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FINITE DIMENSIONAL HOPF ALGEBRAS ARISING 
FROM QUANTIZED UNIVERSAL ENVELOPING ALGEBRAS 

GEORGE LUSZTIG 

INTRODUCTION 

0.1. An important role in the . theory of modular representations is played by 
certain finite dimensional Hopf algebras u over Fp (the field with p elements, 
p = prime). Originally, u was defined (Curtis [3]) as the restricted enveloping 
algebra of a "simple" Lie algebra over Fp' 

For our purposes, it will be more convenient to define u as follows. 
Let us fix an indecomposable positive definite symmetric Cartan matrix 

(a) 

In particular aii = 2 and aij = aji E {O, -I}, for i =1= j. Let U Q be the 
Q-algebra defined by the generators E i' F i' Hi (1 ~ i ~ n) , and the relations 

(bl) HiHj = HjHi , 

(b2) HiEj - EjHi = aijEj' HiFj - FjHi = -aijFj , 

(b3) EiFj - FjEi = JijHi' 
(b4) 

(b5) 
-2- - - - - -2 -2- - - - - -2 
EiEj - 2EiEjEi + EjEi = 0, FiFj - 2FiFjFi + FjFi = 0, if aij = -1. 

Then U Q is known to be the enveloping algebra of the simple Lie algebra g 
over Q corresponding to (a). 

Chevalley [2] has proved that any U Q-module of finite dimension over Q 
admits a lattice which is stable under the subring U of U Q generated by the 
-(N) -N ....,.{N)-N 
Ei = Ei IN! and Fi = Fi IN! (1 ~ i ~ n, N ;::: 0), and Kostant [7] 
constructed a nice Z-basis for U. 

Then u can be defined as the subring of U ® Fp = U F generated by the 
p 

elements E~ I) and Pi 1) (1::; i ~ n). The pth powers of these generators are 
zero and in fact u is of finite dimension (= pdim9) over Fp' 
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0.2. From [3] it is known that the simple u-modules can be naturally parame-
trized by elements of (71/p)n ; but the structure of simple u-modules (e.g. their 
dimensions) is not known. From [3, 12] it is known that from the representation 
theory of u one can recover essentially the whole rational representation theory 
of the simple algebraic group over F p corresponding to (a i) . 

0.3. Let g be the ring 7l/[(], where , is a pth root of 1, ( :f:. 1, P an 
odd prime; thus s& is the ring of integers in a cyclotomic filed g'. One of 
the main results of this paper is that u can be regarded naturally as reduction 
modulo a maximal ideal of a Hopf algebra over S&. More precisely, we shall 
define a Hopf algebra ii over g with the following properties. 

(a) ii is free of rank pdim g as a g-module. 
(b) If m is the maximal ideal of g defined as the kernel of the ring 

homomorphism g --+ Fp (' --+ 1, Z --+ Z mod p, Z E 7l), then 
ii/mii = u ®!£ Fp is isomorphic to u as a Hopf algebra over Fp' 

(c) The simple modules of the g' -algebra 'ii = ii~ ® g' are naturally 
parametrized by elements of (71/pt; if M is such a simple module, 
then M contains some g -lattice Mo which is a ii-submodule and 
the corresponding ii-module Mo/mMo has as a quotient the simple 
u-module with the same parameter (in (71/p)n) as M. 

In particular, the simple 'ii-modules are in natural bijection with the simple 
u-modules so that the simple u-module corresponding to a simple ii-module M 
has dimension ~ dim M . 

We conjecture that the last inequality is an equality (at least for p not too 
small) and that in fact u and 'ii have identical representation theories. 

0.4. The definition of ii is in the framework of the theory of quantum groups. 
Let v be an indetenninate and let .s;1' = 7l[v, V-I], .s;1" = Q(v) its quotient 
filed. Following Drinfel'd [4] and Jimbo [6] we define Us.{' to be the .s;1"-algebra 
defined by the generators Ei' Fi ' Ki , K i- I (t ~ i ~ n) , and the relations 

(at) 

(a2) 

(a3) 

(a4) 

(as) 

K-K~I 
E.F - FE. = a.. I 11' 

I J J I IJ V _ v-

if aij = -1. 
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(We adopt the notation in [9] which is slightly different from the original 
one.) Then UN' is a Hopf algebra over ,W" with comultiplication.1.: UN' -+ 

UN' ® UN' defined by 

Following [8] we define U to be the ,W' -subalgebra of UN' generated by the 
elements E;N) = E~ /[N]!, Ft) /[N]!, Ki' and K;I (1 SiS n, N ~ 0), 
where 

(c) 
N s -s rr v -v 

[N]! = _I E,W'. 
s=1 V - V 

We shall prove that U is a free ,W' -module and that U is itself a Hopf 
algebra over ,W' in a natural way. We regard iB as an ,W' -algebra with v 
acting as multiplication by , and we form U ~ = U ® Nib; this is a Hopf 
algebra over iB . 

Now ii is defined as the iB-subalgebra of U~ generated by the elements 
E?), FP), Ki' and K;! (1 SiS n) modulo the left (or two-sided) ideal 
generated by the central elements Ki - 1 , '" , K~ - 1. It has a natural Hopf 
algebra structure over iB and it satisfies assertions (a)-(c) in §0.3. 

The algebra ii ® C appears in the simplest case (type AI) in the physics 
literature; see [14, 15]. 

0.5. We shall try to motivate the definition of U as follows. Consider the sym-
metric bilinear form ( , ) on 71/ (with canonical basis n = {ai' a2 , •• , , an} ) 
given by (ai' a) = aij . 

Let R = {a E Znl(a, a) = 2}. Then R is a root system in Zn with set of 
simple roots n. 

'Consider the free ,W' -module ./t with basis {Xa (a E R), t i (1 SiS n)}. 
Define ,W' -linear maps Ei' Fi : ./t -+./t as follows: 

(a) 

(b) 

(c) 

(d) 

(e) 

EiXa = Xa+a; 
FX =X I a a-o:; 

if a , a + a i E R, 
if a , a - a i E R, 

FX = t., 
1 OJ 1 

EiXa = 0 if a E R, a + a i rt. R u 0; 
FiXa = 0 if a E R, a - a i rt. R u 0, 

Et. = -a . .x, Ft. = -a .x if i :/:- j, I J IJ a; I J IJ -a; 
-I -I 

EJi = (v + v )Xa;' Fiti = (v + v )X_a,' 

Consider ./t = ./t ® N Z, where Z is regarded as an ,W' -module with v acting 
as 1. Then ./t inherits a basis {Xa' til and Ei' Fi define endomorphisms 
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E i' F i of L; these are defined by the same formulas as Ei' F; except that 
( e) is replaced by 

Et. =2X , 
I I OJ 

F.t. = 2X . I I -a j 

If we set Hi = E iF i - FiE i we see that the endomorphisms E i ' F i ' and Hi 
of L satisfy relations 0.1(bl)-(b5) of U Q' Hence L ® Q is a U Q-module 
(it is the standard representation of U Q on g). Now Ei and F i act on V 
by matrices whose entries are in {O, 1, 2}. The simplest deformation of such 
a matrix is obtained by leaving the entries 0, I unchanged and replacing 2 
by v + V -I ; we thus obtain the endomorphisms Ei and Fi • If we define au-
tomorphisms Ki : L -- L by KiXa = v(a,o;) Xa (a E R), Kitj = tj' we 
see that, miraculously, the endomorphisms Ei' F; , Ki ' Ki- I : L -> L sat-
isfy relations (al )-(a5) in §0.4, hence they define a U .w,-module structure on 
L ®.w .N'. Now E; maps L into (v + v-I)L hence E; /[2]! maps L 
into L . This leads us to consider the .N -subalgebra U of U.w' ; it leaves L 
stable. 

0.6. Consider the following three (unsolved) problems. 
(a) Finding the characters of the finite dimensional simple modules of the 

algebraic group of Fp corresponding to (aij ). 

(b) Finding the characters of the finite dimensional simple modules over 
the quantum group corresponding to (a i) at V'T. 

(c) Finding the characters of the simple highest weight modules of level 
-p - h (h = Coxeter number) over the affine Lie algebra corresponding 
to (a i). 

It is expected that these three problems are very closely related. (See the 
conjectures in [10] as well as in [9].) The present paper is an attempt to relate 
problems (a) and (b). 

0.7. We now review the contents of this paper in some detail. For several 
purposes it seems necessary to introduce in U.w' elements Ea and Fa corre-
sponding to any positive root, generalizing E j and Fj (which correspond to 
simple roots). (Such elements were introduced in type A by Jimbo.) If a is 
a sum a i + a j of two simple roots one has two candidates - EjEj + v -I EjEj 
and - EjEj + v -I EjEj for E a and, unlike the case v + 1 , these two candidates 
are not even proportional to each other. For roots of height 2:: 3 there are 
even more candidates for Ea. This difficulty is unavoidable, but we manage to 
keep it under control by using a braid group action in U.w' introduced in [8]. 
This is explained in § 1 in which the main result is the construction of a basis 
of Poincare-Birkhoff-Witt type for U.w'. In §2 we define an algebra V over 
.N , by generators and relations; after some combinational preparations in §3 
we show in §4 that V is isomorphic to U. 

In particular, this provides a presentation of U by generators and relations. 
We also construct an explicit .N -basis for U. 
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In §5 we study the specializations of U and U.w' in which v is taken to 
be of finite order. We also define in this context some finite dimensional Hopf 
algebras / u over a cyclotomic field. We classify the simple modules of I u . 

In §6 we establish a connection between quantum groups at V"T and the 
algebras IT, and we verify the assertions given in §0.3. 

0.8. The author wishes to thank Matthew Dyer for some helpful discussions. 

1. THE BRAID GROUP ACTION 

1.1. Any root a E R defines a reflection So. : 7l,n -> 7l,n , Z -> Z - (z, a)a. We 
shall write Sj instead of So. (1::; i ::; n). Let W be the Weyl group of R; it is 
the subgroup of GL(7l,n) g~nerated by the reflections Sj (1::; i::; n). Let lew) 
be the usual length function on W with respect to the generators {SI' ... , sn}' 

Let R+ (resp. R-) be the set of positive (resp. negative) roots in R with 
respect to the set of simple roots n (see §0.5). 

1.2. We define two Q-algebra isomorphisms n: U.w' ....::.. U:,P and 'J': U.w' 
....::.. U:,P by 

(a) 

(b) 

Q(Ej) = Fj' n(Fj) = Ej' 

'I'(E) = Ej' 'J'(F) = Fj' 

r. -1 u(v) = V , 

'J'(v) = v. 

(Here U;;P is U.w' with the opposite multiplication.) 

1.3. For any i E [1, n] there is a unique sat/-algebra isomorphism Tj : U.w' 
....::.. U.w' such that 

(al ) 

ifi = j, 

if a jj = 0, 

if a jj = -1. 

ifi = j, 
if a jj = 0, 
if a jj =-1. 

ifi=j, 
if ajj = 0, 
if a jj = -1. 
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(a2) 

Note that 
(b) 

We have 
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if i = j, 

if ajj = 0, 

if ajj =-1. 

ifi=j, 
if aij = 0, 
if aij =-1. 

ifi = j, 

if ajj = 0, 
if ajj = -1. 

(c) TjTjTj = TjT;Tj if aij = -1, TjTj = TjT; if aij = 0. 

Hence the Tj define a homomorphism of the braid group of W into the 
group of algebra automorphisms of UN" 

It follows that for any W E W there is a well-defined algebra isomorphisms 
Tw: U --+ U such that Tw = Ti Tj ... Tj whenever w = s· s· .. ·s· with 

I 2 P II 12 Ip 

P = J(w). From (b) it follows that 
(d) 

We have 1f'Tj = Tj- l 1f' for all i. It follows that 

(e) 

A simple computation shows that 
(f) 

1.4. We define Q-algebra automorphisms T j : U Q --+ U Q (1 ~ i ~ n) by 

ifi=j, 
{ 

-Fj' {-E j , 

TjE j = Ej' TjF j = Fj' ifaij=O, 
-EiEj+EjEj' -FjFi+FjFj , ifaij=-l. 

We define Q-algebra automorphisms T w: U Q --+ U Q in terms of the Ti in 
the same way as the Tw were defined in terms of the Ti in § 1.3. Note that 
T w : U Q --+ U Q is induced by an automorphism of the Lie algebra g. We have 
-4 
Ti = 1. 
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+ - - --If W E Wand O:i En satisfy w(a) E R ,then T wee) and Tw(Fi) actu-
ally belong to 9 C V Q ; more precisely they are root vectors in 9 corresponding 
respectively to the root w (0: i)' -w (0:). They are completely determined (up 
to sign) by w(o:J. 

+ + -+ - - - , 1.5. Let U.w'; V ; V (resp. U.w'; V ; U ) be the .s;1' -, .s;1' -, Q-subalgebra 
of U.w'; U; U generated by the elements Ei ; EJN ), N ~ 0; Ei (resp. Fi ; 
F/N ) , N ~ 0; F i ). Let .9f be the Q-subalgebra of .s;1" consisting of those 
J E.s;1" which have no pole at v = 1. Evaluation at 1 defines a Q-algebra 
homomorphism .9f --+ Q. Let ~+ be the .9f -algebra defined by the generators 
Ei (1::; i ::; n) and the relations 

We have natural homomorphisms 

(a) 

(b) 

(Ei f---> Ei), 
(Ei f---> E i) 

induced by .9f C .s;1" , .9f --+ Q respectively. 

Lemma 1.6. Consider the .s;1"-algebra with two generators A, B and relations 
2 -I 2 A B - (v + v )ABA + BA = 0, 2 -I 2 AB -(v+v )BAB+B =0. 

Set C = -AB + V-I BA. Let k, I, mEN. Then 

(a) 

(b) 

(c) 

(d) 

AC = vCA, vBC = CB, 
k I I' . k' B A j+(k-j)(/-j) A -J CJ B-J 

[k]! [I]! = ~ v [I - j]! U]! [k - j]! ' 
J_ 

jg ,j5:/ 
k k+1 I I k+1 k A B A = B A B (compare Verma [13]), 

C m ~ m-j _j B j Am Bm- j 
[m]! = L...(-l) v U]! [m]! [m - j]!' 

J=O 

Proof. The identities (a) are obvious. To prove (b) we can assume that k, I ~ 
1. One first proves (b) for I = 1 and k ~ 1 by induction on k, then one 
uses induction on I. In (c), we replace Bk+1 AI and BI Ak+1 by the expressions 
provided by (b); we find that both sides of (c) are equal to the same expression: 

I 
" [l]![k + I]! j+(k+l- j)(/- j) Ak+l- j ci Bk+I- j 
L... [j]![l - j]![k + I _ j]! v . 
J=O 

In the right-hand side of (d) we replace e;! [!~! by the expression provided by 
(b); we thus obtain the identity (d). 
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Proposition 1.7. Let WE W. Then Tw(U) = u. 
Proof. It is enough to show that 1'; (U) c U and 1';-1 (U) C U for any i E 
[1, n]. We have 

(a) Tj(Et)) = (_I)Nv N-N2Fj(N)Kt), Tj(Fj(N)) = (_ltv-N+N2Kj-NEt) 

ifi = j, 

(b) 

N 
(c) T(E(N)) = _1_(_E.£. -IE.E.)N = ""'(_I)N-1 -IE(I)E(N)E(N-IJ 

I J [N]! I J + V J I L- v J I J 
1=0 

if ajj =-1 

(using Lemma 1.6(a)) and, applying to this n (see §1.3(b)): 

(N) 1 N 
Tj(Fj ) = [N]!(-FjFj + vFjF) 

(d) N 

= L(-lt-lvIF)N-IJFt)F)') if aij = -1. 
1=0 

. ±I· ±I ±I ±I £' • Smce Ti(Kj ) IS Kj or K j K j it 10110ws that TjU cU. An entlrely 
similar proof shows that 1';-1 U cU. 

Proposition 1.S. Let wE Wand a j E TI be such that w(a j) E R+ . 

(a) We have Tw(E;N)) E U+, Tw(Ft)) E U-(VN 2: 0). 
- -+ - --

(b) We have Tw(E) E U Q' Tw(Fj) E U Q. 

(c) There exists "C E W'+ which maps to Tw(E) E U;, under 1.5(a) and to 
Tw(E) E U~ under 1.5(b). 

(d) Assume, in addition, that w(a) = ak E TI. Then Tw(E) = Ek , 

Tw(Fj) = Fk · 

Proof. The method used in Dyer [5] to study the action of the Hecke algebra 
in the reflection representation can also be used in this case. We shall consider 
only the assertions concerning Ej ; those concerning F; are proved in the same 
way. All the assertions are trivial when w = e; therefore we may assume that 
lew) 2: 1 and that our assertions hold for elements w' with lew') < l(w). We 
can find j E [1, n] such that w(a) E R- ; in particular, we have i::f. j. Let 
(Sj, Sj) be the dihedral subgroup generated by Sj and Sj' and let w' be the 
element of minimal length in the coset w(Sj, s). We have w' (a) > 0 and 
w' ( a) > 0 , and we are in one of the following three cases: 

(1) aij = 0, w = w\, lew) = lew') + 1. 
(2) aij=-I, w=w'SjSj' l(w)=I(w')+2. 
(3) ajj = -1, w = w\, lew) = lew') + 1. 
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The induction hypothesis provides us with an element -< E ~+ (attached by 
(c) to w' , a i ) and an element "(~ E ~+ (attached by (c) to w', a j ). Assume 
that we are in case (1). We have (using the induction hypothesis) 

Tw(EiNl ) = Tw,Tj(EiNl ) = Tw,(EiNl ) E U+ (see Proposition 1.7(b)). 

- - - - -+ I Similarly, T w(Ei) = T w,(E) E U Q • The element "( = r i satisfies (c). 
Under the assumption of (d) we have Tw(E) = Tw,(E) = Ek , since w'(ai ) 

= ak. Assume now that we are in case (2). We have (using the induction 
hypothesis) 

- - - - -+ I Similarly, T w(EJ = T w,(E) E U Q • The element r = rj satisfies (c). 
Under the assumption of (d) we have w'(a) = wsjsi(a) = w(aJ = a k , 

hence 
Tw(E) = Tw,(E) = Ek • 

Finally, assume that we are in case (3). We have using the induction hypothesis 

T (E(Nl) = T , T(E(Nl) 
w I w J I 

= Tw' (L( -1 t-l v -I Eyl E}Nl Et-ll ) 
I 

= L(-lt-lv-ITw,(EYl)Tw,(E;Nl)Tw,(Et-/)) E U+ 
I 

(see Proposition 1.7(c)). In particular, 

-- ---- ---- ~ Similarly, we have Tw(E) = -T w,(E)T w,(E) + Tw,(Ei)T w,(Ej ) E U Q. 

Th I I I -I I I • fi () e e ement r = -rjri + v ~i"(j satls es c. 
In case (3) we cannot have w(a) = a k • If we had w(a) = a k , then 

I I I I) I I ak = W sj(a) = W (a i + a) = w (a) + W (a j ; but w (a) and w (a) are 
positive roots, hence their sum cannot be in n. 

This completes the proof. 

1.9. We choose for each P E R+ an element w pEW such that for some 
index ip E [I, n] we have 

(a) 
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R+ Let N be the set of all functions R+ -+ N. We fix a total order on R+ 
R+ and define for any 'If EN: 

E'" = IT T (E. )",(P), 
Wp lp 

PER+ 

F'" = IT T (F. )",(P) , 
Wp lp 

PER+ 

where the factors in E"', E'" (resp. F"', F"') are written in the given (resp. 
opposite to the given) order of R+. By Proposition 1.8, we have E'" E U;, , 

'" - -'" -=+-"'--F E U.N" E E U Q' FEU Q. 

Proposition 1.10. The elements E'" (resp. F'" ), for 'If E NR+ , are linearly in-
dependent in the .9/'-vector space U;, (resp. U;,). 
Proof. Assume that in U;, we have a relation of the fonn L-A",E'" = 0, where 

A", E .9/' - {O} and 'If runs over a finite nonempty set Q; of NR+. We will 
show that this leads to a contradiction. Multiplying by a power of v-I, we can 
assume that all A", are in 9f - {O} (see §1.5) and at least one of them does not 

vanish at v = 1. Using Proposition 1.8(c) we can choose for each 'If E NR+ an 
element 1:", E ~+ such that 1:", maps to E'" under §1.5(a) and to E'" under 
§ 1.5(b). 

Let i = L-"'E6 A", 1: '" E ~+ . Then i maps to 0 E U;, under § 1.5(a). Choose 
an integer J.I. ~ 0 such that 'If(fi):'5 J.I. for all fi E R+ and all 'If E Q; • 

From [8] we see that there exists a U .N,-module M, of finite dimension over 
.9/' , and an 9P"-lattice Mo eM with properties (a) and (b) below. 

(a) E I ,···, En' FI ' ... , Fn' K I , ... , Kn leave Mo stable and induce on 
M = Mo/(v -1)Mo operators EI' ... ,En,FI' ... ,Fn, 1, ... , 1 
which define a U Q-module structure on M. 

(b) The U Q-module M is simple and there exists a nonzero vector y E M 
such that Eiy = 0 and Hiy = J.l.y for i = 1, ... , n. 

From the representation theory of U Q it is known that 

(c) the elements E'" (y), with 'If E NR+ such that 0 :'5 'If(fi) :'5 J.I. for all 
fi E R+ , form a Q-basis of M. 

By (a), Mo is a ~+ -module via ~+ -+ U;, given by §1.5(a). Hence i acts 
as 0 on Mo. 

On the other hand, by the definition of i and by (a), i: Mo --+ Mo induces 
on M the operator L-"'E6A",(I)E'" from the UQ-action. (Here A",(I) is the 
value of A", at v = 1.) Hence the last operator is zero. Applying it to y E M 
and using (c), we deduce that A",(I) = 0 for all 'If E Q;. This is a contradiction. 

The statement concerning F'" follows from that for E'" , by using the invo-
lution Q (see §1.3(d)). 
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1.11. Let V;, be the subalgebra of V,#, generated by the elements K j and 
K;l (1 ~ i ~ n). For <P = L.j<PU)a. j = Zn, we define 

K¢ - K¢(l) K¢(2) .. ·K¢(n) E V O 
- I 2 n ,#,. 

Lemma 1.12 (Rosso [1]). (a) Multiplication defines an ,Sl/'-vector space isomor-
h · V- V O V+::::; V P Ism ,#,0,#, ,#' ®,#' ,#' --+ ,#,. 

(b) The elements K¢ (<p E Zn) form and ,Sl/'-basis of V;, . 

Proposition 1.13. The elements F ",' K¢ E'" (1/1, 1/1' E N R+ , <P E Zn) form an 
,Sl/'-basis of v,#, . 
Proof. The linear independence follows from Lemma 1.12 and Proposition 
1.10. We also see that it is enough to show that the elements E'" (IJI E NR+ ) 

generate V;" as an ,Sl/'-vector space. (The analogous statement for V;;., is 
proved in the same way.) 

-+ - -Let ~ be the Q-algebra defined by the generators E 1 ' ••• , En and the 
-- -- -2- --- --2 relations EjEj = EjEj if a jj = 0 and EjEj-2EjEjEj+EjEj = 0 if a jj = -1. 

~ + + -+ + For kEN, let ~k (resp. Wk ' ~'#',k) be the subspace of ~ ,(resp ~ , 
+ - -

~,#,) spanned by the products of E 1 , ... ,En (resp. E 1 , .. ·, En) involving 
exactly k factors. 

-+ -+ + + It is clear that ~ = EBk>o ~ k and ~ = EBk>o ~k (by the homogeneity 
of the defining relations.) - -

Clearly, ~k+ is an 9t -module of finite type. Since 9t is a discrete valuation 
domain, we see that 

(a) dimQ(~t 0 gp Q) ~ dimQ(V) ~t 0 gp ,Sl/' , 

where Q is regarded as an 9t -module with v acting as 1. Let 

.9k = {IJI E NR + L I/I(P)h(P) = k} , 
PER+ 

where h : Zn -+ Z is given by the sum of coordinates. 
Now ~ + is the enveloping algebra of a Lie algebra. From the Poincare-

Birkhoff-Witt theorem, we see that 
. -+ 

(b) dlmQ ~ k = #(.9k ) (k ~ 0). 

It is clear that ~ + = ~+ ® gp Q and this is compatible with the grading. 
Using this and (b), we see that 

(c) dimQ ~k+ 0 gp Q = #(.9k )· 

The obvious (surjective) homomorphism ~+ -+ V;" induces a surjective 
,Sl/'-linear map ~/ ®,Sl/' --+ U;" ,k' It follows that 

(d) dim,#,(~t ®,Sl/') ~ dim,#, V;, ,k ~ #(.9k ) 
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(the last inequality follows from the linear independence of the elements Elf/ 
(I{I E gu in VoW" proved in Proposition 1.10). Combining (d), (a), and (c) 
we see that all these inequalities must be equalities. It follows that the elements 
Elf/ (I{I E gu span the Jl11-vector space V;',k' hence they form an Jl11-basis 
of V;',k' The proposition follows. 

2. THE ALGEBRA V 

2.1. In this section we shall introduce and study an Jl1 -algebra V defined by 
generators and relations. Eventually (§4) this algebra will be identified with V. 

We shall need the following notation. For any integers m, r with r ~ 0 we 
define the Gaussian binomial coefficient 

[] 
r m-s+l -m+s-l m rrv -v = s -s E Jl1 . r v - v s=l 

If m ~ r ~ 0, we have [7] = [m]!/[r]![m - r]!, while if r> m ~ 0 we have 
[7]=0. 

We shall assume that the numbering of the o. i En is 

(a) that of [1, Planches I, V, VI, VII] for types An' E6 , E7 , E8 , 
(b) that of [1, Planche V] composed with i ..... n + 1 - i for type Dn' 

2.2. Let a. E R+. We can write uniquely a. = Cio. i+ (linear combination of 
o. j , j < i) with ci ~ 1; we then set i = g(o.) and ca = ci • By our choice of 
numbering we have 

(a) ca = 1, except when a. is the highest root of E8 in which case g(o.) = 8 
and ca = 2. 

Let h(o.) be the height of a. (the sum of coefficients of the various o.h in a.), 
and let hl(o.) = c;:lh(o.). From (a), we see that hi (a.) is integral (and equal to 
h( a.) ) in all cases except when a. is the highest root of E8 , when hi (a.) = 29/2 . 
We call hi (a.) the level of a.. 

We shall write R7, = {a. E R+lg(o.) = i, hl(o.) = /}. 

2.3. We shall consider the set consisting of the following variables: 

(a) 

(b) 

(c) 

(a. E R+ , N ~ 0) , 

(a. E R+ , N ~ 0), 

(i E [l , n], C E Z, tEN). 
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Let V+ be the Jlf -algebra defined by the generators (a) and the relations 
(d1)-(d5) below: 

(d1 ) 

(d2) 

(d3) 

(d4) 

(d5) 

E(N) E(M) = [N + M] E(N+M) E(O) = 1 
a: ct N a: ' a ' 

E (N)E(M) = E(M)E(N) 'f ( ) 0' () h'() '71 a:; a: a: a:; 1 a, a j = , 1 < g a, a E ILJ, 

E(I'/) E(M) = " VJ+(N-J)(M-J) E(M-J) E(j) ,E(I'/-J) 
Q a L.J Q a+a Q ' 

J?O;J~N;J~M 

V NM E(I'/) E(M), = E(M),E(I'/) 
Q: a+o: a:+cr Q ' 

V NM E(M),E(N) = E(N)E(M)" 
a:+a a a: a+a 

In (d3), (d4), and (d5) it is assumed that (a, a') = -1 and that either (e1) 
or (e2) holds: 

(e1 ) 
(e2) 

, 
a = ai' i < g(a) , 

h(a') = h(a) + 1, g(a') = g(a), 

Let V- be the Jlf -algebra defined by the generators (b) and the relations 
(fl )-(f5) below: 

(fl ) 

(f2) 

(f3) 

(f4) 

(f5) 

F(N)F(M) = [N +M] F(N+M) F(O) = 1 
Q a: N Q ' 0: ' 

F (N)F(M) -_ F(M)F(N) 'f ( ) 0' () h'() '71 a; a a a; 1 a, a i = , 1 < g a, a E ILJ, 

F (M)F(,N) __ " -J-(N-j)(M-J)F(N-J)F(J) F(M-J) 
a: a: ~ V a' a:+a' a ' 

J?O;J~N;J~M 

V NM F(!") F(M), = F(M),F(!") 
a a:+a a+a a ' 

V NM F(M),F(N) = F(N) F(M), , 
a+a a a a:+a 

In (0), (f4), and (f5) it is assumed that (a, a') = -1 and either (e1) or (e2) 
holds, Let V O be the Jlf -algebra defined by the generators (c) and the relations 
(g1 )-(g5) below: 

(g1 ) 

(g2) 

(g3) 

the generators (c) commute with each other, 

(t, t' 2: 0) , 

(t 2: 1), 
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An equivalent set of relations for VO consists of (g5) together with the relations 
(g6)-(glO) below: 

(g6) the generators Ki ' Ki- 1 , [Ki) 0] commute with each other, 

(g7) KiKi- 1 = I , [ KiJ 0] = 1 , 

(g8) 
of}-I)Jvt(tI-J) [t + j - 1] Kf [Ki) 0] [~i~~] 
_1-

=[t~t'][~~t~] (t~I,t'~O), 

Let V be the .9f' -algebra defined by the generators (a), (b), and (c) and the 
relations (dl)-(d5), (fl)-(f5), and (g5)-(glO) together with the relations (hl)-
(h6) below: 

(hI) 

(h2) 

(h3) 

(b4) 

(h5) 

(h6) 

(e=±I), 

Remark 2.4. We observe that a, a' E R+ with (a, a') = -1 can satisfy §2.3 
(e2) only in type E8 • Indeed for such a and a' we have a + a' E R+ , 
ca+a' = ca + ca' ~ 2, and we then use §2.2(a). We see also that we have 
necessarily a E R;, 14' a' E R;, 15 ' and a + a' = Po (= the highest root). Note 
that in type E8 we have 

R;, 14 = {P2 , P5 , P7 }, R; 15 = {P~, P;, P~}, R;,29/2 = {Po}, 
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where the notation is determined by the equalities 
(a) 13; = 13J + a k ' if i, j, k is a permutation of 2, 5, 7, 

(b) 130 = 13i + 13; , if i E {2, 5, 7}. 
We wish to derive some consequences of the relations in §2.3. 

Lemma 2.5. Let a, a' be as in 2.3(d3)-(d5). The following identities hold in 
V+. 

(a) E(N)E(~) = " (_1)r+N-M [ r-1 ] E(N-r)EW)E(r) 
Ct Ct ~ N-M-1 Ct Ct Ct 

N-M".5.r".5.N 
(N) M ~ 0), 

(b) E(~)E(N) = " (_1)r+N-M [ r-1 ] E(r)E(~)E(N-r) 
Ct Ct ~ N-M-1 Ct Ct Ct 

N-M".5.r".5.N 
(N) M ~ 0), 

(c) 

(compare Verma [13]), 

(d) 

(e) 

N 
E(N) , = "(_1)N-JV -J E(~) E(N) E(,,!-J) 

a+a L....t a: a a 
J=O 

N 
E(N) , = "(_1)N-JV -JE (N-J)E("!)E(J) 

0:+0 ~ a Q Q 

J=O 

(N ~ 0), 

(N ~ 0). 

Proof. In the right-hand side of (a) we substitute E(~) E(r) by the expression a Ct 

provided by §2.3(d3); performing cancellations, we get the left-hand side of (a). 
In the right-hand side of (b), we substitute E~~) E;:-r) by the expression 

provided by §2.3(d3), and in the left-hand side of (b) we substitute E~~) E~N) 
by the expression provided by §2.3(d3); we see that we obtain equal expressions. 
The same argument applies to (c): we substitute E~~+N) E~N) and E~"!) E~M+N) 
by the expressions provided by §2.3(d3). We argue in the same way for (d): we 
substitute E(~) E(N) in the right-hand side of (d) by the expression provided by a a 
§2.3(d3) and we obtain the left-hand side. Now (e) follows directly from (c) 
and (d). 

Lemma 2.6. Let y E R+ and ai' aJ En be such that i, j < g(y), (ai' a) = 
0, and (y, a 1.) = (y, aJ.) = -1. Then E(N) E(M) = E(M) E(N) in V+. 

Y+Ct i Y+Ct j Y+Ct j Y+Ct i 
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Proof. By Lemma 2.5(e) we have 

(t( _l)N-iv -i E~N-i) E;:') E~i)) 
)=0 

x (t( _l)M-hv -h E~M-h) E~7) E~h)) 
h=O 

= '" (_l)M+N-i-hv-i-h [M +! - h] E(N-i)E(N)E,(M+i-h)E(M)E(h). 
L- } Y "j Y "j Y 

05,i5,N 
095,M 

Now let 

In the last sum we apply Lemma 2.5(a) with a = y and a' = a i to the products 
E;M+N-k)E~~) with k < M and we apply Lemma 2.5(b) with a = y and 
a' = a· to the products E(M) E(k) with k > M: we leave the term with k = M 

) "j Y 
unchanged. We obtain 

0i,i= L (_l)M+N-kv-k L (-If+M-k[M~-/_l] 
05,k<M M-k5,r5,M+N-k 

X E(M+N-k-r) E(N) E(r) E(M) E(k) 
)' "j Y ", Y 

(_l)M+N-kv -k L (_l)r+k-M [k ~ i/- 1] 
M<k5,M+N k-M5,r5,k 

+ 

(We have used the following convention: [~l] = 0 for m 2: 0, [=:] = 1 .) 
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Interchanging the roles of ai' N and a j , M , we see by the same computa-
tion that E;~2j E;:~j is equal to the expression obtained from 0ij by interchang-

ing E~N) and E~M). But that expression is again 0ij" since E(N) , E(M) com-
I j °1 OJ 

mute by §2.3(d2). (Recall that (a a) = 0.) Hence E(N) E(M) = E(M) E(N) 
I' j )'+"j )'+"j )'+"j Y+", 

= 0ij' The lemma is proved. 

Proposition 2.7 (Type E8)' Let i, k, I be a permutation of {2, 5, 7}. With 
the notation in Remark 2.4 we have for any N, M 2: 0 : 

(a) 

(b) 

where -s(N+M-s) TIs (1 2j ) d 'lis = v . j=1 - V • an 

(c) E(N) E(M) = E(M) E(N) lifh E {I , 3, 4, 6} . 
"h Po Po "h 

Proof. If we set y = Pi' we have P; = y + ak and P~ = y + at (see Remark 
2.4(a)), hence (a) follows directly from Lemma 2.6. 

We not prove (c). Let h be as in (c). We write E17) as an .9/ -linear 

combination of products E~l E17) E17-1) , using Lemma 2.5(d) with a = Ps' 
a' = P~ , and a + a' = Po' Note that E~:) commutes with all three factors in 
such a product (by §2.3(d2) since (ah , P~) = (ah , Ps) = 0); (c) follows. 

We compute the left-hand side (= r) of (b) by substituting E17) by the 
expression given in Lemma 2.5(d), with a = Pk ' a' = p~, and a + a' = Po: 

r= ~(_I)M-Iv-IE(N)E(t}E(M)E(A;1-t). 
W "j Pk Pk Pk 

1 

s 

(see §2.3(d3); P; = Pk + a), 
we see that 

r = ~(_I)M-Iv -t+s+(N-s)(M-s)-NI E(t) E(M-s) E(~) E(N-s) E(A;1-t) . 
W Pk Pk PI ", Pk I,s 

We interchange the last two factors (and introduce an appropriate power of 
v) using (d), and we use (a) to interchange E~) and E17- 1); we obtain 

r = ~(-1 )M-1V -1+S+(N-S)(I-S)-NIEp(t) Ep(M-S) E p(A;1-t) Ep(~) E(N-s) . 
~ k k k {a, 
l,s 
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This shows that to prove (b) it is enough to prove that for any 0 ::; s ::; M , 
we have 
(e) ~(_l)M-I -t+s+(N-s)(/-s)-NIE(t)E(M-s)E(M-/) _ E(M-s)E(s) 

~ v P~ Pk P~ - IJIs Po P~ . 
I 

Let r' be the left-hand side of (e). We substitute E~lE17-S) by the expres-
sion given by §2.3(d3); we see that 

r' = L( _1)M-Iv -1+s+(N-s)(/-S)-NI+r+(t-r)(M-s-r) Er-s- r) Et;: E~~-r) E17- /). 
I,r 

We replace E~~-r) E17- /) by [~=;]E17-r); then r' is a linear combination 

of monomials E1:) E1~) E1~) with coefficients in .9i' , and it is enough to show 
that each of these coefficients is zero except in the case where a = 0, b = M -s, 
and c = s , when it is IJIs ' 

Thus, we are reduced to showing that for any s E [0, M] and any r E 
[0, M - s] we have 

L (_l)M-Ivf(t) [Z" =~] = {~s 
O$I$M-r 

ifr=M-s, 
ifr<M-s, 

where f(t) = -t+s + (N -s)(t -s) - Nt+r+ (t-r)(M -s- r), or equivalently, 
that: 

Ia ~ [M - r] t'(M-r-l) ( 2(s+r+l-M))I' 
V ~ t' v -v 

O$I'$M-r 
s 

(f) II (1 - v 2j ) if r = M - s, 
j=l = 
o ifr<M-s, 

where fo = (s + r - M)( 1 + r - M) . 
The left-hand side of (f) is equal to the value of 

M-r-i 
via II (1 + v 2hx) for x = _V2(s+r+i-M) . 

h=O 

Hence it is zero precisely when 0::; -(s + r + 1 - M), i.e. when r < M - s. 
Hence (f) holds and the proposition is proved. 

Proposition 2.8. Let 0 E R+ I and 0' E R+ I" 0 =I 0'. Assume that l' = / or 
l, I, 

/ + 1. In the case where /' = / + 1, assume further that R7,I+i/2 = 0. Let 
N,M?O. 

(a) If l' = /, we have (0,0') = o. 
(b) If i' = / + 1, we have either (0,0') = 0 or (0,0') = 1; in the latter 

case, we have 0' = 0 + 0h for some h < i. 
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(c) II" (a at) = 1 then E(N) E(';1) = V NM E(';1) E(N) . J, , a a a Q 

(d) If (a, at) = 0, then E~N) E~';1) = E~';1) E~N) . 
Proof. If (a, at) = -1, then a + at E R+. We have g(a + at) = i and 
ca+o/ = ca + ca' 2': 1 + 1 = 2. By §2.2(a), it follows that we are in type E8 and 
i = 8, a + at = Po . 

Hence h(a) + h(a') = 29. This is impossible in case (a) since h(a) = h(at) 
is an integer; in case (b), we have h(a) = / and h(at) = / + 1 ,hence a E R;,14 
and at E R;, 15' contradicting our assumption. (We have R;,29/2 i= 0.) Thus, 
(a,at)E{O, I}. 

Assume that (a, at) = 1. Then at - a is a (positive) root, hence a and at 
have different heights; in particular, we must be in case (b). Then at - a has 
height 1 so a' = a + a h for some a h En. Clearly, h ~ i. If h = i, then 
ca' > ca ' so Ca' 2': 2. By §2.2(a), we see that we are in type E8 and at = Po' so 
/ + 1 = 29/2. But then a would have level 27/2, which is impossible. Thus 
h < i and (a) and (b) are proved. Now (c) follows directly from (a), (b), and 
§2.3(d5). 

We prove (d) by induction on N = h(a) + h(at) 2': 2. 
When N = 2, then both a and at are in n and, since g(a) = g(at) , we 

have a = a' and there is nothing to prove. Assume now that a and at (as in 
(d)) have N 2': 3 and that (d) is already known for smaller values of N. We 
can assume that 

(e) in type E8 , we have at ~ R;, 15. 

(Otherwise, we would also have a E R;, 15 and we could use Proposition 2.7 (a).) 
Moreover, it is clear that 
(f) in type E8 , neither a nor at can be in R;,29/2. 
Since N 2': 3, we can assume that h(at) 2': 2. We can write at = y + ak for 

some k < i and y' E R+. We have h(a) + h(y) = N - 1, y E R7,f'-l' and 
/ = /' - 1 or /'; moreover, in the case where / = l' , we have Rtf-l/2 = 0 by 
(e). We have y i= a; otherwise, a' = a + ak ,contradicting (a, a') = O. 

Assume first that (a, y) = O. Then the induction hypothesis applies to y, a 
and gives 

(g) E(M) E(N) = E(N) E(M) . 
y a a y 

We have (a, ak) = (a, a' - y') = (a, a') = O. Hence, by (f) and §2.3(d2) 
we have 

(h) E(P) E(N) = E(N) E(P) for any P > o. 
ak a a ak -

By Lemma 2.5(d) we have 
M 

E(';1) = "\'( _l)M-jv -j E(J) E(M) E(M-j) • 
° ~ Ok Y Ok 

j=O 

This, together with (g) and (h) shows that E~';1) and E~N) commute. 
Assume now that (a, y) i= O. Since (a) and (b) are applicable to y and 

a, it follows that a = y + a j for some j < i. We have a j i= ak since 
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a f:. a'. Hence (a j , ak) E {O, -I}. If we had (aj , ak) = -1, then from 
(y, a) = (y, ak) = -1 it would follow that the mutual inner products of y, 
a j , and a k form a singular matrix 

-1 
2 

-1 
-1) -1 , 
2 

hence y, O:j' and a k are linearly dependent so y E {a j , O:k' O:j + a k }; this 
contradicts (y, a) = (y, O:k) = -1. Thus, we have (a j , O:k) = O. We may 
apply Lemma 2.6 and deduce that E(~) and E(N) commute. This proposition a a 
is proved. 

2.9. A nonempty subset of R+ is said to be a box if it is of the form R+ I for 
I, 

some i, I. We arrange the boxes in a sequence as follows: 

(a) + + + + 
Rn I' Rn 2' ... ; Rn_1 I' Rn_1 2' ... ; ... ; R2 I' R2 2' ... ; RI I' 

" " " , 

(Note that in type E8 we place the box R;,29/2 between the boxes R;' 14 and 
R;,15 .) 

We shall give the product rIaER+ E~mo) the following meaning: we compute 
it using any total order on R+ which is compatible with the order (a) of the 
boxes, i.e. if a, 0:' E R+ and the box of a' is to the right of the box of a, then 
0: < 0:' • This is well defined since E(m) and E(':") commute when a and a' a a 
are in the same box (see Proposition 2.8). 

We define similarly a product rI E~mo) where a runs over a subset of R+; 
this is a special case of the previous product, with ma = 0 for certain a. 

2.10. We introduce a number of subspaces of V+ . We fix a box Rt, with I 
integral. 

Xi, I is the .s;1' -subalgebra of V+ generated by the E~N) (0: E Rt I' N ~ I) 
and by the E~M) (j < i, M ~ 1) . 

J 
- + (N) + + Xi,! is the .s;1' -subalgebra of V generated by the Ea (a E Ri,lURi , i+I/2U 

R7 i+1 ' N ~ I) and by the E~M) (j < i, M ~ 1). 
, j 

Yi , I is the .s;1' -submodule of V+ generated by all monomials rIa E;:o) 
(Na ~ 0) with 0: restricted to the roots in boxes strictly to the left of R7 I' 

Zi,! is the .s;1' -subalgebra of V+ generated by all monomials na E~No) 
(Na ~ 0) with 0: restricted to the roots in Rtl U Rtl+I/2' 

With this notation we can state 

Lemma 2.11. Assume that R7, is a box with I integral (i, I) f:. (I, 1). Let 
R( , I' be the first box with integral I' which is to the right of Rt I' Then 

(a) X. , c Z , . X., ," 
I, I, I, 
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(b) Y I . X. leY, I' . X., I" I, I, I, I, 

(The product of two subsets of v+ is the set of sums of products of an element 
in the first set with one in the second set.) 
Proof. (a) Xi,! is spanned as an .w'-module by monomials C;1C;2" 'C;L' where 
each C;t is one of the algebra generators of Xi, I given in §2.10. For such a 
monomial we define the content to be 2:t N ,where t runs over all indices in at 
[1, L] such that C;t = E~~Otl with at E Rtl U Rtl+1/2 and Nat 2: 1. (Such a 
generator C;t is said to be distinguished.) 

We define the defect of a monomial as above to be the number of pairs t < t' 
in [1, L] such that C;t' is distinguished and C;t is not distinguished. (Thus 
C;t = E~Nl with a E Rtl+1 or a = a), j < 1, and N 2: 1.) Such pairs t < t' 
are said to be bad pairs. Consider a monomial C;1C;2" 'C;L as above and assume 
that it has content c and defect d 2: 1. We can find for it a bad pair t < t' 
with t' = t + 1. Using §2.3(d2)-(d5) and Propositions 2.7(b), (c) and 2.8, we 
see that C;tC;t' is equal to an .w' -multiple of C;t,C;t plus an .w' -linear combination 
of monomials with content strictly smaller than that of C;tC;t" Hence C;1<!2" 'C;L 
is an .w' -linear combination of monomials, one of which has content c and 
defect < d , and the remaining ones, if defined, have content < c. This shows 
by double induction on (c, d) that any monomial is an .w' -linear combination 
of mo.nomials of defect O. 

Now the distinguished generators commute with each other (only up to a 
power of v if one is in R;,14 and one is in R;, 15/2); using this and §2.3(dl) 
we see that any monomial of defect 0 is contained in Zi,IX/ ,I' and (a) is 
proved. 

From (a) it follows that !i,! . Xi,1 C ¥;-,I' Zi,l . X(,l" It is clear that 
Y IZ, I = y, I' and X. I C X. I' Hence Y IX. ICY IX. ICY. IZ, IX., I' = I, I, I, I, I, I, I, I, I, 1, I, I, 

y, I' X., I" proving (b). 
I, I, 

Proposition 2.12. (a) V+ is generated as an .w' -algebra by the elements E~Nl 
I 

(i E [1 ,n], N 2: 1 ). 
(b) V+ is generated as an .w' -module by the monomials I1aER+ E~Nol (Na 2: 

0). 

Proof. Let vt be the .w' -subalgebra of V+ generated by the E~Nl (i E [i , n], 
N 2: 1). We prove by induction on h(P) that Etl E vt for all'P E R+ . This 
is clear if h(P) = 1, hence we can assume that h(P) > 1 and that our assertion 
is already proved for all P' E R+ with h(P') < h(P). Assume first that cp = 1 
(see §2.2). We can find i E [1, n] such that i < g(P) and (P, aJ = 1 . Then 
P - a i E R+ and Er-~i E V;+ for all M 2: 1 by the induction hypothesis. We 
apply Lemma 2.5(d) with a = P - ai and a' = a i ; we are in the situation of 
§2.3(el) since (a, a') = -1 and i < g(a) = g(P). We see that Etl E V;+ for 
all N 2: 1. 
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Assume next that cp ;::: 2. Then by §2.2(a) we must be in type E8 and 
P must be the highest root Po' We can apply Lemma 2.S(d) with 0: = Ps' 
0:' = p~ , and 0: + 0:' = Po' and we see thatE1:) is an oN -linear combination 
of products EX! Er) E~7-1). By the induction hypothesis, the factors of these 

products are in V;+. Hence EY:) E V;+ . This proves (a) 
We now prove (b). Applying repeatedly Lemma 2.11(b), we see that Yn,I' 

Xn,1 C YI,IXI,I' (R;,I is the first box in §2.9(a), R7,1 is the last box.) 
Clearly, YI I' XI I is the oN -module spanned by the monomials in the propo-
sition. On the other hand, Yn,IXn,1 = Xn,1 is V;+ and, by (a), this equals 
V+ . The proposition is proved. 

2.13. It is clear that there is a unique ring isomorphism 

(a) 

which takes F~N) to E~N) (0: E R+) and v to V-I. Hence from Proposition 
2.12 we deduce: 

(b) 

(c) 

V- is generated as an oN -algebra by the elements F(N) 
ex; 

(iE[l,n],N;:::l), 

the products ilexER+ F~Na) (defining using the order on R+ op-
posite to that defining ilex E;:·)) generate V- as an oN -module. 

Proposition 2.14. VO is generated as an oN -module by the elements 

K01Ko2 ... Ko. [KI; 0] ... [Kn; 0] (a) 
I 2 n t I tn' 

where J j E {O, I} and tj EN. 

Proof. Let V;O (resp. V;o) be the oN -submodule of VO generated by the ele-
ments (a) (resp. by the elements (a) with t5j allowed to be arbitrary integers). 
Then V;O is stable under left multiplication by K j and K j- I , and also by [K/ C] 

(the last assertion follows from §2.3(g9), (glO)). Since V;O contains I, we have 
VO = V;O . From §2.3(gl )-(gS), we see that from m ;::: ° : 

K~+2 [Kj) 0] = VI(Vt+1 _ V -l-I)K~+I [~~ ~] + V2IK~ [ K j) 0] , 
K:m- I [Kj) 0] = _V-I(Vt+1 _ V-I-I)Ki-m [~~~] + v-2IKi-m+1 [Ki) 0] 

This shows that by induction on m ;::: ° 
K±m [Ki; 0] v.0 

I tEl for all m ;::: 0, 

hence V20 C V;O . The reverse inclusion is clear and the proposition follows. 
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2.15. We have obvious .w-algebra homomorphisms V- -+ V, VO -+ V, and 
V+ -+ V (identity on generators). Using multiplication in .w , we obtain an 
.w -linear map 

(a) 

Lemma 2.16. The map (a) in §2.15 is surjective. 
Proof. From Proposition 2.12(a) we see that V is generated as an .w -module 
by monomials c;1c;2 ... c;L ' where each c;i is a generator of type I (one of E~N) , 
iE[I,n], N?I),ortypeII(oneof F~N), iE[1,n], N?I) or of type 'III 
(as in §2.3(c)). We define the defect of such a monomial as the number of pairs 
t < t' in [1, L] such that c;t is of type I and c;t' is of type II. (We say that such 
a pair t < t' is bad). Assume that we have a monomial as above, with defect 
> 1. Applying to it the relations §2.3(h3)-(h6) we see that our monomial is 
equal to one of the same defect which has some bad pair of form t < t + 1. We 
apply to the generators on the position t, t + 1 the identity §2.3(hl) or (h2). 
We see that our monomial is equal to an .w -linear combination of monomials 
of strictly smaller defect. Iterating this, we see that V is generated as an .w-
module by monomials of defect O. Using again §2.3(h3)-(h6) we see that any 
monomial of defect 0 is equal to one in which all generators of type II precede 
those of type III, which in tum precede those of type I. Such a monomial is in 
the image of §2.15(a). The proposition is proved. 

Proposition 2.17. (a) V is generated as an .w -algebra by the elements 
(N) ±1 . Fa ,Ki (I E[I, nJ, N?O). 
\b) V is generated as an .w -module by the elements 

(where Na , N~, tj ? 0 and dj E {O, I}). 

E(N) 
a· ' , 

Proof. (b) follows from Lemma 2.16, Propositions 2.12(b) and 2.14, and 
§2.13(c). Using Lemma 2.16, Proposition 2.12(a), and §2.13(b) we see that 
V is generated as an .w -algebra by the elements E~~) , F~~) , K j± 1 , and [\; C] 
(i E [1, n], N ? 0, t ? 0, c E Z). Let V; be the .w -subalgebra of V 
generated by the elements E(N), F(N), and K±1 (i E [1, n], N ? 0). We 

Q, OJ I 

show by induction on t? 0 that [\C] E V; . When t = 0, this follows from 
§2.3(g2). For t? 1 , we use §2.3(h2) and we see using the induction hypothesis 
that [\;0] E V;. Using now §2.3(g4) and the induction hypothesis it follows 
that [Kit;C] E V; for all c. This proves (a). 

2.18. Using the natural imbedding .w c.w' we form the .w'-algebras V;" 
V;" V;" and VN ' by applying ( ) ®N.w' to V+, V-, VO, and V. We 
shall write Ea and Fa instead of E~1) and F~l) . 
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Proposition 2.19. VoW" is the ,W"-algebra defined by the generators Eo:' (, (a E 

R+), and Ki' K;I (1:::; i:::; n), and the following relations: 

(a1) Eo:; Eo: = Eo:Eo:; if(a,a)=O, i<g(a), h'(a)EZ, 

(a2) Eo:,Eo: = v Eo: Eo:' + VEo:+o:,} if (a, a') = -1 and 
(a3) v Eo:' Eo:+o:, = Eo:+o:,Eo:, i < g(a) satisfy §2.3(e1) 
(a4) vEo:+o:,Eo: = Eo:Eo:+o:' or (e2), 

(b1) Fo:/o:=Fo:Fo:; if(a,a)=O, i<g(a), h'(a)EZ, 

(b2) 
(b3) 
(b4) 

(c1) 

(c2) 

(d1) 

if (a, a') = -1 and 
i < g(a) satisfy §2.3(e1) 
or (e2), 

KiKj = KjKi , 
-I 

KiKi = 1, 

E F - F E = 0 .. Ki - Ki- I 
0:; O:j O:j 0:; IJ V _ V-I ' 

(d2) KE = va;} E K, 
I 0:) OJ I 

(d3) KF = V -a;j F K. 
I o.j o'j I 

Proof. Clearly, VoW" is the ,W"-algebra defined by the generators (a), (b), and (c) 
and the relations (d1)-(d5 ), (fl)-(f5), (gl)-(g5), and (h1)-(h6) in §2.3. This 
set (=./t) of relations contains the set of relations (a 1 )-( d3) above as a subset, 
Lo. In VoW'" we have the following identities: 

(e) [ ] 
t K c-s+1 K- I -c+s-I K; C IT iV - i V I -

t - V S _ v s 
s=1 

(i E [1, n], N, t ~ 0, C E Z), which are consequences of §2.3(d1), (fl), (g2), 
(g4), (g5). It is then enough to show that the relations in ./t - Lo with E~N) , 

F~N) ,and [K;/ C] replaced by the expression above, are consequences of the 
relations in Lo. This is routine for most relations except perhaps for §2.3(d3), 
(D), (h2) with N or M ~ 2. For §2.3(d3) we can make use of Lemma 1.6(b); 
an analogous argument applies to §2.3(D); we leave §2.3(h2) to the reader. 
2.20. The same argument as in Proposition 2.19 gives the following. 

(a) V;, (resp. V;,) is the ,W"-algebra defined by the generators Eo: (resp. 
Fo:) (a E R+) and the relations 2.19(a1)-(a4) (resp. 2.19(b1)-(b4)). 

(b) V~, is the ,W"-algebra defined by the generators Ki and K;I (i E 
[1, n]) and the relations 2.19(c1), (c2). 
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Lemma 2.21. The elements in Proposition 2.14(a) form an J1I'-basisfor v~,. 
Proof. They generate V~, by Proposition 2.14. Fix an integer q ~ 1. Consider 
the elements of v~, of the form given in Proposition 2.14(a) with index subject 
to l5i E {O, I}, 0 ~ ti ~ q. (There are 2n (q + l)n such indices.) It is enough to 
show that they span an J1I'-subspace Xq of dimension 2n(q + l)n . Let X; be 
the subspace of v~, spanned by the elements K:I K~2 ... K~n with -q ~ i l ~ 
q + 1, ... , -q ~ in ~ q + 1. By §2.20(b) we have dimX; = 2n(q + l)n . It is 
clear that Xq = X;. Hence dimXq = 2n(q + l)n and the lemma is proved. 

2.22. Since V~, is isomorphic (by Lemma 1.12(b) and §2.20(b)) to U~" we 
see that we have the following variant of Proposition 1.13: 

(a) The elements 

F~' g (K1i [Kit~ OJ) £~ 
form an J1I'-basis of UN'. (Here [\;0] E UN' is defined by §2.20(e).) 

I 

3. PROPERTIES OF ROOTS 

3.1. For any i E [1, n], we define a graph r i with a label in [1, n] placed at 
each vertex as follows. 

Type An: r i is 
i-(i - 1)-(i - 2)-··· -2-1 

Type Dn (n ~ 4): r i is 
2 

i-(i - 1)-(i - 2)-·· .-4-3/ "3-4- .. . _(i - l)-i 
"1/ 

if i ~ 3 , and {i} if i = 1 or 2 . 
Type £s: rs is 

,,2-4-3-1-3 3-1-3-4-2 
....... 3-1-3-4 ....... I, '\ I " / \ / / \ ...... 4-3-1-3, 

S-7-6-5-4 \ I I ........ 5-6-5-4-2-4-2-4-5-6-5/ , \ / 4-5-6-7-S 
...... 2-4-5-6 / \ \ \ / \ I I I , '6-5-4-2 /' 

'7-8-7-6-5 5-6-7-8-7/ 

/2" 3-1-3-4 4-3-1-3 
7-6-5-4/ \ / / "5/ \ \ / "'4-5-6-7 " / , /" 2-4-5-6 6-5-4-2 

'7/ 

Types £8' £7' £6: r6 is 
3-1-3-4-2 

6-5-4/ \ / / \ "4-3-1 
"2-4-5-6-5/ 
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3-1 
4/ \ '3 
'2-4/ 

r3 is 3-1, r 2 is {2}, and r l is {l}. 
The vertices of r i are arranged in columns as shown, and we see that 

(a) If k =f. I are the labels attached to two vertices in the same column of 
r i , then ak I = O. 

(b) Two vertices of r i (with labels k, I) are joined in r i if and only if 
they lie in consecutive columns and ak , I = -1 . 

3.2. For any subset Z of the set 'ZY of vertices of r i we define an element 
W z E W as follows. For each 7t E Z , let s(7t) be Sk E W where k is the label 
of 7t. Then W z = TIxEZ s(7t); the factors are written in the natural order of 
columns of r i (first the factors with 7t in Zn (first column), then the factors 
with 7t in Zn (second column), etc.). The sx with 7t in the same column 
commute with each other by §3.1(a). 
3.3. We define a partial order S on the set 'ZY. If 7t, 7t' E 'ZY , we say that 
7t S 7t' if there exists a sequence of vertices 7to ' 7t1 ' ••• ,7tm with 7t = 7to and 
7t' = ttm such that for any 0 S j S m - 1, 7ti+1 is joined with 7ti and lies to 
the right of 7ti . 

The following property of S can be easily verified. 
(a) Let 7t, 7t' E 'ZY be such that 7t i 7t' and the column containing 7t is to 

the left of the column containing 7t / ; let k, k' be the labels of 7t, 7t/ . Then 
ak k' = o. 

From this and the definition in §3.2 we deduce the following. 
(b) Let Z' and Z be two disjoint subsets of 'ZY such that 7t i 7t' whenever 

7t' E ZI, 7t E Z, and 7t is in a column to the left of that of 7t / . Then wz'wz = 
wz'uz' 
3.4. Let 7t1 be a vertex of r i • We define some subsets of 'ZY: 

[;:::: 7t 1] = {7t E 'ZY17t;:::: 7t 1}, [i 7td = {7t E 'ZY17t i 7t 1}· 

If 7t1 S 7t2 are joined in r i , we also define 
A = {7t E 'ZY17t i 7t2 , 7t;:::: 7t 1}, B = {7t E 'ZY17t i. 7t2 , 7t;:::: 7t 1 , 7t =f. 7t 1}· 

Now §3.3(b) is clearly applicable with (Z', Z) = ([i 7td, [;:::: 7td), or ([i 7td, 
A), or ({7t I }, B) and it yields 

(a) w[ixll . w[~ntl = wr ' 
(b) w[intl' W A = [Win)' 
(c) 
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From (b) and (c) we deduce 

(d) w[i lt2J = w[ilt,J" w{lt1} "wB • 

We also note that 
(e) if 7l E B has label k and 712 has label l, then ak ,/ = O. 
(Indeed, if 7l is in the same column as 7l2 , then we may use §3.I(a) since 
7l 1= 7l2 • If 7l is not in the same column as 7l2 , then it is in a column to the 
right of that of 7l2 , since 7l 2: 711 and 7l 1= 711 ; using 7l i. 712 and §3.3(a) it 
again follows that ak / = 0.) 

One can easily verify that 
(f) 

Hence from (a), we see that both inequalities l(w[ilttl) ::; #[i. 7lll and 
l(w[~lttl)::; #[2: 7lll must be equalities. Thus, we have 

(g) [(w[ilt1J) = # [i. 7l 1], and similarily, [(w[i lt2J) = # [i. 7l2l· 

From this and (b) we see that the inequality l(wB ) ::; #B must be an equality 
(h) [(wB) = #(B). 

3.5. With the notation in 3.4, we see from §3.4(d), (h) that 

l(w[ilttlSq) = l(w[ilt1J) + I, 
where q is the label of 711 • It follows that 

(a) p = w[ilt,J(Oq) 

is a positive root. 
One can verify that the correspondence 711 1----+ p, given by (a), defines a 

bijection 

(b) oy ~ {P E R+lg(P) = i}. 
For any p E R+ with g(P) = i, we shall denote by 7l P the corresponding 

vertex of r i , by ip the label of 7lp ' and by wp the element w[iltpJ of W. 
Thus, (a) can be rewritten as 
(c) 

The bijection (b) has the following property: 
(d) the equivalence relation on OY defined by the columns of r i 

corresponds to the equivalence relation on {P E R+lg(P) = i} 
defined by the boxes; moreover the natural order of the columns 
of r i is compatible with the order in §2.9(a) on the set of boxes. 

For example, in type E8 , the middle vertex of r8 (with label 4) corresponds 
to the highest root. Moreover, 
(e) if P = 0i' then wp = e, ip = i, and tlp = minimal element of 

OY for ::; . 
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3.6. Let P E R+ be such that g(P) = i and let j E [1 , n] be such that j < i 
and (P, Q j) E {O, -I}. Assume that, in type E8 , P is not the highest root. 
One can verify that 

(a) Wpl(Q) E II; if, in addition (P, Q) = -1 and p' = p + Qj' then 
wp-1(Q.) = Q .• 

} lp' 

3.7. Assume that we are in type E8' and that i = 8. Let PER; 14 and 
p' E R;,15 be such that p + p' = Po (the highest root). Then ip = 'ip, ; we 
denote this common value by I. We have I E {2, 3, 5}. Let !', I" be such 
that I, I' , I" is a permutation of 2, 3, 5 . 

Let Z be the set of all 1C E r which are in one of the first 13 columns of 
r8 ; let w' = wz . We have 

Wp = w'y, I(wp) = I(w') + /(y), Y = sl's/'" (a) 

(b) 

(c) 

w p' =w'S2S3S5S4Z, I(wp') =1(w')+4+/(z), 

wPo = W'S2S3S5' I(wpo ) = I(w') + 4, 

where 

(d) z is a product of various Sk with ak / = O. 

4. THE ISOMORPHISM V -...::... U 

Proposition 4.1. There is a unique .9J"-algebra homomorphism V;, -7 U sf' 

which takes any E p (P E R+) to Twp (Ei) (w p and i p as in §3.5). . 

Proof. We must only verify that the relations in Proposition 2.19(al)-(a4) are 
verified. 

Let PER+ and jE[I,n] be such that h'(P)EZ, jE[I,n], j<i,and 
(P,Q)E{O,-I}. 

By §3.6(a) there exists hE [1 , n] such that 

(a) wp(Qh) = Qj . 

From Proposition 1.8(d) and §3.5(e) we see that 
(b) 

We have 

(c) 

Assume first that (P, Q) = O. Then ah,ip = 0, hence EhEip = EipEh in 
U sf' . Applying to this the algebra homomorphism Tw : U sf' -7 U sf' and using 

p 
(b), we deduce 



FINITE DIMENSIONAL HOPF ALGEBRAS 285 

This shows that the relation in Proposition 2.19(al) is preserved. 
Assume next that (P, Q;Jo) = -1. Then ah j = -1 by (c), hence we have , p 

the following identities in U $1" : 

{ 
EhEj = vEj Eh + vTj (Eh) , p p p 
VEhTjp (Eh) = Tjp (Eh)Eh, 

vT (Eh)Eo = E T (Eh). lp lp lp lp 

Applying to these identities the algebra homomorphism Tw : V -> U and 
p 

using (b), we deduce 

{ 

Tw (E). Tw (Ej ) = vTw (Ej ) . Tw (E) + vTw Tj (Eh) , 
Qj p p P P Q] P p 

(d) vTw (Eo)' Tw Tj (Eh) = Tw Tj (Eh)· Tw (EJo) , 
Qj J p P P P Qj 

vTw Tl (Eh)· Tw (E ) = Tw (E1 ). Tw T10 (Eh)· p p p Ip P P P P 

Let p' = p + Q;j' By §3.6(a) we have 

(e) h = ip' . 

We can apply the discussion in §3.4 to 71:1 = 71: P and 71:2 = 71: p" (These are 
joined in the graph since a 0 = -1, by (e) and (c).) If B is as in that Ip' ,Ip 
discussion, we have (by §3.4(e)) 

(f) Tw (E1o ) = E10 . 
B p' p' 

By §3.4(d), (g), (h), we have Tw (E10 ) = Tw T10 Tw (E10 ), hence p' p' p P B p' 
(g) Tw TI (Eh) = Tw (E10) (by (f) and (e)). p p p' p' 
Substituting (g) into (d), we obtain three identities which show that the rela-
tions in Proposition 2.19(a2)-(a4) (in the situation of Proposition 2.19(el)) are 
preserved. It remains to show that the relations in Proposition 2.19(a2)-(a4) 
(in the situation of Proposition 2.19( e2)) are preserved. By Remark 2.4 we can 
assume that we are in type E8 • Let P and p' be as in §3. 7. In the rest of this 
proof, we use the notation in §3. 7. In V $1" we have the identities 

{ 
E4E, = vE,E4 + V1[(E4) ' 
VE4 '1[(E4) = T,(E4) . E4, 
vT,(E4)· E, = E,' T,(E4). 

Applying the algebra homomorphism Twp : V $1" -> V $1" and using ip = I (see 
§3.7) we obtain the identities 

{ 
Tw (E4)Tw (Ej ) = vTw (Ej )Tw (E4) + vTw 1[(E4) , p pp pp p p 

(h) vTw (E4)· Tw 1[(E4) = Tw 1[(E4)· Tw (E4) , 
P P P p 

vTw 1[(E4)· Tw (Ej ) = Tw (Ej ). Tw 1[(E4)· p p p p p p 
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We have 
Tw (Ei ) = Tw ss z(E[) = Tw ~ ~ Tz(E[) (see §3.7(a), (b)) p' p' p I 4 P I 4 

= Tw ~ ~ (E[) (see §3.7(d)) 
p I 4 

= Tw (E4) (see §1.3(f)), 
p 

Tw (Ei ) = Tw s (E4) = Tw 1[(E4)· 
~ ~ PI P 

Substituting in (h), we obtain 

{ 

Tw (EI, )Tw (EI, ) = vTw (EI, )Tw (EI, ) + vTw (EI, ), 
p' p' p p p p p' p' Po ~ 

vTw (EI, )Tw (EI, ) = Tw (EI, ). Tw (EI, ), 
p' p' Po Po Po Po p' fI' 

vTw (Ei )Tw (Ei ) = Tw (Ei )Tw (Ei ), 
flo flo II fI P II Po ~ 

which shows that the relations in Proposition 2.19(a2)-(a4) are verified in the 
situation of Proposition 2.19(e2). The proposition is proved. 

Proposition 4.2. There is a unique st"-algebra homomorphism V.#, -+ U.#, 
which takes Ep to Tw/Eip), Fp to Tw/Fip) (P E R+, 'notation of §3.5), 
and Kt to K~l for all i. 

Proof. The uniqueness is clear. To prove existence, we first define an st"-
algebra homomorphism V;, -+ U.#, as a composition V;, -+ (V;/)OPP -+ 

U;'P -+ U.#' (the first map as in §2.3(a), the second one as in Proposition 4.1, 
and the third one given by n in Lemma 1.2(a)). This homomorphism takes 
Fp to Tw (Fi ). It follows that the map on generators given in the statement 

II p 
respects the relations in Proposition 2.19(b 1 )-(b4) of V.#, ; by Proposition 4.1 it 
also respects the relations in Proposition 2.19(al)-(a4) of V.#,. The remaining 
relations in Proposition 2.19(cl)-(d3) of V.#, are clearly respected in Ea -+ Ei' 
Fa -+ Fi . The proposition is proved. l 

I 

Corollary 4.3. There is a unique st' -algebra homomorphism <1>: V -+ U which 
take E(N) to T (E~N)) F(N) to T (F(N)) (P E R+ N > 0) and K±I to p Wp 1ft 'P Wp Ip , -, I 

K~I for all i 0 

Proof. The uniqueness follows from Proposition 2.17(a). To prove existence, 
we consider the composition V -+ V.#, -+ U.#' (the first map is t! -+ t! ® 1 , the 
second one is given by Proposition 4.2). This satisfies the requirements, with 
U replaced by U.#'. It remains to show that the image of our homomorphism 
V -+ U.#' is contained in U; this follows from the fact that the images of the 
indicated st' -algebra generators are contained in U, by Proposition 1.7. 

4.4. Assume for example that we are in type An . Any P E R+ can be written 
uniquely as P = S[S/_I 00 oS/_m+l(a/_m ) for some m < I in [1, n]. The ho-
momorphism in Proposition 4.2 takes Ep to ~ Ts 000 Ts (El _ m ), Fp to 

I I-I l-m+1 
±l ±l Ts Ts 000 Ts (Fl _ m ) , and Ki to Ki 0 

I I-I l-m+1 
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Theorem 4.5. (a) The elements in Proposition 2.17 (b) form a basis of V as an 
.9¥' -module; their images under <1>: V - U (in Corollary 4.3) form a basis of 
U as an .9¥' -module and of UN' as an .9¥" -module. 

(b) <I> is an .9¥' -algebra isomorphism; it induces an .9¥" -algebra isomorphism 

(c) We have U ®,#.9¥" ~ U,#,. 
Proof. The image of <I> contains the set of .9¥' -algebra generators of U con-
sisting of E;N), Ft), and K;=l (i E [1, n], N ;?: 0), hence <I> is surjective. 
The elements in Proposition 2.17(b) form a set of .9¥'-module generators of V 
(see Proposition 2.17); they are mapped by <I> to a basis of U,#, by the variant 
in §2.22(a) of Proposition 1.13. The theorem follows. 

4.6. One can interpret Theorem 4.5(b) as providing a presentation of U by 
generators and relations (those of V). 

4.7. The same argument shows that <I> defines isomorphisms V+ ~ U+ and 
V- ~ U- , and that the elements in Proposition 2.12(b) (resp. §2.13(c)) form 
an .9¥' -basis for V+ (resp. V-). 

From now on we shall identify V = U, V+ = U+, and V- = U- us-
ing the previous isomorphisms. We shall write UO for the subalgebra of U 
corresponding to VO c V . 

Proposition 4.8. There is a unique Hopf algebra structure on the .9¥' -algebra U 
with comultiplication defined by 

Ll(E;N)) = L vb(N-b) E;N-b) K: ® E;b) , 
O$.b5,N 

Ll(F(N)) = '"' V -a(N-a) F(a) ® K~a F(N-a) , 
I ~ I I I 

05,a5,N 

Ll(K) =Kj®Kj • 

(Here iE[l,nJ, N;?:O.) 
Proof. From §O.4(b) we see that Ll satisfies the identities above on U'#. The 
proposition therefore follows from Theorem 4.5(c). 

5. THE ALGEBRAS u, I u 

5.1. We fix an integer I' ;?: 1. Let !B be the quotient ring of .9¥' by the ideal 
generated by the 1'th cyclotomic polynomial ¢l' E Z[v]. (Thus, ¢l = v-I, 
¢2 = V + 1 , etc.) We shall denote the image of v E.9¥' and of [';!] E.9¥' in !B 
by the same letters. Let I ;?: 1 be defined by 

I = {l' if l' is odd, 
l' /2 if l' is even. 
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We then have (in ~) 

(a) V'=(_I{+I, 2' 1 V -- . 
We shall need the following result. 

(b) If 0 ~ N < I, 0 ~ M < I, N + M 2 I, then [N ~ M] = 0 in ~ . 

Indeed, [NtM]. [N]![M]! = [N + M]! in .Sli'. In ~, we have [N]! "# 0, 
[M]! "# 0, and [N + M]! = o. Since ~ is an integral domain, (b) follows. 

5.2. We define the ~-algebras U;, UiD, U~, and Usc by applying ()®.w~ 
to U+, U-, UO, and U. (We regard ~ as an .Sli' -algebra via the canonical 
map .9/ - ~ .) We could equally well define U;, UiD, U~, and Usc as the 
~ -algebras defined by the generators and relations of V+, V-, VO, and V 
respectively. 

Le + - 0 d ~ f + - ° t u ,u ,U ,an U be the .:7e -subalgebras 0 Usc ' Usc ' Usc' and Usc 
generated respectively by the elements EiN) (1 ~ i ~ n, 0 ~ N ~ 1 - 1); F}N) 
(1 ~ i ~ n, 0 ~ N ~ 1 - 1); K; 1, [K~; 0] (1 ~ i ~ n, 0 ~ I i ~ 1 - 1) ; and 
EiN ) , ~(N) ,K~l (1 ~ i ~ n, 0 ~ N ~ '/- 1). 

5.3. We want to describe the algebras u + , u - , uo, and u in terms of gener-
ators and relations. For this purpose, we define ~-algebras u+ , u- , uo, and 
u by the generators and relations shown below. 

u+: generators E~N) (a E R+, 0 ~ N ~ 1 - 1); relations (dl) from §2.3 
with M and N satisfying M + N ~ 1 - 1 and (d2)-(d5) from §2.3 with M 
and N satisfying M, N ~ 1 - 1 , and the additional relations 

(a) E(N) E(M) = 0 if N, M ~ 1 - 1 , N + M 2 1 . 
Q Q 

u : generators F;N) (0: E R+, 0 ~ N ~ 1 - 1); relations (fl) from §2.3 
with M and N satisfying M + N ~ 1 - 1 and (f2)-(f5) from §2.3 with M 
and N satisfying M, N ~ 1 - 1 , and the additional relations 

(b) F~N) F~M) = 0 if.V, M ~ 1 - 1 , N + M 2 1 . 

uo: generators Ki' Ki- 1 , [\C] (0 ~ I ~ 1 - 1, C E Z, 1 ~ i ~ n); 
relations (from §2.3)(g7); (g5) (only if 122); (g6), (g9), (gI0) with I ~ 1- 1 ; 
(g8) (with I + t' ~ 1 - 1); and the additional relations (also from §2.3): if 
t, I' ~ 1 - 1, t + t' 2 I, the left-hand side of (g8) is zero; if I = 1, the 
right-hand side of (g5) is zero. 

u: generators are those of u+ , it - , uo together; relations are those satisfied 
in u+, it- , uo; in addition we have the relations (hl)-(h6) from §2.3 in which 
N , M ,and I are restricted to be ~ I - 1 . 
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5.4. We have the following results. 
(a) u+ is generated as a 3J-algebra by the elements EiN ) (1 :::; i :::; n, 

o :::; N :::; 1- 1) and as a 3J-module by the elem~nts H,ER+ EiNa ) 

(0:::; Na :::; 1- 1) . 
(b) u- is generated as a 3J-algebra by the elements F~N) (1:::; i:::; n, 0:::; 

N :::; 1- 1) and as a 3J-module by the elements' IlaER+ F~Na) (0:::; 
Na :::; 1- 1). 

(c) ilo is generated as a 3J-module by the elements Il;-I (K1i[K~;0]), 0:::; 
t j :::;I-I, <5j =O, 1. - , 

(d) il is generated as a 3J-algebra by the elements E(N) , F(N) , and K±I 
llj OJ I 

(0:::; N :::; I - 1, 1:::; i:::; n) and as a 3J-module by the elements 

(0:::; Na :::; 1- 1, 0:::; N~:::; 1- 1, 0:::; tj:::; 1- 1, <5 = 0,1). 
(The products over a are defined as in §§2.9 and 2.13(c).) 

Although these results are not consequences of those in §2, they are proved 
by repeating essentially word by word the proofs of the corresponding results 
in §2. 

5.5. There are unique 3J-algebra homomorphisms il+ --+ U[$' il- --+ U[$' 
ilo --+ U [$ , and il -+ U [$ which take the generators given in §5.3 to the generators 
with the same name of U [$ • (This follows immediately from the definitions and 
from §5.1 (b); here we think of U [$ as V ® JQ' 3J .) These homomorphisms carry 
the set of 3J-module generators of the four algebras, described in §5.4, onto a 
part of a 3J-basis of U[$ (see Theorem 4.5(a)). Hence these homomorphisms 
are injective and the sets of 3J-module generators given in §5.4 are actually 
3J-bases. It is clear from the definition in §5.2, that their image is respectively 
u +, u - , uO , u. Hence we have proved the following result. 

Theorem 5.6. (a) The homomorphisms in §5.5 define 3J-algebra isomorphisms 
.+ "" + .- "" - .0 "" 0 d' "" u -- u ,u -- u , u -- u ,an u -- u. 

o IR+I (b) u+, u-, U ,and u arefree 3J-modulesofrank I , 
2n IIRI+n respectively. 

This can be regarded as providing a presentation of u + , 
generators and relations. 

-u , o u and u by 

5.7. We denote the quotient field 3J ®z Q of 3J by 3J' (a cyclotomic field). 
Using the inclusion 3J C 3J' we can form the 3J'-algebras 'u+, 'u- , 'uo , 'u, 
and Uq)' by applying ( ) ®.q) 3J' to u+ , u - , uO , u, and U[$' 
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From the presentations in Theorem 5.6, we can deduce, as in Proposition 
2.19, and §2.20 the following presentations: 

'U+ is defined by generators Ea (a E R+) and relations (al)-(a4) in Propo-
sition 2.19 and E~ = 0 . 

I U - is defined by generators Fa (a E R+) and relations (b 1 )-(b4) in Propo-
sition 2.19 and F~ = O. 

I U 0 is defined by generators K j (i E [1, n]) and relations (c 1), (c2) in 
Proposition 2.19 and Kif = 1 . 

'u is defined by generators E a , Fa (a E R+), and K j (1 $ i $ n) and 
relations (al)-(d3) in Proposition 2.19 and E~ = 0, F~ = 0, Kif = 1. 

I + I - 101 5.8. From §§5.4 and 5.5 we deduce that u , u , u ,and u may be regarded 
as pg'-subalgebras of Use' which admit the following bases as pg'-vector spaces: 

I + u 

I -u 

I 0 
U 

I u: 

II E:" (0 $ Na $1- 1), 
aER+ 

II F:" (O$Na$l-l), 
aER+ 

n 
IIK~i (0 $ Ni $ 21 - 1) , 
i=1 

In particular, 'U+ , 'U- ,and uO are subalgebras of 'U. 

5.9. We wish to study the 'u-modules. They will be assumed to be finite 
dimensional over pg'. We shall assume that I > 1. Much of our treatment 
will imitate that in Curtis [3]. Let v' = (-1 /' v E pg ; then v'is a primitive 
(2/)th root of 1. 

Since the K j commute with Kif = 1 in I u, any I u-module M has a 
canonical decomposition M = f!iJhMh ' where fl. = (hi' ... , hn) E (Zj2/)n and 
~={XEMIKjx=V'hiX, l$i5,';}. 

-The ~ are the "weight spaces" of M and the fl. are the weights. 
Let u5 = {x E MIEax = 0 'Va E R+} . 

Lemma 5.10. (a) Let 1+ (resp. r) be the ideal in 'U+ (resp. 'U-) spanned as 
a pg'-vector space by the nonempty words in Ea (resp. Fa)' a E R+. Then any 
element in 1+ (resp. r) is nilpotent. 

(b) If M '" 0, then M O n Ml! '" 0 for some weight fl.. 
Proof. Let us consider a sequence ai, a 2 , ••• ,ar in R+ where r > 
(1- 1) LaER+ h (a). By §4.7 we can write an identity in U; expressing the prod-
uct Ea1Ea2··· Ear as an .w' -linear combination of basis elements TIaER+ E~N,.) ; 
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moreover from the homogeneity of the relations defining V; it is clear that we 
may assume that only basis elements satisfying E"'ER+ N",h(o:) = E h(o:i) will 
occur in the linear combination. For such basis elements we have E"'ER+ N",h(o:) 
2: r > (1-1) E"'ER+ h(o:) , hence N", > I for at least one 0:. Our identity in V; 
olves rise to an identity in V!. But then E 1 E 2 ••• E , is in u, hence is a fB-
t,:)A .::;s Q a a 

linear combination of elements TI"'ER+ E~NQ) with all N", :5 1- 1 . It follows that 
E ",I E 0,2 ••• E ",' = 0 in V;. Hence the product of any r elements in [+ is zero. 
In particular, any element of [+ is nilpotent. The same argument applies to 
r ,and (a) is proved. We now prove (b). By (a), the operators 1 +~: M -+ M 
(e E [+) form a group consisting of unipotent elements. Hence, by Kolchin's 
theorem there exists a nonzero vector x E M such that (1 + e)x = x for all 
e E [+ . In particular we have E",x = 0 for all 0: E R+ . Thus MO t= O. Since 
MO is clearly stable under all Ki : M -+ M , we deduce that ~ n Mh t= 0 for 
some f1.. The lemma is proved. -

Proposition S.l1. For any simple 'u-module M there is a unique fl. E (Z/21t 
such that ~ n Mh t= O. The correspondence M -+ fl. defines a bijection between 
the set of isomorphism classes of simple' u-modules and the set (Z/21t . 

Proof. Let f1. = (hI' ... , hn) E (Z/2/)n . Consider the 'u-module L!1. = 'u/J, 
where J is the left ideal of 'u generated by the elements E", (0: E R+) and 
Ki - V'h; (1:5 i :5 n) . 

From §5.8 we see that L!1. is a free 'u - -module with generator 1, the image 
of 1 E 'u in L!1.. Let L = r·l c L!1. (r as in Lemma 5.10). We have 

h --- , h --- h' L- = L [) fB 1. Any element x E L - - L generates L - as a u - -module. 
(Indeed we can write x = A(e + 1)1, where A E fB' - {O} and e E r . Now e 
is nilpotent by Lemma 5.10(a), hence A(~ + 1) is invertible in 'u-; we reduced 
to the case where x = 1 , which is obvious.) 

It follows that any 'u-submodule of L!1. is contained in .,ii; hence so is the 
sum of all proper 'u-submodules. Therefore L!1. has a unique maximal 'u-
submodule L~ax; it is contained in L. Hence .;?!1. = L!1.1 L~ax is a simple 
'u-module. It satisfies (.;?!1.)o n (.;?!1.)h t= 0; this intersection contains the image 
of 1. -

Assume that h' E (Z/2/)n satisfies (.;?!1.)o n (.;?!1.)h' t= 0 and let x be a 
nonzero vector in this intersection. We can find x E (L!1.)h' such that x 1--+ X 
under the canonical map L!1. -+ .;?!1.. Clearly x gene;ates .;?!1. as a 'u - -

, h h' ---,---module, hence u - ·x+L~ax = L-. If fl. t= f1. then x E L ,hence u - ·X E L; 
we have also L~ax c .,ii, hence the previous sum is contained in .,ii. This 
contradiction shows that fl.' = fl. . 

h h' In particular, we see that .;?- and';?- are isomorphic as 'u-modules if and 
only if fl. = fl.' . 
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Now let M be any simple 'u-module. Choose II as in Lemma §5.1O(b) and 
choose x E MO n Mh , x :I 0. Then 'u -+ M, ~ t----+ ~x, factors through 
a nonzero 'u-module -homomorphism cp: LR -+ M. Since M is simple, cp 
must be onto and must vanish on L!;ax' Hence cp defines a surjective ho-
momorphisms gR -+ M which is necessarily an isomorphism of 'u-modules. 
This completes the proof. 
5.12. The formulas in Proposition 4.8 define Hopf algebra structures on U [Q , 

U[QI, u, and 'u. 

6. RELATION WITH THE ALGEBRA U 

6.1. Let Ki,1 = K;t[Ki/O] E UO (i E [1, n], t ;::: 0); and let fjo be the 
.91' -submodule of UO spanned by the elements Il7=1 K i , I ' where ti ;::: O. 

I 

-0 ° Lemma 6.2. (a) U is an .91' -subalgebra of U . 
(b) For any integer m ;::: 0, we have 

K2m+I~(_I)t [m]! v- t(m-l)+t(t-l)/2K =K (in UO). 
I L.J [m _ t]! I,t I 

1=0 
Proof. From §2.3(g8) we see that for t ;::: 0 and t' ;::: 1 , 

t
' 

[.] I [ '] 
'" j+l -Ij t + J - 1 -It t + t 

(c) Ki,tKi,t' = L.J(-l) v j Ki,tKi,t'_j+V t Ki,I+I" 
J=I 

This shows by induction on t' that Ki,tKi,t' E fjo and (a) follows. 

The proof of (b) is left to the reader. 

6.3. We now fix l' and I as in §5.1 and assume that I' = I is odd; !B and 
fB' are as in §§5.1 and 5.7. 
Lemma 6.4. (a) Assume t = t' + till, OS t' :5 1- 1, til;::: O. Then 

Ki,t = Ki,t,Ki,t"/ (in U~). 

(b) The elements Il7=1 Kioi Il7=1 Ki,1 (ti ;::: 0, 0i E {O, I}) (of U~) form a 
fB -basis of U~ . I 

Proof. (a) follows immediately from §2.3(g3) with t and t' replaced by till 
and t'; note that 

[ till + t'] . 
till = 0 m!B, 

and 
[Ki;t~tlll] = [Kit; 0] in U~. 

We now prove (b). Let L be the fB-submodule of U~ generated by the 
elements in (b). From the identity K;' = 1 in U~ and from Lemma 6.2(a) we 
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see that L is a ~-subalgebra of u~. By Lemma 6.2(b) with m = !(/ - 1), 
we have K 1, •.. , Kn E L . Hence L contains also [Ki/O] = K: . Ki,t (t ~ 0) . 
Since u~ is generated as a ~ -algebra by the elements Ki and [Ki/ 0] (1 S 
i S n, t ~ 0), it follows that L contains u~, hence M = u~. It remains 
to show that the elements in (b) are linearly independent. It is enough to show 
that they are linearly independent over ~' in U~/. 

For any sequence r = (t;' , ... , t~) in Nn , let T U~, be the ~'-subspace of 
U~, spanned by the basis elements 

(c) n n [K.O] K6 i i' IT i IT It" + t' i=1 i=1 I I 

Clearly U~, = EBT(TU~/) and dim~/(TU~/) = 2nr. 
Consider the 2n r elements 

n n 
(d) IT K:6i IT K i , 1<' +< 

i=1 i=1 

for fixed r. We will show that 

(e) the elements (d) are contained in TU~I . 

This implies that the elements (c) for various r form a ~'-basis of UJI, 
since we already know that they span U~/. 

Let .;r; be the ~'-subspace of U~, spanned by the 2n r elements TI7=1 K? 
x TI7=1 Ki,II" (0 S ci < 2/). 

I 

From (a) we see that TU~, is contained in .;r;; for dimension reasons, we 
must have TU~, =.;r;. From (a) we also see that the elements (d) are contained 
in .;r; ; hence they are contained in T U~, . The lemma is proved. 

6.5. We note that the elements K~ - 1 , K~ - 1 , ... , K~ - 1 are central in U ~ , 
u, U ~/ 'u, since vi = 1 in ~ (we are using our assumption [' = I = odd). 
Therefore the left ideal generated by these elements in one of our four rings is 
a two-sided ideal; factoring out by this two-sided ideal we get respectively the 
~ -algebras fj B' it, and the ~'-algebras fj ~/ 'it. 

We shall denote the images of Eo.' Fa, etc. in fj ~, it, fj ~/ 'it by the same 
letters. From the results in §5 and from Lemma 6.4(b) we deduce: 

(a) the elements TIo.ER+ F~NQ) TI7=1 Ki,li TIo.ER+ E~N;) 
form a ~ -basis of fj ~ and a ~'-basis of fj ~' . 

(b) Th I TI F (NQ) TIn K TI E(N;) e e ements o.ER+ 0. i= Ii, Ii o.ER+ 0. 

form a ~ -basis of it and a ~'-basis of 'it. 
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In particular, we have 

U!B ®!B ~' = U!B I , it ®!B ~' = 'it, - ,-
it c U!B ' it c U!B' . 

It is clear that U!B' it, U!BI, I it have natural Hopf-algebra structure so that the 
canonical maps U!B ~ U!B' u ~ it, U!B' ~ U!BI , and I u ~ 'it are compatible 
with the comultiplication. 
6.6. From the definition of I it, we see that the simple I it-modules may be 
identified with the simple I u-modules in which K: ' K;, ... ,K~ act as identity. 

Hence, using Proposition 5.11, we have a commutative diagram 
set of simple I it-modules up to 
isomorphism 1 
set of simple I u-modules up to 
isomorphism 

where j(hl , ... , h2) = (2hl ' ... , 2hn ) • 

"" --5.11 

(Z/l)n 

1j 

(Z/21)n 

6.7. Let U1.. and UQ be the rings obtained from U by applying ®.w Z and 
®.w Q , where Z and Q are regarded as .9t' -algebras with v acting as 1. These 
are special cases of U!B and U!B' in the case where I = !' = 1 . The definition of 
§6.5 is applicable and gives two rings U1.. ' U Q = U1..®Q obtained by dividing U1.. 
and U Q by the left (or two-sided) ideal generated by KI -1 , K2 -1 , ... , Kn -1 . 

Let U and U Q be as in §O.l. 

(a) There is a unique Q-algebra homomorphism U Q ~ UQ such 
that Ei ~ Ei' Fi ~ Fi' and Hi ~ EiFi - FiEi (1::; i::; n). 

We must verify that the relations in §O.I(bl)-(b5) are preserved. The only 
nontrivial verification is that of §O.1 (b2). 

In U.w we have 

( K-K-:- I K-K-:-I) (v+l) I I E.-E I I 
V-v- I J J V-V- I 

= (v + l)aijEj + (v + I)Ej (v: ~ :~Iai) - aij ) 

( 
Vail _ 1 -I V -au - 1) 

+Ej (Ki -l) -I +Ki -I· 
I-v I-v 

This gives rise to an identity in UQ which shows that §O.I(b2) (for Ej ) is 
preserved; an analogous argument applies to §O.I(b2) for Fj • 

The homomorphism (a) takes ~Hi(Hi - 1)··· (Hi - t + 1) to 
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which by [9,4.3] is equal to Ki,t in UQ • Hence (a) takes a basis of U Q given 
by the Poincare-Birkhoff-Witt theorem onto the basis of UQ given by §6.5(a) 
(for 1= 1 ). It follows that 
(b) the homomorphism (a) is an algebra isomorphism. 

It is clear that (a) takes 1t;N) to E~N) and FjN) to F}N) , hence it defines an 
isomorphism of the subring generated by the 1t;N) and FjN) onto the subring 
generated by the E~N) and F}N) . Thus 

(c) the isomorphism (a) restricts to a ring isomorphism U ~ Uz . 
It is clear that this is compatible with the comultiplications. 
In the remainder of this section we assume that I and l' in §6.3 are both 

equal to p, an odd prime. Applying ®z Fp to the isomorphism (c), we get an 
Fp -algebra isomorphism: 

(d) U F -::... UF ' where U = U ®z Fp and UF = Uz ®z Fp. 
p p p 

Consider the ring homomorphism tB -+ Fp which takes Z E Z to z mod p E Fp 
and v to 1. This is well defined since the value at 1 of the cyclotomic polynomial 
cPp is p, hence is zero in Fp. 

Let m be the kernel of g -+ Fp (a maximal ideal of tB). Tensoring the 
exact sequence 0 -+ m -+ g -+ Fp -+ 0 with U ~ or it over tB we obtain 
isomorphisms of Fp -algebras: 

(e) 

(f) 

Let U F = U ®.w Fp 
p 

(g) 

ii/mit ~ ii ®~ Fp. 
where v acts trivially on Fp. By definition, 

{ 
~.§# ®~ Fp = UFp ~OdUIO ideal generated by Kf - 1, Kf - 1, ... , K: - 1, 

UFp = UFp modulo Ideal generated by KI - 1, K2 - 1, ... , Kn - 1. 

In Uz ' hence in UF = Uz ®z Fp ' we have K; = 1 (since Ki - K j-
I = 

p 

(v - v- I )[ \;0] = 0) . It follows that K; - 1 = K j - 1 in UF and from (g) we 
p 

obtain an Fp -algebra isomorphism 

(h) U~ ®.§# Fp ~ UF • 
p 

The subalgebra TI of U F 
p 

(see §0.1) and the subalgebra ii ® ~ Fp of U ~ ® Fp 
are mapped by (d) and (h) onto the same subalgebra of UF ' namely the one 

p 

spanned as an Fp -vector space by the elements 
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Combining these two maps we obtain an isomorphism of Fp -algebras 

(i) ii ® Fp -=:.. IT. 

Using (d), (h), (e), (f), and (i) we obtain the following result. 

Theorem 6.S. There are canonical (Hop! algebra) isomorphisms 

U.!B /mU.!B -=:.. U F ' ii/mii -=:.. IT . 
p 

(Here the left-hand sides are defined in terms o! quantum groups and the right-
hand sides are classical algebras.) 

6.9. From Theorem 6.9 and §§6.5(b) and 6.6, we see easily that the assertions 
in §O.3 hold. 
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