
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 2, Number 4, October 1989

A RIGOROUS SUBEXPONENTIAL ALGORITHM
FOR COMPUTATION OF CLASS GROUPS

JAMES L. HAFNER AND KEVIN S. McCURLEY

1. INTRODUCTION

In 1801, Gauss published the monumental work Disquisitiones Arithmetica,
in which he developed among other things a theory involving binary quadratic
forms. A large part of Gauss' investigations was concerned with computational
questions, and in particular, Gauss devoted a great deal of attention to the
problem of calculating equivalence classes of binary quadratic forms of a fixed
determinant. In modern notation, let C (-d) be the group, under composition,
of SL(2, Z)-equivalence classes of positive definite binary quadratic forms of
discriminant -d, and let h(-d) be its order (see [12] for more precise defini-
tions; note that this differs slightly from Gauss' original definition). Properties
of q-d) and h(-d) are important in many areas, including the theory of
factorization in quadratic fields and the distribution of prime numbers in arith-
metic progressions. Over the last 188 years, the problem of determining all val-
ues of d for which h(-d) has a given value has come to be known as "Gauss'
class number problem," and has been studied in depth. The origin of this prob-
lem can be traced to [3, Articles 304-305], where Gauss made a conjecture that
implies limd -+oo h(-d) = 00. Goldfeld, Gross, and Zagier (see [4]) only re-
cently managed to give a constructive proof for the bound h (-d) > clog d for
some constant c. It is only as a consequence of this theorem that we know of an
algorithm for calculating all d for which h(-d) = k (although this algorithm
has a running time that is exponential in k).

In this paper, we shall be concerned with the related computational problem
of calculating h(-d) and the invariants of the finite abelian group q -d) for
a given d. By the invariants, we mean positive integers m l , ••• , mk such that

k m 1!m2!· . ·!mk , h(-d) = ili=l m i and
k

q-d) ~ fJ)Z/miZ.
i=l

These are sometimes refered to as the torsion coefficients. Gauss [3, Article
185] gave at least two algorithms for computing only h(-d) that used the
construction of a set of representatives for the equivalence classes. A related

Received by the editors April 14, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 11Y16, 11E41; Secondary

1IRII,IIR29.

837

© 1989 American Mathematical Society
0894-0347/89 $1.00 + $.25 per page

838 JAMES L. HAFNER AND KEVIN S. McCURLEY

algorithm of Gauss appears in [3, Article 305], in which he describes a technique
based on what we would now recognize as Lagrange's theorem for a finite group.
Since it is conjectured that h(-d) » d l/2 jloglogd , these algorithms of Gauss
will have complexity at least d 1/2 , and for the first two, the complexity is at
least d.

Approximately 170 years after the time of Gauss, Shanks [19, 20] discov-
ered an algorithm to compute h(-d) that has running time of O(d I/4H) ,

or O(d I/5H) under the assumption of the extended Riemann hypothesis (see
Lenstra [10] or Schoof [16] for the complexity analysis). Shanks' algorithm de-
pends on the Dirichlet class number formula and the fact that the equivalence
classes form a group.

The purpose of the present paper is to prove the following theorem.

Theorem 1. Assuming the extended Riemann hypothesis, there exists a Las Vegas
algorithm that will compute the invariants of C(-d), and so compute h(-d) in
an expected running time of L(d)V2+0(1) bit operations, where

L(d) = exp(Jlogdloglogd).

The appearance of the function L(d) will not be surprising to those who
are familiar with the current state of integer factoring algorithms, since the best
algorithms known for factoring an integer n require L(n/ bit operations. In
fact, the algorithm that we shall describe is closely related to the factoring algo-
rithm of Seysen [18]. The connection between integer factoring and calculation
of class numbers is well known, since in the same paper where he presented his
class number algorithm, Shanks [19] described its relation to factoring.

The technique used in our algorithm is to construct a basis for the Z-module
A of relations on a set of n generators for the Gauss class group C(-d) .
Then C(-d) ~ Zn / A. From this basis for A, it is easy to calculate the desired
invariants of C(-d) by computing the Smith normal form of the basis matrix.

In a previous paper by the second author [11], an algorithm for computing
h(-d) was presented along with a heuristic argument that a running time of
L(d)3/V8+0(1) should be possible. The idea of constructing a generating set for
the lattice of relations was also suggested previously in a paper by A. K. Lenstra
and H. W. Lenstra, Jr. [9]. The algorithm presented in this paper is closely
related to that of [11], but is structured in such a way as to allow a proof for
the running time and extracting the extra information about the invariants. A
practical version of the algorithm might take yet another form.

At present, we see no way to remove the assumption of the extended Riemann
hypothesis (ERH) entirely, but it is probably possible to prove unconditionally
that the algorithm described below will perform as claimed in the theorem for
almost all inputs d. It would be interesting to see if the techniques used here
can also be extended to the case of positive discriminants, or to class groups of
arbitrary number fields. We have not investigated this.

In passing, we mention that the problem of computing the structure of the
class group C(-d) belongs to the complexity class NP under the assumption
of ERH. We shall omit the details for this, but the essential ingredients for

ALGORITHM FOR COMPUTATION OF CLASS GROUPS 839

the proof are implicit in [11] and the methods of this paper. The argument
in [11] involved guessing a basis matrix for a certain lattice. From this basis
matrix, we need only verify that its columns belong to the lattice and that its
determinant has the correct value. This gives a proof for the correctness of the
class number, and all that is required to obtain the structure of C(-d) is to
compute the Smith normal form of the matrix.

Our presentation here is not fully self-contained, for which we apologize.
Occasional references will be made to Seysen [18] and [11], and definitions and
notation fOT quadratic forms and class groups may be found in several sources,
including [12, 6, 10, 16, and 11].

2. DESCRIPTION OF THE ALGORITHM

Throughout this paper, we shall assume that d satisfies d == 0 or 3 (mod 4)
and d > 4, since these represent the only interesting values for our problem. We
shall use the notation that (g" ... , gk) , is the group generated by g" ... , gk'
and Wn(t) is the box {x: x E Zn, IIxlioo ~ t}. If .? is a full-dimensional
lattice in Zn , then Det.? refers to the absolute value of the determinant of a
basis matrix for'? , or, equivalently, the index of .? in Zn viewed as abelian
groups. Also, if A is a (not necessarily square) matrix, then A(A) refers to the
lattice generated by the columns of A.

Our model for the class group C(-d) is the set of SL(2, Z)-equivalence
classes of quadratic forms ax2 + bxy + ci of a given negative discriminant
b2 - 4ac = -d. We shall use the notation (a, b, c) to denote such a form,
and [(a, b, c)] to denote its equivalence class. Under the assumption of the
extended Riemann hypothesis, a set of generators for C(-d) is provided by
the following result from Schoof [16].

Theorem 2. Let P; be the ith prime with (-dip;) = 1, and let

(2.1) b; = min{b E Z+ : b2 == -d (mod 4p;)}.

If ERH is true, then there exists an effectively computable constant Co such that
the classes [(p;, b;, .)], 1 ~ i ~ no' generate C(-d), where no is the largest
integer such that p n ~ Co log2 d .

o

In what follows, we shall use J; to denote the equivalence class [(P;, b;, .)],
and as in [18] and [11], we define a homorphism rp: Zn ---> C (-d) by

n
rp(x" ... ,xn) = rr.ti •

;=,

We shall use A to denote the lattice of integer relations on 1;, ... , In, i.e.,
kerrp .

The following is an outline of the algorithm. We will be sketchy in the
description and analysis of Steps 1 and 2 as these are given in detail in [11].
The remaining steps will be described in more detail later. In the outline below,
the constants Co and no are the same as in Theorem 2, and the parameters z
and m are left unspecified until the proof of correctness and the analysis of the

840 JAMES L. HAFNER AND KEVIN S. McCURLEY

running time. Later, it will be shown that with high probability the algorithm
will terminate with the correct output if rn = n l +o(1) • Note that it follows from
[11] that the algorithm is Las Vegas under the assumption of ERH, i.e., the
output is correct.

Class Group Algorithm. Input d > 4 with d == 0 or 3 (mod 4), and output
h(-d) and the invariants of the class group C(-d).

Step 1. Compute a rational number B with Bj2:::; h(-d) < B (see [11]).
Step 2. Set N = lL(d)zJ. Compute the classes it = [(Pi' bi , .)] with Pi :::;

N. Let n be the number with Pi :::; N. Note that n = Nl+o(l) =
L(d)z+o(l) .

Step 3. Generate n sparse relations WI' ... , wn on the generators 1; , ... ,
In from the box Wn(n 2d) , using the method of Seysen [18].

Step 4. Set ho := I det(Ao)1 , where Ao is the n x n matrix with columns
WI'···' wn ·

Step 5. Generate new relations v I ' ... , V m with seeds from the box Wn (d2) .
Step 6. Calculate the Hermite normal form H of the n x (n + rn) matrix

Al whose columns are WI' ... , wn ' VI' ... , vm ·
Step 7. Let h be the product of the diagonal entries of H. If h ~ B, then

return to Step 3. Otherwise, calculate the Smith normal form S of
H, and output h(-d) = h and the diagonal entries of S which are
greater than 1.

In the rest of this section, we will present details for Steps 3-7. Later, we will
give a rigorous proof of correctness and the analysis for the running time. In
§5, we will describe variations of these steps that may lead to faster algorithms.

We first describe the procedure for Step 3. This is simply a translation of
Seysen's method [18] into our notation. The following procedure is used to
generate the column w k = (Wik' ... ,wnk)t of Ao.

Seysen Algorithm.
Step 3.1. Choose integers XI' ... ,X randomly from a uniform distribu-no

tion on the interval [0, d]. Set Xi = 0 for i = no + 1 , ... , n .
Step 3.2. Compute the reduced form (a, b, .) in the class I;nd n;=I]f? .
Step 3.3. Attempt to factor a = n;=1 p;) using trial division. If this fails,

then return to Step 3.1.
Step 3.4. Compute Y j = ±uj such that [(a, b, .)] = n;=1 II) (see [18, The-

orem 3.1]).
Step 3.5. For j = 1, ... , n, let w jk = Xj - Yj + 0jk2nd , where 0jk is the

Kronecker delta.

Note that if d is sufficiently large, then all of the entries in W k are trivially
bounded in absolute value by n2d and that the wk 's are sparse.

Next, we describe the procedure for calculating I det(Ao)1 in Step 4. We begin
by calculating a set g; of primes whose product exceeds nSn/2dn . Then we use

ALGORITHM FOR COMPUTATION OF CLASS GROUPS 841

row elimination to calculate I det(Ao)1 modulo P for each prime P in the
set g;. Finally, we use the Chinese remainder theorem to calculate I det(Ao)1
modulo the product of the primes in g;. The Hadamard inequality implies
that I det(Ao)1 < n5n / 2d n , so the Chinese remainder theorem will, in fact, give
us the integer I det(Ao)l.

In Step 5, we can generate relations as follows. We choose random integers
(the seeds) x j ' 1 ~ j ~ n, from the interval [_d2 , d2], and compute and
reduce the .form n;=1 I;j. We then try to factor the lead coefficient of the
reduced form as a product of the primes PI' ... 'Pn using trial division. If
we succeed in factoring the lead coefficient, then from this we derive a relation
of the form Vi = X - Y , where n;=1 I;j = n;=1 f;j , and the Yj's are small,
i.e., bounded in absolute value by log d. This is similar to the method above,
except that our relations need not lead to a diagonally dominate sparse matrix.
We also note that this procedure may require inverting forms, but this is trivial
since the inverse of the reduced form (a, b, c) is (a, -b, c) .

The method that we shall describe for computing the Hermite normal form
in Step 6 is based on the familar technique of unimodular elementary column
operations, except that the entries are reduced modulo ho . We carry out the
arithmetic modulo ho to ensure that the numbers encountered during column
operations remain manageable in size. This idea of using modular arithmetic
was described in the work of Hu [5], Domich, Kannan, and Trotter [2], and
Schrijver [17], although they suggested using the determinant of the lattice as
the modulus and worked only with square matrices. In our case, we will not
have the determinant of the lattice until we produce the Hermite normal form
of the matrix, so we use the arithmetic modulo a (possibly large) multiple of
the determinant to finally arrive at the determinant.

The first step is to convert A I into a lower triangular matrix L using uni-
modular column operations followed by reduction modulo ho. This proceeds
in the standard order, moving from top to bottom and left to right. In or-
der to introduce a zero in the i, j location (where i < j), we use the ex-
tended Euclidean algorithm to calculate integers rand t such that raii + taij =
g, where g = gcd(aii , ai) and Irl, It I ~ ho . We then replace column
i by r· (column i) +t· (column j), and we replace column j by -aij/ g.
(column i) +aj g. (column j). This is equivalent to postmultiplication by the
(n + m) x (n + m) unimodular matrix constructed by embedding the matrix

[r -aij/g]
t aij/g

into the (n + m) x (n + m) identity matrix, and will replace aii by gcd(aii ' aij)
and aij by O. After each such column operation, we reduce the entries in the
two columns modula ho.

From this lower triangular matrix L, we compute the Hermite normal form
H = (Hi) as follows. First, we reconstruct the diagonal of H. Let L ij , i,
j = 1, ... , n, be the entries of L. Set DI = ho. Then for i = 1, ... , n, use
the extended Euclidean algorithm to find integers ri and ti such that rPi +
tiLii = Hii' where Hii = gcd(Di' L ii) and put Di+1 = DJ Hii . In §3.3, we

842 JAMES L. HAFNER AND KEVIN S. McCURLEY

prove that the Hii are the main diagonal entries of H. The rest of the entries
of H are computed as follows. For i = 1 , ... , n mUltiply the ith column of L
by ti and reduce modula Di . This produces a matrix whose columns generate
A and whose diagonal is the diagonal of H. The final step in computing H
is to use unimodular column operations to reduce each of the entries below
the diagonal modulo the diagonal entry in its corresponding row. The order of
operations is to work from top to bottom and from left to right, and after each
column operation we reduce the column entries modulo h.

Finally, we describe a procedure for computing the Smith normal form S
of H. Once again, we use modular arithmetic, but now we work modulo
h(-d) = det(H). In the first stage of the algorithm, we perform unimodular
row and column operations on H followed by reduction modulo h (-d) to
construct a matrix of the form

BII 0 o
0

(2.2) B=
B*

0

with the further condition that BII divides every entry of the matrix B* . We
begin by setting B = H. We then perform unimodular column operations and
reduction modulo h(-d) in order to replace BII by the gcd of the entries
in the first row, and to introduce zeros into the rest of the first row. We then
perform unimodular row operations so as to replace the new BII by the gcd of
the entries in the first column. This may destroy the zeros in the first row, but
if so, then it reduces BII by a multiplicative factor of at least 2. Hence, if we
repeat the procedure at most O(1og h (-d)) = O(log d) times, then we arrive at
a matrix of the form (2.2). If now there exists an entry B;j of B* for which
BII t B~, then we add row i back to row 1 and repeat the procedure. At each
stage, we will reduce B II by a multiplicative factor of at least 2, so in at most
O(1ogd) iterations, we will finally arrive at a matrix of the form (2.2) with BII
dividing every entry of B*. We now apply essentially the same procedure to
B* (note that this will not change the first row or column of B). Continuing
in this way, we eventually arrive at a diagonal matrix S with

Then we use a reconstruction procedure to produce the Smith normal form S
from S. To do this, we set DI = h(-d), and then for i = 1, ... , n, we set
S;; = gcd(D;, S;), and D;+I = DdSii. The matrix S = diag(SII ' ... Snn) is
now the Smith normal form of H.

This completes the description of the algorithm. In the next section, we prove
the correctness of each of these steps.

ALGORITHM FOR COMPUTATION OF CLASS GROUPS 843

3. WHY IT WORKS

Let Ai = (WI' ... , W n ' VI' ... , Vi). Ultimately, our goal is to construct a
set of generators for the lattice A in Zn such that Zn I A ~ C (-d) and Det A =
h(-d) . From this set of generators, we will construct a basis in triangular form,
and from this, we derive the invariants of the group C (-d) ~ Zn I A .

At the completion of Step 3, we have generated a lattice Ao which is con-
tained in A and is of finite index. Thus, G = AI Ao is a finite abelian group
of order Det Aol Det A = hoi h (-d) ~ ho . The new relations from Step 5 then
generate a tower of lattices

Ao ~ Al ~ ... ~ Am ~ A.
Alternately, we can view Step 5 as generating elements of G given by coset
representatives of Ao in A.

Our claim is that if the elements of G are chosen almost uniformly at ran-
dom, then with high probability A = Am for some finite m, and in this case
the algorithm produces the correct output and terminates. Thus, we will need to
give a bound for m, demonstrate that the selection process of Step 5 simulates
random selection of elements of G, and prove that the procedure of Steps 6 and
7 will produce the correct diagonal elements of the Hermite and Smith normal
forms of AI' respectively. This will prove the correctness of the algorithm.
3.1. Geometry. In this section, we justify our claim that the selection process
of Step 5 does, in fact, simulate the selection of random elements of our group
G = AI Ao. To do this, we need to show that the coset representatives for Aa
in A are well distributed in the box Wn (d2). We begin by stating the following
lemma.
Lemma 1. Let F be a fundamental domain for a lattice Y of rank n in
Zn, let W E Zn, and let D = D(Y) be an upper bound for the diameter
of F (in the Euclidean norm). Let N 2'(t, w) be the cardinality of the set
{v: VE(w+Y)nwn(t)}. Then

(2t)n
N 2'(t, w) = DetY {I + O(nDlt)} ,

provided t > nD.
Proof. Let Wn(t) be the box {x: x E Rn, Ilxlioo ~ t}. Note that volF =
DetY.

Each lattice point of w +Y corresponds to a translation of F by the vector
associated to that lattice point. Hence, we can count the number of lattice
points by counting the number of copies of F inside the box, with care taken
near the boundaries of the box. Clearly, the union of all these translates of F
by the lattice points in (w+Y)nwn(t) is a subset of Wn(t+D) and contains
Wn(t - D). Thus, we have

vol Wn(t - D) ~ DetY·N..:f'(t, w) ~ vol Wn(t + D).
But

vol Wn(t ± D) = (2(t ± D))n = (2t)n = {I + O(nDlt)} ,
and this proves the lemma. 0

844 JAMES L. HAFNER AND KEVIN S. McCURLEY

A relation generated by Step 5 is of the form x - y(x), where x is randomly
selected from Wn(d2) , and y = y(x) satisfies 0::; Iyil ::;logd. Let .7 be the
set of classes containing "smooth" reduced forms. In order to prove our claim
that the relations selected in Step 5 simulate the selection of random elements
in G, we shall require the following lemma.
Lemma 2. Let W E A be fixed. Then with the notation above,

(3.1) Pr(x - y(x) E W +Aol qJ(x) E.7) = h(~d) {I + 0 (~) } ,

where Pr(·I·) denotes conditional probability.
Proof. The probability in (3.1) is

Pr(x - y(x) E W + Ao' qJ(x) E .7)
Pr(qJ(x) E.7)

which can be rewritten as
#{x E Wn(d2): qJ(x) E.7, x - y(x) E W + Ao}

#{x: x E Wn(d2) , qJ(x) E.7}
(3.2)

We may view the vector y as being determined either by x or else the class
f E.7 with qJ(x) = f. Hence, the numerator of (3.2) is

L #{x E Wn(d2) , x E y(f) + W + Ao} = L (2~2)n (1 + 0 (n~))
fEsP fEsP 0 d

= #.7·h~d2)n (1 + 0 (~)) ,

since the diameter D = D(Ao) of the fundamental domain of Ao is O(n 2d)
by the triangle inequality. Furthermore, the denominator of (3.2) is just

2 #.7.(2d2)n ((n3)) ~ #{x E Wn(d), X E y(f) + A} = h(-d) 1 + 0 d '

by the same argument, and this proves the desired result. 0
3.2. 2n vectors suffice. We require a simple lemma involving finite groups.
Lemma 3. Let G be a finite abelian group of order M with

0p

G == EB EBZ/pP;(P)Z.
plMi=1

Let gl' ... , gk be elements of G that are chosen with replacement according to
a probability distribution with density p satisfying p(g) ::; ~ for every g E G.
Then the probability that (gl' ... , gk) = G is at least 1 - (l21- k , where I =
LplM o.p is the number of primary invariants of G.
Proof. We give an upper bound for Pr((gl ' ... , gk) =I- G). Clearly,

Pr{(gl' ... , gk) =I- G}::; (~(#{(gl' ... , gk): (gl' ... , gk) =I- G}.

ALGORITHM FOR COMPUTATION OF CLASS GROUPS 845

Now (gl' ... , gk) =f G if and only if {gl' ... , gk} is a subset of some maximal
proper subgroup H of G. Thus,

#{(gl' ... , gk): (gl' ... ' gk) =f G} :::; I: IHlk.
H maximal

Now each maximal subgroup H < G is uniquely determined by its factor group
GIH which has order a prime piM. Thus, our sum over maximal subgroups
can be split as

(3.3) I: I: IHlk.
plM H maximal

IG/HI=p

An elementary counting argument shows that the number of subgroups of order
p is (pap - 1)/(p - 1). If 1= E p /M a.p :::; k, then the sum (3.3) is bounded by

I: (M)k pap_-1
1 :::;Mk I:2ap - k :::;Mki-k .

p/M p P p/M

This concludes the proof, since the result is trivial if k < I . 0

Note that the lemma is meaningful only if a. < 2. This is consistent with
the statement that a proper subgroup of G contains at most IGI/2 elements.
Note also that for an arbitrary group, I:::; log I GI I log 2 .

Now we have already noted that if G = AI Ao ' then

IGI = holh(-d) :::; ho :::; exp{nl+O(I)}.

Also by Lemma 2, we can take a. = 1 + O(n 3 I D). Thus, it is possible to choose
m = n I +o(I) so that if d is sufficiently large, then m satisfies

log IGI + logd m> . - log(21a.)

Consequently, with this choice of m, the probability is at least 1 - lid of
computing enough relations in Step 5 to generate A after m iterations.

3.3. Hermite and Smith normal forms. In this section, we prove a lemma con-
cerning the problem of computing the Hermite normal form of an integral ma-
trix using modular arithmetic. Our argument is adapted from the paper by
Domich, Kannan, and Trotter [2], in which they described a procedure for
computing the Hermite normal form of a square matrix using arithmetic mod-
ulo the determinant. We generalize their statement in a rather trivial way so
as to allow nonsquare matrices and arithmetic modulo a (large) multiple of the
determinant of the lattice spanned by the columns of the matrix. The result is
the following.

Lemma 4. Let A be an integral matrix of size n x s and rank n, H = (Hi})
its Hermite normal form (in lower triangular form), and D a positive integer
multiple of Det(A(A)). Let DI = D, and Di+1 = D)Hu i = 1, ... , n - 1.

846 JAMES L. HAFNER AND KEVIN S. McCURLEY

If L = (L i) is any lower triangular matrix obtained from A by unimodular
column operations followed by reduction modulo D, then Hii = gcd(Di ' L i) .

Proof. This proof is almost exactly as in [2]. Let yi(M) , 1 :::; i :::; n, denote the
greatest common divisor of all i x i subdeterminants obtained from the first i
rows of a matrix M. Then it is easy to check that unimodular column opera-
tions leave this quantity unchanged. Moreover, reduction modulo D changes
these yi's only by some multiple of D since it affects determinants linearly.
Now Yi(H) = H II ·· ·Hu divides Det(A(A)) and so also D. Hence,

(3.4)

H II ·· ·H;; = gcd(D, y;CH))
= gcd(D, Yi(A))
= gcd(D, Yi(L))
= gcd(D, L II ·· .L).

Thus, the claim of the lemma holds for i = I. But Di = DIHII ·· ·Hi_ 1 i-I' so
dividing the (i - 1)st instance of the above relation by H II · .·Hi _ 1 i-I 'leaves

(3.5) 1 = gcd(Di' (LII ".Li_l,i_I)/(HII " ·Hi-l,i_I))'

for each 2 :::; i :::; n. Consequently, dividing the ith instance of (3.4) by
HIt'· ·Hi_ 1 i-I and using (3.5), we deduce the lemma for each i> 1. 0

The preceding lemma shows that Step 6 of the algorithm will correctly com-
pute the diagonal entries of the Hermite normal form of AI' It remains to
see why the rest of the Hermite normal form is computed correctly in Step 6.
This can be accomplished with the simple observations that after the columns
of L are multiplied by the ti 's and reduced modulo h(-d) , we have a lower
triangular matrix l whose columns belong to A(AI) (see [2, Corollary 2.6]),
and whose determinant equals Det(A(A I)). Hence, it follows that the columns
of l form a basis for A(A I)' The rest of the procedure simply reduces the
entries below the diagonal using elementary unimodular column operations, so
it clearly produces the Hermite normal form.

It remains only to prove correctness of the algorithm for computing the Smith
normal form of H. The proof follows very closely the arguments given above
for the Hermite normal form, but we replace yi(M) by)li(M) , which denotes
the gcd of the determinants of all i x i submatrices of a matrix M. The
crucial fact is that the)Ii's are invariant under both elementary unimodular
row and column operations. Thus,

Sll'" Sii = gcd(h(-d),)li(S))
= gcd(h(-d),)li(H))

= gcd(h(-d),)li(S))

= gcd(h(-d), 5'11" ,Si)'

This observation is sufficient to complete the proof.

ALGORITHM FOR COMPUTATION OF CLASS GROUPS 847

4. RUNNING TIME

In this section,we analyze the running time of the algorithm given in §2. Our
analysis is mostly self-contained, but any details that are omitted are contained
in [11] or [18]. For example, in [11] it is shown that Steps 1 and 2 take at most
nl+o(l) bit operations. Furthermore, it was shown that Step 4 can be done in
n 4+o(I) bit operations using Gaussian elimination and the Chinese remainder
theorem.

We now estimate the running time for generating relations in Steps 3 and 5.
If we use the binary method of exponentiation, then the arguments in [18] will
show that the expected running time to test for a single relation in either Step
3 or Step 5 is nl+o(I). As the probability that a vector produces a relation is
L(d)-l j 4z+o(l) , the expected running time to generate all the relations in Steps
3 and 5 is

(4.1) (n + m)nl+o(l) L(d)l j 4Z+0(1) •

Since we argued in §3.2 that we can take m = nl+o(l) , this gives an expected
running time for Steps 3 and 5 of n 2+ o(l) L(d)l j 4z+o(l) .

We next consider the running time for Step 6. In total, we need to perform at
most (n + m)n column operations to introduce zeros above the diagonal. Each
of these column operations requires an application of the Euclidean algorithm
on integers that are::; ho' followed by O(n) arithmetic operations modulo ho '
Using fast mUltiplication methods, we can carry out the extended Euclidean
algorithm in O(log ho log log3 ho) bit operations [15]. Each column operation
can therefore be carried out in

3 2 O(log ho log log ho + n log ho log log ho)

bit operations using fast integer multiplication [14]. Since logho ::; nl+o(l) , we
get a running time of O(n4+0 (1)) bit operations producing the Hermite normal
form of AI'

Finally, we consider the running time for Step 7. In order to create a matrix
of the form (2.2), it requires O(n logd) unimodular row or column operations,
each of which takes at most O(n) operations modulo h (-d) (or on integers of
at most O(logd) bits). After doing this O(logd) times, we can guarantee that
B II divides every entry of B* , so in order to produce the first diagonal entry
of S, it takes at most O(n210g4 d) bit operations. Hence, producing the full
matrix S takes at most O(n3 10g4 d) bit operations. Since the reconstruction
phase takes much less time than this, we construct the Smith normal form S
in Step 7 in at most O(n310g4 d) bit operations.

Hence, the total number of bit operations for the algorithm is bounded by

n 2+ 0(1) L(d)I/4z+0(1) + n 4+ O(I) .

848 JAMES L. HAFNER AND KEVIN S. McCURLEY

As n = L(d)z+o(l) , the optimal choice of z is z = I/V8, and this proves
Theorem 1.

5. CONJECTURAL IMPROVEMENTS

The above bound on the running time of our algorithm is not as good as the
conjectured running time of Algorithm CN2 of [11]. However, there are a num-
ber of specific areas where the current rigorous algorithm might be improved.

First, any improvement would require a speedup in the running time for
the generation of relations in Steps 3 and 5. This is due to the fact that, as it
stands, these steps required L(d)2z+1/4Z+0(1) operations, and this exponent has a
minimum of v'2 + o(1) . Let W I be the maximum number of nonzero elements
in each of the first n relations generated in Step 3 and w2 the corresponding
number for the m relations generated in Step 5. Clearly, then, we have WI =
0(1og2 d) and w2 = O(n). If instead of trial division, we use the rigorous
version of the elliptic curve factorization algorithm due to Pomerance [13],
then the expected running time to test for a single relation in Step 3 should be
wIL(d)O(I) , and for a relation in Step 5 should be w2L(dt(I). Then in place
of (4.1), we would get an expected running time to generate all the relations in
Steps 3 and 5 of

()L(d) I/4z+0(1)
nW I + nW2 .

Hence, if one could show that the relations in Step 5 could be taken to be
sparse (so that w2 = nO(I)), then by the analysis above, the running time would
improve to L(d)2/V3+0(1) . (Note that 2/.;3:::::: 1.155.)

Similarly, we might be able to show that only m = no(l) extra relations from
Step 5 would be required. This would be possible if we could show that the
group G described in §3 had significantly fewer than O(log IGI) primary in-
variants. There are at least two possible approaches to this. One would be to
show that this group G by construction had this property. The other would
be to show that G, in some quantitative sense, was random, in which case,
with positive probability, it would have the desired property. In any case, this
improvement would speed up the running time to L(d)2/V3+o(l) just as above.
(Note that implementing both improvements together would not improve the
overall running time because the time required for generating the first n rela-
tions would dominate.)

The two previous remarks have assumed no changes in the rest of the algo-
rithm. However, if we could make either of the above improvements, then it
seems likely that fast matrix multiplication techniques might be adapted to give
a faster running time for computing det(Ao) and the determinant of the lattice
A(AI). Using these ideas, we would obtain a running time of L(d/+o(l) for
computing h(-d), where c = (0 + I)/2v'7J, and 0 is the exponent for matrix
multiplication (currently, it is known that 0 ~ 2.376; see [1]).

Again with either of the above improvements, if it were possible to compute
the determinant of a lattice generated by the columns of a nonsquare sparse
matrix (perhaps by adapting Wiedemann's method) in n2+e ring operations,

ALGORITHM FOR COMPUTATION OF CLASS GROUPS 849

then the running time for computing h(-d) would be reduce to L(d) 1+0(1) •

This is highly speculative, but it is perhaps reasonable to conjecture this as the
best running time that can be achieved with the framework of smooth forms.
Note that this is a stronger conjecture that was made previously in [11].

REFERENCES

I. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, preprint,
1987. Extended abstract in Proc. 19th ACM Sympos. on Theory of Comput. ACM, New York,
1987, pp. 1-6.

2. P. D. Domich, R. Kannan, and L. E. Trotter, Hermite normal form computation using modulo
determinant arithmetic, Math. Oper. Res. 12 (1987), 50-59.

3. K. F. Gauss,Disquisitiones arithmetica, Fleischer, Lepzig, 1801. Translation into English by
Arthur A. Clarke, S. J., reprinted by Springer-Verlag, New York, 1985.

4. D. Goldfeld, Gauss' class number problem for imaginary quadratic fields, Bull. Amer. Math.
Soc. 13 (1985), 23-37.

5. T. C. Hu, Integer programming and network flows, Addison-Wesley, Reading, MA, 1969.
6. Hua Loo Keng, Introduction to number theory. Translation into English by Peter Shiu,

Springer-Verlag, New York, 1982.
7. Ravindran Kannan and Achim Bachem, Polynomial algorithms for computing the Smith and

Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499-507.
8. D. E. Knuth, The art of computer programming, Vol. 2: Seminumerical algorithms, 2nd ed.,

Addison-Wesley, Reading, MA, 1981.
9. A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory, Technical Report 87-008,

Dep. of Computer Science, Univ. of Chicago, 1987.
10. H. W. Lenstra, Jr., On the calculation of regulators and class numbers of quadratic fields,

Journees Arithmetiques 1980 (J. V. Armitage, ed.), Cambridge Univ. Press, New York, 1982.
II. Kevin S. McCurley, Cryptographic key distribution and computation in class groups, Num-

ber Theory and Applications (Proc. NATO Advanced Study Inst. on Number Theory and
Applications, Banff, 1988) (Richard A. Molin, ed.), Kluwer, Boston, 1989.

12. W. Narkiewicz, Classical problems in number theory, PWN, Polish Sci. Publ., Warsaw, 1986.
13. Carl Pomerance, Fast. rigorous factorization and discrete logarithm algorithms, Discrete Algo-

rithms and Complexity (Proc. Japan-US Joint Seminar, June 1986, Kyoto, Japan), Academic
Press, Orlando, 1987, pp. 119-143.

14. A. Schonhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing 7 (1971),
281-292.

15. A. Schonhage, Schnelle Berechnung von Kettenbruchenentwicklungen, Acta Inform. 1 (1971),
139-144.

16. R. Schoof, Quadratic fields and factorization, Computation Methods in Number Theory (R.
Tijdeman and H. W. Lenstra, Jr., eds.), Math. Centrum Tract 154, Amsterdam, 1982, pp.
235-286.

17. A. Schrijver, Theory of linear and integer programming, Wiley, New York, 1985.
18. Martin Seysen, A probabilistic factorization algorithm with quadraticforms of negative discrim-

inant, Math. Compo 48 (1987), 757-780.
19. Daniel Shanks, Class number. a theory offactorization. and genera, Proc. Sympos. Pure Math.,

Vol. 20, Amer. Math. Soc., Providence, RI, 1971, pp. 415-440.
20. __ , Five number-theoretic algorithms, Proc. Second Manitoba Conference on Numerical

Mathematics, Univ. of Manitoba, Congressus Numerantium, No. VII, Utilitas. Math., Win-
nipeg, 1973, pp. 51-70.

21. Douglas H. Wiedemann, Solving sparse linear equations over finite./ields, IEEE Trans. Inform.
Theory 32 (1986), 54-62.

850 JAMES L. HAFNER AND KEVIN S. McCURLEY

ABSTRACT. Let C(-d) denote the Gauss Class Group of quadratic forms of
a negative discriminant -d (or equivalently, the class group of the imaginary
quadratic field Q(~)). We give a rigorous proof that there exists a Las Ve-
gas algorithm that will compute the structure of C(-d) with an expected run-
ning time of L(d) V2+o(1) bit operations, where L(d) = exp(y'log d log log d) .
Thus, of course, also includes the computation of the class number h(-d) , the
cardinality of C(-d) .

IBM RESEARCH DIVISION, ALMADEN RESEARCH CENTER, K53/802, 650 HARRY ROAD, SAN
JOSE, CALIFORNIA 95120-6099

Current address (K. McCurley): Organization 1423, Sandia National Laboratories, Albuquerque,
New Mexico 87185

	0040203
	0040204
	0040205
	0040206
	0040207
	0040208
	0040209
	0040210
	0040211
	0040212
	0040213
	0040214
	0040215
	0040216

