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1. INTRODUCTION 

While advances have been made in recent years in the study of properly 
embedded minimal surfaces of finite topology in R3 [3,5,8,9, 11, 12, 13,23], 
progress has depended, in an essential manner, on the special structure of such 
surfaces with finite total curvature. A properly immersed minimal surface with 
finite total curvature is, conformally, a compact Riemann surface punctured in 
a finite number of points, and its Gauss map extends to the compact surface 
as a meromorphic function [22]. In particular, all the topological ends are 
conformally equivalent to a punctured disk, and there is a well-defined limit 
tangent plane at each end. Outside of a sufficiently large compact set, such 
an end is a multisheeted graph over the limit tangent plane, and if the end 
is embedded, it is asymptotic to either a plane or a half-catenoid. (See, e.g., 
Schoen [24]. For a survey of results on properly immersed surfaces of finite 
total curvature, see [9, §1].) 

Without the assumption of finite total curvature, these results are not true in 
general. As an indication of the relative lack of information, consider that it is 
unknown whether or not the helicoid is the only simply-connected minimal sur-
face that is properly embedded and nonplanar (a question raised by Osserman). 
The helicoid has infinite total curvature and a single annular end. I 

If a surface has finite topology, then all of its ends are annular. Any general 
theory of properly embedded minimal surfaces of finite topology must include 
an understanding of the behavior of these ends. In this paper, we prove 

The Annular End Theorem (Theorem 1 in §4). On aproperiy embedded minimal 
surface in R3 , at most two distinct annular ends can have infinite total curvature. 

All other annular ends have finite total curvature and are therefore geomet-
rically well behaved (i.e., asymptotic to the plane or a half-catenoid). 

As a simple consequence of this result, a properly embedded minimal surface 
of finite topology in R3 must be conformally equivalent to a closed Riemann 
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surface from which a finite number of points and zero, one, or two compact 
disks have been removed (Corollary 4 in §4). 

We conjecture that on properly embedded minimal surfaces in R3 with more 
than one end. all annular ends have finite total curvature. If this conjecture is 
true, it would follow that a properly embedded minimal surface with more than 
one end has finite total curvature if and only if it has finite topology.2 

The paper is organized as follows. In §2, special foliations of solid tori by 
compact minimal annuli are constructed (Proposition 1). These are necessary 
for use in §3 where we show that, under proper conditions, linear bounds on the 
growth of an annular end imply that the end has finite total curvature (Lemma 
4 of §3). This result, which we refer to as "the Cone Lemma," is the key 
component in the proof of the Annular End Theorem in §4. Some of these 
results were announced in [13]. 

Other related results. By using techniques developed in [17], it is possible to 
generalize the proof of the Annular End Theorem to show that on a properly 
embedded minimal surface M with more than one end, any annular end, E, of 
infinite total curvature has boundary curve 8 E that is homotopically trivial in 
the closure of exactly one of the components of R3 - M. 

In [4], it is proved that every annular end of a complete orientable nonsimply-
connected minimal surface has a unique representative, called a canonical end, 
whose boundary is a closed geodesic. Distinct canonical ends have disjoint 
interiors. Moreover, if their boundaries touch, they must coincide. This means 
that, except when M is an annulus, canonical ends have disjoint closures. Using 
this result and the Annular End Theorem, the authors and M. Callahan have 
proved that a properly embedded minimal surface with more than one end, 
whose symmetry group is infinite, is either the catenoid or has an infinite number 
of ends, and all the annular ends are flat [4]. 

Fang and Meeks [6] have used the Annular End Theorem to prove that a 
properly embedded minimal surface M with a catenoid-type end can have, at 
most, one end of infinite total curvature. 

In the study of periodic, embedded minimal surfaces, one considers com-
plete minimal surfaces in R3 IT, where T is a discrete group of isometries. In 
this context, Meeks and Rosenberg have shown that a properly embedded min-
imal surface in a complete nonsimply-connected flat three-manifold has finite 
topology if and only if it has finite total curvature [16, 18]. 

Acknowledgments. We wish to acknowledge our debt to R. Osserman who ini-
tiated the study of global properties of complete minimal surfaces of finite total 
curvature. As we grope with the difficulties of infinite total curvature, it is in-
creasingly clear to us how much we have been fortunate enough to take for 

2This would, in turn, imply that a properly embedded minimal surface of finite topology and 
infinite total curvature would have to have one end. One might then be tempted to conjecture that 
the helicoid was the only properly embedded minimal surface of finite topology and infinite total 
curvature. Of course, it is possible to conjecture just about anything in the absence of examples; 
before the papers referred to in the first paragraph, in was generally believed that the only properly 
embedded minimal surfaces of finite total curvature were the plane and the catenoid. Still, if there 
really are no other examples ... 
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granted. The authors also wish to thank Yi Fang for useful critical comments 
and James Hoffman for preparing the illustrations. 

2. SPECIAL FOLIATIONS OF SOLID TORI 

Let 0: be a smooth Jordan curve contained in a plane P. A disk in P - 0: 

is maximal if it is not contained in any larger disk in P - 0:. We define ra 
to be the infimum of the radii of all maximal disks. Clearly, ra is positive. 
Moreover, an e-neighborhood of 0: is a regular neighborhood if e < ra. 

Remark 1. If 0:/ is a smooth deformation of 0:, r is continuous in t. 
at 

Now assume that 0: lies in the (XI' x2)-plane in R3. Again, the tubular 
neighborhood, Te , of 0: is a regular neighborhood if e < ra. A simple calcu-
lation shows that aTe will have positive mean curvature if e < ra/2. In what 
follows, we will always assume that e < ra/2. For convenience, we will refer 
to the plane {X3 = e} as pe. Let 0: e C pe be the vertical translate by e of 
0: c pO. Note that 0: -e U o:e C aTe. 

Let ~ c T e be any compact minimal surface with a~ = 0: -e U o:e . 

Lemma 1. Given" > 0, there exists an el > 0 such that if e < el ' the geodesic 
curvature of a~ = 0: -e U o:e is bounded by " in absolute value. Moreover, 
el = e l (,,) is independent of ~ and depends only on ra (and, of course, ,,). 

Proof. We note first that the curvature of 0: is everywhere bounded by lira. 
The curvature vector of o:±e lies in p±e, a horizontal plane. Therefore, the 
lemma will follow provided we can show that the tangent planes to ~ along 
o:e U 0: -e are uniformly close to vertical for e sufficiently small. 

Choose e l < rOl./4. Make el smaller, if necessary, in order to insure the 
following. Two parallel circles of radius t ~ ral4 that are separated by a 
distance d < 2e l span a stable catenoid. Choose e < e l . 

Fix p Eo:. There exist two circles in pO that are tangent to 0: at p, have 
radius ra/2, and meet 0: only at p. Let ci and c2 be the centers of these 
circles, and let SI (t) (resp. S2(t)) be the circle in pO centered at ci (resp. c2 ) 
of radius t, ral4:::; t :::; ra/2. Let S~e(t) C p±e be the vertical translate of the 
circle SI(t). (Similarly, define S~e(t).) By our choice of e l , S~(t)US;e(t) 
bounds a stable catenoid, C I (t), t ~ ral4. By the convex hull property, the 
catenoid CI (ra/2) is the only catenoid in the family C I (t) whose boundary 
meets o:e U 0: -e C aTe. Also, C I (raI4) is disjoint from ~, since it is disjoint 
from T e . Hence, by the maximum principle, C I (ra/2) meets ~ only at p±e, 
the vertical translates of p. 

The same construction works, of course, for the parallel circles S~(t) and 
S;e (t). The tangent planes to ~ at p±e are sandwiched between those of 
C I (ra/2) and C2(ra/2) at p±e . By making e l suitably small, we can force the 
tangent planes of the catenoids to be arbitrarily close to vertical. Since the size 
of such an e I is independent of p, we are done. 0 
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Lemma 2. There exists an 82 > 0 such that for every 8 < 82 , (/ U a -0 is the 
boundary of a minimal annulus in r and every such annulus is stable. The 
constant 82 depends only on ro. and La, the length of a. 
Proof. We choose 82 = 8 1 (7C/(2.Lo.)) ' where 8 1 is given in the previous lemma. 
In particular, 82 < ro./2, so a TO has positive mean curvature if 8 < 82 • Also, 
aO U a -0 c aTe , and aO is homotopic to a -0 in r. A geometric version 
of Dehn's lemma [21] states the following. In a compact Riemannian three-
manifold N whose boundary a M has nonnegative mean curvature, two dis-
joint, simple closed curves in aN, which are homotopic in N, must bound 
a least-area embedded minimal annulus. Thus, aO U a -0 bounds a least-area 
minimal annulus A c TO . 

We now prove that any compact minimal annulus ~ c TO with a~ = aOUa-o 

must be stable. By choice of 82 = 8 1 (7C/(2. La)), 

{iKgids<27CL {ds=7C. Jar. . 0. Jar. 
Since ~ is an annulus, we may use this inequality, together with the Gauss-
Bonnet formula to show that 

{ K dA = ( Kg ~ -7C, Jr. Jar. 
from which it follows that ~ must be (strictly) stable [2]. 0 

We shall prove in Lemma 3 that the stability property of minimal annuli 
given in Lemma 2 actually implies that there is a unique minimal annulus A 
in TO whose boundary is aO U a -0 • We note that this uniqueness property for 
A will not be used in our future constructions in this paper. 

Lemma 3. The minimal annulus given in Lemma 2 is unique. 
Proof. Let M be the space of smooth, incompressible, embedded minimal 
annuli in TO with boundary curves on a TO . Let n: M ~ C be the projection 
of M onto the space of pairs of disjoint, embedded, simple closed curves in 
a TO . By Theorem 2 in [21], an annulus ~ E M meets a TO transversely along 
a~ = n(~) E C. Using this fact, it can be shown that M is a smooth manifold. 
(See [27] for details in a similar case.) Moreover, strict stability of any ~ EM 
with a~ = a -0 U aO implies that a -0 U aO is a regular value of n. 

The pair of curves po n a TO in C bounds the flat domain po n r , which 
is the unique minimal annulus with this boundary. Therefore, this pair is also 
a regular value of n. Let r: [0, 1] --t C be an embedded, smooth path in C, 
beginning at nO) = a -0 U aO and ending at po n TO . Since n is a Fredholm 
map of index zero, the Smale transversality theorem [26] allows us to choose 
r transverse to n. Since the annuli in M are incompressible, the length of 
any curve representing a generator of 7C 1 (A), A EM, must be greater than 
a positive constant that depends only on 8. This property easily allows one 
to generalize the proof of the compactness theorem in [1] to show that n is 
proper. Therefore, n- I (r) consists of a finite number of embedded closed 
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curves in M and a finite number of compact arcs. Any endpoint of these arcs 
must be either pO n T8 or a minimal annulus 1; EM with 81; = a -8 U a8 . 

Since pO n 8 T8 is a regular value of n and the unique element in 
n- I (po n 8 T 8) is pO n T8 , it follows that pO n T8 is on the boundary of 
one and only one of the compact arcs in n- I (r). If n- I (a -8 U a 8 ) contains 
more than one annulus in M, there must be at least one arc in n- I (r) whose 
endpoints are distinct minimal annuli, 1;, 1;' in n- I (a -8 U ( 8 ) eM. We now 
consider the index of the stability operator associated to the second variation 
of area. It is a function along the compact arc joining 1; to 1;' . As pointed out 
by White (see [27, Theorem 5.3]), the indices of 1; and 1;' must have opposite 
parity (one is even, the other odd). In particular, one of the annuli 1;, 1;' has 
odd index and hence is unstable. But we have shown above that these annuli 
must be stable. Hence, n- I (a -8 U(8) contains a single annulus. This completes 
the proof of uniqueness. 0 

Remark 2. In fact, the minimal annulus produced in Lemma 2 is the unique 
minimal surface in T8 with boundary a8 U a -8. A simple consequence of 
a geometric version of Dehn's lemma [21] is the following. Suppose M is a 
Riemannian three-manifold that is homeomorphic to a solid torus. Assume M 
has nonnegative mean curvature. If Y1 and Y2 are two pairwise-disjoint simple 
closed curves in 8M that are homotopically nontrivial in M, and Y1 U Y2 
bounds a unique, embedded minimal annulus A in M, then A is the unique 
compact, branched, minimal surface in M with this boundary. This result 
shows that the uniqueness statement of Lemma 3 holds even if one considers 
compact, branched minimal surfaces. 

We are now in a position to describe a technical result that will be used in 
the following section. Let Yt be the circle of radius t in pO, centered at the 
origin. Let C: be the stable catenoid whose boundary circles consist of the 
vertical translates of Yt by (0, 0, ±8). Let ~8 be the solid torus bounded by 
subsets of C;, C;, p8, and p-8. Note that 8~8 consists of two planar annuli 
and the two catenoids C;, C;. Let KO c pO be the annulus bounded by Y2 
and Y4 • Let t5 be any smooth Jordan curve in KO that is homotopic to 8Ko 
in KO. 

Proposition 1. For 8 > 0 sufficiently small, ~8 can be foliated by compact min-
imal annuli At' 2 ~ t ~ 4, with the following properties: 

(1) At = Ct8 ,for t sufficiently close to 2 or to 4; 
(2) Each At meets pO orthogonally; 
(3) A3 meets pO in a smooth Jordan curve that converges to t5, in the 

CO -norm, as 8 -> 0 . 

Proof. Extend t5 to a smooth foliation {atl2 ~ t ~ 4} of KO, with at = Yt , 
for t close to 2, a3 = t5 , and at = Yt for t close to 4. Let {a~8} denote the 
corresponding foliation of p±8 n ~e. According to Lemma 2, for each fixed 
t, there exists an 82 > 0 such that for 8 < 82 , a~e bounds a stable minimal 
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FIGURE 1 

annulus, A;, in the e-neighborhood, r: of at' For t near 2 or near 4, it is 
clear that At = C; . Let e3 be the infimum of the values of et , 2:::; t :::; 4. By 
Lemma 2, et depends only upon r ,and L . Hence, e3 > 0 . 

at 0t 

Suppose now that e < e3 • Since the catenoid A2 = C; is stable, a small 
change of 8 A2 to a;e yields a nearby stable minimal annulus At' Since A2 
is stable and the variational vector field for {Atl 2:::; t and close to 2} is never 
zero along 8At , the variational vector field is never zero. Hence, At moves 
away from itself as t varies near 2. It follows that the variation produces a 
foliation for t near 2. 

Suppose As is the limit of such a smooth variation of A2 where each At is 
contained in ~e of at for t ~ 2. Then not only is As c r: but Theorem 2 in 
[21] guarantees that As is transverse to T;. By Lemma 2, As is stable and we 
can repeat the above argument to extend the previously defined foliation past 
As' In this way, we produce a smooth foliation At' 2:::; t :::; 4. Since A4 is a 
stable catenoid, A4 = C; c 8tle . Since all the leaves At are contained in tle 
(a simple application of the maximum principle), these annuli form a smooth 
foliation of tle . 

Let At denote the image of At under reflection through pO. Since tle is 
invariant under reflection through pO, A: c tle • If A: =1= At ' then there exists 
a largest or smallest to =1= t such that A: n At =1= 0 which is impossible by the 

o 
maximum principle. This shows A: = At' and hence meets pO orthogonally. 
Let a~ = A2 n pO. By making e3 smaller, if necessary, we can insure that a~ 
is CO -close to t5 = a 2 • This completes the proof the proposition. D 

Remark 3. By choosing t5 to be a curve in K O that intersects the positive x l -
axis twice, transversally, and the negative xI-axis only once, we can insure the 
existence of a point Po E t5 where the tangent line to t5 passes through the 
origin. At a point, PI' of t5 at maximum distance from the origin, the line 
segment OP I meets the tangent line to t5 orthogonally. Thus, on a subarc of 
t5 from Po to PI ' the cosine of the angle between the tangent line to t5 and 
the position vector of t5 must take on either all values between 0 and 1 or all 
the values between -1 and O. If At' 2 :::; t :::; 4, is the foliation produced 
in Proposition 1, and e > 0 is small, a~ = A3 n pO must have these same 
properties. Noting that the tangent line to a~ at P is the intersection of pO 
with the tangent space to A3 , we may use these observations and Proposition 
1 to conclude the following. 
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FIGURE 2 

Corollary 1. For e > 0 sufficiently small, there exists a foliation {At} of L\ 
whose leaves satisfy all the conditions of Proposition 1 as well as 

(4) for any q E pO - {O} , and any line I through q, Iql > 4, we may rotate 
~e around the x 3-axis so that Oq intersects a~ = A3 n pO in a point, p, where 
TpA3 n pO is a line parallel to I. 

See Figure 2. 

3. THE CONE LEMMA 

Let Xc be the cone in R3 defined by the equation 
222 

XI +X2 = (x3 /c) , c =I- O. 
The complement of Xc consists of three components, two of which are convex. 
We label the third region Wc and note that ~ contains pO - {O}, where 
pO = {X3 = O}. See Figure 3. Suppose M is a noncompact, properly immersed 
minimal surface, with compact boundary, that is disjoint from Xc. According 
to Theorem 3 of [10], the convex hull of M is either a plane, a slab, a halfspace, 
or all of R3. Therefore, M cannot lie in either of the convex components of 
R3 - Xc. From this it follows that for such surfaces, the assumptions" M c ~ " 
and" M n Xc = 0 " are equivalent. 

Note that as c ~ 0, Xc - {O} collapses to a double covering of pO - {O}. 
Note also that any horizontal plane or vertical catenoid is eventually disjoint 
from any Xc' no matter how small c is. (By "eventually" we mean "outside 
of a compact set".) Since any minimally embedded annular end of finite total 
curvature is asymptotic to a plane or a catenoid, it follows that, after suitable 
rotation, such an end is eventually disjoint from any Xc. It is easy to see that a 
minimally immersed end of finite total curvature with a horizontal limit tangent 
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FIGURE 3 

plane is also eventually disjoint from every Xc' (See [14].) The main result of 
this section shows that this property comes close to characterizing annular ends 
with finite total curvature. 

Lemma 4 (The Cone Lemma). If a properly immersed minimal surface with 
compact boundary is eventually disjoint from a sufficiently shallow cone, then 
each annular end of the minimal surface has finite total curvature. 
Proof. In order to prove the lemma, it is sufficient to establish the following 
statement for some cone XC' c > O. If M is an annular end of a properly 
immersed minimal surface, and M is disjoint from Xc' then M has finite total 
curvature. We will exhibit such a c > O. 

We begin by normalizing the problem. From the discussion preceding the 
statement of the lemma, we know that M n Xc = 0 if and only if M c ~. 

Let C( 1) be vertical catenoid with waist-circle of radius 1 and denote by C 
the compact component of ~ n C (1). Choose c > 0 small enough so that 
C is a radial graph and foliate ~ by the leaves {t· C}, 0 < t < 00. For 
convenience, we write Ct for t· C. 

Claim 1. After a homothetic shrinking M (but not of the foliation) and a 
discarding of a compact subset of M: 

(i) 8Mc C1 = C; 
(ii) Me U1<t<oo Ct ; 

(iii) M n Ct consists of a single closed immersed curve for t ~ 1 . 

Proof of Claim 1. Choose To large enough so that 8 M lies in the bounded 
component of ~ - CT, . Without loss of generality, we may assume that CT, 

o 0 
intersects M transversally. Denote by Z the closure of the unbounded com-
ponent of ~ - CT, ; that is, Z = Ut>T, Ct' Define f: Z -+ [To, 00) to be 

o - 0 
the function whose level set at t is Ct' Since the Ct are minimal surfaces, 
the maximum principle implies that fl Mnz has no interior maxima or min-
ima. Moreover, the intersection of two minimal surfaces in a neighborhood of 
a point of tangency consists of j curves, j ~ 2, intersecting at that point in 
equal angles. This implies that fl Mnz has only index - 1 critical points with 
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M 

FIGURE 4 

multiplicity equal to j - 1. (See [20, Lemma 2] and also [15].) Therefore, 
f may have at most k - 1 critical points, where k is the first Betti number 
of M n Z , by elementary Morse theory. Consequently, outside of a compact 
subset of M n Z , flMnz is free of critical points. This means that there exists 
a Tl > 0 such that for t ~ T1 , Ct n M consists of a finite number of closed 
immersed curves. Since M has one end, each Ct n M, t ~ Tl ' must consist 
of a single closed immersed curve. 

By discarding the compact subsurface M n (Ut<T Ct) and rescaling by a 
-I 

factor of T1- 1 , we satisfy conditions (i), (ii), and (iii). 0 

Because M is properly immersed and projection from ~ to pO - {O} is 
also proper, the projection II: M -+ pO - {O} is a proper map. 
Claim 2. The mapping II is a submersion outside of a compact set, provided 
c > 0 is sufficiently small. 

Before proving Claim 2, we will show that the lemma follows from it. By 
a result of Osserman [22, Theorem 9.5] the normals to M either take on all 
values, except for at most a set of capacity zero, or they possess unique limiting 
value. In the latter case, F must have finite total curvature. But Claim 2 
implies that, outside of some compact set, the normals to M take on values in 
a hemisphere, so the first case of Osserman's result is precluded. Hence, M has 
finite total curvature. 
Proof of Claim 2. In this proof, we will need, at several points, to restrict the 
size of c > O. At each point, we will continue to assume that M c ~. Let 
~ := ~e be the foliated annulus produced in Proposition 1. Reduce the size of 
c so that the ~ has its top and bottom boundaries disjoint from ~. Let K 
be the intersection of ~ with the vertical cylinder over the disk of radius 4 
in pO. Note ~ n ~ c K. Shrink c > 0 even more, if necessary, so that the 
following is true. If the distance from q E K to pO is r, then the vertical 
translation of ~ by r has the property that its top and bottom boundaries are 
disjoint from ~. 

Suppose now that II: M -+ pO is not a submersion outside of some compact 
set. This is equivalent to the statement that the points on M with vertical 
tangent plane form an unbounded set. In particular, there is a point p E M - K , 
whose tangent plane is vertical. 

According to Corollary 1, we may rotate M about the vertical axis so that the 
following holds. If ft is the projection of p onto pO , the line Oft intersects a 2 
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FIGURE 5 

at a point where the tangent line to (}:2 is parallel to TpMnpo. We perform this 
rotation of M and shrink M so that p actually lies on (}:2. Since the original 
M satisfied the conditions of Claim 1, and the foliation {Ct I 0 < t < oo} 
is rotationally symmetric, it follows easily that the modified M also satisfies 
condition (iii) of Claim 1. We also discard M n Ut<1 Ct. We will refer to this 
modified surface as M. It is clear that to prove the claim, it is sufficient to 
prove it for this modified surface. 

Vertically translate Ll so that p coincides with p, and label this translated 
torus ~. Also translate the foliation At of Ll to be a foliation in 1; of ~. 
Recall that we Eave chosen c > 0 small enough so that the top and bottom 
boundaries of Ll are disjoint from ~. Also recall that for t near 2 and 4, 
the leaves of the foliation of ~ are catenoids. Make c smaller, if necessary, to 
insure that these catenoids are radial graphs. 

We will now extend At to be a smooth foliation of a region that contains 
U4<t<oo Ct. Let At = t A4 , t ~ 4, be the homothetic expansion of A4 • (See 
Fig~~ 5.) The boundary 8A2 consists of two concentric circles. By making 
c > 0 smaller if necessary, we may insure that C is a subset of a stable catenoid, 
C , whose boundaries are concentric circles exterior to ~ on the same planes 
that contain 8A2 • We interpolate between 8A2 and 8C with a smooth family, 
each member of which is a pair of circles centered on the vertical axis. The 
distance between circles in each pair is an increasing function of t, 1::; t ::; 2 . 
Note that each pair of circles bounds a unique stable catenoid. Label that 
catenoid 1;, 1 ::; t ::; 2. It is evident that this family may be chosen to 
insure that the resulting foliation {1; I 0 ::; t < oo} is smooth. By construction, 
Me UI::ot<oo At' 8M cAl' and A3 is tangent to M at p. 

Let h be the smooth function, defined on the union of the leaves At' whose 
level set at t is 1;. Restriction of h to M yields a proper function M that 
satisfies hiM ~ I and is equal to I precisely on 8M. Repeating the argument in 
the proof of Claim I will show that all the critical points of h have index + 1 , 
possibly with mUltiplicity. However, M is an annulus, so by elementary Morse 
theory, it follows that hiM can have no critical points. But A3 is tangent to M 
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at p EM, which shows that p is a critical point of hiM. This contradiction 
completes the proof of Claim 2 and also of the lemma. 

4. STANDARD BARRIERS AND THE PROOF 
OF THE ANNULAR END THEOREM 

For convenience, in the proofs and discussions of this section, we introduce 
the notion of a standard barrier. 

Definition 1. A standard barrier in R3 is one of the following two minimal sur-
faces with boundary: the complement of a disk in a plane in R3; a component of 
the complement of a simple, closed, homotopically nontrivial curve on a catenoid. 

We will say that a surface Me R3 admits a standard barrier if it is disjoint 
from some standard barrier. As in the previous section, we will use the word 
"eventually" to mean "outside of some sufficiently large compact set of R3 ." 
Thus, two surfaces M C R3 and N C R3 are "eventually disjoint" if they have 
compact intersection. It is straightforward to see that M admits a standard 
barrier if and only if it is eventually disjoint from some standard barrier. 

Given a standard S and a ball B large enough to contain as, it is clear that 
S - B divides R3 - B into two components. Two surfaces M, N C R3 will be 
said to be separated by a standard barrier if such an Sand B can be found so 
that M and N eventually lie in different components of R3 - (B uS). 

Two disjoint standard barriers divide the complement of a sufficiently large 
ball B C R3 into three components, only one of which contains portions of 
both barriers on its boundary. A surface Me R3 that eventually lies in such a 
component will be said to lie between two standard barriers. After a rotation of 
R3 , if necessary, the region of R3 between two standard barriers eventually lies 
in the complement of any cone Xc = {x~ + x; = (X3/C)2} (in the component 
that contains pO - {O} ) for any c > 0, no matter how small. It follows from 
the Cone Lemma (Lemma 4 of §3) that 

Corollary 2. If a properly immersed minimal annulus in R3 with compact bound-
ary lies between two standard barriers, it must have finite total curvature. 

Our strategy in proving the Annular End Theorem (Theorem I below) is 
to trap ends between standard barriers. The next lemma contains the critical 
technical construction. 
Lemma 5. Suppose M is a properly embedded, piecewise-smooth surface that is 
a smooth minimal surface outside of some ball and that has at least two ends. 
Let y: R --+ M be a proper curve that diverges into two distinct ends of M, 
depending on whether t --+ +00 or t --+ -00. Then M admits a standard 
barrier whose boundary has linking number I with y. 

Proof. Let B C R3 be a ball large enough to contain the nonsmooth, nonmin-
imal portions of M, and expand it, if necessary, so that the ends of M in 
question correspond to distinct components of M - B. If one has such a ball, 
any larger one will have the same property. We may also choose B so that aB 
intersects M transversally. Suppose that Ml and M2 are the two components 
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of M - B that contain the unbounded components of )' - B . Since the proper 
arc y intersects 8 MI an odd number of times, we can choose exactly one com-
ponent of R3 - M whose closure, ./Y, has the following property. The arc y 
has odd linking number with any I-cycle in Int(./Y) homologous to 8MI in 
./Y . Note that 8 MI is not homologous to zero in ./Y . 

Let 1:1 C ... C 1:n C ... be an exhaustion of MI by smooth compact 
subdomains, with 8MI c 81:1. Let I.; denote a least-area integral current 
in ./Y with boundary 81:;, which is Z2-homologous to 1:;. Since 1:; U I.; is 
a boundary in ./Y, I.; is orientable. Interior regularity of least-area currents 
(see, for example, [25]) shows that I.I nInt(./Y) is a regular embedded minimal 
surface. Since 8./Y - 8 B has zero mean curvature, the maximum principle 
and the unique continuation property for minimal surfaces imply that either 
I.; n (./Y - 8B) is regular and equals 81:; or I.; C MI . Standard compactness 
theorems imply that a subsequence of the surfaces {I.;} converge to a least-
area orientable surface 1: c./Y with 81: = 8MI • Suppose, for the moment, 
1:nM=8L 

The surface 1: - 8 B is a stable, properly embedded, orientable minimal 
surface in R3 with compact boundary and hence has finite total curvature (see, 
[19, Theorem 1] as well as [71). Hence, 1: has a finite number, say n, of ends, 
and each end is asymptotic to a plane or to a catenoid. Let S R be the sphere 
of radius R centered at the origin. For R sufficiently large, 1: n S R consists 
of n parallel almost-great-circles, each of which is the boundary of one of the 
annular ends of 1: (see [14]). 

By our choice of ./Y, )' has odd linking number with one of the curves in 
1:nSR , and hence has linking number 1 with one of the annular ends of 1:-BR • 
Call this annular end F. 

In [17], a strong version of the maximum principle is proved, i.e., if two 
properly immersed minimal surfaces with compact boundaries are disjoint, they 
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stay a bounded distance apart. Therefore, F stays a positive distance from M .3 

On the other hand, F is asymptotic to an end, C', of a plane or a catenoid. 
Hence, C' contains a subend, C, whose boundary is a circle that has linking 
number 1 with y. Moreover, C is contained in the interior of ./Y . This proves 
the lemma in the case ~ n M = 8~. 

In case 8~ ~ ~ n M, the maximum principle implies that ~ = M, ' which 
means that ynM, is eventually contained in a catenoid-type end or a plane-type 
end, say C" c ~. This is, in fact, the easier case and can be treated directly, 
but we prefer to reduce it to the previous case. We may choose C" so that it 
is as close as desired to a standard barrier. Moving C" a small amount in the 
direction of its limiting normal produces a minimal surface that is disjoint from 
M, and its boundary has linking number with y equal to either 0 or 1. Move in 
the direction that makes the linking number equal to 1. The strong maximum 
principle shows that if C" is moved a small amount, then it is also disjoint 
from M. We can now apply the argument in the previous case to complete the 
proof. 0 

Corollary 3. Suppose M" M2 , and M3 are three pairwise-disjoint, properly 
embedded minimal surJaces in R3 , each oj which has compact boundary and 
one end. Then at least one oj the surJaces lies between two standard barriers. 
Proof. Choose a ball B C R3 that is big enough to contain Ui 8Mi • The ball 
can be chosen to intersect Ui Mi transversally. After removal of B n Mi from 
each M i , we may assume that 8Mi c 8B . The curves Ui 8Mi bound a region 
S on 8 B with the property that the boundary of at least one component of 
S touches the boundary of more than one of the Mi' We will refer to this 
component as Y and relabel the M i , if necessary" so that both 8Y n 8M, 
and 8Y n 8M2 are nonempty. 

Let M = SUi Mi' We intend to apply Lemma 5 to M. Toward that 
end, choose a proper curve y: R --+ M, with y(R) n S consisting of a single 
connected arc in Y from 8M, to 8M2 , We may assume that y diverges 
in M, (resp. M 2 ) as t --+ +00 (resp. t --+ -00). By Lemma 5, there exists a 
standard barrier disjoint from M whose boundary has linking number 1 with 
y. 

We now expand the ball B to be large enough to contain the boundary of 
this barrier and discard from each Mi the subset Mi n B . Similarly, let C, be 
the component of the barrier exterior to B. C, is still a barrier for M, and 
y has linking number 1 with 8 C,. Moreover, C, divides R3 - B into two 
components. Clearly, M, and M2 are in different components. Without loss 
of generality, we may assume that M3 is in the same components as M, . 

The curve 8 C, divides 8 B into two disks. Let D be the disk containing 
8M, U 8M3 , We now repeat the construction in the previous paragraph. This 
time, let S' be a region of D bounded by 8 C, U 8 M, U 8 M 3 • Elementary 
arguments show that S' has a component, say y' , with boundary points on 
both 8M, and 8M3 , Let M' = M, U M3 U C, U S'. Choose a proper arc 

3The use of this version of the maximum principle could be avoided by allowing barriers to be 
embedded minimal ends that are asymptotic to catenoids or planes. 
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FIGURE 7 

y' c M' whose intersection with S' lies in ,7' and consists of a connected arc 
from aMi to aM3. (Note that, since (aB - D) n y' = 0 and aD = ac(, y' 
has linking number 0 with a c( .) Lemma 5 implies that there exists another 
standard barrier, C2 ' that is disjoint from M( UM3UC( uS and whose boundary 
has linking number 1 with y'. 

Expand B again so that a c2 c B . It is possible to do this so that a B meets 
M transversally. Note that C2 naB is a single closed curve. Again, we discard 
from M(, M 2 , M 3 , C(' and C2 the intersection of those surfaces with B. 
Therefore, all of these surfaces have their boundaries on a B . 

The barrier C2 divides R3 - B into two region, as does the barrier C(. 
Since they are disjoint, C( U C2 divides R3 - B into three components. Let T( 
(resp. T2 ) be the component of (R3 - B) - (C( U C2 ) whose boundary contains 
C( but is disjoint from C2 (resp. contains C2 but is disjoint for C(). Let 
F be the third component, whose boundary contains C( U C2 • Since y' has 
linking number 1 with ac2 , C2 must separate M( from M 3 • But clearly, 
M( U M3 C T( U F . Hence, either M( or M3 lies in F. That is, either M( or 
M3 lies between two standard barriers. 0 

Remark 4. Lemma 5 and Corollary 3 hold even when the minimal surfaces in 
question are properly immersed rather than properly embedded. The proofs are 
essentially the same as the proof of the embedded case. See [17] for these types 
of arguments. 

Theorem 1 (The Annular End Theorem). If M is a properly embedded minimal 
surface in R3 , then at most two distinct annular ends of M can have infinite 
total curvature. 
Proof. If M has two or fewer annular ends, there is nothing to prove. If M 
has three or more annular ends, we apply Corollary 3 to any choice of three 
annular ends of M. It implies that one of them lies between two standard 
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barriers. But by Corollary 2, this end must have finite total curvature. Thus, 
M can have at most two annular ends of infinite total curvature. 0 

Corollary 4. Suppose M is a properly embedded minimal surface in R3. Then 
M can have at most two annular ends that are not conformally diffeomorphic 
to a once-punctured disk. In particular, if M has finite topology, then M is 
conformally equivalent to a closed Riemann surface from which a finite number of 
points, and zero, one, or two pairwise-disjoint compact disks have been removed. 
Proof. By the classification of conformal structures of annuli, each annular end 
of M is conformally diffeomorphic to {z E qR < Izl ::::; I} for some R> O. 
Since an annular end of M of finite total curvature is conformally diffeomor-

. --+ phlC to D - { 0 } [22, Theorem 9.3], M can have at most two annular ends 
that are not conformally diffeomorphic to a punctured disk. 0 
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