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INVERSE SPECTRAL RESULTS ON TWO-DIMENSIONAL TORI 

V. GUILLEMIN 

1. INTRODUCTION 

Let r be a two-dimensional lattice, let M be the two-torus, R2 /r , and let 
V be a COO function on M. Eskin, Ralston, and Trubowitz have shown (in 
[3] and [4]) that the inverse spectral problem for the Schroedinger operator 

(1.1 ) 

is much more complicated than the corresponding problem on surfaces of genus 
~ 2. On one hand, for certain classes of potentials, one can reconstruct V from 
the spectrum of (1.1); on the other hand, there are potentials that have (lots of) 
isospectral deformations. In their analysis of (1.1), an important element is the 
decomposition of the Fourier series of V into "primitive summands," and we 
begin here by saying a few words about this decomposition since it will also be 
important in the results to be described. An element of a lattice is said to be 
primitive if it is not a positive integer multiple of another element of the lattice. 
Now let 

(j) E r* , 
be the Fourier series expansion of V, and for each primitive element <5 of r* , 
let 

( 1.2) di' (V) _ ""' 2nin(t5,x) 
~t5 - ~ant5e • 

Then assuming that the zeroth Fourier coefficient of V is zero, one can write 

( 1.3) 

summed over the set of primitive elements of r* (with ($15 = ($-15)' This we will 
call the decomposition of V into primitive summands. The main observation of 
the Eskin-Ralston-Trubowitz paper is that the heat trace of (1.1) has encoded 
into it lots of information about the individual terms in this sum (in fact, enough 
information to enable one to decide in certain cases that V is spectrally rigid). 
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Eskin, Ralston, and Trubowitz also consider in their paper the "Bloch spec-
tra" of the operator (1.1). A rather complicated (but appealing) way of de-
scribing Bloch spectra is as follows. Let L -+ M be a line bundle and V' a 
connection on L. Then one can define a Laplace operator (usually denoted 
V' . V') by means of the connection, obtaining an operator 

(1.4) -V'·V'+V 

similar to (1.1) but now operating on sections of L. Let g§ be the set of all 
(L, V') pairs for which curv(V') = o. It can be shown that 

g§ = R2/r*. 

The Bloch eigenvalues of (1.1) are defined to be the eigenvalues of (1.4) as-
sociated with points (L, V') on this dual torus. One of the main theorems 
Eskin, Ralston, and Trubowitz assert is that the spectrum of (1.1) determines 
all the Bloch spectrum (modulo some assumptions about V and r; see [3, 
§6]). In other words, if curv(V') = 0, the spectrum of (1.4) does not contain 
any information about V that is not already encoded in the spectrum of ( 1.1). 

In this article we describe what happens when this assumption is dropped. It 
might appear that by dropping this assumption one makes the inverse spectral 
problem for (1.4) a lot harder; however, in some sense the opposite is true: The 
more "twisted" the topology of L the easier is the reconstruction problem. In 
this article we assume that the topology of L is as twisted as possible in the sense 
that c)(L)[M] is equal to ±1. We prove that this hypothesis, together with 
some parity assumptions on V' and V and curvature bounds on V', enables 
one to reconstruct both V' and V from spectral data associated with the wave 
trace of (1.4). The data involved in this reconstruction are called "band data" 
and have been used previously in connection with inverse spectral problems on 
the two-sphere (e.g. in [6, 7, 13]). We suspect that "band spectra techniques" 
(see §2 for details) will eventually turn out to have lots of other inverse spectral 
applications besides those to be described. 

Before turning to these applications, we need to make a few preliminary 
remarks about lattices, tori, and line bundles over tori. 

1. The lattice r is said to have simple length spectrum if, for every pair of 
elements v and w either jvj =f. jwj or v = ±w. It is clear that if r has 
this property, it cannot be a rectangular lattice or regular hexagonal lattice; so, 
in particular, its symmetry group has to be Z2 and is generated by rotation 
through 180 0 , i.e., by the involution 

( 1.5) 2 2 a:R-+R, (x, y) -+ (-x, -y). 

From now on we assume that r is such a lattice. 
The action of Z2 on r induces an action of Z2 on the torus M = R2/r , and 

the fixed point set of this action is the image in R2 jr of r j2. (In particular, 
Z2 has exactly four fixed points on M. The same is also true of the induced 
action of Z2 on R2 jrO .) 
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2. Given a line bundle L -> M and a connection '\7 on L, we would like to 
know if the action of Z2 on M can be lifted to an action of Z2 on L that 
preserves '\7. A necessary condition for this to be the case is that curv('\7) 
be Z2 invariant. Conversely, if Q is an integral two-form on M that is Z2 
invariant, it is easy to see [11, p. 133] that there exists a line bundle-connection 
pair (L, '\7) with curv('\7) = Q and a Zz action on L that preserves '\7. 
Unfortunately, the pair (L, '\7) is not unique, as one can see by considering the 
extreme case curv('\7) = O. As was pointed out above, the set fB of all line 
bundle-connection pairs (L, '\7) with curv('\7) = 0 can be canonically identified 
with the dual torus R2;r* , and, hence (up to equivalence) there are exactly lour 
line bundle-connection pairs that are Z2 invariant (corresponding to the four 
fixed points of the Zz action on fB). More generally, given any Zz invariant 
line bundle-connection pair (L, '\7) with curv('\7) = Q, one gets another such 
pair by tensoring (L, '\7) by a flat Z2-invariant line bundle-connection pair. 
Hence, to each Q correspond exactly four Z2-invariant line bundle-connection 
pairs (L, '\7) with curv('\7) = Q. 

3. Let w be a translation invariant two-form on M (which we will normalize 
by requiring that its integral over M be one). For every integer N there exist, 
by the remarks above, four distinct Z2-invariant line bundle-connection pairs 
(L, '\70) with curv('\7 0) = N w. Let 0: be a Z2-invariant one-form on M. 
Then the operator 

'\7: Coo(L) -+ Coo(L ® T* M) 
defined by '\75 = '\705 + 5 ® 0: is a Z2-invariant connection on L with curvature 
form Q = Nw + do:. 
4. Since we are assuming that c1(L)[M] is ±1, the" N" in this equality is 
± 1 , and hence, 
( 1.6) curv('\7) = ±w + do:. 
Furthermore, by Hodge theory 

0: = Il + *dl + d g , 
Il being a translation invariant one-form and I and g COO functions. Since 
the decomposition above is Z2 equivariant, both I and g are Z2-invariant 
and Il = O. By "change of gauge" we can also make g = 0, and hence the 
identity above reduces to 
(1.7) 

Thus, to specify the data (L, '\7) amounts to specifying the function I in (1. 7). 

5. The inverse problem that we will be concerned with in this paper is the 
following: Given Zz-invariant functions I and V, to what extent does the 
spectrum of the Schroedinger operator (1.4) determine these functions? The 
mains results that we will prove are the the following: Let 

WE r* , 
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be the Fourier series of f, and, for each primitive element 6 of r* , let 

(1.8) (ffo(f) = LaNOe27riN(O,X), 

Theorem I. Suppose that 

(1.9) L N21aNoi < (161 2 AreaM)-I. 

Then the spectrum of (1.4) determines Qo ' 

Corollary. If the H3 norm of f is small enough, the spectrum of (1.4) deter-
mines f. 

Remark. In the proof of Theorem I, we will make use of data that can be read 
off from the leading symbol of the wave trace. Since this data does not depend 
on V, the same is true of the results just stated. 

Turning to the reconstruction problem for the potential V, suppose that 
f is now fixed and satisfies (1.9) for all primitive elements 6 of r*. These 
hypotheses will enable us to prove 

Thereom II. From the spectrum of (1.4), one can reconstruct V. 

2. BAND INVARIANTS 

Let M be a compact Riemannian manifold, L - M a Hermitian line bun-
dle, V' a connection on L, and V: M - R a COO function. Without loss of 
generality, one can assume that the operator 

(2.1 ) 

is positive and, hence, that its square root 

(2.2) A = (-V'. V' + V) 1/2 

is well defined. Let 

(2.3) expyCTtA, -00 < t < 00, 

be the one-parameter group of unitary transformations generated by A. We 
list below a few properties of (2.3). These properties are all well known. (More 
detailed discussions can be found in the third and fourth volumes of Hormander 
[9], in the two foundational papers on Fourier integral operators [10, 2], in 
Treves' book [12], and in the author's paper with Duistermaat [1].) 

1. The symbol of A is just the function 

a(A)(x, C;) = 1c;1· 
Let 3 be the Hamiltonian vector field defined by this function and 

expt3, -00 < t < 00, 

the geodesic flow that it generates on T* M -0. Then according to [10], the oper-
ator (2.3) is a zeroth order Fourier integral operator and its underlying canonical 
transformation is exp t3 . 
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2. Let E(x, y, t) be the Schwartz kernel of (2.3). Viewed as a generalized 
function on M x M x R, E(x, y, t) is a Fourier integral distribution and its 
wave front set is the set of all triples (x,';, y, y/, t, r) satisfying 

(y, -Y/) = (exp tS)(x, .;) 

and 
r = a(A)(x, ';). 

3. When we ignore Maslov factors, the symbol of E(x, y, t) at the point 
(x, .; , y, y/, t, r) is the holonomy of the connection 'V along the curve 

yes) = n«expsS)(x, .;)), o:s:; s :s:; t, 
Jommg x to y. Here n: T* M ---+ M is the standard cotangent fibration. We 
will denote this holonomy by the symbol 

(2.4) iK{X,~ ,I) e . 

By definition, it is a map of Lx onto Ly (or in the special case where (x,';) = 
(y, Y/), of Lx onto itself, i.e., in this case, we can view (2.4) as a complex 
number of modulus one). 

The Maslov adjustment to (2.4) requires that (2.4) be multiplied by a factor 
eiuy , which can also be interpreted as a holonomy mapping; namely, the Maslov 
bundle is equipped with a canonical flat connection and the Maslov factor above 
is just the holonomy of this connection along the curve 

(expsS)(x, .;), o :s:; s :s:; t. 

To avoid cluttering up the formulas below with Maslov factors, we will hence-
forth let K(X, .; , t) = K(X , .; , t) + ay . 

4. The trace of expyCTtA is well defined as a distribution on the real line, 
and its singular support is contained in the period spectrum of M: if T is in 
the singular support of trace(expyCTtA), there exists a periodic geodesic on 
M of period T. 

5. Let S* M be the unit cosphere bundle of M (which we will think of as the 
subset of T* M defined by a(A) = 1). To say that T is in the period spectrum 
of M is the same as saying that the map 

exp TS: S* M ---+ S* M 

has a non empty fixed point set. Let us denote this fixed point set by WT . 

One says that WT is clean if it is a submanifold, and if, in addition, for each 
p E WT , the tangent space to WT at p is the fixed point set of the linear 
mapping d(exp TS)p on the tangent space to S* M at p. Assume now that 
WT is clean. Then the trace formula [1, §4] says that for t close to T 

(2.5) trace(expV-1tA)= (/ e iK(X,CTJ d J1.T)em (t-T)+ ... , 
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where 2m - 1 = dim WT , em(t) = (t + iO+ )-m , and the remainder term indi-
cated by dots is a distribution that has a singularity at t = T that is milder than 
em (t - T) . The integral in parentheses is over WT , and f.lT is a smooth measure 
on WT intrinsically associated with the mapping exp TS, i.e., not depending 
on V' and V. (2.5) says that this integral is a spectral invariant of the operator 
(2.1 ). 

6. Some properties of this invariant will be needed below. The mapping exp tS 
maps WT into itself and as a function of t is periodic of period T. Suppose 
that it is simply periodic of period T; i.e., suppose that for all points (x,~) 
on WT 

(exp tS)(x , ~) f (x , ~) 

except when t is an integer multiple of T. Then 

t E R(mod T) 

is a free action of the circle group R mod T on WT • Since WT is compact, this 
implies that there exists a smooth, compact, 2(m-l)-dimensional manifold BT 

and a fibration 

(2.6) 7C T : WT ----> BT 

whose fibers are the trajectories of WT • We will denote by l/T the push-forward 
of f.lT by the mapping (2.6). It is clear that the function (2.4) is constant along 
the fibers of (2.6); so it defines a function on BT that we will denote by e iKT • 

With this notation the coefficient of em(t- T) in formula (2.5) can be rewritten 
as an integral over BT : 

(2.7) 

7. Denote by a(M) the period spectrum of M. Notice that if T is in a(M), 
so are all its integer multiples. T is said to be primitive if it is not itself the 
integer multiple of another element of a(M) of absolute value less than I TI . In 
the discussion below, let T be a fixed primitive element in the period spectrum. 
Suppose that for every integer multiple T' = n T of T the following are true. 

(a) The fixed point set WT , of exp T'S is clean and is equal to WT . 

(2.8) (b) The intrinsic measure f.lT' on this fixed point set 
is a constant times f.lr 

Then the spectral invariant (2.7) associated with T' is the integral over BT , 

f e inKT dl/T , times the same constant. Hence, for every trigonometric polyno-
mial 

-N S k S N, 
the integral 

(2.9) 
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is a spectral invariant. Regarding e iKT as a map from BT into Sl , (2.9) is just 
the integral over BT of the pull-back of p(eiO ) with respect to this map. Since 
the set of p(eiO),s is dense in the space of continuous functions on Sl , this 
implies that the push-forward of the measure v T with respect to this map, i.e., 
the measure 

is a spectral invariant of the operator (2.1). To summarize, we have proved 

Theorem. Let T be a primitive element in the period spectrum oj M. Suppose 
thatJor all iterates T' = nT oj T the hypotheses (2.8) hold. Then the measure 
on the unit circle defined by (2.10) is a spectral invariant oj (2.1) . 

We will refer to these measures collectively as the band invariants of \7 . 
Apropos of the hypotheses (2.8), Uribe and the author have shown recently 

that these hypotheses hold if the dynamical system 

expt2, -00 < t < 00, 

is completely integrable. (See [8]; in particular, apropos of (2.8b) see Proposition 
4.6 in [8].) 

8. So far, the potential term V in (2.1) has not played any role in this dis-
cussion. Let us, however, now fix the connection part of (2.1) and treat the 
eigenvalues of the operator \7. \7 as part of the given data of our problem. Let 

Ao = (-\7. \7)1/2. 

Since 
1 -I A = Ao + 2 Ao V + . .. , 

one gets by variation of constants 

(2.11 ) 

t2' being a pseudodifferential operator of order -1 having the same leading 
symbol as 

(2.12) 

Therefore, by Egorov's theorem the leading symbol of t2' IS 

(2.13) 0(t2') = o(A) -I lot (exps2)* 7C * V ds, 

7C being, as above, the cotangent fibration. 
Let us now compare the traces of the two sides of (2.11); i.e., consider 

(2.14) trace(exp AtA - exp AtAo). 

As was pointed out in §4, (2.14) is well defined as a distributional function of t , 
and its singular support is contained in the period spectrum of M. Moreover, 
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if T satisfies the hypotheses of§5, then by (2.11), the expression (2.14) is equal 
in a small neighborhood of T to 

(2.15) (/ a(t2')(x,~)/K(X'~'T)dJ1.T)em_l(t-T)+"" 

Suppose, in addition, that the hypotheses of §6 are satisfied. Let VTlIT be the 
pushforward of the measure V J1.T with respect to the fibration (2.6); i.e., let VT 
be the fiber integral of V over the fibers of (2.6). Then by (2.13) the coefficient 
in front of e m- 1 (t - T) in (2.15) can be rewritten as the integral over B T : 

(2.16) / eiKTVTdllT' 

In particular, this expression is a spectral invariant of the wave trace. 

9. Finally, suppose that the hypotheses of §7 are satisfied. Then for every iterate 
T' = n T of T, the integral over BT , J einKT VT dllT , is a spectral invariant of 
the wave trace, and hence, the measure on Sl defined by 

(2.17) 

is a spectral invariant of the wave trace. 
We will call these measures the band invariants of V associated with the 

primitive periods T in a(M). 

3. BAND INVARIANTS ON THE TWO-TORUS 

We will now compute these invariants for the two-torus M = R2 jr. To 
begin with, the period spectrum of M is just the set 

(3.1 ) a(M) = {±Ivl, v En. 
The assumption that r has simple period spectrum amounts to saying that for 
T E a(M) there exist just two vectors, v and -v, in r with T = ±Ivl. The 
subset WT of S* M corresponding to T E a(M) has two components, namely, 

(3.2+) W;= {(x,~), xEM, ~= I~I} 
and 

and these two components are interchanged by the symmetry T* M induced by 
(1.5). Moreover, the cotangent fibration n: T* M - M maps W; and W; 
diffeomorphically onto M; so there are canonical identifications 

W; 3: M and W; 3: M. 

Modulo these identifications, geodesic flow on Wi is the linear flow 

(3.4) x -x±tv, -00 < t < 00. 
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Since the data above are invariant under translations, the canonical measures 
Jl~ on Wi are up to constant multiple just Lebesgue measure. Moreover, 
since these data are invariant under the involution a (rotation through 180°), 
a also interchanges Jl; and Jl~ . 

Suppose now that T is a primitive element of the period spectrum (or, equiv-
alently, that v is a primitive element of the lattice r). In the dual lattice, 
consider the set 

(3.5) {w E r* , (v, w) = OJ. 
This set is a one-dimensional sublattice of r, and hence, up to sign, there is a 
unique primitive element r5 of r* that generates (3.4). 

(3.1) Lemma. There exist vectors w E r and v E r* with the property that 
(v, w) is a basis of r and (v, r5) the corresponding dual basis of r* . 
Proof. Let VI and v2 be a pair of generators of r. Since v is primitive, v = 
kVI + Iv2 , the integers k and I being mutually prime, i.e,. (k, I) = 1. Hence 
there exist integers m and n with mk + nl = 1. Now set w = -nvi + mv2 • 

Since the determinant relating VI and v2 to v and w is 1, the vectors v and 
ware also a basis of r. Let v* and w* be the dual basis. Then (w* , v) = 0, 
so w * is an element of the set (3.4) and hence a generator of this set. Replacing 
w by -w if necessary, we can assume that w* = r5. Q.E.D. 

Without loss of generality, we can assume that the pair (v, w) had the same 
orientation as the standard basis of R2 . Then the lemma above implies 

Corollary. Let w be the standard volume form on R2 normalized so that the 
integral of w over M is one. Then w( v , w) = 1 . 

We will identify the quotient space R2 / {cv , c E R} with R via the mapping 

(3.6) t -> projection of tw onto R2 /{cv, c E R}. 

Consider now the fibration (2.6). This is just the fibration 

(3.7) R2/r-> (R2 /{cv+nw, cERandnEZ}), 

so the two components B; of BT can be identified with R/Z via (3.6) and 
(3.7). Moreover, since a(w) = -w, the diagram 

(3.8) 1 1 
R/Z ---t R/Z 

commutes (the bottom arrow being the map t -> -t) and 

(3.9) * - + a liT = liT ' 

both these measures being identified via the vertical arrows in (3.8) with stan-
dard Lebesgue measure dt on R/Z. 
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Now let L -> M be a line bundle on M, and let V' be a connection on L 
whose curvature is given by the formulas (1.6) and (1. 7), i.e., 

(3.10) curv(V') = w + do, 0 = *dJ, 
J being invariant under (J. Let 

(3.11 ) WEr* , 

be the Fourier series of J. Since J is real and (J* J = J, one has 

(3.12) 

Let Q" = Q,,(J) be, as in §l, the sum ~aN"e27tiN(".x). Under the mapping 
(3.6), Q" pulls back to the function 

"'"""' 27tiNt def (3.13) Q,,(tw) = ~ aN"e = q,,(t). 

Let e iKT be the holonomy mapping in formula (2.7). We will prove 

(3.2) Proposition. Modulo the identifications in (3.8), eiKT is the same on both 
components oj BT and is equal to 
(3.14) exp 2ni(t + (*O, v)iJ,,(t)). 

Proof. The fact that, modulo the identification in (3.8), eiKT is the same on both 
components of BT follows easily from the fact that (J*V' = V'. Therefore, it 
suffices to compute eiKT on B;. Identifying B; with RjZ and W; with 
R2/r, the fibration (2.6) is just the linear mapping 

R2/r -> R/Z 
described in (3.6), the fiber over a E R/Z being the geodesic 

( 3.15 a ) aw + sv , 0 ::; s ::; 1. 

By definition, eiKT(a) is the "shift in phase" caused by transporting the fiber of 
L parallel to itself along the curve (3.15 a ). It can be computed by determining 
separately the contributions of each of the two terms in the sum (3.10) and then 
taking their product. We begin by computing the contribution of the first term. 
It is easy to see that for a = 0 this contribution is the trivial holonomy 1 since 
(J maps the curve (3.15 0 ) into the same curve traced in the opposite direction. 
Then for a = t , the contribution is e27tiA , where A is the integral of W over 
the region bounded by the curves (3.15 0 ) and (3.15a ). This is clearly equal 
to tw( v , w) , and, hence, oy the corollary to Lemma 3.1 is just t. Thus, the 
contribution of the first term in (3.10) to eiKT IS 

(3.16 ) 27ti{ e 
Next we compute the contribution to eiKT of the second term in (3.10). This 
is e27tih(t), where h(t) is the integral of *dJ over the curve (3.15{). By (3.11), 

d'l" 2 .",""",( 21[i(W,x)) * J = nl ~ awe * w, 
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so the contribution of each term in this sum to the integral is 

2 · 27Ci(W'W)t(1a 1 27Ci(W,V)Sd)( ) nlawe e s *w, v . 
o 

However, the term in parentheses is zero unless (w, v) = 0, i.e., unless w 
belongs to the sublattice (3.4), or in other words, unless w = No. Thus, the in-
tegral of *df over (3.15 t) is given by the sum 2n i (*0 , v) r- kak"e27Cikt , which 
is just (*0, v)tl,,(t) , and the contribution to eiKT is 

(3.17) exp2ni(*0, v)tl,,(t). 

Taking the product of (3.16) and (3.17), we get for eiKT the expression 
(3.14). Q.E.D. 

A simple computation, which we omit, shows that 

(3.18) (*0, v) = (AreaM)loI2 . 

Therefore, one gets as a corollary of this proposition 

Corollary. If Q,,(f) satisfies (1.9), eiKT is a diffeomorphism of R/Z onto Sl. 

We now compute the band invariant associated with T. This is also the sum 
of two pieces, a "plus" piece coming from B; and a "minus" piece coming 
from B~; however, by Proposition (3.2), these pieces are equal and their sum 
IS 

(3.19) 2( iKT) dt e * , 

where eiKT is the mapping (3.14). The main question of interest for us is: "To 
what extent does (3.19) determine KT (and hence &',,)?" The only diffeomor-
phisms of R/Z that preserve dt are the "translation plus shifts" 

(3.20) t --+ ±t + a. 
Hence, if &'" satisfies (1.9), eiKT is determined by the measure (3.19) up to 
such a mapping. 

In other words, the band invariant (3.9) does not tell us (or, at least for the 
moment, does not appear to tell us) what the function t + tl,,(t) is, but tells us 
simply that this function belongs to a collection of functions 

± (3.21) ga n=g(±t+a)+2nn, nEZ, aE[O, 1), 

g being a function of the form" t plus an odd real-valued periodic function." 
On the other hand, however, it is easy to see that if g is of this form, it 
is the only function of this form in the collection (3.21) since the zero Fourier 
coefficient of an odd periodic function is zero. Thus, the band invariant does, in 
fact, determine t+tl,,(t) (and hence Q,,) unambiguously. This proves Theorem 
1. 

Turning to the proof of Theorem II, the band invariant for V associated 
with the primitive element T in a(M) is the sum of two terms, a "plus term" 
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coming from B; and a "minus term" coming from B~ . However, in view of 
Proposition (3.2) and the fact that a* V = V , these terms are both the same 
and are equal to (e iKT ). VT dt . If (1.9) holds, eiKT is a diffeomorphism of R/Z 
onto Sl (corollary to Proposition (3.2)) so this band invariant determines VT . 

Therefore, to prove Theorem II, we only have to show that the VT 's determine 
V. Let V = L bw e27£i(W,X) . Then by (3.15 t ), 

VT(t) = L bw i7£i(W,tW) (10 1 e27£i(w,sv) dS)' 

As above, most of the integrals in parentheses vanish, and we are left with 
VT(t) = L bNt5 i7£iNt. 

This shows that the Tth band invariant of V is essentially just ($15 (V) , and 
hence, these band invariants clearly determine V. 
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