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ISOSPECTRAL CONFORMAL METRICS ON 3-MANIFOLDS 

SUN-YUNG A. CHANG AND PAUL C. P. YANG 

1. INTRODUCTION 

Let M be a compact 3-manifold without boundary. A metric go on M 
determines a class of conformally equivalent metrics of the form {g = u4 g0 }. 
Our main result is a compactness criterion for metrics in a given conformal 
class. 

Theorem. Let gj = u;go be a sequence of conformal metrics satisfying the fol-
lowing conditions. 

(i) Vol(M, g) = eto for some positive constant eto. 
(ii) f R2(g) + Ip(gj)1 2 dJj ::; et2 for some positive constant et2 where R(g) 

is the scalar curvature of gj and p is the Ricci tensor of gj and dJj = u~ dVO. 
(iii) Al (g), the lowest eigenvalue of the Laplacian of the metric gj' has a 

positive lower bound: Al (g) ~ A > 0; i.e., for each ¢ defined on M, we have 

Then there exist constants cI ' c2 so that 
(a) c i ::; u(x) ::; llcl , 

(b) lIu)Iz,2::; c2 ' 

except in the case where (M, go) is the standard 3-sphere. Then we need to 
modify the conformal factor u j by a suitably chosen conformal transformation Tj 
of S3 : u;go = T;(u;go) (the metrics u; and u;go thus defined are isometric). 
Then (a) and (b) hold for uj instead of uj . 

Although the result may be of independent interest, its original motivation is 
the application to isospectral conformal metrics. Recall that the heat invariants 
ak defined by the asymptotics of the heat kernel ([MP, MS, and MD 
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are spectral invariants (n = dimension of manifold). Thus, for an isospectral 
set of metrics gj' the heat invariants ak (g) are identical. In particular, the 
low order heat invariants give the following information on the metric when the 
dimension of the manifold is 3: 

ao = volume ( volume = I d V) 
a l = constant I R dV 

a2 = A2 I R2 dV + B2 I IpI2 dV, 

Hence, our theorem yields second-order information when the gj = u;go are 
conformally related, and, in fact, we have 

Corollary. An isospectral set of conformal metrics on a compact 3-manifold is 
compact in the ~oo -topology. 

For the Dirichlet problem on domains in the plane, [M] has shown that the 
curvature function of an isospectral set of domains forms a compact set in the 
~oo -topology. For the case of compact surfaces, [OPS 1, OPS2, also for related 
development OPS3] have shown that an isospectral set of metrics is compact in 
the ~oo -topology. In that case, the metrics are not restricted to a fix conformal 
class, and a global spectral invariant, i.e., the determinant of the Laplacian (not 
expressible as an integral of local invariants of the metric), was used to pin down 
the set of conformal classes to a compact region in the moduli space. In the 
appendix, we will give an alternative argument, eliminating the need for the use 
of the determinant when the metrics are restricted to lie in a fixed conformal 
class. 

Previously, we ([CY, CY2]) gave a proof of the main theorem when (M, go) 
is the standard 3-sphere, and also [BPY] gave a proof for when Ro is negative. 
In this paper, we will give a unified argument. 

The underlying analysis of this problem is the optimal Sobolev inequality: 

Q(M) (1M u6 dVa) 1/3 :5 81M IVul2 dVa + 1M Roi dVa· 

The optimal constant Q(M) is an invariant of the conformal class of M. For 
a conformal metric g = u4 go' its scalar curvature R is given by the equation 

5 8.1.u + Ru = Rou on M. 
Thus, the Sobolev quotient 

Q u] = f(81 Vu 1
2 + Rou2 ) dVo 

[ (f u6dVa)I/3 

is exactly given by f Ru6 dVa if the volume is held to be I (i.e., f u6 dVa = 
1). The celebrated recent solution of Yamabe's problem [A, S] asserts that (a) 
Q(M) < Q(S3) unless M is conformally S3 and (b) a minimizing sequence 
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for Q[u] is compact if Q(M) < Q(S3) _ Thus, in our compactness assertion, 
we have substituted an L 2 bound for the curvature in place of the condition 
Q[u) < Q(S3) and substituted the condition A.I (g) ~ A > 0 in place of the 
minimizing property for Q[u]. 

We give in the remainder of the introduction an outline of the argument for 
the theorem. We first locate an additional measure theoretic condition. 

There exist positive constants Yo' 10 so that 

! dVO ~ 10 r dVO 
{u/x)2: yo} J M 

for all uj in the· sequence and prove in Proposition A (§2) that if in addition 
to the conditions (i), (ii), and (iii), (*) holds for the sequence of conformal 
factors uj ' then there is a uniform bound for the integrals J u~+e dVO, where e 
is a constant depending only on M, eto' et2 , and A. We then point out that the 
argument in our previous paper [CY] goes through without further difficulty. 

The remainder of the paper then is devoted to verifying the condition (*) 
under the assumptions (i), (ii), and (iii). The idea is to show that if (*) fails, 
then the measures u~dVO would have to (after passing to a subsequence) con-
centrate at a single point, say xo' and that off the point of concentration, U j 

converges to zero in a well-controlled way (in §3). More precisely, if we normal-
ize with Vj = CjUj for a suitable sequence of numbers cj -> 00, Vj converges 
uniformly on compact subsets of M\{xo} to a nontrivial solution Voo of the 
conformal Laplacian 

This is done using Harnack inequality in §4, where we need to compare the L P 
integrals of U j on adjacent annuli regions centered at xo' The key idea is that 
off the concentration point, ~v j is small in L 6/5. The inhomogeneity under 
scaling of the integrand R2(g) + Ip(g)12 dV(g) shows that the limit function 
Voo gives rise to a conformal metric on M\{xo} , which is Ricci flat, hence 
flat. There are two possibilities, according to whether v 00 has a removable 
singularity at xo' If Xo is a removable singularity, Voo must be constant, 
hence (M, go) is a flat manifold. If Xo is an essential singularity, then Voo 

has a singularity of the order l/dist(·, xo); hence, v:"go is a complete flat 
metric on M\{xo}' This implies that M\{xo} is, in fact, conformally R3 , so 
that M is conformally S3 . But in the latter case, our previous [CY] argument 
applies. The only remaining case is when (M, go) is a flat manifold. We 
handle the last case in §6 by extending the function ujIB(xo) on a fixed geodesic 
(Euclidean) ball to a function U j on S3 , thinking of the ball B as the northern 
hemisphere, and we show that the resulting sequence of positive functions U j , 
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after a suitably chosen conformal transformation, violates the optimal Sobolev 
inequality for S3 _ 

2. PRELIMINARIES. NASH-MoSER ITERATION SCHEME 

In this section, we will prove the following proposition. 

Proposition A. On (M, go)' if g = u4 go is a metric satisfying 
(1) ao(g) = a o' 
(2) a l (g) ::; a l ' 

(3) fM R2u6 dVa ::; a 2, 
( 4) 0 < A ::; A.I (g), where A.I (g) is the first positive eigenvalue of the Lapla-

cian operator, 
where ao' a I ' a2, and A are positive constants and assuming in addition con-
dition (*): 

there exist some positive constants Yo' 10 so that 

! dVa 2: 10 { dVo, 
{x : u(x)~yo} J M 

then there exist some eo > 0 and a constant Co depending only on the data a o' 
ai' a 2, A, Yo' 10 with 

(5) 1M u6HO dVa ::; Co' 

Our proof of Proposition A below is a modification of the arguments used 
in our earlier paper ley] (see also [BPY]). For completeness we will outline the 
arguments here. The main procedure used in the proof is an application of the 
well-known Nash-Moser iteration scheme. Since this same procedure will be 
applied repeatedly throughout this paper, we will now state it separately. 

Recall that the equation relating the metric g = u 4 go to it scalar curvature 
function R = R(g), Ro = R(go) is 

(6) 86u + R u5 = Ro u for a 3-dimensional manifold M. 

We now fix a real number p and a suitably chosen positive cut-off function 
" (p and " chosen differently on each different occasion) and multiply the 
equation by ,,2UP and integrate to get 

(7a) 
8p I ,,2UP-IIVuI2 dVa + 16 I VU· V" "uP dVa + Ro I ,,2UP+I dVa 

_ IR 4 2 P+I dT7 - U"U "0' 

Estimating the cross term f Vu . V" "uP dVa as (we will henceforth denote 
f dVa as f) 

I P 1 I 2 P+I J 2 2 P-I 2 Vu· V,,"U ::; t IV"I u + t "IVul u 
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with t small (0 < t < IPI if P f:. 0) , we obtain 

(7b) 8(IPI-t) J 112 uP-I IV'uI 2 ::; ~ JIV'1112UP+I+IRoIJ UP+1112+ JIRlu5+PI12. 

To start the iterating process, we apply the following Sobolov inequality for a 
3-dimensional manifold. For all v E WzI (M) we have 

(8) Q(J v6 dYa y/3 ::; 8 J lV'vl2dYa + Ro J v2 dYa, 

where 
Q = Q(M ) = inf 8 J lV'vl2dYa + Ro J v2dYa 

, go v~o (j v6dYa)I/3 

Applying (8) to (7a) and (7b) with v = I1W, w = U(P+I)/2 we get 

(9a) when 11 == I, P f:. -I , 
8 4P 2JIV'WI2+RoJw2=JRU4W2, 

(I + P) 

Q 4P 2 (JW6dYa)I/3 ::;JRU4W2+IRol( 4P 2+ I )JW2; 
(P+l) (P+l) 

(9b) when t = IP1/2, P f:. 0, P f:. -1 together with the estimate 

J IRlu4W2112 ::; (J R2u6) 1/2 ([upp" u6) 1/6 (J w6116) 1/3 

::; 0~/2([upp" u6) 1/6 (J w6116) 1/3 

where C is a universal constant. 
In §4, we will repeatedly apply (9b) to a sequence of P and 11 to obtain a 

Harnack inequality for functions {u j } that fails to satisfy condition (*). 
We will now apply (9a) to finish the proof of Proposition A. 

Proof of Proposition A. Starting with the inequality (9a), we will now apply our 
assumptions (1), (2), (3), (4) to estimate the term 1= J RU4W2 (w = U(I+P)/2 
with P> 1 chosen later). Taking a suitably large number b (again to be chosen 
later) on the region IRI ~ b we have 

2] 2 ] 2 6 b U dYa ::; R U dYa ::; O 2 , 
IRI~b IRI~b 
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Thus, 

lRI?b RU4W 2 ::; (f R 2U6) 1/2 (lRI?b U6) 1/6 (f W 6) 1/3 

::; a~/2(:~ y/6 (f w6y/3 

( 10) 

For the remaining part of § 1, we will apply condition (*) in the statement of 
Proposition A (which replaces the conformal pulling argument on S3 as in our 
earlier paper [CY]) as follows. 

For dV = v6 dVa ' we have from the Raleigh-Ritz characterization for Al ' 

(11) fM'IldV ::; (fM'I'dVr/(f dV)+ }lfM I\7u'l' 12 dV, 
where 1\7 u'l'12dV = 1\7'1'12u2dVa. We will denote Ey = {x EM, u(x) ~ y} 
and IEI'I = IE dVa· By assumption (*), there exist some Yo > 0, 10 > 0 so 

1 

that IEl'ol ~ 10IIMdVaI. Applying (11) and (4) to 'I' = ue with P = 1 +28 and 
8 small, we have 

(12) f U6+2edVa::; (f u6+edVa ) 2 I (f u6dVa) + ~ f l\7uel2i dVa . 
For simplicity, we will now normalize u and assume ao = I u6 dVa = 1 . We 

may then estimate the term I u6+e dVa as 

f u6+e dVa = l u6+e dVa + le u6+e dVa 
Yo Yo 

= 1 (u 6 - y~)ue dVa + 1 y~uedVa + 1 u6+e dV Eyo Eyo E~o 

::; (l (u 6 - y~)ie dVa) 1/2 (l (u6 - y~)dVa) 1/2 + C(Yo) , 
~ ~ 

where C(Yo) is a constant depending only on Yo and I dVa. Thus, for each 
1'/ > 0 we have 

(13) (f u6+edVa r ::; (1 + ro(lyo (u6 - y~)U2edVa) (lyo (u6 - y~)dVa) 

+ (1 + ~ ) C2 (Yo) 

::; (1 + 1'/)(1 - y~IEYol)(1 U6+2odVa) 

+ (1 + ~C2(yO)) 

(we may assume w.l.o.g. that Yo is small and yglEl'ol « 1). 
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Since by our assumption on IEyol we have yglEyol ~ yglo > 0, we may choose 
" so that (1 + ,,)(1 - yglEYoi) :::; 1 - 0 for some positive 0, 0 = o(Yo, 10 ) and 
obtain from (12), (13) 

~! 6+2ed 1 1 / e 2 2 d (14) u u l'O:::; C(yo' 0) + A l'Vu I u l'O, 

where again C(yo' 10 ) is a constant depending only on YO' 10 , 

From this point on, we may estimate the term J l'Vuel2u2dl'O as in [CY]; 
namely, 

2 

/ l'Vuel2idJiQ = 8 2/ l'Vu l+e 12 dJiQ 
(I + e) 

and notice that for P = I + 28, W = U(I+P)/2 = ul+e. Thus, combining (9a) 
and (14) we have 

(15) 
2 2 

/
U6+2edV- < 8 (1+8) I+L 

0- oA(1 + e)2 8(1 + 2e) , 
where 

1= / Ru4w2 and L=O(~O / U2+2edl'O)+~C(Yo,/o). 
Combining (15) with (10), we find 

1= / Ru4w 2 :::; (~;y/3(/ W6dl'Oy/3 +b / u4w 2 dJiQ 

:::; (~;) 1/3 (/ w6dl'O) 1/3 + ~~ I +bL 
( 16) 

so that 

(17) (I-~~)I:::; (~;y/3(/ w6dJiQ y/3 +bL. 

Now choosing b sufficiently large so that (0:;/b)I/3 < (1/2)Q, and then choos-
ing 8 sufficiently small and proceeding with the same proof as in [CY], we 
get 

iQ(/ w6dl'O y/3 :::; 1+ IRol / w2dl'O 

2 (/ 6 )1/3 4 / 2 :::; 3"Q w dJiQ + 3" bL+ IROI w dl'O. 

Recall w = u I +e ; hence, 

( )
1/3 ( )1/3 

/ u6+6e dJiQ = / w6 dl'O < 16 bL + 12 IRol / U2+2e dl'O 

( / )
(2+2£)/6 (/ ) (4-2e)/6 

:::; C(b, IRoD u6 dVo dJiQ 

= Co < 00. 

This proves Proposition A with 80 = 68 . 
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Remarks. Assume u satisfies conditions (1 )-( 4) and the conclusion condition 
(5) in the statement of Proposition A. Then we may apply similar arguments as 
in Lemmas 3 and 4 in [CY] to the general 3-dimensional manifold M instead 
of S3 to obtain constants cI ' c2 ' c3 (depending only on the data 0:0 , 0: 1 , 0:2 , 

A, and Co) with 0 < cI ~ u(x) ~ c2 and lIull;,2 = J u2 + IVul 2 + IV2ul2 ~ c3 • 
We can apply Gilkey's computation [G] for the coefficients ak of the heat kernel 
for g = u 4 go as in the arguments in [BPY] to conclude that u is bounded in 
the if6°O -topology. We summarize this conclusion as follows. 

Corollary 1. Assume {gj = u~go} is an isospectral sequences of metrics on the 
3-dimensional manifold (M, go) with {u j } satisfying condition (*) in Propo-
sition A. Then {u j} forms a compact family in the if6°O -topology. 

The only change required is a suitable version of the Faber-Krahn inequality 
for a general compact manifold in place of the standard 3-sphere. Since we 
cannot easily locate it in the literature, we provide a simple argument. 

Lemma. For a compact manifold M, given t5 > 0, there exists A > 0 so that for 
any domain 0 in M with meas( 0) ~ Vol ( M) - t5 , the first Dirichlet eigenvalue 
Al (0) is at least A. 

Proof. Suppose on the contrary that no such A exists. Then we can find a 
sequence of functions 0 ~ rpj E WzI(M) with meas {rpj = O} ~ t5 satisfying 
J IVrp/ ~ t but J rpJdV = 1. By taking the weak limit in WzI(M) , we find 
a function 0 ~ rp in WzI(M) with J 1Vrpl2 = 0 but J rp2 = 1. This implies rp 
is a positive constant, but weak convergence in WI implies strong convergence 
in L2 , contradicting the assumption meas{ rp j = O} ~ t5 . 

Remark. Condition (*) is satisfied for sequences of functions satisfying con-
ditions (1)-(4) in Proposition A when R(go) = Ro < 0 and when (M, go) is 
conformally equivalent to (S3, go) with go the standard metric. (In the latter 
case, condition (*) is satisfied for functions isometric to the original sequences.) 
To see this, when Ro < 0, J R6U2 ~ 0:2 implies J l/u2 is finite. This coupled 
with the fact that J u6 = 0:0 implies condition (*). When (M, go) = (S3, go) , 
for a given u satisfying conditions (1 )-( 4), we may find v pointwise isometric 
to u with J v6 Xj = 0 for j = 1, 2, 3, 4 (Xj being the ambient coordinates 
of S3) with v satisfying the same conditions (1 )-( 4). For this function v we 
have 

Summing over j we have J v2 ~ C(A, 0:0 ) . Thus, v satisfies condition (*). 
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3. CONCENTRATION PHENOMENON 

For the rest of the paper, we will study the isospectral sequence {gj = u; go} 
for which condition (*) in Proposition A fails (i.e., for each Yo > 0, the mea-
sure 1Eyo (u)1 = f{uj(xr~yo} dVo(x) tends to zero as j -> (0). We will show this 
can happen only when some subsequence of uj has its mass "concentrate" at 
some point Xo EM. 

First we state an easy consequence (and actually an equivalent statement) for 
the failure of condition (*). 

Lemma 1. Suppose condition (*) fails for some sequence of positive functions 
{u j} with f u~dVo = ao' Then uj -> 0 in LP for all p < 6. 

Proof· Suppose not, i.e., there exist some p < 6 and 150 > 0 with f ujdVo ~ 
150 > 0 for some subsequence of u j' Then for each 15 > 0, we have 

/ ujdVo = 1 ujdVo + 1c uj dVo 
E, E, 

::; (fey u~dVo r/6IEJ6-P)/6 + rIE~I, 

where Ey = Ey(u). So for I' sufficiently small, say rl f dVoI < !J, we have 

115 < . .P/6IE 1(6-p )/6 
2 0 - Yo l' • 

Thus IEy(uj)1 ~ ao(Jo/2ao)6/(6-P) = 10 for each uj ' which contradicts our 
assumption that condition (*) fails for the sequence {u j} . 

Proposition B. Suppose {u j} is a sequence of positive functions defined on 
(M, go) satisfying conditions (1)-(4) in Proposition A, while failing condition 
(* ). Then there exists some subsequence of {u j} , still denoted by {u j}' whose 
mass concentrates at some point Xo EM; Le., given e > 0 and r > 0 suffi-
ciently small, there exists some jo with fB(Xo' r) u~ > ao - e for all j ~ jo' where 
B(xo' r) denotes the geodesic ball of radius r centered at xo' 
Proof. We will establish the proof in two steps. 

Step I. The set of points where the mass of some subsequence of {u j} accu-
mulates is nonempty; i.e., the set 

{ X E Mllim lim { u~ "I o} 
r ..... O J ..... OO } B(x ,r) 

is nonempty. 
Step II. We then apply condition (4) to conclude that Step I consists of exactly 

one point xO' 
It will then become clear that the proof also indicates that at the unique point 

Xo ' some subsequence of {u j} must satisfy the description in the statement of 
Proposition B. 
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Proof of Step 1. Suppose the contrary; i.e., we assume that for each x EM, 

m = limlim. r u6 = o. 
x r-O } J B(x , r) } 

For a fixed point x E M and e > 0, we have fB(x, r) uJ < e for some (sub)-
sequence {u) as j ~ 00 and r sufficiently small. Fix r small and choose 17, 
a cut-off function, 0 :5 17 :5 1, 17 == 1 on B(x, ~), and 17 == 0 off B(x, r). 
Applying inequality (9b) to p = 1, W = uj ' and this choice of 17, we obtain 

Q(j(17u)6dVa ) 1/3 :5 c[a~/2( r U~)1/6(j(17U)6)1/3 +~ r U~dVa] 
JB~,~ r ~~,~ 

:5 c[a~/2el/6(j(17U)6)1/3 + 12 r U~ dVa]. 
r J B(x ,r) 

Thus, for e sufficiently small and j large we have 

Q (1 6) 1/3 Q (j 6 ) 1/3 C 1 2 (18)"2 uj dVa:5 "2 (17U) dVa :5 "2 uj dVa· 
B(x, r/2) r B(xo' r) 

Hence, if mx = 0 for all x, we can cover the manifold M by finitely many 
balls B(xk , rk/2) for k = 1,2, ... , N so that (18) holds for each such ball. 
Thus, 

N 

ao = ju~ dVa:5 L r u~dVa 
k= I J B(xk ' "lk/2) 

(2)3N(11 2)3 < - L "2 u· dVa 
- Q k=1 rk B(xk ,rk ) } 

~ 0 as j ~ 00 (by Lemma 1). 
This is a contradiction. Hence, mx t- 0 for some x EM. 
Proof of Step II. Assume again to the contrary that there exist at least two points 
where the mass of uJ concentrates, say XI and x2 • 

By picking a subsequence of {u j} , we may arrange that 

lim lim r uJ = mk ' k = 1 , 2. 
r-O k-oo J B(Xk ' r) 

Let p = dist(x i ' x2). Writing B(xl , 1) as a disjoint union 

U(B(xl , 2-n )\(xl ' 2-n- I », 
n 

we set 
PI = lim sup r uJ dVa. 

j-+oo J B(x1 ' 1)\B(x1 ' 1/2) 

We then restrict to a subsequence still denoted as uj so that in the equation 
above, the lim sup is, in fact, limit. We then inductively set 

PI = lim r u6 dVa, 
j-+oo J B(x1 ' Z-1+1)\B(x1 ' Z-I) } 
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each time restricting to a subsequence. Since we must have L~= I J..l j ::; 0:0 ' there 
is an 10 so that for I ~ 10 we have 

0:~/2 ( 1 1 ) -1/2 
J..ll ::; -- -- + -4 m l m2 

We do this similarly for the rings around x2 ' choosing a common 10 , Now pick 
Po small so that Po::; min{p, 2-10 } and that IfB(Xk.r)uJdv - mkl::; e for all 
r ::; 2po and j sufficiently large. We set qJ to be a ~oo -function on M with 

{ 
11ml on B(xl' po)' 

qJ = -11m2 on B(x2, Po), 
o (B(xl ' 2po) U B(x2 ' 2po))C 

and we extend qJ to be a version of a linear function in the appropriate distance 
function in the rest of M. Then 

/
62 1 1 1(1 1) ujqJ ~m2(ml-e)+m2(m2-e)~2 m+m 

I 2 I 2 

while 

and 
/ 1T'7 12 2 _1_ const 1 2 vqJ u::; 2 2 u·. 

J m p M J 2 0 
6 Thus, from the Raleigh-Ritz characterization of AI for the metric u jdVa ' we 

have 

AI::; / IVqJI2U~ /[0:0 / U~qJ2 - (/ u~qJ rJ 
::; constant(_1 ~ f u~) (0:0 (_1 + _1 ))-1 

m 2 p2 1M A J 4 m m 2 I I 2 

-+ 0 as j -+ 00 (by Lemma 1). 
This is a contradiction. 

To see that mx = 0:0 in Step II, we need to observe only that the same proof 
o 

as given in Step I above also proves that for any compact set K, where uJdVa 
has some uniform positive mass, the set {x E Kllim, .... o lim f uJdVa i- O} must 
be nonempty. The conclusion of Proposition B follows easily from this fact 
(i.e., mx = 0:0) together with a standard diagonal subsequence argument. 

o 
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From now on, we will work on the (sub)sequence, which we denote again 
by {u j} , that has the concentration property in Proposition B. In the follow-
ing section, we will establish a Harnack-type inequality for the concentration 
sequence {u j} that holds uniformly outside the concentration point xo' 

4. HARNACK INEQUALITY OFF THE CONCENTRATION POINT 

We will first establish the fact that positive functions u with J u6 = eto 
and J R2u6 ~ et2 have uniformly bounded B.M.O. norm II log ull* depending 
only on et2 • (B.M.O. denotes the class of functions of bounded mean oscilla-
tion, which was originally introduced by John and Nirenberg [IN]. Properties 
of B.M.O. had been applied earlier by Moser in connection with the Harnack 
ineqUality.) We refer readers to [IN] for the definition and basic property of 
functions in B.M.O. Also for our purpose here, a good reference is Theorem 
7.2.1 in Gilbarg and Trudinger [GT]. 

Lemma 2. Suppose u is a positive function satisfying conditions (1) and (3) in 
Proposition A. Thenfor each point x EM, there exists some neighborhood Q(x) 
such that for every point y E Q(x) and geodesic ball B(y, p) c Q(x) we have 

( 19) r IVlogul dVa ~ k/ 
lB(y,p) 

for some constant k depending only on eto' et2 • As a consequence, we have the 
existence of some constant Po > 0 (Po depends only on eto' et2 and is of order 
t) such that 

(20) 

for some universal constant C. 
Proof. We prove (19) ty essentially the same argument as in the proof of The-
orems 8.17 and 8.18 in [GT], with the minor change of replacing the L q-
conditions in [GT] with conditions (2) and (3) in our case. For the purpose 
of making the proof of Proposition C below clear, we will outline the proof 
here. Fix a point x EM. Choose some small geodesic ball Q(x) centered 
at x where the normal coordinate system holds. Thus, in Q(x) , we may as-
sume w.l.o.g. that the distance function in the metric behaves like the Euclidean 
distance (with errors of higher order). 

For y E Q(x) , fix a ball B(y, p) = Bp with B2p contained in Q(x). Choose 
", to be a cut-off function ", = 1 on B p and ", = 0 off B2p ' Then IV",I ~ 2/ p 
on B2p ' Choosing p = -1 and t = ~ in inequality (7b) in §2, we get 
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l2P IRlu4 ::; (/ R2U6) 1/2 (/ U6) 1/6 IB2// 3 

1/2 1/6 :5 a 2 ao p. 

Thus, for some c = c(ao' ( 2 ), we have from (21) 

ll:u( :5 cp 
P 

and llVIOg ul dV = ll:ul::; (ll:uI2
) 1/2IB//2:5 c/, 

P P P 
which establishes (19). 
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That (20) follows from (19) is an immediate consequence of the celebrated 
John-Nirenberg [IN] inequality for B.M.O. functions. To see this, we denote 
w = log u. Then w is a function in B.M.O. in Q(x). For fixed y E Q(x) , 
Bp = B(y, p) c Q(x). Denote w p = fB wdVaI fB dVa. We then have 

P P 

f e(c/k)!W-Wp!dVa::; C / 
JBp 

for some suitable universal constants c, C . Let Po = c I k. We have 

'ip W 1 -p W 6 p W -p W (20) eO dVa e 0 dx:5 Cp eO Pe 0 p = C, 
Bp Bp 

which is equivalent to (20). 
We will now apply the Nash-Moser iteration scheme to derive a Harnack 

estimate for the sequence {u j} outside its concentration point. 

Proposition C. Suppose {u j} is a sequence of functions as in Proposition B with 
xo its concentration point. Then for each fixed r (sufficiently small). there exists 
some integer j(r) so that 

(22) f u~dVa ::; C f u~ dVa J B(xo. r)-B(xo. r/2) J B(xo. 2r)-B(xo. r) 

for all j 2: j(r) and for some universal constant C. (C = C(Po)' where Po is 
the constant as in Lemma 2.) 

Remark. The same proof given here also indicates that for any (high) power of 
p, inequality (22) holds for zt; as j 2: j(r, p) -t 00. 

Proof. The argument here is similar to the proof of Theorems 8.17 and 8.18 in 
[GT]. Fix p small with B(xo' 4p) contained in a normal coordinate patch at 
xo' Denote Bp = B(xo' p). Choose 11 to be a ~oo cut-off function 11 == 1 on 
B p \B (I 11 supported in B p+o . (1-0 (for & < 1)' Then IV 111 ::s ~ on its support. 
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Applying inequality (9b) in §2 to P =f; -I, P =f; 0, 'I, and w = U(I+P)/2, we 
get 

(23) 

where 

and 
B =c(II+PI2 + II+PI2 ·IR 1+1) 

P IPI IPI 0 
with C a universal constant. If we denote 

<l>(u, p, .0) = (In zl yIP , 
then if Ap > 0, we have 
(24) <l>(u, 3(1 + P), Bp\Bq):5 Cp,,,<l>(u, 1 + p, Bp+,,\Bq_,,) if 1 + P > 0 
and 
(25) <l>(u, 1 + p, Pp+",q_,,):5 Cp,,,(3(1 + P), Bp\Bq) if 1 + P < 0 
where ( B) 1/(/l+PI) 

C = -p-p," A ~2 • 
P 

Now for fixed r > 0, we will begin to apply (24) iteratively to a sequence of 
Pk' Pk ' and ~k and corresponding functions '1k and u = uj . We first fix Po 
so that 1 + Po = Po ' and choose m ~ 0 so that 3m+1 Po = 2 (we may assume that 
Po is small, say Po < !). Define P k' k = 0, 1, 2, ... ,m as 1 + P k = 3k Po . 
We then choose Pm = r, um = ~, Pk-I = Pk + ~k' Uk_1 = Uk - ~k' and 
~k = r/2k+3, k = 0, 1, 2, ... , m. We observe that for this choice of ~k' 
support of the corresponding function '1k is contained in B~/4 for each k and 

11 + Pk l2 4 
IPkl :5 IPml = 12. 

Since {u) concentrates at {xo} , we have hupp 11k u~ :5 fB~/4 u~ -> 0 as j -> 00. 

Thus, for j sufficiently large, we have Apk ~ ~ and 

(26) <l>(uj ,2, Br\Br/2):5 (IT CPk'''k)<l>(Uj , Po' B3r\Br/4)· 
k=O 

A similar argument applies to the sequence 1 + Pk = - P03k , and inequality 
(25) yields, for j sufficiently large, 

(27) <l>(uj,-po' B3r\Br/4):5 (ITCPk '''k)<l>(Uj ,-2, B2r\Br) , 
k=O 



ISOSPECTRAL CONFORMAL METRICS ON 3-MANIFOLDS 131 

where 
m m (Bp ) 1/(i1+Pk il IT CPk A = IT A ~2 

k=O k=O Pk k 

~ C 2('5:. k •rk )/po r -2('5:.:=0 3-k )/po 

= C 2cjpo r -3(1/po-1/2) • 

Similarly, 

k=O 

(both C and c denote universal constants). Now observe that we may rewrite 

(<I>(u j , PO' B3, \Br/4»PO = (f lilo) ~ f lilo J B 3r \Br/4 J B 3r 

and similarly, 

Applying Lemma 2 to U = uj and with Bp = B3, and B,/4' we get 

Thus, combining (26), (27), and (28), we obtain for j :2: j(r) , 

<I>(uj , 2, B,\B,/2) ~ C 22C/Por3<I>(Uj' - 2, B2,\B,) 

~ C 22C/P°<I>(Uj' 2, B2,\B,) , 

which is equivalent to the desired estimates (22). 
We have thus finished the proof of Proposition C with constant C '" 2c/po • 

5. PROOF OF THE THEOREM FOR THE Ro > 0 CASE 

First we will prove a general statement for all manifolds with scalar curvature 
Ro :2: o. 
Proposition D. Assume a sequence of positive smooth functions {u j} satisfies 
assumptions of Proposition B, and, in addition, 

(3)' 

Then there exist constan}s cj > 0 with cj - 00 so that the sequence v j = 
CjUj converges uniformly on compact subset of M\{xo} either (i) to the Green's 
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function of the conformal Laplacian LG = l!!G - RoG = -ox when Ro > 0 or 
° (ii) for G = positive constant when Ro = O. 

Proof. Fix a small ball B(xo' r) and choose a constant cj so that 

CJ r u~ = 1. 
lM\B(xo,r) 

Because of Proposition B, it is clear that cj - 00. Denote Vj = CjUj ' Lu = 
8l!!u - Rou, 

Observe that 

(29) 

Hence, 

j Ric2(v;go)vJ dVa = :2 j Ric2(U~gO)U~ dVa 
J 

< a2 _ 0 as J' - 00 . - 2 
Cj 

r (Lv.)6/5 = r (L(~))6/5vI2/5 
lM\B(xo,r) J lM\B(xo,r) Vj J 

( r (L(V.) )2)3/5 ( r 
:::; 1 M\B(xo ,r) v/ 1 M\B(xo, r) 

-0 as j-oo. 

6)215 Vj 

It follows from this bound that v j remains bounded on compacta in W21 

on M\B(xo' r). Thus, a subsequence of {Vj} converges weakly in »-;1 to a 
(weak, hence strong) solution w of the equation Lw = 0 on M\B(xo' r). We 
need to verify that w is strictly positive; this will follow from the minimum 
principle (since Ro ;::: 0) for elliptic operators once we have shown that w 1= 0 
on M\B(xo' r) . 

To do this, we will again apply arguments similar to the derivation of (9b) to 
P = 1 and with the cut-off function "'1, "'1 == 1 on M\B(xo' r) and "'1 == 0 on 
B(xo' ~) with 1\7"'11:::; ~. Denoting Br = B(xo' r) and B~ = M\Br ' we obtain 

1 = (le v;) 1/3 :::; (j("'1v)6) 1/3 
r 

(31) :::; C(je (L(~j))2)1/2(jc VJ)1/6(j("'1V)6)1/3 
B,/2 V J B,/2 
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Now assume to the contrary that w == o. Then limj-+oo fB~ vJ = fB~ w2 = o. 
Applying Proposition C, we then conclude that 

1 2 2 [1 2 1 2] V. =C· U·+ U· 
B~/2} } B, \B'/2} B~} 

21 2 1 2 S C(Po)C. U· = c(po) V· --> 0 
}Bc } BC } , , 

as j --> 00. 

Thus, if we apply and divide both sides of inequality (31) by f (rJv j) 6 , we 
obtain 

a~/2 (1 6) 1/6 C(Po) 1 2 1 S c--c· u· + -2- v. --> 0 c· } B C } r B C } } ,/2 , 

as j --> 00 as U j concentrates at xo. 

This is a contradiction. Hence, lim. r DC v 2 > J > 0 and w d 0 (hence, }-+oo JD , ) - r 
w > 0 on B~). 

For any r' < r , we now apply the same argument and perhaps find a different 
set of constants c~ and functions v; = C;u j that tend to a positive function w' 
on M\B,'. But , , () , 

lim cj = lim Vj x = w (x) > o. 
j-+oo cj j-+oo vj(x) w(x) 

Thus, limj -+oo c~ = 00. Hence, w' (x) is proportional to w(x), and we may 
readjust constants c; to make w' = w on M\B,. If we repeat this process to 
a sequence rj --> 0, a diagonal subsequence construction then gives a sequence 
of functions Vj = CjUj --> w, a positive solution of the equation Lw = 0 on 
M\{xo}. According to the isolated singularity theorem of Gilbarg and Serrin 
[GS], either w has a pole at Xo and w(x) '" d(x ,xo)2-n (n = 3 in one case) 
or (ii) w has a removable singularity at Xo in which case w(x) == constant 
and Ro = 0, which finishes the proof of Proposition C. 

Proof of the theorem for the Ro > 0 case. To finish off the proof of the main 
theorem, we first observe that in either the Ro > 0 or Ro = 0 case, w 4 go 
defines a flat metric. The reason is that on any compact subset K of M\{xo} ' 
we have LVj --> Lw == 0 in L 6/ 5 ; hence, Vj - w --> 0 on U6~5' and 

L Ric2(w4go)w6dVo Slimj L Ric2(v;go)vJ d~ = o. 
Hence, w 4 go is Ricci flat, but in dimension 3, this means w 4 go is flat. In the 
case when Ro > 0 and w is the Green function, we have w(x) '" d(x, xo)2-n 
(n = 3) yielding that w4go is a complete flat metric on M\{xo}. According 
to the classification theorem for flat space forms (cf. Wolf [W]), in three di-
mensions the only complete flat space that is simply connected at infinity is the 
Euclidean space. This implies via Liouville's Theorem that M is conformally 
equivalent to S3 , which finishes the proof of the theorem for the Ro > 0 case. 



134 S.-Y. A. CHANG AND P. C. P. YANG 

6. PROOF OF THE THEOREM FOR THE CASE RO = 0 

To continue the proof of the theorem when Ro = 0, we first observe that 
in this case (via Proposition D), (M, go) is a compact, flat manifold; hence, 
the metric go is locally Euclidean. By rescaling the metric go if necessary, 
we may assume that there is a Euclidean ball of radius 2 around the point of 
concentration Xo in M. If we isometrically map the point Xo to 0 = (0,0,0) 
in R3 and the ball of radius 2 into B2 = B2(0) in R3 , and denote the Euclidean 
metric on R3 by dx2 = Ei=1 dx; and Euclidean Laplacian by ~e' then locally 
we have a sequence of positive functions {u) defined on B2(0) satisfying the 
following conditions. 

( 1 )' J: 6 d B2(0) u j x ~ 00 . 

(3)" fB2(0) (~eU j/U~)2 dx ::; 02 . 

(4)' For each function ¢ of compact support in B2(0) , we have 

for some constant Al ~ A > 0 , and furthermore, we have the following. 

(32) 
There exist sequences of numbers cj - 00 and Sj - 0 with 
UjCj - 1 uniformly on B2(0)\Bs(0). 

J 

We will now derive another property satisfied by our concentrating sequence 
uj" 

Lemma 6.1. Suppose {u j } is defined on (M, go) with R(go) = Ro = 0 and 
{u) satisfies conditions (1)-(4) and (32) on M. Then 

1 IV'u/ dV = o(~) . 
M\B2s/O) Cj 

Proof. Choose a cut-off function '11 defined on M with '11 = 0 on Bs(O). 
J 

'11 = 1 on M\B2s (0). Then 
J 
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:'S ( [ R2U~ d~) 1/2 ( [ U~ d~) 1/2 
1M 1supp '71 

+ :j :; (JJ ::j [2 dVa)'" SJI2 
1/2 1 1/2 2 ( 1 ) :::;0:2 3+(S) /Cj =0 2" ' 

Cj cj 

where the last estimate follows from the observation that 

[ lV'u l [4 ([ 2 6 ) 1/2 ([ 2 ) 1/2 
1M u1 d~ = - 1M RU j d~:'S 1M R uj d~ 1M ujd~ 

is finite. This finishes the proof of Lemma 6.1. 
Thus, we may assume that our sequence {u j} satisfies 

(32)' [IV' eU .1 2 dx = 0 (~) • 1 B2(0)\B2sj (0) J c; 
We will indeed show that a sequence {u) satisfying (1), (3)", (4)', (32), 

and (32)' cannot exist. Suppose it does. Then we will yield a contradiction 
by constructing from {u j} a sequence of functions {w j} defined on 8 3 that 
violates the following sharp Sobolov inequality 

(33) Q(83) ( [ W 6+6e dV) 1/3 :'S 8 [ lV'w(I+e)1 2 dV + 6 [ w 2(l+e) dV, 1 S3 J 1 S3 J 1 S3 J 

where Q(83) = 6(2n2)2/3 when j -+ 00 and for some suitable e > 0 (e = 
e(o:o' o:;,A I )). We first extend uj to a function Vj defined on R3 (in fact, 
on 8 3 ) by adding a tail function ¢j on B~(O) to uj ' where ¢j is chosen so 
that the corresponding function ¢ j defined on 8 3 is an extremal function for 
the Sobolov inequality (33). We then isometrically move Vj to a "'balanced" 
position and prove that the new function W j' created this way under the as-
sumptions (1)', (3)", (4)', (32), and (32)" violates (33). 

We will now describe and justify this construction procedure in detail. First 
we will set some notation. 

We adopt coordinates on 8 3 through its stereographic projection mapping 
north pole of 8 3 to 0 = (0, 0, 0) in R3. In this coordinate system, volume 
form dV on 8 3 is defined by 

dV=( 2 2)3dx . 
1 + Ixi 

For each function f defined in R3 , define the corresponding function 1 on 
8 3 by 

( 2) 1/2 
lex) = f(x) 1 + ixl 
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- 6 6 Thus, fs3(f(X)) dV(x) = fR3(f(X)) dx. For each fixed. > 0, denote 

cP,(x) = (.2 ~~XI2 ) 1/2 
(¢, 's are extremum functions for inequality (33), where e = 0), and denote 
conformal isometries T,: L6(S3) -+ L6(S3) as defined by 

(T,(v))(yj') = v(y)(¢,(y))-I . 

We now fix a function U = uj satisfying conditions (I)', (3)", (4)', (32), 
and (32)'. We will extend U to be a function v defined on S3 as follows. 

Choose a cut-offfunction on S3 with 17 = 1 on BI (0) and 17 = 0 off BI+o(O) 
and ryre17I~(l+o(l))jb on Al 1+0=BI +o(0)\BI (O) and ~18B=~18B = 

, I I+~ 

0, where d = dj is chosen so that IUj - I/c) ~ b2 jCj off Bs(O) (which is 
) 

possible via (32)). We then choose tj>O with cPt(I)=(2tjj(l+t~))1/2= Ijcj 
) 

and v = Vj as an extension of U from B2(0) to S3 as 

vex) = U(X)17 + ¢t(x)(1 -17)· 
Fix e > 0 (e is independent of j and will be chosen later). We will now apply 
T, = T, to v, where 'j is chosen so that the mass of (T,V)6+e is in a balanced 

J 

position; i.e., 

(34) 

where the Xu are the ambient coordinates of S3 (i.e., S3 ........ R4 is defined by 
E!=I x~ = 1). Denote W = Wj = (T,v). We now claim that with some suitable 
choice of e, (32) will be violated for w. To see this, recall that the equation 
relating w to its curvature function R = R(w4 go) is as follows. 

(6)' -8Aw + 6w = Rw 5 on S3. 

Since R is the scalar curvature, an intrinsic invariant quantity, we have 
_4 -4 c 

R = R(u go) on BI/.(O), and R = R(cPt go) = 6 on B(I+O)/,(O). 

Thus, on the complement of A I /,. (1+0)/, = B(I+O)/,(O)\BI/,(O) , we have 

(35) 1 R2w 6 dV ~ a; < 00. 
A~/T.(I+~I/T 

Multiply equation (6)' by W I+2e . Then applying Sobolev inequality (33), we 
obtain 

(36) 
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We will estimate the right-hand side in detail in order to verify that it is in fact 
strictly less than the left-hand side, and that is the contradiction. 

To estimate f RW 6+2e dV , we split the integral into three parts: f RW 6+2e dV 
= I + II + III , where 

1=1 RW6+2e dV 
A1/',(I+6)1' ' 

II = r RW6+2e dV , 
i(A 1/" (1+6)1,)Cn{IRI~b} 

III = 1 RW6+2e dV < b / W 6+2e dV 
(Al/',(1+6)1,)Cn{IRI~b} - S3 ' 

where b is a large constant depending on ao' a; and is to be chosen later. We 
claim 

(37) 1< 16n + 0(1) 
- 2+2e e ' cj Tj 

(38) 8il 1 / 6+6& dV - < W . 6 C6+6& T3& - S3 
} } 

Since we will soon see that I is the dominant term on the right-hand side, it will 
be convenient to set the constant 

Assuming (37) and (38) for the moment, we proceed to estimate II as in (10): 

(39) II ~ ( r R2W 6dV) 1/2 ( f w6 dV) 1/6 (/ w6+6e dV) 1/3 
iAc iACn{IRI~b} S3 

~ (a;)1/2 (~~ ) 1/6 (1s3 W 6+6e dV) 1/3 

~ (:;) 1/3 • (1s3 W 6+6e dV) 1/3 , 

where A = A l/r , (I+o)/,r. 
To estimate III, we will use the crucial assumption that we have made on the 

choice of Tj , with W = Wj = Tr(v). That is (from (34)), Tj is chosen so that 
) 

/ w6+&X dV=O fora=1,2,3,4. 
S3 a 

Thus, if we choose a COO cut-off function p supported on B2s (0) with P = 1 
) 

on BSj(O) and recall that 5j -> 0 is chosen so that IUj - 1/cjl ~ (<5 2 Ic) off 
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Bs(O), then 
) 

4 r W 6+2e (x) dV(x) = L: r W 6+2e (X)X2 dV(x) 1S3 1S3 a a=1 
4 

~ 2 L: [/3 W 6(W e(x)p(rx)xa )2 dV(x) 
a=1 S 

+ / W 6(w e(x)(1 - p)(rx) Xo/ dV(X)] 

4 

~ 2 L:(Vlo + Va)' 
a=1 

On (VI)o we have, (w)(x) = (TTV)(X) = Uj(rx)¢~I(rx) for rxeB2sj (O). Thus, 
we may apply our AI-assumption (3)" on uj and obtain 

where the next to the last line in the computation above follows from the point-
wise estimate of the value of W outside Bs (0). A similar pointwise estimate 

) 

yields 

Adding up (VI)a and (V)a for 0: = 1, 2, 3,4, we obtain 

(40) 
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Combining (37)-(40), we get 

(41 ) 

( 1 + 2e ) Q(S3) ( r W6+6e) 1/3 :::; r RW6+2e 
(1 + e)2 iS3 iS3 

:::; ((~;yf3 +0(1)) (!s3W6+6edVY/3 

+ KoQ(S3)(/ W6+6e ) 1/3 + b~2 / RW6+2e . 

Thus, if we choose b large enough with (a;/b)I/3:::; !(l-KO)Q(S3), and then 
chosen e sufficiently small, then the left-hand side of inequality (41) is strictly 
bigger than the right-hand side; i.e., W6+6e violates Sobolev inequality on S3 . 
With this contradiction, we finish the proof of the theorem for the Ro = 0 case 
except for the verification of (37) and (38). 

Verification of (37). 

1=1 R(X)W6+2e (X) dV(x) 
AI/'.(1+6)/, 

= r R(, -I Y)V6+2e (y)¢J;2e(y) dV(y) 
iA I • I+6 

1 1+2e - -2e = (-8~v+6v)(y)v (y)(q1T) (y)dV(y). 
AI • I+6 

For the moment, denote the function f by v l+ 2e (¢J T )2e and replace v by U1]+ 
(1 -1])¢t' A straight-forward computation then yields 

1=1 [(Ru 5 )1] + 6(¢/(l-1]) - 16(VuV1] - V¢t V 1]) 
AI ,I+6 

- 8(u~1] - ¢t~1])] fey) dV(y). 

Applying integration by parts to the term -8(u - ¢t)(~1])f, we get 

1= 1 [(Ru 5 )1] + 6(¢/(l -1]) - 8(VuV1] - V¢tV 1])]f(y)dV(y) 
AI ,I+6 

+81 (u-¢t)Vf, V 1] dV(y). 
AI ,I+6 

We now observe that in the expression ofl, the first term R = R(u4g0 ) satisfies 
condition (3)" with lui:::; (1 +0(1))/cj , on B;(O). Thus, fA Ru5dV:::; 

J 1.1+0 

(a;)1/2t5/cJ = 0(1/cJ). For the second term, we may apply the direct estimate 
I¢tl = 1 + 0(1)/cj on A1 • 1+,). For the third term (i.e., the VU· V1] term), we 
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apply condition (32)' in the proof of Lemma 6.1. Thus, 

1:5 8 [f (V¢t . V11)1 dV + f (it - ¢t)V I· V11 dV] 
JA 1. 1+d JA1. 1+d (42) 

+ 0 (C2+~er£) . 
J J 

We may accurately compute fA (V¢t . V11)/(y) dV(y) as 
1,I+d 

1 - 4n+o(1) 11+0 - 2 2 
(V1>t·V11)/(y)dV(y):5 1+2e IV/pt·Ve11I--2r dr. 

A1,I+d c j rj 1 1 + r 
Since by our choice of 11, IVe111 :5 (1 + 0(1))/~ on A1,I+o' while applying a 
straightforward computation we have IVe¢tl :5 (tj/2)1/2 = 1/2cj on A1,I+a. 
Thus, 

(43) \ L
1

'1+6 IV¢t· V11(y)l/(y) dV(Y)\ :5 2:J:2~r~1) . 
- - 2 Next we observe that on A1,I+a' lit - 1>t l = lit - l/c) + 11/cj - 1>t l :5 ~ /cj + 

~/2cj :5 ~/Cj (the first estimate follows from our choice of ~, the second from 
our choice of t = tj' with ¢t(l) = l/cj and the estimate IVe¢tl :5 1/2cj on 

J 

A1,I+O). Thus, we have 

\ f (it - ¢t)V f'V11 dV\ :5 : . 1 +;(1) f IV II dV. 
JA1,I+d J JA1,I+d 

We now recall 

1= v l +2£(¢ )-2£ = vl+2£(r(1 + IYI2))-£ 
T r2 + lyI2 

Thus, a pointwise computation of V I with estimates similarly to (43) above 
yields 

(44) \! (it - ¢t)V f'V11 dV\:5 2+~e e (e~ + ~1/2) = o( 2+~£ £). 
A1,I+d Cj rj Cj rj 

Inserting (43) and (44) into (42) we get the desired estimate (37) of!, i.e., 
1< 16n+o(1). 

- c2+2£r£ 
J J 

Verification 01 (38). It suffices to prove W = Wj satisfies 

f W 6+6£ dV > 1 (~ - 0(1)) J S3 - c6+6£r3e 3. 23e . 
J J 

To verify this, we notice that by our definition of w = Tr v we have 

f w6+6e dV 2:: 1 w6+6£ dV + 1 W6+6£ dV = LI + L 2, 
S3 AsI,. II, B[I+d)I'(O) 
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where 

(from (32)) 

and 

L2 = [ (1)/rx))6+6£ ( r2 + lui: )3+3£ dV(x) 
1Btl+J)/T(O) r(1 + Irxl ) 

= (32n) [00 (_tJ_. _)3+3£(r2 + /)3£r2 dr 
r3£ 11+<> t 2 + r2 J 

J J 

= (32n+O(I))tJ::£ [OOr- 4 dr (recan( 2tJ2)1/2=..!.--+O) 
~ 11~ 1+0 S 

_ (4n _ (1)) 1 - 3 0 c6+6£r3£23£ . 
J J 

Adding up the estimates for LI and L 2 , we have established (38). 
We have thus finished the proof of the theorem. 

ApPENDIX 

We present an alternative argument (using )..1 to replace the log determi-
nant of the Laplacian) to show that isospectral conformal metrics on compact 
surfaces form a compact set in the ,&00 -topology. 

Theorem. Suppose (M, go) is a compact surface, {e2Uj } is a sequence of con-
formal factors on M with 

(1) f e2uj dVa = ao; 
(2) f KJe2U1 dVa = a2 < 00, where Kj = Gaussian curvature of the metric 

2ujg e o. 
Assume in addition that the first eigenvalue )..1 of the Laplacian w.r.t. the 

metrics e2uj go is bounded from below by A > 0, i.e., 
(3) for each function </J defined on M 

1M </J2e2Uj dVa ~ (1M </Je2Uj dVa rl (1M iUj dVo) + ~/M IVo</J12 dVa· 
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Then either (a) and (b): when Ko (the Gaussian curvature of the metric go) 
is < 0 or = 0, respectively, {uj } forms a bounded family in »21 (i.e., 
SUPj fM IVu/dVa is finite); or (c): when Ko = 1 and (M, go) = (S2, go) with 
go = surface measure on S2, then the isometry class of uj forms a bounded 
family in »21 . 

Once the above theorem is established, when {e2uj go} is a sequence of met-
rics that is an isospectral family, one may iteratively apply the common bounds 
(ak for the kth (k = 2, 3, ... ,)) coefficient in the trace of the heat kernel 
for the metrics and obtain a »2k bound for the family {e2uj } as in [OPS2]. 
We then conclude that {e2uj } (after modulo isometry class in the special case 
of (S2, go» is a compact family w.r.t. the ~oo -topology. 

Proof of the theorem. Recall that Gaussian curvature Kj satisfies the equation 

(4) 

Through the uniformization theorem, we may assume w.l.o.g. Ko = -1 , 0, or 
1. Integrating (4) over M we get 

(5) 

Multiplying the equation (4) by uj and integrating, we obtain 

(6) 

(a) When Ko = 0 (contrary to the 3-dimensional situation, this is the easy 
case). We notice that from (5) and (6) we have for any constant c, 

{ IVuI2dVa = ( K.e2uj (u - c) dVa 1M J 1M J J 

~ (1M K~iUj dVa) 1/2 (1M iUj(uj _ C)2 dVa) 1/2 

::; a~/2 [(1M iUj(u j - c) dVa) 2/ ao + ~ 1M IVu/ dVa] 1/2 (via (2) and (3)). 

Thus, if we choose c = f M e2u j U j d Va ' we obtain 

1M IVU/ dVo ::; (a2/A)I/2 (1M IVU/ dVa) 1/2 

i.e., 

i.e. 1M IVu/ dVa ~ (a2/ A). 

(b) When Ko = -1 , the proof we will present resembles the proof given in 
rBPY] for the 3-dimensional manifold with Ro < 0 . 



ISOSPECTRAL CONFORMAL METRICS ON 3-MANIFOLDS 143 

We observe that in this case, 

L KJ lUj dVo = 1M (1 + ~U)2 e -2uj dVo 

= 1M (~u)2e -2u, dVo + 41M l'i7u/e -2uj dVo + 1M e -2uj dVo· 

Thus by (2) we have fMe-2Uj dVo ~ a2. From this we may conclude that uj 
satisfies 

f dVo ~ ( f dVo - azIo) ~ Yo > 0 1 {xEMleZUj(X)~/o} 1 M 
for some 10> 0 sufficiently small (i.e., {u j } is not a "concentrating" sequence). 
Denote E = {x EM I e2uj(x) ~ lo}. We have 

(7) 
(I lUjUj dVo) 2 :s (1 (lUj -lo)uj dVo + 2/0 I IUjl dVo) 2 

~ (ao -10) 1M lUju~ dVo + c, 

where c = c( a I ' a2 ' 10 ) is a constant depending on ao' a2 ' 10 , and 2 f U j ~ 
log f e2uj :s logao· Similarly, -2 f uj ~ loga2 • 

Applying (7) to (3) with if> = uj , we obtain 

(8) 

for some finite constants c l ' c2 • 
We may now apply the Schwartz inequality to the right-hand side of (6), 

similarly as in the case of (a) to obtain 

f 2 1 1/2 ( c2 f 2) 1/2 1 M l'i7u) dVo ~ 210gao + a2 ci + A 1 M l'i7ujl dVo 

Hence, fM l'i7u/ dVo is finite. 
(c) When Ko = 1 (and through the uniformization theorem), M = S2 with 

the standard metric go. 
In this case, equation (6) reads 

(9) f l'i7u/ dVo = f KnlUj(uj - fl) dVo 
lsz lsz 

1/2(f 2Uj( _)2d T7 )1/2 :sa2 lsze Uj-Uj Yo ' 

where il j = fsz uj dVoI fsz dVo· 
For each conformal transformation if>: S2 -> S2 , we denote the correspond-

ing transformation T", as T",(u) = U 0 if> +! log IJ¢I for all functions U defined 
on S2, where J¢ is the Jacobian of if>. We observe that for each if> the metrics 

2u d 2T (u) . . d· . I· I e go an e ¢ go are Isometnc an , In partlcu ar, Isospectra . 
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For each fixed U j , we now choose <P j with v j = T¢ (u j) satisfying 
J i2 e2Vi (vj - fJ)xa dVa = 0, a=1,2,3. 

Here again the xa are ambient coordinates on S2 . We may argue similarly as 
in Lemma 1 in [CY] to prove that such <Pj exist. Applying (3) to vj , we get 

( 10) 1 2vJ( - - )2 dT/ constant 11<r"1 12 d T / e Vn V)- yo:::; A vVj Yo' 
S2 S2 . 

We may now apply (10) to inequality (9) for Vj instead of uj and conclude 
that fs21Y'v/ dVa is uniformly bounded. This finishes the proof. 

We remark that, in the proof above, once the bound for f lY'u/ is attained, 
it is relatively easy to verify 1 f uj dVaI is bounded. Hence, the sequence {u) 
is bounded in W21 • 
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