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1. INTRODUCTION

The study of the structure of the classical Banach spaces C(K), Lf(u),
1 < p < o0, their subspaces, their quotient spaces, and the operators between
them is a central topic of Banach space theory. This paper focuses on the space

L' of (classes of) measurable functions on the unit interval.

In order to put our results in a proper perspective, let us recall a few of
the most remarkable results on L'. A subspace of L' is either reflexive or it
contains a subspace isomorphic to / ' and complemented in L' (Kadec and
Pelczynski [11]). A reflexive subspace of L' is isomorphic to a subspace of L?
for some p > 1 (Rosenthal [20]). Any subspace of L' contains a subspace
isomorphic to /# for some 1 < p < 2 (Aldous [1]). The most challenging
open question concerning the structure of L might be to decide whether a
complemented infinite-dimensional subspace of L' is isomorphic to / Vor L'.
(Interestingly, more is known in the case L?, p > 1 [4].) An important step in
that direction was made by Enflo and Starbird [6]. (See [7] or [12] for a different
approach.) They showed that L' is primary; that is, if L' is isomorphic to a
sum E & F, then either E or F is isomorphic to L'. An easy consequence
of that result is that if a direct sum E & F contains a complemented subspace
isomorphic to L' , then either E or F has the same property.

Each separable Banach space is isomorphic to a quotient of L'. Thus, the
study of quotients of L' naturally focuses on the study of quotients L' /X,
where X has some smallness property; e.g., X is reflexive [13, 18], separable
dual [10], or “bien disposé” [8]. For simplicity, let us say that a Banach space
contains a copy of L' if it contains a subspace isomorphic to L'. The three-
space problem for L' raised in [14] belongs to the same circle of ideas. It is
the following question: If X is a subspace of L', does X or L /X contain
a copy of L'? The result of Enflo and Starbird shows that this is the case
when X is complemented. The three-space problem for L' seems to have
been the main motivation behind the papers [5, 2, 9, 10, 22] which contain
many interesting results. In particular, Bourgain and Rosenthal [5] have shown
that either X contains a copy of L' or L'/X contains a copy of / ' and
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10 MICHEL TALAGRAND

Bourgain [2] (actually looking for a counterexample) proved the remarkable

fact that L' /H ! contains a copy of L',
The first main contribution of the present paper is the construction of (fam-

ilies of) subspaces X of L' that are small as Banach spaces (actually have the

Radon-Nikodym property) but such that L' /X does not contain a copy of L.
Also raised by the result of Enflo and Starbird and its consequences mentioned

earlier is the following. If a direct sum E & F contains a copy of L , does FE
or F contain a copy of L' ? The other main contribution of the present paper
is a negative answer to that question.

Theorem 1.1. There exist two subspaces X,, X, of L' that are isomorpkic to
an 1'-sum of spaces isomorphic (but not uniformly isomorphic) to I' such that
L' /X, and L /X, do not contain a copy of L' but that the canonical injection
of L' in LI/Xl X LI/X2 is an embedding.

In particular, X,, X, have the Radon-Nikodym property and, in particular,
do not contain a copy of L'. Ifa subspace X of L' is isomorphic to a dual

space, it does not seem to be known if L /X contains a copy of L'. We,
however, have the following.

Proposition 1.2. Ifa subspace X of L' is isomorphicto I', then Ll/X contains
acopyof L'.

The following is related to [17, Problem 8.3] and remains open.

Problem 1.3. Consider a compact metric space S. Denote by C(S) the space of
continuous functions on S and by M(S) = C(S)" the space of signed measures
on S. Consider a weak® (= a(M(S), C(S))) closed subspace X of M(S).
Suppose that X is a subspace of Ll(,u) for some probability measure u on S.
Does Ll(u)/X contain a copy of L'

Following [15], we say that a (linear, bounded) operator T between two
Banach spaces £ and F is a semiembedding if it is one-to-one and if the
image of the unit ball of FE is closed. The following result, which is obtained
by a variation of the construction of Theorem 1.1, answers questions of [5].

Theorem 1.4. There exist two Banach spaces E,, E, that do not contain a copy
of L' but such that L' embeds in E, x E, in such a way that the restrictions
to L of the projections on E, and E, are semiembeddings.

Once the proper approach has been found, it is a matter of standard (unin-
spiring) technique to reduce the proof of these theorems to a central statement
concerning a remarkable family of functions on [0, 1]. This statement, which

could be of independent interest, is the main new ingredient of this paper.
Consider the family F, of all the functions of the type

1 ino(i)
T > (=n2",

0<i<2n—-1
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for any sequence ¢(0) < o(1) < --- < 0(2n — 1) of integers, where the sets
I, are dyadic intervals of length 27°0) and where the sequence I,....L,_,
decreases. Then (Theorem 3.3) given ¢ > 0, for n large enough and any

function f in the convex hull of F,, the set where |f| is greater than ¢ has
Lebesgue measure <¢.

2. THE APPROACH

We say that an operator I" between Banach spaces X and Y fixes a copy of
L' if X containsa copy of L' on which the restriction of T isan isomorphism
on its image.

We denote by 4 Lebesgue’s measure and by X the c-algebra of measurable
sets. To simplify notation, for 4 € Z, we write |4A| = A(4).

Consider an atomless subalgebra X' of £ and A€ X', |4] > 0. We denote
by L(',(A , Z') the subspace of L' that consists of ='-measurable functions that
are zero outside A and such that [ fdA = 0. Central to our approach will be
the following theorem proved by Rosenthal [21], using the techniques developed
by Kalton in [12].

Theorem 2.1 [21]. Consider a Banach space E and an operator T from L' w0
E that fixes a copy of L'. Then for some & > 0, some atomless subalgebra
T of T, and some A € T, |A| > 0, we have |T(f)|| > S||f|l, whenever

feLy4,z).

The application of this theorem to the three-space problem is as follows.
Corollary 2.2. Consider a subspace X of L'. The following are equivalent.
(2.1) The quotient map L'— Ll/X does not fix a copy of L' .

(2.2) Foreach 6 >0, each atomless subalgebra ' of T, and each set Ac X',
|| > 0, there exist f € Ly(A,X) and g € X such that |f|, > L and
Nf-egll,<o.

1

The choice of 1 in the condition ||f]|, > § is for convenience, any other
positive number would be suitable.

Our approach will simply be to construct families of functions that satisfy
(2.2) and then to take for X their closed linear span. While a priori this
construction would only ensure that the quotient map L' - /X is not an
isomorphism on any space Lé(A , Z'), Corollary 2.2 implies that it does fix any
copy of L' , and the fact that L /X does not contain L' will then follow by
a lifting argument (made possible by the special structure of X). The prob-
lem reduces then to finding an appropriate device that will prevent X from
containing L'.

As a first step toward (2.2), we shall construct a countable family of functions
C, that satisfies the following condition.

(P,) For each atomless subalgebra T of T andeachset Ac Y, |4]>27",

there exist f € Ly(4,X) and g € C, suchthat ||f], > { and |f-gll, <27".
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The purpose of the restriction |4] > 27" is to allow C, to be uniformly
bounded. How can we control the linear span of C, ? Since we are allowed an
error of 27", there is nothing to lose by adding on another error of 27" . We
add to each function in C, a function of the type 27"|B|™'1,, where |B| is
very small. This can be done in such a way that C, becomes 2"+ _equivalent
to the unit basis of /' while it still satisfies (P,_,) . Thus, we can control the
span of each C,. However, X has to contain infinitely many families C,
in order to satisfy (2.2), and another idea is still needed there. This idea is to
control the situation using convergence in measure. The functions of spanC, _,
will be very “peaky” (that is, they will be essentially supported by very small
sets), compared to those of spanC, , and the span X of |J,,, C, will thus be
isomorphic to the /'-sum of the spaces span C,;so X will be an / sum of

spaces isomorphic to I'. The idea of using a convergence in measure for such
a purpose is not new. It has been successfully used in the work of Roberts [19]
and subsequent work, e.g. [3].

How are we to choose the class C,? The results of [9] indicate that we
should not use functions f for which ||f]l and [ f]|, are of the same or-
der, so it is natural to use functions f for which |f| resembles the function

(x log(l/e))_l l[e, 1] for ¢ small, or, more conveniently,

1 m—1 1
1
";l' Eo 2 l[z—i_',Z_i[
1=

for m large. How are we to choose the sign of f? Here there are several
possibilities, but it turns out that one of the simplest choices, which is to take
f resembling Ef:g H=1)h2*! 15-i=1 ,-if » is suitable for our purposes.

We denote by % the collection of the dyadic intervals [lZ‘k , (I + 1)2"‘[,
0<1!<2 and by X, the algebra they generate. For f € L', we denote
by Ek( f) its conditional expectation with respect to X, , so, for I € .7, the

constant value of EX(f) on I is 2 [, fdi.

We now describe our basic class D, of functions (we will have C, = D, .,
for a fast growing sequence (q(n))). Consider a sequence B, ..., B, | of
sets and a sequence o(0) < --- < d(2n — 1) of numbers with the following
properties:

(2.3) B;is Za(,.) measurable.
(24) For0<i<2n-1, E°U(1, )=4l,.
This latter condition means that B, , C B; and that for each I € .7,

a(i)?
IcCB;,wehave |INB, |=1I].
We set

1 ini
(2.5) g= > (=121, .
2n|B |0$i52n—l '
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If we set B, =, we observe that

1
(2.6) g=5—=7 2. &lgy
2n|Bo| 0<i<an—1 i"B)\ i+l
where @, = Yo ,c;(—1)'2' = (-1)2"" + 1)/3.
We denote by D, the class of functions given by (2.5) for all possible choices
of By, ..., B,,_ , thatsatisfy (2.3), (2.4), and |B,| > 27" . We observe that

2.7) g=D,=|gl,<2".

This might be the place to mention that throughout this paper we always
use the simplest estimates sufficient for our purpose, even when they are rather
crude as in (2.7).

We also have

(2.8) geD, =gl 2.
Indeed, since |B;| = 2"i|Bol )

1
||g|l|=m Z |a,||B\B, |

0<i<2n—1
i+1 i .
2 1 2 + (—l) 2—1—1|B0|
2n|B| 0<i<2n—1 3
1 ( Z im—i=1 1
= — (1+(-1)2 ))>—
6n 0<i<2n—1 3

since 20<i<2n—l(_1)i2_i—1 > 0. We now prove that property (P,) (and even
more) holds.

Proposition 2.3. Consider an atomless subalgebra £ of £ and aset A€ ¥,
|A| > 27" . Then for each n > 0, there exist f € L(l)(A ,X) and g € D, such

that ||f —gll, <n.

It is not stated here that we control ||f]|, , but of course || f||, > ligll, =7,
and, as we can take 5 < {5, we have from (2.8) that ||f]|, > ;.

The proof of Proposition 2.3 is a simple exercise. It will rely on the following

lemma.
Lemma 2.4. Consider n > 0, A€ X, ¢ >0, kK >0, B € X such that

|AAB| < €. Consider A' C A such that for all I € F, we have |4'nI| = 3lANI].
Then we can find m > k and B' € £, B' C B, such that |A'AB'| < 4¢ and
E(1,)=11,.

Proof. Consider first 4, = A' N B. Since A\4, = A\B C A\B, we have
|A'\4,| < ¢, and thus |4'A4,| < ¢. We consider now aset A,€ X, 4, C 4, C
B, such that whenever I € %, I C B, we have

l4,nI|=4I;  AnA,nI=A NIl (=4'nI).
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Since 4,N A=A, , we have 4,\A4, C B\A, and hence |4,\4,| < ¢, so that

|4,A4,| < e. Wecan find m > k and B, € £, such that |B/A4,| < 27e.
For each 1 € %, 1 C B, we have

—k—

1 -k
1B, NI =27 = 1B, n 1| - |4, n 1| < |B,A4| < 27%e.

Clearly, we can find B'€ X, , B'C B, such that forall € %, I C B,
|B'n1j=27%"

It follows that |B'AB,| < ¢. Thus,

=LB'nI|;  |(BnDAB NN <27 .

|A'AB'| < |4'A4,| +|4,A4,| + |4,AB,| + |B,AB'| < 4e. D

Proof of Proposition 2.3. Let ¢ > 0 such that ¢ < |4| —2™". By induction
over i, 0 <i<2n-1, we construct numbers a(i), sets 4;, B, that satisfy
conditions (2.3), (2.4), and the following:
Ag=A; A, C4;5 A, €T |4,|=34]; |4AB|<4e.
To start the induction, we take B, € Za(o) such that |4AB)| <e¢.

Suppose that 4;, B;, a(i) have been constructed. Since T’ is atomless, its
restriction to A4, is atomless. By Liapounov’s convexity theorem, we can find

/
A,,,CA;, A, €X, such that
/ 1,dA=|4,, 1| =34,nI]
i+l
forall 7 € %, . In particular, |4, | = 114;|. By Lemma 2.4, we can find

o(i+1) > o(i) and B, € X,,,,) such that |4
E°™Y, )= 31, . This completes the construction.
The function

AB, || < 4|4,AB,| and

i+1

1 ini
S =557 (-121,
2n|By| oggz:n—n 4
is X'-measurable and supported by A, = A. Moreover, since |4,| = 2'i|A0|

for i<2n-1,wehave [ fdi=0. Thus, f€ LO(A ,Z). We consider the
function

1 ini
g=n— 3. (=121,
2n|B,| 0<i<2n—1 '

By definition, g € D, , since |By| > |A| —& > 27" . Moreover,

1 .
“f"glll = anBol E 21"13', - 1,4,."1

0<i<2n-—1
1 iy
< > 24e=c(n)e
2n|B0| 0<i<2n—1
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for some number c(n) depending on n only. Since n is fixed, ||f — g, can
be made arbitrarily small. O

3. CONTROL IN MEASURE

We denote by conv D, the absolute convex hull of D, , i.e., the set of func-
tions >, ; ¢, f;, where L is a finite set, f,€D,, >, l¢|<1.
The cornerstone of our construction is the following.

Theorem 3.1. Given ¢ > 0, there exists n > 0 such that each function f in
conv D, satisfies |{|f| > e}/ <e.

The proof will show that one can actually take n of order ¢ ° log(%) . This
estimate (that has no reason to be sharp) is irrelevant for our purposes.

The proof of Theorem 3.1 will be considerably clarified by the fact that
D, is contained in the convex hull of a family F, (briefly considered in the
introduction), which has the property of Theorem 3.1, but that consists of
functions much simpler than those of D, . We recall the definition of these
functions now. Given x € [0, 1] and k£ > 0, we denote by I(x, k) the
unique dyadic interval / € .7, that contains x. Given an increasing sequence

oc=(000),...,02n-1)), 0(0)<a(l)<---<0o(2n-1), we set
(3.1) f(x,0)= '21—,, > =027 0 -
0<i<2n—1

The reader might have observed that (f;(x, 6))<,., is a martingale differ-
ence sequence. Unfortunately, the filtration ():.0(21.))0< i<n With respect to which
it has this property depends on f; this seems to prevent any simple use of

martingale theory to prove Theorem 3.3. Since |I(x, o(i))| = 2770 we have
If(x, o), £ 1. It is worthwhile to note that if C = I(x, o(2n — 1)), we have

Ea(i)(lc) - za(i)"“(z"—')ll(x,a(i)) , and thus,
1 =1 ot
(3.2) fxio)=5- > SET(C).
2n 0<i<2n—1 IC]

We consider the class F, of all functions of type (3.1) for all possible choices
of x and 0.
Proposition 3.2. The convex hull of F, contains D, .

Proof. Consider g given by (2.5). From condition (2.4) we see that for 0 <
i<2n-1, we have

I gt 2 5
1Byp_i] (g, ) B, (g, ) AR
so that
! (=1 o)
(3.3) g = — Z E (lB '
2n oy 1Bl -1
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We can write B,, | asadisjointunion B,, , =U,; C;, C,€5,, , . Thus,
(3.3) becomes

_ 1 1 =1 ot
g_cardL£(2n Z IC)| (lq))

0<i<2n-1
and, from (3.2), this shows that g belongs to the convex hull of F,. O
Thus, in order to prove Theorem 3.1, it suffices to prove the following.

Theorem 3.3. Given ¢ > 0, there exists n > 0 such that each function f in
conv F, satisfies |{|f] > ¢e}| <e.

Before we can start the proof, we need some notation. In the entire sequel,
n is fixed. We denote by S, the collection of sequences ¢ = (0(i))g<;<an—1 >
d(0)<o(l)<---<0o(2n—1). For 0<i<n, 0 €S,, we set

_ Aa(2i) o(2i+1)
Silx,0) =271, oy — 2 Lix,oisny) -

For p < n, we set

fE 0. =0 3 fix,0)

0<i<p—1
1 ina(i)
=5 > (02 -
0<i<2p—1
Thus, f(x,0,n) = f(x,0) and | f(x, o, p)|l, < p/n. The main ingredient
of the proof of Theorem 3.3 is the following.

Proposition 3.4. Consider a finite index set L and numbers ¢, with 3, |c,| <

1. For | € L, consider x, € [0,1], 0, € S,, p; < n. Consider [ =
3r+7

Yier6f(x,,0,,p) and r > 0. Assume ||f]l, > 27" and n > 3(r + 1)2

Then we can find A € Z, |A| < 2% and numbers g, < p, that satisfy the
following conditions:

1 1 —r—
(3.4) o E ¢4, < o E cp =2 =t
leL leL

(3.5) The function f =3, ¢,f(x,,0,,4,) coincides with f outside A.
Observe that, since ||f(x, o, p)ll, < p/n, we have || f]|, < %Z,GL lc/lp, - 1f

we think of 1 2 ieL l¢/lp, as measuring the size of f, this means that outside

the very small set 4, f coincides with the function f', which has a size
significantly smaller than the size of f. Iterating the procedure will yield the
proof of Theorem 3.3.

Proof. Let us first single out the main ingredient of the proof. For a function
g, gl <1, k>0,and o> B, let us set

A(g, k,a,B)={x;3Im0) <---<m2k-1);Vi, 0<i<k,
E™(g)(x) 2 a; E™*V(g)(x) < B} .
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Then

k
(36) g ko Bl < (155) -

This follows, e.g., from an upcrossing inequality of Dubin as in [16, p. 27]
applied to the positive martingale E"(1 — g). Let us note also that (3.6) can
be easily proved directly by induction over k and that we can even replace
the bound of (3.6) by ((1 -a)/(1 - ﬁ))k((l +B)/(1+ o:))k'1 (which makes no
difference for our purposes).

Consider g =sign f, so ||g]l,, < 1. We have

2 <= [fedi=5 T T [efix0)di.

leL 0<i<p~1

We set k = 3(r+ 1)2"”3 . For [ € L, denote by g, the largest integer < p, such
that

card{i: 0<i<gq; fgf,.(x,, a,)d122_'—l} <2k

Denote by L' the set of / € L such that g, < p,. For / € L', we have

(3.7) card{i: 0<i<gq; /gfi(x,, o) dA > 2_'_'} =2k

We observe that
k k
821, ndi=E"(g)x).
(x, k)
Thus,
2i 2i
/ gfi(x;, a) = E"®(g)(x)) - E"**V(g)(x)) .

Hence, when [ gfi(x,, 6,)>2"""", we can find an integer —2"** < 5 < 2"*?

h that e
Suc. a

3.8) E"®@)x) > s+ 12772, E" (g (x) <5272
1 1

Thus, (3.7) shows that for / € L', we can find s, —2"*> <5 < 2%, such
that (3.8) holds for at least k indexes i < g, — 1. Hence, we have

).

—r-2

—_—y—

I(x,,0,2q,- 1) C A, = A(g, k, (s +1)277%, 52

From (3.6) we have

—r=2\k Y
4] < (l—(s+l)2 ) S(l_z—r—?))kSe—kZ 352—3#—3‘
: 1-527""2

We define 4 = {J_,r2, 2 4, s0 that |4] < 27%  and we have I(x,, 0,(i))

C A for i > 2q,, and hence f and f = YL lelf(x;, 0,5 q;) coincide outside
A . Since foreach /€ L,

| [ esn, a,)dA‘ < NglollfiCxn ol < 2,
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we have

This implies that E,EL ¢ fgf(x, ,0,,4,)dA
[ gfdi>2"", this implies that

2—r—l < ZCI/g(f(x[s U[aP[) "f(xp a, q]))a"1
(39) leL
< Zlcllllf(xl, 0,,D))— f(xp g, ql)lll .

IeL
Now | f(x;, 0/, p) = f(x;, 0, q)ll; < %(p, —¢;), and thus, (3.4) follows from
(3.9). O

We now prove Theorem 3.3 and, actually, the following more precise state-

ment. Consider r > 0, and suppose that n > 3(r + 1)23'+7. Consider a finite
index set L, and for / € L, consider x, € [0, 1], 0, € S,, ¢, € R. Assume

el 1. Let f=Y,.,¢,f(x;,q). Then |{|f] 227"} <27"/**?2.
By induction over k, k > 0, we will construct numbers (p,k) leL s 0< p,k <
n,and sets A, € T’ that have the following properties:

1 k1 k-1 —r—1
(3.10) ;1—2|c1|p1 < ZZ|c,|p, -2,
leL leL
|4,] < 27 , f and fk = e f (x5 0, p,k) coincide outside A;( = Uisk A;.

To start the induction, we set p? =nforlel, 4,=9.
The induction step is done by applying Proposition 3.2. The construction

stops at the first value of k for which |f*||, <27". Thus, |[{|f*| >27"7%}| <
27"% | From (3.10), we have

1 k —r—1
< - -
0<—> lolp S1-k27",
leL
and thus, k < 2™"'. Hence, we have |4}] < k27 < 27! Since f and f*
coincide outside A , we have |{|f] >27"/?}|<27?+27" < 2> o

4. THE THREE-SPACE PROBLEM

Our task is, as described earlier, to construct small perturbations of the func-
tionsin D, in such a way that their span will be isomorphic to / L. By induction
over [ > 1, we construct a sequence ¢(/) and a disjoint sequence (B;) of mea-
surable sets that satisfy the following conditions:

(4.1) 0<|B|<27~D72=2,

~21 -l .
(4.2) VfeconvD,,, [{If1227} <2 lr’n<1}1|Bi|.
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We start the induction with B, = [0, 2_4] . At each stage of the construction,
we pick ¢(/) such that (4.2) holds, using Theorem 3.1, then B, , satisfying
(4.1). We consider an enumeration (f, Wiy of €, = D, - We consider a
one-to-one map ¢ : NxN — N, and we set A(n, k) = BW’,C) . Finally, we set

—n 1
k= Joxt2 mlA(n,k) :

Thus, ||g, ., 1+27"<2,and |ig, , — f, ./, <27".
Proposition 4.1. Consider a family (a, ,), k>1 ©Of numbers. Assume that

—n .
anl 27 Y lan',kl < 00. The‘n the series 3, (34> @y x8,.x) cOnverges
in measure. Denoting, for simplicity, its sum by Y, ,~,a, &, ,» We have

(4.3) D @y 8k (Sl= > 27a, <4,
n,k>1 n,k>1
Proof. For n > 1, let b, = Zkylan’kl, so that ZnZlZ'"bn < o0o. Let

. = Ekg; an,kfn,k , so that h, € b, N,, where N, is the norm closure of
conv C, . It follows from (4.2) that the series En>l(zk>l . k8n ) converges

in measure. From (2.7) we have that ||4,|| < bn23q(") and thus, for / > n, by
(4.1),

—[-n-2
n .

(4.4) /B b |di<b 2B <b 272 <p 2
1
Let A, = |{|h,| > b,27*"}|. From (4.2), we have
—-n—1 .
|4, <2 r‘nsl'? |B;| .
Let A =\J,., A . Since |4 | <27"'|B)| for n>1,wehave |4)| <27'|B,| <
) n>l*“"n n ) l !
|B)|/2. Let B, = B\A,. Thus, for / <n,
(4.5) '/B’ Ihnldj’ S bn2—2n|B[I| S bnz_l—n—z .
!
From (4.4) and (4.5) we see that forall /, n>1,
/B Jhylda<b,2 TR
!

Thus, we have

(4.6) /

Consider now 7, s > 1 and /= ¢(r, s). We have B,NA(n, k) =@ unless
n=r, k=s. So, since |B)| > |B,|/2, we have

-n 1
L2 27 iy @iz [

1'n,k>1 1

di=

Zanknk

n,k>1

Zh ld1<2_1 2327,

n2>1 n>1

I I

1

—r—1
r,sTEITIB I

-r
2 a a, .
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Thus, with (4.6) we get

/B Eankgnk

tn,k>1

di>2""Ya, |-2772Y 27", .

n>1

Summing this inequality over all the values of r, s gives, since the sets B,'

are disjoint,
1 - 1 -
23 Z 27a, |- 22,270, =7 2 2"la,,l. O

r,s>1 n>1 n,k>1

n,kgn,k

A consequence of (4.3) is that for each n and each sequence (a,) of num-
bers, all but finitely many zero, we have
< 2 Z la,]| -

—n—2
" Zlakl < Zakgn k
Thus, the closed linear span H, of the sequence (gn k)k>1 1s isomorphic to

k>1 k>1

I' . We now show that the span of the spaces H, is isomorphic to their / !sum.
Proposition 4.2. For each sequence h, € H, that is eventually zero, we have

o5 Sl Il < STl

n>1 n>1 n>1
Proof. It is enough to consider the case where each function 4, is a finite
sum . .,4, .8, »- We have to prove that if |3 . A,ll, < 1, we have

> a>1 Ik,ll; < 20. From Proposition 4.1, we know that 3, ,-,27"|a, ,| <
4. Since ||g, , = f, kIl = 27", we have ||, 4,ll, < 5, where u, =
. n+2
Ek?_lan,k n, k- Since EkZI la, | < 2
2"*2 conv C, . Thus, Proposition 4.2 is a consequence of the inequality
-n

DUkl S DNl + Y 27a, (I <D lnll +4

n>1 n>1 n,k>1 n>1
and of the following.

, u, belongs to the closure of

Proposition 4.3. Consider a sequence u, € 2"2N | where N, is the closure of
conv C, . Then the series ) . u, converges in measure and if its sum belongs

> luglly <1 w,

n>1 n>1

Proof. From (2.7), we have |ju, | < 23am+n+2 g 4 = {lu] > 2_,,+2}.
From (4.2), (4.1), we have

14,] <27"7 "B, | < 272"

Hence, if we define A; = U5, 4;, we have |A;| < 273M=31=2 " and thus,
for i<n,

(4.7) /A’ lu, | dA < 23q(i)+i+2lA;| <o

to L', we have
+6.

1

3n-3
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We define L, = 4,\A,. For i >n, since |u,| <27"** on L , we have
—i+2 —i=2
/ | dA <2 | <2772
L”

Thus,
di<n2™ 42 227",

pBLY

i#n

/Ln wldis [

Summing over n gives, since the sets L, are disjoint,

(4.8) Z/L u,ldi< S,

n>1 n>1

J

n

and hence,
di+27".

2

i>1

n

+1.
1

2—n+2

Since |u,| < outside 4, , using (4.7), we have

(4.9) I I, < / lu |dA+27"2 427
L’I
From (4.8), this shows that 3. -, |lu,|l, < | 2,5, %,l,+6. O

We now prove Theorem 1.1. We denote by X, (resp. X,) the closed linear
span of Un>1 H,, (resp. UnZl H,,. ). From Propositions 4.1 and 4.2, both
X, and X, are isomorphic to an / !_sum of spaces isomorphic to / ! (and thus
do not contain L').

We prove that the canonical map from L' to (Ll /X,) x (Ll /X,) is an
embedding. Let f € L', and suppose that for fi € X|, f, € X, we have
If=All, <1, If = £l £ 1. Then ||f, - £,|l, £ 2. However, Proposition 4.2
implies that ||f,|l, + ]I, < 40. Thus, ||f||, < 1+|f;|l, < 41, which proves
the claim.

It follows from our construction, Proposition 2.3, and Corollary 2.2 that for
X = X, or X,, the quotient map 7 from L' onto L'/X does not fix a copy
of L'. It remains to show that L' /X does not contain a copy of L'. The
proof, which will be given at the end of §5, relies on a well-known compactness
argument. This argument will be used twice. To avoid duplication, we present a
somewhat abstract statement (in the spirit of [10]) that will cover all our needs.

Proposition 4.4. Consider an operator T from a Banach space Y onto a Banach
space Z. For z€ Z, |z| <1, lee U, ={yeY; |y| <1, T(y) = z}.
Suppose that for some constant K, to each sequence (y,),~, € U,, we can
associate a point ¢((y,),>,) € Y with the following properties.

(4.10) If x, =y, for n large enough, p((x,),,) = P((V,)s1) -
@.11) [lp()ps )l < K.
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(4.12) T(9(Wp)nz)) = 2.
(4.13) Ify,€U,, y, €U,, we have

o (%)Zl) = 210(0)2) + 00,50

Then if Z contains a copy of L', T fixes a copy of L.
Proof. Since Z contains a copy of L', there exists an isomorphism ¥ from
L' into Z , and we can assume that ||[V|| < 1. For I € 5, k > 1, let
a,=V(2“1,). Thus, |la,|| < 1. Take b, € U, -

Forle % ,n>k,setbh, =2k_"ZJ€J’JC,bJ and b, , =b, for n<k.
Obviously, b, € Ua, . If I, I, are the two elements of .7, 41 contained in 7,
we clearly have for n > k+1,

(4'14) bl,nz%(bll,n-’-blz,n)'

We now set ¢; = ¢((b; ,),>,)- From (4.11), |l¢;|| < K. From (4.10), (4.13),
(4.14), ¢, = (C’. + c,z) From (4.12), T(c;) = a,. Thus, one can define an
operator W from L' to Y such that W(2k1 ;) =¢ for I € 4, and this
operator satisfies |W| < K, V=T o W . Since V is an isomorphism, T is
an isomorphism from W(Ll) to its image, and thus 7T fixes L'. o

5. SEMIEMBEDDINGS

In this section, we denote by M, = 2" N, the absolute closed convex hull of
2" C, = 2" D,,, - We denote by L° the space of all measurable functions on
[0, 1]. We provide L° with the topology of convergence in measure. We denote
by G the set of all functions in L° that can be represented as f, +> ., a,8,,
where f| € L', Al <1, g, €M, 3 <, la,| < 1. Weobserve that the series
Y n>1@,8, converges in measure and that G is bounded in L°. We denote by
N the gauge of G, given by N(4) = inf{a > 0; h € aG} if this set is nonempty
and N(h) = oo otherwise. We set E = {h € L% N(h) < oo}, and we provide
E with the norm N. Since G is bounded in L° , E is a Banach space, and
the canonical map j from L' to E is one-to-one. Since the unit ball of L'

closed in L°, J is a semiembedding. If we consider the space E, (resp. E,)
constructed like E but replacing the condition g, € M, by g, € M,, (resp.

g, € M,, ), Proposition 4.3 shows that the canonical injection from L' into

E, x E, is an 1somorphlsm Indeed, if f € L', and if we have fi» L€ L',
llf,llp lllell <1, g, €M, such that f = f + 2ozt 8an = So+ X0 8anat 0
then ZnZl( N'g, = 1 —fl so that 3 |lg,ll, <8 and | f||, < 9. Thus, in

order to prove Theorem 1.4, it suffices to show that E does not contain L'.
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We know by our construction, Corollary 2.2, and the fact that ||j(f)||, <27"
for f e Dq(n) that j does not fix a copy of L'. Suppose that there is an
isomorphism ¥ from L' to E. We can assume I¥|l < 1 and that we have
V(NI > 6|l fll, for some 6 > 0. We will show that j must fix a copy of

L', thereby concluding the proof. The first part of the argument will be the
application of Proposition 4.4 to an auxiliary space which we construct now.
We denote by X, the Banach space UleR AM, provided with the norm

given by the gauge |- ||, of M,. We denote by P, X, the / !_sum of the

spaces X, . We denote by Y the space L' x (D, X,) provided with the norm
II(f gn))ll = max(||fll, Enzl llg,ll,) - Consider ‘the operator 7: Y — E
glven by T((f, (g,)=f+>,>1 &, Clearly, |T||<1,and T is onto.

Let z € E, |z|| < 1, and consider a sequence y, = (fi, (&, ;)n>) D
U={yeY; |yl<1, T(y)=z}. Hence, for each k,

(5.1) z=fk+Zgn,k.
n2>1
Let us fix an ultrafilter Z on N. Since M, is convex, uniformly bounded,
and closed, it is a(Ll , L®)-compact, and we can consider g, =lim,_, 8n k>
where the limit is taken for this topology. Let f=2z~-3_ ., g,. We show that

Ilfll, £1. Given m > 0, we can find coefficients ¢, , all but finitely many zero,
with ), o, =1 such that

8= 2 %8k
k>1
for all n < m. We have from (5.1)

(52) f=> o fi=-3. (gn —Zakgn,k> D 8t DD k-

k>1 n<m k>1 n>m n>mk>1

< —m

By definition of U, and the definition of the norm of Y, we have |||, < 1
for all k ; thus, (5.2) shows that f belongs to the closure in measure of the unit
ball of L';thus, ||f]|, <1.

If we define ¢((y,),>,) = (f,(g,) € Y, it is obvious that (4.10)-(4.13)
hold (with K = 1). Thus, from Proposition 4.4, we can find an operator W
from L' to Y suchthat V=T oW .

The second part of the argument is crystalized in the following lemma. For
m > 1, denote by Y, the subspace of Y consisting of the y = (f, (g,)) such
that g, =0 whenever n > m.

Lemma 5.1. Consider an operator W from L' to Y. Then for each ¢ > 0,

there exists an m, a set of positive measure A, and an operator W' from L'
to Y, such that |W(f)- W' ()|l < el f| whenever f is supported by A.

Before we prove this lemma, let us conclude the proof of Theorem 1.4. Recall
that [V ()|l = || fll, for f € L,. We apply Lemma 5.1 with ¢ =J/2. Thus,
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when f € LI(A) , the subspace of L consisting of functions supported by 4,
we have

ITeW(f)=ToW (NI <SIA -

Since [|T o W(N)| =V = 8IIfll; , we have ||T o W'(f)]| > $|If]l;, when
f € L'(4). We observe now that T(Y,) c L' and that T: ¥, — L' is
bounded. Considering now T o W' as valued in L , we have

ljieToW (N2 s IT o W (N,

B> s

so that j fixes T o W'(L'(A4)). This completes the proof. O

Proof of Lemma 5.1. Denote by =, the canonical projection of Y on X, , and
let W, =mn, oW . By definition of the norm of Y, for f € L', we have

SN, < IWNI -

n>1

For n > 1, k > 1 define a X, -measurable function hn’ « by hn, 0 =
“]'l“[W(l M, for x eI € A. Thus, 3 5 h, , < |[W|. For each n, the
sequence (h, k)k>l is a supermartmgale denote by h, its limit a.e. Clearly,
21y < |W|.For I€X,, n>1, we have

1w, ()l =/lh,,,kdzls/1,h,,d,1.
Thus, by approximation, for any f € L', we have
1w,(0ll, < / 1k, di.

Thus, for any m,

> 1,0l < [11(X 4, ) di-

n>m n>m

Since Zn>l . < IW||, for any ¢, we can find m large enough that |4| > 0,

where A = {En>m . < &} . If we denote by W' the composition of W and
of the canonical projection of Y onto Y, , for f supported by 4, we have

W) =Wl < T, < [ 17edi<ell,

n>m

This completes the proof. 0O

We now turn back to the proof that L' /X does not contain a copy of L'.
We denote by Z the closure of j(X) in E.
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Proposition 5.2. Z is isomorphic to I' .
Proof. Since
1
(5.3) 28, i = TAQ, R)] ek +2"f, ks

the definition of || -||; shows that |lu, |l < 2, where u, , = j(2"g, ,)-
Consider now numbers a, ,, all but finitely many zero, and suppose that

Il E,,,kz, a, i, llg < 1. By definition of the norm of E, we can find f € L,
I, <2, g, €M,, (a,),>1 » With > la,| £ 2 such that

Z an,kun,k = f+Zangn .

n,k>1 n>1

There is no loss of generality to assume that g, € 2" conv C, . Thus, we can

write
n
C'ngn = 22 bn,k n, k>
k>1

where >, 5,16, ;| < @,, and thus, >° -, 1b, ;| < 2. Hence, using (5.3)
again, for some f e L', ||f'||, < 4, we have

Z 2nan,kgn,k = fl + Zzznbn,kgn,k

n, k21 n>1k>1

or, equivalently,
n
Z 2 (bn,k —an,k)gn,k = _fl'
n,k>1

We observe that 3, ,|b, , —a, | < . Since ||f'||l, < 4, Proposition 4.1
implies that 3, |b, , —a, ;| <16, and thus, }° ,|a, ,|<18.

Thus, the span of (u, ,), >, is isomorphic to I', but it is obviously the
closure of j(X). O

Proposition 5.3. L' /X is isomorphic to E/Z .

Proof. Denote by U (resp. V) the quotient map from L' onto L'/X (resp.
E onto E/Z). Since V o j is zero on X, there exists an operator 7 from
LI/X into E/Z such that ToU = V o j. Since j(Ll) is dense in E, the
image of T is dense, so we are left to show that T is an isomorphism.

Consider x € L' such that ||T o U(x)||, < 1. Hence, ||V o j(x)|l, < 1 so
that there exists y € X with |j(x)— j(y)|lz < 1. Thus,

x—y=f+)_ 8,
n>1

where || f]|, <1, X} ,5,le,/ <1, g, € M,. From Proposition 4.2, we see that

2on>1 2,118, ]l < o0o; hence, we can write

x-y=f+ > a,8,

1<n<N
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where ||f'||, < 2; and we can assume that g, € 2"convC,. Denote by B
the unit ball of L'. It follows from (5.3) that 2" fn « € B+ X, and thus,
2"convC, Cc B+ X. Since Ysile,l <1, wehave 3, ya,8, € B+X.

Thus, we can find y' € X such that ||x —y — /||, < 3. This shows that
lU(x)|| < 3 and concludes the proof. O

In view of Proposition 5.3, to prove that LI/X does not contain a copy
of L', it suffices to show that E /Z does not contain a copy of L'. We
already know that E does not contain a copy of L', and we will conclude by
application of Proposition 4.2. From Proposition 5.2, Z is isomorphic to / ! ,
which is a dual space. We denote by 7 the weak ™ topology induced by such
an isomorphism. Let us fix an ultrafilter Z on N. For a sequence (y,),, in
U ={yekE; |yll<1, V(y)=1z}, weset p((y,),>,) =y +lim,_, 1, -»),
where y is any point of V—l(z) , and where the limit is taken in the weak *
sense in Z . It is obvious that (4.10)-(4.13) are satisfied. This completes the
proof of Theorem 1.1.

6. QUOTIENTs OF L' BY A SUBSPACE ISOMORPHIC TO /'’

In this section, we prove Proposition 1.2. The proof relies on an elementary

property of / ! that must have been observed long ago. We provide a sketch of
a proof for the convenience of the reader.

Lemma 6.1. Consider a sequence (g,),~,, &, € I', such that llg,ll=1. Let ¢ >
0. Then there exists a sequence n(k) such that each finite convex combination
g of vectors Enik) satisfies ||g]|>1—¢.
Proof. Let g, = (g, p) 31+ We can assume that g, = lim,_, g, o exists for all
p > 1. We have Y o> |a | < 1. We choose m(0) such that }:p>m(0) [a |<%.
We then construct increasing sequences of integers m(k), n(k) such that
Z Iap Enik), pI < Z |gn(k),17l = % :

p<m(k) p>m(k+1)
Define b S signa for p < m(0), b = signgn(k) for k>1, mk)<p<
m(k+1) Simple computatlons show that 25108y, 2 16 for all k>1;
this implies the result. O

For k > 1, we consider the set
B= |J 7%, @+ 127

0<i<2k!
Thus, B, € £, and E[(lsk) = % for / < k. We denote by Sp the collection
of sequences s = (0(1), ..., o(p)) such that 1 < a(1) < 0(2) < --- < a(p).
For s € S we denote by Z(s) the algebra generated by B,iys-ees Ba(p) . We

observe that each of its atoms has measure =27?. Fora subalgebra > of T,

we denote by L:)(Z') the set of X'-measurable functions that are integrable and
of integral zero. The core of the proof of Proposition 1.2 is the following.
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Lemma 6.2. Consider an operator T from 1" to L' and s = (a(1), ..., o(p)),
S€S,. Let a> 0. Suppose that for each f € L(])(Z(s)) and gel', gl =1,
we have ||f - T(g)|l, > a. Let B < a. Then we can find o(p + 1) > o(p) such
that ifweset s' = (a(1), ..., 0(p), a(p+1)), then for each f € L(l)(Z(s')) and
gel', gl =1, wehave | f = T(g)ll, 2 B

Proof. For n > o(p), we set s, = (d(1),...,0(p), n) €S,,,. Suppose that
the conclusion of the lemma fails. Then for some S < a and each n > o(p), we
can find f, € L(I)(Z(sn)) and g, € I, llg,ll =1, such that ||f —T(g,)ll, < B.
Consider ¢ > 0, to be determined later. Lemma 6.1 gives a sequence n(k) such
that each convex combination g of the sequence (gn(k)) k>) satisfies 1 —¢ <
llgll < 1. Since each atom of Z(s,) has measure =277 ~! the sequence (£) w1
is uniformly bounded. There is no loss of generality to assume that the sequence
( fn(k)) «>1 converges weakly to some function f. Since Z(s,) is generated by
2(s) and B,, where E’(IB ) =3 for n > 1, for n > 1 > o(p) we have
Jy f,dA= [, f,dA for any two atoms U, V of X, that are contained in the
same atom of X(s). It follows that [, fdA= [, fd4, and thus, f is constant
on each atom of X(s). Since [fdA = 0, we have f € L(')(Z(s)). There is
a finite convex combination h = 32 a, f,,, such that ||f —A|, < &. Since
"_f;,(k) - T(gn(k))nl S B ,» WE have ”f— T(g,)ul S B +é ’ Where gl = Zakgn(k) .
The choice of the sequence n(k) implies that ||g’|| > 1-¢. Let g = g'/||€’|| , so
lg-&'| =1-]g'|| <e. Wehave ||g|| =1, and ||f-T(g)ll, < B+e(1+[T]).
Thus, if ¢(1 + ||T||) < « — B, this is a contradiction. O

We now prove Proposition 1.2. Let T be an isomorphism from / "to X.
Let a = inf{||T(g)ll,; ligll = 1} > 0. We set £(J) = {Q, [0, 1]}, and thus,

Ly(X(@)) = {0}. Thus, [|f —T(g)ll, 2 for gel', g =1, f€Ly(Z(D)).
Using Lemma 6.2, we construct by induction a sequence o(p) such that if
s(0) =3, s(p) = (6(1),...,0a(p)) for p>1, for each f € L(l,(Z(s(p))) and
each gel', |gl =1, wehave ||f - T(g)ll, 227" +1).

Denote by ' the o-algebra generated by the union of the algebras Z(s(p)) .
Then U,5, Ly(Z(s(p))) is dense in norm in Ly(Z'), and thus, ||/ - T(g)ll, > $
for f € L(',(Z'), gel, llgll = 1. It follows easily that for some g8 > O,
we have ||f — g|l, > B, whenever f € L(')(Z'), Ifll, =1, g € X. Thus, the
quotient map L's 1 /X is an isomorphism on L(l,(Z') , which is isomorphic
to L'. The proof is complete.
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ABSTRACT. We construct a subspace X of L' such that X isan /'-sum of
spaces isomorphic to / ! but such that L' /X does not contain a copy of L.
We also construct two Banach spaces E;, E, that do not contain a copy of

L' but such that E , X E, contains a copy of L' . Moreover, the projections
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of L' on each factor are one-to-one, and the images of the unit ball of L' are
closed. These examples settle questions of J. Lindenstrauss, P. Pelczynski, J.
Bourgain, and H. P. Rosenthal.
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