
JOURNAL OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 3, Number I, January 1990 

RATIONAL FUNCTIONS CERTIFY COMBINATORIAL IDENTITIES 

HERBERT S. WILF AND DORON ZEILBERGER 

1. INTRODUCTION 

This paper presents a general method for proving and discovering combina-
torial identities: to prove an identity one can present a certificate that consists 
of a pair of functions of two integer variables. To prove the identity, take 
the two functions that are given, check that condition (1) below is satisfied (a 
simple mechanical task), and check the equally simple fact that the boundary 
conditions (F1), (G1), (G2) below are satisfied. The identity is then proved. 

Alternatively, one can present the identity itself, and a single rational func-
tion. To prove the identity the reader would then construct the pair of functions 
referred to above, and proceed as before (see §3 below). 

In this paper we present several one-line proofs of hypergeometric identities. 
All of these one-line proofs were found by using the method presented below, on 
computers that have strong symbolic manipulation packages. Once the proofs 
have been found, they can be checked by hand or on small personal computers 
that would need only minimal symbolic manipulation capability. 

Not too long ago the world of combinatorial identities consisted of hundreds 
of individually proved relations (for a valuable collection of these see [10]), 
mostly involving binomial coefficients. As a result of ideas of H. Bateman (see 
the introduction to [10]), G. Andrews [1], and others, it is widely recognized 
that most of these are special cases of relatively few hypergeometric identities, 
and attention is now being turned to methods of systematizing these higher level 
relationships. 

Gosper [9] has shown how to find indefinite hypergeometric sums, where 
they exist, by quite a general procedure (see [11]). In this paper we describe 
a general attack on definite hypergeometric, and other, sums, continuing the 
program started in [13-15] . 

• The method can prove, in a unified way, virtually all known hyperge-
ometric sum identities (and therefore legions of binomial coefficient 
identities too). It does this by means of certificates of proof, each of 
which consists of a pair of functions (F, G) (a 'WZ-pair') that satisfy 
certain conditions, described below. As a by-product, each such pair 
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(F, G) will actually certify the truth of two identities, with no extra 
effort . 

• The method can discover, in a unified way, new identities. We will show 
how, to any WZ-pair (F, G), one can associate a dual pair (F' , G' ), 
that may produce one or two additional identities, which we will call 
the duals of the original ones. So altogether we will have not only the 
proof of the original identity, but the discovery and proof of two or 
three additional identities. 

• But even more is true. Most hypergeometric identities involve a few 
auxiliary free parameters. By specializing these parameters, we get a 
countless number of new identities, that are however trivially implied 
by the original, more general identity. It turns out that the dual of a 
specialization is not, in general, a specialization of the dual. So the 
trivial process of specialization, composed with the new operation of 
dualization leads to the discovery of countless new identities, that a 
priori seem highly nontrivial. 

For example many of Gosper's 'strange' identities, that were tackled one at a 
time in [7], tum out to be duals of specializations of classical identities (mostly 
those of Saalschiitz and Dougall). Those identities in [7] whose duals are not 
specializations of classical identities are very possibly the result of iterating 
specialization and dualization several times. Dr. Stanton points out that [8] also 
identifies the 'strange' identities as duals of specializations of classical identities, 
in that case relative to a notion of 'duality' that is based on Lagrange inversion. 

Another striking example of the insight gained by this new concept of the dual 
identity is the realization that Dixon's classical well-poised 3F2 (see, e.g., [2]) 
that has three free parameters is nothing but the dual of a certain specialization 
of the famous (four-parameter), balanced, Saalschiitz identity. (Precisely, the 
dual of Dixon's 

is the specialization 

b 
l+a-b 

F. [-a + n + 1 -a/2 + b -n] 
3 2 -a/2 + 1 b - a + 1 

of Saalschiitz.) 

2. THE MAIN THEOREM 

The idea is this. Suppose we have two functions F (n, k), G( n , k), de-
fined for integer k and integer n 2: 0, and suppose the following condition is 
satisfied: 

(1) F(n + 1, k) - F(n, k) = G(n, k + 1) - G(n, k) (integers n 2: 0, k). 

We will then call (F, G) a WZ-pair. 1 

I Named after two complex variables. 
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We show that under certain additional boundary conditions ((FI), (GI), (G2) 
below) we obtain a simple evaluation of the sum 

(2) LF(n, k) (n = 0, I, 2, ... ) . 
k 

We also obtain a simple evaluation of the associated sum 

(3) LG(n, k). 
n~O 

Thus we will obtain two identities, one for each member of the WZ-pair. 
The proofs of the identities will consist in simply verifying that the condition 
(I) is satisfied, along with the following boundary conditions: 

(FI) For each integer k, the limit 

(4) h = lim F(n, k) 
n-+oo 

exists and is finite. 
(Gl) For each integer n~O, limk_+±ooG(n,k) =0. 
(G2) We have limL -+oo En~o G(n, -L) = O. 

Theorem A. Let (F, G) satisfy (I). [f(GI) holds then we have the identity 

(5) L F (n, k) = const. (n = 0, 1 , 2, ... ), 
k 

(where ·const.' is found by putting n = 0). Further, if(FI), (G2) hold then we 
have the identity 

(6) LG(n,k)= L (fj-F(O,j)), 
n~O j$k-1 

where f is defined by (4). 
Proof. Sum both sides of equation (I) from k = - L to k = K. This gives 

K K 
~n{ L F(n, k)} = L {~kG(n, k)} 

k=-L k=-L 
= G( n , K + I) - G( n, - L) , 

where ~n and ~k are the forward difference operators that act on nand k, 
respectively. If we let K, L - 00 and use (GI), we discover that Ek F(n, k) 
is independent of n ~ 0, and (5) is proved. 

Similarly if we sum both sides of (I) from n = 0 to N, we obtain 

F(N + 1, k) - F(O, k) = ~k { :t G(n, k) } . 
n=O 

Taking the limit as N - 00 and using (FI) yields 

fk-F(O, k)=~k{LG(n, k)}. 
n~O 
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Finally,ifwesumfrom -L to k-l,let L~oo,anduse(G2),weget(6). 0 

We remark that trivially all WZ-pairs can be constructed as follows. First 
choose any function cI>(n, k) (the 'potential function'). Then set F = ~k<l> 
and G = ~n cI>. This enables us to manufacture identities all day long, and if we 
want hypergeometric identities, all we have to do is choose cI> to be of closed 
form (see below). However, finding interesting identities that way is not so easy. 

3. EXAMPLES OF CERTIFICATION 

Example 1. To begin with a simple case, consider the WZ-pair 

F(n, k) = (Z) / 2n , 

G(n, k) = -(k: 1) /2n+1• 

A quick check of (1), (Fl), (Gl), (G2) shows that they are all satisfied, and that 
he = 0 for all k. Then (5) and (6) become the two identities 

(n 2: 0) , 

and 
(k 2: 1). 

Example 2. Consider the pair 
n!2 

F(n, k) = 2 ' 
k! (a - k)!(n - k)!(n + a)! 
a-k+l G(n,k)=- IF(n,k-l). n+a+ 

As soon as we check that the conditions (1), (Fl), (Gl), (G2) are satisfied, again 
with all he = 0, we have a proof of Vandermonde's identity (the sum is finite) 

L (~) (Z) = (n; a) , 
k 

as well as of the identity (the sum is infinite) 

(integer a > k 2: 0) . 

Example 3. The functions 

F (n , k) = Cnn) - 1 (Z) 2 , 

(3n - 2k + 3) 
G(n,k)=- 2(2n+l) F(n,k-l) 
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are a WZ-pair, and once more all fk = o. Thus we have the two identities 

(n ~ 0), 

'" (3n + 1 - 2k) (n)2 _ 2 
~ (2n + I)e:) k -

(k ~ 0). 

Example 4. To prove the identity of Saalschiitz we need only check that the two 
functions 

F n k = (a+k-I)!(b+k-l)!n!(-a-b+c+n-I-k)!(c+n-I)! 
( , ) k!(n-k)!(c+k-I)!(c-a+n-I)!(c-b+n-I)! ' 

G(n k) = _ (b + k - I)(a + k - I) F(n k _ I) 
, (c-b+n)(c-a+n) ' 

are a WZ-pair and satisfy (FI), (GI), (G2). In this case 

J,. = lim F(n k) = (a + k - I)!(b + k - I)! 
k n-oo' k!(c+k-I)! 

Hence we have a proof not only of Saalschiitz's identity (which is (5) in this 
case) 

[ a b, -n ] (c-a)n(c-b)n 
3F2 ' c, I+a+b-c-n (c)n(c-a-b)n 

but also of the identity (6), which takes the form 

[ k c-a-b C+k-l] 
3F2 c - b + k c - a + k 

= (c - b)k(c - a)k {1- (c - a - b)a I: (a)j(b)j} , 
(a)k(bh (c - a)a j=O j!(c)j 

in which the sum on the left is infinite. This identity is essentially in § 10.4 
of Bailey [2]. We will find, generally, that the companion identity (6) of a 
hypergeometric identity is of the type that relates a hypergeometric function 
to a partial sum of the series for another hypergeometric function. Many such 
identities are known, and our method shows a natural reason for their existence. 

Example 5. A complete proof of the identity of Clausen [11, p. 525] 

F [a, 
4 3 

b, 
~+a+b, 

l-a-b-n 
2 ' 
l-a-n, 

-n ] (2a)n(a + b)n(2b)n 
1 - b - n = (2a + 2b)n(a)n(b)n 

results from checking the following WZ-pair: 

F(n, k) = <I>(k)<I>(n - k)lfI(n) , 

G(n k) = _ (b + k - 1)(a + k - 1)(2b + 2a + 3n - 2k + 2) F(n, k _ 1), 
, (2b+n)(a+b+n)(2a+n) 
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where 
¢(t) = (a+t-I)!(b+t-I)!, 

t!(-1+ a + b + t )! 
(t + a + b - !)!t!(t + 2a + 2b - I)! 

If/(t) = (t+2a-I)!(t+a+b-I)!(t+2b-I)!· 
The second identity that the same pair proves is 

",(2b+2a+3n-2k)¢(n-k)lf/(n) = ¢(0)21f/(0)-L~=o¢(j) (k2:0), 
~ (n + 2b)(n + 2a)(n + a + b) (k + a)(k + b)¢(k) 

where ¢ and If/ are as shown above. 

Example 6. The identity of Dixon is 

L(_I)k(n+b)(n+C)(b+C) = (n+b+c)!. 
k n + k C + k b + k n!b!c! 

The WZ-pair that works here is 

F(n k) = (-I)k(n + b)!(n + c)!n! 
, (n - k)!(n + k)!(b - k)!(b + k)!(c - k)!(c + k)!(n + b + c)! ' 

(c + 1 - k)(b + 1 - k) 
G(n, k) = 2(n + k)(n + b + c + I)F(n, k - I). 

Here we find that the h of (4) are 

( _I)k 
h = (b - k)!(b + k)!(c - k)!(c + k)! . 

Then the general identity (5) of the theorem becomes Dixon's identity, above. 
We leave the identity that comes from (6), in this case, to the reader. 

Remark. The certification can be done in another way. Instead of giving the 
WZ-pair (F, G), one can state the identity to be proved in its familiar form, 
say as 

L U(n, k) = rhs(n) (n 2: 0; rhs(n) =I- 0). 
k 

To certify it, one need only give the rational function R(n, k) that satisfies 
G(n, k) = R(n, k)F(n, k - I); nothing else. 

The reader who wished to check the certificate would proceed as follows: 
(a) Divide the identity through by rhs(n) , obtaining the first member of 

the WZ-pair as F(n, k) = U(n, k)jrhs(n). 
(b) Find G(n, k) = R(n, k)F(n, k - I). 
(c) Check that conditions (I), (FI), (GI), (G2) are satisfied. 
(d) Verify that the identity is true when n = O. 

Hence one can imagine a book full of identities and their proofs, where each 
proof consists of just giving a certain rational function. In [12] there are 54 
examples of such certifications of binomial coefficient identities. Here are some 
hypergeometric examples. 
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Theorem. Dixon's identity above is true. 

Proof. Take R(n, k) = (c + 1 - k)(b + 1 - k)j(2(n + k)(n + b + c + I». 0 

Theorem. The 'strange' identity (1.4) of Gessel-Stanton [7] 

2: (~)k (k + 3a - !)!(k - 3a - !)!(3n - k)! = (3n)!(n - a - !)!(n + a - -!)! 
k 4 k!(n - k)!(k - !)! n!(n - ~)!(n - t)! 

is true. 

Proof. Take 
R( k) = .!. (6a + 2k - 1)( 6a - 2k + I) 

n, 9(2n+2a+I)(2n-2a+I)' 0 

We remark that here the companion identity (6) is new to us. It is 

n!(3n - k)!(n - ~)!(n - t)! 
~ (n - k)!(3n)!(n - a + -!)!(n + a + !)! 

9k!(k - -!)! = --~----~--~-------
(~)k(k + 3a + !)!(k - 3a + !)! 
x {2 ~ COS (lla) _" (~i(j + 3a - !)!(j - 3a - !)!}. 

V 3 cos (31la) ~ j!(j-!)! 
J_ 

Theorem. The 'strange' identity (1.7) of [7], which asserts that 

" (k + ia)(n + k + a + d - !)!(k + a - d - 1)!(2n + 2d - k)!(k + 2a - I)!(k + 2b - I)!(k - 2b)! 7 (k + a + b - ! )!(k + 2d)!(2n + k + 2a)!k!(n - k)!(k + a - b)! 

_ (n+a+d- !)!(n+b+d- !)!(n+d-b)! 
- n!(n+a+b-!)!(n+a-b)! 

is true. 
Proof. Take R(n, k) to be the rational function 

(4n+2d+2a+3)(k+2b-l)(k-2b)(k+2a-I)(k+a-d-I)(2n+2k+2a+2d-l) 0 
(2n + k +2a)(2n +2d +2a + 1)(3k + 2a - 3)(n +d - b + 1)(2n + 2b +2d + 1)(2n +k+ 2a + I)' 

Theorem. The 'strange' identity (1.2) of [7] 

" (-i)k(k + 2a - I)!(k + 2b - I)!(k - 2b)!(k + ~a) 
7' k!(n - k)!(k + a - b)!(k + a + b - !)!(2n + k + 2a)! 

is true. 

Proof. Take 

(n + a - !)!(n + a)! 
=------~----~~~~--------

n!(2n + 2a)!(n + a + b - !)!(n + a - b)! 

(k+2b-I)(k-2b)(k+2a-l) 0 
R(n, k) = 4(2n + k + 2a + 1)(2n + k + 2a)(3k + 2a - 3) . 
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Theorem. The 7F6 identity of Dougall 

F [d, 
7 6 

is true. 

d+b-a, d+c-a, 
I+a-b, I+a-c, 

I+a-b-c, 
b+c+d-a, 

a+n, 
I+d-a-n, 

Proof. Just take R(n, k) to be 
(k - b - c + a)(k + d - I)(k + b + d - a - I)(k + c + d - a - I)(n + k + a - 1)(2n + a + I) 

(2k + d - 2)(n + a)(n + b)(n + c)(n - b - c - d + 2a - I)(k + n + d) 
o 

4. SHADOWS 

In the following we maintain the convention that the range of n is the set 
of nonnegative integers, while the range of k is the set of all integers. 
Definition. A discrete function fen) is said to be of closed form if f(n+ 1)/ fen) 
is a rational function of n . 

It is easily seen that any closed form function f has the form 
n A(n) fl;(ain + b)! 

x B(n) ni(a~n + b;)! . 
Definition. A function F(n, k) is said to be of closed form (CF) if both 
R(n,k) = F(n+ l,k)/F(n,k) and R'(n,k) = F(n,k+ 1)/F(n,k) are 
rational functions, of n and of k, respectively. 

Note that R(n, k) and R' (n, k) plus some initial conditions determine 
F(n, k) uniquely. However Rand R' must satisfy the obvious compatibility 
condition 

R(n, k + I)R'(n, k) = R(n, k)R'(n + 1, k). 

Definition. Two discrete functions F (n , k) and F' (n , k) , defined in different 
regions of the lattice, are equivalent if they produce the same (R, R'). 

Example. In one variable, n! (for n :::: 0) is equivalent to (_I)n/(_n - I)! 
(defined for n < 0). In two dimensions (an + bk + c)!, where a and bare 
integers, is equivalent to 

Also, m is equivalent to 

( _1)an+bk 
(-an - bk - c - I)! . 

(_I)n+k (-k -1). 
-n -I 

Definition. The shadow F of a CF F(n, k) of the form 
n k. . n(an + b.k + c)! 

x y (RatIOnal FunctIOn) x n: b: k : 
(ain+ i +cY 
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is obtained by replacing every factor (an + bk + c)! by 

(_I)an+bk /( -an - bk - c - I)!, 

if a + b =f. ° , and leaving it alone if a + b = 0 . 

For example, the shadow of (Z) is (-1 /+k (=~= D . 
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Theorem B. Let (F, G) be a WZ-pair, and suppose that G( n , k) / F (n, k - 1) 
is a rational function of nand k. Then 
(7) (F'(n, k), G'(n, k»:= (G(-k-l, -n), F(-k, -n-l» 
is also a WZ-pair. 
Proof. The pair (F, G) is equivalent to the original pair (F, G), and therefore 
it satisfies equation (1), though not for n ~ 0, but instead for n < O. The flips 
of variables and functions shown in (7) transform the domain of n back to the 
nonnegative integers, while preserving the fact that (1) is satisfied. 0 

The map (F, G) -+ (F' ,G') is an involution, hence we call (F', G') the 
dual of the WZ-pair (F, G). 

While the dual pair certainly satisfies the condition (1), it need not satisfy all 
of (Fl), (Gl), (G2). Depending on those outcomes, we may obtain only one, 
or both, of the identities (5), (6) as dual identities. The examples in the next 
section illustrate this. 

5. EXAMPLES OF DUAL IDENTITIES 

Example 1'. With the F and G of Example 1 above, the dual WZ-pair is 

(F'(n, k), G'(n, k)) = (_1)n+k 2k ((~), (k ~ 1)) . 
Condition (Fl) is not satisfied, but (Gl), (G2) are, so by Theorem A we have 
identity (5), which is the statement Ek F' (n, k) = const. 

Example 3'. If we use the (F, G) of Example 3, §3 above, then we find that 
the dual pair is 

F'(n, k) = 3k; 2n (~) 2 c:), 
, k ( n )2(2k) G (n , k) ="2 k _ 1 k' 

The boundary conditions (Gl), (G2) are satisfied, and so we have that 
Ek F' (n, k) is independent of n ~ O. Since it is 0 when n = 0, we have 
proved the dual identity 

2)3k - 2n) (~) 2 c:) = 0 
k 

(n=O,I, ... ). 

Example 4', In the case of the Saalschutz WZ-pair, of Example 4, an easy cal-
culation shows that the dual F is 

F' n k __ (n - k + c - a - b - I)! (k - c + b)! (k - c + a)! (n!) (n + 1 - c)! 
( , ) - (n - b)!(n - a)!(k)!(k - c + l)!(n - k)! . 
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We observe that this F' is, aside from a sign and a renaming of the parameters 
a, b, c, the same as the original F. Hence the identity oj Saalschutz is self 
dual. 

Example 6'. The dual of Dixon's identity (Example 6, §3 above) is quite inter-
esting. We find that 

F' n k = (-Il(n+k)!(k-b-c-I)!(-n-b-I)!(n-b)!(-n-c-I)!(n-c)! 
( , ) 2(k - b)!(k - c)!k!(n - k)! 

Also 
k d(n, k) = (-1) (n + k)!(-n - b - 2)!(n - b)!(-n - c - 2)!(n - c)!(k - b - c - I)! 

(k - b - I)!(k - c - I)!(k - I)!(n - k - I)! 

Now (Fl), (Gl), and (G2) all hold. The identity (5) for F' can be written in 
the following form, after renaming the free variables b, c to -b, -c: 

(_l)k(Z)(k+%!~-I) 2(b-n) (btc)e~;}) 
~ (~!Z) = b + c e:) (nt b) 

where 0:5 n :5 b , and it is a specialization of Saalschiitz's. 
Example 7'. The first identity of the pair that is dual to the identity (1.4) of [7] 
is the specialization 

F [1--/n, 
3 2 

of Saalschiitz's identity. 

2n 
-3' 

-n+a+ L 

Example 8'. The first identity of the pair that is dual to the identity (1.7) of [7] 
is the specialization 

F [i - a - d ~ - a1d b - d nil - a I - a + 1 i - b - d -n ] 
i - a1d ~ - a - b 1 - d - I i 2n - d b - a + 1 n - a - d + ~ 

of Dougall's 7F6 identity. 

Example 9'. The first identity of the pair that is dual to the identity (1.2) of [7] 
is the specialization 

F [-a+ ~ + J' 
3 2 

of Saalschiitz's identity. 

-a +2+ J' 
~-a-b, 

-n ] 
l-a+b 

In each of the last three examples it should be noted that since duality is 
symmetric, the three identities of [7] are proved above by the process of spe-
cialization of known identities followed by dualization. They were proved in 
§3 directly by the certification process. 

6. THE SOUL IN THE MACHINE 

Every identity of the form Lk F(n, k) = rhs(n) , where F(n, k) and rhs(n) 
are of CF and rhs(n) =1= 0 is equivalent to one in which rhs(n) = 1: simply 
divide through by rhs(n). Does every such F have a mate G? 
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Not always, but very often, and there is something weaker that is always 
guaranteed. In [14] it was shown, using the general theory of [13], that for 
every holonomic F (n , k) , there exists a CF G( n, k) , that is moreover of the 
form R(n, k)F(n, k) for some rational function R(n, k), such that for some 
L and polynomials (in n) ao(n) , al (n), ... ,aL(n) we have 

ao(n)F(n, k) + al (n)F(n + 1, k) + ... + aL(n)F(n + L, k) 
= G(n, k + 1) - G(n, k). 

(8) 

It follows upon summing w.r.t. k that S(n) = Ek F(n, k) satisfies the 
recurrence 

ao(n)S(n) + a l (n)S(n + 1) + a2(n)S(n + 2) + ... + aL(n)S(n + L) = 0, 

where the aj are polynomials in n. To prove that S(n) is indeed 1 (or a 
constant) all we have to check is that 1 is also a solution of the recurrence, i.e. 
that Ejaj(n) = 0, and that S(n) = 1 for n = 0,1, ... , L-1 (assuming that 
aL(n) has no positive integral roots). 

So for holonomic summands one always has the certificate 

(G(n, k), ao(n) , ... , aL(n» 

and all we have to do is to verify that (8) is satisfied. If we are lucky the 
recurrence is first order (i.e. L = 1 ), and ao + al = 0, so, by dividing through 
by ao we get (1). The amazing thing is that it happens so often. We know of 
only two cases where L > 1 . 

So thanks to the general theory of [13], that is based on I. N. Bernstein's 
theory of holonomic systems (see [3]), we know that G(n, k) of CF exists, as 
do the the aj's. Hoping that indeed L = 1, we have to find G(n, k) of CF 
that satisfies (1), where F(n, k) is given. This is done by Gosper's beautiful 
algorithm [9], that decides for us when such a G exists, and when it does, finds 
it. 

It is amazing that we are lucky so often, and whenever we are, we get in 
addition to a proof ofthe original identity, some brand new identities, complete 
with proofs. 
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