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CANONICAL BASES 
ARISING FROM QUANTIZED ENVELOPING ALGEBRAS 

G, LUSZTIG 

INTRODUCTION 

0.1. Let U+ be the + part of the quantized enveloping algebra U associated 
by Drinfeld and Jimbo to a root system. This is an algebra over the field of 
rational functions Q( v) which for v = 1 specializes to the classical enveloping 
algebra U7 of the nilpotent radical of a Borel subalgebra in a semisimple Lie 
algebra. 

0.2. We are interested in the problem of constructing bases of U+ as a Q(v) 
vector space. One class of bases of U+ has been given in [DL]. We call them 
(or, rather, a slight modification of them, see §2) bases of PBW type, since for 
v = 1, they specialize to bases of U7 of the type provided by the Poincare-
Birkhoff-Witt theorem. There are many bases of PBW type, one for each re-
duced expression of the longest element in the Weyl group. 

One of the main results of this paper is the construction of a canonical basis 
B of U+. (We assume for simplicity that we are in the simply laced case; see 
however § 12.) 

0.3. The definition of B is as follows (see Theorem 3.2). First one shows that 
the Z[v- I ]- submodule generated by any basis of PBW type is independent of 
the choice of that basis; we denote this sub module by Y. Next one shows that 
the image of any basis of PBW type under the natural map n : Y -+ Y Iv-Iy 
is a Z-basis of Y Iv -I Y that is independent of the choice of the basis of 
PBW type; we denote this Z-basis by B. Finally, one considers the Q-algebra 
involution - : U+ -+ U+ that is the identity on the canonical Q( v )-algebra 
generators and takes v to V-I; one shows that there is a unique Z[v-I]-basis 
B of 2' such that each element of B is fixed by - and is such that n(B) = B . 

The first two steps in this definition are elementary (see §2); the final step is 
less so, in the sense that to establish it, we must use some results from the rep-
resemation theory of quivers. In more detail, it follows from Gabriel's theorem 
[G, BGP] that a basis of PBW type of U7 should be naturally parametrized 
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by isomorphism classes of finite-dimensional "representations" of a quiver (the 
Dynkin graph with a chosen orientation); moreover, Ringel [R] has made the 
remarkable observation that the multiplication in U7 and V+ can be inter-
preted in terms of representations of quivers (over a finite field). (We give an 
exposition of the representation theory of quivers in §§4,5.) Now the represen-
tations of fixed dimension of a quiver may be viewed as points of some vector 
space with an algebraic group action so that two points are in the same orbit 
precisely when the corresponding representations are isomorphic. The dimen-
sion of these orbits (or strata) can be computed explicitly (see §6) and this is 
used in establishing Theorem 3.2 (see §7). 

Notice the analogy between the definition of B and the definition of the new 
basis for a Hecke algebra given in [KLl]. 
0.4. One of the main observations of this paper is that Ringel's interpretation of 
the multiplication in V+ can be reformulated in purely geometric terms, using 
a "convolution" operation on complexes in the derived category of constructible 
sheaves that are constant on the strata mentioned in 0.3 (over an algebraically 
closed field). This allows us to use the theory of perverse sheaves. 

Consider the Zariski closure of one of the strata mentioned in 0.3. One of our 
results is a description of the local intersection cohomology of such a closure. 
Namely, we prove (see §§9,10) that this local intersection cohomology vanishes 
in odd degrees and that its Poincare polynomial at any point in a lower stratum 
is equal to a certain entry of the transition matrix between the basis B and a 
basis of PBW type of V+ associated to the orientation. This shows that this 
Poincare polynomial is (in principle) computable. Notice the analogy between 
these results and those of [KL2], which concerned Schubert varieties. 
0.5. In § 11 we consider the problem analogous to that in 0.4, for the "cyclic 
quiver"; this corresponds to an affine Dynkin graph of type A. In this case it is 
natural to restrict oneself to representations of the quiver that satisfy a certain 
nilpotency condition, in order to have only finitely many isomorphism classes 
of representations of a fixed dimension. We show that, in this case, the closures 
of the corresponding strata are locally isomorphic to affine Schubert varieties of 
type A. 
0.6. The canonical basis B has a number of remarkable properties. One of 
them is that the product of two elements in B is a linear combination of ele-
ments in B with coefficients in N[v, V-I]. 

Another one is that B is well adapted to finite-dimensional representations 
of V. Namely, let Ld be a finite-dimensional simple V-module corresponding 
to the dominant weight d and let Xo be a lowest weight vector for it. Consider 
the subset of B consisting of all elements fff E B such that fffxo f. O. We 
will show in §8 that the elements fffxo with fff running through this subset 
form a basis B[d] of Ld • This is a canonical basis of Ld that appears to have 
extremely favorable properties. It gives rise to a canonical basis in any finite-
dimensional simple module of the corresponding semisimple Lie algebra that, 
for type A, should be closely related to the basis in [OK]. 
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0.7. In 8.13 we give a purely combinatorial formula for dim Ld ' in the spirit 
of a conjecture in [BZ]. An analogous formula holds for the individual weight 
spaces of Ld • We will show elsewhere that there is a canonical basis for the 
space of invariants in the tensor product of three modules of form Ld ' and that 
the dimension of this space is given by a purely combinatorial formula. (This 
follows easily from the results of this paper.) 

CONTENTS 

1. Notations. 
2. Definition of the sub quotient Y Iv-Iy of U+ . 
3. Definition of the canonical basis B. 
4. Quivers. 
5. Multiplication. 
6. Dimension of orbits. 
7. A formula for fc. 
8. Finite-dimensional V-modules. 
9. Intersection cohomology. 
10. Purity. 
11. The cyclic quiver. 
12. Comments on the non-simply laced case. 
13. Comments on Fourier transform. 

1. NOTATIONS 

1.1. Let v be an indeterminate, let A = Z[v, V-I] and let A' = Q(v) be its 
quotient field. Let - : A' --> A' be the field automorphism (of order two) that 
takes v to v -I ; it restricts to an automorphism of the ring A. Given integers 
N , M :::: 0 we define 

N h -h II v -v 
[N]!= _I EA, 

h=1 v - V 
[M + N] [M + N]! 

N = [M]![N]! EA. 

1.2. Let (ai)l~i,j~n be a symmetric, positive definite Cartan matrix. Let Q 
be the free abelian group with basis {a I ' ... , an}' Define an inner product 
(,) on Q by (ai' a) = aij' Let R = {a E QI(a, a) = 2}. This is a root 
system whose set of simple roots is {a l , ••• , an}' Let R+ = {a E Ria = 
L cp j' cj E N}, R- = - R+. Any a E R defines a reflection sa. : Q --> Q, 
z --> Z - (z, a)a. We write s instead of s . Let W be the Weyl group of 

1 OJ 

R; it is the subgroup of Aut( Q) generated by the reflections Si (1:::; i :::; n) . 
Let I (w) be the usual length function on W with respect to the generators 
{SI' ... , sn}' Let 11 = #R+ . Let Wo be the unique element of W of maximal 
length ( = 11 ). 

Let V be the Drinfeld-Jimbo quantized enveloping algebra corresponding 
to (a i). With the notation of [Ll], this is the A'-algebra with generators 
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{ E; Ej - (V + v-I)EiEjEi + EjE; = 0 if aij = -1, 
EiEj = EjEi if aij = 0, 

{ Fi2 Fj - (v + V -I ) FiFjFi + FjFi2 = 0 if aij = -1 , 
FiFj = FjFi if aij = O. 

Let U+ be the A' -subalgebra of U generated by the elements Ei (1:::; i :::; n) ; it 
may be identified with the A' -algebra defined by the generators Ei (1:::; i :::; n) 
and relations (a4). Let UO be the A'-subalgebra of U generated by the elements 
Ki ' Ki- I (1 :::; i :::; n); it may be identified with the A' -algebra defined by the 
generators Ki' K;-I(1 :::; i :::; n) and relations (al). Let U (resp. U+) be the 
A-subalgebra of U (resp. U+) generated by the elements 

E;N) = E; I[N]! , F/N) = Ft I[N]! , Ki' K i- I 

(resp. EiN )) for 1 :::; i :::; n, N 2: O. 
Let - : U -+ U be the Q-algebra involution defined by 

(b) 

for all j and V -+ V -I . This maps U+, U , U+ into themselves. 

1.3. For i E [1 , n], let Ti : U -+ U be the A' -algebra automorphism defined 
in [Ll, 1. 3]. Its inverse r;- 1 is given by 

Ej -+ Ej , Fj -+ Fj , K j -+ K j if aij = 0, 
-I Ej -+ -EjEi + V EjEj , Fj -+ -FiFj + V FjFi , Kj -+ KjKj if aij = -1. 

We have the braid group relations: 

{ T -IT-IT-I - T-1T-1T- 1 ·f --1 
i j j - j j j 1 aij - , 

T - 1 T-I T- 1 T-1·f 0 
j j = j j 1 ajj = . 

(a) 

Let rj : U -+ U be the A'-algebra automorphism defined by 
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Let Ti : U ---> U be the composition Ti-\. We have 
- - - -I -I -I - - -1-1 
TiTjTj = Ti Tj Ti if aij = -1, TiTj = Ti Tj rirj if aij = O. 

Hence 

(b) T/jTi = TjT/j if aij = -1 , TiTj = TjTi if aij = O. 
Just as in [Ll,1.8(d)] we see that the following holds. 
(c) If s· .. 'SI' is a reduced expression in Wand s· .. ·s· «(}:.) = ():. for 

II k _ _ II Ik_1 Ik J 

some j E [1 , n] then Til'" Tik _1 (Ei) = Ej . 

1.4. There is a unique A' -algebra isomorphism '!': U ~ Uopp such that Ei --> 

E i , Fi ---> Fi , Ki ---> K i- I • We have '!'Ti = Ti- I '!' for all i. 

2. DEFINITION OF THE SUBQUOTIENT Sf /v-ISf OF U+ AND ITS BASIS B 

2.1. Let Jl? be the set of all sequences i = (iI' ... , i) in [1, n] such that 
Si l .. 'Siv = wo' 

We shall regard Jl? as the set of vertices of a graph X in which i = 
(iI' ... , i) and i' = (i~ , ... , () are joined if i' is obtaining from i by 

(a) replacing three consecutive entries h, k, h in i (with ahk = -1) by 
k, h, k or by 

(b) replacing two consecutive entries h, k in i (with ahk = 0) by k, h. 
For such joined (i, i'), i.e., in case (a) (resp. (b)), we define a map R;' : Nil ~ 

Nil as follows. This map takes c = (c1 ' ... , cJ E Nil to c' = (c~ , ... , <) E 
Nil , which has the same coordinates as c except in the three (resp. two) con-
secutive positions at which (i, i') differ; if (a, b, c) (resp. (a, b» are the 
coordinates of c at those three (resp. two) positions, the coordinates of c' at 
those positions are 

(b + c - min(a, c), min(a, c), a + b - min(a, c» (resp. (b, a». 
It is easy to check that R;' is a bijection; its inverse is R;, . 

It is well known that 
(c) the graph X is connected. 
We now define a new graph X. The vertices of X are the pairs (i, c) E 

Jl? x Nil. Two such pairs (i, c), (i' , c') are joined precisely when (i, i') are 
joined in X and R;' (c) = c' . 

We have a morphism of graphs prl : X ---> X, (i, c) ---> i . This is a covering 
map between the corresponding I-dimensional simplicial complexes. 

2.2. Given i = (il ' ... , i) E Jl? and c = (c1 ' ... , c) E Nil we define 
(a) E~ = E(cll T (E(C2l)T T (E(C}l) ... T T ... T. (E(Cvl). 

I II 11 12 I) 12 13 'I 12 1,..._1 Iv 

According to [Ll,1.8, 1.13], for any i E Jl?, the elements E~ (c E Nil) are 
contained in U+ and form an A'-basis of U+. (We shall denote this basis 
by B j .) 
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Hence, given i, i' E fl" and C E NY , we can write uniquely 
, , 

E~ = L y~) Ej~ 
e'EN" 

, 
where l'.~ E A'. 

1,1 

Proposition 2.3. Let i E fl". (a) B j is a basis of u+ as an A-module. 
(b) Let £; be the Z[ v - I ]-submodule of u+ generated by the basis B j • Then 

£; is independent of i E fl". We denote it .? . 
(c) Let n : .? -+ .? lv-I.? be the canonical projection. Then n(Bj ) is a 

Z-basis of .? lv-I.?, independent of i E fl"; we denote it B. 
(d) Assume that i, i' E fl" are joined in the graph X. For c, c' E NY, Y~,/ 

is in Z[v- I ]. Its constant term is 1 if c' = R;' (c) and is zero otherwise. 

The proof is a refinement of arguments in [DL], where (a) (or a statement 
very close to it) is proved; we shall reprove it here. 

Assume that (d) holds. To prove that the objects defined in (b),(c) in terms 
of i, i' E fl" coincide, we may assume, in view of 2.1 (c), that i, i' are joined in 
X in which case the desired statements follow immediately from (d). We can 
now complete the proof of (a) as in [loco cit.]. We must show that A2' = U+ . 
It is enough to prove that, for any i, N, A2' is stable under left multiplication 
by EiN ) • But if we choose (as we may) i E fl" with first entry i, then A£; is 
clearly stable under left multiplication by EiN ) • Since A£; = A.? by (b), we 
see that (a) holds. 

It remains to prove (d). Using the definitions and 1.3(b) we see that it is 
enough to verify (d) under the assumption that n = 2. In the remainder of this 
proof we shall therefore assume that n = 2. The case where a l2 = 0 is trivial; 
we shall therefore assume that a l2 = -1 . 

In this case we set i = (1 , 2, 1), i' = (2, 1 , 2) . We have 

E;,b,c = E~a)[b]!-I (E2EI - V -I E IE 2 )b EY) = E~a)TI (Eib))TI T2 (E: C)) 

3 where (a, b, c) EN. Let 

'" 3 ,,,. Let (m, m , m ) EN be such that m ;::: m + m . Usmg [Ll, 1.6(b)] we 
have 

E:m) Eim') E~m") = E:m) f v -k-(m'·-k)(m" -k) E:m" -k) (-v / DkEt' -k) 
k=O 

" 
m , " [m + m" k] "k ' = Lv-(m -k)(m -k) m - Ejm+m - ,k,m-k 
k=O 
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where 

IS m v-IZ[V- I ] if k < mil and equals 1 if k = mil . 
Similarly, 

E(m) E(m ) E(m ) _ ~ -(m-k)(m -k) m m - E(m -k) D E(m+m -k) , "m '[ + II k]' " 
2 I 2 - ~ v m" I k 2 

k=O 

m '[ + " k]' " _ L -(m-k)(m -k) m m - Em -k,k,m+m -k 
- V ". m I 

k=O 

where 

-(m-k)(m' -k) [m + mil - k] -(m-k)(m' -m" -k) -1-1 
V "E v (1 + v Z[ v ]) m 

IS m v-IZ[V- I ] if k < m and equals 1 if k = m. 
Consider the family !7 consisting of the following elements of U+: 

(e) 

(f) 

I II 3 I " for various (m, m , m ) EN such that m ~ m + m where the elements 

E(m) E(m+m") E(m") _ E(m") E(m+m") E(m) 
I 2 I - 2 I 2' 

which are both of type (e) and (f), are considered only once. Let ./t be the 
Z[ v -I] submodule of U+ generated by !7. We have a bijection (J : !7 == Bj ; to 

" I /I 

an element (e) we associate Ejm,m ,m -m and to an element (f) we associate 
Ejm' -m, m , m". The previous computations show that each element in !7 is 
equal to the corresponding element of form E;' b, C plus a linear combination 
with coefficients in v -I Z[ V -I] of elements of the form E;', b' , c' with b' < b , 
a + b = a' + b' , b + c = bl + cl • 

Hence ./t = ~ ,!7 is a Z[ v - I ]-basis of ./t and the image of !7 under 
the canonical map ./t -+ ./t Iv -I./t coincides with the image of B j . The 
automorphism EI -+ E 2 , E2 -+ EI of U+ leaves stable !7, ./t, and takes ..2;' 
onto ..2;', and E;' b, C to E;" b , C • Hence we have necessarily ..2;' = ..2;', = ./t 

and the images of B j and B j, under ./t -+ ./t Iv-I./t coincide. We obtain 
a bijection between Bj and Bj , as follows: E:' b, C corresponds to E;', b' , c' 

precisely when they have the same image under ./t -+./t Iv-I./t . This image 
is then the same as that of an element 'II as in (e) or (f). Assume that 'II is 
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as in (e). Then, as we have seen, we have (a, b, c) = (m, mil, m' - mil) and 
similarly (a', b' , c/) = (m' - m, m, mil). Hence 

(g) (a', b' , c/) = (b + c - min(a, c), min(a, c), a + b - min(a, c». 

Assume next that IfI is as in (f). Then, as we have seen, we have (a, b, c) = 
I II·· I b' I II I II (m - m, m ,m ) and sImIlarly (a, ,c ) = (m, m ,m - m ). Hence (g) 

holds again. This completes the proof of the proposition. 

2.4. We now return to the setup in 2.1. Let ,27 be the set of all morphisms of 
graphs a : X -. X such that pr1 0 a = I. We may regard fC' as the set of all 
maps ¢>: fC' -. NY such that R:' (¢>(i» = ¢>(i/) whenever (i, i') are joined in 
x. 

We define a map 

(a) B -.,27 

as follows. To IfI E B we associate the function ¢>: fC' -. NY given by ¢>(i) = c 
where 7r(E~) = 1fI. From 2.3 it follows immediately that ¢> E ,27. 

For any i E fC' , we have a map ,27 2: NY defined by ¢> -. ¢>(i) and a bijection 

(b) NY -. B 

defined by c -. 7r(E~) E B. Their composition is a map ,27 -. B. It is clear 
that this is the inverse of the map (a). Thus we have 

Corollary 2.5. The map 2.4(a) is a bijection. 

2.6. Let i, i' be two elements of fC'. We define a bijection R:' : NY 2: NY as 
the composition 

where i = ii' i2 , ••• , ip = i' is a sequence of vertices such that any two con-
secutive terms of this sequence are joined in X. (We use the connectedness of 
this graph.) This bijection is independent of the choice of sequence: it is equal 
to the composition of the bijection 2.4(b) (corresponding to i) with the inverse 
of the bijection 2.4(b) (corresponding to i/ ). 

2.7. For each d = (d1 ' ••• , dn ) E N n we denote by U; the set of all elements 
~ E U+ such that Ki~ = vdi~Ki for all i. The elements in U; are said to be 
homogeneous (of homogeneity d). The subspaces U; (for various d) form a 
direct sum decomposition of U+ ; moreover, their intersections with U+ form 
a direct sum decomposition of U+ . 

2.8. Let i E fC'. We associate to i the sequence 

(a) 1 2 Y 
Q ,Q , ••• , Q 
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defined by (/ = Sj Sj ... Sj (a j ) for k = 1, 2, ... , v. This sequence contains 
12k-I k 

each root in R+ exactly once. We can write uniquely 

k where Pj EN. 

n 

ak = LP~aj' 
j=1 

We now define a map Xj: NY __ N n by 
Y 

C = (c1 ' c2 ' ••• , c) -- d = (d l ' ••• ,dn ) where dj = LP~ ck • 

k=1 

The fibres of this map are finite. An element of NY in the fibre of Xj over d 
is said to have i-homogeneity d. 

2.9. If i, if are joined in the graph X, one can check easily that Xj = Xjl R;' : 
NY __ N n • Hence there is a unique map X::P -- N n such that X(¢) = Xj(¢(i)) 
for any i E!!e and any ¢ E:P . This map, composed with the map 2.4(a) gives 
a map 

(a) 

2.10. If i E !!e , the basis B j consists of homogeneous elements. The part of 
this basis that is contained in U; corresponds under the bijection 7C: Bj s:: B 
to the inverse image of d under the map 2.9(a). 

2.11. Let i = (iI' ... , i) E!!e and let if = U; , ... , () be defined by s; = 
} 

WOSj . W~I. Then if E 2". One verifies easily that for any k E [1, v] we 
II-}+I 

have 

and 

Hence, using 1.3(c), we have 

T. T. . .. T. T, T.I ... T" (E., ) = E . 
Ik_1 'k_2 I) I) 12 lll_k IV_k+! lk 

It follows that 
- - - --I --I --I - - -T, T, ... L (E., ) = T T ... T (E) = \{I(T T ... T (E )). 

II 12 IV-k IV_k+1 II 12 Ik_1 Ik II 12 Ik_1 Ik 

This identity shows that 
I 

\{I(E~) = Ej~ 

where cf = (c;, ... ,c:) is related to c = (c1 ' ••• ,c) by < = Cy _ j + l • In 
particular, we have 

(a) 
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and 

(b) '1'(2) = 2. 

3. DEFINITION OF THE CANONICAL BASIS B 

3.1. Applying - : u+ --> u+ to 2 we obtain a Z[v]-submodule 2 of U+ . 

Theorem 3.2. (a) The restriction of 1[: 2 --> 21v- 12 defines an isomorphism 
of Z-modules 1[' : 2 n 2 ~ 2 Iv -12. Hence, if we set B = 1['-1 (B), then B 
is a Z-basis of 2 n2. 

(b) B is a Z[v-I]-basis of 2, a Z[v]-basis of 2, an A-basis of u+ and 
an A' -basis of u+ . 

( c) Each element of B is fixed by - : U+ --> U+ . 

The proof will be given in 7.10, 7.11. We call B the canonical basis. 

Proposition 3.3. '¥(B) = B. 

By 2.11 (b), '1' maps 2 onto itself; it induces an automorphism of 21 v -I 2 
that maps B onto itself, as we see from 2.11 (a). Clearly, '1' commutes with 
- : U --> U and with 7C : 2 --> 2 I V -I 2 ; hence it leaves stable 2 n 2 and 
also B. The proposition follows. 

3.4. Examples. In type AI' the basis B consists of the elements E~m) , mEN. 
In type A 2 , the basis B consists of the elements 

(a) 

(b) 

for various (m, m' , mil) E N3 such that m' ;::: m + mil where the elements 
E(m) E(m+m") E(m") _ E(m") E(m+m") E(m) 

1 2 I - 2 1 2' 

which are both of type (a) and (b), are considered only once. This follows from 
the arguments in the proof of 2.3. In general, the basis B may contain non-
monomials; for example, in type A3 (with generators E I , E2 , E3 , such that 
E 1 , E3 commute), it contains the element 

(2) (3) (2) (3) 
E2 EI E 3E2 - E2 EI E3 = E2EI E3E2 - EI E3E2 • 

4. QUIVERS 

4.1. The connection between the representation theory of quivers [G, BGP] and 
that of quantized enveloping algebra has been first pointed out by Ringel [R]. We 
shall recall some basic facts on quivers; we shall follow the methods of [BGP] 
except for the fact that we shall use in an essential way the reduced expressions 
for wo. Recall that the Dynkin graph of (a i ) has [1, n] as set of vertices; 
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1 ,J form an edge precisely when ail = -I. Assume given an orientation Q 
of this Dynkin graph, i.e., a collection of arrows i -+ j , one for each edge i, j 
in the Dynkin graph. Let F be a fixed field. Let MQ be the category of 
"modules" of this oriented graph, or quiver. An object of Mn is a collection 
of finite-dimensional F-vector spaces ~ (i E [l, n]) and of F-linear maps 
J;} : ~ -+ Vj defined for i -+ j . A morphism from this object to another object 
(~' ,.r:) is a collection of F -linear maps gi : ~ -+ ~' (i E [I , n]) , such that 
.r:}gi = g}J;} for all i -+ j. Then MQ is an abelian category in an obvious 
way. 

4.2. The dimension of V = (~ , J;}) is the sequence 

dim (V) = (dim(V;), ... , dim(~)) E N n • 

For i E [I, n] let ei be the module defined by ~ = F, Vj = 0 for j =f. o. This 
module is simple and any simple module is isomorphic to an ei for a unique 
i. 

4.3. Assume that i E [I, n] is a sink (resp. a source) of Q, i.e., that there is 
no arrow i -+ j (resp. j -+ i) in Q. Let MtQ (resp. Mi-Q) denote the full 
subcategory of Mn whose objects are the (~, J;) such that €B} fji : €B} Vj -+ 

~ is surjective (resp. €B)J;}: ~ -+ €B} Vj is injective); in both cases, j runs 
over the vertices of the Dynkin graph that are joined with i. The following 
statement is easily verified. 

(a) Let V be a module in MQ. We have V E Mtn (resp. V E Mi-Q) if 
and only if HomMn(V, e) = 0 (resp. HomMn(ei , V) = 0). 

Let Sin be the orientation obtained from Q by reversing each arrow that 
ends (resp. starts) at i; then i is a source (resp. a sink) of SiQ . 

Following [BGP] we define the "reflection functor" cp7 : MQ -+ M i- SiQ 

(resp. cP;: MQ -+ Mt Sin) by associating to an object (VI" ~h') E MQ the 
object (V:' J/ck') E Msin defined by ~' = Ker(€B} fji : €B} Vj -+ ~), V; = 
VI, for h =f. i (resp. ~' = Coker(€B) J;} : ~ -+ €B} Vj), V; = VI, for h =f. i), j 
as above; the maps J/ck' are the obvious ones. On morphisms, cp7 (resp. CP;) 
is defined in the obvious way. 

4.4. Assume that i is a sink of Q. For any module V E MQ there is a 
canonical exact sequence 

(a) 

where V(i) has i-component Coker(€B} fji : €B} Vj -+ ~) and its other compo-
nents are 0 (j runs over the neighbors of i in the Dynkin graph). In particular, 

(b) cP; <1>7 (V) = V if and only if V E MtQ 

and the restriction of cp7 defines an equivalence of categories 

(c) 
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whose inverse is given by the restriction of <I> ~ • If V E Mt n corresponds to 
V' E M i- sp. under (c) then 

dim(v') = (d; , ... ,d~) and dim (V) = (dl ' ••• , dn ) 

are related by 

(d) 

(notation of 1.2). 

4.5. Let M, M' , Mil be modules in Mn; assume that the following conditions 
are satisfied: 

(a) M is isomorphic to M' EB Mil , 
(b) any exact sequence 0 ---+ Mil ---+ M ---+ M' ---+ 0 in Mn is split, 
( c) there is a unique submodule of M that is isomorphic to Mil and is such 

that the quotient of M by it is isomorphic to M' . 
We express this by the notation M 2:: M' * Mil. For example, in 4.4(a), we 

have 

(d) V 2:: V(i) * <I> ~ <I> 7 (V). 

Assume that i is a sink of n, and that M' , Mil E Mt n ; let M' , Mil be the 
corresponding objects in Mi-sin (under 4.4(c)). Assume also that ME MsiQ 
satisfies M 2:: M' * Mil . Then 

(e) M E Mi-sin and the corresponding object (under 4.4(c)) ME MtQ 
satisfies M 2:: M' * Mil . 

The proof is standard; it is left to the reader. 

4.6. Assume that i is a sink of n and that V is an indecomposable module 
in Mn, not isomorphic to ei . From 4.5(d) it follows that V is in MtQ . It 
also follows that 4.4( c) defines a bijection between the following two sets: 

(a) the set of indecomposable modules (up to isomorphism) other than ei in 
Mtn and 

(b) the set of indecomposable modules (up to isomorphism) other than ei in 
Mi-sin. 

(Note that ei is defined for both Q and sin.) On the other hand, <I>7(e) =0 
(eiEMn). 

4.7. Assume that we are J!iven an element i = (i I ' i2 , ••• , iJ E fC? • For 
1 ~ k ~ v + 1 we set Qk = Si ( ... (Si (Si n) ... ))). We assume that ik is a 

k-I 2 I 

sink of nk for 1 ~ k ~ v. (We then say that i is adapted to n.) If V is a 
module in Mn ,k E [0, v] , and k' E [1 , k + 1] we set 

k + + + V = <I> .. , <I> <I> (V) E MQk +1 ' Ik 12 II 

k' k - - - k A V ' = <I> ... <I> <I> (V ) E M :'l.k" 
lk' lk_l Ik 
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In particular, 
Vk+l,k = yk. 

We have 

(a) 

Indeed, assume that VV is nonzero for some V. We may assume that V is in-
decomposable. From 4.6 it follows that V E M+O I ' <I>+V E M+122 , <1>+ <1>+ V E 

II II 12 12 ZI 

M~03' etc. Now using 4.4(d) we see that dim(Vv) = (d; , ... ,d~) is related 
3 

to dim(V) = (d l , ... ,dn) by (d;Cl: 1 + ... ,d~Cl:n) = wo(dlCl: 1 + ... ,dnCl:n). In 
the left-hand side of this equality the coefficients are in N and not all are zero; 
in the right-hand side the coefficients are in - N; this is a contradiction. 

4.8. In the setup of 4.7, let Xk be a module in MOk whose component at any 
vertex # ik is 0; assume that 2 ~ k' ~ k. Then 

(a) the module p' = <1>;, ... CI>; <1>; (Xk ) is in M i-, Ok" 
k k-2 k-I k -I 

Indeed, we can assume that X k = ei • From 4.6 we see that p' is inde-
k 

composable. Let d = dim p' E Zn = Q. If p' is not in M i- Ok' then 
k' -I 

p' = e· (again by 4.6) and then s (dimP') E Zn = Q would have 
1k'_1 lk'_l 

some strictly negative coordinate; on the other hand, this vector is equal to 
s· SI" .• sz' s· (a z')' which has positive coordinates since sz' SI" •• 

'k'_1 k' k-2 lk_l k k'-l k' 
S. s· s. is a reduced expression in W. This contradiction proves (a). 

Zk_2 Zk_1 Zk 

0 " M' Ob . nl Now let ---. M ---. M ---. ---. e an exact sequence m M Iial.k such 
that M' E M i- 12k " Then 

k' -1 

(b) 

is an exact sequence in M0k' -I' This follows immediately from the "snake 
lemma." 

Proposition 4.9. Assume that i E.2' is adapted to 0. Let V be an object in 
MO. 

(a) We have a canonical filtration (in M12) 

V = VI,o::> VI,I ::> ... ::> VI,v-1 ::> VI,v = O. 

We have Vi ,k-I /VI •k = Pk where 

and Xk = Vk - I /Vk , k is a module in M12k whose j-component is zero for any 
j # ik . (Notation of4.7.) 

(b) We have 
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for any k E [1 , v]. Hence, 

V = PI * (P2 * (- .. * PJ ... ). 

(c) If k' < k, we have 

Hom Mn(Pk , Pe ) = O. 

The proof will be given in 4.10, 4.11. 

4.10. From 4.4( a) we have (for k E [1 , v] ) a canonical exact sequence in MOk 

(a) 

where Xk is concentrated at the vertex ik . Applying 4.8(a) and (b) repeatedly, 
we deduce that for any k' E [1 , k] we have a canonical exact sequence 

(b) 
k' k k' k-I - - -0--+ V ' --+ V' --+ <1>. <1> ... <1> Xk --+ O. 

Ie lk' +1 'k_1 

4.11. We will show that 

(a) 

for any k E [1, v], k' E [1, k]. For k' = k this follows from 4.5(d). Assume 
that (a) is known for some k' S k, k' ~ 2; we shall deduce from this the 
analogous statement for k' - 1, k by applying to it <I>~ . In view of 4.5(e), 

Ie _I 

it is enough to verify that 
k' k -

V ' EM Ok' 
lk'_1 

and 
<1>-:- <1>-:- ... <1>-:- (Xk) E M~ Ok" 

'k' 'k'+1 Ik_1 lk'_l 

The last inclusion follows from 4.8(a). Applying 4.10(b) repeatedly, we see 
h Vk' k· b d I f Vk' k'-I Vk'-I h' h b d fi . . .. t at ' IS a su mo u eo' = , w IC, Y e O1tlOn, IS III 

M i- Ok'; hence so is any submodule of it. Thus, (a) is proved. We now take 
k'-J 

k' = 1 in (a) and we see that 4.9(a), (b) hold. 
We now prove 4.9(c). Assume that Hom Mn(Pk , Pk ,) i= 0 for some k' < k. 

Applying successively the functors <1>7, <1>7, •.. , <1>/+ and using 4.4( c), we 
12k' -I 

deduce that there exists a nonzero element ¢" E Hom (P, Xk,) where 

P = <1>-:- <1>-:- ... <1>-:- (Xk ) E MOk ,. 
lk' Ik'+1 lk_1 

This contradicts 4.3(a) since P E Mi:,Ok' . This contradiction proves 4.9(c). 

Proposition 4.12. We fix an orientation 0. The following hold. 
(a) For any (): E R+ there is a unique indecomposable module (up to isomor-

phism) denoted e" E MO such that dim(eJ = (d1 , ••• ,dn), (): = dl(}:1 + ... + 
dn(}:n ; any indecomposable module is isomorphic to e" for a unique (): (Gabriel's 
theorem). In particular, we have e = e. 

():, I 
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(b) There exists some i E,2? adapted to Q. 
(c) There exists a total order a l , a 2 , ••• ,all on R+ such that 

HomMQ(e,:/ ' eak , ) = 0 

for any k' < k . 

We first show that (b) implies (a). Let i be adapted to Q. From 4.6 we see 
that for k E [1, 11], <1>; <1>; ... <1>; (ei ) is an indecomposable module in Mn 

12k-I k 

of dimension (d l , •.• , dn ) where 

(d) 

From 4.9(b) we see that any indecomposable module in Mn is of the form 
above. Since any a E R+ is of the form (d) for a unique k E [1, 11], we see 
that (a) holds. 

Note that (b) implies (c) by 4.9(c). 
We now show that (a) and (c) imply (b). Consider a total order as in (c). It is 

clear from the definition that e I is necessarily a simple module (hence a 1 = a· 
a 'I 

for some i 1 E [1 , n]) and that i 1 is necessarily a sink of Q. The sequence 
Si (a 2 ), Si (a 3 ), •.. Si (all), a l plays the same role for Si Q as a l , ... ,all for 

I 1 I I 

Q; the indecomposable modules in M Si Q corresponding to the terms of this 
I 

sequence are <1>+ e 2, ••• , <1>+ e v, e . (We use 4.6 and 4.3(a).) By the previ-
It Q II Q Qit 

ous argument, we see that s· (a 2 ) = a· where i2 E [1, n] is a sink of s· n. 
II 12 I! 

Continuing in this way, we find a sequence (il' i 2 , •• , , iJ in [1, n] such that 
i k is a sink of S s· ... S Q for 1 < k < 11 and S S .. , S (a.) = Q/ for 

'I '2 'k_1 - - 'I '2 'k_1 'k 

1 ~ k ~ 11. The last condition implies that Si Si ... Si is a reduced expression 
I 2 v 

for wo' Hence (i 1 ' i2 , ••• , ill) is adapted to Q and (b) holds. 
Next we assume that our (oriented) Dynkin graph is embedded as a subgraph 

of a larger (oriented) Dynkin graph and that the proposition is already known 
for the larger graph. Clearly, the indecomposable modules for the smaller graph 
may be identified with the indecomposable modules for the larger graph, which 
are zero at vertices outside the smaller graph. Hence (a) for the larger graph 
implies (a) for the smaller graph. Similarly, (c) for the larger graph implies 
(c) for the smaller graph: we consider an order as in (c) for the larger graph 
and we discard the roots that do not belong to the smaller graph. We find an 
order as in (c) for the smaller graph. By an earlier part of the argument, (b) 
for the smaller graph follows from (a) and (c) for the same graph. We can 
choose the imbedding above so that the larger graph has the following property: 
the longest element in the Weyl group is central. Thus, we have reduced the 
general case to the case where Wo is central in W. In this case, we can define 
a Coxeter element C E W (as in [BGP]) by c = Si Si ... Si where i 1 ' ••• , in 

I 2 n 

is a permutation of 1, ... , n such that i j --+ ij' in Q implies j' < j . Then c 
has even order hand Ch/ 2 = wo' For 1 ~ k ~ 11 = nh/2 we set ik = ij where 
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k == j (mod n), 1 :::; j :::; n. It is easy to check that (il"" , i) is adapted 
to MO.. Hence (b) holds; as we have seen earlier, this implies that (a) and (c) 
hold also. This completes the proof. 

4.13. The previous proof shows that there is a 1-1 correspondence between the 
sequences i E 2' that are adapted to 0. and the total orders on R+ as in 
4.12(c). This is obtained by attaching to i the ordering 

(a) 1 2 1/ a,a, ... ,a 

of R+ given by s· s. ··,s (a) = ak • 
II 12 Ik_1 Ik 

One can show that a sequence i E 2' can be adapted to at most one orien-
tation. (This follows from 4.14(b).) 

4.14. Assume i = (il ' ... , i) E 2' is adapted to Q. Let if = (i2' ... , i1/' j)2' 
fi -I be de ned by Sj = W o\ Wo . Then 

(a) if is in 2' and is adapted to Si o.. 
I 

This follows from the proof of 4.12. 
We now prove the following statement. 
(b) If i --> j in Q then a j precedes a i in the sequence 4.13(a). 
Assume that a i precedes a j in the sequence 4. 13(a). If we had j = iI' then 

a j = a l clearly precedes a i and we have a contradiction. Thus, j -:f:. i l . Then 
i --> j in s· Q. The sequence 4.13(a) has the following form: 

II 

if a·· = 0 and 
III 

a i ' ... , a i + ai' ... , ai' ... , a J., ••• I I 

if a·· = -1. The sequence analogous to 4.13(a) corresponding to if above is 
III 

hence is of the form 
... , ai' ... , a j , .•. 

if a·· = 0 and 
III 

... , a· , ... , a· + a l·, ••. , a J., ••• I II 

if a· = -1 . In both cases we see that al· precedes aJ. in the sequence analo-
III 

gous to 4.13(a) corresponding to if. We can now repeat the previous argument 
for if instead of i, etc. Eventually we find a sequence that begins with j and 
we have a contradiction. 

4.15. From 4.12(a) it follows that any indecomposable module in MQ remains 
indecomposable over the algebraic closure of F and that, in fact, the classifi-
cation of (indecomposable) modules is independent of the ground field F. 
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It also follows that there is a bijection c --> Vc between Nil and the set 
of isomorphism classes of objects in MQ, where Vc is the direct sum of ck 

copies of eak for k = 1, ... , lJ. (at are as in 4.12(c) and c = (c1 , ••• , cJ.) 
We have dim(Vc) = (d l ' ••• , dn ) where 

II n 

(a) LCkc/ = Ld/:l: j • 

k=O j=O 

In particular, 
(b) up to isomorphism, there are only finitely many modules in MQ of 

specified dimension (E N n ). 

4.16. Let d = (d l ' ••• , dn ) E N n . Let 

Ed = EB Hom(Fd; , Fdj ) 

j-+j 

sum over all arrows i --> j in Q and let Gd = Il GLd (F) . The group Gd acts 
naturally on the F-vector space Ed by (gj) : (1;) ~ (gj1;jgj-I). Any point 
in Ed may be regarded as a module in MQ of dimension d. Moreover two 
points in Ed define isomorphic modules if and only if they are in the same 
Gd-orbit. This gives a 1-1 correspondence between the set of Gd-orbits on Ed 
and the set of isomorphism classes of modules of dimension d in MQ. Let ~ 
be the orbit corresponding to the module Vc (see 4.15). Thus the Gd-orbits on 
Ed have been indexed by the sequences C E Nil satisfying 4.15(a). Since there 
are only finitely many such sequences we see that 

(a) if F is algebraically closed, there is a unique open dense Gd-orbit on Ed' 
Bya well-known argument of Tits (see [BGP]) we have the following result. 
(b) If F is algebraically closed and the Gd-orbit & on Ed corresponds to 

an indecomposable module, then & is the unique open dense orbit. 

5. MULTIPLICATION 

5.1. In this section we shall assume that F = Fq , a finite field with q elements. 
Let Q be an orientation of the Dynkin graph. We fix a sequence i E fC' 
adapted to Q; let (:tl, ••. , (:til be the corresponding total order on R+ (see 
4.13). Following Ringel [R], we define RQ to be the C-vector space with basis 
(V) indexed by the isomorphism classes of objects in MQ with the C-algebra 
structure given by 

v' . V" = L gv,v' ,v"V 
v 

where gv v' V" is the number of submodules of V that are isomorphic to V" 
and are s~ch' that the corresponding quotient module is isomorphic to V' . This 
is an associative algebra with unit element (the 0 module). If i is a sink (resp. 
a source) of Q, we denote by R7 Q (resp. R~ Q ) the subspace of RQ spanned 
by the V in MtQ (resp. M j- Q); it is easy to see that this is a subalgebra of 
RQ. The following result is easily verified. 
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(a) If i is a sink of Q, then <1>7 : MtQ = M i- siQ defines an algebra 
isomorphism R7Q = R; siQ with inverse defined by <1>; . 
5.2. If i -+ j is an arrow in Q, we denote by eij the module defined by 
V; = F, ~ = F, Vh = 0 for h =I- i, j ,.t;j = Id. With the notation in 4.12(a), 
we have eij = ea + a . The following identities in RQ are easily verified. 

, J 

(a) 

It follows that 
2 2 2 2 

(b) ei ej - (q + 1 )eiejei + qejei = 0, eiej - (q + 1 )ejeiej + qej ei = O. 

5.3. For any N E N and a E R+ , let [[N]]! = n~1 ~~i and 

el(N)) = ([[N]]!)-I e: E RQ. 

If P E MQ is a direct sum of N copies of eak , then we have as in 4.9(a) 

P=<I>~<I>~···<I>~ (X) 
'I '2 'k_1 

where X is a direct sum of N copies of ei (in the appropriate category). 
k 

From the definitions in 5.1 it follows immediately that X = ([[N]]!)-leN; now 
'k 

using 5.1(a) we deduce that 

in RQ. 

Lemma 5.4. (a) The algebra RQ is generated by the elements ei (i E [1 , n]). 
(b) Let i = i l . The algebra R7Q is generated by the elements ej (j =I- i) 

and eji (j -+ i) . 

Let e E NY and let Vc E MQ be as in 4.15. By 4.9(b) and 5.3 we have 
Vc = PI P2 ··· Py (product in RQ) where Pk = e(~Ck)) ; hence 

a 

(c) 

(product in RQ). 
Consider the partial order on NY defined by c' S e" if either 
(d) any coordinate of dim(Vc') is S than the corresponding coordinate of 

dim(Vc") and these two vectors do not coincide or 
(e) dim(Vc') = dim(Vc') and &'c' is contained in the Zariski closure of &'c" 

(orbits as in 4.16 over the algebraic closure of F). 
Let R' be the sub algebra of RQ generated by the elements ei • We shall 

prove that Vc is contained in R' . We may assume that the analogous statement 
for Vc' is already known whenever c' < c. 

Using (c), we see that we may assume that Vc = eak for some k. We can 
find h E [1, n] such that Vc is nonzero at h and such that for any arrow 
h -+ h' in Q the linear map hh' (in the module structure of Vc ) is zero. (We 
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use the fact that the Dynkin graph has no cycles.) Let Y be the module whose 
h-component is equal to the h-component of Ve and whose other components 
are zero. We have a canonical injective morphism Y -+ Ve with cokernel y'. 
It is clear that the product y'y in Rn is equal to Ve plus a linear combination 
of elements Vel such that dim(Ve/) = dim(Ve/) and c' i- c. 

All these c' satisfy c' < c ,since, by 4.16(b), &:: is an open orbit. By the 
induction hypothesis, we have Ve' E R' for all such c'. It remains to show 
that y' and Yare in R'. If y' i- 0, this again follows from the induction 
hypothesis. Hence we may assume that y' = 0 and Ve = Y. Since Ve is 
indecomposable, it is equal to eh , which is contained in R' by definition. This 
proves (a). 

We now prove (b). Let R" be the sub algebra of Rtn generated by the 
elements indicated in (b). We have Ve E Mtn if and only if ci = O. Assuming 

I 

that c· = 0, we shall prove that Ve is contained in R" . We may assume that 
II 

the analogous statement for Vel is already known whenever c' < c and < = O. 
I 

Using again (c), we see that we may assume that Ve = ea.k for some k> 1. Let 
h, Y, y' be as in the first part of the proof. We have y' E Mtn; if moreover 
h i- i, we have also Y E Mtn and our earlier argument gives the desired 
conclusion. Hence we can assume that the following condition is satisfied: 

(f) for any h E [1, n] such that h i- i and such that Ve is nonzero at h 
there exists some arrow h -+ h' in n such that the linear map fhh' (in the 
module structure of Ve ) is nonzero. 

Since k > 1, the j-component of Ve is nonzero for some j i- i. Using the 
fact that the Dynkin graph has no cycles, we see that we can find such a j such 
that, in addition, for any arrow j -+ h' in n, with h' i- i , the linear map map 
fjh' (in the module structure of Ve ) is zero. From (f) it then follows that fji 
(in the module structure of Ve ) is nonzero. Let Y be the submodule of Ve 
consisting of the j-component of Ve and its image under fji (at the vertex i). 
It is clear that this is well defined and that it belongs to Mt n. Let y' be the 
corresponding quotient module. We have automatically y' E Mtn. 

We again have that the product y'y in Rtn is equal to Ve plus a linear 
combination of elements V I such that c' i- 0, dim(V I) = dim(Ve) and e II e , 
C < c. 

By the induction hypothesis, we have Vel E R" for all such c'. It remains 
to show that y' and Yare in R". If y' i- 0, this again follows from the 
induction hypothesis. Hence we may assume that y' = 0 and Ve = Y. Since 
Ve is indecomposable, it is equal to eji ' which is contained in R" by definition. 
This proves (b). 

5.5. We regard C as an A-algebra with v acting as multiplication by a fixed 
square root ql/2 of q. Let Uq , Uq+ be the C-algebras obtained from the A-
algebras U, U+ by extension of scalars. Let z = (ZI ' ... , zn) E Zn be such 
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that Z. - Z. = 1 whenever i -> j is an arrow in n. Such z clearly exists. 
I J 

5.6. Let V~ be the subalgebra of Vq generated by K j , K j-
I for all i. It is 

isomorphic to the the group algebra of Zn . Let RQ = V~ ®c Rn. This may be 
regarded as an associative algebra containing V~ and RQ as subalgebras, with 
the commutation rule KjYKj- 1 = q'L,jaijd)2y where Y E Mn has dimension 
(d l , ••• , dn). Let Vio = V~ 0 c V; ; this may be identified with the subalgebra 
of Uq generated by V~ and V;. 

Proposition 5.7 (Ringel) [R). There is a unique algebra isomorphism Vq?o -> Rn 
such that K j -> K j , K j- I -> K j- I , Ei -> K:iei · 

The formulas above define an algebra homomorphism: we must verify that 
the relations 1.2(al),(a2),(a3), which define the algebra Vq?o, are respected; this 
follows easily from 5.2(b). This homomorphism is surjective by 5.4(a). For any 
d E N n , we define Vd~ q C Vq+ and Rnd in the same way as U; was defined 
in 2.7. These are finite-dimensional vector spaces (of the same dimension) that 
form a direct sum decomposition of V; and Rn. Tensoring with V~ we 
obtain direct sum decompositions of Vq?o and RQ into summands (indexed 
by N n ). 

It is clear that our homomorphism respects these direct sum decompositions. 
Its restriction to any summand is a surjective homomorphism between free mod-
ules of the same finite rank over V~ hence is an isomorphism. The proposition 
follows. 

5.8. The inverse of the isomorphism in 5.7 may be restricted to RQ and thus 
defines an imbedding of algebras r: Rn '--t Vq such that r(e) = Kj-Zj Ej for 
all j E [1 , n) . 

The following property of r follows easily from the definition. 
(a) If Y E MQ has dimension (d l , ••• , dn), then r(Y) = K~Zldl ... K;;zndn</> 

where </> E V; . 
Similarly, if i = iI' we have an imbedding of algebras r' : RsiQ '--t Vq such 

that r(e) = K;< Ej for all j E [1, n), where z~ = Zj for j 1= i and < = 
zi + 2. (Note that (z;, ... , <) plays the same role for siQ as (ZI' ... , zn) 
for Q.) Let Pi: U -> U be the algebra isomorphism defined by 

The same formula (with v = ql/2 ) defines an algebra isomorphism Pi : Vq -> 

Vq . With these notations we can state the following result. 

Lemma 5.9. For any ~ E R;sjQ we have Tj-I(pj(r'(~))) = r(<1>;(~)) where 
T - 1 • • 1 3 

j lsasm .. 
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We set v = ql/2. Using 5.4(b) and 5.1(a) we see that the algebra R;sll 
is generated by the elements ej (j =j:. i) and eij (i -> j in siQ). Hence we 
may assume that ~ is one of these generators. Assume first that ~ = ej where 
aij = -1 . Then zi = Zj - 1 and 

r(ct>;(~» = r(eji ) = r(ejei - eie) = Kj-Zj EjK:z;Ei - Ki-Z;EjKj-Zj E j 
-z -z -z -I = -v lKj ; K j I (-EjEj + v EjE) , 

Tj-l(pJr'(~))) = Tj-l(pj(Kj-ZjE) = Tj-I(_V-Z;Kj-IKj-ZjE) 
-Z· -Z· -Z· -I = -v lKj ;Kj 1(-EjEj+v EjE) 

as required. Assume next that ~ = ej where ajj = O. Then 

r(ct>; (~» = r(e) = Kj-Zj Ej' 

Tj- I (pj(r\~))) = Tj- I (pj(Kj-Zj E) = Kj-Zj E j 
as required. Finally, assume that ~ = ejj = ejej - ejej where i -> j in sjQ. 
Then Z j = Z j - 1 and 

T j- I (Pj(r' (~») = Tj- I (p j(K:Z;-2 EjK;Z; E j - K;Zj Ej K j- Z;-2 E) 
-I -z-2 -z -z -z-2 = Tj (pj(Kj I K j l(V lEjEj - v I EjEj») 

-z -z -I -I 
= KjKj lV 1 Tj (pJEiEj - v EjE) 

= K.K~Zj v -Zj VZ;+I K~ 1 E. = K~Zj E. 
I } I J } } 

as required. The lemma is proved. 

5.10. Let k E [1, v]. As in 5.8, we have an algebra homomorphism r k : RQk 
_?k 

'-+ Uq such that rk(e) = K j -1 E j for j E [1, n] where Q k is as in 4.7 and 
z~ are defined inductively by z~ = Zj' z~ = ztl for k > I, j =j:. ik_l , 
z~ = Z~-I + 2 for k > 1, j = ik _ 1 • Let k' E [1, k]. The following identity 
holds in Uq • 

where T. are as in 1.3, e is regarded as an element of RQk' r is an integer 
I Ik 

and K' is a monomial in the Ki' K j- 1 • This is proved by descending induction 
on k', using 5.9 repeatedly. 

For k' = 1 , the last identity can be written in the form 

(a) 
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where f is an integer and K' is a monomial in the Ki' K;l. (Here, eel is 
regarded as an element of RQ..) If r: E MQ are as in 4.15 and E~ E U+ (or 
in U;) are as in 2.2(a), we have (using (a) and 5.4(c)) 

(b) 

where fc is an integer and K is a monomial in the K i , K i- 1 , depending 
on c E NY. More precisely, if dim (V) = d = (d1, ... , dn) and K(d) = 

-z d -z d Kl I I ... Kn n n , then 

(c) K = K(d) 

as we see from 5.8(a). 

5.11. The integers fc will be described in §7. Here we note only that they are 
independent of q and that they satisfy a certain identity, which we now explain. 
Let C = (c1 ' ••• , c) E NY be of i-homogeneity d. Let ck E NY be such that its 
kth coordinate is ck and its other coordinates are zero. Let dk = (d~ , ... , d:) 
be the i-homogeneity of ck • We have 

Using 5.IO(b), this can be written as 

(a) qfc/2K(d)E~ = qfcl/2K(dl)E~I ... qfc)2K(dY)E~" 

Using the commutation formulas 

E~k' K(l) = qmk , ,k/2 K(l)E? (k' < k) 
k k' where me,k = Li Zidi Ck,(O:i' 0: ), we move all K-factors in (a) to the left 

and we deduce 
k k' fc=Lfck + L ZidiCk,(O:i'O: ). 

k k' <k; i 

. k' k' We now substItute ce(O:i' 0: ) = Lj aijdj and we obtain 

(b) 

Lemma 5.12 (Ringel). For any c, c' ,c" in NY, gv, v, , v" is. as a function of 
q . given by a polynomial with integer coefficients in C q ~ C 

For a proof, see [R]. 

6. DIMENSION OF ORBITS 

6.1. In this section, unless otherwise specified, F is an algebraic closure of 
a finite field Fq . We again fix an orientation Q for our Dynkin graph, an 
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i E ~ adapted to n and we consider the positive roots ordered accordingly. 
Let d, d' , d" E N n be such that d = d' + d" . We define a diagram of varieties 

(a) 

as follows. Ed' Ed' ,Ed" are as in 4.16. A point of E" is by definition a point 
(Ii}) i ...... j of Ed together with ad;' -dimensional subspace Ci of Ed; for each 
i E [1, n] such that J;/Ci ) C Cj for any i -+ j in .Q. The map p" is 
the obvious one (forgetting the Ci's). A point of E' is by definition a point 
(fi)' Ci ) of E" together with a collection of isomorphisms ,<, : Ed;' ::= Ci , 

,< : Ed; ICi ::= E< for i E [1, n]. To this point we attach the point (f:;)i ...... j 
of Ed" and the point (.r:)i ...... j of Ed' by .r:; = (J.L7)-1J;/_<', .r:j = J.L~J;j(J.L;)-1 
(the maps Ci -+ Cj and Ed; ICi -+ Ed) ICj defined by J;j are denoted again 
by J;j). This defines the map p. The map p' is the -obvious one (forgetting 
the J.L;', J.L;). The group Gd x Gd, X Gd" (see 4.16) acts naturally on each of 
the varieties in (a) so that the maps in (a) are compatible with this action. The 
action on Ed' x Ed" is as in 4.16 on the factors Gd" Gd" and Gd acts trivially. 
The action on Ed is as in 4.16 on the factor G d and the other two factors act 
trivially. 

(b) The map p' is a principal Gd, x Gd" fibration. 
(c) The map p is a locally trivial fibration with smooth connected fibres of 

dimension 
L d;2 + L(d;,)2 + L d;d;' + L d;d~'. 

i i ...... j 

(d) The map p" is proper. 

6.2. Now let &'c' be a Gd,-orbit on Ed' and let &'e" be a Gd,,-orbit on Ed" 
(notation of 4.16). 

Let Z = p'(p-l(&'e' x &'e")). From 6.1(b),(c), we see that Z is a smooth, 
connected variety of dimension 

(a) dimZ = dim(&'e') + dim(&'c") + Ld;d;' + Ld;d~'. 
i ...... j 

Now let &'e be a G d-orbit on Ed· 
It follows easily from the definitions 6.1, 4.5 that the following two conditions 

are equivalent: 
(b) Ve::= Ve, * Ve" ; 
(c) p" restricts to a bijection Z ::= &'C 

(notation of 4.15). Hence, if (b) holds, we have 

(d) dim(&'J = dim(&::,) + dim(&'e") + L d;d;' + L d;d;'. 
i ...... j 
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In general, p" (Z) is a union of Gd-orbits on Ed' We shall write (&::" &::") 
~ &:: whenever &'c is contained in p" (Z). In this case, we have clearly 

(e) dim(&'c) :::; dim(&'c') + dim (&'c" ) + L d;d;' + L d;d~'. 
i-j 

6.3. More generally, suppose that we are given dk = (d~ , ... , d;) E N n and 
ck E NY (k E [1 , ko] ) such that dim ~ = dk for all k. We say that 

k 

(a) 

if there is a sequence cl , c2 , ••• , cko of elements of NY such that c l = C, 

cko = cleo and 

for k E [1 , ko - I] . 

Lemma 6.4. Assume that either condition 
fied: 

(a) 

Then we have 
ko 

6.3(a) or condition (a) below is satis-

dim(&'c) :::; Ldim(&::k) + L d;d; + L d;d~ 
k=1 h<k;i h<k;i-j 

with equality ij(a) holds. 

For ko = 2 this is just 6.2(d),(e); the general case follows by applying repeat-
edly 6.2( d),( e). 

6.5. We now take ko = v and assume that for any k E [1, v], ck has the same 
kth coordinate as c and all its other coordinates are zero. We then have the 
following result. 

Proposition 6.6. 

(a) 

This can be deduced from 6.4. The condition 6.4(a) is satisfied (see 4.9(b)). 
Moreover, it is clear that dim(Ec) = Li_ j d; dJ . Hence it is enough to show 
that dime&' ) = dim(Ec ). But this is contained in the following lemma, which 

Ck k 

will be proved in 6.8. 

Lemma 6.7. &:: is open in Ec . 
k k 

6.8. In the setup of 6.1,6.2, let Zc,c' ,c" be the intersection Z n p"-I&,c' All 
the varieties considered above are naturally defined over Fq • It follows easily 
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from the definitions that 
(a) The number of Fq-rational points of Ze,e' ,e" is equal to gve,v" v" (see 

5.1). e e 

(In the last expression, the notation is relative to Fq .) In particular, 
(b) if gve , v, , v" I- 0 then Ze, e' , e" is nonempty; hence (&::" &e") ==> &::. 
We now tak~ /, e" to have all coordinates equal to 0 except the kth, which 

. ,,, . I If ( k k) k ~ k h d' V IS a ,a respectIve y. p = PI"'" Pn ,a = LJi Pi ai' t en 1m e' = 
a'p, dim Ve" = a"p. From 5.3 it follows that gve , ve" ve" is zero unless e = 

e' + e" in which case it is equal to [[a]]-I [[a']]-I [[a + a']] , a polynomial in q 
of degree a' a". Since this holds for any q, we see from (a) that Ze,e' ,e" is 
empty unless e = e' + e" in which case it is a variety of dimension a' a" . If we 
now take e = e' + e" , we see that dim Z = dim&:: + a' a". Using the formula 
6.2(a), we deduce 

(c) dim&e = dim&::, +dim&e" +a'a"( - 1 + 'Lll + L.lp~) 
I 1-; 

Since (ak , a k ) = 2, we have -1 + L:iP~P; = L:i-jP~p5. Introducing this in 
(c), we obtain 

(d) dim&e = dim&::, + dim&::" + 2a' a" 'LP~ P~. 
i-j 

We want to show that dim&:: = dimEe' We do this by induction on a, the kth 
coordinate of e. (Recall that the other coordinates are zero.) When a = 1 , 
this follows from 4.16(b). We can assume that a> 1 and that our statement is 
already known when a is replaced by a smaller number. Consider the identity 
(d) with a = a' + a" , a' < a, a" < a. Using the induction hypothesis, we have 

dim&e = dimEe' + dimEe" + 2a' a" 'LP~P;. 
i-j 

W b ' d' E ,2 ~ k k d' E 112 ~ k k b' e su st1tute 1m e' = a LJi_j Pi Pj' 1m e" = a LJi_j Pi Pj ; we 0 tam 

d' Ai? (' ")2,,", k k d' E 1mD'e = a +a ~PiPj = 1m e' 
i-j 

as desired. Lemma 6,7 follows; at the same time, Proposition 6.6 is proved. 

Corollary 6.9. In the setup of 6.5, the codimension of the orbit &:: in the vector 
space Ed is given by 

(a) - L d;d~ + 'L dJd;. 
h<k;i h<k;i-j 
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We must show that the sum of the expression (a) with the right-hand side of 
the expression 6.6(a) is equal to dim Ed . This sum is 

k~/;d~ + h,2:1_/d: + J1_/:d; ~ t; (p;) (~?:) 
= Ldidj = dim Ed. 

i-+j 

The proposition is proved. 
6.10. In the setup of 6.5, assume that C~ EN" (k E [1 , 1/]) satisfy dim Vc' = 

k 

dim V c for all k and c~ =I ck for some k. Let c' E N" be such that 
k 

(a) 

Using 6.4, we see that 
" 

dim(&'c') ~ Ldim(&,c) + L d~d~ + L d~d:, 
k=! h<k; i h<k; i-+j 

" 
dim(&'c) = L dim(&'c) + L d~ d~ + L d~ d:. 

k=! h<k;i h<k;i-+j 

Substracting term by term, we obtain 
" 

(b) dim(&'J - dim(~,) 2: L(dim(&,c) - dim(&'c))· 
k=! 

From 6.7 and from our assumption on ck' we deduce that dime&' )-dim(&'c') 2: 
Ck k o for all k, with strict inequality for some k. This, together with (b) implies 

(c) dim(&'J - dim (&'c' ) > O. 
6.11. We now show that the assumption (a) in 6.10 is a consequence of the 
following assumption: 

(a) E~' appears with nonzero coefficient in the product E~; E~; ... E~: with 
respect to the basis Bj of U+ . 

From (a) it follows that the statement analogous to (a) is true when U+ is 
replaced by Uq+ for large enough q. Using the homorphism r and the identity 
5.10(b), we deduce that 

(b) V , appears with nonzero coefficient in the product V ,V , ... V, in the 
C C1 C2 Cv 

algebra RQ (notations relative to Fq .) 

Using 6.8(b) repeatedly, we see that (b) implies condition 6.1O(a). 

7. A FORMULA FOR fc 
7.1. In this section we assume that F is a finite field with q elements, that 
Q is a fixed orientation of the Dynkin graph and that we have fixed i E tc' 
adapted to Q. By changing, if necessary, the numbering of the simple roots we 
may assume that the following condition is satisfied: 

(a) if i --> j is an arrow in Q then j < i. 
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7.2. Let V be a module of dimension d in MQ. For each i E [1, n], let Vi 
be the sub module of V whose j-component coincides with the j-component 
of V for any j E [1, i] and whose other components are zero; let Vi be the 
module in MQ whose i-component is the same as the i-component of V and 
whose other components are zero. (The maps between the components of Vi 
are necessarily zero.) Thus we have a canonical exact sequence 

i-I i o -> V -> V ---t Vi ---t 0 
o . 

(where we set V = 0) and clearly, VI has exactly one sub module (resp. quo-
tient module) isomorphic to Vi-I (resp. Vi). We have Vi = e?di)) in RQ. 

From the definition of the multiplication in RQ, it follows that 
V ... V V = e((dn)) ... e((dz)) e((dl )) 

n 2 I n 2 I 

is equal to the sum of all modules of dimension d (one in each isomorphism 
class) each appearing with coefficient one in the sum. In other words, if we set 

e( d) = e~(dn)) ... ei(dz)) e~(dl)) 

then 

(a) 
c 

where c runs over all elements of N V of i-homogeneity d. 

7.3. We now consider the homomorphism r (see 5.8), defined in terms of 
Z E Zn (see 5.5). 

Recall that r(ei ) = Ki-ZiEi for all i. We have [[N]]! = qN(N-I)/4[N]!; hence 
r(e?N))) = qN(N-I)(2Zi-I)/4Ki-NZiEiN) . Hence we have 

r(e(d)) = q'd/2 K(d)E~dn) E~~l') ... E~d,) 

where K(d) = K~z,d, ... K;;zndn (see 5.10(c)), and 

(a) rd = Ldi(di - 1)(2zi - 1)/2 - Ldidjzj" 
i-j 

We now apply r to the identity 7.2(a). Using 5.1O(b), we obtain an equality 
of the following form in Uq : 

(b) q'd/2 K(d)E~dn) E~~l') ... E~d) = L qfcl2 K(d)Ejc 
c 

where c runs over all elements of N V of i-homogeneity d and the integers fc 
are independent of q. We can cancel K(d) in the identity (b). Moreover, since 
(b) holds for all q, we must have a corresponding identity in U: 

(c) E(dn)E(dn- ,) .. ·E(d,) = "vJ;-'dE~. 
n n-I I ~ I 

C 
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Lemma 7.4. Exactly one exponent fc - rd in the sum 7.3(c) is equal to zero. 

We associate i' E 2' to i as in 2.11. Assume the truth of the following 
statement: 

(a) E~dn)E~~II) .. . Eidl ) belongs to the basis Bjt of 2' (see 2.3(b)). 
From 2.3(c) it follows that any element of the basis Bjt can be expressed as a 

linear combination of elements in the basis B j with coefficients in Z[ v -I] and 
that exactly one of these coefficients has constant term 1. Applying this to the 
element in (a), we see that the conclusion of the lemma holds. 

It remains to prove (a). Using 2.11 (a), we see that it is enough to verify that 

(b) 

From 2.8 we see that there exists a sequence 1(1) < 1(2) < ... < I(n) III 

[I,ll] and a permutation p of [1, n] such that 

(c) 

for all j E [1 , n]. Using 1.3(c) it then follows that 

T. T ... T. (E.) = E ( .) 
II 12 1/(j_I) I/(j) P J 

for all j E [1 ,n] and from the definition of B j we see that 

(d) 

From 4.14(b) we see that 
( e) if i __ j is an arrow in Q, then p -I (j) < p -I (i) . 
Since EiEj = EjEi if i -:j:. j are not joined in the Dynkin graph, we see from 

(e) and 7.1(a) that the factors in (d) can be rearranged so that the element in 
(d) is equal to that in (b) and thus (b) holds. The lemma is proved. 

Lemma 7.5. For any c E NV of i-homogeneity d we have 

(a) fc - rd = -J(c) 

where 

h<k ;i h<k;i ..... j 

It is enough to prove (a) for a (c, d) under the following inductive assump-
tion: (a) holds when (c, d) is replaced by (c', d') such that at least one of the 
conditions (b) ,( c) below is satisfied. 

(b) Any coordinate of d' is :::; than the corresponding coordinate of d and 
d' -:j:. d. 

( c) We have d' = d and the dimension of the orbit &::t is strictly smaller 
than that of &'C . 
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Let ck E N V be as in 5.11. Let dk = (d~ , ... ,d:) be the i-homogeneity of 
ck • We can rewrite 5.11 (b) as follows: 

From 7.3(a) we have 
k 

rd - Lrdk = L (~)(2Zi - 1) - L (~)(2Zi - 1) 
k I k,l 

- Ldidjzj + L d;d:zj i--+j k; i--+j 

k'<k;i k' <k; i--+ j 

It follows that 

(d) 

= -J(c) = -J(c) + L J(ck )· 

k 

(We have used the equality J(ck ) = 0.) Now (d) shows that if (a) holds for 
each ck then it also holds for c. Using the induction hypothesis, we see that 
we may assume that c = ck for some k. In this case, the orbit &:: is open (by 
6.7). Hence for any c' =1= c with the same i-homogeneity as c, we have 

(e) dim &'c' < dim &:: 

and the induction hypothesis applies to c' and gives 

(f) fe' - rd = -J(c') = -codim&::, < o. 
(We have used 6.9 and (e).) Hence in 7.3(c), all exponents of v (except possibly 
for the single term corresponding to our fixed c) are < o. Since in our case 
J(c) = 0, we must only prove that fe - rd = o. Assume that this is not so. 
Then, in 7.3(c), all exponents of v, without exception, are different from o. 
This contradicts 7.4. The lemma is proved. 

7.6. We can restate 7.3(c) taking into account 7.5 in the following result. 

Proposition 7.7. We have 

E(dn ) E(dn - , ) ••• E(d, ) = "" v -.5(c) E~ 
n n-l 1 ~ I 

C 
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where the sum is taken over all e E NV of i-homogeneity d and J(e) is the 
codimension of the orbit &e. 

7.8. As before,we associate ek , dk (k E [1 , v]) to e, d. Let 

(a) E((e)) = E(d 1)E(d2 ) ••• E(dv ) 

where 

Write 

(b) E((e)) = Lh~,E~' 
e' 

where e' runs over the set of elements in N V of i-homogeneity d and h~, EA. 
From 7.7 and the results in 6.10,6.11, we see that 

(c) 

(since J(ek ) = 0 for all k, by 6.7) and 

(d) h~, =1= 0, e =1= e' =:::;. dim(&e') < dim(&::). 

It is clear that 

(e) E((e)) = E((e)). 

We can write 

(f) 

where e' runs over the set of elements in N V of i-homogeneity d and w~, E A 
are uniquely determined. 

Proposition 7.9. We have w~ = 1; moreover, w~, =1= 0, e =1= e' implies dim(&::,) < 
dim(&::) . 

Using 7.8(e),(f), we see that 

"he, "we:,E< = "he"E~" ; LeLel LeI 
e' e" e" 

hence 

(a) 

for all e, e" of i-homogeneity d. For such e, e" we say that e" ~ e if either 
e = e" or if e =1= e" and dim (&e' ) < dim(&::). From 7.8(c),(d) we see that the 
matrix (h~,,) is upper triangular (with respect to ~) with diagonal entries equal 
to 1. From (a) it then follows that the same must hold for the matrix (W~ff). 
The proposition is proved. 
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7.10. In this and the following subsection we shall give the proof of Theorem 
3.2. Let I be a finite partially ordered set and assume that for any i', i in I 
we are given elements u;, E A such that 

(a) 

for all i', i E I , 

(b) i u i = 1 for all i E I 

and 
., 

(c) u; = 0 unless i' :::; i. 
Then the system of equations 

i": /~i"~i 

Vi' :::; i with unknowns Z:' E Z[v- I ] (i':::; i) has a unique solution such that 
Z; = 1 for all i E I and Z:' E v-1Z[V- I ] for i' < i. This can be proved 
exactly as in [L3, p. 10 1]. 

7.11. We apply this in the case where 1= Xj-I (d) (see 2.8) for some dE N n . 

We regard I as a partially ordered set with the partial order c' :::; c defined in 
the proof of 7.9. We take u;, in 7.10 to be w~,. This satisfies 7.10(a) since 
- : U+ -t U+ is an involution. It satisfies 7.10(b),(c), by 7.9. We see that one 
can solve uniquely the system of equations 

(a) 
e" : c' ::;c"::;c 

c"-c-
we' 'e" 

with unknowns ,~, E Z[v- I ], c' :::; c in I so that ,~ = 1 for all eEl and 
,~, E v-1Z[V- I ] for all c' < c. For eEl, let 

(b) 
, 

c 

where, in the sum we take c' E I, c' :::; c. Let J be the family consisting of the 
elements gc where c E Xj-

I (d) for various dE N n • From (a) it follows that 

(c) each element of J is fixed by -. 

Moreover, from (b) and the definition we see that J is a Z[ v -I ]-basis of £? 
and that n(gc) = n(E~) so that n applies J bijectivelyonto B. Using (c) we 
see that £? n £? is precisely the free Z-module with basis J ,and that 3.2(a) 
holds with B = J . The other statements of 3.2 also follow. Thus Theorem 3.2 
is proved. 

7.12. From 7.11(b) we see that B = ud(B n U;). 
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7.13. We now define in Rn 
(a) I 2 II eCCe)) = e(d )e(d ) .. ·e(d ) 

where e(dk ) is as in 7.2. We have 

(b) 
c' 

where h~, E C. From 5.12 it follows that, as a function of q, 
( c) h~, is a polynomial in q with integer coefficients. 
With the notation of 7.3 we have 

r(e((e))) = r(e(d l ))r(e(d2)) ... r(e(dll )) 

= q'dJ2 K(d l )E(d l ) ... q'd)2 K(dll)E(dll ) 

= q'd/2+m/2 K(d)E((c)) 

where 

k' <k ; i k' <k ; i-+ j 

k' <k; i-+ j k'<k; i 

= -J(e). 

Thus 

(d) r(e((e))) = q('d-O(C))/2 K(d)E((e)). 

On the other hand, we can rewrite 5.10(b) taking into account 7.5: 

(e) r(Vc) = q(-oc+'d)/2 K(d)E;c. 

Applying r to (b) and using (d),(e), we obtain 

q('d-O(C))/2 K(d)E((c)) = L h~,q(-O(C')+rd)/2 K(d)E~'. 
c' 

Comparing this with 7.8(b), we obtain 

(f) hc - (O(C)-O(C'))/2 hc 
c' - q c'· 

The left-hand side is an element of A evaluated at v = ql/2 , while to the right 
side we can apply (c). Since (f) holds for all q, we deduce that 

(g) v -o(c)+O(c') h~, E A is a polynomial in v 2 with integral coefficients. 
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Proposition 7.14. Let 

Then Ie 
W' e 

We set 

Ie -o(c)+O(c') C E A 
Wc' = V W c" 

is contained in Z[V2, v-2]. 

h'C _ -O(c)+O(c') hC A 
c' - V c' E . 

From 7.9(a) we deduce 

(a) h'C _ """ -20(c)+20(C')h'c IC' 
e" - L..t V e,Well. 

, 
c 

By 7.13(g), the matrix (h~~) and the matrix (V-20(C)+20(C')h~~) have entries 
in Z[v 2 , v- 2]; moreover, these matrices are triangular with 1 on diagonal 
(7.8(c),(d)). Hence, by (a), the matrix (w~~) must have the same properties. 
The proposition follows. 

8. FINITE-DIMENSIONAL U-MODULES 

8.1. Let d = (d l , ••• , dn ) E N n and let Id (resp. Jd ) be the left (resp. right) 
ideal in U+ generated by the elements E~,+I , ... , E;n+1 . 

Theorem 8.2. (a) The intersection B n Id is an A'-basis of I d . 

(b) The intersection B n Jd is an A' -basis of Jd . 

The proof will be given in 8.6. 

8.3. We may assume that the numbering of the simple roots is such that for 
some t E [1, n], we have aij = 0 whenever i i= j E [1, n] are both S t or 
both> t. We define a sequence 

i = (i I ' i2 , ••• , iv) 

by the requirement that i, = r if 1 S r S n, ir' = i," if r' == r" ( mod n). It is 
known [B, Ex.2, §6, Ch. V] that i E fC' . Although we do not need this here, we 
note that i is adapted to the unique orientation for which {I, 2, ... ,t} are 
sinks and {t + 1 , t + 2, ... , n} are sources. Let J~ (resp. J~' ) be the right ideal 

f U + db h I Ed,+1 Edr+ 1 ( Edr+,+1 Ed +1 ) o generate y tee ements I ' .•. , t resp. 1+1 , ... , n n • 

It is clear that the intersection Hi n J~ is an A' -basis of J~; this intersection 
consists of all elements E~ such that c = (c i ' ... ,cJ satisfies 

(a) ci 2: d i + 1 for lSi S t. 

Similarly, if j = (jl ' h, ... ,jv) is the sequence defined by j, = n + 1 - r 
if 1 S r S n, j r' = j ,II if r' == r" ( mod n) then j E fC' and the intersection 
Hj n J~' is an A'-basis of J~' ; this intersection consists of all elements Et such 
that c' = (c; , ... , c~) satisfies 

(b) 
I 

ci 2: dn _ i+ 1 + I for lSi S n - t. 
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Hence 
(C) the bijection N" ~ Bj given by c -+ E~ restricts to a bijection 

{c E N"lc j ::::; dp ::::; i ::::; t)} ~ B j - (B j n J~). 
and 

(d) the bijection N" ~ Bj given by c -+ EjC restricts to a bijection 

{c E N"lc; ::::; dn_ j+1 (1 ::::; i::::; n - tn ~ Bj - (Bj n J~/). 
8.4. Under the canonical bijections 
(a) 

(the compositions of B ~ B ~ B j (resp. B ~ B ~ Bj ) , see 3.2(a)) the subset 
B j n J~ of B j corresponds to a subset B' (d) of B and the subset Bj n J~' 
corresponds to a subset B" (d) of B. 
Lemma 8.5. (a) B/(d) is an A'-basis of J~. 

(b) B" (d) is an A'-basis of J~' . 
We shall only prove (a); the proof of (b) is the same (by symmetry). It is 

clear from the definition that J~' is stable under the involution - : V+ -+ V+ . 
Hence the elements W~I E A (see 7.8) have the following property: 

(c) if c satisfies 8.3(a) and W~I t= 0 then c' satisfies 8.3(a). 
From the system of equations 7.11(a) we see, using (c), that 
(d) if c satisfies 8.3(a) and '~I t= 0 (see 7.11) then c' satisfies 8.3(a). 
Hence, if c satisfies 8.3(a), then the element ~c of B/(d) (defined in 7.11(b)) 

is a linear combination of elements in Bj n J~ ; hence, B' (d) is contained in J~. 
This linear combination is given by a "unipotent" matrix; hence any element 
of B j n J~ is a linear combination of elements in B' (d). Since B j n J~ is an 
A'-basis of J~ , it follows that B' (d) is an A'-basis of J~ . The lemma is proved. 

8.6. It is clear that Jd = J~ + J~/. Hence from 8.5 it follows that the union 
B/(d) U B"(d) generates Jd as an A'-vector space. Since this union is part of 
the basis B of V+ , 8.2(b) follows. It is clear that ,¥(Jd ) = Id ('¥ as in 1.4). 
Since '¥(B) = B, we see that 8.2(a) is a consequence of 8.2(b). 
8.7. It is known that there is a simple V-module Ld of finite dimension over 
A' with a nonzero vector Xo such that FjxO = 0, KjxO = V -dj Xo for all i; 
moreover ( Ld ' Xo ) is unique up to a unique isomorphism. 

Lemma 8.8. There is a unique isomorphism of Q-vector spaces - : Ld ~ Ld such 
that ux = ux for all u E V, x E Ld and Xo = xO' Its square is equal to 1. 

We can consider a new V-module structure on Ld: u E V acts in the 
new module structure as u in the original module structure. In particular, 
multiplication by v in the new module structure is multiplication by v -I in the 
original module structure. It is clear that the new module satisfies the defining 
property of the original module; we use the uniqueness statement in 8.7 and the 
lemma follows. 
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8.9. Let Ld,A = U+xo = UXo C L d . Let ~ be the Z[v-I]-submodule .:?xo 
of Ld • Let.: ~ -+ ~/V-I~ be the canonical projection. From 2.3 we see 
that 

(a) for any fixed i E :¥ , the elements u(xo) (u E B j ) generate ~ as a 
Z[v- I] module; their images .(u(xo)) form a subset B[d] of ~/V-I~ that 
is independent of i. 

Theorem 8.10. (a) The restriction of • : ~ -+ ~/V-I~ defines an isomor-
phism of Z-modules .' : ~ n ~ ~ ~/v -I ~ . 

(b) B[d] = B[d] - {O} is a Z-basis of ~/V-I~. 
(c) If we set B[d] = l-I(B[d]) then B[d] is a Z-basis of ~ n~. 
(d) B[d] is a Z[v-I]-basis of ~, a Z[v]-basis of ~, an A-basis of Ld A 

and an A'-basis of Ld . ' 
(e) Each element of B[ d] is fixed by - : Ld -+ Ld . 
(f) The map g' -+ g'xo defines a bijection B - 'I'(B' (d) U B" (d)) ~ B[d]. 

It is known that the map U+ /Id -+ Ld , U -+ uXo is an isomorphism. Using 
8.2 and its proof (8.6) we see that B - 'I'(B'(d) UB"(d)) is mapped by the last 
isomorphism bijectively onto an A'-basis ~ of L d • Using 3.2, we see that the 
elements of ~ are fixed by - : Ld -+ Ld and that they form a Z[v-1]-basis 
of ~, a Z[v]-basis of ~ and a Z-basis of ~ n~; moreover, we see from 
3.2 that .' defines a bijection ~ ~ B[d]. It follows immediately that all the 
statements of the theorem hold with B[ d] = ~ . 

8.11. We call B[d] the canonical basis of L d • It is compatible with the decom-
position of Ld into weight spaces. By specializing v to 1 we obtain a natural 
(integral) basis in any finite-dimensional simple module of the corresponding 
semisimple Lie algebra. 

8.12. Let Zd be the subset of Nil x Nil consisting of all pairs c = (c 1 ' ••• , cll ) , 

c' = (c~ , ... ,c:) such that 

(a) 
..J , 
.t{j(c) = C , 

(b) 

(c) 
, 

ci ~ dn _ i+1 for 1 ~ i ~ n - t. 

(R~ : Nil -+ Nil is as in 2.6. By definition, it is a "piecewise linear" function.) 

Theorem 8.13. There is a canonical bijection B[d] ~ Zd' Hence dimLd = 
#(Zd) . 
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Bd 3:: B - '¥(B' (d) U B" (d)) 

3:: B - (B' (d) U B" (d)) 

(a) = (B - B' (d)) n (B - B" ( d) ) 

(the first bijection is given by 8.lO(f) and the second one by '¥, see 3.3). 
The canonical bijections 8.4(a) restrict to bijections 

B - B' (d) 3:: Bj - (Bj n J~), 
B - B" (d) 3:: Bj - (Bj n J~'). 

Combining the bijections above we obtain a bijection between Bd and the set 
f 11 . (P' P") B B h h p' B (B J') p" B (B J") o a palfS , E j x j suc t at E j - j n d' E j - j n d ' 

and f(P') = P" where f : Bj 3:: Bj is obtained by composing the bijections 
8.4(a). We now use the bijections 8.3(c),(d) and the theorem follows. 

9. INTERSECTION COHOMOLOGY 

9.1. In this section, F is an algebraic closure of a finite field Fq • We fix an 
orientation n for our Dynkin graph, and we choose i E f¥' adapted to n. 

Consider the partial order on N V defined bye' ::::; e" if e' , e" have the same 
i- homogeneity and &'e' is contained in the Zariski closure of &'e (orbits as in 
4.16). 

9.2. We fix a prime number I, invertible in F. Given d E Nn , let ~ be 
the vector space of Q/-valued functions on the set of Fq -rational points of 
Ed that are constant on the orbits of the group of Gd(Fq) on Ed(Fq) (see 
4.16) or, equivalently, on the set of Fq -rational points of any Gd-orbit on Ed. 
(The isotropy groups of the Gd action are connected.) Let )Ie be the function 
that equals 1 on the Fq-rational points of (&'e) and is zero elsewhere. These 
functions form a Q/-basis of ~ . 

9.3. Let d, d', d" E Nn be such that d = d' + d". Assume given functions 
I E ~, , I' E ~,. We define a function f = I * I' E ~ as follows. We 
consider the diagram of varieties 

as in 6.1(a). We set 

fee) = L #{e\P(e) = (e', e"), p"(p'(e)) = e} I(e')/'(e") 
, " #(Gd, (Fq))#(Gd" (Fq)) 

e ,e 

where e' , e" , e, e are Fq-rational points of Ed" Ed'" Ed' E' respectively. The 
operation 1*1' (convolution) defines an associative algebra structure on % = 
EBd ~. Let us identify the fields Q, = C. We have a vector space isomorphism 

(a) % 3:: Rn 
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that takes the basis element Yc to ~ (see 4.15). Using 6.8(a) we see that this 
is an algebra isomorphism. 

9.4. Let A be the group ring of Q; over Z. Let Kd be the free A-module 
with basis (Y~) indexed by the Gd-orbits (&'c) on Ed. We may identify Kd 
with the Grothendieck group of the category of constructible, Gd- equivariant 
Q, sheaves on Ed' defined over Fq; the basis element (Y~) corresponds to the 
constant sheaf Q, on the orbit (&::), extended by a on the complement; the 
Frobenius map acts as identity on the stalks at rational points of the orbit. Let 
gc be the intersection cohomology complex of the closure of &'C in Ed (with 
coefficients in Q,) extended by zero on the complement of that closure, with 
the Fq structure such that the Frobenius map acts as identity on the stalks 
(~ Q,) of its ath cohomology sheaf at rational points of the orbit &'c. We 
associate to gc an element 

(a) 

where p;, is the (formal) alternating sum of the eigenvalues (in Q; ) of the 
Frobenius map on the stalks of the cohomology sheaves of gc at any Fq ratio-
nal point of &::' . (The sum is taken in A rather than in Q,.) We have p; = 1. 
We define p;, = a whenever the condition c' ::5 c is not satisfied. 

9.5. We now show that the convolution operation of 9.3 makes also sense in 
the context of derived categories. 

Consider again the diagram 6.1 (a) with d, d' , d" E N n such that d = d' +d" . 
Assume given two orbits &'c' C Ed" &'c" C Ed"· Let ,91' = gc' , ,91" = gc" 
be as in 9.4. Then ,91' (resp. ,91") is a Gd, (resp. Gd,,) equivariant complex; 
hence using 6.1, 6.2, there is a well-defined complex of sheaves P on E" such 
that 

p'. (P) = p. (,91' ® ,91"). 

(P is (up to shift) a simple perverse sheaf on E" defined over Fq .) We define 
a complex of sheaves on Ed (defined over Fq) by 

,91' *,91" = p:'P. 
As in 9.4, taking formal alternating sums of eigenvalues of Frobenius on stalks, 

• r71l ' r71l " r71l ' r71l " , " , ". we assocIate to .::r ,.::r ,.::r *.::r elements p ,p ,p * P In Kd" Kd" , Kd" 
respectively. It is easy to see that p' , p" ~ p' * p" defines a A-bilinear pairing 
* : Kd, x Kd" -+ Kd and hence a A-bilinear pairing * : K x K ~ K where 
K = Ld Kd · We thus obtain an associative algebra structure on K. 

Since p" is proper, ,91' *,91" above is a "pure complex." From the theory of 
pure complexes [BBD, 5.4.4, 5.3.9], it follows that for any Gd orbit &'C in Ed 
there exists a graded Q/-vector space EBs ~s with Frobenius action such that 
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(a) , II ~,~, ~ G( , ")~' 
p * p = Ye' Ye" = ~ e, e ,e Ye 

e 

where G(e, e' , e") E A is the (formal) alternating sum over s of the eigenvalues 
of Frobenius on C;;;S and 

(b) the eigenvalues of Frobenius on C;;;S are algebraic numbers all of whose 
complex conjugates have absolute value qS/2 . 

9.6. There is a natural group homomorphism lq : K -+ % that takes the basis 
element Y~ to Ye and on coefficients is given by the ring homomorphism A-+ 
Q, that is the identity on Q; . It follows easily from the definitions that lq is 
a ring homomorphism. 

If we replace q by a power l, K,.% become Ks ' ~ and we have as 
above a ring homomorphism lq' : Ks -+ ~. On the other hand, we have a 
ring homomorphism K -+ Ks that is the identity on each basis element and on 
coefficients is given by the ring homomorphism A -+ A defined by raising to the 
sth power on Q;. Composing this with lq' we obtain a ring homomorphism 
K -+ ~. Thus we have infinitely many homomorphisms of K to the various 
~ (s = 1,2, ... ). Using these, one can deduce various properties of K from 
the corresponding properties of % . 
9.7. Let VA' V; be the A-algebras obtained from V, V+ by ten so ring with 
A over A, where A is regarded as a A-algebra via the imbedding A c A that 
takes v to q'/2 E Q;. Consider the ring homomorphism - : A -+ A that 
takes each element in Q; to its inverse. The imbedding A C A considered 
above is compatible with the involutions - : A -+ A, - : A -+ A. Hence 
the ring involutions - : V -+ V, - : V+ -+ V+ extend to ring involutions 
- : VA -+ VA' -: V; -+ V; (u Q9 a -+ 17 Q9 a). (On the other hand, - is not 
well defined on Vq , Vq+ , see 5.5.) 

For j E [1 , n], let Y; be the unique element Y~ in the standard basis of Kd 
where d has the jth coordinate equal to 1 and the other coordinates equal to 
O. 
Proposition 9.8. (a) The elements Y~ (1::; j ::; n) generate K as an A-algebra. 

(b) Let z = (z, ' ... , zn) E Zn be as in 5.5. There is a unique imbedding of 
A-algebras r: K '-> V A such that 

for all j E [1, n]. 
(c) Let 

I -z 
r(y)=K JE 

J J J 

There is a well-defined A-linear map e : Kd -+ V; such that 

r(~) = VS(d) K(d)e(~), 
-"d -7d for all ~ E Kd , where K(d) = K j -I I .. . Kn -n n. 
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(d) If c has i-homogeneity d, then 

r(y;) = v-"c+rdK(d)E~ E UA 

where 
K(d) = K- z,d, ... K-zndn 

In' 

rd = Ldi(di -1)(2zi -1)/2- Ldidjzj 
i ..... j 

and t5c is the codimension of the orbit &;;. 

The analogous results for Uq and RD. are contained in 5.4(a), 5.8 (see 5.7) 
and 7.13(e). The proposition follows from those results by the method of 9.6. 

9.9. Verdier duality induces a homomorphism D : Kd --+ Kd that is antilinear 
with respect to the ring homomorphism - : A --+ A. 

We have 

(a) 

where r~, E A and r~ = q-d(c), d(c) = dim(&;;). Moreover, 

(b) D( ~') -d(c)~' yc = q yc' 
From the definition and from 6.I(b),(c),(d), we see that 

(c) D(( * (') = qm D(c,')D(c,/I) 

, /I "d'd/l " d'd/l for C, E Kd" C, E Kd" where m = - L..i i i - L..i ..... j i j . 

Proposition 9.10. For any C, E Kd we have 

(a) 8(D(c,)) = 8(c,). 

When C, = y~ is one of the algebra generators in 9.8(a), the identity (a) 
is obvious: we have D(c,) = c" 8(c,) = Ej . It is then enough to verify the 
following statement for general c,: if (a) holds for some c,' E Kd, , c,/1 E Kd" 

such that C, = c.' * c,/1 , then it also holds for c,. 
Applying r to 9.9(c) and using the multiplicativity of r we obtain 

where 

(b) 

Hence 

(c) 

VS(d) K(d)8(D(c,)) = V 2m V S(d') K(d')8(D(c,'))v S(d") K(d/l)8(D(c,/I)) 

= V 2m + S(d')+S(d")+g K(d)8(c,')8(c,/I) 
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Similarly, applying r to e; = e;' * e;" we have 

VS(d) K(d)9(e;) = VS(d') K(d')9(e;')vS(d") K(d")9(e;") 

(d) = VS(d')+S(d")+g K(d)9(e;')9(e;"). 

Hence 
9(e;) = vS(d')+S(d")+g-S(d)9(e;')9(e;"). 

Applying to this - , we obtain 

e(e;) = v -S(d')-S(d")-g+S(d)e(e;')e(e;"). 

Comparing this with (c), we obtain 

8(D(e;)) = v2m+2S(d')+2S(d")-2S(d)+2g 9(e;). 

It remains to show 

(e) Sed) - Sed') - S(d") = m + g. 

Using the definitions, we have 

We substitute here 

and 

and we obtain 

m+g= L(2zi-l)- Ld;d;'Zi- Ld;'d;Zi' 
i--+j i--+j 

This is clearly equal to Sed) - Sed') - S(d") . The proposition is proved. 

9.11. Recall from 7.8(f) the following identity in U+: 

(a) E~ = L {J)~,E~' 
, 

C 

where (J)~, E A are uniquely determined. Let g>c E B be the unique element 
such that 

(b) g>C = L ,~, E~' 
c' . 

(sum over all c' of i-homogeneity d) where ,~= 1 , 

(c) 
C -1 -1 , 'c' E v Z[v ] for c #- c 

(see 3.2). 
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9.12. If we assume that 
(a) 

and 
(b) w~ = 1 
for all c, then by an argument almost identical to the one in 7.11 we see that 
one can solve uniquely the system of equations 

(c) 
elf : c/~c"~c 

for all c' ::::; c with unknowns Z;, E Z[ V-I], c' ::::; c, so that Z; = 1 for all c 
and Z;, E V-I Z[v -1] for all c' -< c. Moreover, we have 

rC c 
~c' = Zc' 

if c' ::::; c and 
,~, = 0 

otherwise. Now (b) certainly holds (see 7.9). The assumption (a) is also satis-
fied, as we shall see in the following subsection. We have the following result, 
reminiscent of [KL2]. 

Theorem 9.13. (a) If &'c' ct. &'c then ,;, = o. 
(b) If ~, c &'c then 

where p;, is as in 9.4. 
(c) e(y~) = vd(c)~c. 

rC d(c')-d(c) c 
~C' = V Pc' 

We set ~c = e(y~). From 9.10 and 9.9(b) it follows that 

(d) ~C = q -d(c) ~c. 

From 9.8(c),(d), it follows that 
£:Jo( ') _ -S(d)-c5c+rdEc U 
<::7 Yc - ViE A 

(notation of 9.8(c),(d)). Hence, applying e to 9.4(a), we have 

(e) 
c' 

We have 
-Sed) - ~c' + rd = -l)d; - di)(2Zi - 1)/2 + Ldidjzi 

i ..... j 

+ L di(di - 1)(2zi - 1)/2 - L didjZj - C>c' 
i i ..... j 

= dim Ed - C>c' = d(c'). 
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Thus, we can rewrite (e) in the form 

(f) ""c _ '""" d(c') c EC' 
(0 - ~v Pc' i' 

c' 

Applying - to (f) and taking into account (d) and 9.11(a), we obtain 

It follows that 

or, if we set 

that 

(g) 

'""" -d(c')-c '""" c' EC" -2d(c) '""" d(c") c EC" 
~ V Pc' ~ Wc" i = V ~ V Pc" i . 
c' c" " c 

d(c")-d(c) c '""" -d(c')+d(c)-c c' 
V Pc" = ~ V Pc'Wc" 

c' 

c d(c')-d(c) c 
Pc' = V Pc" 

for all e" . Since the matrix (p~,) is upper triangular (with respect to :::S) with 
1 on diagonal, the same must be true (by (g)) for the matrix (w~,). Thus, we 
see that 9.12 (a), (b) hold so that the results in 9.12 are applicable. As in 9.12 
we can write 

c '""" -c- c' 'c" = ~ 'c'Wc" 
c' 

for all e". Substracting this from (g), we obtain 

(h) 

"" 11" L c c rC S· c rC c . hi' d lor a e. et f.Lc' = Pc' - "c" Ince Pc" "c' 'Wc' vanlS un ess e :::S e, an 
W~ = 1 (see 9.12) we can deduce from (h) that 

(i) 

for all e" :::S e. 
We shall prove that 

(j) 

c -c-
f.Lc" - f.Lc" = 

c' : c"-<'c/~c 

c 
f.Lc" = 0 

for all e" :::S e by induction on d(e) - d(e") ~ O. If e = e" , then p~" = 1 , ,;" = 
1 , f.L~" = O. Assume now that e" -< e. We may assume that f.L~, = 0 for all e' 
such that e" -< e' :::S e. Then the right-hand side of (e) is zero and therefore its 
left-hand side is also zero: 

(k) 
c -c-

f.Lc" = f.L c"· 



CANONICAL BASES ARISING FROM QUANTIZED ENVELOPING ALGEBRAS 489 

By Gabber's purity theorem [BBD, 5.3.4J, p~" E A is a (formal) Z-linear 
combination of elements of Q; that are algebraic numbers all of whose complex 
conjugates have absolute value :::; q(d(c)-d(c")-1)/2. Using this, together with 
9.11(c) and the definition of p~" , we see that J1-~" E A is a (formal) Z-linear 
combination of elements of Q; that are algebraic numbers all of whose complex 
conjugates have absolute value:::; q -1/2 . This is compatible with (k) only if both 
sides of (k) are zero. Thus, (j) is proved. The theorem follows. 

10. PURITY 

10.1. We preserve the setup of 9.1. We also fix C E Nil of i-homogeneity d. 
For any k E [1 , /J J we denote by ck the element of Nil whose coordinates are 
zero except for the k-coordinate that is the same as the kth coordinate of c. 
Let dk E N n be the i-homogeneity of ck • We have Vc = EBk VCk compatibly 
with the module structures. We denote by v:: i the i-component of Vc' We 
identify EB i--+ j Hom( V::, i' V::, j) with Ed by choosing bases of each V::, i' The 
module structure of Vc corresponds to a particular element f = (1;) E Ed' 

Given two modules V, V' in MQ we denote H(V, V) =EBiHom(~, ~/). 
Let Ho(V, V') be the vector space consisting of all elemen:" "f H(V, V') that 
are morphisms in MQ. 

Lemma 10.2. (a) We have 

(b) If h > k then 

(c) If h:::; k, then 
. ,\"hk ,\"hk 

dIm HO(VCh ' VCk ) = - ~ di d j + ~di di · 
i--+ j I 

We define a linear map 

(d) 

as follows. To an element ¢ E H(Vc' Vc) that restricts to ¢i: VC • i -+ Vc,i for 
any i, we associate the element (¢>i) E Ed given by ¢>ij = ¢j1;j - 1;j¢i for 
all i -+ j. This clearly factors through a map (d). It is also clear that (d) is 
injective. 

Let Y be the image of the map (d). It is easy to see that f + Y is exactly 
the tangent space at f to the Gd-orbit in Ed passing through f. Hence dimY 
(or, equivalently, dim H(Vc' Vc)/ Ho(Vc' Vc) ) is equal to the dimension of that 
orbit, which is given by 6.6. 

We have obviously dimH(Vc' Vc) = L.h.k.id1d; and (a) follows. 
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Now (b) is the same as 4.9(c). Next assume that h < k. Let 

D, = dim HO(VCh ' Vc)" D2 = dim HO(VCh ' Vc)' 

D3 = dim HO(VCk ' Vc)' D4 = dim HO(VCh EEl VCk ' VCh EEl Vc)-

Then, by (b), we have D4 = D, + D2 + D3· Moreover, D2, D3, D4 are given 
by formulas that are special cases of (a). Hence we can find D, = D4 - D2 - D3 
and we see that (c) holds in this case. Finally, if h = k , then (c) is a special 
case of (a). The lemma is proved. 

10.3. We have a direct sum decomposition Ed = E:,k indexed by (h, k) E 
[1, v] x [1, v] where 

E:,k = EB Hom(~h' i' ~k ,j)' 
/-+] 

Lemma 10.4. Y (see 10.2) contains the subspace ffih:::;k E:,k of Ed' 

It is enough to show that for any h ::; k, the map 1 0.2( d) restricts to an 
isomorphism 

(a) 

The map (a) is certainly injective, since IO.2(d) is injective. Using 10.2(c), we 
see that the first space in (a) has dimension 2:. i-+j d: d; , which is clearly equal 
to dimE:,k . Hence (a) must be an isomorphism and the lemma is proved. 

10.5. For each t E F* , we define an element A(t) E Gd by the requirement that 
its component in GL(~) acts on the summand ~k,i as l times identity. 

(a) In the action of Gd on Ed' A(t) acts on the summand E:,k as l-h 
times identity. 

Note that f is contained in ffikE:,k ; hence it is fixed by A(t). Now Y 
is stable under the I-parameter group A since it is the sum of its intersections 
with the various E:' k that are stable. Hence there exists a linear subspace Y' 
that is a complement of Y in Ed and is stable under the I-parameter group 
) .. Note that 

(b) the action of the I-parameter group A on y' has all weights of the form 
t -- tS , for some s < 0 . 

This follows from (a) and 10.3. 

Proposition 10.6. Assume t:zat f is an Fq -rational point of the orbit &: in Ed' 
Let &'c' be an orbit whose closure contains &'c' Let ffP; be the stalk at f of the 
ath cohomology sheaf of the intersection cohomology complex of the closure of 
&:,. Then all eigenvalues of the Frobenius map on Jfja are algebraic numbers 
all of whose complex conjugates have absolute value qa/2 . 

The proof has some similarity to a proof in [KL2]. We may assume that the 
result is true when f is replaced by a rational point in an orbit of dimension 
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stricly bigger than that of &::. Let y' and A be as in 10.5. We may assume 
that they are defined over Fq • From the definition of y' we see easily that 
f +y' is a transversal slice in E to the Gd-orbit of f, and from 10.5(b) we see 
that A defines a linear contraction of that slice to f. Now any Gd-orbit is stable 
under A. Hence the intersection of f + y' with the closure of &::' is stable 
under A. Consider the cohomology sheaves of the intersection complex of this 
intersection. The eigenvalues of Frobenius on its stalks at points other than 
f have a property like the one asserted in the proposition, by the induction 
hypothesis. We only have to show that they have that property at f. But 
this follows from [KL2, 4.S(b)), where it is deduced from the hard Lefschetz 
theorem of Deligne. 

Corollary 10.7. (a) If a is odd, then Jfja = O. 
(b) "d" cy2a 2a _ d(c')-d(c) rC' 

LJa Im&flOf v -v "c" 
(c) In particular, vd(c')-d(c) ,~' is a polynomial in v 2 with coefficients in N" 
(d) All eigenvalues of Frobenius on Jfj2a are equal to qa . 

'c' d(c')-d(c) c' . 
Let 'c = v 'c . The equatIOn 

(see 9.12) implies 
r'c' _ ~ 2d(c')-2d(c") r'C' 'c" 
"c - ~v .. c"Wc 

c" 

is in Z[v 2 , v- 2 ] (see 7.14). We want to show that 

(e) 'c' 2-2 'c EZ[V,V ]. 

We may assume that this is known when e is replaced by any e" with e -< e" ::; 
e' and that e -< e' . Then the previous equation shows that 

(f) r'c' _ 2d(c')-2d(c) r'c' Z[ 2 -2] "c V "c E v, V . 

Now C' involves only powers of v with exponent < d(e') - dee) - I, while 
v 2d(c')-2d(c)C' involves only powers of v with exponent> d(e') - dee) + 1. 
This, together with (f) implies (e). From (e) and 9.13(b) we see that p~' is a 
formal Z-linear combination (in A) of integral powers of q. This fact, together 
with 10.6, clearly implies (a) and (d); using again 9.13(b) we see that (b) holds 
also. The corollary is proved. 

10.8. The previous result shows that the coefficients p~' in the identity 
, _, ~ c , 

Yc' = ~pc Yc 
c 
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are (as elements of A) formal Z-linear combination of integral powers of q. 
On the other hand, from 5.12 we see that the structure constants of the alge-
bra K with respect to the basis (Y~) are (as elements of A) formal Z-linear 
combinations of integral powers of q. From these two facts it follows that 

(a) the structure constants G(e, e', e") E A of the algebra K with respect to 
the basis (Y~) are formal Z-linear combinations of integral powers of q. 

Here 

(b) -'-' ~G( , ")_' YC'YC" = ~ e, e ,e Yc' 

(See 9.5.) Now let ~(e, e' , e") E A be the structure constants of the algebra 
U+ with respect to the basis g'c. Thus 

(c) g'c' g'c" = L~(e, e' , e")g'c. 
c 

Applying the homomorphism r to (b) and using 9.13(c), we have 
(d) vd(c')+d(cl)+S(d')+S(d") K(d')g'c' K(d")g'CIl = L G(e, e' , e")vd(C)+S(d) g'c , 

c 

where d, d' ,d" are the i-homogeneities of e, e' ,e" respectively. Since 

g'c'K(d") = vmK(d")g'c' 

with m = Li,jd;d;' zjaij , we see from (c) and (d) that 

(e) III M '" ~(e, e , e ) = v G(e, e , e ) 

where 
M = d(e) - d(e') - d(e") + S(d) - S(d/) - S(d") - m. 

With this notation, we have the following result. 

Theorem 10.9. (a) Any structure constant G(e, e' ,e") E A of the algebra K 
with respect to the basis (Y~) is a formal linear combination with integer, ~ 0 
coefficients of integral powers of q . 

(b) Any structure constant ~(e, e', e") E A of the algebra U+ with respect to 
the basis B (consisting of the elements g'c) is a linear combination with integer, 
~ 0 coefficients of powers of v with exponents of a fixed parity. 

(a) follows immediately by combining 10.8(a) with 9.S(a),(b). Now (b) fol-
lows from (a) and 1O.8(e). 

Corollary 10.10. Let g' E B, let i E [1, n] and let N EN. Write 

(sum over g" E B) with Mgl, M~, EA. Then, for each g'1 E B, Mgl is a 
linear combination with integer ~ 0 coefficients of powers of v with exponents 
of a fixed parity; the same holds for M~, . 

Indeed, E;N) E B . 
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Corollary 10.11. The action of EiN ) on the V-module Ld is given by a matrix 
(with respect to the canonical basis B[d]) in which any entry (in A) is a linear 
combination with integer 2: 0 coefficients of powers of v with exponents of a 
fixed parity. 

11. THE CYCLIC QUIVER 

11.1. Consider the oriented graph with vertices {I, 2, ... , n} and oriented 
edges n -+ n - 1, n - 1 -+ n - 2, ... , 3 -+ 2, ... , 2 -+ 1, 1 -+ n. We call it 
the cyclic quiver. Then we can define a category of modules Mn associated 
to this quiver just as in 4.1. As in 4.2, each module in Mn has a well-defined 
dimension in N n • We shall be interested in the full subcategory MOn of Mn 
consisting of modules (~, 1;) such that fzJ32'" In-I ,n-2In,n-l!;n : V; -+ 

VI is nilpotent. (This is equivalent to the condition that f 32 ··· In n-'!;nfz, : 
V; -+ V; is nilpotent.) Let k' ~ k be two integers. We defin~ a module 
V(k', k) E 'Mon as follows. By definition, V(k', k)i is the F-vector space 
with basis {b(i, h)lk' ~ h ~ k, h == i mod n} (1 ~ i ~ n); we define a linear 
map 1; i-I: V(k' , k)i -+ V(k', k)i_1 by 1; i-I (b(i, h)) = b(i - 1, h - 1). 
(Here, i-I is interpreted as n in the case ~here i = 1 and b( i-I, h - 1) 
is interpreted as 0 if h = k'.) It is clear that V(k', k) is an indecomposable 
module in MOn and that V(k', k) == V(k;, k l ) if and only if k; = k' + mn, 
k, = k + mn for some integer m . One can also verify that any indecomposable 
module in MOn is isomorphic to some V(k', k). The simple modules are 
V(i, i) (1 ~ i ~ n ). 

11.2. We can associate to our quiver some vector spaces Ed with Gd-action 
(d E Nn), as in 4.16. Each point of Ed defines a module in Mn. The 
points of Ed for which the corresponding module is in MOn form a closed 
subvariety E~ of Ed' stable under Gd . The action of Gd on E~ has only 
finitely many orbits (called strata); they are in 1-1 correspondence with the 
isomorphism classes of modules in MOn of dimension d; hence they can be 
parametrized by sequences of positive integers (ck , ,k) that specify how many 
times an indecomposable module V(k', k) appears in a given module. 

The following result is a common generalization of results in [L4, Z]. 

Theorem 11.3. The closure of any Gd orbit in E~ is locally isomorphic to the 
closure of an affine Schubert variety of type AN-I where N = dl + ... + dn . 

The proof will be given in 11.4, 11.5. 

11.4. Let d = (dl , ... , dn) E Nn and let N = d l + ... + dn. Let L be an 
N-dimensional F « e) )-vector space. A lattice in L is a free F[[ e ]]-submodule 
of rank N of L. We fix a sequence of lattices 

2-:J.::.t:,-:J···-:J2' I 2 n 
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in L such that ~ :::) e~, dim(£;I£;;-I) = d i for i = 1, ... , n - 1 and 
dim(~/e~) = dn . (Dimensions are always taken over F.) 

Let Z be the set of all sequences 
.£; :::).40.:::) ... :::)Ln 

of lattices in L such that Ln :::) e.£; , ~ C £; for all i and dim£;/~ = di 
for all i. 

For example, the sequence ..2; :::) 2; :::) ... :::) ~ :::) e~ belongs to Z. It 
is clear that Z is in a natural way a projective variety over F. We fix an 
F-subspace P of ~ with a direct sum decomposition P = E97=1 Pi such that 
dimPi=di,£;=E9;=iPjEB(E9jE[l,nJ,h~lip) for iE[l,n]. 

Let Z' be the subset of Z defined by the condition 

(a) ~ EB Pi = £; for all i. 

It is clear that Z' is an open dense subvariety of Z. An F -subspace ~ of 
£; satisfies (a) precisely when it is the set of all vectors of the form 

where Phj runs through Pj (h 2: 1 or h = 0 and i < j), ¢~j : Pj -+ Pi are 
fixed F -linear maps defined for h 2: 1 or h = 0 and i < j and ¢~j = 0 for 
large h. (Note that the ¢~j are uniquely determined by ~.) 

The condition ~ :::) ~_I (for subspaces satisfying (a)) can be written in 
terms of the coordinates ¢~j , ¢~j I as follows: 

(b) 

(c) i-I i-I i 
¢OJ = ¢Oi ¢OJ (2 S i < j S n). 

The condition that Ln :::) e.£; can be written in terms of the coordinates ¢!j' 
¢Zj as follows: 

(d) 

(e) 

n n I 
( f) ¢ h+ I , I = ¢ II ¢ h , I (h 2: 1). 

Hence we may identify Z' with the space of all sequences of linear maps ¢~j : 
Pi ---+ Pj (h 2: 1 or h 2: 0 and i < j) satisfying the relations (b)-(f) above. 
(Note that the conditions e~ C ~ are automatically satisfied; they follow 
from the conditions Ll :::).40. :::) ... :::) ~ :::) e.£; .) From (b) we have 

(b' ) (h2:1). 
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From (c) we have 
(c') A,i A,i A,i+1 A,}-I (1 . . ) 

'f'O} = 'f'O,i+I'f'O,i+2·· ·'f'O} :::; 1 < j :::; n . 
Note that (b),(c) are equivalent to (b'), (c'). From (d) and (b') we have 

n A,n A,I 2 n-I n 
<Ph} = 'f'11'f'02<P03··· <Pon <Ph-I,} (h 2:: 2). 

Hence (d) may replaced by the condition 
n n I 2 n-I h-I n 

<Ph}=(<PII <P02<P03···<POn ) <Pi} (h 2:: 1). 
Similarly, (e) may be replaced by the condition 

A,n n I 2 i-i 
'f'1} = <PI I <P02<P03 ... <PO} U 2:: 2). 

Thus all variables can be expressed in terms of 
n I 2 n-I 

<PII ' <P02' <P03' ... , <Pon 

and the equations (f) are in terms of these variables the identities expressing 
that (<P71<P~2<P~3·· .<p~;;I)h<p71 is equal to itself. Thus (f) is a consequence of 
(b)-(e). Note that 

n n I 2 n-I h-I n 
(g) <Phi = (<P II <P02<P03··· <POn ) <PII (h 2:: 1). 
For large h we have <P~I = 0, and hence from (g) we see that the right-hand 
side of (g) is 0 for large (h); it follows that <p71 <P~2<P~3 ... <P~;; I : Pn -+ Pn is 
nilpotent. We have thus defined an isomorphism of algebraic varieties between 
Z' and the set of sequences 

I 2 n-I n 
<P02' <P03' .•. , <POn ' <PI I 

of linear maps P2 --+ PI ' P3 -+ P2 ' ... , Pn -+ Pn- I ' PI -+ Pn respectively such 
that <p71 <P~2<P~3 ... <P~;; I : Pn -+ Pn is nilpotent. But this set of sequences may be 
clearly identified with E~. Hence we have defined an isomorphism 

(h) Z' 8: E~. 
11.5. The group Jl of all F«e))-linear isomorphisms L -+ L that map each 
2; onto itself acts naturally on Z. It has finitely many orbits; the closure of 
any orbit is an affine Schubert variety. We now give an explicit description of 
the orbits. 

If L.. :> ~ :> ... :>../In is a point of Z , we consider the linear maps induced 
by inclusions: 

,?) L.. +-.2'.).£2 +- ... +-~ I../In 
and the linear map 2;1L.. -+ ~I../In induced by multiplication bye. The 
collection of these maps clearly defines a module in MOO. This gives a map 
from Z to the set of isomorphism classes of modules in MOO of dimension 
d. The fibres of this map are called the strata of Z. They coincide with the 
orbits of Jl on Z . It is clear that the intersections of the strata of Z with Z' 
correspond under 11.4(h) to the strata of E~ described in 11.2. Since Z' is 
open, dense in Z , we see that 11.3 follows. 
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Now using [KL2] we deduce 

Corollary 11.6. The local intersection cohomology of the closure of any stratum 
of E~ vanishes in odd degrees. Its Poincare polynomials are given by some of 
the polynomials of[KLl] for an affine Weyl group of type AN_I' 

11. 7. Let E be an N-dimensional complex vector space with a given semisim-
pIe automorphism s. Fix a nonzero complex number ,. Let P be the vector 
space of all endomorph isms ~ : E --+ E such that sr; = '~s. Let Po be the set 
of all elements of P that are nilpotent. The centralizer of s in GL(E) acts 
on Po with finitely many orbits (strata). If , is of infinite order, the strata are 
known to enter naturally in the representation theory of the affine Hecke alge-
bra with parameter' (Deligne-Langlands conjecture). In this case, it follows 
from [Z] that the closures of the strata are locally isomorphic to usual Schubert 
varieties. In the case where C = 1 , it follows from 11.3 that the closures of 
the strata are locally isomorphic to affine Schubert varieties. (The case n = 1 
is treated in [L4].) 

12. COMMENTS ON THE NON-SIMPLY LACED CASE. 

12.1. The discussion in [R] applies also to the non-simply laced case. We 
present an alternative approach, which is adapted to the point of view of or-
bits and perverse sheaves. Assume that we are given a connected simply laced 
Dynkin graph and an automorphism • of it that keeps fixed at least one vertex. 
Then • acts naturally on R+ and its set of orbits may be regarded as the set 
of positive roots R'+ of a non-simply laced root system R' . We choose an ori-
entation Q of our Dynkin graph with the property that Q is invariant under 
•. If d = (d l , ••• , dn) E N n , we define .(d) = (dr(I)' ... , dr(n) E N n • (We 
identify 1, ... , n with the vertices of the Dynkin diagram.) 

Consider the vector space Ed (as in 4.16) over F , an algebraic closure of the 
finite field Fq • We define an isomorphism .: Ed ~ Er(d) as follows: if (/;) is 
a point of Ed' its image under • is (J;) E dr(d) where J;j = /.(i), r(j) : FdT(i) --+ 

FdT(j) for any i --+ j in Q. This isomorphism commutes with the standard 
Frobenius map on Ed' Er(d) (defined by raising the obvious coordinates on these 
vector spaces to the qth power). Similarly, we have an obvious isomorphism 
.: Gd ~ Gr(d) . 

Assume now that .( d) = d. Then • : Ed ~ Ed is an automorphism of 
finite order that commutes with the standard Frobenius map on Ed' Hence the 
composition of • with this standard Frobenius map is a new Frobenius map Fr 
on Ed' Moreover, the composition of • : Gd ~ Gd with the standard Frobenius 
map of Gd is a new Frobenius map Fr. on Gd . The natural action of Gd on 
Ed is clearly compatible with the new Frobenius maps. We now define ~r (as 
in 9.2) to be the vector space of all functions on E:r with values in Q, that 
are constant on the orbits of G: r • We define %r to be the direct sum of all 
~T where d is subject to .(d) = d. We can define an algebra structure on 
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%T just as in 9.3 (using the new Frobenius maps instead of the standard ones). 
Then %T has a basis consisting of the characteristic functions of the various 
orbits which are stable under P r. These orbits are in 1-1 correspondence with 
the functions R+ --+ N that are constant on the orbits of r on R+ , hence also 
with the functions R'+ --+ N. From this algebra one can then recover the + 
part of the quantized enveloping algebra corresponding to the non-simply laced 
root system R' just as in 5.7. 

12.2. It is likely that most of the results of this paper extend to the non-simply 
laced case. 

13. COMMENTS ON FOURIER TRANSFORM 

13.1. We preserve the setup of 9.1. In addition to the orientation Q, we con-
sider another orientation Q/. Let S be the set of arrows i --+ j of Q such 
that j --+ i is an arrow of Q' and let T be the set of arrows i --+ j of Q such 
that i --+ j is an arrow of Q/. We shall denote by E~, ~/, %' the objects 
defined like' Ed' ~, % but in terms of Q' instead of Q. We define 

Ed S = EB Hom(pd;, pdf) 
i--+ j 

sum over all arrows i --+ j in Sand 

Ed T = EB Hom(pd;, pdf) 
/--+] 

sum over all arrows i --+ j in T. We have canonical isomorphisms 

Ed ~ Ed, S fiB Ed, T ' E~ ~ E~, s fiB Ed, T ' 

which are compatible with the natural actions of Gd • Let J be a function on 
the set of rational points of Ed with values in Q[. Its Fourier transform J is a 
function on the set of rational points of E~ with values in Q[ defined in terms 
of a fixed nontrivial additive character e: Pq --+ Q; by 

J'( ) -dimEd 5/2 ~ 8( ')J( , ) e j + e2 = q . ~ e j , e j e I + e2 

where e I ' e; , e2 denote Pq -rational points of Ed, S' E~, S' Ed, T respectively 
and (e I ' e;) is the canonical pairing Ed S X E~ s --+ P. The map J --+ J is 
compatible with the action of the group of rational points of Gd ; hence we get 
an isomorphism ~ ~ ~'. One can show that this is almost compatible with 
the convolution operation on %, %' in the sense that 

J'-;;J" = qL.'_f(d;d;' -d;d;')/2 i' * j" 
for any J' E~' , J" E~" , where i --+ j runs over all arrows in S. 

This explains why the algebra % is almost independent of the orientation 
(it is really independent of the orientation if one takes its semidirect product 
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with U~). Moreover, Fourier transform does not preserve the characteristic 
functions of orbits but it does preserve the characteristic functions of the corre-
sponding intersection cohomology complexes. This explains why U+ has many 
bases of PBW type, and one canonical basis B. 
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