
JOURNAL OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 3, Number 2, April 1990 

THE CLASSIFICATION OF LINKS UP TO LINK-HOMOTOPY 

NATHAN HABEGGER AND XIAO-SONG LIN 

Though the study of knots and links in dimension three has been with us for 
well over a century, progress towards the ultimate goal of their classification has 
been slow. Various methods have been used in their study, ranging from braid 
theory to the study of the link complement and its fundamental group. 

Braid theory succeeded in the classification of braids (i.e., in solving the 
word and conjugacy problems in the braid groups). An equivalence relation 
generated by Markov moves on braids was found yielding the set of isotopy 
classes of links (see [B]). However, the combinatorics of the Markov moves 
are very difficult, and braid theory has not yet led to tqe classification of links, 
although recent work of Birman and Menasco shows progress in that direction 
[BM]. On the other hand, it has led to polynomial invariants, via the work of 
Jones and others [J]. (Recently, Witten [W] has given a physical interpretation 
of these polynomials in terms of particle "transmission." Possible relations with 
the results in this work are yet to be explored.) 

The study of the fundamental group of the complement of a link has led 
to link invariants of many types. Milnor [M2] introduced higher order link-
ing numbers, called JI-invariants, which have been shown (see [P] and [T]) to 
coincide with co homological invariants [Ma] of the link complement. These 
invariants have proven inadequate for the classification of links, in part due to 
a lack of understanding of their true indeterminancy. Several years prior to 
the publication of [M2], Milnor introduced the notion of link-homotopy (his 
terminology was simply "homotopy") in [M 1]. Some link-homotopy invariants 
of links were introduced there which turned out to be a subcollection of the 
JI-invariants in [M2]. It was hoped that, modulo a certain appropriate indeter-
minancy, these link-homotopy invariants would be able to classify links up to 
link-homotopy. Although this classification was achieved by Milnor for links 
with two and three components [M 1], it was only after more than thirty years 
that Levine accomplished such a classification for links with four components 
[Le2]. 

The classification of links up to link-homotopy, presented here, represents a 
unification of the above two points of view. As such, it is a possible model for 
what the ultimate classification picture might look like. See [L] for a general-
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ization to N-equivalence and [LeI] for surgery equivalence. In a forthcoming 
paper, [HL], we will extend the results obtained here to study the link concor-
dance problem. 

In fact, we were led to this synthesis in a somewhat awkward fashion. But in 
retrospect, it seems so natural that we were surprised it had not been attempted 
before. Closely related ideas may be found in [A], [GI], and [D]. 

Our results involve a mixture of topology, algebra, and combinatorics. It was 
the combinatorial step which went unsolved for the longest period (six months). 
Indeed, we even worried for a time that the combinatorial problem would tum 
out to be unsolvable (as is still possible for other low-dimensional combinatorial 
problems). Fortunately, this turned out not to be the case. 

Much of the topology and corresponding algebra is not new. A key new ingre-
dient is an understanding of the choice involved in basing a link (by which we 
mean the choice of a wedge of arcs connecting the base point of the link comple-
ment to the base points of the components of the link in the link complement), 
at least for link-homotopy. It is this choice which leads to all the interesting 
(though complicated) combinatorics and to the indeterminancy of the Milnor 
invariants. Whenever the choice of a base of a link is made, the essential part 
of the link, up to link-homotopy, is a pure braid with the same multiplicity 
as the link. Thus, we were led to study the classification of braids up to link-
homotopy. The group structure of the braid group modulo link-homotopy was 
already studied in the work of Goldsmith [GI]. A new result we present here 
is an Artin-type representation theorem for the group of link-homotopy classes 
of braids (see Theorem 1.7). It is at this point that Milnor's link-homotopy 
invariants enter into the picture. 

Due to different choices of base, a link may be represented by different pure 
braids, up to link-homotopy. Our classification theorem states that the dif-
ference between two link-homotopically different pure braid representatives of 
a link can be characterized by a certain group action on the group of link-
homotopy classes of pure braids (see Theorem 2.9). In other words, the set 
of link-homotopy classes of links is an orbit space of a certain group action. 
At this stage, we were greatly helped in defining the combinatorial problem 
explicitly by a suggestion of Levine. He conjectured a Markov-type theorem 
which turned out to be a straight-forward application of our classification theo-
rem. The Levine moves are generators for the group action in our classification 
theorem (see Theorem 2.13). 

Notice that in the classical Markov theorem (see [B]), one jumps between 
braid groups with different mUltiplicities. In contrast to that, we always use a 
fixed pure braid group, i.e., the Levine moves never increase nor decrease the 
multiplicity. This feature makes the combinatorial analysis of the Levine moves 
much easier than that of the classical Markov moves. 

The combinatorial analysis of the Levine moves shows that the classifica-
tion picture for links up to link-homotopy is analogous to that for maps be-
tween spaces. That is, for two links to be link-homotopic, one can inductively 
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define certain "difference obstructions" which are co sets lying in certain free 
abelian groups. We show that these obstructions are inductively computable, 
thus providing an algorithm for determining whether two links (or link dia-
grams) are link-homotopic (see Theorem 3.1). A further consequence is that 
the link-homotopy classes of links form a recursively enumerable set. 

This work was done in 1987 when the authors were in residence at the Uni-
versity of California at San Diego and participants in Freedman's topology 
seminar. We are grateful for the stimulating environment he provided us dur-
ing that time. Lectures by Cochran [C] on Milnor's tl-invariants provided us 
with an understanding of the state of the art at the time as well as an appetite 
to learn more. Orr [0] lectured on the (still developing) obstruction theoretic 
picture for concordance. 

Both these authors understood that the first nonvanishing invariants are ad-
ditive. Cochran's construction of links, and his procedure for killing the tl-
invariants, led us to the hope that one might be able to gain insight into the 
classification by looking at pictures. In the end, thanks to the algebra of the 
braid group, the necessary pictures turned out not to be so complicated. 

The organization of the paper is as follows. 
We will begin in § 1 with generalities on links of I-disks in the 3-disk, a notion 

we have decided to call string links. It turns out that the group of link-homotopy 
classes of string links is the same as the group of link-homotopy classes of pure 
braids with the same multiplicity. We were aided in our study of string links 
up to link-homotopy by use of Milnor's quotient group of the free group, which 
we will call the reduced free group. We can then represent the group of link-
homotopy classes of string links as the subgroup of the automorphism group 
of the reduced free group consisting of those automorphisms which satisfy two 
conditions similar to the conditions required for an automorphism of the free 
group to be induced by a pure braid. See Theorem 1.7. The proof of this 
theorem also makes the structure of the group of link-homotopy classes of string 
links quite clear. 

Section 2 is devoted to the study of when the closures of two different string 
links (up to link-homotopy) give us the same link up to link-homotopy. Inside 
the group of link-homotopy classes of string links with a fixed multiplicity, we 
define, in addition to the usual relation of being conjugate, another relation 
among elements, which we call partial conjugacy. We show that the closures 
of two elements in the above group give the same link up to link-homotopy iff 
these two elements can be related via a sequence of elements in the same group 
such that any two adjacent elements in this sequence are either conjugate or 
partially conjugate. See Theorem 2.13. 

In §3, we carry out the combinatorial analysis of the equivalence relation 
generated by conjugacy and partial conjugacy. The output of this analysis is an 
algorithm which will decide whether two elements in the group of link-homotopy 
classes of string links are equivalent under this equivalence relation and thus 
accomplish our algorithmic classification of links up to link-homotopy. 
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1. STRING LINKS 

String links are a generalization of Artin's pure braids. One can think of a 
pure braid as a self-isotopy of k points in the unit disk. A string link is a 
self-concordance of these k points in the product of the unit disk and the unit 
interval. 

Let D be the unit disk in the plane and let I = [0, 1] be the unit interval. 
Choose k points, PI ' ... , Pk ' in the interior of D. Then, n I (D\ {PI' ... , Pk}) 
is the free group F(k) with k generators. For definiteness, we choose PI' ... , 
Pk to lie in order on the x-axis and e = (0, 1) to be the base point. The loops 
Xi shown in Figure 1.1 represent a preferred set of generators for F(k). Note 
that the boundary of D represents the product XI ... xk . 

Let II' ... ,Ik be k copies of the unit interval I. Denote by 117=1 Ii the 
disjoint union of these intervals. 

Definition 1.1. A string link is a smooth or piecewise linear proper imbedding 

k 

(J: II Ii -+ D x I 
i=1 

such that (Ji1(0) = Pi X 0 and (Ji1 (1) = Pi xl. The image of Ii is called the 
ith string of the string link (J. I 

In Figure 1.2, we see a planar projection of a string link with two strings. 
Notice that each string of a string link inherits an orientation from the usual 
orientation of [0,1]. 

Given a string link (J, we denote by 

e 

FIGURE 1.1 
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CD 

FIGURE 1.2 

the complement of the strings, and by 

YI = (D\{P I ' ••• ,Pk}) x 1 

and 
Yo = (D\{P I , ••• , Pk}) x 0 

the top and bottom boundaries of Y. 
A theorem of Stallings [S] implies that the inclusion maps 

Yo --> Y -- YI 

393 

induce isomorphisms of the lower central series quotients of the fundamental 
groups 

for all finite n. Here {G n ; n = 1 , 2, ... } is the lower central series of a group 
G. 

Recall that if a is a pure braid, the inclusions Yo --> Y -- YI induce isomor-
ph isms 

7r I ( Yo) ~ 7r I (y) ;:.. 7r I ( YI ) 

and after identifying 7r1 (Yi ) with F(k), the resulting automorphism ¢a of 
F(k) will satisfy 

(1) ¢a(xi ) is conjugate to Xi for i = 1, ... , k; and 
(2) ¢a(x I ··· x k ) = XI ... x k • 

Artin's representation theorem establishes an isomorphism between the pure 
braid group with mUltiplicity k and the subgroup of the automorphism group 
of F (k) (acting on the right) consisting of those automorphisms satisfying (1) 
and (2). See [B]. 

For a string link a, the group 7r 1 (Y) is in general larger than the free group. 
However, the isomorphisms in (*) show how to eliminate this difficulty to some 
extent. One would hope to establish Artin-type theorems for string links using 
these quotients. What is lacking is a geometric description of the relation this 
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imposes on string links. We will obtain an Artin-type theorem by considering 
another nilpotent quotient, introduced by Milnor [M 1]. 

Definition 1.2. Let G be a group normally generated by XI ' ••• , xk . We denote 
by RG the quotient group obtained by adding relations which say each Xi 
commutes with all of its conjugates. We call RF(k) the reduced free group. 

Remark. Let Ni be the normal subgroup of G generated by Xi and let [Ni] 
denote the commutator subgroup of Ni . Then N = [NI ]··· [Nk ] is also normal 
and RG = G/N. Thus RG depends only on the conjugacy classes of Xi' 
i = 1, ... , k. Moreover, the normal subgroup Ni of RG generated by the 
image xi of Xi is abelian. 

Lemma 1.3. RG is nilpotent of class :::; k. 
Proof. Let Xi denote the image of Xi in RG. Let Ni and Ni denote the 
normal subgroups generated by Xi and xi' respectively. As G/Ni is normally 
generated by the images of x j ' j =1= i, we may inductively assume that R(G/Ni ) 

is nilpotent of class:::; k-l . It is easily checked that RG/ Ni = R(G/Ni). Thus 
if g E (RG)k' g maps trivially into RG/Ni , i.e., g lies in the abelian group 
N i. But RG is generated by these abelian subgroups, hence g lies in the center 
of RG. Hence (RG)k is central and (RG)k+1 = 1. • 

Corollary 1.4. The inclusions Yo -t Y +-- YI induce isomorphisms 

Rnl (Yo) ~ Rnl (Y) 1=- Rnl (YI )· 

Remark. If x~ 's are the preferred generators of n l (Yo) and xi's those of 
n I (YI ) , then the images of x~ and x: are conjugate in n I (Y) and normally 
generate n I (Y). Hence the notation Rn I (Y) is unambiguously defined. 

Proof of Corollary 104. Using Lemma 1.3, one easily checks that R(G) = 
R(G/Gn ) for n ~ k. Hence the isomorphisms in (*) for n ~ k imply that of 
Corollary 104. • 

Let .N (k) denote the group consisting of all automorphisms ¢ of RF (k) 
satisfying 

(1) ¢(xi ) is conjugate to Xi for i = 1, ... , k; and 
(2) ¢(x1 ·· ·xk ) = XI·· ·xk · 

Identifying Rnl (Yi ) with RF(k) , Corollary 1.4 associates to each string link 
(J an automorphism ¢ (J of RF (k) which satisfies (1) and (2), i.e., ¢ (J E .N (k) . 

Definition 1.5. We say that two string links (J and (J' are link-homotopic, if 
there is a homotopy of the strings in D x I , fixing the endpoints and deforming 
(J to (J', such that the images of different strings remain disjoint during the 
deformation. 

Remark. A general link-homotopy can always be approximated by one which is 
given by a sequence of ambiant isotopies of D x I, fixing the boundary, and 
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FIGURE 1.3 

"crossing changes." A crossing change is a homotopy of a single string of a string 
link supported in a ball whose intersection with the string link consists of two 
segments of that string which cross during the deformation. See Figure 1.3. 

We will denote by Jr(k) the link-homotopy classes of string links with k 
strings. 

Lemma 1.6. If (J and (J' are link-homotopic string links, then <P(J = <P(J' . 

Proof. Let Y and Y' denote the complements of the string links (J and (J' 

respectively, and let Z c (D x I) x I denote the complement of a homotopy 
from (J to (J' , which we take to be either an isotopy or a crossing change. We 
will show that the inclusions 

Y -+ Z +- Y' 

induce isomorphisms on R7T.1. Assuming this, we obtain a commutative dia-
gram 

R7T.1(Y) 
/1"-

RF(k) -+ R7T.1 (Z) +- RF(k) 

"" i ./ R7T. 1(Y') 

of isomorphisms, showing that <P (J = <P (J' . 
For an isotopy, the inclusions already induce isomorphisms on 7T.1 and hence 

on Rn I . For a crossing change, assume the crossing occurs at time t = :! and 
let Y1/ 2 be the complement of the image of the strings at time t = :! . Note that 
up to homotopy type, Y1/ 2 can be obtained from Y by removal of a segment 
s joining the strings to be crossed. See Figure 1.4. Dually, Y is obtained from 
Y1/ 2 by adding a 2-cell transversal to s. Similarly, Y' is obtained from Y1/ 2 

by adding a 2-cell and Z can be obtained from Y1/ 2 by adding both these cells. 
Let B3 denote a ball containing the crossing change. Then B3 n Y1/ 2 defor-

mation retracts to S2 with four points removed. The fundamental group of this 
punctured sphere has generators a, b, c, d subject to the relation abcd = 1 . 
See Figure 1.5. 

Note that B3 n Y is obtained from B3 n Y1/ 2 by attaching a 2-cell along the 
curve ac and (B 3 x I)nZ is obtained from B3 n Y1/ 2 by attaching 2-cells along 
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1=0 t = 1/2 

FIGURE 1.4 

FIGURE 1.5 

the curves ae and bd. Hence 

n (Z) = n l (YI / 2) _ nl(Y) 
I (ae, bd) - (bd) , 

and 
Rnl(Y) 

Rnl (Z) = (bd) . 

(Here (gl' g2' ... ,gr) is the normal subgroup of a group G normally gener-
ated by the elements gl' g2' ... , gr of G.) But in Rnl (Y), band e are con-
jugates of one of the generators and hence commute. So the relation abed = I 
can be written as aebd = I . Thus the relation bd = 1 already holds in Rn I (Y) 
since the relation ae = 1 holds. Therefore, 

Rn l (Y) 
Rnl (Z) = (bd) = Rnl (Y). 

Similarly Rn I (y') -+ Rn I (Z) is an isomorphism. • 

Lemma 1.6 shows that the correspondence (J f-> <Pa induces a map Jr(k) 
-+J!f(k). 
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The product of two string links a and a', denoted by aa', is given by 
stacking a' on the top of a and reparametrizing. Specifically, 

, {p(a l/(2t)), 
(a(1 )I/i = p'(a'i/(2t _ 1)), 

I 

for 0 S; t S; ~ , 

for ~ S; t S; 1 , 

where p, p' : D x I -+ D x I are given by 

p(z, t) = (z, ~t) 

and 
p'(z,t)=(z, ~t+~). 

With this product, /t'(k) inherits an associative mUltiplication with unit given 
by the trivial string link 1, where 

ll/(t) = (Pi' t). 
I 

We define the inverse (1-1 of a string link a by 
-I 

a I/Y) = r(al//l - t)) 

where r: D x I -+ D x I is given by 

r(z, t) = (z, 1 - t). 

We shall see that the link-homotopy class of (1-1, denoted by [a-I], is the 
right and left inverse for [a] in /t'(k) (see the proof of Lemma 1.8 below). 
Hence /t'(k) is a group. Moreover, /t'(k) -+ .sf(k) is a homomorphism of 
groups (.sf (k) is acting on the right of RF (k)) . 

The main result of this section is the following. 

Theorem 1.7. The map 

is an isomorphism. 

Let us first prove the following 

Lemma 1.8. There is a split short exact sequence of groups 

1 -+ RF(k - 1) -+ /t'(k) -+ /t'(k - 1) -+ 1. 

Proof. The map /t' (k) -+ /t' (k - 1) is defined by omitting the kth string. A 
splitting is given by adding a trivial kth string. 

The map RF(k - 1) -+ /t'(k) is defined as follows. Let A E F(k - 1) be 
represented by a path y in D\ {PI' ... , Pk-I} based at Pk . Then a string link 
a). is defined by 

for i < k, 

for i = k. 
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isotopy .. 

FIGURE 1.6 

Note that (J). is a pure braid whose first k - 1 strings are trivial, and whose 
isotopy class is well defined by A. This defines a homomorphism whose image 
is easily seen to be onto the kernel of Jf' (k) ~ Jf' (k - 1) . 

(At this point, it follows that Jf'(k) is a group since it is a split extension 
of one group by another. In fact, from what we have just seen it follows that 
it is a quotient of the pure braid group. For a pure braid (J, [(J -1] = [(J ]-1 as 
claimed.) 

Now if A is in the kernel of F(k - 1) ~ RF(k - 1), then A is a product of 
conjugates of the elements [Xi' xfl, g E F(k - 1). A geometric argument of 
Milnor [M 1] shows that (J). is link-homotopic to 1. This geometric argument 
is displayed in Figure 1.6. So the map F(k - 1) ~ Jf'(k) factors to give a map 
RF(k - 1) ~ Jf'(k). 

To see that this map is injective, let (J be any string link with k strings and 
(j the string link obtained by omitting the kth string. Let Y denote its com-
plement. Then the kth string represents an element in 7r 1 (Y). (Specifically, 
connect the ends of the kth string to the "base point" e x I along the straight 
line segments (see Figure 2.1) ak x 0, ak xl, between ex 0, ex 1 and Pk x 0, 
Pk X 1 respectively.) Using the isomorphism 

we obtain an element A". E RF(k - 1). Clearly A I---> [(J,..1 I---> Au is the identity 
map of RF(k - 1), hence RF(k - 1) ~ Jf'(k) is injective. • 

Remark. The correspondence (J I---> Au induces a projection Jf' (k) -+ RF (k - 1) 
corresponding to the splitting Jf'(k - 1) ~ Jf'(k) and is not a homomorphism. 
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A modified version of the above proof establishes the split short exact sequence 

1 -+ F(k - 1) -+ PB(k) -+ PB(k - 1) -+ 1 

where PB(k) is the pure braid group on k strings. Consequently, 

PB(k) = ( ... (F(I) ~ F(2)) ~ ... ) ~ F(k - 1) 

and 
7l'(k) = ( ... (RF(I) ~ RF(2)) ~ ... ) ~ RF(k - 1) 

with the map PB(k) -+ 7l'(k) being the obvious projection. Since the projec-
tions FU) -+ RFU), i = 1, ... , k-l ,are onto, the projection PB(k) -+ 7l'(k) 
is also onto. A consequence of this is that any string link is link-homotopic to 
a pure braid. 

In his 1946 paper, "The theory of braids" [A], Artin asked the question 
whether the notion of isotopy and homotopy (link -homotopy here) of braids are 
different. This was established only in 1973, when Goldsmith [G 1] essentially 
established the above semidirect product decomposition for 7l'(k) , by intro-
ducing relations in PB(k) corresponding to the projections FU) -+ RFU). 

Before we can prove Theorem 1.7, we need to know a bit more about the 
structure of the group RF(k). In [M], Milnor constructed a polynomial ring 
P(k) in noncommutative variables XI' ... ,Xk such that monomials with two 
or more occurrences of some variable are set to zero. Milnor showed that 

{I, Xi Xi ... Xi ; 1 ::; iI' i2 , ••• , ir ::; k, is =1= it if s =1= t} 
I 2 r 

forms a free basis for the abelian group P(k). We then have an injective 
expansion RF(k) -+ P(k) given by sending Xi to 1 + Xi' This expansion is 
actually a reduction of the well-known Magnus expansion for the free group 
F(k) [MKS]. Notice the expansion of Xi-I is 1 - Xi' 

Let A E RF(k) , A =1= 1, then <5(A) E P(k) is defined to be the nonvanishing 
homogeneous component of the lowest positive degree in the expansion of A. 
We define <5(1) = O. 

Lemma 1.9. Suppose A E RF(k), then 
(1) <5([A, Xi]) = <5(A)Xi - X i <5(A); 
(2) <5(r l )=-<5(A); 
(3) <5(AXi ) = <5(A); 
(4) if deg<5(A) = deg<5(.ll) , then <5(Aji) = <5 (A) +<5 (.ll) ; if deg<5(A) < deg<5(ji) , 

then <5(Aji) = <5(A). 

Proof. An easy computation. • 

Remark. It is the additivity property (4) that is responsible in part for the 
additivity of the first nonvanishing Ji-invariants. 

Lemma 1.10. The centralizer of Xi in RF(k) is Ni' the normal subgroup nor-
mally generated by Xi' 
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Proof. Ni is abelian and so centralizes Xi. Consider the split exact sequence 

1 -+ Ni -+ RF(k) -+ RF(k - 1) -+ 1. 

Here RF(k -1) = RF(k)jNi . It suffices to see that no element of RF(k -1) c 
RF(k) centralizes Xi. Let A E RF(k - 1) with A i= 1. Then <5(A) i= 0 and 
the monomials in <5(A) contain no Xi. So <5([A, Xi]) i= 0 according to Lemma 
1.9. Consequently, [A, Xi] i= 1. • 

A Proof of Theorem 1.7. Suppose ¢ E .9f(k) , then ¢(xi ) = x/ for some Ai E 
RF(k) , i = 1, ... , k. Clearly, Ai is well defined up to multiplication on the 
right by centralizers of Xi. By Lemma 1.10, it follows that the image of Ai' 
denoted by Ii' in RF (k - 1) = RF (k) j Ni is well defined. It should be remarked 
that Ii E RF(k - 1) c RF(k) is a canonical choice satisfying ¢(xi ) = X~i and 
{II' ... ,Ik } is determined uniquely by ¢. 

We define A: .9f(k) -+ RF(k - 1) as follows. If ¢ E .9f(k) , then A(¢) = Ik 
where Ik is the unique element in RF(k - 1) = RF(k)jNk such that ¢(xk ) = 

;:k x k • 

The quotient map RF(k) -+ RF(k - 1) = RF(k)jNk ,A 1-+ I induces an 
epimorphism .9f (k) -+ .9f (k - 1). The image of ¢ E .9f (k) will be denoted by 
¢. We have 

¢ E .9f(k) , A E RF(k). 

Remember that we have defined the action of .9f (k) on RF (k) to be a right 
action. So if ¢, ¢' E.9f (k) , we have 

((xk )¢ )¢' = (X~k )¢' = XYk)¢' ·A~ . 

Thus 
, ,,--,-' A(¢¢ ) = (Ak)¢ . Ak = (Ak)¢ . Ak 

= (Ik )¢' . I~ = (A(¢))¢' . A(¢'). 

From this, it is easy to see that the map 
.9f (k) -+ .9f (k - 1) is a homomorphism. 

A restricted on the kernel K of 

We have the following diagram 
1 -+ RF(k - 1) -+ Jr(k) -+ 

1 1 
K -+.9f (k) -+ 

A1 
RF(k - 1) 

Jr(k - 1) -+ 

1 
.9f(k-1) -+ 

with exact rows. The composition RF(k-I) -+ RF(k-I) is the identity, since 
for any string link (], the kth string considered as a loop in the complement of 
the first k - 1 strings represents a word in RF (k - 1) which is exactly A( ¢ (J) • 

Since inductively Jr (k - 1) -+ .9f (k - 1) is an isomorphism, it remains to 
show that A is injective on K. So let ¢ E K, ¢(xi ) = X;i, i = 1, ... , k. 
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As Ik = 1 , we have ¢(xk) = xk . We must show ¢(x) = Xi for i < k. Or 
equivalently Ii = 1 for i < k. Now we have 

¢(xl " ·xk ) = XI'· ·xk • 

So we obtain 

l.e., 
_ [' ][ , ]XI [' ]XI ···Xk _ 2 1 a-II. I , XI 11.2' X 2 ... II.k_1 ,Xk_1 = . 

We will consider !5(Ii) , i = 1, ... , k - 1. Notice deg!5(Ii) ::; k - 1 and 
the monomials in !5(Ii) contain no Xi' On the other hand, since ¢ E K, each 
monomial of !5(Ii) contains Xk (if !5(Ii) =I 0). Assume for the purpose of 
reaching a contradiction that the set J = {i; Ii =I I} is nonempty. Let I be 
the subset of J consisting of those indices i with deg!5(Ii) minimal. Then, 
since !5(a) = 0, using Lemma 1.9, we get 

L:(!5(Ii)Xi - Xi!5(I)) = O. 
iEI 

Suppose i l E I and Mi is a monomial in !5(Ii ). In the above expression, 
I I 

the monomial MI XI· can only be canceled using the monomials in X!5 (I) , 
I I I I 

i =I i l . So there must be a monomial Mi in !5(Ai ), i2 E I\{i l }, with Mi Xi = 
2 2 I I 

XI· M . . In order to cancel M X ,there must be a monomial M. in !5(k ), 
2 12 12 12 13 13 

i3 E I\{i2 } , with Mi Xi = Xi Mi . We claim i3 =I i l . This is because the 
2 2 3 3 

last variable in Mi is Xi which cannot be the first variable as Mi contains 
2 I 2 

X k and there are no repeated indices. Note that the last two variables of Mi 
3 

are Xi and Xi so that there is an i4 in I\{i l , i2 , i3} by the same reason. 
I 2 

Continuing in this way, we eventually find that the cardinality of I is greater 
than k - 1 , a contradiction. This contradiction shows that we must have had 

and proves Theorem 1.7. • 

Corollary 1.11. We have 

II = ... = Ik_1 = I 

JiI ( k) = JiI (k - 1) ~ RF (k - 1) 

where the action of JiI (k - I) on RF (k - 1) is the natural right action. 
Proof. The splitting JiI (k - 1) -+ JiI (k) is defined by 

{ ¢>(Xi) for i < k, 
¢(xi ) = . 

xk ' for I = k, 

where ¢>(x) E RF(k - 1) c RF(k). This clearly defines a map F(k) -+ 

RF(k) which descends to a map RF(k) ....... RF(k) inducing the identity after 
abelianization. Since RF(k) is nilpotent, it must be an isomorphism. 
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Suppose ¢ E.91' (k - 1), rp E K. Note that 

A(¢-I) = A(¢) = 1. 

Hence we have 

A(¢-I rp¢) = (A(¢-I»rp¢. A(rp¢) = A(rp¢) 

= (A(rp))¢. A(¢) = (A(rp))¢ 

showing that the action is the natural right action. • 

Proposition 1.12 . .91'(k) is torsion free and nilpotent of class k - 1. Moreover, 
we have 

.91' ( k ) i = .91' (k - 1) i ~ RF (k - 1) i . 

Proof. We know RF(k - 1) is torsion free and nilpotent of class k - 1 . Hence 
JiI (k) is torsion free. As the action of .91' (k - 1) on the abelianization of 
RF(k - 1) is trivial, it acts trivially on RF(k - l)JRF(k - l)i+1 for all i. It 
follows that 

.91' ( k ) i = .91' (k - 1) i ~ RF (k - 1) i . 
Hence .91' (k)k_1 = RF(k - l)k_1 #- I and JiI (k)k = RF(k - l)k = I, so .91' (k) 
is nilpotent of class k - I. • 

Let us quote a result of Levine here which gives a basis for the torsion free 
nilpotent group RF(k) . In particular, it shows that the word problem in RF(k) 
and hence in JiI (k) is solvable. 

Proposition 1.13. Given a Hall basis of basic commutators for the free group 
F(k), let C1 , ••• , Cn be the ordered subset of basic commutators in 
{Xl' ... , x k} without repeated appearances of the variables. Then each element 
of RF(k) can be written uniquely as a product C~I ... C~n where e l , ••• , en 
are integers. 
Proof. See [Le2]. • 

Next we give a geometric interpretation of the lower central series of the 
group .91' (k). This also gives an alternative proof of the nilpotency of Jlt' (k) . 

Definition 1.14. A string link (J is called r-trivial if after omitting any set of r 
strings from (J, the remaining strings form a link-homotopically trivial string 
link. 

We denote by {Jlt'(k)}, the normal subgroup of Jlt'(k) consisting of all r-
trivial string links. 

Proposition 1.15. We have 

{Jlt'(k)}, = Jlt'(k)k_,' 
Proof. Let (J E Jlt'(k)k_,' After omitting r strings from (J, it maps to an 
element in Jlt'(k - r)k_, which inductively equals {Jlt'(k - r)}o = 1. Hence 
Jlt'(k)k_, c {Jlt'(k)},. 
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For (J E {%(k)}r' let (J = eg with e E %(k - 1) and g E RF(k - 1) 
corresponding to the semidirect decomposition %(k) = %(k - 1) ~ RF(k - 1) 
where RF (k - 1) = RF (k) INk' Omitting r strings other than the kth one 
gives a map to %(k - r) = %(k - r - 1) ~ RF(k - r - 1) respecting the 
decomposition. Since (J maps to 1, it follows that g maps to 1. Since every 
basic commutator in the Levine normal form of g of weight less than k - r will 
be detected by some such map, it follows that there are no such commutators 
and hence g E RF(k - l)k_r C %(k)k_r' 

Omitting r strings including the kth one from (J amounts to omitting r - 1 
strings from e. Hence 

e E {%(k - l)}r_l = %(k - l)k_r C %(k)k_r' 

Thus (J = eg E %(k)k_r' i.e., {%(k)}r C %(k)k_r' • 

2. CLASSIFYING LINKS UP TO LINK-HOMOTOPY 

A link in S3 is a smooth or piecewise linear imbedding of a disjoint union 
of ordered, oriented circles U7= 1 Si1 into S3 . Let 

k 

L: I1 S: --+ S3 
i=l 

be an ordered, oriented link. We will also denote the image of L by Land 
will call Li = L(S;) the ith component of L. 

Given a string link (J, we can close it up to get an ordered, oriented link fJ 
in S3. This process can be reversed, though not canonically, and the study of 
the resulting indeterminancy is the key to our classification. 

Let 7C denote the projection D x I --+ D. If we identify points on the 
boundary of D x I with their images under 7C, the resulting quotient space is 
homeomorphic to S3. Moreover, after identifying IIBI with Sl , the string 
link (J gives rise to a link 

k 

fJ: I1 S: --+ S3 
i=l 

which inherits an ordering and orientation from (J. This link fJ is called the 
closure of the string link (J. 

Suppose the oriented unit disk D is imbedded in S3 such that its intersection 
with the ith component of the link L is Pi' i = 1 , ... , k, and all intersection 
numbers are + 1 . Then we call the image of Dad-base for L and still denote 
it by D. 

Definition 2.1. A d-based link is a pair (L, D) where L is a link and D is a 
d-base of L. 

For the closure fJ of a string link (J, there is a canonical choice of ad-base 
D = D x 0 = D xl. By the d-based link (fJ, D), we will always mean the link 
fJ with its canonical d-base D. 
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One can easily construct for any link L a d-base_ Once this has been done, 
one can easily convert a link to a string link. Thus we have 

Lemma 2.2. For any link L, there is a string link (J such that fJ is isotopic to 
L. 

We define two d-based links (L, D) and (L', D') to be (ambient) isotopic 
if there is an isotopy of S3 which deforms L U D to L' u D' preserving the 
ordering and orientation of the components. 

Lemma 2.3. The correspondence (J 1--+ (fJ, D) induces a bijection between isotopy 
classes of string links and isotopy classes of d -based links. 

Let us recall the definition of two links being link-homotopic as introduced 
by Milnor [MI] (his terminology was simply "homotopic"). See also [Le2]. 
Two links are link-homotopic (preserving the ordering and orientation of the 
components) if one can be deformed to the other through a sequence of ambient 
isotopies of S3 (preserving the ordering and orientation of the components) 
and "crossing changes." As before, a crossing change is a homotopy of a single 
component of a link supported in a ball whose intersection with the link consists 
of two segments of that component which cross during the defomation. 

We can also define a link-homotopy between two d-based links (L, D) and 
(L' , D'). It will be a link-homotopy from L to L' which deforms D to D' 
isotopically and no ball supporting a crossing change has intersection with the 
image of D at the time that crossing change is being accomplished. 

Corollary 2.4. The correspondence (J 1--+ (fJ, D) induces a bijection between link-
homotopy classes of string links and link-homotopy classes of d-based links. 

Figure 2.1 shows a system of arcs {aI' ... , ak} in D connecting the base 
point e of D to the points {PI' ... , Pk} _ We call this system a wedge of arcs 
and denote it by W. Since the disk D retracts to a neighborhood of W, 
for many purposes, a consideration for the disk D can be reduced to W. For 

e 

FIGURE 2.1 
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example, we have 

Lemma 2.5. Suppose L is link-homotopic to L', and let D be ad-base for 
L. Then there is ad-base D' for L' such that (L, D) is link-homotopic to 
(L', D'). 
Proof. Ambient isotopy takes D to some other disk D' so we need to consider 
only a crossing change. But such a homotopy occurs in the ball neighborhood 
of an arc joining two points of one component of the link. We can position the 
arc to avoid the image of W. Then since D deforms to a neighborhood of 
W, we can perform an isotopy of D (keeping the link fixed) so that it avoids 
the ball in which the homotopy is supported. • 

Suppose (L, D) is a disk-based link. The image of W will be denoted by 
the same letter and we call W a w-base for Land (L, W) a w-based link. 

If (L, W) is a w-based link, we can have a lot of d-bases D for L such that 
WeD. But up to isotopy, the only essential difference among these d -bases 
for L is due to some full twistings of the band neighborhoods of the arcs ai 
in W. Such a full twist can be undone by an isotopy which untwists the band. 
The effect of such an isotopy on the link is a full twisting of two segments of a 
component of the link which can be eliminated by a link-homotopy. See Figure 
2.2. 

We define a link-homotopy of two w-based links just like a link-homotopy 
of two d-based links. The only difference is that we now require that the 
supporting ball of a crossing change have no intersection with W. Then the 
above argument shows that d-based link-homotopy is equivalent to w-based 
link-homotopy. 

The following proposition and its corollary can be derived from our classi-
fication theorem (Theorem 2.9). On the other hand, these can be thought of 
as prototypes of Theorem 2.9. The method in the proof goes back to [G2] and 
[Gi]. 

Proposition 2.6. Suppose (L, D) and (L, D') are two d-based links such that L 
is link-homotopic to an unlink. Then (L, D) and (L, D') are link-homotopic. 

L 

An isotopy 

A link-homotopy 

L 

FIGURE 2.2 
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Here by an unlink we mean an imbedding L: U~=I Sf ---+ S3 which can be 
extended to an imbedding U~=I B; -t S3 where B;'s are copies of the 2-ball 
B2 and 8 B2 = SI . Denote the image of B; by tl j • 

Proof. Equivalently, we consider the w-bases of an unlink. For an unlink, 
there is a standard w-base. It is any w-base which intersects U~=I tl j only at 
its endpoints (any two such being isotopic). We need to show only that if W is 
any w-base for an unlink L, then (L, W) is link-homotopic to (L, UQ) such 
that UQ is the standard w-base for L. 

Let aj , i = 1, ... ,k be the arcs in W. Suppose inductively that aj has 
no intersection with the interior of U~=I tlj for j < i. Let us consider the 
intersection of aj with the interior of tlj • Such an intersection can be removed 
by a link-homotopy of the w-based link. First, pull the endpoint Pj of a j back 
towards the base point e. This is an isotopy of the w-based link. A small 
neighborhood of Pj in L j will be pulled along forming a band passing through 
the interior of tl j • Push this band off tl j • This can be accomplished by a link-
homotopy of the w-based link. Finally, isotope the band back along itself. This 
removes each intersection of a j with the interior of tl j at the cost of two self 
crossings of L j • See Figure 2.3. Now it is easy to remove the intersections of aj 

with tlj , j =j:. i, by isotoping aiutl j in the complement of UHi(ajUL). (This 
may introduce new intersections of aj , j > i, and the interior of U~=I tl i .) 

Thus inductively we have eliminated the intersections of ai and the interior of 
U~I tli by a link-homotopy of the w-based link. • 
Corollary 2.7. Suppose (J is a string link such that fJ is link-homotopic to an 
unlink, then (J = 1 E ,Jf' (k) . 

Before continuing, we give a slightly different description of the closure of a 
string link. Instead of working in S3, we will work in a ball B = B3 decom-
posed into three subballs B _, B +' and Bo with both B _ and B + glued to 

/ 

FIGURE 2.3 
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B+ 

1/4 0 

- BO 

1/2 3/4 

B -

FIGURE 2.4 

Bo along disks. Bo is to be thought of as D x I, B _ and B + as half balls, and 
the gluing of B _ is along the disk D x 0 , whereas B + is glued along D x I . 

Specifically such a ball can be obtained as an identification space of D x I 
where we identify (z, 0) with (z, 1) and perform identifications along aD x I 
as follows. Let z = (x, y) with x ::; 0 and x 2 + l = 1, identify (z, t) with 
(z, i - t (modI» for t E [0, 1]. Then B+, Bo' and B_ correspond to the 
product of D with the intervals [0, i]' [i, !]U[i, 1] and H, i] respectively. 

Figure 2.4 is a schematic picture of how the identification space is obtained. 
Note that Bo is the product of the double of the unit disk D along the 

boundary arc {(x, y); x ::; 0, x 2 + l = 1} with an interval and so can be 
identified with D x I with D having 2k distinguished points. The points Pi 
in D x i (also in D x !) will be labeled with a bar to distinguish them from 
the points Pi in D x 0 (also in D x i) and a similar convention is made for 
the loops Xi (see Figure 2.5). Note that the orientations of the loops Xi are 
counterclockwise but the orientations of the loops Xi are clockwise and the 
points are ordered as 

So the boundary curve of the double disk is 

Let a be a string link with k strings in D x I. We first identify D x I with 
D x [0, i] by identifying the unit interval I with [0, i]. Then we can put a 
into B + since B + is an identification space of D x [0, i] and only different 
boundary points are identified. In other words, we get a proper imbedding (still 
denoted by a) 

k 

a: IJI-+B l + 
i=1 
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FIGURE 2.5 

such that 0"1[(0) = Pi ED x 0 and 0"1 / (1) = Pi E D Xi. Obviously, any such 
imbedding is'obtained from a string li~k with k strings. 

Let us now construct an action of .Jf'(2k) on .Jf'(k) . 
Suppose L is a string link with 2k strings. We may think of it as a proper 

imbedding 
2k 

L: II Ii ---> Bo 
i=1 

such that LI/(O) = Pk+I-i E D x ~ and LI/(I) = Pk+l-i E D x i for i = 
1, ... ,k and LI/(O) = Pi-k E D x ~ and ill (1) = Pi-k E D x 0 for i = 
k + 1, ... , 2k. L~t 0" be a string link with k strings. Think of it as a proper 
imbedding 117=1 Ii ---> B+ . The union of 0" and L gives rise to a proper imbed-
ding 117=1 Ii ---> Bo U B+. See Figure 2.6. Now identify Bo U B+ with B+ by 
pushing Bo into a collar neighborhood of B + . The resulting proper imbedding 
117= I Ii ---> B + is the image of a string link denoted by L· 0"0. Notice that as 
a part of the ith string of the string link L· 0", the orientations of L(Ii) for 
i = 1 , ... , k have been reversed. 

It is easy to see that the above construction gives rise to a well-defined action 
of .Jf'(2k) on .Jf'(k). 

Lemma 2.8. We have 
(LL') .0" = L· (L' . 0") 

for L, L'E.Jf'(2k) and O"E.Jf'(k). 

Proof. This is obvious from the definition of the action. • 

We will denote by !/(k) the stabilizer of 1 E .Jf'(k) , i.e., 

!/(k) = {L E .Jf'(2k); L· 1 = 1 E .Jf'(k)}. 

By Lemma 2.8, we see that !/(k) is a group. 
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Theorem 2.9. Suppose 0"1,0"2 E %(k), then 0-1 and 0-2 are link-homotopic if 
and only if there is a I. E Y(k) such that I.. 0"1 = (J2' 

Proof· Let B=B_UBoUB+cS3. Let us identify Dx1 with Dx[!, i]. We 
will still use 1 to denote the composition of the imbedding 1: U7=1 Ii -+ D x I 
with the quotient map D x I -+ B _. Then the union of the string link 1 in 
B _ and the string link I.. 0" in Bo U B + gives us a link in B C S3. This 
link is f:a. If we choose I. to be the trivial string link with 2k strings, then 
the resulting link in the above construction is 0-. Notice that the ordering and 
orientation of the components of 0- coincide with the ordering and orientation 
of the strings of (J in the above construction. We will regard this construction 
as the canonical way to close a string link up to get a link. 

Suppose I. E Y(k). Notice that there is an involution on B which maps 
B + to B _ and leaves D x i U D x i fixed. The image of the union of 1 in 
B _ and I. in Bo with orientation reversed is the same as I.-I . 1 which is 
link-homotopic to the trivial string link by our assumption. So the union of 1 
in B _ and I. in Bo' thought of as a string link, is also link-homotopic to the 
trivial one. Thus we have proved that if I. E Y(k) and 0" E %(k) , then CO" 
is link-homotopic to 0-. 

Let us now consider the other direction of our theorem. Since the set of 
link-homotopy classes of string links is in one-one correspondence with the set 
of link-homotopy classes of d-based links (Corollary 2.4), to study the relation 
between two string links (JI and 0"2 when 0-1 and 0-2 are link-homotopic, 
we need to study only the relation between two d-based links (LI' D I ) and 
(L2' D2) when LI and L2 are link-homotopic. By Lemma 2.5, (LI' D I ) is 
link-homotopic to (L2' D;), so we need to study only the relation between two 
string links determined by two different d-bases of a single link. 

Let 0" be a string link, which we assume is in B+. We close it up canonically 
in B C S3 and pick D = D I _ e X i to be the standard d-base for 0-. Here 
DI is the disk with radius 1 - e and p. E DI for i = 1, ... , k. Up to -e. 1 -c 
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• • • • 

FIGURE 2.7 

link-homotopy, we can assume a in B+ is a pure braid (see the remark after 
the proof of Lemma 1.8). Then the complement of a in B+ has a product 
structure. Consequently, any other d-base D' of fJ can be isotoped into the 
interior of B _ U Bo keeping fJ fixed. See Figure 2.7 in which we have drawn 
schematically the image of the corresponding w-base. 

Suppose D~ and D~ are the top disk and bottom disk of a small product 
neighborhood N of D' in the interior of B _ U Bo such that fJ n N is a trivial 
string link with k strings. Now perform an isotopy of B _ U Bo keeping the 
boundary fixed, which takes (N, D~, D~) to 

(D I _ e X [1, iJ, D I _ e X 1, D I _ e X i) c (B+, D x 1, D x i) 
and so that the intersection of the image of fJ with B _ is a trivial string link 
with k strings. It is clear that the intersection of the image of fJ with Bo is a 
string link L with 2k strings. 

Observe that the part of the image of fJ in Bo U B + is the string link deter-
mined by the d-based link (fJ, D'), and moreover it can be written as L' a . 
So the only thing we need to show is L E Y(k). But by construction, after 
reflecting Bo U B + into B _ U Bo by the involution on B mentioned above, 
L- 1 ·l is isotopic to the trivial string link fJ n (B_ UBo)' So L- 1 E Y(k) and 
consequently l E Y(k). This proves Theorem 2.9. • 

We conclude this section with a study of the group Y(k) and its action on 
Jr(k). We are led to a Markov-type theorem, which was conjectured by Levine 
more that ten years ago. 

In Figure 2.8 are some planar projections of elements in Y(k). We use the 
following notation there. The first k strings are named by k, ... , T in that 
order and the last k strings are named I, ... , k in that order. All the strings 
are oriented upward. The base point is behind the picture. 

Note that if L E Jr(2k) and a E Jr(k), the ith and 7th strings of L 
become part of the ith string of L' a. Hence if L is changed by crossings of 



THE CLASSIFICATION OF LINKS UP TO LINK-HOMOTOPY 411 

.-. '" I 1 ... ... k 

....... I d= -JJ 
~ -

... ... I ... ... k 

L:=b 
~ 

([ - -- - - - ~ 

l I 

... . .. I 1 . , . ... k 

ct I~ 1-

'-- - - - -- - JJ 
I - - - --

I 

FIGURE 2.8 

these pairs of strings, the link-homotopy class of L·a remains unchanged. Thus 
the action of ,7t'(2k) factors through a quotient, denoted by ,7t'*(2k) , suitably 
defined. The work in § 1 generalizes to this setting, in particular yielding a split 
short exact sequence: 

1 --> RF* (2k - 2) x RF* (2k - 2) --> ,7t'* (2k) --> ,7t'* (2k - 2) -> 1 . 

Some remarks about the above exact sequence are in order. First of all, the 
map ,7t'*(2k) --> ,7t'*(2k - 2) is given by omitting the kth and kth strings. 
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Next, the group RP* (2k - 2) is obtained from 

RP(2k - 2) = RP(xk _ l , ... ,XI' XI' ... 'Xk _ l ) 

by adding relations saying that Xi commutes with conjugates of Xi. Finally, 
a pair of words (h, g) with g, h E RP*(2k - 2) gives rise to a string link 
with 2k strings obtained from representing g and h as the kth string and 
kth string in the complement of a trivial string link with 2k - 2 strings. 

Corresponding to the above short exact sequence for Jr*(2k) is one for 
Y*(k), the image of Y(k): 

1 -+ % -+ Y*(k) -+ Y*(k - 1) -+ 1. 

We define 

y/: RP*(2k - 2) -+ RP(k - 1) = RP(xl , ... 'Xk _ l ) 

y/(x) = y/(xi ) = xi' i = 1, ... , k - 1. 

Lemma 2.10. Par (h, g) E RP* (2k - 2) x RP* (2k - 2) c Jr* (2k), (h, g) E % 
ifand only if y/(h) = y/(g). 

Proof. Note that (h, g). 1 = y/(hg- I ) E RP(k - 1) c Jr(k). So (h, g) E % 
if and only if y/(h) = y/(g) . • 

For example, the string links in Figure 2.8 all represent elements in % . 

Lemma 2.11. % is generated by 

{(Xi' Xi)' (Xi' Xi)' (Xi' Xi); i = 1, ... , k - I}. 
Proof. Let ~ be the subgroup generated by these elements. Then ~ c % . 
One has that (Xi-lXi' 1), (1, Xi-IX), and (Xi' Xi) are all in ~. 

Let h be the word obtained from a word h by replacing Xi (Xi) in h by Xi 
(Xi). Both (h, h) and (h, h) belong to ~ for any h E RP(xl , ... 'Xk _ I ). 

And we also have h- I = h- I • Hence 

(h, h)(l, Xi-IXi)(h- l , h- I ) = (1, hX:IXih- l ) E~. 

Now if (1, g) E % , then y/(g) = 1 , i.e., g is a product of conjugates of 
X;-lXi. So by the above discussion, (1, g) E ~. 

For (h, g) E % , we have y/(h) = y/(g). Then since 

(h, g) = (h, h)(I, h-Ig) 

and 
y/(h) = y/(h) , 

we get (h, g) E ~ and hence ~ c %. So ~ = %. • 

Let us now consider the actions of (Xi' Xi)' (Xi' Xi) ,and (Xi' X,) on Jr(k). 
Let 0 E Jr(k - 1) and g E RP(x1 , ••• 'Xk _ I ). Figure 2.9 shows the action of 
(Xi' Xi) on Og E Jr(k). One finds 

(Xi' Xi)· Og = OXigxi- 1 = OgX,. 
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FIGURE 2.9 

Similarly, we have 

It follows that 

-I -I -I (Xi,X;)·Og=(Xi,Xi)·OgO O=XiOgO Xi 0 
-I -I -I e-1x e = 0(0 XiO)g(O Xi 0) = Og I. 

So both (Xi' Xi) and (Xi' X;) act on %(k) by "partial conjugation" which 
we now define. 

Definitin 2.12. Let (J E %(k) be decomposed as Og corresponding to the 
decomposition % (k) = % (k - 1) ~ RF (k - 1) obtained from the map % (k) --+ 

%(k - 1) given by omission of the ith string. A partial conjugate of (J is an 
elementof%(k) of the form ol with hERF(k-l). 



414 NATHAN HABEGGER AND XIAO-SONG LIN 

Notice that (Xi' x) acts on Jf'(k) by conjugation by Xi E RF(k - 1) c 
Jf'(k). We then have 

Theorem 2.13. Let a, a' E Jf'(k). Then the closures of a and a' are link-
homotopic as ordered, oriented links if and only if there is sequence a = ao' ai' 
... , an = a' of elements of Jf'(k) such that aj +1 is either a conjugate or a 
partial conjugate of aj . 

Proof. ,9* (k) is generated by the kernels of the various quotient maps 
,9*(k) -+ ,9*(k - 1). Each such kernel is generated by elements which act 
on Jf'(k) by conjugation or partial conjugation. Moreover, these generators 
are also generators for the full group generated by conjugation and partial con-
jugation, since RF (k - 1) is generated by the Xi and since Jf' (k) is generated 
by the various subgroups RF (k - 1) C Jf' (k) . • 

Remark. It is geometrically clear that conjugate or partially conjugate string 
links determine link-homotopic closed links. The former holds because cycli-
cally permuted products of string links yield the same closed link. The latter 
holds because partial conjugation corresponds to conjugating one component of 
the closed link in the fundamental group of the complement of the others. 

3. MILNOR'S INTEGER INVARIANTS 

According to Milnor, the link-homotopy classes of ordered, oriented links 
with k components can "roughly" be described by 

integers. Our string link description gives a precise interpretation of these invari-
ants. The rank of the torsion-free nilpotent group Jf'(k) is exactly this number. 
In fact, the rank of the free abelian group Jf'(k)m_Ij Jf'(k)rn is (m - 2)! (!) and 
Milnor's rough construction of links closely parallels the precise decomposition 

Jf'(k) = ( ... (RF(I) D< RF(2)) D< ••• ) D< RF(k - 1). 

Thus Milnor's integers, while not link-homotopy invariants of links, are link-
homotopy invariants of string links. 

The true link-homotopy invariants of links are invariants of the orbit space 
Jf'(k)j,9* (k). However, the nilpotent structure of Jf'(k) and the complicated 
nature of the action of ,9* (k) conspire to make it difficult, if not impossible, 
to find a complete set of invariants. 

In [M 1], Milnor did obtain link-homotopy invariants of links by taking the 
above integer invariants modulo indeterminancies given by greatest common 
divisors of lower order integer invariants. In [M2], these indeterminancies were 
replaced by smaller ones. (It is still not known if they are actually smaller, a 
problem posed at the 1982 Sussex conference. See [F], problem list.) However, 
these indeterminancies are not sharp enough to classify links. Computations of 
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Vogel using our results have shown that any refinement of the indeterminancies 
of the integer invariants cannot be done individually. In order to get a group 
structure on the secondary invariants of 4-component links, one needs to extend 
all four secondary ",U-invariants simultaneously. 

At this point, we prefer to rely on Theorem 2.13. Note that the conjugacy 
problem of a nilpotent group is solvable (see [Ba]). Therefore, there are algo-
rithms to separately decide if two elements in ff'(k) are conjugate or partially 
conjugate. 

Theorem 3.1. There is an algorithm which will decide whether or not two elements 
in ff'(k) are equivalent under the equivalence relation generated by conjugation 
and partial conjugation. 

This result is somewhat remarkable, for often it is the case that an equivalence 
relation generated by two others is not recursive. 

In this section, we will use s(·) to denote the action of s E 5'* (k) on ff' (k) . 
The key to understanding why Theorem 3.1 is true is the observation that 

even though conjugation and partial conjugation are different (the former acts 
by automorphisms whereas the latter does not), they have two properties in 
common. 

Lemma 3.2. For s E 5'*(k) and ~ E ff'(k)i' one has 
(1) s(I)=I; 
(2) s(~a) == ~s(a) mod ff'(k)i+1 for any a E ff'(k). 

Proof. The first is the defining property of 5'* (k). Let us consider the second 
property. For conjugation, one has 

s(~a) = s(~)s(a) and s(~) == ~ mod ff'(k)i+I' 

For partial conjugation, set ~ = 0' g' and a = e g for e, e' E ff'(k - 1) and 
g, g' E RF(k - 1). Then for some hE RF(k - 1), we have 

s(~a) = e' e(e- I g' e)h l 
whereas 

, -I' h c;s(a) = e e(e g e)g . 

Now C; E ff'(k)i' so g' E RF(k - 1)i and e- I g'e E RF(k - 1)i' Thus 

or 

-I 'h -I' k (e g e) == e g e mod RF(k - 1)i+1 C ff'( )i+I' 

s(c;a) == c;s(a) mod ff'(k)i+I' • 

Now let 5' be a group acting on a group ff' and satisfying 
(1) s(l) = 1; and 
(2) s(c;a) == c;s(a) mod ;e;+1 for C; E Jf'! and a E Jr . 
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Then the action of Y passes to an action on 7t' I Jf! commuting with the action 
of Jf!1Jf!+1 given by multiplication. In particular, each fiber of the projection 
of the orbit spaces 

7t' I Jf!+1 7t' I Jf! 
Y --+~ 

has a transitive action of Jf!1Jf!+1 and hence the structure of an affine space of 
a quotient group of Jf!1Jf!+1 . 

The above discussion leads to an "obstruction theory" picture. Suppose 
(J, (J' E 7t'. We check inductively whether they agree in (7t'I7t'JIY. Assume 
they do. Then there is a well-defined "difference" coset di«(J, (J') c Jf!1Jf!+1 
such that (J and (J' agree in (7t'IJf!+I)/Y if and only if di«(J, (J') contains 
zero. This leads to the problem of trying to compute these cosets. 

Let us use the same notation to denote the induced action of Y on 7t' I Jf! . 
For (J E 7t' , we will denote by (Ji its image in 7t' I Jf! . 

Define 
~. = {s E Y; s«(J) == (J mod Jf!}. , 

In other words, ~ is the stablizer of (Ji in 7t' I Jf!. If S E ~., then the 
I , 

"difference" 

belongs to Jf!1Jf!+1 . 

Lemma 3.3. The map S I--> d; (s) is a homomorphism 

d; : ~i --+ Jf!1Jf!+1 

and its kernel is ~ . 
i+1 

Proof. Suppose SI' S2 E~., by property (2) of Y and the fact that Jf!1Jf!+1 
is an abelian group. We get' 

G dG -I-I 
di (SI) i (S2) = SI «(Ji+I)(Ji+I S2«(Ji+I)(Ji+1 

-I -I 
= S2 «(Ji+ I )(Ji+ I S I «(Ji+ I )(Ji+ I 

-I -I 
= SI (S2«(Ji+1 )(Ji+1 (Ji+1 )(Ji+1 

-I 
= SI(S2«(Ji+I))(Ji+1 
= d; (SIS2). 

SO d; is a homomorphism. The second claim is clear from the definition. • 

Now suppose (J, (J' E 7t' such that (Ji = (J; . Define the "difference" 

, ,-I Jf' Jf' 
d«(Ji+I' (Ji+l) = (Ji+l(Ji+1 E d i+1 

and define the "difference coset" 



THE CLASSIFICATION OF LINKS UP TO LINK-HOMOTOPY 417 

Lemma 3.4. There is an s E .9 such that S(O'i+l) = 0';+1 if and only if 
d(O'i+l' 0';+1) belongs to the image of d; or 0 belongs to the coset di(O', 0"). 

Proof. We need to notice only that if such an s E.9 exists, we must have 
s E ~i since we have assumed that (Ji = (J; . Then the lemma follows directly 
from the definition. • 

Assuming there is an s E.9 such that s( (Ji+l) = (J;+1 ' then we replace (J 
by s -1 (0"). For this new (J' , we have (Ji+ 1 = (J;+ 1 so we can continue to search 
for some s E.9 such that S((Ji+Z) = (J;+z . 

In order for the above procedure to be effective, we need to be able to compute 
d; , in particular to know ~. and its action, or at least a finite set of generators 
for ~. whose action on if' I we can compute. In the case that if' is a torsion-
free niipotent group, to say the action on if' is computable means we know 
how the coefficients of an element change under the action with respect to a 
fixed basis for if' . Suppose inductively such generators Sj exist. Let Y; be the 
free group on these generators. Since :;r-;1:;r-;+1 is abelian, the composite map 

factors through the abelianization to give 

In our case, :;r-;1:;r-;+1 is free abelian, so 11; is just an integer matrix which is 
diagonalizable. Hence it can be decided if d ((Ji+ 1 ' 0';+ 1) E :;r-; I:;r-;+ 1 belongs to 
the image of 11; and if it does, construct a preimage. This will be a linear 
combination of Sj in Y;1(y;)z and the corresponding word in Sj will be an 
S E .9 with S((Ji+l) = (J;+I. Moreover, since the action of Sj is computable, 
S-I((J') can be computed, since S-I is a word in the Sj. 

Again, since the matrix of 11; is diagonalizable, a basis of the kernel of 11; 
can be given in terms of linear combinations of Sj and hence the corresponding 
words in Y; together with (Y;)z will generate~. . If .9 is nilpotent of class 

HI 

n (as it is in our case), then (Y;)n will automatically map trivially to.9 . 
U j + 1 

Hence we will get a finite set of generators by taking the basic commutators of 
length ~ n in (Y;)z. Since all of these will be expressible in terms of words in 
the Sj' their action will be computable. 

This completes the algorithm and the proof of Theorem 3.1. Note that 
.9*(k) , and hence the group generated by conjugation and partial conjugation, 
is nilpotent of class k - 1. Conjugation can be generated by (kz - k)/2 gen-
erators, whereas each of the k partial conjugations can be generated by k - 1 
generators, for a total of 3k(k - 1)/2 generators. 
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We conclude this section with some ancilliary remarks. Note that we have 
achieved something more with the above algorithm. For any (J, we have con-
structed a set of generators for its stabilizer ~* , since (Jk = (J • 

The stabilizer ~* has geometric meaning. If r E ~* , we can construct 
two link-homotopies from G to fJ. One link-homotopy is the extension of 
the link-homotopy from r· (J to (J, and the other is the extension of the link-
homotopy from (the reflection of) r-)·1 to 1 in B _ U Bo which keeps (J fixed. 
The union of these two gives a link-homotopy from fJ to itself. Now a self-
link-homotopy of a link L produces an automorphism of Milnor's link group 
:Y'(L) = R71:) (S"'\L). Levine calls this a geometric automorphism [Le2]. His 
study of the geometric automorphism group for three component link groups led 
him to classify four component links. A link L with an additional component 
Q: added, written L U Q: , is link-homotopic to L up if and only if Q: and A(P) 
are conjugate in :Y'(L) for some geometric automorphism A. 

Our work began by attempting to understand the geometric automorphisms 
by "lifting" them to RF(k). (This is what led us to consider automorphisms 
in the first place and eventually to string links!) Now d-bases (or w-bases) of a 
link L give rise to maps F(k) -+ 71:) (S\L) and since a self-link-homotopy of a 
link takes one base to another, the corresponding geometric automorphism does 
in fact lift to an automorphism of RF(k) obtained as follows. The link G 
has two d-bases corresponding to the disks Do = D x 0 and D3/4 = D x ~ . 
Since both Do and D3/4 lie in B _ U Bo containing the string link r-) . 1 , the 
diagram 

yields an automorphism ¢r. of RF (k). Such an automorphism satisfies (I) 
¢(xi ) is conjugate to Xi' but not in general (2) ¢(x)··· X k ) = x) ... x k • Thus 
these automorphisms are "special" but not in general braid-like. 

One can check that the correspondence r f--+ ¢r. is a homomorphism from 
S"'*(k) to Auts(RF(k)), the special automorphism group. Every special auto-
morphism can be realized by a base change of the unlink, and Proposition 2.6 
shows that such a base change can always be obtained by a self-link-homotopy 
in the case of an unlink. Thus the geometric automorphism group of an unlink 
equals the special automorphism group and the map S"'* (k) -+ Auts (RF (k)) is 
onto. 

More generally, every element of ~* maps to an automorphism which de-
scends to an automorphism of :Y'(fJ) = R71:) (S\fJ). The remarks above show 
that the homomorphism ~* -+ Auts(:Y'(fJ)) has image precisely the geometric 
automorphism group. Hence our construction of generators for ~* gives gen-
erators for the geometric automorphism group. (It remains an open question 
whether every special automorphism is geometric.) 
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