sequence of local blowings-up; i.e., 1C = 1C1 0 1C2 0 ... 0 1Ck ' where, for each 
i = 1, ... , k, 1Ci : Vi+1 -+ Vi is a local blowing-up of Vi' and VI = M, 
Vk+1 = N. 

2.5. The strict transform. Let 1C : M' -+ M be a local blowing-up over an open 
subspace V of M with smooth centre C C V. Let X be a closed analytic 
subspace of M. 

First suppose that X is a hypersurface. Let Xo E V. There is a neighbour-
hood V of Xo in V in which .fx is generated by an analytic function f(x). 
Suppose that Xo E C. Let f..l = f..lc , Xo (f) . Then we can assume that V has co-
ordinates x = (w, Z), W = (WI' ••• , W n_,) , Z = (ZI ' ••• , zr)' in which C is 
given by Z = 0, and that f..lc x (f) = f..l for all x E C n V . Over V, 1C restricts 
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to the blowing-up 7C: Vi -+ V of V with centre C n V. Then Vi = U;=I ~' , 
where, for each i, ~' has a coordinate system (Wi, ZI), Wi = (w~ , ... , w~_r) , 

I (' '). h· h . . b I I d I I ·f Z = ZI' ••• ' zr ,In w lC 7C IS gtven y w = w , Zj = Zj' an Zj = ZjZj 1 

j =I- i. The strict transform X' of X by 7C is defined in Vi as X' = U;= 1 X; , 
where X; is the closed analytic subspace of ~' such that ~, is generated in 

I 

~' by 
/ 

I I 1 I I I I I I 
(w , Z ) = --;-;f(w , ZjZI ' ••• , zi' ••• , ZjZr)· (z) 

(If Xo ¢ C , then we can assume C n V = 0. Then 7C restricts to an isomor-
phism 7C: Vi -+ V over V, and ~, is generated in Vi by r = f 0 7C .) 

We also call (the germ at x~ E 7C -I (xo) of) r the strict transform of (the germ 
at Xo of) f; of course, r E & M' x' is well-defined only up to multiplication 

, 0 

by an invertible factor. 
In general, let Xo E V and let x~ E 7C -I (xo ). Then the strict transform x' 

of X by 7C is defined near x~ as the intersection of the strict transforms of all 
the hypersurfaces containing X near xo; i.e., ~, x' is the ideal generated by 

, 0 

the strict transforms r of all f E J'x ,Xo • We also call ~, the strict transform 
of the ideal sheaf ~ . 

The strict transform X' of X by 7C is the smallest closed analytic subspace 
of 7C -I (X) such that 7C induces an isomorphism X' - 7C -I (C) -+ X - Cover 
V. (We will not use this fact.) 

We also define the strict transform of X by a finite sequence oflocal blowings-
up with smooth centres, by iterating the definition above. 

3. THE HYPERSURFACE CASE 

Let M be a smooth analytic space (over K). We consider data of the fol-
lowing form: 

((~)P=I , ... ,s; f; Jr), 
where Y; , ... , Y; , f , and Jr are principal divisors on M, and Jr has only 
normal crossings. Let JL be a positive integer. Let V be an open subspace of 
M , and let C be a smooth closed subspace of V. 

Definition 3.1. We say that C is JL-admissible (as a centre of local blowing-up 
over V) if: 

( 1) C and Jr simultaneously have only normal crossings. 
(2) ICI C {x E V: JL(~,x) ? JL, P = 1, ... , s}. 

Let 7C: Vi -+ M denote the local blowing-up of M over V with centre C. 
If C is JL-admissible, then we can define a transformation 

((~\=I , ... ,s; f'; Jr') 
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of the above data by 7C as follows: Let ,% denote the ideal sheaf of 7C -I (C) 
in &u'. Clearly, each 7C-I(~) is divisible by ,%11. Put 

'-I -II 
~ = 7C (~).,% , p = 1, ... , s, 

, -I 
f = 7C (f), 
,J?' = 7C -I (,J?) . ,%11 • 

By Definition 3.1 (1), ,J?' has only normal crossings. Therefore, we can likewise 
define a transformation of the given data by a sequence of local blowings-up 
whose centres are .u-admissible with respect to the successive transforms of the 
given data. 

Theorem 3.2. Let ((~)P=I , ... ,s; f;,J?) be as above. Let .u be a positive inte-
ger. Then there is a locally finite covering {7C j : M j --t M} of M such that: 

( 1) Each 7C j is a composite of finitely many local blowings-up with smooth 
centres which are .u-admissible with respect to the successive transforms 
of ((~); f;,J?)· 

(2) For each j, let ((.J}p); fj;~) denote the (final) transform of ((~); 
f ;,J?) by 7C j' Then fj and ~ simultaneously have only normal 
crossings at every point x' where .u(.J}p, x') ~ .u, p = 1 , ... , s. 

Definition 3.3. Let x EM. Let v (fx) denote the order of the ideal in &x = 
& M , x obtained by dividing fx by all factors in common with ~. Pre-
cisely: Let f and D be generators of fx and ~ , respectively. Put v(fx) = 
min{.ux(g) : f = rI=lli' g, where g E &x and, for each i = 1, ... , r, l; E mx 
and Ii divides D}. (Take v(fx) = 0 if fx = &x .) 

Remark 3.4. v(fx) is invariant under local analytic coordinate changes. As a 
function of x EM, v(fx) is Zariski semicontinuous (cf. §2.2). 

Remark 3.5. Locally, all the notions involved in Theorem 3.2 can be translated 
into the language of analytic functions. Theorem 3.2 is local in nature. We will 
use the following notation in the proof. Let fp(x) , p = 1, ... , s, f(x) , and 
D(x) denote analytic functions which generate ~, p = 1, ... , s, f, and 
,J? , respectively, at every point of some open subspace V of M. Suppose that 
V has a coordinate system x = (XI' ... ,xn ). Let I c {I, ... , n}, and let C 
be the smooth subspace of U determined by the ideal sheaf in &u generated 
by the xk ' k E I. Let 7C: V' --t M denote the local blowing-up over V with 
centre C. Then V' is covered by coordinate charts V~, k E I , such that, for 
each k E I, 7Ck = 7CIV~ is given, in coordinates y = (y\ ' ... 'Yn) of V~, by 

x, = y, ' I fj. I, 
x k = Yk' 
x'=YkY" IEI-{k}. 
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If C is .u-admissible, then ~' , p = 1 ... , s, f' , and 2" are generated in 
U~ by the following transforms of fp, p = 1, ... , s, f, and D (respectively): 

~(y) = fp(7Ck(y)) . y;Jl , 

/ (y) = f(7Ck (Y)) , 

D' (y) = D(7Ck (Y)) . y~ . 

p = 1, ... , s, 

If F, G E &'(U) (or &'x)' we will say that F is equivalent to G (and write 
F '" G) if F equals G times a factor which is invertible in &'(U) (or &'x) . 

Proof of Theorem 3.2. It suffices to work locally with the functions introduced in 
Remark 3.5. Let n = dimM. We can assume that f is divisible by 1; , ... , Is 
and D. Let Xo E U. Suppose that f(xo) = 0 and that .uxo (fp) ~ .u, p = 
I, ... , s. Put d(xo) = l/x (f). Using the Weierstrass preparation theorem, we 

o 
can assume that U = V x ~,where V and ~ are open neighbourhoods of 0 
in Kn - I and K (respectively), that Xo = 0, and that 

f(x) '" x~ II (x)m, .. ·Ir(x)m, g(x), 

x = (XI' ... , xn ), where: 

(3.6.1) x = (XI' ... ,xn_ l ) and ~ = (~I' ... '~n-I) E Nn- I . 

(3.6.2) li(x) = xn + ai(x) , i = I, ... , r, where the ai E &,(V) are distinct 
and ai(O) = 0, i = I , ... , r. 

(3.6.3) g(x) = x: + ~~=I cj(x)x:- j , where d = d(O) and, for each j = 
1, ... , d, cj E &,(V) and .uo(cj ) ~ j. 

(3.6.4) The Ii' i = I, ... , r, and the x k where ~k > 0, k = 1, ... , n - I, 
are precisely the irreducible factors of D. Moreover, none of these factors 
divides g (in germs at 0). 

We can, of course, find a local representation of f as above, with ~ = 0, 
but it is convenient to allow an exceptional factor x~ in order to formulate an 
appropriate induction. The integer r = r(O) in the representation of f above 
depends on the coordinate system (XI' ... , xn ). However, if we consider the 
analogous representation of f at points X near 0, in the coordinates obtained 
by translating the original coordinates to x, then the associated r(x) is Zariski 
semicontinuous. 

We will argue by induction on the triple (n, d, r). (Triples (n, d, r) are 
considered to be ordered lexicographically.) 

If n = I, then f already has only normal crossings throughout M. If 
d = 0, then f(x) already has only normal crossings in a neighbourhood of O. 
Suppose that d ~ I . Then, after a coordinate transformation 
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we can further assume that c l = 0; i.e., 
d 

(3.7) d '"' ~ d-j g(x) = xn + ~ cj(x)xn . 
j=2 

The significance of this representation is that J1.x (g) = d, x = (XI' ..• , xn) , if 
and only if xn = 0 and J1.x(c) ~ j, j = 2, '" , d . 

Now, if r = 0 and cj = 0, j = 2, ... , d, then g(x) = x: and I(x) 
already has only normal crossings in a neighbourhood of O. Otherwise, at least 
one of the ai' i = 1, ... , r or cj ' j = 2, ... , d, is not identically zero. 
Let us assume that this is the case. We will show that, with U small enough, 
there is a covering of U by finitely many finite sequences of local blowings-
up with smooth centres which are J1.-admissible with respect to the successive 
transforms of our data ((Ip); I; D), such that, for each sequence, the pairs 
(d' (x'), r' (x')) analogous to (d, r) for the final transform ((t;); r; D') in 
suitable local coordinates at each point x' where J1.x ' (t;) ~ J1., P = 1, ... , s, 
will be strictly less than (d, r) (in the lexicographic ordering of such pairs). 
This will complete the proof. 

Since 1; , ... , Is each divides I, the representation of I above implies that, 
for each p = 1, ... , s, 

r 

Ip(x) ~ x"p II li(xtp; . gp(x) , 
i=1 

where: 

(3.8.1) '1p = ('1pl' ... , '1p,n-l) E N n- I and '1p $ ~. (This means '1pk $ ~k' 
k = 1, ... , n - 1 .) 

(3.8.2) mpi $ mi , i = 1, ... , r. 
(3.8.3) gp divides g. 

Let dp = J1.o(gp) ' p = 1, ... , s. 

Remarks 3.9. Effect 01 blowing up. To elucidate the argument following, it is 
helpful to first compute the effect on our data of blowing up U with centre 
satisfying certain conditions. Let / c {I , ... , n - I}. Let 7C: U' ---. U denote 
the blowing-up with centre 

Z/ = {x E U : xn = 0 and xk = 0, k E I} . 

Then U' is covered by coordinate charts U;, k E / u {n} ,where 7C k = 7C I U; 
is given in coordinates Y = (y I ' ... , Y n) of U; by 

l¢/u{n}, 

xk = Yk' 
x{=YkY" IE(/u{n})-{k}. 

If Y = (Y I ' ••• , Yn) E U;, we write frk(ji) = 7Ck(Y)~ . 
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Suppose that the centre Z/ lies in the "equimultiple locus" of I~I .. . 1';' g ; 
i.e., in the locus of points where this function has its maximum multiplicity 
2:;=1 mj + d. This equimultiple locus is given by the conditions 

xn = 0, 
fij((a) ~ 1, i = 1, ... , r, 
fij((C) ~ j, j = 2, ... , d. 

Then the composites Ij ° 7C and g ° 7C can be factored as analytic functions in 
the various coordinate charts of V' , as follows. In V~, 

(3.9.1) 

In V~, for fixed k E I , 

(lj07Ck )(Y)=h(yn +a;Cy», i=I, ... ,r, 

d (d ~,_ d- j ) (g ° 7Ck)(Y) = Yk Yn + ~ cj(Y)Yn ' 

where 
'( _) aj (1rk (Y» 

a· Y = , 
I Yk 

i = 1, ... , r, 

c'.(y) = cj (1rk (y» , 
] Y~ 

j = 2, ... , d. 

(3.9.2) The formulas (3.9.1) imply that f ° 7Cn already has only normal cross-
ings at every point of V~ - UkE/ V~. In particular, suppose there is a locally 
finite covering of UkE/ V~ satisfying the conclusion of Theorem 3.2. Then there 
is a locally finite covering of V with the same property. 

Now suppose that, in addition to the assumptions on Z/ above, 

Z/C{XEV: fix(Ip)~fi, p=I, ... ,s}. 

Then Z/ is fi-admissible. Since Z/ lies in the equimultiple locus of g, it lies 
in the equimultiple locus of each gp' by (3.8.3). Fix k E I. For Y E V~ , write 

I; (y) = Y n + a;(y) , i = 1 , ... , r, 
d 

, d ,",' _ d- j 
g (y) = Yn + L...Cj(Y)Yn ' 

j=2 

, 1 
gp(Y) = d gp(7Ck (Y», p = 1, ... , s. 

Y/ 
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In U~, the transforms ((J;); r; D') of our data ((ip); j; D) are given by 
I r r (y) = (f 0 7rk )(Y) =.l IT l;(y)mi g' (y), 

i=1 

where ~' = (~;, ... , ~~_I) and 

~; = ~I ' I -/= k , 
r 

~~ = L~/+ Lmi+d; 
lEI i=1 

D' (y) = yZ(D 0 7rk )(y); 

p=I, ... ,s, 
i=1 

h ' (' ') d were 17p = 17pl '"'' 17p , n-I ' p = 1 , ... , s, an 

l-/=k, 
r (3.9.3) 

17~k = L 17pl + L mpi + dp - J1.. 
lEI i=1 

We now complete the proof of Theorem 3.2. Let e = max(d, J1.). Let us 
consider the following data, 

((hq)q=I, ... ,t; h; E), 

in one fewer variable x = (XI' .•. , x n _ l ) E V: 

(3.10.1) The hq(x) are all the nonzero functions on V in the following list: 

( ~ )e l ai X , i=I, ... ,r; 
( ~ )e!/j cj X , }=2, ... ,d; 

(x~p(/(!1- 2:;~1 mpi-dp) , 

for all p such that J1. - 2:;=1 mpi - dp > O. 

(3.10.2) h(x) is the product of all the functions hq(x) and all of their nonzero 
differences. 

(3.10.3) E(x) = I1~kfOxk' 
By induction on n, there is a locally finite covering of V by finite sequences 

of local blowings-up with smooth centres which are e!-admissible with respect 
to the successive transforms of the data above, such that, for each sequence, 
if ((h~); h' ; E') denotes the (final) transform of the data, then h' has only 
normal crossings at every point where the multiplicity of each h~ is at least e! . 

We will take the transforms of our original data ((ip); j; D) by a locally 
finite covering of U induced by that of V above: Consider one of the local 
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blowings-up involved in the locally finite covering of V; for simplicity, say the 
first, fc: V' ~ V (which we can assume covers all of V). Let C denote the 
centre of fc. Let 7r: U' ~ U be the blowing-up of U with the same centre, 
considered as a subspace C of U. 

Since C is e!-admissible for the data ((hq); h; E), it follows that C is J.l-
admissible for ((Ip); f; D): First, C and D simultaneously have only normal 
crossings because (by (3.10.3) and the fact that D divides f) each factor xk 
of D, k = 1, ... , n ~ I, divides E, and (since the functions hq include 
all nonzero a7!, according to (3.10.1)) C lies in the zero set of each factor 
Ii of D. Secondly, the inclusion of all nonzero a7! and c;!/J among the hq 
guarantees that C lies in the equimultiple locus of each Ii and of g (by the 
representation (3.7)), hence also of each gp (by (3.8.3)). Therefore, for each 
p such that E;=I mpi + dp ~ J.l, C c {x: J.lx(lp) ~ J.l}. On the other hand, for 
each p such that J.l> E;=I mpi + dp , C C {x: J.lx(x Yip ) ~ J.l- E;=I mpi - dp}, 
by (3.10.1), so that again C c {x : J.lx(lp) ~ J.l} . 

After a change of coordinates in V, we can assume that C is of the form 
ZI' as in Remarks 3.9. Then (with the notation of Remarks 3.9), for each 
k E I, 7rIU~ is given by 

On the other hand, f 0 7r already has only normal crossings at every point 
of U~ - UkE1 U~ , so that condition (2) of Theorem 3.2 already holds for the 
transforms of our data in a neighbourhood of U' - UkE1 U~ (cf. (3.9.2)). 

Let k E I. For each Yo E U~ , let (d' (Yo), r' (Yo)) denote the analogue of the 
pair (d, r) for the data ((f;); r; D') in the coordinates (Y I , ... , Yn ) of U~, 
translated to Yo' From the formulas of Remarks 3.9, (d' (Yo), r' (Yo)) ~ (d, r) 
and (d' (Yo), r' (Yo)) = (d, r) only if YOn = 0, where Yo = (Yol ' ... , YOn)' In 
some neighbourhood of such a point, we can repeat the argument above for the 
subsequent local blowings-up involved in the locally finite covering of V. If 
(d'(yo)' r'(yo)) < (d, r), then, by induction on (d, r), we can assume there is 
a locally finite covering of some neighbourhood of Yo with respect to which the 
conclusion of the theorem holds. Finally, then, as a result of our induction on 
n, we can assume (that the nonzero functions in the following list satisfy): 

i=I, ... ,r, 
(3.11.1) j=2, ... ,d, 

for all p such that J.l- E;=I mpi - dp > 0, where each a i = (ail' ... , ai,n-I)' 
n-I d Pi = (Pil , ... , Pi,n-I)' and Yp = (Ypl ' ... , Yp,n-I) belongs to N ; an 
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(because of (3.10.2) and the elementary Lemma 3.12 following): 

(3.11.2) {O:;, Pj , Yp} is totally ordered with respect to the induced partial 
ordering from Nn - I (0 ~ e means Ok ~ ek , k = 1, ... , n - 1, where ° = 
(°1 , ••• 'On_I) and e = (e l ' ••• , en_I))' 

/ Lemma 3.12. Let z = (Zl' ... , z/). Let 0:, p, YEN and let a(z), b(z), 
c(z) be invertible elements of K{z}. If 

a(z)za -b(z)zP =c(z)zy, 

then either 0: ~ P or P ~ 0: . 

Proof. Put Ok = min(O:k' Pk), k = 1, ... , I, where 0: = (0: 1 , ••• ,0:/), P = 
(PI' ... , p/). Let ° = (01"" , 0/). If ° = 0:, then 0: ~ p. Otherwise, 
choose k such that Ok # O:k' Then, on {z: zk = O}, we have za-o = 0 
and 0 # -b(z)zP-o = c(z)zl'-o. Since band c are invertible, it follows that 
P = y. Then a(z)za = (b(z) + c(z))zp , so that P ~ 0:. 0 

To finish the proof of Theorem 3.2, let (J denote the smallest among all the 
exponents 0:;, Pj , and Yp; say, (J = ((JI' ... , (In_I)' Then I(JI = EZ:: (Jk 2: 
e!. Put 

Z = {x E V: I;(x) = 0, i = 1, ... , r; f..lx(g) = d; f..l)ip) 2: f..l, P = 1, ... , s} . 

Clearly, 

Z={XEV:xn=oand L (Jk2: e!} , 
kEJ(x) 

where J(x) = {k : xk = 0, k = 1, ... , n - I}. let S denote the collection 
of minimal subsets I of {I, ... , n - I} such that EkE/ (Jk 2: e!, i.e., the 
collection of subsets I of {I , ... , n - I} such that 

o ~ L (Jk - e! < (J/ ' 
kEf 

for all I E I. For each IE S, put 

Z/ = {x E V: xn = 0 and xk = 0, k E I} . 
The Z/, I E S, are the irreducible components of Z . 

Let I E S. Let 7r: V' --> V be the blowing-up with centre Z/. (We use the 
notation of Remarks 3.9.) By (3.9.2), it is enough to consider f 0 7rk ' where 
7rk denotes 7r restricted to the chart V~, for each k E I. 

Fix k E I. Consider the transforms ((.t;);!; D') of our data in the chart 
V~. For each of the symbols we have associated to ((ip); f; D), we will use 
the same symbol primed to denote the analogous notion for the transformed 
data ((.t;);!; D') in the coordinates (YI' ... ,Yn ) of V~ . 

If (d'(y) , r'(y)) < (d, r) for all y E V~, then in this chart we are done. 
Suppose that (d' (Yo)' r' (Yo)) = (d, r) , for some Yo E V~ , Yo = (Yol ' ... , YOn)' 
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Then YOn = 0 and, since the a; and < are monomials (times invertible factors) 
in the coordinates of U~, (d'(O) , r'(O)) (or (d', r')) equals (d, r). 

We have , 
ail = ail' I I- k, 

a~k = L ail - e!; 
lEI 

P;I = Pj !' I I- k, 
P;k = L PjI - e! . 

lEI 

Suppose that (d', r') = (d, r). Then each d; = dp 

that, for every p = 1 , ... , s, 

, 
and each m pi = m pi ' so 

r r 

f.i - L m~i - d; = f.i - L m pi - d p . 
i=1 i=1 

Therefore, for each p such that f.i - L~=I m pi - d p > 0, 
, ' , e.Ylp 

Yp = /I - ""r m - d ' 
r- L.Ji=] pi p , 

where YIp is given by (3.9.3), so that 

Thus, 

, 
Ypl = Ypl' ll-k, 
, - '" , Y pk - ~ Y pi - e .. 

lEI 

, 
al = al ' I I- k , 
a~ = L al - e! . 

lEI 

In particular, la'i < lal (while la'i ~ e!). 
In other words, either (d', r') < (d, r) or (d', r') = (d, r) and e! :::; la'i < 

lal. In the latter case, it follows that, after at most lal/e! + 1 local blowings-up 
over successive coordinate charts, as above, if (d, r) has not decreased, then 
some YIp where f.i - L~=] m pi - d p > 0 decreases to O. But this means that the 
transform of ;; has multiplicity L~=] m pi - d p < f.i at 0 and hence throughout 
the chart. This completes the proof of Theorem 3.2. 0 

Now let X be a closed analytic hypersurface in M. Let Xo EX. It is 
easy to see that if f.i(Jx ,x) is locally constant on X near xO ' then either X red 
is smooth at Xo or IXI has codimension at least 2 at xO' (The latter can 
occur only if K = R.) On the other hand, suppose that f.i(Jx ,x) is not locally 
constant on X near xO' Then Xo E Sing X . Moreover, if x~ E {x: f.i(Jx , x) = 
f.i(Jx , xo} is close enough to Xo and f.i(~,) is locally constant near x~, then 
IXI has codimension at least 2 at x~ (in particular, x~ E SingXred ) . 
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Suppose that X is a closed analytic hypersurface in M and that Ji'?' is 
a principal divisor on M having only normal crossings. Let V be an open 
subspace of M, and let C be a smooth closed subspace of V. Suppose that 
C satisfies the following two conditions: 

(3.13.1) C and Ji'?' simultaneously have only normal crossings. 

(3.13.2) C c X and J.l(fx,) is constant on C. 
Let n: V' -+ M denote the local blowing-up of M over V with centre 

C. We define a transformation (X', Ji'?") of (X, Ji'?') by n as follows: Let 
X' denote the strict transform of X by n; i.e., fx, = n- 1(fx) .,%-J1. , where 
,% denotes the ideal sheaf of n- 1(C) in &'u' and J.l = J.l(fx x), x E C. Put 
Ji'?"= n- 1(Ji'?').'%J1.. Clearly, J.l(fx, x')~J.l,forall xEn- 1(C). 

By (3.13.1), Ji'?" has only normal crossings. Therefore, we can likewise define 
a transformation of the given data (X, Ji'?') by a sequence of local blowings-
up whose centres satisfy conditions (3.13.1) and (3.13.2) with respect to the 
successive transforms of (X, Ji'?') . 

Definition 3.14. Suppose that Xred is smooth and J.l(fx ,x) is locally constant 
on X. We will say that C is (a)-admissible (as a centre of local blowing up 
over V) if C satisfies conditions (3.13.1), (3.13.2) above and the following 
additional condition: 

(a) C is nowhere dense in X. 

Proposition 3.15. Let X be a closed analytic hypersurface in M, and let Ji'?' 
be a principal divisor on M having only normal crossings. Suppose that X red 
is smooth and J.l(fx ,x) is locally constant on X. Then there is a locally finite 
covering {n j : M j -+ M} of M such that: 

(1) Each n j is a composite of finitely many local blowings-up with smooth 
centres which are (a)-admissible with respect to the successive transforms 
of (X, Ji'?'). 

(2) For each j, let (Xj ' ilj) denote the (final) transform of (X, Ji'?') by 
1f"j" Then Xj,red is smooth, J.l(fxj,x') is locally constant on X j ' and 
Xj and ilj simultaneously have only normal crossings. 

Proof. If V is an open subspace of M and C is a smooth closed subspace 
of V satisfying (3.13.1) and (3.13.2), then (locally) C is nowhere dense in X 
unless X and Ji'?' already simultaneously have only normal crossings. Clearly 
then, the result follows from Theorem 3.2 applied to the data (fx; fx'Ji'?'; Ji'?') , 
with J.l the (locally) constant value of J.l(fx ). 0 

Definition 3.16. We will say that C is (b)-admissible (as a centre of local 
blowing-up over V) if C satisfies conditions (3.13.1), (3.13.2) above and the 
following additional condition: 

(b) For all Xo E C, either IXI has codimension at least 2 at Xo or J.l(fx x) 
is not locally constant on X near xo' 
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Theorem 3.17. Let X be a closed analytic hypersurface in M, and let /I' be 
a principal divisor on M having only normal crossings. Then there is a locally 
finite covering {n j : M j -> M} of M such that: 

( 1) Each n j is a composite of finitely many local blowings-up with smooth 
centres which are (b)-admissible with respect to the successive transforms 
of (X, /1'). 

(2) For each j, let (Xj'~) denote the (final) transform of (X, /1') by 
n j . Then X j , red is smooth and p(fxl ,x') is locally constant on X j . 

Proof. The theorem follows easily from the following weaker claim: There is a 
locally finite covering {n j : M j -> M} of M satisfying (1) and the following 
condition: 

(2') For each j, let (Xj'~) denote the transform of (X, /1') by nj . 
Then, for each x~ EX. , either X. d is smooth at xo' and p(J.x I) is locally 

J J,re l'X 

constant on X near x~, or p(fx x') is not locally constant on X. near xo' J 1 ' J 

but Xj and ~ simultaneously have only normal crossings at x~. 
Let K be a compact subset of M. It suffices to prove the claim with M 

replaced by some open neighbourhood W of K. Let p = max{p(J.x ): x E ,x 
K}. Clearly, we can assume that p > 0 and that K is small enough that one 
of the following conditions holds: 

(i) p(Jx x) = p and X red is smooth at x, for all x EX n K . 
(ii) For all Xo E K such that p(fx ,xo) = p, either p(fx ,x) is not locally 

constant near Xo or IXI has codimension at least 2 near xo' 
In case (i), there is nothing to do. In case (ii), by Theorem 3.2 applied to 

the data (Jx ; fx . /I' ; /1') in a suitable neighbourhood W of K, there is a 
locally finite covering {n j: UJ -> W} of W satisfying (1) and the following 
condition: 

(2") For each j, let (Xj'~) denote the transform of (X, /1') by nj . 
Then p(Jx I) 5 p, for all x EX., and X. and /? simultaneously have 

l'X J J J 

only normal crossings at every point x~ where p(Jxj , x) = p . 
The claim above follows by induction on p. 0 

Theorem 3.17 and ProPositio~ 3.15 together give a complete embedded uni-
formization statement in the case of a hypersurface. We obtain Theorem 1.1 
in the hypersurface case from Theorem 3.17 in the case that X is reduced and 
/I' = &:\1" 

4. THE DIAGRAM OF INITIAL EXPONENTS 

Let K be a field. Let K[xD denote the ring of formal power series in 
x = (XI' ... ,xn ) with coefficients in K. 

If a = (aI' ... ,an) E N n , put lal = a l + ... + an' The lexicographic 
ordering of (n + I)-tuples (Ial, aI' ... ,an) induces a total ordering of N n . 
Let f E K[xD. Write f = I:"ENn a"xCt 

, where x" denotes X;'I ... x~'n. Let 
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suppf = {a E N n : 10. =I- O}. The initial exponent expf of f is defined as 
the smallest element of supp f. If a = exp f, then aax" is called the initial 
monomial mon f of f. 

4.1. Hironaka's division algorithm. Let gl, ... , gt E K[x], and let a i = 
exp gi, i = 1, ... , t. We associate to aI' ... , at the following decomposition 
of N n : Set ~o = 0. Define 

i-I 

~i = (a i + Nn) - U ~j' 
j=O 

Put ~ = N n - U:=I ~i • 

i=I, ... ,t. 

Theorem 4.1.1 [2, Chapter 1, § 1; 5, Theorem 6.2]. (1) For every f E K[x], there 
exist unique qi E K[x], i = 1 , ... , t, and r E K[x] such that a i + supp qi C 
~i' i = 1 , .. , , t, supp r C ~, and 

i=1 

(2) Suppose that K = K (i.e., R or C) and that f and gl, ... , gt all 
converge. Then the qi and r all converge. 

Remark 4.1.2 [5, Remark 6.6]. Let m denote the maximal ideal of K[x]. In 
Theorem 4.1.1, if kEN and f E mk, then r E mk and each qi E mk-I"il 

(where ml = K[x] if I ~ 0) . 

4.2. The diagram of initial exponents. Let K{x} denote the ring of convergent 
power series in x = (XI' ... , x n ). Let I be an ideal in K[x] or K{x}. The 
diagram of initial exponents 91(I) c N n is defined as 

91(I) = {exp g: gEl}. 

Clearly 91(I) + N n = 91(I). If Ie K{x}, then 91(I) = 91(/· K[x]). 
Suppose that 91 c N n and 91+Nn = 91. Then there is a smallest finite subset 

m of 91 such that 91 = m + N n • We call m the vertices of 91. 
The following is a simple consequence of Theorem 4.1.1. 

Corollary 4.2.1 [5, Corollary 6.8]. Let I be an ideal in K[x] or K{x}. Let ai' 
i = 1 , ... , t, denote the vertices of 91(I). Choose gi E I such that a i = exp gi , 
i = 1, ... , t, and let {~i' ~} denote the decomposition of N n determined by 
the ai' as in §4.1 above. Then 

(1) 91(I) = Ui ~i and the gi generate I. 
(2) There is a unique set of generators l of I, i = 1 , ... , t, such that, for 

each i, supp(l - X"i) C ~; in particular, mon l = x Ui . 

We call l , ... , l the standard basis of I. 
Let g'(n) = {91 c N n : 91 + Nn = 91}. If 91 E g'(n), let 

K{x}'Jl={fEK{x}: suppfn91=0}. 
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Clearly, K{x}'J! is stable with respect to differentiation. 
We totally order 9'(n) as follows. To each 1)1 E 9'(n) , we associate the 

sequence v(l)1) obtained by listing the vertices of 1)1 in ascending order and 
completing this list to an infinite sequence by using 00 for all the remaining 
terms. If 1)11,1)12 E 9'(n) , we say that 1)11 < 1)12 provided that V(I)1I) < 
v(1)12) with respect to the lexicographic ordering on the set of all such sequences. 
Clearly, if 1)11 J 1)12 , then 1)11 :5 1)12 • 

4.3. Variation of the diagram in parametrized families. Let U be an open sub-
set of Km , and let X be a closed analytic subset of U. Let &,(X)[y] denote 
the ring of formal power series in y = (y I ' ... , y n) with coefficients in the ring 
&,(X) of analytic functions on X. 

Let x EX. There is an evaluation mapping g t-+ g(x) of &,(X) onto 
K. If f = 2:"ENn f"y" E &,(X)[y] , we write f(x; y) = 2:f,,(x)y" when the 
coefficients are evaluated at x. 
Example 4.3.1. Let V be an open subset of K n , and let &' = &'v' Let J be a 
coherent sheaf of ideals in &'. Suppose that 1; , ... , ~ E &,(V) generate ~ , 
for all x E V. For each i = 1, ... , q, !;(x + y) = L" D"!;(x)y" la!, where 
D" = al"l/ay~I ... ay~n and a! = al!···an!. Then l = LD"!; ·y"la! E 

&,(V)[y] and the l(x; y) generate ~, for all x E V. 

Theorem 4.3.2 [5, §7; 6, Theorem 4.4]. Let l, ... ,.r E &,(X)[y]. For 
each x EX, let fx denote the ideal in K[y] generated by the l(x; y), 
i = 1, .,. , q, and put I)1x = l)1(fx). Then I)1x' as a function X -+ 9'(n), is 
Zariski semicontinuous. 

5. THE HILBERT-SAMUEL FUNCTION 

Let A be a Noetherian local ring. The Hilbert-Samuel function H: N -+ N 
of A is defined by 

kEN, 

where m denotes the maximal ideal of A and K is the field Aim. Let NN 
denote the set of functions from N to itself. NN is partially ordered as follows. 
If H, H' E NN , then H < H' if H(k) :5 H' (k) for all k, and H(k) < H' (k) 
for some k. 

In this section, we prove three important theorems concerning the Hilbert-
Samuel function: 

(1) The Hilbert-Samuel function of the formal local ring associated to each 
ideal in a family parametrized as in §4.3 is Zariski semicontinuous on 
the space of parameters. 

(2) Any decreasing sequence of Hilbert-Samuel functions associated to for-
mal (or analytic) local rings stabilizes. 

(3) For each point of an analytic space, the Hilbert-Samuel stratum coin-
cides (locally) with the equimultiple locus of the standard basis of the 
defining ideal (with respect to any local embedding in affine space). 
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5.1. Semicontinuity of the Hilbert-Samuel function. Let A = K{x} or K[x] , 
where x = (XI' '" , xn ), and let I be an ideal in A. Let HI denote the 
Hilbert-Samuel function of AI I; i.e., 

HI(k)=dimK Ak I' kEN, 
I+m + 

where m denotes the maximal ideal of A. 

Lemma 5.1.1. For every kEN, HI(k) is the number of elements a E N n such 
that a ¢. 1)1(1) and lal S k. 
Proof. By Remark 4.1.2. 0 

It follows from Lemma 5.1.1 that HI(k) coincides with a polynomial in k, 
for k sufficiently large (the "Hilbert-Samuel polynomial"). 

Theorem 5.1.2. With the hypotheses of Theorem 4.3.2, let Hx denote the Hilbert-
Samuel function of K[y]1 fx, X EX. Then the function x I--> Hx from X to 
NN is Zariski semicontinuous. 
Proof. It is easy to see that Hx(k) is topologically upper semicontinuous, for 
each fixed k (cf. [13, 11.5.3]). The result then follows from Theorem 4.3.2. 0 

Corollary 5.1.3. Let M be a smooth analytic space and let X be a closed analytic 
subspace of M. For each x EX, let Hx x denote the Hilbert-Samuel function 
of &x ,x' Then Hx ,x is Zariski semicontinuous on X. 
Proof. Immediate. (See Example 4.3.1.) 0 

5.2. The stability theorem. Let #E denote the number of elements in a finite 
set E. For any 1)1 E g(n), put 

H rn (k)=#{aENn -l)1: laISk}. 
Theorem 5.2.1. Let I)1j E g(n), j = 1, 2, .... For each j, let Hj = Hrn}. If 
HI ~ H2 ~ ... , then there exists jo such that Hj = Hjo when j ~ jo' 

Because of Lemma 5.1.1, Theorem 5.2.1 implies the following result. 

Corollary 5.2.2. Let I j , j = 1, 2, ... , be any sequence of ideals in K[x] 
(or K{x}) , x = (xi' ... ,xn ). For each j, let Hj denote the Hilbert-Samuel 
function HI}' If HI ~ H2 ~ ... , then there exists jo such that Hj = Hjo when 
j ~ jo' 
Proof of Theorem 5.2.1. Suppose the theorem is false. Then we can assume that 
1)11 #- 0 and that HI > H2 > ... (by passing to a subsequence if necessary). 
For each j , let a1, i = 1 , 2, ... , denote the sequence of vertices of I)1j listed 
in ascending order and completed to an infinite sequence by using 00 for all 
the remaining terms. Thus each a{ = min{a E I)1j - Uk<i(a~ + Nn)}. Let No 
denote the positive integers. We claim there is an infinite subsequence j(s), 
s = 1 , 2, ... , of No such that a1(S) is independent of s, say a1(S) = ai ' when 
s ~ i, i = 1, 2, .... Then U:I (ai+Nn) E g(n) and each a i ¢. Uk<i(ak +Nn) . 
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Therefore, there exists So such that o.i = 00 if i ~ so' Hence Hj(S) = Hj(so) , 
s ~ So ; a contradiction. 

We will find infinite subsequences NI ::) N2 ::) ... of No satisfying the 
following condition: For each s = 1, 2, ... , say Ns = U(s, t): t = 1, 2, ... } . 
Then o.{(S, t) is independent of sand t, say o.{(S, t) = ai' when t ~ i, i = 
1, ... , s. The claim above follows taking j(s) = j(s, s), s = 1, 2, .... 

First, let f = 10.:1. Then, for all j, Hj(l)::; HI(l) < #{o. E Nn : 10.1::; f}. 
Therefore each lo.{ I ::; f. Hence there are only finitely many possible values of 
o.{ E N n • It follows that there is a subsequence NI = U (1 , t) : t = 1 , 2, " . } 
of No such that o.{(1, t) is independent of t, say o.{(I, t) = 0. 1 ' for all t. By 
induction, assume that we have found NI ::) ... ::) Ns as above, for some s ~ 1 . 
Th I." 11 1 cnj(s,t) Us ( Nn) h h j(s,t) en, lor a t = s, s+ , ... , 'J~ ::) i=1 o. i+ ,were eac o. i = o.i ' 
t ~ i. Since ~j(s, s) =I- ~j(s, t), t > s , it follows that o.~~; t) < 00 for all t > s . 
Let I = lo.~~;S+!)I. Then 

Hj(s,s+!)(l) < # {a E Nn - iQ(o.i + Nn): 10.1::; I} . 

Since Hil) ::; Hj(S,s+I)(l) when j ~ j(s, s + 1), it follows that lo.~~;t)1 ::; I, 
t = s + 1 , s + 2, .... Thus there are only finitely many possible values of o.~~; t) , 

t > s. It follows that there is a subsequence Ns+! of Ns as required. 0 

5.3. The Hilbert-Samuel stratum and the equimultiple locus. Let U be an open 
subspace of Kn , and let 5 be a coherent sheaf of ideals in & = &u' Fix 
Xo E U. Let S denote the Hilbert-Samuel stratum of &/5 containing xo: 

S = {x E U: Hx = Hx } , o 

where Hx denotes the Hilbert-Samuel function of &x/J;, x E U. 
For any x E U, we can identify &x with K{y} = K{y! ' ... 'Yn} by trans-

lating the affine coordinates of Kn to x. Suppose that f; E &x ' i = 1 , ... , t , 
o 

generate J;o' There is a neighbourhood V of Xo in U in which the f; all 
converge. Let S(J;) denote the equimultiple locus, 

S(J;) = {x E V: /lx(f;) = /lx/f;) , i = 1, ... , t}. 

Our aim in this subsection is to prove 

Theorem 5.3.1. Suppose that l , ... , l is the standard basis of J; c K {y } . 
o 

Then there is an open neighbourhood V of Xo in U in which the / all converge, 
and 

S=S(/). 

Lemma 5.3.2. Let V be a relatively compact open neighbourhood of Xo in U. 
Then there exists ko E N such that if x! ' x2 E V and Hx (k) = Hx (k) for all 

I 2 

k ::; ko' then Hx = Hx . 
I 2 
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Proof. This follows immediately from Zariski semicontinuity of the Hilbert-
Samuel function. 0 

We can assume that U is an open neighbourhood of the origin and that 
Xo = O. Let '.)1 = '.)1(J;;) and let a i E N n , i = 1, ... , t, denote the vertices 
of '.)1. Define !1i' i = 1, ... , t, as in §4.1. For each i, !1i has the form 
!1i = a i + Di , where Di C N n • Suppose that / E&'o, i = 1, ... , t, and that 
exp/ = ai' for each i. 
Lemma 5.3.3. Let ko EN. Then there is an open neighbourhood V of 0 in U 
such that: 

(1) Each / E &,(V). For any Pi E K[y] such that degreePi ~ ko' i = 
1 , ... , t, there exist Qi E &'0' i = 1 , ... , t, such that, for each i, Qi converges 
in V and supp Qi C Di' and, for all x E V, 

t t 
LPi(x)/(x) = LQi(X)/(X), 
i=1 i=1 

(2) For each y E N n and i = 1, ... , t, let Vy,i = Vy,i(X; y) denote 
yy /(x+y) E Y; c K{y}, where x E V. Then,for each x E V and k ~ ko' the 
vy, i(X; y), where y E Di' iyi ~ k - Ilo(/) and i = 1 , ... , t, induce linearly 
independent elements of K{y}/(y)k+1 . (Here (y) denotes the maximal ideal of 
K{y} .) 
Proof. By Theorem 4.1.1, for each y E Nn and i = 1, ... , t, there exist 
qJ'i E K{y}, j = 1, ... , t, such that SUppqJ'i c Dj and 

t 
yy /(y) = Lq;,i(y)i(y). 

j=1 

The / and the qJ'i such that iyi ~ ko converge in a common neighbourhood 
V of 0; (1) follows. 

For each kEN, the Vy,i(X; y), where y E Di , iyi ~ k - Ilo(/) and 
i = 1 , ... , t , induce a basis of the vector subspace 

Y; + (y)k+1 
(y)k+1 

of K {y} / (y )k+ I at x = 0 , hence induce linearly independent elements at nearby 
points x. It follows that we can choose V satisfying (2) as well. 0 

Corollary 5.3.4. Let ko EN. Choose an open neighbourhood V of 0 such that 
Lemma 5.3.3( 1) holds and the / generate Y;, for all x E V. Then, for all 
k ~ ko and x E V, 

k+1 
~(x) + (y) ny; = y;, 

where ~(x) denotes the linear span in &'X of 

{Vy,i(X; y): y E D i , iyi ~ k - IlJf\ i = 1, ... , t}. 
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Proof. Let k :::; ko and x E V. Suppose that fEY; C K {y }. Then there are 
polynomials Pi(y) such that degree Pi :::; k -Ilx (/) ' for each i, and 

I 

f '" fi k+1 a-(Y)-L...,Pi(y) (X+Y)E(Y) nJx ' 
i=1 

By Lemma 5.3.3( 1), there exist Qi E &'0' i = 1 , ... , t, such that, for each i, 
Qi converges in V and supp Qi c 0i' and 

I I 

L Pi(y - x)/(y) = L Qi(Y)/(Y)' 
i=1 i=1 

Therefore, 
I 

f '" fi k+1 a-(Y)-L...,Q/x+y) (X+Y)E(Y) nJx ' 
i=1 

Since SUPpQi(X + y) c 0i' i = 1, ... , t, the result follows. 0 

Proposition 5.3.5. Let V be a relatively compact neighbourhood of 0 in U such 
that Lemma 5.3.3( 1) and (2) hold with ko given by Lemma 5.3.2, and the / 
generate Y;, for all x E V. Then S(t) c S. 

Proof. Let x E V. Suppose that Ilx (/) = IlO(/) , i = 1, ... , t. Then, if 
k:::; ko' 

I 

= L#{Y E 0i: Iyl:::; k -Ilo(/)} 
i=1 

= #{y E N n : Iyl :::; k} - Ho(k) , 

where the second equality holds by Lemma 5.3.3(2) and Corollary 5.3.4. The 
result follows, by Lemma 5.3.2. 0 

Proofof Theorem 5.3.1. By Proposition 5.3.5, we can choose V in which the / 
all converge and S(/) c S. We will prove that, after shrinking V if necessary, 
ScS(/)' 

Let ai = exp /, i = 1, ... , t; in particular, lail = Ilo(/)' We can assume 
that la,l :::; la21 :::; ... :::; lall. Associate to each kEN the index i(k) such that 
lail :::; k precisely when i = 1, ... , i(k). For each k, the elements 

1 :::; i :::; i(k), 

and 
Iyl :::; k, 

of K{y} induce a basis of K{y}j(y)k+1 when x = O. Choose V small enough 
that they remain a basis for all x E V. We can also take V small enough that 
Ilx (/) :::; IlO(/) , i = 1 , ... , t, X E V. 
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Suppose XES n V. It suffices to show that IlxUi ) ~ Ilo(/)' i = 1, ... , t. 
Since Hx = Ho, it follows that, for each k, the yY /(x + y) induce a basis of 
(~ + (Yl+I)/(y)k+1 . In particular, for each j = 1, ... , t, and each k, 

/(x+y)- L ( L c~:~.yY)/(X+Y)E(y)k+l, 
I~i~i(k) yEO; 

Iyl~k-IQ;I 

where the Cly·,k E K. Fix j and take k = la ·1- 1. Since fj (y) - yQi E K{y}'-n , 
, I 1 

. 'J1' 'J1 k I then fl(X+y)_yQ i EK{y} and fl(X+Y)EK{y} +(y) + . Therefore, 

( 
. k ). 'J1 k I L L S:i .yl' /(X+Y)EK{y} +(y) + , 

I~i~i(k) l'ED; 
1l'I~k-IQ;1 

which implies that all c~:7 = O. Thus, IlxUj ) ~ lajl. 0 

6. ESSENTIAL VARIABLES OF A HOMOGENEOUS IDEAL 

Consider the space Kn with affine coordinate ring K[y] = K[YI' ... , Yn]' 
Let m denote the ideal in K[y] of polynomials which vanish at the origin of 
Kn. By an affine coordinate system for Kn, we mean any coordinate system 
x = (XI' ... , xn) which differs from y = (YI' ... , Yn) by an invertible linear 
transformation y = y(x) . If fey) E K[y], we usually write f(x) for fCy(x)). 
Definition 6.1. Let Pi(y) be a homogeneous polynomial of degree di , i = 
1, ... , t. Suppose that there is an affine coordinate system X = (w, z), where 
W = (WI' ... , wn_,) and Z = (ZI ' ... , z,), with respect to which 

i=I, ... ,t, 
and r is minimal for such representations. Then we say that (ZI' ... , zr) is a 
system of essential variables for the Pi' We also say that each Zj is an essential 
variable, or that the Pi depend essentially on each Z j . 

It is clear that if (zl'"'' zr) is a system of essential variables for the Pi and 
x is any affine coordinate system of the form x = (w, z), Z = (ZI ' ... , z,), 
then Pi(w, z) = PtCz), i = 1, ... , t. 
Lemma 6.2. Let Pi (y) be a homogeneous polynomial of degree d i , i = 1 , ... , t . 
Let E denote the vector subspace of m/m2 spanned by the partial derivatives 
DP Pi = 8IPIPJ8yP, IPI = di - 1, i = 1, ... , t. Then 

(1) Let E1. denote the vector subspace of the dual (m/m2)* which is orthog-
onal to E. Then 

E1. = {C; E (m/m2)* : C;. Pi = 0, i = 1, ... , t}. 

Cc; E (m/m2)* identifies with a derivation of K[y]. In coordinates, C; is a direc-
tional derivative C; = E;=Ic;j8/8Yj; i.e., C;.p = EC;j 8P/8Yj' P E K[y]. In 
particular, C;. P is independent of the affine coordinate system.) 



UNIFORMIZATION OF ANALYTIC SPACES 825 

(2) Z = (z I ' ... , z,) is a system of essential variables for the Pi if and only 
if zi ' ... , z, induce a basis of E. 
Proof. Write 

n 

Pi(y) = L ci,n:! ' 
Inl=d; 

Then, for each i, 
n 

DPPi(y) = LCi,p+(J)Yj' 
j=1 

ap. yp 
ayt (y) = L ci,P+(J) P! ' 

] IPI=d;-1 

i=I, ... ,t. 

j=I, ... ,n, 

where (j) denotes the multi-index with 1 in the jth place and zeros elsewhere. 
Consider the matrix C = (ci,P+(J)) with rows indexed by (i, P), IPI = di - 1, 
i = 1, ... , t, and columns indexed by j = 1, ... , n. Then each row of C 
represents a linear form DP Pi' IPI = di - 1 , and Ker C c (m/m2)* is the space 
of directional derivatives which annihilate PI' ... , PI' This proves (1). 

By (1), if Z I ' ... , z, are linear combinations of the variables y I ' ... , y n 
which induce a basis of E, and x is an affine coordinate system of the form 
x = (w, z), z = (z I ' ... , z,), then. Pi (x) = Pi (z), i = 1, ... , t. On the 
other hand, it is clear that if (w, z) is an affine coordinate system such that 
the Pi(w, z) depend only on z = (zl ..... , z,), then the Zj span a vector 
subspace of m/m2 containing E; (2) follows. 0 

Remark 6.3. E1. identifies with the vector subspace of Kn along which the 
Pi are invariant by translation; i.e., c! E E1. if and only if Pi(Y + c!) = Pi(y), 
i = 1 , ... , t. Clearly, E1. is the locus of points where each Pi has multiplicity 
di • 

Examples 6.4. (1) Let P(YI ' Y2) = Y; + 2Y IY2 + Y; . After a change of variables 
w = YI - Y2' Z = YI + Y2' we have P(w, z) = z2; i.e., P depends essentially 
on z. 

(2) Suppose that f E K{y} is of the form 
d 

f(y) = Y: + L ci(ji)y:- i , 
i=1 

where ji = (YI ' ... , Yn- I) and J-lo(ci) ~ i, i = 1, ... , d. Then the linear part 
of Yn + ci (ji)/d is an essential variable for the lowest order homogeneous part 
of f(y) (cf. (3.7)). 
Definition 6.S. Let Ie K{y} be a homogeneous ideal (i.e., I can be generated 
by homogeneous polynomials in y = (y I ' ... , y n))' Suppose that x = (w, z) , 
where w = (WI' ... , wn_,) and z = (ZI' ... , zr)' is an affine coordinate 
system with respect to which we can choose a system of generators of I de-
pending only on z, and that r is minimal for all such choices. Then we say 
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that (ZI' .•• , zr) is a system of essential variables for I. We also say that each 
Z j is an essential variable, or that I depends essentially on each Z j • 

Remark 6.6. Let I c K{x} , x = (XI"'" xn ), be a homogeneous ideal. 
Clearly, the standard basis of I consists of homogeneous polynomials. Sup-
pose that X = (w, z) where W = (WI' ... , W n- r) , Z = (ZI ' .•. , zr)' and I 
is generated by homogeneous polynomials gi (z) in Z alone. Let 1* c K {z } 
denote the ideal generated by the gi(z), Clearly, then: 

(1) ~(l) = N n- r x ~(I*). 
(2) The standard basis of I is the same as that of 1* (considered as ele-

ments of I). 
It follows, in particular, that if I can be generated by convergent power 

series involving Z alone, then the standard basis of I consists of homogeneous 
polynomials in Z alone. 

Lemma 6.7. Let Ie K{y} be a homogeneous ideal. Let /(y), i = 1, ... , t, 
denote the standard basis of I. Say di = degree / (y), i = 1, ... , t. Let £ 
denote the vector subspace of m/m2 spanned by the linear forms DP /, IPI = 
di - 1, i = 1, ... , t (where m is the maximal ideal of K{y}). Then: 

(1) £1. = {C; E (m/m2)* : C; • f E I, for all f E I}. In particular, £ is 
independent of the coordinate system y = (y I ' ... , y n) . 

(2) Z = (z I ' ... , Z r) is a system of essential variables for I if and only if 
ZI' ••. , zr induce a basis of £. 

(3) (The germ at 0 of) £1. identifies with the Hilbert-Samuel stratum S 
of K {y} I I containing O. 

Proof. By Lemma 6.2( 1), in order to prove (1) it suffices to show that if C; = 
2:;=1 C;/J 18Yj E (m/m2)* , then 

(6.7.1) 

if and only if 

(6.7.2) 

n 8/ 
LC;j 8Y. = 0, 
j=1 ] 

n 8f 
LC;j 8 E I, 
j=1 Yj 

i=I, ... ,t, 

for all f E I. 

Assume (6.7.1). Let f E I; say f = 2: aJ i, where each ai E K{y}. Then 

i ,j 

Conversely, (6.7.2) implies that 2: j C;j8/18Yj E I, i = 1, ... , t. But 
. 'J!(l) Lc;j8!'18Yj E K{y} , i = 1, ... , t. 

j 
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(2) follows from (1), Lemma 6.2 and Remark 6.6. (3) follows from Theorem 
5.3.1 and Remark 6.3. 0 

7. THE EFFECT OF BLOWING-UP 

Let M be a smooth analytic space, and let X be a closed analytic subspace 
of M. Let U be an open subspace of M, and let C be a smooth closed 
subspace of U. Denote by 7r:: U' ---- M the local blowing-up of Mover U 
with centre C. Let X' denote the strict transform of X by 7r: (cf. §2.5). 
Suppose that Xo E X n C and that x~ E 7r: -I (xo) . Put I =..fx x ' I' =..fxl x' . 

, 0 ' 0 
The notation of this paragraph will be fixed throughout the section. 
Lemma 7.1. Suppose that (w, z), w = (WI' ... , w n_,) I Z = (zl ' ... , z,), is 
a local coordinate system in a neighbourhood of Xo = 0, in which C is defined 
by Z = O. Let /, i = 1 , ... , t , denote the standard basis of I c K { W , z}. If 
lixo (/) = lie, Xo (/), i = 1 , ... , t, then I' is generated by the strict transforms 

/' of the / at x~. 
Proof. Put Ii· = lie x (/), i = 1 , ... , t. Let f E I , and let Ii = lie x (f) . 

I , 0 ' 0 

It suffices to show that f can be written as f = 2::=1 aJi , where each ai E 
K{ W , z} and lie x (a) ? Ii -Iii' Let {.1J denote the decomposition of !Jl(I) 

, 0 

determined by O! i = exp /, i = 1 , ... , t , as in §4.1. By the division theorem, 
f= 2::=IO!Ji, where aiEK{w,z} and O!i+suppaic.1i' i=l, ... ,t. Let 
v. = lie (a.), i = 1, ... , t. Put v = min.(v. + Ii·). If g E K{w, z}, let 

I ,Xo I I I I 

ine g denote the lowest order homogeneous part of g as a power series in z 
with coefficients in K{ w}. Then 

L (ineai)(inei) #0. 
{i: 1I;+I1;=II} 

(Otherwise, since lie x (/) = lix (/), i = 1, ... , t, implies that expine / = 
, 0 0 

O!i' for each i, it follows from the uniqueness of division that ine ai = 0 for 
all i such that vi + Iii = v; a contradiction.) Therefore v = Ii and vi ? Ii -Iii' 
i = 1, ... , t. 0 

If f E K{x}, x = (XI' ... , x n ), then the initial form inf of f means 
the lowest order homogeneous part of f. If J c K{x} is an ideal, then 
in J denotes the homogeneous ideal generated by {in f: f E J}. Clearly, 
!Jl(J) = !Jl(in J) . 

Suppose that X = (w, z) is a local coordinate system in a neighbourhood of 
Xo = 0 such that z = (Zl' ... , z,) is a system of essential variables for inI. 
Clearly, !Jl(l) = !Jl(inI) has the form N n-, x !Jl* , where !Jl* E .91'(r). Let / , 
i = 1, ... , t, denote the standard basis of I C K{w, z}. Put di = lix (/), 

o 
i = 1 , ... , t . Then we can write 

/(w, z) = L a~(w, z) + L a:,(w)z", 
l"l=d; lal<d, 
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where f.lo(a!) > di - lal if lal < di , and 

(in/)(w, z) = L a~(O, 0)/', 
lal=di 

i = 1 , ... , t. In particular, we have: 

Lemma 7.2. There is a local coordinate system (w, z), w = (WI' ... , W n _ y ) , 

Z = (ZI' ... , Zy), in a neighbourhood of Xo = ° with the following property: 
Let /(w, z), i = 1, ... , t, denote the standard basis of [ c K{w, z}, and let 
[* c K { w, z} denote the ideal generated by the (in /)( 0, z). Then 

( 1) (z I ' ... , z y) is a system of essential variables for [* . 

(2) (in /)(0, z), i = 1, ... , t, is the standard basis of [* . 
(3) 1)1(1*) = 1)1(1) . 

Of course, we could have formulated a stronger statement. But the point 
of Lemma 7.2 is that it isolates those properties of [ which persist after local 
blowing up when the Hilbert-Samuel function does not decrease. The following 
is the key theorem of this section. 

Theorem 7.3. Suppose that C c S (in a neighbourhood of xo)' where S denotes 
the Hilbert-Samuel stratum of X containing xo' Then: 

(1) Hx' ,x~ :::; Hx 'Xo ' 
(2) Suppose that Hx' x' = Hx x . Let x = (w, z) be a local coordinate sys-

, 0 ' 0 

tern as in Lemma 7.2. Then there is a local coordinate system (w', z'), 
where z' = (z~ , ... , z~), in a neighbourhood of x~ = 0, such that: 

(i) The standard basis of [' C K{ w' ,z'} consists of the strict transforms 
/' of the /. 

(ii) (in/')(O,.) = (in/)(O, .), i = 1, ... , t. 

Conditions (i) and (ii) imply that f.lx'(/') = f.lx (/), i = 1, ... , t, and 
o 0 

1)1(1') = 1)1([*) (with the same [*!). 

Lemma 7.4. Let x = (w, z) be a local coordinate system as in Lemma 7.2, and 
let S denote the Hilbert-Samuel stratum of X containing xo' Then, after a 
local coordinate change of the form , 

w =w, z' = z - A(W), 

where A is analytic and A(O) = 0, we can assume additionally in Lemma 7.2 
that S c {z = O}. 

Proof. Let m denote the maximal ideal of K{x}. Let /(w, z), i = 1, ... , t, 
denote the standard basis of [, and let di = f.lx (/), i = 1, ... , t. If a E NY , 

o 
we write D~ = alai/a za . By Lemma 6.7, the vector subspace of m/m2 oflinear 
forms in z is generated by r linear forms, 

LckjD;Ji(in/)(O, z), k = 1, ... , r, 
i ,j 
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where ckj E K, aji E N', and lajil = d i - 1. Put 

gk(w, z) = LckjD;ji/(W, z), k = 1, ... , r. 
i ,j 

Then the determinant of the Jacobian matrix 8(gl ' ... , g,)/8(zl ' ... , z,) does 
not vanish at (w, z) = (0,0). By the implicit function theorem, the system 
of equations gk(W, z) = 0, k = 1, ... , r, can be solved as z = it(w), where 
it is analytic and it(O) = O. Put w' = wand z' = z - it(w). By Theorem 
5.3.1, S c {Zl = O}. It is easy to see that the conditions of Lemma 7.2 are 
satisfied in the new coordinates (w', Zl). (The exponent of any monomial in 
(w' , Zl) involving w' is larger than that of any monomial of the same degree 
not involving w'.) 0 

Proof of Theorem 7.3. Let (w, z) be a local coordinate system as in Lemma 
7.2. By Lemma 7.4, we can assume that S c {z = O}. Since C c S, we can fur-
ther assume that w = (x, y), where x = (XI' ... , x n_ q_,), Y = (Y I ' ... , yq), 
and C = {y = z = O} . 

Then V' can be covered by q + r coordinate charts V;., j = 1 , ... , q , and 
J 'ke I • I I I VZk ' = 1, ... , r, as lollows: Each VYj has a coordmate system (x , Y , z ), 

h I (' ') I (' ') I (' ')' were x = XI"'" x n_ q_, , Y = YI , ... , Yq , and z = zl"'" Z, , In 
which n I V;. is given by 

J 

I I I I I I 
X = X, Yj = Yj , Yt = YjYt if I I- j, z = YjZ . 

In particular, n-I(C) n Vy' = {YJ'· = O}. Each V' has a coordinate system 
J ~ 

(x', y', Zl) in which nlV' is given by Zk 
I I I I 

X = X , Y = zkY , zk = zk' 

In particular, n-\(C) n V; = {z~ = O}. 
k 

Case A. x~ E V; for some j; say j = 1. In the coordinates (x', y' , Zl) 
J 

of V;I above, we can write x~=(O,b,c),where b=(0,b2, ... ,bq), c= 
(c\ ' ... , c,). If Y = (Y\ ' ... , yq), put y = (Y2' ... , yq). Then nlV;1 can be 
written in coordinates (x', y', Zl) centred at x~ as 

X=X/, y\=y~, y=y~(b+y'), z=Y~(C+Z'). 

Case B. x~ E V;k - UJ=I V;j for some k; say k = 1. In the coordinates 
( I I ') f'b . I ( 0 ) (0 x , Y , z 0 V z a ove, we can wnte Xo = 0, , c , where c = , c2 ' 

1 

... , c,). If z = (z\, ... , z,), put z = (z2' ... , z,). Then nlV;1 can be 
written in coordinates (x', y' , Zl) centred at x~ as 

I I I I 
X = X , Y = z\Y , z\ = z\ ' ~ '(~ ~/) z=z\ c+z . 

In this case we will prove that HI' < HI . 
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Lemma 7.5. Let 1;(U, v) E K[u, V], i = I, ... , t, where u = (u l ' ... , un _,), 

v = (VI' ... , v,). Let JI C K[u, v] denote the ideal generated by the 1;(u, v), 
and Jo C K[u, v] the ideal generated by the 1;(0, v). Then H J ~ HI. . 

I 0 

Proof. For each A E K, let J(A) c K[u, v] denote the ideal generated by 
the 1;(AU, v). If A =f. 0, then (u, v) f-+ (AU, v) induces an automorphism of 
K[u, v] taking J(I) onto J(A); in particular, H J().) = HJ(I). Therefore, by 
Theorem 5.1.2, HJ(I) ~ HJ(O). But J(I) = JI and J(O) = Jo . 0 

Lemma 7.6. Let J be a homogeneous ideal in K{x, y, z}, x = (XI' ... , 
x n_ q_,), y = (YI ' ... , yq), z = (ZI ' ... , z,). Suppose that 

C eSc {z = A}, 

where C is defined by y = 0, Z = 0, and S denotes the Hilbert-Samuel stratum 
of J containing Xo = 0 (i.e., S is the Hilbert-Samuel stratum containing Xo of 
the analytic subspace defined locally by J). Let J' denote the strict transform 
of J at x~. Then 

(I) HI' ~ H J . 
(2) If x~ E V;k - U~=I V;j ,for some k, then HJI < H J . 

Proof. The Hilbert-Samuel stratum S identifies with the linear subspace E.l. 
defined as in Lemma 6.7. Therefore, since C c S, the standard basis of J de-
pends only on (y, z). Write v = (y, z), v = (VI' ... , vq+,) , so that the charts 
V' , V' defined above can be relabelled as V~ , defined analogously. Suppose 

Yj Zk I 

h I V' '" I I 1 I h d· (' ') f V' t at Xo E v lor some ; say = . n t e coor mates x, v 0 v' we 
{ I 

can write x~ = (0, a), where a = (0, a2 , ... ,aq+r). If v = (VI' ... , vq+,) , 
put V = (V2' ... , vq+r). Then ltlV~1 can be expressed in coordinates (x', v') 

I centred at Xo as 
I I ~ '(~ ~/) 

X = X , VI = VI ' V = VI a + v . 

If P E J n K[v] is homogeneous of degree d, put 

p' (v') = ~P(v; , v; (ii + v')) = P(I, ii + v'). 
(VI) 

Then p' is the strict transform of P. The ideal J' is generated by the p' , for 
all homogeneous P E J n K[v]. For each A E K, let J(A) c K{x, v} denote 
the ideal generated by P(A + VI' Aii + v), for all homogeneous P E J n K[v]. 
By homogeneity, if A :f. 0, then v f-+ AV induces an automorphism of K[v] 
taking J(A) onto J(I); in particular, H J().) = HJ(I). Therefore, by Theorem 
5.1.2, HJ(I) ~ HJ(O). But J(O) = J. On the other hand, if P E J n K[v] is 
homogeneous of degree d, then 

P(l + VI' (I + vl)(ii + v)) = (1 + vl)d P(I , ii + v); 

this shows that the isomorphism x = x' , VI = v; , V = (l + v;)(ii + v') - ii (of 
germs at 0) takes J' to J(I). In particular, HI' = HJ(I). Thus HI' ~ H J . 
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The ideal J ( 1) is the ideal generated by all homogeneous polynomials P E 
J n K[v] at the point Yo = (x, v), where x = 0, v = (1, a). Suppose that 
x~ E U;k - U~=I U;j for some k; say k = 1, so we can assume VI = Zl' 
Then Yo = (x, y, z) , where x = 0, Y = 0, and z = (1, C), C = (c2 ' ••• , c,) . 
In particular, Yo fj. {z = O}. By Lemma 6.7(3), since E1. = S C {z = O}, 
HJ' = HJ(I) < H J . 0 

We can now complete the proof of Theorem 7.3. Put di = flx (/), i = 
o 

1 , ... , t. For each i, we can write 

/(x, y, z) = L a~(x, y, z)za + L a~(x, y)za, 
lal=dj lal<dj 

where 
(in/)(O, 0, z) = L a~(O, 0, O)za 

lal=dj 

and, for all a such that lal < di , flc,o(a~) ~ di - lal (since flc x (/) 
, 0 

flx (/)' i = 1, ... , t, by Theorem 5.3.1). 
o 

Case A. For each i = 1 , ... , t , the strict transform /' of / is given by 
il I I I I -d. i I I I - _I I I 

f (x ,y ,z)=(YI) 'f(x ,y\,yl(b+y),yl(c+z)) 

= L a~(x' , y; , y; (b + y'), y; (c + Zl))(C + zIt 
lal=dj 

+ " a:(x' , y~ , y~ (b + y')) (c + zIt 
~ ( ')d -Ial 

lal<d, YI ' 

To show that HIt :$ HI: For each i = 1, ... , t, 

(in/)(x, y, z) = L a~(O)za + L a~,dj_lal(y)za, 
lal=dj lal<dj 

where a~,dj_lal denotes the homogeneous part of a~ of order d i -Ial (which 
depends on y alone because l has constant order d i on a neighbourhood of 
Xo in C). Let J = in I . Let J' c K {x' , y' , Zl} denote the ideal generated by 

/'(O,O,y', Zl)= L a~(O)(c+z't+ L a~,dj_lal(l,b+y')(c+z't, 
lal=d, lal<d, 

i = 1 , ... , t. Then J' is the strict transform of J at x~, by Lemma 7.1. By 
Lemma 7.5, HIt :$ HJ' ' and by Lemma 7.6, HJ' :$ H J = HI' 

For each i, exp/ = (0, 0, a i ), where ai EN' and lail = di . The diagram 
1)1(l) is of the form N n-, x 1)1* , where 1)1* E .$(r). Therefore, the exponent of 
a given monomial x· y' za lies outside 1)1 ( l) if and only if a lies outside 1)1* . It 
follows that all exponents in the second sum in the formula for /' (x' , y' , Zl) 
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above lie outside 'Jl(l), and all exponents in the first sum lie outside 'Jl(l) 
except for that of mon/ = a; (O)z"; . 

"; 

Since C c S = S(i)' J.lx~(/') :5 di , i = 1, ... , t. If J.lx~(/') = di , then 
mon/' = ai (O)z'''; and (in/')(O, z') = (in/)(O, z') (because any monomial 

"; 

of degree d; in /' other than a~(O)z'''; either is in in/ and therefore has 
higher (lexicographic) order, or h~s a factor involving x = (x" ... , x n _ q_,) 

or Y = (Y" ... , Yq) and therefore also has higher lexicographic order). In 
particular, if J.lx' (/') = d., i = 1 , ... , t, then 'Jl(I') :::> 'Jl(l) . o I 

Suppose that HI' = HI. We will prove that J.lx' (/') = d;, for each i, so 
o 

that 'Jl(l') :::> 'Jl(l) . Then (by Lemma 5.1.1) 'Jl(l') = 'Jl(l) . It follows that /' , 
i = 1, ... , t, is the standard basis of I'. Thus we obtain the assertion (2) of 
the theorem. 

We can assume that a, < a 2 < ... < at (with respect to the total ordering of 
N'). Take 1 = i, < i2 < ... < i rn+, = t + 1 such that, for each 1= 1, ... , m, 
d; = d; if i, :5 i < i,+, and d; > d; . 

{ 1+1 1 

First consider 1 = i, :5 i < i2 (i.e., la;1 = d,). Then J.lx'(/') = d,. 
o 

(Otherwise, HI' < HI' by Lemma 5.1.1.) By induction, assume that I > 1 
and J.lx'(/') = d;, i = 1, ... , i, - 1. Since HI' = HI and mon/I = mon/ , 

o 
i = 1 , ... , it - 1 , it follows that 

'Jl(I') n {y E N n : Iyl < d; } = 'Jl(l) n {y E Nn : Iyl < d; } . 
1 ( 

Consider i, :5 i < i t+,. If J.lx'(/') < d; = d; , then exp/' E 'Jl(l) n {y: Iyl < o ( d;). (Otherwise, HI' < HI.) But this is impossible, as we have seen that 
exp /' fj. 'Jl(l) unless mon /' = mon / . Therefore, J.l(/') = d;, i = 1 , ... , t. 
This completes Case A of the theorem. 

Case B. For each i = 1 , ... , t , the strict transform /' of / is given by 
;, , " , -d i , " , , ~ ~, 

f (x,y ,z)=(z,) 'f(x ,z,Y ,z"z,(c+z)) 
" i(' " , '(~ ~'))(~ ~')" = ~ a" x , z,Y , z" z, c + z c + Z 

1"I=d; 
; (' ') "a"x ,z,Y (~+~')" + ~ z' d;-I"I C Z 

lal<d; ( ,) 

(where Ii = (a2 , ••• , a,) when a = (a, ' ... , a,)). Let J = 1* , the homoge-
neous ideal in K{x, Y, z} generated by the (in/)(O, 0, z) = L:1"I=d; a~(O)za . 
Let J' c K{x' , Y' , z'} denote the ideal generated by 

/'(0,0,0,2') = L a~(O)(c + 2')", i = 1, ... , t. 
lal=d; 
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Then l' is the strict transform of J by 7C, at x~. By Lemma 7.5, HI' ~ H J , , 

and by Lemma 7.6, HJ' < HJ = HI' This completes the proof of Theorem 
7.3. 0 

8. EMBEDDED UNIFORMIZATION THEOREMS 

We show here how the main results of the previous sections can be used to 
deduce a general embedded uniformization theorem. There are many ways of 
formulating other desingularization problems which can be treated in the same 
way. Let M be a smooth analytic space. 

Remarks 8.1. Suppose that X is a closed analytic subspace of M. Let Xo E 
X, and let S denote the Hilbert-Samuel stratum {xo EX: Hx ,x = Hx ,x), 
Suppose Xo E SingX. Then (in some neighbourhood of xo) S c Sing X . 
In particular, if the germs at Xo of IXI and ISing XI do not coincide (e.g., 
if K = C and X is reduced), then Hx x is not locally constant near xo' 
Conversely, suppose that Hx x is not locally constant near xo' Then Xo E 

Sing X. Moreover, if x~ E 's is close enough to Xo and H x, x is locally 
constant near x~, then x~ E SingXred • (If IXI were irreducible at xo' then 
the dimension of X at x~ would be less than that at xo' The statement 
follows because H x x is greater than the Hilbert-Samuel function of any proper 

, 0 

subspace of X at xo') 
Suppose that X is a closed analytic subspace of M and that K is a principal 

divisor on M having only normal crossings. Let V be an open subspace of 
M , and let C be a smooth closed subspace of V. Suppose that C satisfies 
the following two conditions: 

(8.2.1) C and K simultaneously have only normal crossings. 

(8.2.2) (C c X and) Hx x is constant on C. 
Condition (8.2.2) impli~s that f1(fx ,x) is constant on C. Let 7C: V' ---> 

M denote the local blowing up of M over V with centre C. We define a 
transformation (X', K') of (X, K) by 7C as follows. Let X' be the strict 
transform of X by 7C. Let ,% denote the ideal sheaf of 7C -I (C) in & u' , and 
put K' = 7C- 1(K) .,%/1, where f1 = f1(fx x), X E C. 

By (8.2.1), K' has only normal crossings. Therefore, we can likewise define 
a transformation (X', K') of the given data (X, K) by a sequence of local 
blowings-up whose centres satisfy conditions (8.2.1) and (8.2.2) with respect to 
the successive transforms of (X, K) . 

Definition 8.3. Suppose that Xred is smooth and that H x, x is locally constant 
on X. We will say that C is (a)-admissible (as a centre oflocal blowing up over 
V) if C satisfies conditions (8.2.1) and (8.2.2) and the following additional 
condition: 

(a) C is nowhere dense in X. 
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Theorem 8.4. Let X be a closed analytic subspace of M, and let Jr be a 
principal divisor on M having only normal crossings. Suppose that X red is 
smooth and H x x is locally constant on X. Then there is a locally finite covering 
{1C j : M j --. M}' of M such that: 

( 1) Each 1C j is a composite of finitely many local blowings-up with smooth 
centres which are (a)-admissible with respect to the successive transforms 
of (X, Jr). 

(2) For each j, let (Xj'~) denote the (final) transform of (X, Jr) by 
1Cj . Then Xj ,red is smooth, Hx. ,x' is locally constant on X j , and Xj 

) 

and ~ simultaneously have only normal crossings. 

Proof. Let Xo EX. Let W be a local coordinate neighbourhood of Xo = 0, 
and let l, ... ,l denote the standard basis of 5x ,Xo (with respect to the 
coordinates of W). Let dj = J1x (/), i = 1, ... , t. We can assume that 

o 
/ E &,(W) , i = 1, ... , t, and (by Theorem 5.3.1) that X coincides in W 
with the equimultiple locus {x: J1x (/) = d;, i = 1, ... , t}. Let J c &'W 
denote the principal divisor generated by f' .. ·l. We apply Theorem 3.2 to 
the data (J; J . Jr; Jr) on W, with J1 = d l + ... + dt • Let 1Cj : J.Jj --. W 
be one of the sequences of local blowings-up given by Theorem 3.2; say 1Cj = 
1C'1 0 1C'2 0 ... 0 1C. k(')' where, for each k = 1, ... , k(j), 1C k : W'k --. W. k-I J J J, J J J J, 
is a local blowing-up of J.Jj, k-I with smooth centre Cjk , and J.Jjo = W, 
J.Jj,kU) = J.Jj. Suppose that 1 ~ k < k(j) and that Cjl , ••• , Cjk are all (a)-
admissible with respect to the successive transforms of (X, Jr). Let (Xjk' ~k) 

denote the transform of (X, Jr) by 1C jl 0 ... 0 1C jk' It follows that X jk , red is 
smooth and (by Corollary 5.1.3 and Theorem 7.3(1)) that HXjk,x' is locally 
constant on X jk • Let x~ E X jk • If Cj , k+ 1 coincides with X jk near x~, 
then X jk and ~k already simultaneously have only normal crossings near x~ . 
Therefore, we can assume that C. k+1 is (a)-admissible. The result follows J, 
from Theorem 3.2. 0 

Definition 8.5. We will say that C is (c)-admissible (as a centre of local blowing 
up over U) if C satisfies conditions (8.2.1) and (8.2.2) and the following 
additional condition: 

(c) For all Xo E C, either Xo E SingXred or Hx x is not locally constant on 
X near xo' ' 

Theorem 8.6. Let X be a closed analytic subspace of M, and let Jr be a 
principal divisor on M which has only normal crossings. Then there is a locally 
finite covering {1C j : M j --. M} of M such that 

( 1) Each 1C j is a composite of finitely many local blowings-up with smooth 
centres which are (c)-admissible with respect to the successive transforms 
of (X, Jr). 

(2) For each j, let (Xj'~) denote the (final) transform of (X, Jr) by 
1C j' Then X j , red is smooth and H Xj ,x' is locally constant on X j . 
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Proof. We first prove the following weaker claim: There is a locally finite cov-
ering {7C j : M j ---+ M} satisfying (1) and the following condition: 

(2') For each j, let (Xj,,;r;) denote the transform of (X, Jf') by 7Cj . Then 
Hx ,x' is locally constant on X j • 

J 

Let Xo EX. Suppose that H x, x is not locally constant on X in a neigh-
bourhood of xO' Let W be a local coordinate neighbourhood of Xo = 0 , as in 
Lemma 7.2, and let l , ... ,l denote the standard basis of .fx x (with re-

. , 0 

spect to the coordinates of W). We can assume that each / E &( W) and (by 
Theorem 5.3.1) that {x E W: Hx x = Hx x } = {x E W: Ilx(/) = Ilx (/), 

, , 0 0 

i = 1, ... , t}. We apply Theorem 3.17 to (Y, Jf') on W, where fy is the 
principal divisor generated by l .. ·l. Let 7C~: Uj ---+ W be one of the se-
quences of local blowings-up given by Theorem 3.17, say 7C~ = 7C jl Q •• 'Q7Cj ,k(J) ' 

where, for all k = 1 , ... , k(j), 7C jk: Ujk ---+ Uj, k-I is a local blowing-up of 
Uj ,k-I with smooth centre ejk , and Ujo = W, Uj, k(J) = Uj . 

Suppose that 1 ::; k < k(j) and that ejl , ... , ejk are all (c)-admissible 
with respect to the successive transforms of (X, Jf'). For each 1= 1, ... , k, 

I let (Xjl' ,;r;/) denote the transform of (X, Jf') by 7Cj = 7C jl Q ••• Q 7Cjl , and 
let Yj/ denote the strict transform of Y by 7C~. Suppose that xOI E X jl , I = 
1, ... , k, and that 7Cj/(XO/ ) = xO,I_I' 1= 1, ... , k, where xoo = Xo E ejl . If 
Hx x = Hx ,I = 1, ... , k, then (by Theorem 7.3) Il(fy x ) = Il(fy x ), 

jf' 01 ' Xo j1' 01 ' 0 

I = 1, ... , k , and (using Theorem 5.3.1) the Hilbert-Samuel stratum of X jk 
containing XOk coincides near x Ok with the equimultiple locus through x Ok of 
the strict transforms of the / . Suppose that XOk E e). k+1 . Unless Hx x' is 

, Jk' 

already locally constant near x Ok ' it follows that ej , k+ I is (c)-admissible near 
XOk · 

It follows from Theorem 3.17 and Corollary 5.1.3 that there is a locally finite 
covering {7C7 : M;' ---+ M} satisfying (1) and the following condition: 

/I . o/.I? f o/.I? /I f (2 ) For all J, let (Xj,,n.) denote the transform 0 (X,,n.) by 7Cj . I 
Xo E X and Hx ,x is not locally constant near x O ' then HXj ,x~ < Hx ,Xo ' for 

all X~E(7C7)-I(xo)nXj' 
Our claim then follows by Corollary 5.2.2. 
On the other hand, if X is reduced, then the conclusion of the theorem 

follows from precisely the argument of the claim. (If X is not smooth at 
x O' then ej , k+ I is (c)-admissible near XOk unless X jk is already smooth at 
x Ok .) Therefore (because of Corollary 5.1.3 and Theorem 7.3(1» we obtain the 
theorem by first applying the claim to X and then the same argument to each 
Xj,red' 0 

By applying Theorem 8.4 to each (Xj,,;r;) in the conclusion of Theorem 8.6, 
we obtain a strong embedded uniformization theorem. Theorem 1.1 follows 
from Theorem 8.6 in the case that X is reduced and Jf' = &M' 
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