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1. INTRODUCTION 

Let G be a finite group. Let f: G -> C be a function. To each irreducible 
representation p of G there is associated a Fourier transform 

J(p) = Lf(s)p(s). 
sEG 

If P is given in matrix form of dimension d p' direct computation of J(p) 
involves order IGld~ operations (multiplications and additions). Direct com-
putation of the Feurier transform for all irreducible representations involves 
order IGI Lp d~ = IGI2 operations. 

For Abelian groups, such as the integers mod n or the group of binary n-
tuples, substantial speedups have been achieved. Fast Fourier transforms allow 
computation in order IGIIog IGI operations. These ideas have been impor-
tant in theoretical computer science where they have been applied to give fast 
algorithms for a variety of tasks ranging from multiplication of numbers to eval-
uation of polynomials. The algorithms offer substantial practical savings, and 
have revolutionized spectral analysis throughout engineering and the sciences. 
Aho, Hopcroft, and Ullman (1976), and Elliott and Rao (1982) contain reviews 
with extensive pointers to the literature. 

This paper presents several algorithms that allow impressive speedups in the-
ory and practice. The basic ideas are outlined in §2 which also shows how they 
reduce to the Cooley-Tukey algorithm for the integers mod n . 

In brief, if a representation p is restricted to a subgroup, it splits up into 
irreducible representations. With an appropriate basis, p can be written in 
block diagonal form and the transform at p can be built up as a direct sum 
of transforms over the subgroup. This can be iterated. It yields a family of 
algorithms that all take fewer operations than direct computation. 
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We have recently had to compute Fourier transforms on the symmetric group 
Sn as part of a statistical analysis of rankings in an election. Here n is the 
number of candidates, and f(n) is the number of voters choosing the rank order 
n. To understand the use of transforms, take p(n) as the usual permutation 
matrix having a one in position (i, j) if n(i) = j . Then the (i, j) entry of 

j(p) = L f(n)p(n) 

counts how many voters ranked candidate i in position j. These constitute 
a first order summary of the data. Other representations of Sn are useful 
in understanding higher order aspects of data such as coalitions. Irreducible 
representations allow a natural disentangling of levels-one would like to look 
at "pure" higher order effects with the lower order structure subtracted out. 
Diaconis (1988, 1989) presents detailed examples and a host of other applied 
problems where such spectral analysis is important. 

As indicated above, direc! computation of j(p) for all irreducible repre-
sentations of Sn involves order (n!)2 operations. This is already prohibitive 
for n = 10. Even for smaller n, Monte Carlo comparison of statistical pro-
cedures involves repeated computation of transforms. Efficient algorithms are 
mandatory. 

Section 3 develops the basic ideas for the symmetric group. We use the 
number of additions and multiplications as a measure of speed. This assumes 
that the matrices p( n) are precomputed and available. The running time of 
the algorithm can then be approximated as in the following theorem. 

Theorem. Let T( n) be the number of operations required to compute the Fourier 
transforms of a function on Sn at all irreducible representations. Then 

T(n) ::; A(n!t/2ne -(a-2)c0fi 

with A a positive computable constant, c = .1156, and a > 2 the exponent for 
matrix multiplication (multiplying d x d matrices takes d a operations). 

Remarks. In practice, a = 3. Currently the best theoretical result is a = 2.38 
(see Coppersmith and Winograd (1987)). Taking a = 2, a separate argument 
yields T(n) ::; n!G) which is essentially the IGlloglGI of the Abelian case. 
The proof of Theorem 1 uses results of Logan-Shepp (1977) and Vershik-Kerov 
(1985) on the largest dimension of a representation in Sn . 

Efficient implementatior.. of the basic idea requires a careful choice of ba-
sis. The seminormal or orthogonal forms introduced by Alfred Young work 
perfectly. These are explained in §4. 

In applications, one sometimes only needs the Fourier transform at a subset 
of representations. The algorithm adapts nicely to ,such situations, still offering 
large improvements over direct computation. These ideas may be useful even in 
the Abelian case, where there is a lot of data and one wishes to see the Fourier 
transform on a grid of equally spaced points. These ideas are explored in §5. 
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Section 6 gives several implementations of the basic algorithm on Sn in an 
Algol-like language. These offer trade-offs between storage, running time, ease 
of implementation, and start up costs-for example, representing matrices for 
pairwise adjacent transpositions may be easily available but the others may be 
built up in various ways. 

The asymptotics of running times are supplemented by some exact counts of 
operations in §7. In S9' a practical version of the algorithm is shown to speed 
things up by a factor of 100. 

The final section briefly discusses applications, adaptation of some of the 
other ideas used to speed up the usual discrete Fourier transform, paralleliz-
ability, and some open problems. It also gives a brief indication of how the al-
gorithms suggested here can be "run backward" to compute the inverse Fourier 
transform. 

Our work has been developed independently of the pioneering work of 
T. Beth (1987), the first serious study of computational aspects of noncommu-
tative transforms. Following work of Atkinson (who discussed product groups) 
Beth develops results using "Clifford theory". This analyzes representations of 
G using normal subgroups. Beth develops ideas like our equation (2.3) and 
Proposition 1 and shows how they yield the Cooley-Tukey algorithm when spe-
cialized to cyclic groups. 

Beth's work is an important step toward developing a general algorithm. The 
examples here show one must go further. For simple groups like the alternating 
groups, or groups with a limited decomposition into normal subgroups like the 
symmetric group, Clifford theory is of little help. 

Beth treats problems not treated here, such as efficient computation in the 
group algebra. He suggests novel applications of noncommutative transforms 
to problems of coding and computer vision. 

2. THE GENERAL IDEA 

Let G be a finite group. A representation p assigns invertible matrices to 
group elements in such a way that pest) = p(s)p(t) for s, t E G. Thus p 
is a homomorphism from G to GL( V) with V a vector space of dimension 
d p -the dimension or degree of p. Serre (1977) is an accessible introduction 
to basic representation theory. 

A representation p is irreducible if the only subspaces W c V such that 
pes) We W for all s E G are {O} and V. The dimensions of the irreducible 
representations satisfy 

(2.1 ) Ld~= IGI, 
p 

so the largest dimension is less than .JlGT. 
The Fourier transform of a function f at representation p is defined as 

(2.2) J(p) = L f(s)p(s). 
sEG 
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The transforms of 1 at all irreducibles determine 1 though the inversion for-
mula: 

I(s) = I~I I: dp Tr{p(s -1)J(p)}. 
p 

As usual, the transform turns convolution into product: 

]:g(p) = J(p)g(p) with 1* g(s) = I:/(st-l)g(t). 
t 

In a variety of applications J(p) is required for all irreducible p. Sup-
pose for now that all the representing matrices p(s), for all sand p, are 
precomputed and stored in memory. Direct computation of J(p) through the 
definition requires order IGld~ multiplications followed by additions. We will 
say IGld~ operations. Summing in p, using (2.1), shows IGI2 operations are 
required. 

The new algorithms all use a subgroup H c G. Say k = IGI/IHI. Choose 
coset representatives Sl ' S2' ... ,Sk for H in G. The transform can be written 

k 
(2.3) J(p) = I: P(Si) I: IJh)p(h) 

i=1 hEH 

with J;(h) = I(Sih ) . 
The restriction of p to H is usually not irreducible. When V is a complex 

vector space this means that there are subs paces v: such that 

V=V;$Jj$"'$~ 

and p(h) restricted to v: is an irreducible representation of H for each i. 
Thus restricting p to H, P splits as m I p; + ... + m j p~, with p; distinct 
irreducible representations of Hand m i the multiplicity of p;. It follows that 
in a suitable basis, p(h) can be written as the block diagonal matrix 

(2.4) (h) ... P;(hJ. 
Clearly, the Fourier transform 1;(p') determines J(p) as p ranges over irre-
ducibles of Hand 1 ::; i ::; k. The pieces can be assembled to get the inner 
sum in (2.3). This is multiplied by the matrices p(s) for 1 ::; i ::; k, and 
summed to give J(p). 

The point is, 1;(p') appears in several blocks as i and p' vary and these 
need only be computed once. This is the heart of the savings. Of course, the 
idea can be applied inductively to amplify itself. Before discussing this, let us 
record the recurrence implied by (2.3). 
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Proposition 1. Let G be a group and H a subgroup. Let T( G) and T(H) be the 
number of operations needed to calculate the Fourier transform at all irreducible 
representations. Then, if bases are chosen so that (2.4) holds, 
(2.5) T(G) ~ kT(H) + (k - 1) LM(dp ). 

p 

The sum is over all irreducible representations, M (d) is the number of operations 
required to multiply two d x d mairices, and k = IGI/IHI. 
Remarks. (1) Taking M(d) = d2 and using (2.1) gives 

T(G) < TIHI (k _ 1) 
IGI - IHI + . 

If the transforms in H are all computed directly, T(H) = H2 , and 

~~~) ~ IHI + (k - 1). 

This is minimized (assuming the choice is possible) by choosing IHI = JfGi 
which gives 21G13/2 as an upper bound for the running time. 

As will be seen, iterative use of the identity can lead to I Gilog I GI operations. 
(2) In Abelian cases, and for Sn ' there are representations that decompose as 

in (2.4) without changing bases. However, such special bases are not needed in 
theory or practice. A change of bases takes order Lp M(dp ) operations. This 
can be done at the end, or as an intermediate step. Preliminary computations 
indicate that such considerations do not materially change the estimated running 
time. 

(3) T(G) counts the number of multiplications and additions. It does not 
count operations required to copy and keep track of the various pieces. As 
will be seen in the case we pursue, the bookkeeping operations can be neatly 
automated. At any rate, such operation counts are at best useful indicators for 
real running times. 

For Abelian groups, the algorithm reduces to the well-known Cooley-Tukey 
algorithm. For example, consider the transform on Z/mnZ-the integers 
mod mn-and take Z / mZ as a subgroup-the integers mod m. This is con-
tained in the larger group as 0, n, 2n, ... , (m - l)n. The natural choice of 
coset representatives is 0, 1 , 2, ... , n - 1 . The Fourier transform at frequency 
j is 

mn-I n-I m-I 
1(j) = L f(k)e2nijk/mn = L L f(a + bn)e2nij(a+bn)/mn 

k=O a=O b=O 
n-I m-I 

= L inija/mn L fa (b)e2nijb/m . 
a=O b=O 

Here, if j = jl + j2m, ° ~ jl < m, the inner sum is the transform of fa at 
frequency jl (mod m) . These transforms are pasted together with the "twiddle 
factors" e2nija/mn to determine 1(j) for all j (mod mn). 
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The Cooley-Tukey algorithm is just one of the ideas in the implementation 
of the fast Fourier transform. Some other ideas, and possible generalizations, 
are discussed in §8. 

The algorithm may be applied recursively to any tower of subgroups 
(2.6) G = Go :J G1 :J G2 :J ... :J Gm :J Gm+1 = 1, 
where the last step in the recursion is computed directly. It will be shown below 
that using as refined a tower as is available leads to the fastest algorithm. 

For Abelian groups, the fundamental theorem yields a representation as a 
direct product of cyclic groups. There is a tower decreasing in steps of the 
various primes dividing IGI. For the group of binary n-tuples (Z/2Z)n the 
algorithm reduces to the standard fast Walsh transform. 

For solvable groups such as p-groups and nilpotent groups, there is a tower 
of normal subgroups such that each quotient is a cyclic group of prime order. 
Thus there is a tower in steps of the various primes dividing IGI. 

For simple groups, the situation is not as simple. Consider the alternating 
group An' For n ~ 5, the largest H C An is An_I' Indeed, the action 
of An on Ani H gives a permutation representation and so a homomorphism 
into Sd with d = IAnl HI. For this to be nontrivial d ~ n is required, so 
IHI S (n - I)!. It thus appears that the natural tower An :J A n_ 1 :J A n_2 :J ... 
is the most refined. 

Similar towers can be derived for the other simple groups. A general group 
can then be decomposed, via its Jordan-Holder series, into subgroups with sim-
ple quotients. The towers for the simple quotients can be lifted to give a natural 
tower for G. 

Of course, any practical example will be dominated by special features such 
as the availability of explicit representations of the various subgroups. 

We conclude this section by investigating how the choice of a tower of sub-
groups affects the running time. This is of potential interest even in the Abelian 
case, where many towers are available. To simplify the discussion, assume that 
d x d matrices can be multiplied in d 2 operations. This is (presumably) the 
eventual "right answer" and, for Abelian groups (d = 1), this does not impact 
on the conclusions. 

The following result says that taking as refined a tower as possible is best. 
Proposition 2. Let G be ajinite group. The tower of subgroups (2.6) minimizing 
the number of operations to compute the Fourier transform at all irreducible 
representations of G is such that L:o[G j : G j +1] is minimal. Here [G j : G j +1] 

denotes the index of Gj +1 in Gj • This assumes d x d matrices can be multiplied 
in d 2 operations. 
Proof. It will be argued that T( G), the number of operations based on the 
tower (2.6), is given by 

m 

(2.7) T(G) = IGI:Lkj' 
j=O 
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This is argued by induction on m. From the basic identity (2.3) 

Iterating, we obtain 

T(G) = ko(kl T(G I ) + kllGII) + kolGI 
IGI 

= IGzl T(Gz) + IGlkl + IGlko' 

Continuing gives, for any I, 

IGI T(G) = -IG I T(GI_I ) + IGI(ko + ... + kl _z) 
I-I 

IGI (IGI_II ) 
= IGI_II lG;fT(G/)+kl_IIGI_II +IGI(ko+···+k'_2) 

IGI 
= IG,I T(G,) + IGI(ko + ... + k'_I)' 

Taking 1= m and using T(Gm ) = IGml2 proves (2.7). 0 

303 

Corollary. If G has a tower such that each index is prime, then this tower is 
fastest for the algorithm. 

Remarks. The proposition assumes that the last term in the tower is computed 
directly, using IGmiz operations. If Gm is a cyclic group of prime order p, the 
chirp-z transform can be used instead to get a final term of order 3p logp as 
discussed in Diaconis (1980). This also applies to arbitrary solvable groups. 

For practical purposes, at this writing, matrix multiplication takes order d 3 

operations. Situations can be imagined where this effects the optimality. We 
have not pursued this carefully. 

3. THE SYMMETRIC GROUP Sn 

The representations of the symmetric group were determined by Frobenius 
and Young. We follow James (1978) and James and Kerber (1981) for notation. 

There is a 1-1 correspondence between irreducible representations of S n 

and partitions A of n (denoted A I-- n). Here A = (AI' ... ,A,) with Al ~ 
... ~ Ar > 0 and Al + ... + Ar = n. Let p(n) denote the number of partitions 
of n (so p(5) = 7). Then for large n 

( ) 1 llJZn/3 
p n '" 4nJ3e . 

To each partition A of n we associate its diagram. Recall that this is a left-
justified arrangement of empty boxes (nodes) with Ai boxes in the ith row. 
For example, the diagram for A = (3, 2, 2, 1 , 1) is: 

Much of the representation theory of Sn involves the combinatorial proper-
ties of these diagrams and their generalizations. 



304 PERSI DIACONIS AND DANIEL ROCKMORE 

I 

-
'---

The representation corresponding to A is denoted p;. and is of dimension 
d;.. For example for n = 5, the seven partitions and the dimensions of their 
associated representations are 

A (5) (4,1) (3,2) (3, 1, 1) (2,2,1) (2, 1, 1, 1) (1, 1, 1, 1, 1) 
d;. 1 4 5 6 5 4 1 

The largest degree of an irre<tucible representation of Sn grows rapidly in n. 
(For n = 10, the maximum occurs at A = (4, 3, 2, 1) which has degree 768.) 
Since it will be needed later, we describe here the asymptotics of the maximum 
dimension of Logan and Shepp (1977) and Vershik and Kerov (1985). 

Let Pn denote the set of partitions of n. Then the Plancherel measure, f.1n , 
is a measure defined on Pn by 

f.1n (A) = d;./nL 

Use of (2.1) shows that in fact f.1n is a probability measure on Pn • 
Vershik and Kerov prove: 

Theorem. There exist constants co' c 1 > 0 such that if Fn S;; Pn is defined as 

(3.1 ) 

then 

Presently it is known that one can take Co = .1156 and c1 = 1.238. 
The algorithms will use the nested chain of subgroups 

S~ :J Sn_1 :J ... :J SI = {id}, 

where Sn-i = {n E Snln(n) = n, ... , n(n - j + 1) = n - j + I}. The branching 
theorem (proved in James (1978), §9) determines how an irreducible represen-
tation P of Sn splits when restricted to Sn_1 . 

Theorem (Branching theorem). Let p be an irreducible representation oj Sn 
corresponding to the partition A oj n. Then p restricted to Sn_1 splits into 
the direct sum oj irreducible representations corresponding to the partitions A' oj 



EFFICIENT COMPUTATION OF THE FOURIER TRANSFORM 305 

n - 1 which can be obtained by deleting a single node from the diagram of A in 
all permissible ways. 

Example. Let A. = (3, 2, 2, 1, 1). Then P A restricted to S8 splits into 
P(2,2,2,1, I)' P(3,2, 1,1, I)' and P(3,2,2, I)' 

The splitting means that for n E Sn_I' p(n) can be written, perhaps after 
a change of basis, in block diagonal form as in (2.4). It turns out that in two 
well-known bases, the seminormal and orthogonal forms of Alfred Young, this 
block diagonal form is automatic. This result is proved in §4 which gives a 
description of these bases. The ideas of §2 can be iterated to prove the first 
result: 

Proposition 3. Let T(n) denote the number of operations required to compute 
the Fourier transform at all irreducible representations of the symmetric group 
Sn' Let M(d) be the number of operations required to compute the product of 
two d x d matrices. Then 

~ m-1" T(n) S n! ~ -,-~ M(dJ. m. 
m=1 Arm 

Proof. From Proposition 1, T(n) satisfies 

T(n) S nT(n - 1) + (n - 1) L M(dA). 
Arn 

Now divide both sides by n! and use induction. 0 

Corollary 1. If M(d) = cd2 for some constant c, then T(n) S cn!(~). 

Proof. From (2.1), T(n) S cn! 2::=1 (m - 1) = cn!G). 0 

The bounds on the maximum degree will be combined with Proposition 3 to 
give a more accessible upper bound for other rates of matrix multiplication. 

Theorem 1. Let T(n) be the number of operations required to compute the 
Fourier transform at all irreducible representations of the symmetric group Sn' 
If d x d matrices can be multiplied in d a operations for a > 2, then 

T(n) < ( ,)b -beJn/2-1 ( I-b O( 1-2b) + -be (!!.)2-bn/2) , _ n. e n + n + n e 2 ' n. 

where b = (a - 2)/2, c = .2312, and all error terms are uniform in a. 
Proof. Proposition 3 yields 

T(n) < ~ m" dt. 
n! -~ ~m! 

m=1 Arm 
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n 
(3.3) < ~ ( ,)b -eb..;m _ ~m m. e , 

m=l 

where c = 2co = .2312, (3.2) follows from Vershik and Kerov's estimate given 
in (3.1), and (3.3) follows from (2.1). 

Explicit rewriting of (3.3) gives 

-- < n. ne + --e T(n) (,)b [ -beyn n - 1 -be.;n::T 
n! - nb 

n - 2 -bevn-2 e -be] 
+ (n(n - l))b e + ... + (n!)b . 

Break this sum at the term with numerator n/2 - 1. The first sum is bounded 
above by (n!)b times 

-beJ n/2-1( n-l n-2 n/2-1) e n + -- + + ... + ----:..-----;-
n b (n(n - l))b (n(n - 1)··· (n/2))b 

-beJn/2-1 ( I-b (n - 1)1-b (n/2)I-b) 
Se n+n + b + ... + b 

n (n···(n/2+1)) 

< -beJn/2-1 ( I-b 1 - (n/2)-b(n/2+1)) e n + n . 
- 1 - (n/2)-b 

Note that assuming 2 S a S 3 implies 0 S 1 - b S 1 . 
The second sum is bounded above by (n!)b times 

-be n n. /2.' -be (n ) 2-bn/2 e - . =e -
2 (n/i)bn/2 2 . 

Collecting terms gives the stated result. 0 

Remark. Thus, the upper bound for T(n) can be seen to be 

T(n) S A(n!)a/2ne-(a-2)e'..;n72 , 

where A is some computable constant and c' = .1156. Consequently, as a-+ 
2+, (a - 2) -+ 0, and Theorem 1 gives 

T(n) «: n!n2 

in agreement with Corollary 1. This is, roughly, IGllog IGI. 
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4. YOUNG'S SEMINORMAL AND ORTHOGONAL FORMS 

As presented in §3, the algorithm for computing the Fourier transform de-
pends on having, for any irreducible representation p: Sn -+ GL(V) , a ba-
sis for V such that when p is restricted from Sn to Sn_l the matrices 
p(TC) (TC E Sn_l) are block diagonal as determined by the branching theorem. 
For example, let p be the irreducible representation of S5 corresponding to 
A = (3,2). For TC E S5 ' with TC(5) = 5, we require 

p(TC) = ( B~' 1 B~'2)' 
where B;' is the appropriate matrix representation of TC regarded as an element 
of S 4' Of course, if TC fixes 4 and 5, then the blocks B3, 1 and B2, 2 split 
further into B3 , B 2 , 1 , and B2 , 1 respectively. 

Two of the representations constructed by Alfred Young have this property. 
In what follows, we present the explicit construction of these representations. 
The discussion follows Kerber (1971) and James-Kerber (1981, Chapters 3 and 
7). 

Fix a partition A r n. Then a basis for p;. is indexed by the "standard 
tableaux" of shape A. Recall that a tableau of shape A is a diagram of shape 
A with numbers {I, ... , n} placed in the boxes. The tableau is standard if 
the numbers increase from left to right and top to bottom. For example, the 
standard tableaux of shape (3,2) are: 

135125134124123 
24 34 25 35 45 

The last letter order on standard tableaux is a linear order defined as follows: 
Consider two standard tableaux Tl and T2 of the same shape. If n is in a 
row higher up in Tl than in T2 declare Tl < T2 (thUS ~!5 < ~~4). If n is 
in the same row in both (necessarily the last entry in this row), delete n from 
the tableaux and consider n - 1 ,etc. The five tableaux above are shown in 
increasing order. 

The matrices to be constructed have rows and columns indexed by standard 
Young tableaux in last letter order. The matrix entries are defined in terms of 
the axial distance. For this, consider a tableau T (standard or not) of shape 
A. For a E {I, 2, ... , n} , let r T(a) be its row position and cT(a) its column 
position. Given two entries a, b {I ~ a, b ~ n}, define the axial distance 
from a to b as 

dT(a, b) = (cT(a) - cT(b)) + (rT(b) - rT(a)). 

This is the number of moves it takes to go from a to b in T counting moves 
to the left or down as positive, and moves to the right or up as negative. For 
example, if 

T = ~ ~ 3, then d T (3, 5) = 3, T d (4, 1) = o. 
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Note that this is a signed distance and d T (a, b) = _dT (b, a). 
Let di(a, b) denote the axial distance for the ith standard Young tableau in 

the last letter order. Dependence on the shape A. is suppressed in this notation. 
Fix a shape A.. Given a transposition (t, t + I) E S n ' define a matrix 

a(t, t + 1) = ((aij(t, t + 1))) 

by the following rule, with rows and columns indexed by the standard Young 
tableaux Ti of shape A. in the last letter order: 

{ + 1 if t, t + 1 are in the same row of r: ' 
(a) aii = -1 if t, t + 1 are in the same column of Ti. 

(b) If (t, t + 1)Tj = Ti for i < j then let: 

aii aij _ -di(t, t + 1)-1 1 ~ di(t, t + 1)2 
- I-I aji ajj 1 d (t, t+ 1) 

(Here (t, t + 1) Tj is the tableau obtained from Tj by interchanging t and 
t + 1.) 

(c) aij = 0 otherwise. 
Similarly, define a matrix cu(t, t + 1) by changing (b) to: 

cu.. _diet, t+ 1)-1 . 11 - d i(t, t+ 1)-2 
CUii IJ = V 
CUji CUjj VI - di(t, t + 1)-2 di(t, t + 1)-1 

Chapter 3 of James and Kerber (1981) presents a proof that these specify ir-
reducible representations. Since the pairwise adjacent transpositions generate 
Sn' it is enough to specify the representations of only these elements. Let us 
record this as 

Theorem. The matrices a and cu defined above generate Young's seminormal 
and orthogonal representations respectively. Write a(n) and cu(n) for these 
matrices at the permutation n. 

Proposition 4. If n E Sn fixes n, then both a(n) and cu(n) decompose into 
blocks as described in (2.4). 
Proof. The argument exploits the compatability of the last letter order and the 
branching theorem. To say this clearly, consider a standard tableau T of shape 
A. r- n. Deleting the box containing n results in a standard tableau l' of shape 
~ r- n - 1 . Suppose TI and T2 are distinct standard tableaux of shape A. with 
n in the same position. Then 1'1 and 1'2 are distinct and of the same shape 
and TI < T2 if and only if 1'( < 1'2· Consequently, if TI < T2 < ... < Td. 

denotes all the standard tableaux of shape A. in the last letter order, all tableau~ 
with n in a fixed position appear together as an interval or segment in this list. 
Deleting n from each tableau in such a segment will give all standard tableaux 
of shape ~ r- n - 1 , in order. The number of such segments is precisely the 
number of ways of removing a box from the diagram of A. that leave a diagram 
for a partition of n - 1 . 
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Returning now to the proof, it is enough to prove the assertion for n = 
(t, t + 1) , a pairwise adjacent transposition with 1 :s t :s n - 2. Fix A. f- n. 
Clearly, for any i, the axial distance d i (t, t + 1) equals the axial distance 
between t, t + 1 in the ith tableau with n deleted. Moreover, t and t + 1 
are in the same row or column of the ith tableau if and only if they are in the 
same row or column in the deleted tableau. Finally, if (t, t + 1) applied to the 
ith tableau is standard, say equal to the jth tableau, the ith and jth tableaux 
must have n in the same position, and (t, t + 1) maps the deleted tableaux to 
each other. 

This shows that if M is either a(t, t + 1) or w(t, t + 1), then M appears 
as 

with Mi(t, t + 1) the representing matrix assigned by the theorem to the par-
tition i given by deleting n from the standard tableaux in the ith segment of 
TI < ... < Td . Thus b will be the number of segments. 0 

,\ 

Remark. There are other important bases: Young's natural form (which does 
not split up as above) and the Kazdahn-Lusztig form. Applications may demand 
yet another form. If the form is known, one can calculate for each A. a change 
of basis matrix H).. This gives j(p) in the required basis by conjugation which 
takes 2 '£ M (d J operations. 

Thus far, the discussion has used only pairwise adjacent transpositions. For 
some of the algorithms which follow, representing matrices at all transpositions 
are needed. For other algorithms p(n) is needed for all permutations n. We 
now discuss the issue of efficient generation of such larger sets of matrices. 

Consider first the problem of building up all transpositions p(ij) for 
all irreducible representations p. We proceed by induction, assuming we 
have previously computed {p( i , j): 1 :s i :s j < n - I}. Then p(j, n) = 
p(j, n - l)p(n - 1, n)p(j, n - 1). By induction we have 

Proposition 5. The number of operations needed to build up p( 1:) for all repre-
sentations p and all transpositions 1: in Sm' 1:S m :$ n, is 

n 

(4.1 ) L 2(m - 2) L M(dJ. 
m=2 )'f-m 

Remarks. (1) If M(d) = d 2 is assumed, (4.1) is asymptotically 2nn!. This 
algorithm takes advantage of branching. If p is a fixed representation of Sn' 
and pairwise adjacent transpositions are available, p( 1:) can be built up for 
all transpositions in Sn by conjugating. This takes 2(n21)M(dp ) operations. 
Summing in p, this direct algorithm takes more operations than the algorithm 
using branching and it only computes for a fixed n, rather than for all m, 
l:$m:$n. 
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(2) For Young's seminormal and orthogonal representations the represent-
ing matrices for pairwise adjacent transpositions are sparse, having at most 
2dp nonzero entries. It follows that matrices for arbitrary transpositions have 
at most 4n- 2dp nonzero entries. Results of Vershik and Kerov, cited in §3, 
imply that "most" representations p have dimension, roughly, of order v'nT. 
This suggests that sparse matrix techniques may be useful in getting additional 
speedups. 

Finally, let us tum to the problem of generating p(n) for all permutations 
n. Here we use the decomposition 

(4.2) Sn = Sn_1 U (n - I, n)Sn_1 U (n - 2, n)Sn_1 U··· U (1, n)Sn_l. 

Proposition 6. Let B(n) be the number of operations needed to build up p(n) 
for all irreducible representations p and permutations n in Sm for 1 :5 m :5 n, 
given p at all pairwise adjacent transpositions. Then 

n 
B(n) = l)(m - 1)(m - I)! + (m - 2)]· L M(d)). 

Proof. Using the decomposition (4.2), note that computing (j, n )Sn_1 includes 
the computation of (j, n)(j-l , j). Thus, one more matrix multiplication gives 
(j - 1, j)(j, n)(j - 1, j) = (j - 1, n). This gives the recurrence 

B(n) = B(n - 1) + [(n - 1)· (n - I)!] L M(d)) 

= B(n - 1) + [(n - 1) . (n - I)! + (n - 2)] L M(d)). 0 
.U-m 

Remarks. (1) If M(d) = d 2 , this gives B(n) asymptotic to a constant times 
(n!)2 as a start up cost for algorithms requiring all p(n). 

(2) Garsia and McLaman (1986) specify a "closed form" for p(n) for all n 
and p when p is Young's natural representation. Unfortunately, this does not 
decompose in a neat way under restriction. 

5. PARTIAL TRANSFORMS 

The basic recurrence at (2.3) is 

k 

(5.1 ) J(p) = LP(sJL J;(h)p(h). 
i=1 hEH 

This can be used and iterated to allow speedups in computation for a lim-
ited number of irreducible representations. This will be illustrated first in the 
Abelian case and then for the symmetric group. 
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Example 1. A single representation. Consider the additive group Z I NZ with 
N = 2a . The jth transform is 

N-I 
1(j) = L f(k)i7tijk/N. 

k=O 
Direct computation for fixed j involves N operations. Take H = Z I MZ , 
with M = N12. Coset representatives may be taken as 0, 1. The recurrence 
(5.1) becomes 

M-I M-I 
1(j) = L f(2k)i7tijk/M + i 7tij /N L f(2k + l)i7tijk/M 

k=O k=O 
or, with obvious notation, 

'. '. 27tij/N·. (5.2) f(j) = foUo) + e 1; (Jo) with j == jo (mod M). 
This gives the following recurrence for TI (a), the number of operations needed 
to compute 1(j): 

Iterating gives 
T1(a):$ 2a +a. 

This is a (slight) increase in running time for computing a single value. For 
large a's, this may fairly be thought of as equivalent to direct computation. 
Example 2. Subgroups. A clear way to save occurs if it is desired to compute 
f(j) with j lying in a coset of a subgroup of Z 12a Z. Let us fix a subgroup 
Z 12b Z with b < a and let j run through the set 

a-b a-b a-b b a-b} {m, m+2 ,m+2·2 ,m+3·2 , ... , m+(2 -1)2 , 

where 0 :$ m < 2a- b is fixed. Although there are 2b different j 's to be 
computed, by using (5.2) we note that only 2b- 1 values of j mod 2a - 1 are 
needed. If Tb (a) denotes the number of operations required to compute these 
2b values, (5.2) implies 

b Tb(a) = 2Tb_ l (a - 1) + 2 . 
Iterating b times and using direct computation for the remaining sum (To(a)) 
gives 

(5.3) a b b Tb(a) = 2 + 2. 

This clearly offers a savings over either direct computation of the 2b val-
ues (2a+b operations) or complete computation using the standard FFT (a2a 
operations), for b large, but small compared to a. 
Remarks. The algorithm could be usefully applied to a signal with lots of data, 
where one does not feel the need for looking at all frequencies. A route to a sim-
ilar saving would be to sample the observed series at equally spaced points and 
compute the full discrete Fourier transform from this data. These approaches 
are dual in a sense. 
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Example 3. General Abelian groups. The algorithm of Example 2 makes cru-
cial use of the commutativity of Z / NZ . The dual is considered as an Abelian 
group. The restriction of an irreducible representation to a subgroup is irre-
ducible. The ideas extend in a straightforward way. 

Let A be a finite Abelian group, H a subgr6up, and HJ. the set of characters 
of A that restrict to the trivial character of H. This is a subgroup of the dual 
A, isomorphic to the dual group of A / H. A coset of HJ. works well as a 
subset of representations. 

If s) , s2' ... ,Sk are coset representatives for H in A, and X is any char-
acter of A, the Fourier transform can be written as 

k 
(5.4) j(X) = Lx(sJi;(xIH)' 

i=) 

The notation XIH denotes restriction. Use (5.4) for all X in a coset of HJ. , 
each such X restricts to the same character on H. This gives 

Proposition 7. Let THJ..(A) be the number of iterations required to compute the 
Fourier transform at all characters in a coset of HJ. in A. Then 

THJ..(G) ::; IAI + k(k - 1), with k = lA/HI. 

Remarks. (1) If k is of order VA, this allows computation in order 21AI steps 
while direct computation takes IA13/2 and full use of the fast Fourier transform 
IAlIogIAI· 

Of course, usually a tower of subgroups between H and A can be found to 
speed things up further. 

(2) The identity (5.4) gives a simple argument for the Poisson summation 
formula for finite Abelian groups as in Good (1962). Suppose XIH is trivial. 
Summing (5.4) over HJ. , we obtain 

k 

L j(X) = L.t;(id) L X(sJ 
i=) 

The inner sum is IHJ. I for Si = id and zero if Si ~ H (the sum of the 
characters at any nontrivial element in zero). Finally, if Y/ is any character of 
A , we have the Poisson summation formula 

I HI"",· "'" TAl' ~ f(xY/) = ~ f(h)y/(h). 
XEHJ.. hEH 

(5.5) 

Example 4. 2b in a row. With notation as in Examples 1 and 2, consider 
computing j(O) , j( 1) , ... , j(2b - 1). The idea is to use (5.2) iteratively. If 
Sb(a) is the number of operations required to compute these 2b values, the 
recurrence is 
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Use this until Sb(b) is reached when the usual FFT, taking b2b operations, is 
used. This results in 

(5.6) 

Note that this only offers a savings over the full FFT if b is a fraction of a, 
e.g. b = a12. We have chosen 2b values starting at O. It is straightforward to 
modify this to get 2b values centered anywhere. This allows a close look at the 
shape of the transform in a neighborhood of a specific frequency. 

Example 5. The symmetric group. The usual partial order on partitions meshes 
with the branching theorem to allow partial computation in a useful way. Here, 
recursive algorithms offer a speedup, even for computation of the transform at 
a single representation. 

For example, consider computing J(p) for p corresponding to the usual 
n-dimensional permutation representation. Direct computation involves n!n 
operations-for each permutation, n entries in an n.x n matrix have to be 
changed. 

The representation p is the direct sum of the trivial and n - 1 dimensional 
representation of Sn' This last, restricted to Sn_I' splits into the trivial and 
n - 2 dimensional representations of Sn_1 . 

If T(n) denotes the number of operations required to compute J(p) using 
recurrence, we have 

T(n) ::; nT(n - 1) + nM(n). 

Dividing through by n! and using induction gives 
n 

(5.7) T(n)::; n!"LM(d)/(d - 1)!' 
d=1 

Observe now that the sum in (5.7) is bounded for any n. Thus recursion speeds 
up even computation of a single transform. 

To extend, sets of partitions that remain closed under the branching rule 
must be found. Two natural candidates may be called hooks, and partitions 
with f or fewer parts. To explain, 

(5.8) Let Hn be the set of all hook partitions, of the form (n -q, 1q ) 

for 0 ::; q ::; n - 1 . Note that if A E Hn and 1 is obtained from 
A by deleting a box, then 1 E Hn_ 1 • 

(5.9) Let Ln(f) be the set of all partitions of n of the form (AI' ..1.2 ' ••• , A,) 
with r::; f. 

The main result says that all transforms at all representations in Hn , or in 
Ln(f) , with f fixed, can be computed in order n! operations. 
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Theorem 2. Let TH(n) be the number of operations required to compute all 
transforms at hook representations as defined at (5.8). Let 1/(n) be the number 
of operations required to compute all transforms at all representations with I 
or fewer parts. Then, if multiplication of d x d matrices takes fewer than da 

operations 2 ~ a ~ 3 , 
(1) TH(n) ~ n!e8 ; 
(2) 1/(n) ~ n!c(l) , where for fixed I, 

00 1 
c(l) = L (m _ a)! L d; + (l!) < 00. 

m='+1 ))-m 
h()')5.1 

Proof. For (1), there are n hook representations. The dimension of (n - q, 1 q) 
. (n-I) IS q • 

The recursion (2.3) becomes 

TH(n):5 nTH(n - 1) + n ~M [(n; 1)]. 
Thus 

T (n) n 1 m-I [( - 1)] ~! ~ L (m _ I)! L M m q . 
m=1 q=O 

Assuming M(d) ~ da for a < 3, 

Then (1) follows from 
8n 8 L,=e. n. 

For (2), let the height h(A) of the partition A = (AI' A2 , ••• ,A,) be defined as 
h(A) = r. Arguing as above, 

T,(n) < ~ 1 "M(d ) + 1[(1) 
n! - L (m - I)! L ). I!· 

m=' ,U-m 
h().)"5,' 

Here T,(I) ~ (I!)2 (of course if I is large, this can be improved as in §3). If 
M(d) ~ da , one must bound 

S~(n) = L d;. 
,U-m 

h().)"5,' 

Regev (1981) and Askey and Regev (1984) have worked out the appropriate 
asymptotics. It follows from Regev (1981), Theorems 2-10, that for a, I fixed 

SaC )....., _~ ~ In (/-1)/21(1 ) 1,2/2 I () (/-1 )(/+2)/4 a 

,n (2n) 2 n n, a , 
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with 
_(1)U-I)(al+2)/4 1 fa 1/2 

/(l, a) - I T!V 2ii1(2n) 

. a- I /2-al(/-I)/4r (1 +~) -I tr (1 + af). 
J=I 

In particular, for I and a fixed, this grows like r a • It follows that 
00 1 a 

c(l) = L (m _ l)!SI (m) < 00. 0 
m=1 

Remarks. Similar results can be derived for the set of all partitions larger than 
(n - q, 1 q) in the majorization order (one partition is larger than another if 
you can get from small to large by moving up boxes one at a time). This enters 
naturally in processing data involving rankings of (say) 40 movies. One would 
like to analyze features involving the top most a and bottom most b rankings 
where a + b = q (e.g. a = b = 5) (see Chapter 8 of Diaconis (1988)). 

6. FIVE ALGORITHMS FOR Sn 

Implementing the ideas above involves tradeoffs between computation time, 
storage, clarity, and ease of programming. Five algorithms for Sn are presented 
in this section: 

(1) Direct computation from the definition, assuming all matrices are avail-
able in memory. 

(2) Recursive computation for each representation, assuming matrices for 
transpositions are available in memory. 

(3) Complete use of the branching procedure, assuming all transpositions 
for each Sj' 2::; j ::; n, are available in memory. 

( 4) Complete use of the branching procedure as in algorithm 3, but storing 
only partial transformations restricted to Sn_1 . 

(5) Complete use of branching using dynamic programming. 
Algorithm 4 or 5 runs recursively down to S5 with algorithm 2 used for 

S5' seems like the best choice for medium size computing environments such 
as a Vax 370. A copy of our current implementation is available on request. 
The algorithms are described below in an Algol-like language with comments 
on their features and weaknesses. 

1. Direct computation. Assume p(n), for all irreducible representations p 
and all permutations n in Sn' have been generated (as in §4) and are avail-
able in memory. A function f(n) is given. The following algorithm com-
putes ~1l j(n)p(n) directly. (Below, we assume that we have subroutines "re-
trieve(matrix)" which retrieves a given matrix from memory and "store(matrix)" 
to place a matrix in memory. Also, "result-matrix" and p(n) for any n E Sn 
are matrix variables.) 
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BEGIN 
FOR all irreducible representations p DO 

BEGIN 

END 

result-matrix := 0; /* initialize final result */ 
FOR 7r E Sn DO 

END 

BEGIN 
retrieve (p( 7r)) ; 
result-matrix := result-matrix + I( 7r) * p( 7r) ; 

END 
store (result-matrix); 

This is the simplest algorithm to program and to understand. It is most 
expensive in start-up cost, memory, and operations. 
2. Recursive computation. One implementation uses a variant of direct com-
putation which assumes p(n) is available in memory for all irreducible rep-
resentations p and all transpositions n. The following algorithm computes 
Ef(n)p(n) recursively, using the chain of subgroups Sn :,) Sn_1 :,) Sn_2 :,) .... 
It is presented as a "main body" that calls the subroutine "compute-transform" 
to perform the recursive computation. "Compute-transform" takes as param-
eters a degree (denoting the subgroup in the chain) and a function on Sd' 
g(n) , where d is the passed degree. "Partial-transform" is a matrix variable, 
"identity-matrix" is the obvious constant, and other variables and subroutines 
are as in algorithm 1. Recall that if f is a function defined on Sn' then 
1; ... i (n) for n in Sk is defined to be fW n , n)··· (ik+1 ' k + l)n). 

n k+1 

BEGIN /* main body */ 
FOR all irreducible representations p DO 

BEGIN 
result-matrix := 0 ; 
store (compute-transform (n, I)) ; 

END 
END /* main body */ 
compute-transform (degree, g) 
BEGIN /* compute-transform */ 

IF degree = 2 THEN result-matrix := g(id)* identity-matrix +g(l, 2) * p(l, 2); 
ELSE 

FOR i = 1 to degree DO 
BEGIN /* compute g;(p) */ 

partial-transform := compute-transform (g;, degree-l) 
result-matrix := result-matrix +p(i, degree) * partial-transform; 

END 
END /* compute-transform */ 

This algorithm is used as a part of algorithms 4 and 5 to compute for n :::; 5. 
To understand it further, the number of operations can be approximated. 

Proposition 8. Let T(n) be the number of operations used by algorithm 2 to 
compute the Fourier transforms at all irreducible representations of Sn. Then 

(1) T(n) «n!LpM(dp). 
(2) If M(d)=da , T(n)«(n!)1+a/2e -c(a-2)y'il with c=.1156. 
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Proof. Let Tp(n) denote the number of operations used by algorithm 2 to 
compute the Fourier transform at any representation p (irreducible or not) 
for a function f(n) defined on Sn' Tp(n) satisfies the recurrence, 

(6.1 ) 

Note that Tp(n - 1) is the number of operations needed to compute J;(p). 
By the branching theorem described in §3, p restricted to S2 is diagonal in 

Young's seminormal or orthogonal forms. Hence we see that 

Tp(3) = 3Tp(2) + 2d~. 
Thus, by induction, (6.1) extends to 

Tp(n) ::; [(n - 1) + n(n - 2) + ... + n(n - 2)(n - 3)···5·3] 

. M(d ) + n' (d + ~d2) p . p 3 p 

::; (n!) [[(n ~ I)! + ... + ~!] . M(dp) + dp + ~d~] . 
Assuming M(d) ~ d.t. then summing Tp(n) over all irreducible representations 
p of Sn yields (1). 

Finally, assuming M(d) = d a for a ~ 2, the proof of Theorem 1 estimates 
the sum Lp M(dp) by 

with c = .1156. This completes the proof of (2). 0 

For any constant b, v'nTe -bvn is unbounded as n goes to infinity. Thus, 
Proposition 8 implies that for a > 2 , the running time of algorithm 2 is asymp-
totically greater than algorithm 1 which is (n!)2. For a = 2, the proposition 
gives a running time of (n!)2 for algorithm 2. Algorithm 2 requires only that 
G)n! matrix elements (the irreducible representations of the transpositions) be 
stored as opposed to (n!)2 matrix elements for algorithm 1. Speedups for al-
gorithm 2 can be obtained by taking more advantage of the block structure of 
the matrices pU, k) for 1 ::; j, k ::; n - 1 . 

3. Complete branching. An implementation of the ideas of §3 requires several 
subroutines. 

1. Branch (p, number-of-branches, branches)-this takes a representation 
p of Sk and returns to p restricted for Sk_1 ,the number of branches, 



318 PERSI DIACONIS AND DANIEL ROCKMORE 

in the variable number-of-branches, and the branches in an array of 
representations called branches. 

2. Build-matrix (matrix 1, matrix 2)-inserts matrix 2 as a block in matrix 
1 in some specified position. 

3. Retrieve(matrix)-retrieves indicated matrix from memory. 
4. Store(matrix)-stores matrix in previously specified position in mem-

ory. 
5. Copy-matrix (matrix 2, matrix I)-copies matrix 1 into matrix 2. 

Below, I-transform, restricted-transform, temp-reSUlt and J(p) should all 
be read as matrix variables where it is appropriate. 

The algorithm requires that all the restricted, partial transforms be stored. 
This is relaxed in algorithm 4 below. We stop the recurrence at some integer 
M and compute the transforms for S M directly using algorithm 2. With this 
notation we describe a subroutine SFFT which takes as input three parameters: 

n : The degree of the symmetric group. 
p: The representation over which we compute. 
I: The function whose transform we compute. 
SFFT (n, p, I) 
BEGIN 

IF j(p) has been computed previously THEN 
BEGIN 

retrieve (j(p)); 
copy-matrix (f-transform, j(p)); 

END; 
ELSE IF n = M THEN 

BEGIN 
compute j(p) a la algorithm 2; 
copy-matrix (f-transform, j(p)); 

END 
ELSE 

BEGIN 
branch (p, number-of-branches, branches); 
FOR k = I to n DO 

BEGIN 
FOR j = I to number-of-branches DO 

BEGIN 
copy-matrix (restricted-transform, SFFT (n - I , branches [jl, liJ); 
build-matrix (temp-result, restricted-transform); 

END 
copy-matrix (f-transform, I-transform +p(k, n)* temp-result); 

END 
store (f-transform) /* store this as j(p) * / 

END 
return (f-transform); 

END 

There is a great deal of nontrivial bookkeeping going on in algorithm 3. One 
must keep track of where the restricted representation blocks go, and where in 
memory the restricted transforms occur. In storage, there must be room to keep 
all of the restricted transforms: 0; ... i (p)lp is an irreducible representation 

n m 
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of Sm_I' 1 :5 i j :5 j, M + 1 :5 m :5 n} as well as the transpositions. Thus, 
storage for mn! + (n - M)n! elements is required. 

4. Complete branching, partial storage. Algorithm 3 requires storing every re-
stricted transform throughout the computation. Storage restrictions may make 
this impossible. As an alternative, we present algorithm 4 in which only the 
restrictions to Sn_1 are kept for the entire computation. Both algorithms re-
quire the storage of all irreducible representations of all transpositions. By only 
storing the restrictions to Sn_1 the computation is slowed a bit, but storage 
requirements are reduced to manageable proportions. For example, on SIO' al-
gorithm 4 requires about 12 x 106 floating point numbers be stored. Algorithm 
3 requires six times this amount. Even with the storage restriction, substantial 
savings may be achieved. 

Before sketching the general algorithm, consider the specific example of the 
computation of J(p) , where p is the irreducible representation of SIO cor-
responding to the partition (7, 3). The following "tree" represents the way 
in which p splits when restricted, the kth level showing the splitting for p 
restricted to Sn_k' The restrictions though S6 are shown. 

[7,3] 

[6'3J~ ~ [7,2J 

/ '" / '" [5,3] [6,2] (6,2) [7,1] 

/" /" / " /\ [4,3] [5,2] (5,2) [6,1] (5,2} (6,1) (6,1) [7] 

/\ /\ /\ /\ /\ /\ /\ \ 
[3,3] [4,2] (4,2) [5,1] (4,2) (5,1}(5,1) [6] (4,2} (5,1}(5,1} (6) (5,1) (6) (6) 

Recursing one level, J(p) may be rewritten explicitly as 

where 'I j denotes the irreducible representation of S9 corresponding to the 
partition (9 - j, j). If either of the restricted transforms to S9 had been 
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computed previously then they could simply be retrieved from memory and 
used in this computation. If not then they must now be computed. 

As an illustration, assume that neither the restricted tranforms {];(173n nor 
• 2 • u;( 1] )} have already been computed. One more level of restriction allows f(p) 

to be rewritten as 
10 9 

J(p) = L L p(itO' lO)pCi9 , 9) 

(
1 . (1]3) 0 0 0 1 110 ' 19 

o 1· (1]2) 0 0 
• 110 • 19 

• 2 • o 0 1:. (1] ) 0 
110 ,19 

• 1 o 0 0 1; LO • 19 (1] ) 

For any fixed values of itO and i9 the restricted transform 1; i (1]2) need 
10' 9 

only be computed once and then can be copied to the other block in which it 
occurs. To obtain greater savings further recursion is performed. As we proceed 
down the levels of the tree the representations have more and more restrictions 
in common. In general, at each level only the first occurrence of each restricted 
transform should be computed. Consequently, computation of the restrictions 
must be scheduled in such a way that all restrictions to a given subgroup are 
computed on the same pass. To make this point another way, consider the 
explicit rewriting of a given Fourier transform on Sn' 

n k 

j(p) = L pCin , n)··· L pCik ' k)1; •... ik (P!Sk_I)' 
i.=1 ik=1 

Note that 
. ffi . (j) 1; ···i (P!Sk_l) = W 1; ···i (p ), 

If k If k 
j 

where the direct sum is over all the irreducible representations, with mUltiplicity, 
that occur in p restricted to Sk_I' To take advantage of the multiplicity the 
algorithm must compute each of the terms in the direct sum with the indices 
in' ... ,ik fixed as opposed to fixing the restriction and letting the subscripts 
vary. The recursion computes across levels in the tree, not down branches. 

The preceding idea seeks to avoid unnecessary computation. The next idea 
seeks to avoid unnecessary copying of blocks. 

Consider again the com!Jutation of the Fourier transform at the represen-
tation of StO corresponding to (7, 3). When restricted to Sg two copies of 
the irreducible representation corresponding to (6, 2) appear. Consequently, 
successive restrictions to smaller subgroups contain the same collections of sub-
representations (i.e. generate identical subtrees). Blindly following the above 
discussion, one might compute both sets of restrictions at these subgroups by 
computing the first occurrence and then copying to the other identical loca-
tions, only to have them overwritten as the recursion returns to Sg. Thus, in 
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general, the idea is that as the computation proceeds, we must make sure that 
upon determining that a given block of the matrix is obtained by "copying", no 
subsequent calculations or copying are performed within that block. 

In the tree for SIO and the partition (7, 3) the partitions enclosed by square 
brackets are representations at which Fourier transforms must be computed (the 
first occurrences). Those within parentheses will have the restricted transforms 
copied into their corresponding positions in the matrix. Lastly, those inside 
curly brackets will be ignored entirely. These two ideas are at the heart of the 
present algorithm. Rockmore (1988) gives a more thorough description of an 
actual implementation of this algorithm. 

The algorithm which follows is in two parts, a "main" body and the subrou-
tine "Compute-Restriction". Compute-Restriction assumes the existence of a 
subroutine "copy-first-occurrences" which takes as input the partially formed 
block matrix and moves data as indicated above. Compute-Restriction is called 
with the following parameters: 

k: indicates computation of the restriction to Sk' 
f: Indicates computation of j(pISk)' 

result: A matrix variable returning the block matrix j(pISk)' (Note 
that this matrix may only be partially filled.) 

Other referenced subroutines and matrix variables are as in algorithm 3. 

main body: 
BEGIN 

FOR P = first representation of Sn to the last DO 
BEGIN 

branch (p, number-of-branches, branches); 
IF all the branches have been computed previously THEN 

FOR i = I to n DO 
BEGIN 

FOR j = 1 to number-of-branches DO 
BEGIN 

retrieve (j; (branch [j]); 
build-matrix (temp, j; (branch [j]); 

END 
J-transform= J-transform +p(i, n)* temp; 

END 
ELSE 

BEGIN 
FOR i = I to n DO 

BEGIN 
Compute-Restriction (n - I , ~ , temp); 
FOR j = I to number-of-branches DO 

BEGIN 
IF branch [jj has been computed THEN 

BEGIN 
retrieve (temp); 
build-matrix (restriction, temp); 

END 
ELSE 

copy to storage the block in temp equal to this restriction for later 
use; 
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END 
I-transform= I-transform + restriction * p(i, n) ; 

END 

Compute-Restriction (k, I, result) 

BEGIN 

IF k = M THEN compute this restriction directly (i.e. those rep-
resentations which are "first" occurrences should 
be computed and copied to appropriate "later" oc-
currences of the same representation-see preced-
ing discussion) 

ELSE 
BEGIN 

END 

FOR i = I to k DO 
BEGIN 

Compute-Restriction (k - 1, restriction, fi); 
FOR 1] = first representation in the restriction to Sk TO the last DO 

IF we are to compute J(1]) THEN 

END 

BEGIN 
temp = the block in restriction corresponding to the restriction of 

1]; 
1]th block of result = 1]th block +1](i, k) * temp; 

END 

copy-first-occurrences (result); 
END 

5. Dynamic programming. Michelle Wachs has suggested what she calls a "dy-
namic programming" algorithm to reorganize the computation of algorithm 3. 
This allows a dramatic reduction in the amount of required memory. We state 
it here with her permission. 

The main idea is that computation of Fourier transforms on Sm for any m 
requires only that the restricted transforms on Sm_1 be computed. Thus, sup-
pose that we were computing J(p) for all irreducible representations p of Sn. 
Fix a positive integer M < n . An efficient reorganization of the computation of 
algorithm 4 would be to compute first all restricted Fourier transforms at all the 
irreducible representations of SM. By piecing these together in the appropriate 
manner, the restrictions to S M+I may be computed. This can be iterated until 
J(p) has been computed for all p. 

Note that after computing the restricted transforms at any Sm ' the restricted 
transforms at Sm_1 play no further role in the computation. Thus, they may 
be removed from storage. Consequently, only 2n! floating point numbers need 
be stored (in addition to the transpositions). 

We note that this idea adapts nicely for computing the Fourier transform 
at any single representation. Specifically, suppose we were computing J(p) 
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for p an irreducible representation of Sn' Using the branching theorem we 
may then determine all irreducible representations which occur in (piS M) and 
then compute all restricted transforms at these representations. As above we 
may then successively build the restricted transforms at the subgroups Sm for 
M S m S n , finishing with the computation of j(p). As illustration refer back 
to the computation of the Fourier transform at the irreducible representation 
of SIO corresponding to (7.3). This is shown for algorithm 4 in §6. 

Consider the tree generated for the splitting of the representation correspond-
ing to this partition. Here, we let M = 6. Then the algorithm proceeds by first 
computing the restricted transforms at the representations corresponding to the 
partitions (3, 3), (4, 2), (5, 1), and (6) of 6 for the functions 

U; ·11Si·Sj}. 110 ' •.• ,17 } 

These restricted transforms may now be used to build the restricted trans-
forms on S7 at the partitions (4,3), (5,2), (6,1) and (7). This is iterated 
until the full Fourier transform has been computed. 

In the algorithm which follows let 1m be the set of words 

1m = {in' in_I' ... , im+d 1 S ij S j}. 

Thus, for a E 1m let fa = /;. ' ... , im +1 • Let "store-matrix" and "retrieve-matrix" 
be as before, and let the new subroutine "free-storage" free up the appropri-
ate memory locations (i.e. it should free those positions storing the restricted 
transforms at Sm_l after the restricted transforms at Sm have been computed). 
Other variables and subroutines are as explained in the previous algorithms. 

Wachs' dynamic programming approach: 

BEGIN 
FOR Q E 1M DO 

FOR all irreducible representations P of S M DO 
BEGIN 

compute io(p) directly (a la algorithm I); 
store-matrix (io(p)); 

END 
FOR m = M + I TO n DO 

BEGIN 
FOR all representations p of Sm DO 

BEGIN 
branch (p, number-of-branches, branches) 
FOR p E 1m DO 

BEGIN 
FOR i = I TO m DO 

BEGIN 
FOR j = I TO number-of-branches DO 

BEGIN 
retrieve-matrix (io , i (branches (j])); 
build-matrix (temp, i o . i (branches (j])): 

END 
io(p) = io(p) + p(i, m) * temp; 

END 
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END 
END 

free-storage; 
END 

7. SOME NUMERICAL COMPARISONS 

The asymptotics for the algorithms on Sn give one an indication of the 
running time. As a complement to these, we have done some exact counts of the 
number of additions and multiplications required for the matrix multiplications 
involved. This assumes that a matrix multiplication routine is available which 
allows d x d matrices to be multiplied in da operations. It neglects other costs 
such as bookkeeping and matrix additions. 

The data is presented as three graphs for a = 3, 2.5, 2 (see Figures 1-3). On 
the x-axis n runs from 3 to 9. The y-axis shows the base 10 log of the ratio of 
the running time of the direct algorithm (algorithm 1) over the running time of 
algorithm 3 (full branching, full memory shown dotted) and algorithm 4 (full 
branching, limited memory, shown solid). 

Thus, for a = 3 and n = 9, the direct algorithm used 13,168,189,400 
operations, algorithm 3 used 243,802,167 operations, and algorithm 4 used 
1,610,184,048 operations. The ratios Direct/3 and Direct/4 were 540 and 82 
respectively. This leads to logs of 2.7 and 1.9 respectively. It follows that al-
gorithm 3 speeds up direct computation by a factor of 102.7 and algorithm 4 
speeds up direct computation by a factor of 101.9 when a = 3, n = 9 . 

For n = 9, these numerical results show a speed-up of about 100-fold for 
the implemented algorithm, and of about 1000-fold for the algorithm using full 
branching and memory. The two graphs appear to be separating exponentially. 
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FIGURE 1. Running time for algorithm 3 (dashed) and 
algorithm 4 (solid) versus direct, a = 3. 
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FIGURE 2. Running time for algorithm 3 (dashed) and 
algorithm 4 (solid) versus direct, a = 2.5 . 
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FIGURE 3. Running time for algorithm 3 (dashed) and 
algorithm 4 (solid) versus direct, a = 2. 
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We remind the reader that the storage requirements for algorithm 3 become 
prohibitive for large n. 
Remark. We believe the counts reported here offer reasonable comparisons of 
actual running times. Neglected operations should only make a small difference. 
For example, the number of operations used in adding the matrices f(n)p(n) 
has been neglected above. It can be incorporated into the recurrences, but makes 
no material difference. For instance, in algorithm 3, the recurrence changes to 

T(n) = nT(n - 1) + (n - 1) :~::)d; + dJ) . 
.<I-n 

This changes things by a negligible amount if a > 2 , and at worst by a factor 
of 2 for a = 2. 
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8. FINAL REMARKS 

A. Applications. The Discrete Fourier Transform (DFf) on Z /2a Z was orig-
inally introduced by Gauss to compute the cosine transform of a numerical 
function. Goldstine (1977) contains the early history. There have been numer-
ous reinventions; the most spectacular being those of Good (1958) building on 
work of Yates in statistics, and Cooley-Tukey (1965) who were interested in 
signal processing applications. 

The DFf has seen other applications: It is used to compute correlations in 
time series applications, to multiply and evaluate polynomials, and as the base 
of the modern fast ways of multiplying integers. 

Our interest in noncommutative transforms originates in applied statistics 
problems of analyzing rankings. As explained in Diaconis (1989), a similar 
spectral analysis may be based on the automorphism group of any designed 
experiment. 

Non-Abelian transforms can be useful in theoretical investigation as well: In 
investigating rates of convergence of Markov chains to their stationary distribu-
tions, knowledge of the eigenvalues is useful. Diaconis and Shahshahani (1981) 
show that for chains arising as random walks on finite groups, the eigenvalues of 
the transition matrix are precisely the eigenvalues of the Fourier transforms of 
the underlying probability measure. Sometimes these eigenvalues have simple 
structure which can be proved, once guessed at. Numerical computation for 
small examples is one mainstay. This was a crucial step in the work reported in 
Diaconis and Shahshahani (1981). 

Eigenvalues are also useful in investigating the existence of codes (see 
Rothaus-Thompson (1966) or Chihara (1987)). They are useful in investigating 
invertibility of Radon transforms and elsewhere as explained in Diaconis and 
Graham (1985). Edelman and White (1988) present an energetic data analysis 
of the eigenvalues of noncommutative transforms for such a problem. 

To be honest, we hope that the availability of fast new transforms will suggest 
novel applications. 

B. Parallelizability. Parallel computing environments are beginning to become 
available. It appears that a naive computational approach yields an algorithm 
that runs in O(log IGi) operations. We describe such an algorithm as well as a 
potentially more practical variation of it which adapts ideas used in the algo-
rithms presented in §6. 

The parallel processor we have in mind may be called a fine-grained SIMD 
machine such as the Connection Machine TM system (see Hillis (1985)). Here 
"fine-grained" means that there are many processors (perhaps 4k or even 128k) 
linked together. Each processor has some local memory and usually has lim-
ited computational capacity. A SIMD (simultaneous instruction multiple data) 
machine allows a single instruction to be sent simultaneously to all processors. 
The instruction is executed or ignored depending on an internal switch. 
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Direct computation yields a dramatic speed-up under strong assumptions. 
Let G be a finite group. Suppose that all the irreducible representations can be 
stored with one matrix entry per processor. Thus, a given processor contains 
Pij(s), As p, i, j, S vary this entails IGI2 processors. Given a real-valued 
function j(S) , suppose that this is stored one element per processor as well. 
We note that these values need not be stored in processors distinct from those 
containing the matrix elements. 

The algorithm proceeds in two steps: 
1. Simultaneously send each element j(s) to all processors containing 

Pij(s) (p, i, j vary over all possible values), multiply these numbers 
together, and store them at the receiving processor. 

2. Simultaneously sum over s the values Pij(s), 
In parallel, each of these operations takes O(log IG/) operations. 

Note that any matrix representation may be used. The only potential problem 
here is in the large storage requirements of this algorithm. Loading a new 
function j(s) into the machine can be done in just a few seconds (again we 
have a Connection Machine environment in mind). Putting the data into any 
particular configuration may be done with a single machine instruction. 

We can relax these storage requirements by adapting the basic idea of §2. 
Recalling the notation there, we fix a subgroup H c G and coset representa-
tives s, ' ... , Sk • Assume that the irreducible representations for H are stored 
one element per processor. Furthermore, we also assume that all the irreducible 
representations of S2' ... ,Sk (s, may be taken to be the identity) are stored 
as well. (If storage capacity is being pressed, we might only assume that at 
any given time we only keep the function 1; and each p(s) for all irreducibles 
P and some fixed i.) This requires at most klGI + IHI2 processors. In the 
algorithm "sketch" that follows, j-transform is a parallel matrix variable with 
segments indexed by the representations of G that will hold the Fourier trans-
forms. 

BEGIN 
Simultaneously for all irreducible representations p of G set the matrices f-transform(p) 

to O. 
FOR i = I to k DO 
BEGIN 

I. Compute j;(71) for all irreducible representations 71 of H in parallel as indicated 
above (i.e. directly). 

2. Simultaneously build the matrices j;(pIH) for all irreducible representations p of 
G. (Recall that in a suitable basis, these will be block diagonal with the blocks having 
been computed in step I.) 

3. Simultaneously, for all irreducible representations p of G, compute and add to 
f-transform(p) the matrix products P(si) * j;(pIH). 

END 
END 

Matrix multiplication of n by n matrices may be done in O(log n) time in 
parallel. Thus, the running time of step 3 is dictated by the size of the largest 
representation. This is at most JTGT. Data movement may also be performed 
in log time (that is, any single piece of data may be sent to n processors in 
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log n operations). So, in building the block matrices we may assume O(log I GI) 
operations. Hence, the above algorithm gives on the order of 

(IGI/IHI) 10g(IGI) + log(IHI) + ~ 10g(IGI) 

operations. This is small when IHI is large. The storage grows as IGI2/IHI+IHI. 
This allows some tradeoff. 

We recognize the limitations in the suggestions made here but feel they may 
be useful as a start. 

C. Other ideas. The Cooley-Tukey ideas are not the only novelties in computing 
transforms. The chirp-z and primitive root transforms allow computation of 
all transforms on Z I pZ in order p logp operations for p a prime. Diaconis 
(1980) contains a brief description and references to the literature. These ideas 
all extend the function to a larger group where the transform is easy to compute 
and the answer is recoverable from the extended computation. The Cooley-
Tukey algorithm is given a thought provoking reinterpretation as polynomial 
evaluation in Aho, Hopcroft, and Ullman (1976). It is not clear how these 
ideas extended to non-Abelian cases. 

Winograd (1978), and Auslander-Tolimieri (1979) have had other different 
ideas to speed up conventional FFT's. These too seem fair game for extension. 

D. Inverse transforms. This paper has focussed on computing the Fourier trans-
forms j(p). While this is all that is needed for the statistical applications, it 
is clearly desirable to have efficient algorithms for computing the inverse trans-
form. This takes as input a collection of matrices j(p) and returns the function 
values j(s) for every s E G. Direct computation using the Fourier inversion 
theorem requires IGI2 operations. 

For Abelian groups fast algorithms for performing Fourier inversion already 
exist. These all take advantage of the fact that in this case the irreducible rep-
resentations of G form a group G (the dual group) isomorphic to G. Fourier 
inversion then amounts to computing Fourier transforms on G-so the same 
ideas apply. For non-Abelian groups, the dual has no group structure to exploit. 
New ideas must be developed. 

Recently, one of us has shown that the FFT algorithm of this paper essentially 
can be run backwards to achieve the same savings. A full account of this appears 
in Rockmore (1990). Here is a sketch of the main idea. 

Let G be a group and H ~ G a subgroup and suppose that {s 1 (= 1), 
S2' ... ,sk} is a complete set of coset representatives for GI H. The idea is to 
find a way to efficiently recover the restricted transforms i;(rf) (where 11 runs 
over all irreducible representations of H) from the original set of Fourier trans-
forms j(p). This will reduce the problem to performing Fourier inversion for 
these k functions on H. This idea can be made to work using the techniques 
of induced representations. 

Specifically, if H ~ G is a subgroup, then representations of G may be 
constructed from representations of H by a process known as induction. If 11 
is a representation of H, then 11 gives rise to a representation of G, denoted 
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(t/ i G) (read t/ induced to G) of degree d'1·IGI/IHI (see Coleman (1966) for 
a friendly and constructive treatment of induced representations). In general, 
(t/ i G) is reducible. Let 

be the direct sum decomposition of (t/ i G) into irreducible representations 
of G. In the language of matrices this means that in some basis (t/ i G)(s) 
is block diagonal for every s E G with blocks given by the matrices pJs). 
Consequently, with respect to such a basis the Fourier transform J(t/ i G) is 
block diagonal with the transforms J(Pi) on the diagonal. 

The main fact which is now employed is that there is another more 44natural" 
basis for the induced representation (t/ i G) with respect to which the Fourier 
transform J(t/ i G) has a more useful form. With respect to this natural basis 
the Fourier transform J( t/ i G) may be viewed as a k x k block matrix in 
which the first column is given by the blocks 1; (t/) . 

Now the "algorithm" is clear. Given the original Fourier transforms J(p) 
for all irreducible representations p of G the block diagonal form of J( t/ i G) 
may be constructed immediately. An appropriate change of basis allows the 
recovery of the restricted transforms {.!;(t/)}. These changes of basis matrices 
are readily constructed by a neat application of Frobenius reciprocity. This is 
done for all irreducible representations t/ of H. The problem is now reduced 
to performing Fourier inversion for the functions U;}. This may of course 
now be iterated through subgroups of H to amplify the savings. 

Open problems. In the course of doing this work, several theoretical problems 
have surfaced: 

1. Let G be a group, and let S E G be a set of generators. Given p(s) , for 
each irreducible representation p and each s in S, how should pet) be built 
up, for all t E G, with the fewest number of operations? If a directed graph is 
formed with elements of G as vertices and an edge from t to t' if t' = st for 
some s E S , the problem reduces to finding an intelligable spanning tree and 
traversing it by multiplying by the appropriate s for each edge. 

This is reminiscent of addition chains (Knuth (1981), p. 444) which effi-
ciently generate xn given x. In the present application, the efficient genera-
tion of subsets p(t), t E T, is also of interest, with T being the set of coset 
representations for a subgroup. 

2. Let d;. be the dimension of the irreducible representation of Sn associated 
to the partition .A. of n. Find the behavior of 

For a = I, this sum counts the number of involutions; its behavior is well 
understood (Knuth (1975), p. 48). For a = 2 it is n!. The behavior at a = 3 
would be useful for the present investigation. 
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3. We do not know how to take advantage of special symmetry. For example, 
if G = (Z/2Z)n and f is invariant under permutation of coordinates, then 
f is determined by f(O), f(l), ... , f(n), where f(i) ~ f(x); here x has 
ones. The appropriate transform involves Krawtchouk polynomials 

n 

J(k) = Lf(i)Pi(k) 
i=O 

(see e.g. Stanton (1984)). 
If pi(k) are available, direct computation of J(k) for all k takes n2 opera-

tions. Orszag (1986) suggests algorithms that work in order n(log n)2 operations 
for similar problems. We do not see how to adapt his ideas. 

Similar questions arise for any of the spherical function transforms associated 
to finite groups (see Stanton (1984)). 

Note added in proof. Clausen (1989,a,b) has begun to develop a similar theory 
in different language. Babai and Royani (1989) discuss exact computation of 
representations. Babai (1986) gives more refined towers for Sn' Driscoll and 
Heally have made a breakthrough in working with compact groups. 
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ABSTRACT. Let G be a finite group, f: G --+ C a function, and p an ir-
reducible representation of G. The Fourier transform is defined as j(p) = 
E SEG f(s)p(s) . Direct computation for all irreducible representations involves 
order IGI2 operations. We derive fast algorithms and develop them for the 
symmetric group Sn. There, (n!)2 is reduced to n(n!)a/2, where a is the 
constant for matrix multiplication (2.38 as of this writing). Variations of the 
algorithm allow efficient computation for "small" representations. A practical 
version of the algorithm is given on Sn. Numerical evidence is presented to 
show a speedup by a factor of 100 for n = 9 . 
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