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NODAL SETS FOR EIGENFUNCTIONS 
OF THE LAPLACIAN ON SURFACES 

HAROLD DONNELLY AND CHARLES FEFFERMAN 

1. INTRODUCTION 

Let M2 be a compact connected surface having a smooth Riemannian met-
ric. The associated Laplacian Ll is a negative definite selfadjoint elliptic opera-
tor. Suppose that F is a real eigenfunction, LlF = -)'F. If M has a nonempty 
boundary, we require Dirichlet or Neumann boundary conditions for F. 

The nodal set N of F is simply the zero set of F . It contains a finite number 
of singular points S = {x E MI F(x) = 0 and V F(x) = O}. Let B(p, a l ).-1/4) 

be a geodesic ball in M centered at p with radius a l ).-1/4. Here a l is a 
suitable constant. Our first result is to count the number of singular points up 
to multiplicity in such a ball. 

Theorem 1.1. Assume that PII E S n B(p, a 1rl/4) are singular points where F 
vanishes to order nil + 1. Then I: nil ::; a2).1/2 . 

Of course, we say that F vanishes to order nil + 1 if the first nonvanishing 
tenn in its Taylor expansion is of order nil + 1 . Since PII E S, we have nil ~ 1 . 

In our earlier paper [5], we showed that F can vanish at a single point to at 
most order a2).1/2 . This result represented a quantitative version of the classical 
unique continuation theorem by Aronszajn [1]. The order a2).1/2 of vanishing is 
achieved at isolated single points by spherical hannonics on S2 . Another exam-
ple, described below, shows that B(p, a1rl/4) cannot be replaced in Theorem 
1.1 by any bigger B(p, a1r t ) with e < ~ while still maintaining the upper 
bound a2).1/2. 

Now consider the one-dimensional Hausdorff measure jf'1 N of the nodal 
set N. Since N - S is a one-dimensional manifold and S is a finite set, one 
has jf'1 N = jf'1 (N - S). Our second main result is 

Theorem 1.2. jf'1(NnB(p, a3rl/4))::; a4).1/4. 

The estimate a4).1/4 is the optimal upper bound for the nodal set lying in 
a ball with radius a3). -1/4. This reflects the fact that F may vanish to order 
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a2A'/2 at isolated singular points. We do not know if the radius a3A -1/4 of 
Theorem 1.2 can be replaced by any a3A -e , where e < !, to give an upper 
bound 7!"(NnB(p, a3A-e)) < a4A'/2-e. However, both of our theorems follow 
from certain basic Carleman inequalities. Since the first theorem is sharp, there 
appears to be a serious obstruction to improving the second theorem via the 
current techniques. 

Covering M by order A'/2 balls of radius a3r'/4, we immediately deduce 

Corollary 1.3. 7!" N < asA3/4 . 

Yau has conjectured that 7!" N < a6A'/2 . We proved this conjecture [5] when 
M is a real analytic manifold with real analytic metric. For differentiable mani-
folds, Hardt and Simon [8] established the estimate 7!" N < a7 exp(agJX log A) . 
In particular, Corollary 1.3 gives an upper bound of polynomial growth. Some 
time ago [2], Bruning derived the complementary lower bound 7!" N > a9A'/2 
in Yau's conjecture. 

Recently, Nadirashvili [10] announced the upper bound 
, 

7!' N < alOAlog( 1 + A) . 

A brief sketch of the proof was provided. In the case when M is only differ-
entiable, his method seems substantially different from ours. 

2. CARLEMAN INEQUALITIES 

In his seminal work [3] on unique continuation for first-order differential 
equations in two independent variables, Carleman derived certain weighted in-
tegral inequalities. His method of proof relied upon integral representations 
via fundamental solutions. We develop related inequalities using a rather dif-
ferent approach, which involves repeated partial integration and estimates of 
commutators. These commutator functions may be interpreted as the Gaus-
sian curvatures of conformally flat metrics. Consequently, our estimates are 
reminiscent of the standard Bochner formulas [7]. However, we eschew this 
differential geometry viewpoint in favor of a more elementary outlook. 

Consider the weighted Hilbert space L' (P~ , e -</> dx dy) of complex-valued 
functions. Here g is a bounded open subset of the complex plane, and ¢ is a 
smooth real-valued function. Our primary concern involves smooth compactly 
supported functions u E c;:(g) , a subset of L 2(g, e-</> dxdy). One has the 
basic first-order differential operators au = au/a z = t.(a/ax - iO/ay)u and its 
companion 8u = au/az = t.(a/ax + ia/ay)u. In our weighted Hilbert space, 
the adjoint of 8 is 8* . A calculation verifies the formula 8* v = -e</> a (e -</> v) . 

A priori, the commutator [8, 8*] might only be expected to be a first-order 
operator. However, we compute that [8, 8*] is simply the zeroth order mul-
tiplication operator [8, 8*]u = (8a¢)u = (~do¢)U. Here do denotes the 
Euclidean Laplacian. The simplicity of this commutator facilitates the proof of 
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Proposition 2.1. Let <l> be a smooth positive Junction defined on a bounded open 
set 9 oJthe complex plane. IJ u E C;;(9) is complex valued, then 

L j8uI 2<l> 2: L i(~0In<l»luI2<l>. 
Here the integral is with respect to Lebesgue measure. 
Proof. We define <p = -In <l> or equivalently <l> = e-</>. Working in the 
weighted Hilbert space L2(9, e-</> dxdy) we observe that 

-* 2 --* -*- - -* o ::; 118 ull = (88 u, u) = (8 8u, u) + ([8 ,8 ]u, u) 

= 118ull2 + (i(~o<p)u, u). 

Proposition 2.1 follows from the various definitions 

We will specialize the choice of <l> to obtain some useful inequalities. In con-
trast to the most standard Carleman estimates, these inequalities will involve 
weight functions with singularities at several points. This feature of multiple 
singularities will be crucial in our eventual study of the nodal set for eigenfunc-
tions. 

Lemma 2.2. There exists a smooth Junction 'IIo(z) defined Jor Izl > 1 - 2a 
satisfying the Jollowing properties: 

(i) 'IIo(z) is bounded above and below by positive constants c1 ::; 'IIo(z) ::; c2· 
(ii) IJ Izl > 1, then 'IIo(z) = 1. 

(iii) For all z in the domain oj '110' ~oln'llo 2: O. 
(iv) IJ 1 - 2a < Izl < 1 - a, then ~o In '110 2: c3 > o. 

Proof. We choose 'IIo(z) to be a radial function depending only on r = Izl. 
Let h(r) 2: 0 be a suitable smooth function satisfying h(r) 2: c3 for 1 - 2a < 
Izl < 1 - a, and h(r) = 0 for Izi > 1 - ~. The radial Laplacian 

( d2 1 d) 
~oln 'IIo(r) = -2 + --d In'llo(r) dr r r 

has smooth coefficients for r > 1 - 2a. Therefore, we may apply the existence 
and uniqueness theory for ordinary differential equations. Simply let In'llo(r) 
be the solution of the differential equation (f + }f,) In 'IIo(r) = h(r) with 
initial conditions given by In '110 (1) = 0 and In 'II~ (1) = O. 

Next, let Dv be a finite collection of pairwise disjoint disks, all of which 
are contained in the unit disk centered at the origin in C. We assume that 
Dv = {zllz - zvl < J}. Suppose that Dv(a) denotes the smaller concentric 
disk Dv(a) = {zllz - zvl ::; (1 - 2a)J}. We define a smooth weight function 
<l>o(z) for z E C - Uv Dv(a) by setting <l>o(z) = 1 when z tt. Uv Dv and 
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<Po(Z) = IfIO((Z - zv)/~) when Z is an element of Dv' It follows from Lemma 
2.2 that <Po satisfies the properties: 

(i) <l>o(z) is bounded above and below by positive constants c, ~ <l>o(z) ~ 
c2 • 

(ii) Llo In <Po ~ 0 for all Z E C - Uv Dv(a) , the domain where the function 
<Po is defined. 

(iii) Lloln<po ~ C3~-2 when (1- 2a)~ < Iz - zvl < (1- a)~. 
Let Av denote the annulus Av = {(I - 2a)~ < Iz - zvl < (1 - a)~}, and 
set A = Uv Av' The properties (ii) and (iii) of CPo may be summarized as 
Llo In <Po ~ c3~-2 XA ' where XA is the characteristic function of A. 

Suppose that a is a nonnegative real constant. We apply Proposition 2.1 
with CP(z) = CPo(z)eaizI2 . If u E c';'(R2 - Uv D)a)) , assume that 9 is a 
bounded domain containing the support of u and A c 9 C R2 - Uv D v (a). A 
calculation gives 

{ - 2 <>lzl2 {2 <>lzl2 -2 ( 2 <>lzl2 
}g laul CPo(z)e ~ c4a }g lui <Poe + c5~ }A lui <Poe . 

The boundedness, property (i) of <Po' then yields 

1 I-a 12 <>lzl2 > 11 12 <>lzl2 .-:-21 1 12 <>lzl2 u e _ c6a U e + c7u U e . 
g g A 

We replace u by lj; in this inequality, where P(z) = TIv(z - zJ. Since P 
is holomorphic, we have 8(1f;) = a; . Thus, we may write 

Proposition 2.3. If 9 is a bounded domain containing A and the support of u, 
then 

L 18u121PI-2 e<>lzl2 ~ c6a L lul2 eaiz12 1PI-2 + C7~-2lIUI2 eaiz12 1PI-2 . 

The entire discussion above applies to any complex-valued smooth function 
u, with suitable compact support. Now let f E C';'(R2 - Uv9vCa)) be real 
valued. For real-valued functions, one has 18 fl = la fl = ! Idfl, where d 
denotes the usual exterior derivative in R2 . We may choose u = a f . 

Consequently, Proposition 2.3 yields 

fg ILlofI2IPI-2e'>iz,2 ~ cga L 18fI2e<>lzI2IPI-2 + C9~-2lldfI2e<>lzI2IPI-2. 

Applying Proposition 2.1 to bound the first integral on the right-hand side 
gives 

(2.4) L ILlofl2lPI-2eaizl2 ~ CiOa2 L IfI2eaizI2IPI-2+c9~-2lldfI2e<>lzI2IPI-2. 
We would like to replace df by f in the second integral on the right-hand 

side of (2.4). To achieve this goal, we impose the following hypotheses involving 
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the geometry of the disks Dy and the positive parameter 0:: 

(i) The radius 15 of each Dy satisfies 15 ~ blo: -I. 
(ii) The distance between any two distinct Zy is at least 

b 1/2 2 2 max( 0: ,1 )15. 
(2.5) 

(iii) The total number of disks Dy is at most b30:. 

Here bi are suitable positive constants. We may write 
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Lemma 2.6. Assume the hypotheses (2.5). If zi and z2 both lie in the same 
component Ay of A, then 

(a) b4 < e<>lzl12 je<>I Z212 < bs ' 
(b) b6 < IP(zl)ljIP(z2)1 < b7 • 

Proof. To prove (a), recall that the Ay all lie inside the unit disk, centered at 
the origin, in R2. Thus, one has IIzi - Izil ~ 211zll- IZ211 ~ 2b10: -I , by 
(i) of hypothesis (2.5). Therefore, o:IIzl12 - Izil ~ 2b l , and (a) follows via 
exponentiation. 

For (b), we use the definition P(z) = TIy(z - zp)' where zp are the distinct 
centers of the disks D p' This gives 

jIogIP(zl)I-logIP(z2)II ~ L I log IZI - zpl-Ioglz2 - zpll 
p 

~ bg + L Iloglz1 - zpl-Ioglz2 - z,uli. 
wl-y 

Here bg = log«l - a)j(1 - 2a)) , since zl and z2 both lie in the annulus 
Ay = {zl(1 - 2a)t5 < Iz - zyl < (1 - a)t5}. 

By the mean value theorem, we get 

I log I z I - Z pi - log I z 2 - Z p" ~ b91 Z y - Z pl-I 15 , 
from hypothesis (ii) of (2.5). So 

I log IP(zl)I-Iog IP(z2)II ~ bg + b9t5 L IZy - zpl-I . 
piy 

To estimate the last sum, let Dp = {zllz - zpl < b2 max(0:1/2, l)t5}. By 
assumption (ii) of (2.5), the Dp are disjoint. If Z E Dp ' then we have Iz-zyl ~ 
Iz - zpl + Izp - zyl ~ 21zp - zyl. Consequently, 

h -I 1 h -I 2 _ Iz - zyl ~ 2" _ Izp - zyl ~ blOlzp - zyl max(o:, 1)15 . 
D" D" 

Here we use the definition of D p to estimate its area. 
Set Ey = Upiy D p' We now have 

I log IP(zl)I-Iog IP(z2)II ~ bg + bll minCo: -I, 1)15- 1 liZ - Zyl-I . 
Ev 
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If S is any set of finite measure m(S) , then let Ds be a disk centered at Zv 
with equal measure m(Ds) = m(S). It follows from the elementary Lebesgue 
theory that 

{ Iz - zvl- I ::; ( Iz - zvl- I . is iDs 
Applying this observation with S = Ev ' we find 

I log IP(ZI)I-log IP(z2)11 ::; b8 + bll min(a -I , 1)c5- 1 1 Iz - zvl- I . 
DEv 

By hypothesis (ii) of (2.5), we have m(Ev) ::; bI2amax(a, 1)c52. Since Ev 
and DE have equal measure, part (b) of Lemma 2.6 follows easily. 

We ~ill also need a simple variant of the Poincare inequality on each annulus. 

Lemma 2.7. If f E COO (A) and f vanishes on the inner boundary of Av ' then 

l1dfl2 ~ Cllc5-21IfI2 . 
Av Av 

Proof. Let (r, () denote the usual polar coordinates on Av' Since f van-
ishes on r = (1 - 2a)c5, the fundamental theorem of calculus yields f(r, 0) = 
fc;-2a)O8f/8s(s, ()ds. Thus, 

1 212lr l(l-a)o(l' 8f )2 If I = -(s,()ds rdrd(). 
Av 0 (1-2a)o (1-2a)o 8s 

By the Schwarz inequality, 

1 2 12lr l(l-a)o l(l-a)o (8 f )2 If I ::; ac5 -8 (s, ()dsrdrd() 
Av 0 (1-2a)o (1-2a)o S 

212lr l(l-a)o (8 f) 2 ::; c12c5 -8 (s, ()s ds d() . 
o (1-2a)o S 

Since IdfI 2(s, () ~ (~1Y(s, (), Lemma 2.7 follows. 

Finally, we are ready to return to (2.4). Let Wv E Av be chosen arbitrarily. 
Assume the hypotheses (2.5). Then applying Lemma 2.6, 

(2.8) lldfI2eaIZI2IP(Z)I-2 ~ CI3L:ealwvI2IP(Wv)I-21IdfI2. 
A v Av 

Since f E C;'(R2 - Uv Dv(a» , we then employ Lemma 2.7 to obtain 

f IdfI2ealzI2IP(z)I-2 ~ cI4LeaIW)2IP(Wv)I-2c5-21IfI2. 
A v Av 

Using Lemma 2.6 again gives 

(2.9) i IdfI2ealzI2IP(z)I-2 ~ CI5 c5-2 i IfI2ealzI2IP(z)I-2. 
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We obtain a crucial Carleman inequality by substituting (2.9) back into (2.4), 

(2.10) 
L ILlofI2IPI-2e'>lz12 2: ClO02 L If12eaiz121PI-2 

+ C160-4 i IfI2ealzI2IPI-2. 

For future reference, it is convenient to summarize the principal results from 
this section in 
Proposition 2.11. Assume that f E C;(R2 -U", D",(a)) is a real-valuedfunction. 
Let 9 be a bounded domain containing the support of f. Then 

(i) for any disk D"" L ILlofl2lPI-2ealzl2 2: ClO02 L IfI2ealzI2IPI-2. 

(ii) If the D", satisfy hypotheses (2.5), then the stronger inequality (2.10) 
holds. 

Note that the estimate of Proposition 2.11(i) is a consequence of (2.4), which 
was proved without assuming special hypotheses about the disks D", . In fact, (i) 
does not even require the D", to be disjoint. This follows from the disjoint case 
by a simple limiting argument. The point is that the radius of D", does not enter 
into the weak inequality of (i). Alternatively, we may deduce Proposition 2.11 (i) 
directly from Proposition 2.1 by using the weight function IP(z)I- 2 exp(0IzI2). 

3. COUNTING SINGULAR POINTS 

Let M be a compact connected closed Riemannian manifold with associated 
Laplacian Ll. Suppose that F is an eigenfunction of Ll with eigenvalue -A, 
M = -AF. In [5], we proved that F vanishes at any point p in M to at 
most order c I ..fJ.. The purpose of the present section is to make a qualitative 
improvement in this result assuming that M is two dimensional. 

Suppose that M is a surface. The nodal set of F is defined as N = 
{x E MI F(x) = O}. The implicit function theorem guarantees that N is locally 
a one-dimensional manifold, outside its singular set S = {x E MI F(x) = 0 and 
dF(x) = O}. We begin by recalling the elementary 
Lemma 3.1. S consists of at most finitely many points. 
Proof. By the unique continuation theory [I], F never vanishes to infinite 
order. Let Po E S and choose normal coordinates (x, y) with Po at the 
origin. Expanding F in its local Taylor polynomial, we have F(x, y) = 
Fj(x, y) + R j+1 (x, y). Here Fj(x, y) consists of the leading nonvanishing 
terms, all those homogeneous of order j 2: 2, and R j +1 (x, y) is a higher order 
remainder. Since the coordinates are normal and LlF = -AF, we deduce that 
Fj is harmonic for the Euclidean Laplacian LlOFj = O. Passing to polar coor-
dinates, we find that Fj = ~ (b l cosje + b2 sinje). Clearly, r- 18F)8e and 
8Fj /8r have no common zero for r =1= O. Thus, Po has a neighborhood U 
with U n S = Po' Lemma 3.1 follows since M is compact. 
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We plan to count the number of singular points in sufficiently small balls. 
Let p EM, and consider a geodesic ball B(p, C2A- I/4) of radius C2A,-1/4 and 
centered at p. If c2 is sufficiently small, we may assume that B(p, C2A,-1/4) is 
contained in an isothermal coordinate patch. Then we may write ~ = ¢~ I ~o 
and ~oF = -A,¢IF. Suppose we define G(x) = F(C3A,-1/4X ). If c3 is suffi-
ciently small, the domain of G will contain a Euclidean ball of radius three 
centered at the origin. Moreover, ~oG = _A,1/2¢2G, where we may make ¢2 
arbitrarily small by proper choice of c3 • With these preparations we are now 
ready to prove 

Proposition 3.2. Suppose that Pl/ E S n B(p, c4rl/4) are singular points where 
F vanishes to order nl/ + 1. Then 2:1/ nl/ < C5A,1/2 . 

Proof. If suffices to bound the number of singular points of G that are con-
tained in a Euclidean ball of radius /0 centered at the origin. Suppose that 
IZI/I < /0 and G vanishes at z// to order nl/ + 1. 

The singular points of order two require a special argument. Therefore, we 
begin by assuming nl/ = ml/ + 1, where ml/ 2: 1. We may then define the 
polynomial P(z) = TI(z- zl/)m • . Let D be an open disk of radius two centered 
at the origin and DI/ closed small disjoint disks of radius J centered at the z//. 
If fE C;'(D-UI/DI/), the Proposition 2. 11 (i) gives 

(3.3) Iv l~ofI2IPI-2eb3v'1lzI2 2: C6A Iv IfI2IPI-2i3v'1lzI2 . 

Here we choose a = b3Vi. 
Of course, the function G will not be compactly supported. Consequently, 

we employ a standard cut-off function e E C;' (D - UI/ D J having properties 
(i) e(z) = 1 if Izi < ~ and all Iz - z//l > 2J . 

(ii) lV'el:5 c7 ' l~oel:5 cg if Izi 2: ~ . 
(iii) lV'el:5 c7J- I , l~oel:5 cgJ-2 if Iz - zl/l:5 2J. 
We may take f = eG in (3.3). 
It is straightforward to derive the estimates 

(i) l~o(eG)I:5 c9Jmv if Iz - z//l :5 2J. 
(ii) l~o(eG)I:5 c lO (IGI + IV'GI + ViIGI) if Izi 2: ~. 

In particular, IPI- I ~o(eG)1 is bounded near the zeros z// of P. The constant 
c9 may depend upon G, but c9 will soon disappear from our argument. 

Substituting f = eG in (3.3) and applying the dominated convergence the-
orem as J -> 0 gives 
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Now ~oG = _;.1/2</>2G, where </>2 can be assumed suitably small. This allows 
the absorption of the first term on the left into the right-hand side. We find that 

[ (IGI2 + I'VGI2)IPI-2eb3v1lzI2 ;::: cl2l IGI21P1-2l3v1IZI2 
J3/2'SlzI9 Izl'SI/2 

Replacing 1P1-2 by its maximum or minimum value in each integral gives 

max 1P1-2 ( [ IGI2 + I'VGI2)e 4b3v1 
Izl~3/2 J3/2'SlzI9 

;::: c12 ( min IPI-2) [ IGI2. 
Izl'SI/2 J1Z 1<1/2 

By standard elliptic theory, the above implies 

max 1P1-2eb4v1l IGI2;:::CI2 min IPI-2l IGI2. 
Izl~3/2 Izl'SS/2 Izl'SI/2 Izl'SI/2 

The basic estimate of [5] for growth of eigenfunctIons on concentric balls 
now yields 

lsL,mv < minlzl<I/2IPI-2 
- maxlzl~3/2IPI-2 

eb4v1 ~ZI<S/2IGI2 
< 2 
- c12 ~zl'SI/2IGI 

::; l6v1. 

Since mv ;::: 1 , we have nv = mv + 1 ::; 2mI'. We have thus proved Proposition 
3.2 in the case where all singular points are of order at least three. 

To treat the singular points of order two, we want to replace P(z) by Q(z) = 
TI(z - zv)nv/2 in the above argument. The point is that IQI-21~o(OG)12 will 
then be uniformly integrable as f5 1 0 near the singular points zv. Unfortu-
nately, Q need not be defined as a single-valued holomorphic function on C. 
To overcome this difficulty, we pass to a finite branched cover of the disk D 
punctured at zv. The Carleman inequalities of §2, which follow primarily by 
partial integration, generalize in a straightforward manner. The integrand in 
these inequalities will involve only functions such as f and IQI that are inde-
pendent of the sheet. So we do in fact have the required Carleman inequality 
on a punctured disk. Note that the points Zv have Euclidean measure zero. 
Proposition 3.2 follows as in the case where all nv > 1 . 

We proceed to discuss some corollaries and extensions of Proposition 3.2. 
An elementary argument using Courant's nodal domain theorem and the Gauss-
Bonnet theorem implies that the cardinality of S is at most of order;'. We 
omit the details since this result is also a consequence of Proposition 3.2. We 
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simply cover M by order ).1/2 balls of radius c4r l / 4 to deduce 

Corollary 3.4. Suppose that Pv E S are singular points where F vanishes to 
order nv + 1. Then L nv :::; c13 ).· 

Proposition 3.2 and its Corollary 3.4 are sharp in several respects. One has 
spherical harmonics on S2 that vanish at a single point to order VI. Moreover, 
let T2 = R2/Z EBZ be the standard flat two torus. If FI E Coo (T2) is an eigen-
function with eigenvalue ).1 ' then set Fn(x, y) = FI (nx, ny). Clearly, Fn is 
an eigenfunction with eigenvalue ).n = n2).1 • If FI has a zero of order m, then 
Fn has at least b7).n zeros of order m. This shows that the global Corollary 
3.4 is sharp. Also, B(P, C4).-1/4) in Proposition 3.2 cannot be replaced by any 
B(P, CI4).-0) for e < ~ while still achieving at most order VI singularities in 
B(p, cI4rO). If so, F would have at most order ).1/2+20 singularities on all of 
T2. 

It may be interesting to discuss the geometric dependence of the constants 
appearing in our present results. We have 

Proposition 3.5. The constants C;I and Cs of Proposition 3.2 may be bounded 
above via an upper bound on the diameter and absolute value of the Gaussian 
curvature of M. If there is a lower bound for the value of M, then the constant 
c13 of Corollary 3.4 can be bounded from above. 

In fact, the eigenfunction growth estimate of [5] already required an upper 
bound for the diameter and absolute value of the curvature of M. To see that 
no additional geometric data is required for Proposition 3.2, we lift the metric to 
the tangent space at p E M before doing our basic calculation. This avoids the 
presence of cut points. Appealing to the Riemann mapping theorem of [9], we 
obtain a conformal coordinate chart on a ball in TpM where the radius of the 
ball and isothermal parameter are controlled. If we also have a lower bound for 
the volume of M, then Cheeger [4] provides a lower bound for the injectivity 
radius of M. This allows us to bound the number of balls with radius c4). -1/4 

needed to cover M. The constant c13 of Corollary 3.4 is thereby controlled. 
Note that an upper bound for the diameter and lower bound for the Gaussian 
curvature already provide an upper bound for the volume of M. Using the 
Courant nodal domain theorem, as alluded to above, to prove Corollary 3.4, and 
lower bounds for the eigenvalues, we can improve the geometric dependence in 
Corollary 3.4. More specifically, the absolute bound on the curvature can be 
replaced by a lower bound on the curvature. 

If M is a manifold with boundary, then it is natural to impose Dirichlet or 
Neumann boundary conditions on the eigenfunction F. Proposition 3.2 and 
Corollary 3.4 generalize in a straightforward way. As in [6], we work on the 
Lipschitz double of M. The only delicate point is to construct suitable con-
formal coordinate charts near 8 M eMu M. For this, we apply the Riemann 
mapping theorem of [9] to first construct charts around 8M eM. We map 
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a half disk centered on the x-axis in the (X, y)-plane to M with the x-axis 
going to aM. The metric is then given locally by h(x, y)(dX2 + di) with 
y > o. The definition of the metric and differentiable structure on the double 
correspond to reflection about the x-axis. This gives the required charts with 
metric h(x, lyl)(dx2 + di) on the double MuM. 

This section includes the completion of the proof for Theorem 1.1. In fact, 
Theorem 1.1 is contained in Proposition 3.2 and the subsequent developments. 

4. GROWTH OF EIGENFUNCTIONS 

The remainder of this manuscript is devoted to the proof for Theorem 1.2. 
It requires considerable effort to develop the necessary machinery. The present 
section establishes that our eigenfunction does not grow rapidly on too many 
small balls. These growth estimates will subsequently be shown to restrict the 
nodal length. 

Let M be a compact closed Riemannian surface. Assume that M = -AF , 
where d is the Laplacian of the Riemannian metric. We consider the behavior 
of F when restricted to small balls B(p, cl rl/4) contained in isothermal co-
ordinate patches. We may write d = 1>~1 do, where do is the Euclidean Laplace 
operator. Consequently, we have doF = -A1>IF . 

Define G(z) = F(c2r l / 4z). If c2 is sufficiently small, then G will be 
well defined on a Euclidean ball of radius three centered at the origin of R2 . 
Moreover, do G = _AI /21>2 G , where we may assume that 1>2 is arbitrarily small. 
Our intention is to apply the Carleman estimate (2.10) with f = OG ,where 0 
is a suitable cut-off function. 

To use Proposition 2.11(ii), we need a collection Dv = {zllz - zvl < c>} 
of disjoint disks satisfying hypotheses (2.5). Here we assume that a = hI VJ. . 
Moreover, we will require that all Dv lie in a ball of radius 310 centered at the 
origin in R2. Following the notation of §2, we define Dv(a) = {zllz - zvl :::; 
(1 - 2a)c>} , where a is a suitably small positive constant. 

If D is an open Euclidean disk with radius two centered at the origin, let 
o E C;'(D - Uv D)a)). Furthermore, assume that 0 satisfies 

(i) O(z) = 1 if Izl < 1 and Iz - zvl > (1-1a)c> for all v. 
(ii) IdoOI + IdOl < c3 if Izl 2: 1 . 

(iii) IdoOI:::; C4c>-2, IdOl:::; CSc>-1 if Iz - zvl < c>(1 -1a). 
It is elementary to construct such cut-off functions O. 

Substituting f = 0 g in (2.10) yields 

Iv Ido(OG)12IPI-2ilv'XlzI2 

2: C6A Iv 02 d i l v'XIZI21P1-2 

+ c7c>- 4 i o2dilv'XlzI2IPI-2. 

Here A = Uv Av and Av = {zl (1 - 2a)c> < Iz - zl/I < (1 - a)c>} is an annulus. 
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Consider the integral on the left-hand side. We have 

/.1.0((~G)/2 = iO.1.oG + 2(V() , VG) + G.1.o0/2 . 

Using the eigenvalue equation .1.oG = -A 1/2¢2G, we deduce a basic inequality. 
It is 

/.1.0(OG)/2 ::; b2(()2A¢~G2 + /VO/ 2/VG/2 + G2/.1.00/2). 

If ¢2 is sufficiently small, we may absorb the integral term involving 02 d into 
the right-hand side. This gives 

Iv (/VO/2IVG/2 + G21.1.o012)IP/-2ebtv'J:lzI2 

2: CsA. ! 02G2ebtv'J:lzI2/PI-2 + c76-4 i 02G2ebtv'J:lzI2IP/-2. 

We now bound the right-hand side using property (i) of O. We obtain 

Iv (IVO/2/VG/ 2 + G21.1.o0/2IP/-2ebtv'J:lzI2 

(4.1) 2: CsA. f G2itv'J:ld/PI-2 
JI/4<lzl<I/2 

+ c76-4 L! G2 ebt v'J:l zI2/PI -2 . 
v (1-3a/2)"<lz-z.!«I-a)" 

Here the assumption that all D v lie in a ball of radius 310 centered at the origin 
was employed. 

The definition of 0 shows that we may decompose the left-hand side of (4.1) 
as a sum I + Lv Iv corresponding to the outer part of D and the Av. More 
precisely, 

1= f (/VO/2/VG/2 + G2/.1.00/2)/p/-2itv'J:lzI2 . 
Jl<lzl<2 

Applying standard elliptic theory gives 

(4.2) 

Similarly, we have 

Iv = 1 (/V()/2/VG /2 + G2/.1.0()12)/PI-2ebtv'J:lzI2 
(1-2a)"<lz-zv 1« 1-3a/2)" 

and via elliptic theory 

Iv :s C9 (1 6-4I GI-2) max(IPI-2ebtv'J:lzI2). 
(1-3a)"<lz-z.!«1-4a/3)" Av 

Appealing to Lemma 2.6 gives 

(4.3) III :s ClOc5-4(! IGI2) min(IPI-2ebtv'J:l zI
2). 

(1-3a)"<lz- zvl«1-4a/3)" Av 
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Substituting our upper bounds (4.2) and (4.3) back into (4.1) yields 

r IGI 2i 3VI max 1P1-2 
1 3/4<lzl<5/2 Izl<1 

(4.4) 

+c lOc5-4 L:(1 IGI2) min(IPI-2i,VII ZI2 ) 

v (I-3a)o<lz-zvl«1-4a/3)o Av 

~ cl1 ( r IGI2) min 1P1-2 
11/4<lzl<I/2 Izl<I/2 

+ CI2c5-4 L: (1 IGI2) min(IPI-2i,VII Z I2 ). 

v (1-3a/2)o<lz-zvl«I-a)o Av 

The growth estimate of [5] for eigenfunctions implies that if the number of 
disks Dv is b6v'1, then 

(4.5) r IGI 2eb3VI max IPI-2 < CII r IGI2 min IPI-2. 
13/4<lzl<5/2 Izl>1 11/4<lzl<I/2 Izl<I/2 

The constant b6 here is proportional to the constant b3 in (2.5)(iii). To apply 
[5], we must choose this constant sufficiently large depending on the curvature 
and diameter of M. This will not affect the argument of §2. 

Suppose that in addition we have for all 1/ 

(4.6) 1 2 1 2 c13 IGI :::; IGI . 
(1-3a)o<lz-zv 1« 1-4a/3)o (1-3a/2)o<lz-zv 1« I-a)o 

Clearly, the last supposition (4.6) is incompatible with (4.4) and (4.5). There-
fore, the above hypotheses cannot all be valid. 

It is useful to reformulate and summarize our conclusion for future reference. 
We do this in 

Proposition 4.7. Let G(z) = F(c2r l / 4 z) be defined on a Euclidean ball of 
radius three centered at the origin. Suppose that Dv = {zllz - zvl < c5} are 
disks contained in a Euclidean ball of radius 310 centered at O. In addition 
assume that (i) c5 < b7r l/2 and (ii) Iz,u - zvl > bSAI/4c5, when J1. i- 1/. If(4.6) 
holds for all 1/, then the number of disks D v is less than b 6 v'1. 

5. NODAL LENGTH AND GROWTH ESTIMATES 

The present section is devoted to a local study of the relationship between 
growth of eigenfunctions and nodal length. We demonstrate that a suitable 
upper bound for the growth in L 2 norm on given balls implies an upper bound 
for the nodal length on smaller concentric balls. It appears that one could 
alternatively rely upon the work of Hardt and Simon [8] for the principal results 
of this section. However, we prefer to pursue an approach that is more in the 
spirit of our earlier work. 

Everything will be developed in the framework of balls centered at the origin 
o in R2 . The Euclidean distance from 0 is denoted by r, and Llo denotes the 
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Euclidean Laplacian. Suppose that ¢ is a sufficiently small smooth function 
and eo' eo are suitably small positive real numbers. The quantitative Aronszajn 
estimate of [S] specializes to give 

Lemma 5.1. Let u E C;: (!eo < r < eo). If P > bl ' then 

! ,2(2-P) I (do + ¢)uI2r -I drdw ;::: cli ! ,2-2Pir -I drdw. 

Here , is the geodesic distance of a metric commensurable with the Euclidean 
metric. Moreover, (r, w) are the standard polar coordinates. 

Let H be a solution of the partial differential equation doH = -¢H valid 
at all points in the unit ball in R2 . The reader may anticipate that we plan to 
substitute u = ()H in Lemma S.l, where () is a suitable cut-off function. We 
will use the ensuing calculation to prove 

Lemma 5.2. Suppose that H satisfies the growth estimate 

i H2 < c2i H2, 
(1-3a/2)to<r«I-a)to (1-3a)eo<r«1-4a/3)eo 

where a is a fixed small constant. Then for 0 < eo < eo/ 100, we have 

max IHI2 ;::: c3 (eo)2C4 Av IHI2. 
r::;ifo eo r« 1-4a/3)eo 

Here Av denotes the average value of IHI2 on the set r < (1 - 4a/3)eo . 
Proof. We construct a radial cut-off function () E C;:(!eo < r < (1 - :ba)eo) 
satisfying 

(i) ()(r) = 1 for ~eo < r < (1 - 190a)eO • 

(ii) Id()1 + IdO() I :::; c5 for r> (1 - 190 a)eO• 

(iii) Id()l:::; c6e~l, Ido()l:::; c7e~2 for r:::; ~eo. 
Clearly, (do + ¢)(()H) = do()H + 2{"V() , "VH). 

Setting u = () H in Lemma S.1 yields 

(S.3) 

where 
1= ! ,2(2-P)ldo()H + 2{"V() , "V H)12r- 1 drdw. 

Clearly, since, = r + 0(r2) , 

I:::; (~eo)2(2-P) ( Ido()H + 2{"V() , "V H)12r -2 drdw 
}ifo/2<r<3ifo/4 

+ cg[(1 - Va)eo]-2P 

xi Ido()H+2{"V(), "VH)12r- l drdw. 
(1-IOa/9)eo<r« I-Ila/ 10)eo 
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Applying standard elliptic theory, we deduce 

I::; c9(i l o)-2P r H 2r- 1 drdw 
1£0/4<r<£0 

( II) -2P! 2 -I d d + clO [ 1 - "9a eo] H r r w. 
( 1-3a/2)to<r«I-a)to 

Returning to (5.3), we may write 

[(1- Va)eo]-2PCIO! H 2r- 1 drdw 
(1-3a/2)to<r«I-a)to 

+ c9(i l o)-2P r H 2r- 1 drdw 
1£0/4<r<£0 

> P21 _2-2PH2 -I d d _ cI r r r w. 
3£0/4<r« 1-IOa/9)to 

Taking p sufficiently large and using the growth hypothesis of Lemma 5.2 
we may absorb the first term on the left into the right-hand side. Thus, 

c9(i l o)-2P r H 2r- 1 drdw 
1£0/4<r<£0 

> I p21 _2-2PH 2 -I d d _ lC I r r r w. 
3£0/4<r«I-IOa/9)£0 

Fixing the choice of p and relabeling our constants gives 

! H2rdrdw ~ clO (lo)C lI ! H 2rdrdw. 
r<£o eo r«1-4a/3)£0 

Here we used the obvious fact that the ball with radius lo includes the ball 
of radius ilo' Lemma 5.2 follows upon replacing H by its supremum in the 
integral of the left-hand side. 

We conclude this phase of our argument with 

Proposition 5.4. Suppose that H satisfies the growth estimate for some e > eo ' 

! 2! 2 H < C2 H . 
(1-3a/2)t<r« I-a)e (1-3a)e<r« 1-4a/3)e 

Then for all 0 < l < I~O' we have 

( -) 2C4 2 e 2 maxlHI ~ c3 - Av IHI. 
r:S;£ e r«1-4a/3)e 

(5.5) 

Proof. This follows by applying Lemma 5.2 to the function Ho(x) = H(xeleo) . 
Since e < eo' the function Ho satisfies the hypotheses of Lemma 5.2. The 
conclusion has been formulated to behave well under scaling. Of course, we 
interpret lo = leol e . 

The next task is to relate the conclusion of Proposition 5.4 to nodal length. 
Suppose that H is defined on the unit ball in R2 and solves the equation 
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!loH = -¢>H, where ¢> is bounded and smooth. In addition, assume that the 
lower bound (5.5) holds. 

If Izl < l, then Taylor's formula with remainder implies, when l < Igo' 

Using (5.5), we get, for Izl < l, 

1 
1 ()o. Ho.I (l) H(z) - L ,~(O)z ::; b4 - ma~ IHI· 

I I ll!· u z e Izl<e <> :$c4 

Taking lie sufficiently small and using the triangle inequality yields 

sup 1 ~<> If (0)1 llo.l ~ b5 max IHI· 
1<>I:$c4 u z Izlg 

We now fix the ratio ~ and return to (5.5) to deduce for e < eo 

(5.6) sup -0. (0) el<>1 > b Av IHI2 I 
()<> H 1 ( ) 1/2 

10.1:$c4 () Z - 6 Izl« 1-4a/3a)e 

Also, by standard elliptic theory, we may write 

(5.7) sup sup elo. l --<> (Z) ::; b7 Av IHI2 I
{)<>H 1 ( )1/2 

Izl<e/21<>I:$c4 +1 ()Z Izl«1-4a/3)e 

The next step is to show that (5.6) and (5.7) imply a lower bound on the 
length of that part of the nodal set N that is contained in a sufficiently small 
ball. It is convenient to develop this conclusion through a set of lemmas. The 
analogous one-dimensional result is 

Lemma 5.S. Let f E C;'([-I, 1]). Suppose that 

(i) maxj:$cl2lfj (0)1 ~ b9 · 

(ii) max "<c +1 maxlxl<l 1/ (x)1 ::; b8 · J_ 12 

Then f has at most c12 zeros in a sufficiently small interval [-b lO , blO ] . 
Proof. If the conclusion fails, then by repeated applications of the mean value 
theorem, we find Ix}1 ::; blO with fj (x) = 0 for any j::; c12 . Integration and 
(ii) give Ifj (0)1::; b8blO' contradicting (i) if blO is small. 
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Suppose now that g E Coo(lzl < 1) and g satisfies 

(i) sup I 88"! (0)1 ? b6• 
1"I5:c4 Z (5.9) 

(ii) sup sup 18"! (Z)I S: b7 • 
Izl<lj2 1"I5:c4 +1 8 z 

We easily see that the following reformation of (5.9)(i) holds. 

Lemma 5.10. For some k S: c4 and in a suitable rotation of the original coordi-
nate system 

I (:x r g(O, 0)1 ? bll and I (:y r g(O, 0)1 ? bll · 

Proof. If the conclusion fails, then there exists a nonvanishing polynomial P 
of order at most c4 with 

for all k S: c4 and all rotations of our original coordinate system. However, 
if P has a nonvanishing term of order k, then vk P(O, 0) = 0 only for an 
isolated, and therefore finite, set of v E Sl . There must be a pair VI and v2 of 
orthogonal vectors with v~ P(O, 0) =I- 0 and v; P(O, 0) =I- O. This contradiction 
shows that bll exists. 

The basic relationship between derivative estimates and nodal length in two 
dimensions is 

Lemma 5.11. Let g E Coo(lzl < 1) satisfy (5.9). Then the one-dimensional 
HausdorjJmeasure"rl of the set where g(z) = 0 and Y' g(z) =I- 0 satisfies 

I "r {zllzl < b12 , g(z) = 0, Y'g(z) =I- O} < c13 • 

Proof. The set r where g(z) = ° and Y'g(z) =I- 0 is a one-dimensional man-
ifold by the implicit function theorem. At each z, the associated tangent line 
makes an angle of at most % with either the x- or y-axis. Therefore, 

(5.12) "r1{rnlzl<bl2}S:CI4[f "r°(rnx=snlyl<bI2)ds J1s1<b12 

+ f "ro(rny=snlxl<bI2)dS]. J1s1<b12 

Of course, "r0 is merely the cardinality of the zero set. We assume that the 
(x, y) coordinate system is chosen to satisfy the conclusion of Lemma 5.10. 

If bl2 is sufficiently small, then we have 

I (:y r f(s, y)1 ? b~1 
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for each lsi < b12 . This is a consequence of Lemma 5.10 and hypotheses 
(S.9)(ii). By Lemma 5.8, we get 

o Jr (r n x = s n Iyl < b12 ) < bl4 • 

A similar argument applies to the second integral in (5.12). This completes the 
proof of Lemma 5.11. 

Dividing H by its average (Av1z1 «1-4a/3)e IHI2)1/2 does not change its zero 
set, and so rescaling also to the unit ball gives a function g satisfying (5.9). We 
apply Lemma 5.11 and return to scale e concluding 

Proposition 5.13. Let H be a solution of ~oH = -<pH. Suppose that H satisfies 
(5.6) and (5.7). Then 

I Jr (zllzl < blSe and H(z) = 0) < clSe. 

Note that the nodal set of H contains only a finite number of singular points 
in any compact subset of its domain of definition. Therefore, we need not 
require yo H =f. 0 in the conclusion of Proposition 5.13. 

For later reference, we summarize the principal conclusion of this section in 

Proposition 5.14. Let H be defined in a Euclidean unit ball and solve ~oH = 
-<pH. Suppose that for some e :s eo H satisfies the growth estimate 

1 2 1 2 H < C2 H . 
(1-3a/2)e<r« l-a)e (1-3a)e<r« 1-4a/3)e 

Then 
I Jr {zllzl < blSe and H(z) = O} < clSe. 

We note that Propositions 5.4 and 5.14 have the same hypotheses. The con-
clusion of Proposition 5.4 was used to establish (5.6) and (5.7). Using Propo-
sition 5.13, we deduce the result of Proposition 5.14. 

6. TOTAL NODAL LENGTH 

It is now a straightforward matter to complete the proof for Theorem 1.2. 
We have shown that our eigenfunctions cannot grow rapidly on too many small 
balls. Moreover, an upper bound on growth of L 2 norm has imposed an upper 
bound on the local nodal length. We must merge these two ingredients. For 
this purpose, we rely upon a process of repeated subdivision and selection of 
squares. This method is reminiscent of the techniques employed by Calderon 
and Zygmund in their study of singular integral operators [11]. 

Let M be a compact closed Riemannian surface. We will discuss only the 
detailed proof of Theorem 1.2 for 8M empty. If 8M =f. 0, we employ the 
doubling approach of [6] along with small modifications of the present proof. 
Suppose that ~F = -AF, so that F E COO M is an eigenfunction of the 
canonical Laplacian associated to the Riemannian metric of M. Assume that 
B(p, clrl/4) is a geodesic ball of M. If c i is sufficiently small, then this ball 
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will be contained in an isothermal coordinate patch. Consequently, we have 
tloF = -A¢I F , where tlo is the Euclidean Laplacian. 

Define G(z) = F(C2A- I / 4z). If c2 is sufficiently small, then G is defined 
on a Euclidean ball of radius three centered at the origin in R2. Moreover, 
tlo G = _AI /2 ¢2 G, where we may assume that ¢2 is sufficiently small. Divide 
{x, yl max(lxl, Iyl) ~ Jo} into a grid of closed squares Pi each of side <5 ~ 
bIA- I/2 . If equation (4.6) holds for some sufficiently large c13 and for some 
z" E P" ' we say that P" is a square of rapid growth. We apply Proposition 4.7 
to prove 

Lemma 6.1. There are at most C3A squares of side r5 where G has rapid growth. 

Proof. Let II be the collection of those indices i for which Pi is a square of 
rapid growth. For each v E II ' choose a point z" E P" where (4.6) holds. 
Define D~ = {zllz - z,,1 < b2<5A I/4 }. The collection of disks D~ covers the 
collection of squares P" for v E II' Let 12 C II be an indexing set for a 
maximal collection of disjoint D~. If v E 12 , then define D~* = {zllz - z,,1 < 
4b2r5A 1/4}. By maximality of 12 , we deduce that 

U D** ::J U D* U P ,,_ ,,::J ,,' 

Thus 1121 x 16b~<52AI/2 ~ 1111<52, where 1111 denotes the cardinality of II' So 
II21A 1/2 ~ b31III. 

However, Proposition 4.7 implies that 1121 ~ b4AI/2 . This combines with our 
previous observations to give the required estimate 1111 ~ C3A . 

We now introduce a process of controlled bisection. Begin by dividing 
{(x, y)1 max(lxl, Iyl) ~ Jo} into a grid of squares P;(1) of side r5(1) = blrl/2. 
Separate the collection Pi ( 1 ) into those squares Q j ( 1), where G has rapid 
growth, and RI ( 1) ,where G has slow growth. Of course, slow growth means 
that (4.6) fails for each point z" E R I ( 1). Each square Qj ( 1) of rapid growth 
is bisected to obtain squares Pi (2) of side <5(2) = r5(1)j2. Again, the collection 
P;(2) may be grouped into the subcollections Q)2) and Rj (2) of rapid and 
slow growth. Proceeding inductively, at each stage bisecting only those squares 
of rapid growth, we have squares Qj(k) and R)k) of side <5(k) = <5(1)/2k • It 
is easy to deduce 

Lemma 6.2. For each fixed k ~ 1 , 
(i) There are at most C3A squares Qj(k) with rapid growth. 

(ii) There are at most C4A squares RI(k) with slow growth. 

Proof. (i) is an immediate consequence of Lemma 6.1. If k = 1, (ii) holds 
simply because the total number of all squares is at most the order of A. When 
k ~ 2, each RI(k) is obtained by bisecting some Qj(k - 1), so (ii) follows 
from (i). 
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Almost every point will eventually lie in some good square R[(k). In fact, 
the stronger 

Lemma 6.3. Uk [R[(k) covers {(x, y)\ max(\x\, \yl) ::; 610} except for finitely 
many points. 
Proof. First suppose that G(xo , Yo) i- 0 and (xo' Yo) E Pj(k) with a sufficiently 
large k. Since G is a continuous function, it will be nearly constant on Pi(k). 
Thus, (4.6) must fail for 0 = o(k) and any Zv E Pi(k). Recall that we assumed 
throughout that the constant c13 of equation (4.6) is suitably large. 

Now assume that G(xo' Yo) = 0 but dG(xo, Yo) i- o. Then the implicit 
function theorem provides a local change of variables so that G is a coordinate 
function :x near (xo' Yo) . It is an elementary exercise in calculus and measure 
theory to see that (4.6) must fail for such coordinate functions :x when 0 = o(k) 
is sufficiently small. 

So if (xo' Yo) does not lie in some square R[(k) of slow growth, it must be 
one of the finitely many singular points where G(xo' Yo) = 0 and dG(xo' Yo) = 
o. 

The last ingredient required for the proof of Theorem 1.2 is 

Lemma 6.4. ~I(z\ G(z) = 0 and z E R[(k)) < c5rk A- I /2 for each fixed k 
and I. 
Proof. This follows by applying Proposition 5.14 with H(z) = G(zv +e;1 o(k)z) 
and a suitable finite collection of Zv E R[(k). We rescale to obtain Lemma 6.4. 

From Lemma 6.3,we have 

~I (z\ G(z) = 0 and max(\x\, \yl) ::; 6~) 

::; L~\z\ G(z) = 0 and z E R[(k)). 
k, [ 

The sum on the right-hand side is estimated via Lemma 6.2(ii) and Lemma 
6.4 to yield 

~I(Z\G(Z) = 0 and max(\x\, \yl)::; Jo)::; C4ALc52-kA-I/2::; C6AI/2. 
k 

Since G(z) = F(c2r l / 4z), we deduce Theorem 1.2 via multiplication by the 
scaling factor A- I / 4 • 
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