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1. INTRODUCTION 

In 1801, Gauss published the monumental work Disquisitiones Arithmetica, 
in which he developed among other things a theory involving binary quadratic 
forms. A large part of Gauss' investigations was concerned with computational 
questions, and in particular, Gauss devoted a great deal of attention to the 
problem of calculating equivalence classes of binary quadratic forms of a fixed 
determinant. In modern notation, let C (-d) be the group, under composition, 
of SL(2, Z)-equivalence classes of positive definite binary quadratic forms of 
discriminant -d, and let h( -d) be its order (see [12] for more precise defini-
tions; note that this differs slightly from Gauss' original definition). Properties 
of q-d) and h( -d) are important in many areas, including the theory of 
factorization in quadratic fields and the distribution of prime numbers in arith-
metic progressions. Over the last 188 years, the problem of determining all val-
ues of d for which h( -d) has a given value has come to be known as "Gauss' 
class number problem," and has been studied in depth. The origin of this prob-
lem can be traced to [3, Articles 304-305], where Gauss made a conjecture that 
implies limd -+oo h(-d) = 00. Goldfeld, Gross, and Zagier (see [4]) only re-
cently managed to give a constructive proof for the bound h (-d) > clog d for 
some constant c. It is only as a consequence of this theorem that we know of an 
algorithm for calculating all d for which h( -d) = k (although this algorithm 
has a running time that is exponential in k). 

In this paper, we shall be concerned with the related computational problem 
of calculating h( -d) and the invariants of the finite abelian group q -d) for 
a given d. By the invariants, we mean positive integers m l , ••• , mk such that 

k m 1!m2!· . ·!mk , h( -d) = ili=l m i and 
k 

q-d) ~ fJ)Z/miZ. 
i=l 

These are sometimes refered to as the torsion coefficients. Gauss [3, Article 
185] gave at least two algorithms for computing only h(-d) that used the 
construction of a set of representatives for the equivalence classes. A related 
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algorithm of Gauss appears in [3, Article 305], in which he describes a technique 
based on what we would now recognize as Lagrange's theorem for a finite group. 
Since it is conjectured that h( -d) » d l/2 jloglogd , these algorithms of Gauss 
will have complexity at least d 1/2 , and for the first two, the complexity is at 
least d. 

Approximately 170 years after the time of Gauss, Shanks [19, 20] discov-
ered an algorithm to compute h( -d) that has running time of O(d I/4H ) , 

or O(d I/5H ) under the assumption of the extended Riemann hypothesis (see 
Lenstra [10] or Schoof [16] for the complexity analysis). Shanks' algorithm de-
pends on the Dirichlet class number formula and the fact that the equivalence 
classes form a group. 

The purpose of the present paper is to prove the following theorem. 

Theorem 1. Assuming the extended Riemann hypothesis, there exists a Las Vegas 
algorithm that will compute the invariants of C( -d), and so compute h( -d) in 
an expected running time of L(d)V2+0(1) bit operations, where 

L(d) = exp( Jlogdloglogd). 

The appearance of the function L( d) will not be surprising to those who 
are familiar with the current state of integer factoring algorithms, since the best 
algorithms known for factoring an integer n require L(n/ bit operations. In 
fact, the algorithm that we shall describe is closely related to the factoring algo-
rithm of Seysen [18]. The connection between integer factoring and calculation 
of class numbers is well known, since in the same paper where he presented his 
class number algorithm, Shanks [19] described its relation to factoring. 

The technique used in our algorithm is to construct a basis for the Z-module 
A of relations on a set of n generators for the Gauss class group C( -d) . 
Then C( -d) ~ Zn / A. From this basis for A, it is easy to calculate the desired 
invariants of C( -d) by computing the Smith normal form of the basis matrix. 

In a previous paper by the second author [11], an algorithm for computing 
h( -d) was presented along with a heuristic argument that a running time of 
L(d)3/V8+0(1) should be possible. The idea of constructing a generating set for 
the lattice of relations was also suggested previously in a paper by A. K. Lenstra 
and H. W. Lenstra, Jr. [9]. The algorithm presented in this paper is closely 
related to that of [11], but is structured in such a way as to allow a proof for 
the running time and extracting the extra information about the invariants. A 
practical version of the algorithm might take yet another form. 

At present, we see no way to remove the assumption of the extended Riemann 
hypothesis (ERH) entirely, but it is probably possible to prove unconditionally 
that the algorithm described below will perform as claimed in the theorem for 
almost all inputs d. It would be interesting to see if the techniques used here 
can also be extended to the case of positive discriminants, or to class groups of 
arbitrary number fields. We have not investigated this. 

In passing, we mention that the problem of computing the structure of the 
class group C( -d) belongs to the complexity class NP under the assumption 
of ERH. We shall omit the details for this, but the essential ingredients for 
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the proof are implicit in [11] and the methods of this paper. The argument 
in [11] involved guessing a basis matrix for a certain lattice. From this basis 
matrix, we need only verify that its columns belong to the lattice and that its 
determinant has the correct value. This gives a proof for the correctness of the 
class number, and all that is required to obtain the structure of C( -d) is to 
compute the Smith normal form of the matrix. 

Our presentation here is not fully self-contained, for which we apologize. 
Occasional references will be made to Seysen [18] and [11], and definitions and 
notation fOT quadratic forms and class groups may be found in several sources, 
including [12, 6, 10, 16, and 11]. 

2. DESCRIPTION OF THE ALGORITHM 

Throughout this paper, we shall assume that d satisfies d == 0 or 3 (mod 4) 
and d > 4, since these represent the only interesting values for our problem. We 
shall use the notation that (g" ... , gk) , is the group generated by g" ... , gk' 
and Wn(t) is the box {x: x E Zn, IIxlioo ~ t}. If .? is a full-dimensional 
lattice in Zn , then Det.? refers to the absolute value of the determinant of a 
basis matrix for'? , or, equivalently, the index of .? in Zn viewed as abelian 
groups. Also, if A is a (not necessarily square) matrix, then A(A) refers to the 
lattice generated by the columns of A. 

Our model for the class group C( -d) is the set of SL(2, Z)-equivalence 
classes of quadratic forms ax2 + bxy + ci of a given negative discriminant 
b2 - 4ac = -d. We shall use the notation (a, b, c) to denote such a form, 
and [(a, b, c)] to denote its equivalence class. Under the assumption of the 
extended Riemann hypothesis, a set of generators for C( -d) is provided by 
the following result from Schoof [16]. 

Theorem 2. Let P; be the ith prime with (-dip;) = 1, and let 

(2.1) b; = min{b E Z+ : b2 == -d (mod 4p;)}. 

If ERH is true, then there exists an effectively computable constant Co such that 
the classes [(p;, b;, .)], 1 ~ i ~ no' generate C( -d), where no is the largest 
integer such that p n ~ Co log2 d . 

o 

In what follows, we shall use J; to denote the equivalence class [(P;, b;, .)], 
and as in [18] and [11], we define a homorphism rp: Zn ---> C (-d) by 

n 
rp(x" ... ,xn ) = rr.ti • 

;=, 

We shall use A to denote the lattice of integer relations on 1;, ... , In, i.e., 
kerrp . 

The following is an outline of the algorithm. We will be sketchy in the 
description and analysis of Steps 1 and 2 as these are given in detail in [11]. 
The remaining steps will be described in more detail later. In the outline below, 
the constants Co and no are the same as in Theorem 2, and the parameters z 
and m are left unspecified until the proof of correctness and the analysis of the 
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running time. Later, it will be shown that with high probability the algorithm 
will terminate with the correct output if rn = n l +o(1) • Note that it follows from 
[11] that the algorithm is Las Vegas under the assumption of ERH, i.e., the 
output is correct. 

Class Group Algorithm. Input d > 4 with d == 0 or 3 (mod 4), and output 
h( -d) and the invariants of the class group C( -d). 

Step 1. Compute a rational number B with Bj2:::; h(-d) < B (see [11]). 
Step 2. Set N = lL(d)zJ. Compute the classes it = [(Pi' bi , .)] with Pi :::; 

N. Let n be the number with Pi :::; N. Note that n = Nl+o(l) = 
L(d)z+o(l) . 

Step 3. Generate n sparse relations WI' ... , wn on the generators 1; , ... , 
In from the box Wn(n 2d) , using the method of Seysen [18]. 

Step 4. Set ho := I det(Ao)1 , where Ao is the n x n matrix with columns 
WI'···' wn · 

Step 5. Generate new relations v I ' ... , V m with seeds from the box Wn (d2 ) . 
Step 6. Calculate the Hermite normal form H of the n x (n + rn) matrix 

Al whose columns are WI' ... , wn ' VI' ... , vm · 
Step 7. Let h be the product of the diagonal entries of H. If h ~ B, then 

return to Step 3. Otherwise, calculate the Smith normal form S of 
H, and output h( -d) = h and the diagonal entries of S which are 
greater than 1. 

In the rest of this section, we will present details for Steps 3-7. Later, we will 
give a rigorous proof of correctness and the analysis for the running time. In 
§5, we will describe variations of these steps that may lead to faster algorithms. 

We first describe the procedure for Step 3. This is simply a translation of 
Seysen's method [18] into our notation. The following procedure is used to 
generate the column w k = (Wik' ... ,wnk)t of Ao. 

Seysen Algorithm. 
Step 3.1. Choose integers XI' ... ,X randomly from a uniform distribu-no 

tion on the interval [0, d]. Set Xi = 0 for i = no + 1 , ... , n . 
Step 3.2. Compute the reduced form (a, b, .) in the class I;nd n;=I]f? . 
Step 3.3. Attempt to factor a = n;=1 p;) using trial division. If this fails, 

then return to Step 3.1. 
Step 3.4. Compute Y j = ±uj such that [(a, b, .)] = n;=1 II) (see [18, The-

orem 3.1]). 
Step 3.5. For j = 1, ... , n, let w jk = Xj - Yj + 0jk2nd , where 0jk is the 

Kronecker delta. 

Note that if d is sufficiently large, then all of the entries in W k are trivially 
bounded in absolute value by n2d and that the wk 's are sparse. 

Next, we describe the procedure for calculating I det(Ao)1 in Step 4. We begin 
by calculating a set g; of primes whose product exceeds nSn/2dn . Then we use 
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row elimination to calculate I det(Ao)1 modulo P for each prime P in the 
set g;. Finally, we use the Chinese remainder theorem to calculate I det(Ao)1 
modulo the product of the primes in g;. The Hadamard inequality implies 
that I det(Ao)1 < n5n / 2d n , so the Chinese remainder theorem will, in fact, give 
us the integer I det(Ao)l. 

In Step 5, we can generate relations as follows. We choose random integers 
(the seeds) x j ' 1 ~ j ~ n, from the interval [_d2 , d2], and compute and 
reduce the .form n;=1 I;j. We then try to factor the lead coefficient of the 
reduced form as a product of the primes PI' ... 'Pn using trial division. If 
we succeed in factoring the lead coefficient, then from this we derive a relation 
of the form Vi = X - Y , where n;=1 I;j = n;=1 f;j , and the Yj's are small, 
i.e., bounded in absolute value by log d. This is similar to the method above, 
except that our relations need not lead to a diagonally dominate sparse matrix. 
We also note that this procedure may require inverting forms, but this is trivial 
since the inverse of the reduced form (a, b, c) is (a, -b, c) . 

The method that we shall describe for computing the Hermite normal form 
in Step 6 is based on the familar technique of unimodular elementary column 
operations, except that the entries are reduced modulo ho . We carry out the 
arithmetic modulo ho to ensure that the numbers encountered during column 
operations remain manageable in size. This idea of using modular arithmetic 
was described in the work of Hu [5], Domich, Kannan, and Trotter [2], and 
Schrijver [17], although they suggested using the determinant of the lattice as 
the modulus and worked only with square matrices. In our case, we will not 
have the determinant of the lattice until we produce the Hermite normal form 
of the matrix, so we use the arithmetic modulo a (possibly large) multiple of 
the determinant to finally arrive at the determinant. 

The first step is to convert A I into a lower triangular matrix L using uni-
modular column operations followed by reduction modulo ho. This proceeds 
in the standard order, moving from top to bottom and left to right. In or-
der to introduce a zero in the i, j location (where i < j), we use the ex-
tended Euclidean algorithm to calculate integers rand t such that raii + taij = 
g, where g = gcd(aii , ai) and Irl, It I ~ ho . We then replace column 
i by r· (column i) +t· (column j), and we replace column j by -aij/ g. 
(column i) +aj g. (column j). This is equivalent to postmultiplication by the 
(n + m) x (n + m) unimodular matrix constructed by embedding the matrix 

[ r -aij/g] 
t aij/g 

into the (n + m) x (n + m) identity matrix, and will replace aii by gcd( aii ' aij ) 
and aij by O. After each such column operation, we reduce the entries in the 
two columns modula ho. 

From this lower triangular matrix L, we compute the Hermite normal form 
H = (Hi) as follows. First, we reconstruct the diagonal of H. Let L ij , i, 
j = 1, ... , n, be the entries of L. Set DI = ho. Then for i = 1, ... , n, use 
the extended Euclidean algorithm to find integers ri and ti such that rPi + 
tiLii = Hii' where Hii = gcd(Di' L ii ) and put Di+1 = DJ Hii . In §3.3, we 



842 JAMES L. HAFNER AND KEVIN S. McCURLEY 

prove that the Hii are the main diagonal entries of H. The rest of the entries 
of H are computed as follows. For i = 1 , ... , n mUltiply the ith column of L 
by ti and reduce modula Di . This produces a matrix whose columns generate 
A and whose diagonal is the diagonal of H. The final step in computing H 
is to use unimodular column operations to reduce each of the entries below 
the diagonal modulo the diagonal entry in its corresponding row. The order of 
operations is to work from top to bottom and from left to right, and after each 
column operation we reduce the column entries modulo h. 

Finally, we describe a procedure for computing the Smith normal form S 
of H. Once again, we use modular arithmetic, but now we work modulo 
h( -d) = det(H). In the first stage of the algorithm, we perform unimodular 
row and column operations on H followed by reduction modulo h (-d) to 
construct a matrix of the form 

BII 0 o 
0 

(2.2) B= 
B* 

0 

with the further condition that BII divides every entry of the matrix B* . We 
begin by setting B = H. We then perform unimodular column operations and 
reduction modulo h(-d) in order to replace BII by the gcd of the entries 
in the first row, and to introduce zeros into the rest of the first row. We then 
perform unimodular row operations so as to replace the new BII by the gcd of 
the entries in the first column. This may destroy the zeros in the first row, but 
if so, then it reduces BII by a multiplicative factor of at least 2. Hence, if we 
repeat the procedure at most O(1og h ( -d)) = O(log d) times, then we arrive at 
a matrix of the form (2.2). If now there exists an entry B;j of B* for which 
BII t B~, then we add row i back to row 1 and repeat the procedure. At each 
stage, we will reduce B II by a multiplicative factor of at least 2, so in at most 
O(1ogd) iterations, we will finally arrive at a matrix of the form (2.2) with BII 
dividing every entry of B*. We now apply essentially the same procedure to 
B* (note that this will not change the first row or column of B). Continuing 
in this way, we eventually arrive at a diagonal matrix S with 

Then we use a reconstruction procedure to produce the Smith normal form S 
from S. To do this, we set DI = h(-d), and then for i = 1, ... , n, we set 
S;; = gcd(D;, S;), and D;+I = DdSii. The matrix S = diag(SII ' ... Snn) is 
now the Smith normal form of H. 

This completes the description of the algorithm. In the next section, we prove 
the correctness of each of these steps. 
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3. WHY IT WORKS 

Let Ai = (WI' ... , W n ' VI' ... , Vi). Ultimately, our goal is to construct a 
set of generators for the lattice A in Zn such that Zn I A ~ C (-d) and Det A = 
h( -d) . From this set of generators, we will construct a basis in triangular form, 
and from this, we derive the invariants of the group C ( -d) ~ Zn I A . 

At the completion of Step 3, we have generated a lattice Ao which is con-
tained in A and is of finite index. Thus, G = AI Ao is a finite abelian group 
of order Det Aol Det A = hoi h (-d) ~ ho . The new relations from Step 5 then 
generate a tower of lattices 

Ao ~ Al ~ ... ~ Am ~ A. 
Alternately, we can view Step 5 as generating elements of G given by coset 
representatives of Ao in A. 

Our claim is that if the elements of G are chosen almost uniformly at ran-
dom, then with high probability A = Am for some finite m, and in this case 
the algorithm produces the correct output and terminates. Thus, we will need to 
give a bound for m, demonstrate that the selection process of Step 5 simulates 
random selection of elements of G, and prove that the procedure of Steps 6 and 
7 will produce the correct diagonal elements of the Hermite and Smith normal 
forms of AI' respectively. This will prove the correctness of the algorithm. 
3.1. Geometry. In this section, we justify our claim that the selection process 
of Step 5 does, in fact, simulate the selection of random elements of our group 
G = AI Ao. To do this, we need to show that the coset representatives for Aa 
in A are well distributed in the box Wn (d2 ). We begin by stating the following 
lemma. 
Lemma 1. Let F be a fundamental domain for a lattice Y of rank n in 
Zn, let W E Zn, and let D = D(Y) be an upper bound for the diameter 
of F (in the Euclidean norm). Let N 2'(t, w) be the cardinality of the set 
{v: VE(w+Y)nwn(t)}. Then 

(2t)n 
N 2'(t, w) = DetY {I + O(nDlt)} , 

provided t > nD. 
Proof. Let Wn(t) be the box {x: x E Rn, Ilxlioo ~ t}. Note that volF = 
DetY. 

Each lattice point of w +Y corresponds to a translation of F by the vector 
associated to that lattice point. Hence, we can count the number of lattice 
points by counting the number of copies of F inside the box, with care taken 
near the boundaries of the box. Clearly, the union of all these translates of F 
by the lattice points in (w+Y)nwn(t) is a subset of Wn(t+D) and contains 
Wn(t - D). Thus, we have 

vol Wn(t - D) ~ DetY·N..:f'(t, w) ~ vol Wn(t + D). 
But 

vol Wn(t ± D) = (2(t ± D))n = (2t)n = {I + O(nDlt)} , 
and this proves the lemma. 0 
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A relation generated by Step 5 is of the form x - y(x), where x is randomly 
selected from Wn(d2) , and y = y(x) satisfies 0::; Iyil ::;logd. Let .7 be the 
set of classes containing "smooth" reduced forms. In order to prove our claim 
that the relations selected in Step 5 simulate the selection of random elements 
in G, we shall require the following lemma. 
Lemma 2. Let W E A be fixed. Then with the notation above, 

(3.1) Pr(x - y(x) E W +Aol qJ(x) E.7) = h(~d) {I + 0 (~) } , 

where Pr(·I·) denotes conditional probability. 
Proof. The probability in (3.1) is 

Pr(x - y(x) E W + Ao' qJ(x) E .7) 
Pr(qJ(x) E.7) 

which can be rewritten as 
#{x E Wn(d2): qJ(x) E.7, x - y(x) E W + Ao} 

#{x: x E Wn(d2) , qJ(x) E.7} 
(3.2) 

We may view the vector y as being determined either by x or else the class 
f E.7 with qJ(x) = f. Hence, the numerator of (3.2) is 

L #{x E Wn(d2) , x E y(f) + W + Ao} = L (2~2)n (1 + 0 (n~)) 
fEsP fEsP 0 d 

= #.7·h~d2)n (1 + 0 (~)) , 

since the diameter D = D(Ao) of the fundamental domain of Ao is O(n 2d) 
by the triangle inequality. Furthermore, the denominator of (3.2) is just 

2 #.7.(2d2)n ( (n3)) ~ #{x E Wn(d ), X E y(f) + A} = h( -d) 1 + 0 d ' 

by the same argument, and this proves the desired result. 0 
3.2. 2n vectors suffice. We require a simple lemma involving finite groups. 
Lemma 3. Let G be a finite abelian group of order M with 

0p 

G == EB EBZ/pP;(P)Z. 
plMi=1 

Let gl' ... , gk be elements of G that are chosen with replacement according to 
a probability distribution with density p satisfying p(g) ::; ~ for every g E G. 
Then the probability that (gl' ... , gk) = G is at least 1 - (l21- k , where I = 
LplM o.p is the number of primary invariants of G. 
Proof. We give an upper bound for Pr( (gl ' ... , gk) =I- G). Clearly, 

Pr{(gl' ... , gk) =I- G}::; (~( #{(gl' ... , gk): (gl' ... , gk) =I- G}. 
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Now (gl' ... , gk) =f G if and only if {gl' ... , gk} is a subset of some maximal 
proper subgroup H of G. Thus, 

#{(gl' ... , gk): (gl' ... ' gk) =f G} :::; I: IHlk. 
H maximal 

Now each maximal subgroup H < G is uniquely determined by its factor group 
GIH which has order a prime piM. Thus, our sum over maximal subgroups 
can be split as 

(3.3) I: I: IHlk. 
plM H maximal 

IG/HI=p 

An elementary counting argument shows that the number of subgroups of order 
p is (pap - 1)/(p - 1). If 1= E p /M a.p :::; k, then the sum (3.3) is bounded by 

I: (M)k pap_-1
1 :::;Mk I:2ap - k :::;Mki-k . 

p/M p P p/M 

This concludes the proof, since the result is trivial if k < I . 0 

Note that the lemma is meaningful only if a. < 2. This is consistent with 
the statement that a proper subgroup of G contains at most IGI/2 elements. 
Note also that for an arbitrary group, I:::; log I GI I log 2 . 

Now we have already noted that if G = AI Ao ' then 

IGI = holh(-d) :::; ho :::; exp{nl+O(I)}. 

Also by Lemma 2, we can take a. = 1 + O(n 3 I D). Thus, it is possible to choose 
m = n I +o( I) so that if d is sufficiently large, then m satisfies 

log IGI + logd m> . - log(21a.) 

Consequently, with this choice of m, the probability is at least 1 - lid of 
computing enough relations in Step 5 to generate A after m iterations. 

3.3. Hermite and Smith normal forms. In this section, we prove a lemma con-
cerning the problem of computing the Hermite normal form of an integral ma-
trix using modular arithmetic. Our argument is adapted from the paper by 
Domich, Kannan, and Trotter [2], in which they described a procedure for 
computing the Hermite normal form of a square matrix using arithmetic mod-
ulo the determinant. We generalize their statement in a rather trivial way so 
as to allow nonsquare matrices and arithmetic modulo a (large) multiple of the 
determinant of the lattice spanned by the columns of the matrix. The result is 
the following. 

Lemma 4. Let A be an integral matrix of size n x s and rank n, H = (Hi}) 
its Hermite normal form (in lower triangular form), and D a positive integer 
multiple of Det(A(A)). Let DI = D, and Di+1 = D)Hu i = 1, ... , n - 1. 



846 JAMES L. HAFNER AND KEVIN S. McCURLEY 

If L = (L i) is any lower triangular matrix obtained from A by unimodular 
column operations followed by reduction modulo D, then Hii = gcd(Di ' L i) . 

Proof. This proof is almost exactly as in [2]. Let yi(M) , 1 :::; i :::; n, denote the 
greatest common divisor of all i x i subdeterminants obtained from the first i 
rows of a matrix M. Then it is easy to check that unimodular column opera-
tions leave this quantity unchanged. Moreover, reduction modulo D changes 
these yi's only by some multiple of D since it affects determinants linearly. 
Now Yi(H) = H II ·· ·Hu divides Det(A(A)) and so also D. Hence, 

(3.4) 

H II ·· ·H;; = gcd(D, y;CH)) 
= gcd(D, Yi(A)) 
= gcd(D, Yi(L)) 
= gcd(D, L II ·· .L). 

Thus, the claim of the lemma holds for i = I. But Di = DIHII ·· ·Hi_ 1 i-I' so 
dividing the (i - 1)st instance of the above relation by H II · .·Hi _ 1 i-I 'leaves 

(3.5) 1 = gcd(Di' (LII ".Li_l,i_I)/(HII " ·Hi-l,i_I))' 

for each 2 :::; i :::; n. Consequently, dividing the ith instance of (3.4) by 
HIt'· ·Hi_ 1 i-I and using (3.5), we deduce the lemma for each i> 1. 0 

The preceding lemma shows that Step 6 of the algorithm will correctly com-
pute the diagonal entries of the Hermite normal form of AI' It remains to 
see why the rest of the Hermite normal form is computed correctly in Step 6. 
This can be accomplished with the simple observations that after the columns 
of L are multiplied by the ti 's and reduced modulo h( -d) , we have a lower 
triangular matrix l whose columns belong to A(AI) (see [2, Corollary 2.6]), 
and whose determinant equals Det(A(A I )). Hence, it follows that the columns 
of l form a basis for A(A I)' The rest of the procedure simply reduces the 
entries below the diagonal using elementary unimodular column operations, so 
it clearly produces the Hermite normal form. 

It remains only to prove correctness of the algorithm for computing the Smith 
normal form of H. The proof follows very closely the arguments given above 
for the Hermite normal form, but we replace yi(M) by )li(M) , which denotes 
the gcd of the determinants of all i x i submatrices of a matrix M. The 
crucial fact is that the )Ii's are invariant under both elementary unimodular 
row and column operations. Thus, 

Sll'" Sii = gcd(h( -d), )li(S)) 
= gcd(h( -d), )li(H)) 

= gcd(h( -d), )li(S)) 

= gcd(h( -d), 5'11" ,Si)' 

This observation is sufficient to complete the proof. 
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4. RUNNING TIME 

In this section,we analyze the running time of the algorithm given in §2. Our 
analysis is mostly self-contained, but any details that are omitted are contained 
in [11] or [18]. For example, in [11] it is shown that Steps 1 and 2 take at most 
nl+o(l) bit operations. Furthermore, it was shown that Step 4 can be done in 
n 4+o( I) bit operations using Gaussian elimination and the Chinese remainder 
theorem. 

We now estimate the running time for generating relations in Steps 3 and 5. 
If we use the binary method of exponentiation, then the arguments in [18] will 
show that the expected running time to test for a single relation in either Step 
3 or Step 5 is nl+o(I). As the probability that a vector produces a relation is 
L(d)-l j 4z+o(l) , the expected running time to generate all the relations in Steps 
3 and 5 is 

(4.1 ) (n + m)nl+o(l) L(d)l j 4Z+0(1) • 

Since we argued in §3.2 that we can take m = nl+o(l) , this gives an expected 
running time for Steps 3 and 5 of n 2+ o(l) L(d)l j 4z+o(l) . 

We next consider the running time for Step 6. In total, we need to perform at 
most (n + m)n column operations to introduce zeros above the diagonal. Each 
of these column operations requires an application of the Euclidean algorithm 
on integers that are::; ho' followed by O(n) arithmetic operations modulo ho ' 
Using fast mUltiplication methods, we can carry out the extended Euclidean 
algorithm in O(log ho log log3 ho) bit operations [15]. Each column operation 
can therefore be carried out in 

3 2 O(log ho log log ho + n log ho log log ho) 

bit operations using fast integer multiplication [14]. Since logho ::; nl+o(l) , we 
get a running time of O(n4+0 (1)) bit operations producing the Hermite normal 
form of AI' 

Finally, we consider the running time for Step 7. In order to create a matrix 
of the form (2.2), it requires O(n logd) unimodular row or column operations, 
each of which takes at most O( n) operations modulo h (-d) (or on integers of 
at most O(logd) bits). After doing this O(logd) times, we can guarantee that 
B II divides every entry of B* , so in order to produce the first diagonal entry 
of S, it takes at most O(n210g4 d) bit operations. Hence, producing the full 
matrix S takes at most O(n3 10g4 d) bit operations. Since the reconstruction 
phase takes much less time than this, we construct the Smith normal form S 
in Step 7 in at most O(n310g4 d) bit operations. 

Hence, the total number of bit operations for the algorithm is bounded by 

n 2+ 0(1) L(d)I/4z+0(1) + n 4+ O(I) . 
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As n = L(d)z+o(l) , the optimal choice of z is z = I/V8, and this proves 
Theorem 1. 

5. CONJECTURAL IMPROVEMENTS 

The above bound on the running time of our algorithm is not as good as the 
conjectured running time of Algorithm CN2 of [11]. However, there are a num-
ber of specific areas where the current rigorous algorithm might be improved. 

First, any improvement would require a speedup in the running time for 
the generation of relations in Steps 3 and 5. This is due to the fact that, as it 
stands, these steps required L(d)2z+1/4Z+0(1) operations, and this exponent has a 
minimum of v'2 + o( 1) . Let W I be the maximum number of nonzero elements 
in each of the first n relations generated in Step 3 and w2 the corresponding 
number for the m relations generated in Step 5. Clearly, then, we have WI = 
0(1og2 d) and w2 = O(n). If instead of trial division, we use the rigorous 
version of the elliptic curve factorization algorithm due to Pomerance [13], 
then the expected running time to test for a single relation in Step 3 should be 
wIL(d)O(I) , and for a relation in Step 5 should be w2L(dt(I). Then in place 
of (4.1), we would get an expected running time to generate all the relations in 
Steps 3 and 5 of 

( )L(d) I/4z+0(1) 
nW I + nW2 . 

Hence, if one could show that the relations in Step 5 could be taken to be 
sparse (so that w2 = nO(I) ), then by the analysis above, the running time would 
improve to L(d)2/V3+0(1) . (Note that 2/.;3:::::: 1.155.) 

Similarly, we might be able to show that only m = no(l) extra relations from 
Step 5 would be required. This would be possible if we could show that the 
group G described in §3 had significantly fewer than O(log IGI) primary in-
variants. There are at least two possible approaches to this. One would be to 
show that this group G by construction had this property. The other would 
be to show that G, in some quantitative sense, was random, in which case, 
with positive probability, it would have the desired property. In any case, this 
improvement would speed up the running time to L(d)2/V3+o(l) just as above. 
(Note that implementing both improvements together would not improve the 
overall running time because the time required for generating the first n rela-
tions would dominate.) 

The two previous remarks have assumed no changes in the rest of the algo-
rithm. However, if we could make either of the above improvements, then it 
seems likely that fast matrix multiplication techniques might be adapted to give 
a faster running time for computing det(Ao) and the determinant of the lattice 
A(AI). Using these ideas, we would obtain a running time of L(d/+o(l) for 
computing h(-d), where c = (0 + I)/2v'7J, and 0 is the exponent for matrix 
multiplication (currently, it is known that 0 ~ 2.376; see [1]). 

Again with either of the above improvements, if it were possible to compute 
the determinant of a lattice generated by the columns of a nonsquare sparse 
matrix (perhaps by adapting Wiedemann's method) in n2+e ring operations, 
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then the running time for computing h( -d) would be reduce to L(d) 1+0(1) • 

This is highly speculative, but it is perhaps reasonable to conjecture this as the 
best running time that can be achieved with the framework of smooth forms. 
Note that this is a stronger conjecture that was made previously in [11]. 
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ABSTRACT. Let C( -d) denote the Gauss Class Group of quadratic forms of 
a negative discriminant -d (or equivalently, the class group of the imaginary 
quadratic field Q(~)). We give a rigorous proof that there exists a Las Ve-
gas algorithm that will compute the structure of C( -d) with an expected run-
ning time of L( d) V2+o( 1) bit operations, where L( d) = exp( y'log d log log d) . 
Thus, of course, also includes the computation of the class number h( -d) , the 
cardinality of C( -d) . 
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