
JOURNAL OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 3, Number I, January 1990 

THE THREE-SPACE PROBLEM FOR LI 

MICHEL T ALAGRAND 

1. INTRODUCTION 

The study of the structure of the classical Banach spaces C(K), LP(J.l), 
1 ~ p ~ 00, their subspaces, their quotient spaces, and the operators between 
them is a central topic of Banach space theory. This paper focuses on the space 
L J of (classes of) measurable functions on the unit interval. 

In order to put our results in a proper perspective, let us recall a few of 
the most remarkable results on L I . A subspace of L I is either reflexive or it 
contains a subspace isomorphic to II and complemented in L I (Kadec and 
Pelczynski [11]). A reflexive subspace of L I is isomorphic to a subspace of L P 

for some p > 1 (Rosenthal [20]). Any subspace of L I contains a subspace 
isomorphic to IP for some 1 ::; p ::; 2 (Aldous [1]). The most challenging 
open question concerning the structure of L I might be to decide whether a 
complemented infinite-dimensional subspace of L I is isomorphic to II or L I . 

(Interestingly, more is known in the case L P , p> 1 [4].) An important step in 
that direction was made by Enflo and Starbird [6]. (See [7] or [12] for a different 
approach.) They showed that L I is primary; that is, if L I is isomorphic to a 
sum E E9 F , then either E or F is isomorphic to L I . An easy consequence 
of that result is that if a direct sum E E9 F contains a complemented subspace 
isomorphic to LI, then either E or F has the same property. 

Each separable Banach space is isomorphic to a quotient of L I . Thus, the 
study of quotients of L I naturally focuses on the study of quotients L 1/ X , 
where X has some smallness property; e.g., X is reflexive [13, 18], separable 
dual [10], or "bien dispose" [8]. For simplicity, let us say that a Banach space 
contains a copy of L I if it contains a subspace isomorphic to L I . The three-
space problem for LI raised in [14] belongs to the same circle of ideas. It is 
the following question: If X is a subspace of L I , does X or L 1/ X contain 
a copy of L I? The result of Enflo and Starbird shows that this is the case 
when X is complemented. The three-space problem for L I seems to have 
been the main motivation behind the papers [5, 2, 9, 10, 22] which contain 
many interesting results. In particular, Bourgain and Rosenthal [5] have shown 
that either X contains a copy of L 1 or L 1/ X contains a copy of II , and 
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Bourgain [2] (actually looking for a counterexample) proved the remarkable 
fact that L I / HI contains a copy of L I . 

The first main contribution of the present paper is the construction of (fam-
ilies of) subspaces X of L I that are small as Banach spaces (actually have the 
Radon-Nikodym property) but such that L 1/ X does not contain a copy of L I . 

Also raised by the result of Enflo and Starbird and its consequences mentioned 
earlier is the following. If a direct sum E EEl F contains a copy of L I , does E 
or F contain a copy of L I ? The other main contribution of the present paper 
is a negative answer to that question. 

Theorem 1.1. There exist two subs paces XI' X2 of L I that are isomorpkic to 
an II-sum of spaces isomorphic (but not uniformly isomorphic) to II such that 
L 1/ XI and L 1/ X 2 do not contain a copy of L I but that the canonical injection 
of L I in L I / XI XLI / X 2 is an embedding. 

In particular, XI ' X 2 have the Radon-Nikodym property and, in particular, 
do not contain a copy of L I . If a subspace X of L I is isomorphic to a dual 
space, it does not seem to be known if L 1/ X contains a copy of L I. We, 
however, have the following. 

Proposition 1.2. If a subspace X of L I is isomorphic to II , then L 1/ X contains 
a copy of LI. 

The following is related to [17, Problem 8.3] and remains open. 

Problem 1.3. Consider a compact metric space S. Denote by C(S) the space of 
continuous functions on S and by M(S) = C(S)* the space of signed measures 
on S. Consider a weak· (= a(M(S) , C(S») closed subspace X of M(S). 
Suppose that X is a subspace of L 1 (/1) for some probability measure /1 on S. 
Does L I (/1) / X contain a copy of L I? 

Following [IS], we say that a (linear, bounded) operator T between two 
Banach spaces E and F is a semiembedding if it is one-to-one and if the 
image of the unit ball of E is closed. The following result, which is obtained 
by a variation of the construction of Theorem 1.1, answers questions of [5]. 

Theorem 1.4. There exist two Banach spaces E I , E2 that do not contain a copy 
of L I but such that L I embeds in EI x E2 in such a way that the restrictions 
to L 1 of the projections on EI and E2 are semiembeddings. 

Once the proper approach has been found, it is a matter of standard (unin-
spiring) technique to reduce the proof of these theorems to a central statement 
concerning a remarkable family of functions on [0, 1]. This statement, which 
could be of independent interest, is the main new ingredient of this paper. 
Consider the family Fn of all the functions of the type 

" ( _ 1 ) i 2<1(i) 1 
2n ~ ~ 

O:5i:S2n-1 
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for any sequence a(O) < a(l) < ... < a(2n - 1) of integers, where the sets 
Ii are dyadic intervals of length 2- 11 (i) , and where the sequence II' ... ,I2n _1 
decreases. Then (Theorem 3.3) given e > 0, for n large enough and any 
function f in the convex hull of Fn , the set where If I is greater than e has 
Lebesgue measure ~ e . 

2. THE APPROACH 

We say that an operator T between Banach spaces X and Y fixes a copy of 
L I if X contains a copy of L I on which the restriction of T is an isomorphism 
on its image. 

We denote by A Lebesgue's measure and by l: the a-algebra of measurable 
sets. To simplify notation, for A E l:, we write IAI = A(A). 

Consider an atomless subalgebra l:' of l: and A E l:', IAI > O. We denote 
by L~(A, l:') the subspace of LI that consists of l:'-measurable functions that 
are zero outside A and such that J fdA = O. Central to our approach will be 
the following theorem proved by Rosenthal [21], using the techniques developed 
by Kalton in [12]. 

Theorem 2.1 [21]. Consider a Banach space E and an operator T from LI to 
E that fixes a copy of L I. Then for some J > 0, some atomless subalgebra 
l:' of l:, and some A E l:', IAI > 0, we have IIT(!)II ~ Jllfll l whenever 
f E L~(A, l:'). 

The application of this theorem to the three-space problem is as follows. 

Corollary 2.2. Consider a subspace X of L I . The following are equivalent. 

(2.1) The quotient map L I -> L 1/ X does not fix a copy of L I . 

(2.2) For each J > 0, each atomless subalgebra l:' of l:, and each set A E l:' , 
IAI ~ 0, there exist f E L~(A, l:') and g E X such that IIflll ~ -k and 
IIf-glll~o. 

The choice of -k in the condition IIflll ~ -k is for convenience, any other 
positive number would be suitable. 

Our approach will simply be to construct families of functions that satisfy 
(2.2) and then to take for X their closed linear span. While a priori this 
construction would only ensure that the quotient map L I -> L 1/ X is not an 
isomorphism on any space L~(A, l:') , Corollary 2.2 implies that it does fix any 
copy of L I , and the fact that L 1/ X does not contain L I will then follow by 
a lifting argument (made possible by the special structure of X). The prob-
lem reduces then to finding an appropriate device that will prevent X from 
containing L I . 

As a first step toward (2.2), we shall construct a countable family of functions 
Cn that satisfies the following condition. 

(Pn ) For each atomless subalgebra l:' of l: and each set A E l:', IAI > 2-n , 

there exist f E L~(A, l:') and g E Cn such that Ilflll ~ -k and IIf -gill ~ rn . 
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The purpose of the restriction IAI ~ rn is to allow Cn to be unifonnly 
bounded. How can we control the linear span of Cn ? Since we are allowed an 
error of 2-n , there is nothing to lose by adding on another error of 2-n • We 
add to each function in Cn a function of the type rnIBI-IIB, where IBI is 
very small. This can be done in such a way that Cn becomes 2n+l -equivalent 
to the unit basis of II while it still satisfies (Pn- I ). Thus, we can control the 
span of each Cn . However, X has to contain infinitely many families Cn 
in order to satisfy (2.2), and another idea is still needed there. This idea is to 
control the situation using convergence in measure. The functions of span Cn+1 
will be very "peaky" (that is, they will be essentially supported by very small 
sets), compared to those of span Cn , and the span X of Un>1 Cn will thus be 
isomorphic to the II-sum of the spaces span Cn ; so X will be an II-sum of 
spaces isomorphic to II . The idea of using a convergence in measure for such 
a purpose is not new. It has been successfully used in the work of Roberts [19] 
and subsequent work, e.g. [3]. 

How are we to choose the class Cn ? The results of [9] indicate that we 
should not use functions I for which 1111100 and 111111 are of the same or-
der, so it is natural to use functions I for which III resembles the function 
(xlog(lje))-1 1[e.l] for e small, or, more conveniently, 

for m large. How are we to choose the sign of I? Here there are several 
possibilities, but it turns out that one of the simplest choices, which is to take 
I bl' I ",2n-l( l)i2i+ll ., bl fi . resem mg 2n L.-i=O - [2-i-1 ,2-;[' IS sUlta e or our purposes. 

We denote by Jk the collection of the dyadic intervals [Irk, (l + l)rk[, 
o ~ I < 2k and by Lk the algebra they generate. For I ELI , we denote 
by Ek (f) its conditional expectation with respect to Lk , so, for I E Jk ' the 
constant value of Ek (f) on I is 2k II I dJ.. . 

We now describe our basic class Dn of functions (we will have C n = Dq(n) 
for a fast growing sequence (q(n))). Consider a sequence Bo' ... ,B2n - 1 of 
sets and a sequence 0'(0) < ... < O'(2n - 1) of numbers with the following 
properties: 

(2.3) Bi is L I1(i) measurable. 

(2.4) For 0 ~ i < 2n - 1, E U (i)(1B ) = !I B • 
HI I 

This latter condition means that Bi+1 C Bi and that for each I E ~(i) , 

Ie Bi' we have II nBi+11 = !III. 
We set 

(2.5) 1 i i 
g=2nlBI I: (-1)21 B;· 

o 099n-J 
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If we set B2n = 0 , we observe that 

(2.6) 1 
g=-- '" a.I \ ' 2nlB I ~ 1 Bi Bi+l o O~i9n-1 

where ai = L:O<I</ _1)'21 = « _1)i2i+1 + 1)/3. 
We denote by Dn the class off unctions given by (2.5) for all possible choices 

of Bo' ••. ,B2n _ 1 that satisfy (2.3), (2.4), and IBol 2: rn . We observe that 

(2.7) g = Dn => IIglioo $ 23n • 

This might be the place to mention that throughout this paper we always 
use the simplest estimates sufficient for our purpose, even when they are rather 
crude as in (2.7). 

We also have 

(2.8) g E Dn => IIgll I 2: i . 
Indeed, since IBil = rilBol, 

I 
IIgll I = 2nlB I L laiIlBj\Bi+11 

o 099n-1 

2: ~ L 2i+1 + (_I)i 2- i- IIBol 
nlBol 099n-1 3 

=6In( L (1+(_1)i2-i-I))2:~ 
O~19n-1 

since L:O<i<2n_I(-I/ri- 1 2: O. We now prove that property (Pn ) (and even 
more) hoWS: 

Proposition 2.3. Consider an atomless subalgebra "L' of"L and a set A E "L' , 
IAI > rn. Then for each '1 > 0, there exist f E L6(A, "L') and g E Dn such 
that IIf - gill $ '1. 

It is not stated here that we control IIfll l , but of course IIflll 2: IIgll I - '1, 
and, as we can take '1 < 112' we have from (2.8) that IIflll 2: t . 

The proof of Proposition 2.3 is a simple exercise. It will rely on the following 
lemma. 

Lemma 2.4. Consider n 2: 0, A E "L, e > 0, k 2: 0, B E "Lk such that 
IAdBI $ e. Consider A' C A such thatfor all I E ~ we have IA'nII = 1IAnII. 
Then we can find m > k and B' E "Lm , B' C B, such that IA'dB'1 $ 4e and 
Ek ( 1 B') = 11 B . 

Proof. Consider first AI = A' n B. Since A'\A I = A,\B c A\B, we have 
IA,\AII $ e, and thus IA'dAII ~ e. We consider now a set Az E"L, AI c Az C 
B , such that whenever I E ~, I C B , we have 

IA z nIl = 1111; A nA2 nI = AI nI (= A' nI). 
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Since A2 n A = Al ' we have A2 \AI C B\A , and hence IA2 \AII :S e, so that 
IA2~11 :S e. We can find m > k and BI E 1:m such that IBI~21 :S rk e . 
For each I E Jk, I c B , we have 

IIBI n 11- 2-k- 11 = IIBI n II-IA2 n III:S IBI~21 :S 2-k e. 

Clearly, we can find B' E 1:m , B' C B, such that for all IE Jk, Ie B, 

IB' nIl = 2-k - 1 = !IB' nIl; I(B' n I)~(BI nI)l :S 2-k e. 

It follows that IB'MII :S e. Thus, 

IA'M'I :S IA'~II + IAI~21 + IA2M d + IBIM'I :S 4e. 0 

Proof of Proposition 2.3. Let e > 0 such that e < IAI - 2- n • By induction 
over i, O:S i :S 2n - I, we construct numbers a (i) , sets Ai' Bi that satisfy 
conditions (2.3), (2.4), and the following: 

Ao=A; 

To start the induction, we take Bo E 1:U (O) such that IAMol :S e. 

Suppose that Ai' Bi' aU) have been constructed. Since 1:' is atomless, its 
restriction to Ai is atomless. By Liapounov's convexity theorem, we can find 
A i+1 C Aj' A i+1 E 1:' , such that 

r lId), = IAi+1 nIl = !IAj n II 
JA;+l 

for all I E ~(i). In particular, IAi+11 = !IAil. By Lemma 2.4, we can find 
a(i + 1) > a(i) and B j+1 E 1:uU+I ) such that IAi+IMi+11 :S 41AjMjl and 
EU(i+ I) ( 1 B ) = ! lB. This completes the construction. 

1+1 1 

The function 
1 ~ i j 

f= 2nlB I L.,; (-1) 2 lA; 
o O~j~2n-1 

is 1:'-measurable and supported by Ao = A. Moreover, since IAjl = 2-jlAol 
for i:S 2n - 1, we have J f d)' = o. Thus, f E LO(A, 1:'). We consider the 
function 

Iii 
g=2nlBI I: (-1)21 B;· 

o O~i~2n-1 

By definition, g E Dn, since IBol ~ IAI- e ~ rn . Moreover, 

1 ~ j 
IIf-gll l = 2nlB I L.,; 21118/ -IA;IIl 

o 09~2n-1 
1 ~ j i 

:S 2nlB I L.,; 24 e = c(n)e 
o 09~2n-1 
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for some number c(n) depending on n only. Since n is fixed, IIf - gill can 
be made arbitrarily small. 0 

3. CONTROL IN MEASURE 

We denote by conv Dn the absolute convex hull of Dn' i.e., the set of func-
tions E/EL ctf/ ' where L is a finite set, It E Dn' E/EL Ic,1 ~ 1 . 

The cornerstone of our construction is the following. 

Theorem 3.1. Given e > 0, there exists n > 0 such that each function f in 
conv Dn satisfies 1{lfl ~ e}1 ~ e. 

The proof will show that one can actually take n of order e -6 10g( t ). This 
estimate (that has no reason to be sharp) is irrelevant for our purposes. 

The proof of Theorem 3.1 will be considerably clarified by the fact that 
D n is contained in the convex hull of a family Fn (briefly considered in the 
introduction), which has the property of Theorem 3.1, but that consists of 
functions much simpler than those of Dn' We recall the definition of these 
functions now. Given x E [0,1] and k ~ 0, we denote by l(x, k) the 
unique dyadic interval I E ~ that contains x. Given an increasing sequence 
a = (a(O), ... , a(2n - 1)), a(O) < a(I) < ... < a(2n - 1), we set 

f 1 "" i u(i) (3.1) (x,a)=2n L- (-1)2 I1(x,U(i))' 
0:5i:52n-1 

The reader might have observed that (J;(x, a))O<i<n is a martingale differ-
ence sequence. Unfortunately, the filtration (I:U (2i);:5i<n with respect to which 
it has this property depends on f; this seems to prevent any simple use of 
martingale theory to prove Theorem 3.3. Since II(x, aCi))1 = 2-u(i) , we have 
IIf(x, a)lI, ~ 1. It is worthwhile to note that if C = l(x, a(2n - 1)), we have 
E U(i)(1 ) = 2u(i)-u(2n-l) 1 . d th s e I(X,U(I)) ,an u, 

1 "" (_I)i u(i) 
f(x, a) = 2n !- lCfE (Ie) . 

0:51:52n-1 
(3.2) 

We consider the class Fn of all functions of type (3.1) for all possible choices 
of x and a. 
Proposition 3.2. The convex hull of Fn contains D n . 
Proof. Consider g given by (2.5). From condition (2.4) we see that for 0 ~ 
i ~ 2n - 1 , we have 

22n - 1 2i u(n u(n 
IB I E (I B _ ) = -IB I E (1 B _ ) = IB lIB 2n-1 2. 1 0 2n 1 0 

so that 

(3.3) = _1 "" (-1 )i EU(i) (1 ) . 
g 2n L- IB I B2n _ 1 

0:5i:52n-1 2n-1 
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We can write B2n_1 as a disjoint union B2n _1 = U/EL CI , CI E ~(2n-I)' Thus, 
(3.3) becomes 

_ I ~ (I ~ ( -I) i EU(i) I ) 
g - cardL~ 2n ~ -ICI ( c) 

IEL O~i9n-1 I 
and, from (3.2), this shows that g belongs to the convex hull of Fn' 0 

Thus, in order to prove Theorem 3.1, it suffices to prove the following. 

Theorem 3.3. Given e > 0, there exists n > 0 such that each lunction I in 
conv Fn satisfies 1{1/12: e}1 ~ e. 

Before we can start the proof, we need some notation. In the entire sequel, 
n is fixed. We denote by Sn the collection of sequences (j = ((j(i»O<i<2n-1 ; 
(j(0) < (j( I) < ... < (j(2n - I). For 0 ~ i < n, (j E Sn ' we set - -

r u(2i) u(2i+l) 
Ji(X, (j) = 2 II(x,u(2i)) - 2 II(x,CT(2i+I)) . 

For P ~ n , we set 
I 

I(x, (j, p) = 2n L J;(x, (j) 
O~i~p-I 

"" j u(i) = 2n ~ (-I) 2 II(x,CT(i))' 
O~i9p-1 

Thus, I(x, (j, n) = f(x, (j) and II/(x, (j, p)1I1 ~ pin. The main ingredient 
of the proof of Theorem 3.3 is the following. 

Proposition 3.4. Consider a finite index set L and numbers ci with L-/EL Ic/l ~ 
I. For I E L, consider XI E [0,1], (jl E Sn' PI ~ n. Consider I = 
L-IEL cll(xi ' (jl' PI) and r > O. Assume 11/111 2: 2-r and n 2: 3(r + I )23r+ 7 • 

Then we can find A E L, IAI ~ r 2r , and numbers ql ~ PI that satisfy the 
lollowing conditions: 

(3.4) 

(3.5) The function r = L-/EL cJ(xl , (jl' ql) coincides with I outside A. 

Observe that, since II/(x, (j, p)1I1 ~ pin, we have 11/111 ~ * L-/EL Ic/lpl' If 
we think of * L-/EL Ic/lpi as measuring the size of f, this means that outside 
the very small set A, I coincides with the function r, which has a size 
significantly smaller than the size of I. Iterating the procedure will yield the 
proof of Theorem 3.3. 
Proof. Let us first single out the main ingredient of the proof. For a function 
g, IIglioo ~ I, k 2: 0, and a > p , let us set 

A(g, k, a, P) = {x; 3m(0) < ... < m(2k - I); Vi, 0 ~ i < k, 

E m(2i)(g)(x) 2 a; E m(2i+I)(g)(x) ~ P} . 
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Then 

(3.6) ( l_o:)k 
IA(g, k, 0:, P)I::; 1 _ P 

This follows, e.g., from an upcrossing inequality of Dubin as in [16, p. 27] 
applied to the positive martingale En(1 - g). Let us note also that (3.6) can 
be easily proved directly by induction over k and that we can even replace 
the bound of (3.6) by ((1 - 0:)/(1 - P»k((1 + P)/(1 + o:»k-l (which makes no 
difference for our purposes). 

Consider g = signf, so IIgll oo ::; 1. We have 

r' ::; IIfill = I fgdJ.. = 21n LC, L I gJ;(xl , a,)dJ.... 
'EL o:S;l:S;p,-1 

We set k = 3(r+ 1 )2,+3 . For IE L, denote by ql the largest integer::; PI such 
that 

Denote by L' the set of I E L such that q, < p,. For I E L' , we have 

(3.7) {
o ° I' d -,-I} ,+3k card 1: 0::; 1 ::; q, ; g, i(X" a,) J... 2: 2 = 2 . 

We observe that I k k 
g2 l I (X,k)dJ...=E (g)(x). 

Thus, I gJ;(xl , a,) = E Ut(2i)(g)(X,) - EUPi+I)(g)(XI) . 

h f .( ) 2-,-1 fi d ° 2'+2 2'+2 Hence, w en g'i xI' a, 2: , we can n an mteger - ::; s < 
such that 

(3.8) 

Thus, (3.7) shows that for I E L' , we can find s, _2,+2 ::; S < 2,+2, such 
that (3.8) holds for at least k indexes i::; q, - 1 . Hence, we have 

[(x" a,(2q, - 1» cAs = A(g, k, (s + 1)2-,-2, S2-,-2) . 

From (3.6) we have 

IA I < (1 - (s + 1)2-'-2) k < (1 _ 2-,-3)k < e _k2-r- 3 < 2- 3,-3 . 
s - 1 _ S2-,-2 - - -

We define A = U_2r+2<s<2r+2 As ' so that IAI ::; 2-2, , and we have [(xI' a,U» 
C A for i 2: 2q" and he~ce f and r = L'EL Ic,lf(x" ai' ql) coincide outside 
A ° Since for each I E L, 

II gJ;(xl , a,)dJ...l::; IIgllooIIJ;(x" a,)III::; 2, 
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we have 

2r+3 k 2-r- 2 2-r- 1 :5 ij+ :5 . 
This implies that I:/EL ci J gl(xl , (JI' ql) dJ.. :5 2- r- 1 . On the other hand, since 
J gl dJ.. ~ rr , this implies that 

rr-I :5 I>I J g(f(xI' (JI' PI) - l(xl , (JI' ql)) dJ.. 
IEL 

:5 L Ic/llI/(xl , (JI' PI) - l(xl , (JI' ql)lI, . 
(3.9) 

IEL 

Now II/(xl , (JI' PI) - l(xl , (JI' ql)111 :5 ~(Pl - ql)' and thus, (3.4) follows from 
(3.9). 0 

We now prove Theorem 3.3 and, actually, the following more precise state-
ment. Consider r> 0, and suppose that n ~ 3(r+ 1)23r+7 • Consider a finite 
index set L, and for / E L, consider XI E [0, 1], (JI E Sn' ci E R. Assume 
LIELlc/1 :5 1 . Let 1= I:/EL cll(xl , (JI)' Then I{I/I ~ 2-rj2 }1 :5 rrj2+2 • 

By induction over k, k ~ 0, we will construct numbers (P7)/EL' 0:5 p7 :5 
n , and sets Ak E L' that have the following properties: 

1 '" k 1 '" k-I -r-I (3.10) n L)c/ipi :5 n L." Ic/lpi - 2 , 
IEL IEL 

IAkl :5 r2r , I and r = I:/EL cll(xl , (JI' p7) coincide outside A~ = Ui<k Ai . 
To start the induction, we set p? = n for / E L, Ao = 0. -
The induction step is done by applying Proposition 3.2. The construction 

stops at the first value of k for which IIrlb :5 2-r • Thus, 1{lrl ~ 2-rj2 }1 :5 
2-rj2 . From (3.10), we have 

1 '" k k -r-I o :5 n L." Icilpi :5 1 - 2 , 
IEL 

and thus, k :5 2r+1 • Hence, we have IA~I :5 k2- 2r :5 2-r+1 • Since I and r 
coincide outside A~, we have I{I/I ~ 2-rj2 }1 :5 2-rj2 + 2-r+1 :5 22- rj2 . 0 

4. THE THREE-SPACE PROBLEM 

Our task is, as described earlier, to construct small perturbations of the func-
tions in D n in such a way that their span will be isomorphic to /1 . By induction 
over / ~ 1, we construct a sequence q(l) and a disjoint sequence (BI ) of mea-
surable sets that satisfy the following conditions: 

(4.1) 0 < IBII :5 2- 3q(l-I)-2/-2 , 

(4.2) VI E conv Dq(l) , I{I/I ~ 2-2/ }1 :5 2-1- 1 rrJr IBil· 
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We start the induction with BI = [0, r4]. At each stage of the construction, 
we pick q(l) such that (4.2) holds, using Theorem 3.1, then BI+I satisfying 
(4.1). We consider an enumeration (!",k)k?1 of Cn = Dq(n)' We consider a 
one-to-one map rp: N x N -+ N, and we set A(n, k) = Brp(n ,k) • Finally, we set 

f. -n 1 
gn,k= n,k+ 2 IA(n,k)11A(n,k)' 

Thus, I! gn,kl!l ~ 1 + rn ~ 2, and I! gn,k - !",klll ~ 2-n . 

Proposition 4.1. Consider a family (an,k)n,k?1 of numbers. Assume that 
L:n>1 2-n L:k>1 Ian kl < 00. Then the series L:n>1 (L:k>1 an kgn k) converges 
in measure. Denot/ng, for simplicity, its sum by En,k?1 an,kgn,k: we have 

(4.3) II L an,kgn,kl/ ~ I::::? L 2-nlan,kl ~ 4. 
n,k?1 I n,k?1 

Proof· For n ~ 1, let bn = L:k>1 Ian kl, so that L:n>1 rn bn < 00. Let 
hn = L:k>1 an k!" k' so that hn E bnNn , where Nn is -the norm closure of 
convCn .It follows from (4.2) that the series L:n>I(L:k>1 an kgn k) converges 
in measure. From (2.7) we have that IIhn 1100 ~ b),3q(n) ;nd thus, for I > n , by 
(4.1 ), 

(4.4) llh I d)' < b 23q(n)IB I < b 2-2/- 2 < b 2-I- n- 2 . n -n I-n -n 
B/ 

Let An = 1{lhnl ~ bnr 2n }l. From (4.2), we have 
-n-I IAnl ~ 2 minlBil. 

l:5:n 

Let A; = Un>1 An' Since IAnl ~ 2-n- 1IB/1 for n ~ I, we have IA;I ~ 2-/IB/1 ~ 
IB/1/2. Let B; = BI\A;. Thus, for I ~ n, 

(4.5) f Ihnld)' ~ bn2-2n IB;1 ~ bn2-I- n- 2 . JB; 
From (4.4) and (4.5) we see that for all I, n ~ 1, 

Thus, we have 

f Ihnl d)' ~ bn2- I - n- 2 • JB; 

(4.6) /,1 L an,kfn,kl d).= 1,ILhnld)'~2-1-2Lrnbn' 
B/ n,k?1 B/ n?1 n?1 

Consider now r, s ~ 1 and 1= rp(r, s). We have BI n A(n, k) = 0 unless 
n = r, k = s. So, since IE;I ~ IB/1/2, we have 

f I '" -n 1 I d f I -r 1 I d -r-I JB, ~ 2 an,kIA(n k)1 1A(n,k) ).~ JB, 2 ar,sIBI1B/ )'~2 lar,sl. 
/ n ,k?1 ' / I 
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Thus, with (4.6) we get 

1,1 I: an,kgn,kldA2::2-,-lla,)-2-1-2L:2-nbn. 
B, n,k::=:1 n::=:1 

Summing this inequality over all the values of r, s gives, since the sets B; 
are disjoint, 

IIL:an,kgn,kll 2:: ~ I: 2-'la,,sI - ~ L:rnbn = ~ I: 2-nlan,kl. 0 
n,k I ',s::=:1 n::=:1 n,k::=:1 

A consequence of (4.3) is that for each n and each sequence (ak ) of num-
bers, all but finitely many zero, we have 

r n- 2L:lakl ~ IIL:akgn,kll ~ 2L:lakl. 
k::=:1 k?1 I k 

Thus, the closed linear span Hn of the sequence (gn k)k>1 is isomorphic to 
[I . We now show that the span of the spaces Hn is iso~orphic to their [I-sum. 
Proposition 4.2. For each sequence hn E Hn that is eventually zero, we have 

210 ~ IIhnll l ~ II~hnlll ~ ~ IIhn II I . 

Proof. It is enough to consider the case where each function hn is a finite 
sum I:k::=:1 an,kgn,k. We have to prove that if II I:n::=:1 hnlll ~ 1, we have 
I:n::=:1 IIhnlll ~ 20. From Proposition 4.1, we know that I:n,k::=:1 rnlan,kl ~ 
4. Since Ilgn k - In kill = r n , we have II L:n>1 unll l ~ 5, where un = 

I:k>1 an kin k: Sinc~ I:k>1 Ian kl ~ 2n+2, Un -belongs to the closure of 
2n+2 con~ Cn '. Thus, Proposition 4.2 is a consequence of the inequality 

I: IIhnll l ~ I: lIunll l + I: 2-nlan,kl ~ I: lIunll l + 4 
n,k::=:1 

and of the following. 

Proposition 4.3. Consider a sequence un E 2n+2 Nn, where Nn is the closure of 
conv Cn. Then the series I:n> I un converges in measure, and if its sum belongs 
to L I , we have -

L:llunll l ~ IIL:unl1 +6. 
n::=:1 n::=:1 I 

Proof. From (2.7), we have Ilunlioo ~ 23q(n)+n+2. Set An = {Iunl 2: r n+2}. 
From (4.2), (4.1), we have 

IAnl ~ 2-n - I IBn l ~ 2-3q(n-l)-3n-3 . 

Hence, if we define A: = Ui>n Ai' we have IA:I ~ 2-3q(n)-3n-2 , and thus, 
for i ~ n, 

(4.7) 
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We define Ln = An \A~. For i> n, since IUil ~ r i +2 on Li' we have 

llUil d)' ~ 2-i+2 ILn l ~ 2- i - 2 • 
L. 

Thus, 

and hence, 

[.IUnld)' ~ [.I~Uild)'+2-n. 
Summing over n gives, since the sets Ln are disjoint, 

(4.8) 

Since Iuni ~ r n+2 outside An' using (4.7), we have 

(4.9) /lunll l ~ j Iuni d)' + 2-n+2 + 2-2n . 
Ln 

We now prove Theorem 1.1. We denote by XI (resp. X2) the closed linear 
span of Un>1 H 2n (resp. Un>1 H 2n+I ). From Propositions 4.1 and 4.2, both 
XI and X2 ~re isomorphic to-an [I-sum of spaces isomorphic to [I (and thus 
do not contain L I). 

We prove that the canonical map from LI to (LI/XI ) x (L I /X2) is an 
embedding. Let f ELI, and suppose that for 1; E XI' Iz E X2 we have 
/If - 1; /I I ~ 1, IIf - Iz /I I ~ 1 . Then 111; - Iz II I ~ 2. However, Proposition 4.2 
implies that 111;11 1 + IIIzIII ~ 40. Thus, IIflll ~ 1 + /11;111 ~ 41, which proves 
the claim. 

It follows from our construction, Proposition 2.3, and Corollary 2.2 that for 
X = XI or X 2 ' the quotient map T from L I onto L 1/ X does not fix a copy 
of L I. It remains to show that L 1/ X does not contain a copy of L I. The 
proof, which will be given at the end of §5, relies on a well-known compactness 
argument. This argument will be used twice. To avoid duplication, we present a 
somewhat abstract statement (in the spirit of [10]) that will cover all our needs. 

Proposition 4.4. Consider an operator T from a Banach space Y onto a Banach 
space Z. For z E z, IIzll < 1, let Uz = {y E Y; IIyl/ ~ 1, T(y) = z}. 
Suppose that for some constant K, to each sequence (Yn)n>1 E Uz ' we can 
associate a point tp ((y n) n~ I) E Y with the following propertieS. 

(4.10) If xn = Yn for n large enough, tp((xn)n~l) = tp((Yn)n~I)· 

(4.11) IItp((Yn)n~I)II ~ K. 
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(4.12) T(qJ«Yn)n~I» = z. 

(4.13) If Yn E Uz ' Y~ E Uz ' we have 

qJ ( (Yn ; Y~) n~J = ~[qJ«Yn)n~l) + qJ«Y:)n~l)] . 
Then if Z contains a copy of L I, T fixes a copy of L I . 

Proof. Since Z contains a copy of L I , there exists an isomorphism V from 
L I into Z, and we can assume that IWII < 1. For I E ~, k 2: 1, let 

k a] = V(2 1]). Thus, lIa]1I < 1. Take b] E Ua . 
I 

For I E~, n 2: k, set b],n = 2k - n 'EJEJ",JC]bJ and b],n = b] for n:::; k. 
Obviously, b] E Ua . If II' 12 are the two elements of ~+I contained in I, 

I 

we clearly have for n 2: k + 1 , 

(4.14 ) 

We now set c] = qJ«b] n)n>I)' From (4.11), IIc]1I :::; K. From (4.10), (4.13), 
(4.14), c] = !(c] + c] ).' From (4.12), T(c]) = a]. Thus, one can define an 

I 2 

operator W from LIto Y such that W(2k 1]) = c] for 1 E ...... 'k, and this 
operator satisfies II WII :::; K, V = ToW. Since V is an isomorphism, T is 
an isomorphism from W(LI) to its image, and thus T fixes LI. 0 

5. SEMIEMBEDDINGS 

In this section, we denote by Mn = 2n Nn the absolute closed convex hull of 
n nO' 2 en = 2 Dq(n)' We denote by L the space of all measurable functions on 

[0, 1]. We provide L 0 with the topology of convergence in measure. We denote 
by G the set of all functions in L 0 that can be represented as 1; + 'En> I an gn ' 
where 1; ELI, 111; III :::; 1, gn E Mn , 'En>1 lanl :::; 1 . We observe that the series 
'En>1 angn converges in measure and that G is bounded in LO. We denote by 
N the gauge of G, given by N(h) = inf{a > 0; hE aG} if this set is nonempty 
and N(h) = 00 otherwise. We set E = {h E L O ; N(h) < oo}, and we provide 
E with the norm N. Since G is bounded in L 0 , E is a Banach space, and 
the canonical map j from L I to E is one-to-one. Since the unit ball of L I is 
closed in LO, j is a semiembedding. If we consider the space EI (resp. E2) 
constructed like E but replacing the condition gn E Mn by gn E M2n (resp. 
gn E M2n+l ) , Proposition 4.3 shows that the canonical injection from L I into 
EI x E2 is an isomorphism. Indeed, if f ELI, and if we have 1;, 1; ELI, 
111;11 1 , 111;11 1 :::; 1, gn E Mn such that f = 1; + 'En>1 g2n = 1; + 'En>Og2n+I' 
then 'En>1 (-It gn = 1; - 1; so that 'E Ilgnlll :::; 8 -and II!III :::; 9. Thus, in 
order to prove Theorem lA, it suffices to show that E does not contain L 1 • 



THE THREE-SPACE PROBLEM FOR Ll 23 

We know by our construction, Corollary 2.2, and the fact that IIj(f)1I 1 ::; 2-n 

for lED q(n) that j does not fix a copy of L l. Suppose that there is an 
isomorphism V from Lito E. We can assume IIVII < 1 and that we have 
11V(f)1I ~ allfll l for some a > o. We will show that j must fix a copy of 
L 1 , thereby concluding the proof. The first part of the argument will be the 
application of Proposition 4.4 to an auxiliary space which we construct now. 

We denote by Xn the Banach space U).ER )'Mn provided with the norm 
given by the gauge II· lin of Mn· We denote by EBl Xn the [I-sum of the 
spaces Xn . We denote by Y the space LI x (EB I Xn) provided with the norm 
1I(f, (gn))11 = max(lI/l1 l , En~1 II gnlln)· Consider the operator T: Y -+ E 
given by T((f, (gn))) = 1+ En>l gn. Clearly, IITII::; 1, and T is onto. 

Let z E E, IIzll < 1, and consider a sequence Yk = (Ik , (gn k)n>l) in 
Vz = {y E Y; IIyll::; 1, T(y) = z}. Hence, for each k, , -

(5.1 ) z=h+Lgn,k· 
n~1 

Let us fix an ultrafilter ~ on N. Since Mn is convex, uniformly bounded, 
and closed, it is a(LI, Loo)-compact, and we can consider gn = limk-+~ gn,k' 
where the limit is taken for this topology. Let 1= z - En>1 gn. We show that 
11/11 1 ::; 1 . Given m ~ 0, we can find coefficients Ci.k ' all but finitely many zero, 
with Ek~l Ci.k = 1 such that 

IIgn - ~Ci.kgn'klll ::; rm 

for all n ::; m. We have from (5.1) 

(5.2) 1- LCi.kh = - L (gn - LCi.kgn,k) - :L gn + L LCi.kgn,k· 
k~l n:::,m k~1 n>m n>mk~1 

By definition of Vz and the definition of the norm of Y , we have III,. II! ::; 1 
for all k; thus, (5.2) shows that I belongs to the closure in measure of the unit 
ball of LI ; thus, 11/111 ::; 1. 

If we define qJ((Yk)k>l) = (f, (gn)) E Y, it is obvious that (4.10)-(4.13) 
hold (with K = 1). Thus, from Proposition 4.4, we can find an operator W 
from L I to Y such that V = ToW. 

The second part of the argument is crystalized in the following lemma. For 
m ~ 1, denote by Yn the subspace of Y consisting of the y = (f, (gn)) such 
that gn = 0 whenever n ~ m. 

Lemma 5.1. Consider an operator W Irom L I to Y. Then lor each e > 0, 
there exists an m, a set ojpositive measure A, and an operator W' from L I 
to Y m such that II W (f) - W' (f) II ::; e 11/11 whenever I is supported by A. 

Before we prove this lemma, let us conclude the proof of Theorem 1.4. Recall 
that IIV(/)II ~ a 11111 I for fELl. We apply Lemma 5.1 with e = a/2. Thus, 
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when I ELI (A) , the subspace of L I consisting of functions supported by A, 
we have 

liT 0 W(!) - To W' (!)II :$ ~II/III . 

Since liTo W(!)II = IIV(!)II ~ JII/II I , we have liTo W'(!)II ~ ~II/III when 
I E LI(A). We observe now that T(Ym ) C LI and that T: Ym -+ LI is 
bounded. Considering now T 0 W' as valued in L I , we have 

so that j fixes To W' (L I (A)). This completes the proof. 0 

ProololLemma 5.1. Denote by 'lrn the canonical projection of Y on X n , and 
let Wn = 'lrn 0 W . By definition of the norm of Y, for IE L I , we have 

L II Wn (!) lin :$ IIW(!)II· 
n:2:1 

For n ~ 1, k ~ 1 define a l:k -measurable function hn k by hn k = 
11Th Wn(l/)lIn for x E I E ~. Thus, Ln:2:1 hn,k :$ IIWII. F~r each n', the 
sequence (hn • k) k:2: I is a supermartingale; denote by hn its limit a.e. Clearly, 
Ln:2:1 hn :$IIWII· For IE l:k , n ~ l, we have 

IIWn(1/)lIn = lhn.kdA:$! l/hndA. 

Thus, by approximation, for any I ELI, we have 

Thus, for any m, 

Since Ln>1 hn :$ II WII , for any e, we can find m large enough that IAI > 0, 
where A ,: {Ln>m hn :$ e}. If we denote by W'the composition of Wand 
of the canonical projection of Y onto Ym , for I supported by A, we have 

IIW(!) - W'(!)II :$ L II Wn (!) lin :$ ! I/ledA:$ ell/il l . 
n>m 

This completes the proof. 0 

We now turn back to the proof that L 1/ X does not contain a copy of L I . 
We denote by Z the closure of j(X) in E. 
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Proposition 5.2. Z is isomorphic to /' . 
Proof. Since 

(5.3) n 1 n 
2 gn,k = IA(n, k)11A(n,k) + 2 f~,k' 
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the definition of II . liE shows that lIun kllE ::; 2, where un k = j(2n gn k)· 
Consider now numbers an k' all but finitely many zero, and suppose that 
II En k>' an kUn kllE ::; 1. By definition of the norm of E, we can find IE L' , 
lilli, '<-2, in E Mn , (on)n~" with E IOnl ::; 2 such that 

2: an,kun,k = 1+ 2:°ngn . 
n,k~' n~' 

There is no loss of generality to assume that gn E 2n conv en. Thus, we can 
write 

0ngn = 2: 2nbn,kfn,k' 
k~' 

where E k>, Ibn kl ::; on' and thus, En k>' Ibn kl ::; 2. Hence, using (5.3) 
again, for ~me 'r E L', lilli, ::; 4, we h~v~ , 

2: 2nan,kgn,k =/ + 2:2: 2nbn,kgn,k 
n,k~' n~'k~' 

or, equivalently, 

n,k~' 

We observe that En k Ibn k - an kl < 00. Since lilli, ::; 4, Proposition 4.1 
implies that En k Ibn' k - an kl :5' 16, and thus, En klan kl :5 18. 

Thus, the spa~ of '(un k)n' k>' is isomorphic to i' , b~t it is obviously the 
closure of j(X). 0 ' ,-

Proposition 5.3. L' /X is isomorphic to E/Z. 
Proof. Denote by U (resp. V) the quotient map from L' onto L' / X (resp. 
E onto E /Z). Since V 0 j is zero on X, there exists an operator T from 
L' /X into E/Z such that To U = V 0 j _ Since jeLl) is dense in E, the 
image of T is dense, so we are !eft to show that T is an isomorphism. 

Consider x E L' such that liT 0 U(x)lI, < 1. Hence, IIV 0 j(x)lI, < 1 so 
that there exists Y E X with IU(x) - j(Y)IIE < 1. Thus, 

x - Y = 1+ 2: 0ngn ' 
n~' 

where lilli, :5 1, En>' IOnl ::; 1, gn E Mn. From Proposition 4.2, we see that 
En~' Ctn IIgn II , < 00; hence, we can write 

x - Y = / + 2: 0ngn' 
'$n$N 
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where 11/111 ~ 2; and we can assume that gn E 2n convCn . Denote by B 
the unit ball of L I. It follows from (5.3) that 2n In, k E B + X, and thus, 
2n conv Cn C B + X. Since I:n>1 lanl ~ 1, we have I:1<n<N angn E B + X. 
Thus, we can find y' E X such that IIx - y - y'II 1 ~"3.- This shows that 
IIU(x)1I ~ 3 and concludes the proof. 0 

In view of Proposition 5.3, to prove that L 1/ X does not contain a copy 
of L I , it suffices to show that E /Z does not contain a copy of L I. We 
already know that E does not contain a copy of L I , and we will conclude by 
application of Proposition 4.2. From Proposition 5.2, Z is isomorphic to II , 
which is a dual space. We denote by r the weak * topology induced by such 
an isomorphism. Let us fix an ultrafilter W on N. For a sequence (Yn)n>1 in 
Uz = {y E E; lIyll ~ 1, V(y) = z}, we set qJ((Yn)n>l) = Y + limn->ji)!(Yn :" Y), 
where Y is any point of V-I (z) , and where the li~it is taken in the weak * 
sense in Z. It is obvious that (4.10)-(4.13) are satisfied. This completes the 
proof of Theorem 1.1. 

6. QUOTIENTS OF L I BY A SUBSPACE ISOMORPHIC TO II 

In this section, we prove Proposition 1.2. The proof relies on an elementary 
property of II that must have been observed long ago. We provide a sketch of 
a proof for the convenience of the reader. 

Lemma6.1. Consider a sequence (gn)n>I' gn Ell, such that II gnll = 1. Let e > 
O. Then there exists a sequence n(k) such that each finite convex combination 
go/vectors gn(k) satisfies IIgll 2: 1 - e. 
Proof. Let gn = (gn,p)p~I' We can assume that ap = limn-+oo gn,p existsforall 
p 2: 1. We have I:P~I lapl ~ 1. We choose m(O) such that I:p>m(O) lapl ~ ! . 
We then construct increasing sequences of integers m(k), n(k) such that 

.L lap - gn(k),pl ~ i, .L Ign(k),pl ~ i· 
p'Sm(k) p>m(k+l) 

Define bp = sign ap for p ~ m(O), bp = sign gn(k),p for k 2: 1, m(k) < p ~ 
m(k+ 1). Simple computations show that I:P~I bpgn(k),p 2: l-e for all k 2: 1 ; 
this implies the result. 0 

For k 2: 1 , we consider the set 

Bk = U [2/2- k , (21 + 1)2-k[ . 
O'Sl<2k - 1 

Thus, Bk E!:k and E' (1 B) = 1 for I < k. We denote by Sp the collection 
of sequences s = (0'(1), ... , a(p)) such that 1 ~ 0'(1) < a(2) < ... < O'(p). 
For s ESp, we denote by !:(s) the algebra generated by B(1(I) , ... , B(1(p)' We 
observe that each of its atoms has measure = 2-P • For a subalgebra !:' of !:, 
we denote by L~(!:') the set of !:'-measurable functions that are integrable and 
of integral zero. The core of the proof of Proposition 1.2 is the following. 
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Lemma 6.2. Consider an operator T from [I to L I and s = (a ( 1 ) , ... , a (p )) , 
s ESp' Let a> O. Suppose that for each f E L~Cr.(s)) and g E [I, IIgll = 1, 
we have IIf - T(g)1I1 ~ a. Let P < a. Then we can find a(p + 1) > a(p) such 
that if we set s' = (a(l), ... , a(p), a(p + 1)), then for each f E L~Cr.(s')) and 
g E [I, IIgll l = 1, we have IIf - T(g)111 ~ p. 

Proof. For n > a(p), we set sn = (a(l), ... , a(p), n) E Sp+I' Suppose that 
the conclusion of the lemma fails. Then for some p < a and each n > a(p), we 
can find In E L~(r.(sn)) and gn E [I, II gnll = 1, such that IIIn - T(gn)1I 1 ~ p. 
Consider e > 0, to be determined later. Lemma 6.1 gives a sequence n (k) such 
that each convex combination g of the sequence (gn(k))k~1 satisfies 1 - e ~ 

IIgll ~ I. Since each atom of 1:(sn) has measure = 2-p- 1 , the sequence (In)n>1 
is uniformly bounded. There is no loss of generality to assume that the sequence 
(In(k))k?1 converges weakly to some function f. Since 1:(sn) is generated by 
1:(s) and En' where EI(IB) = 1 for n > [, for n > [ > a(p) we have 
Iu In d)" = Iv In d)" for any two atoms U, V of 1:1 that are contained in the 
same atom of 1:(s). It follows that Iu f d)" = Iv f dJ.., and thus, f is constant 
on each atom of 1:(s). Since I f dJ.. = 0, we have f E L~(1:(s)). There is 
a finite convex combination h = 'LakIn(k) such that IIf - hili ~ e. Since 
Ilfn(k) - T(gn(k))1I1 ~ p, we have IIf - T(g')1I1 ~ P + e, where g' = 'Lakgn(k)' 
The choice of the sequence n(k) implies that IIg'il ~ I-e. Let g = g'/lIg'1I , so 
IIg- g'lI = 1-1Ig'1I ~ e. We have IIgll = 1, and IIf - T(g)1I1 ~ P +e(l + IITID· 
Thus, if e( 1 + II TIl) < a - p , this is a contradiction. 0 

We now prove Proposition 1.2. Let T be an isomorphism from [I to X. 
Let a = inf{IIT(g)lll; IIgll = I} > O. We set 1:(0) = {0, [0, In, and thus, 
L~(1:(0)) = {O}. Thus, IIf - T(g)1I1 ~ a for g E [I, IIgll = 1, f E L~(1:(0)). 
Using Lemma 6.2, we construct by induction a sequence a(p) such that if 
s(O) = 0, s(p) = (a(l), ... ,a(p)) for p ~ 1, for each f E L~(1:(s(p))) and 
each g E [I, IIgll = 1, we have IIf - T(g)111 ~ a(rp + 1). 

Denote by 1:' the a-algebra generated by the union of the algebras 1:(s(p)). 
Then Up~1 L~(1:(s(p))) is dense in norm in L~CE'), and thus, IIf - T(g)111 ~ ~ 
for f E L~(1:'), g E [I, Ilgll = 1. It follows easily that for some p > 0, 
we have IIf - gill> p, whenever f E Lb(r.'), IIflll = 1, g EX. Thus, the 
quotient map L I --> L I I X is an isomorphism on Lb (r.') , which is isomorphic 
to L I . The proof is complete. 
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ABSTRACT. We construct a subspace X of LI such that X is an II-sum of 
spaces isomorphic to II but such that L II X does not contain a copy of L I . 
We also construct two Banach spaces E I , E2 that do not contain a copy of 
L I but such that EI x E2 contains a copy of L I . Moreover, the projections 
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of L i on each factor are one-ta-one, and the images of the unit ball of L 1 are 
closed. These examples settle questions of J. Lindenstrauss, P. Pelczynski, J. 
Bourgain, and H. P. Rosenthal. 
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