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1. INTRODUCTION 

The Fibonacci recurrence of the critical orbit appeared in the work of Branner 
and Hubbard on complex cubic polynomials [BH, §12] and in Yoccoz's work 
[Yl, Y2] on quadratic ones, as the "worst" pattern of recurrence. On the other 
hand, a real quadratic Fibonacci map was suggested by Hofbauer and Keller 
[HK] as a possible candidate for a map having a "wild" attractor (that is, a set 
A which is the w-limit set for Lebesgue almost every orbit but is strictly smaller 
than the w-limit set for a generic orbit). The w-limit set of the critical orbit 
in [HK] possesses all known topological properties of wild attractors (compare 
[BL2]). In fact, we will see below that the quadratic Fibonacci map does not 
have a wild attractor; however, the corresponding question for a map with a 
degenerate critical point remains open. 

Actually, the first indication of the Fibonacci map appeared in the numerical 
work of Tsuda [T], related to the Belousova-Zhabotinskii reaction, and also in 
numerical work of Shibayama [Sh] (more precisely, they studied the sequence 
of "Fibonacci bifurcations" creating the Fibonacci map). 

This paper will study topological, geometrical, and measure-theoretical prop-
erties of the real Fibonacci map. Our goal was to figure out if this type of 
recurrence really gives any pathological examples and to compare it with the in-
finitely renormalizable patterns of recurrence studied by Sullivan [S]. It turns out 
that the situation can be understood completely and is of quite regular nature. 
In particular, any Fibonacci map (with negative Schwarzian and nondegenerate 
critical point) has an absolutely continuous invariant measure (so, we deal with 
a "regular" type of chaotic dynamics). It turns out also that geometrical prop-
erties of the closure of the critical orbit are quite different from those of the 
Feigenbaum map: its Hausdorff dimension is equal to zero and its geometry is 
not rigid but depends on one parameter. 

Branner and Hubbard introduce the concept of a tableau in order to describe 
recurrence of critical orbits. Their "Fibonacci tableau" is a basic example, which 
corresponds to one particularly close and regular pattern of recurrence. If a 
complex quadratic map z 1-+ z2 + c realizes this Fibonacci tableau, then the 
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orbit 
0= Zo 1-+ Zl 1-+ Z2 1-+ ••• 

of the critical point returns closer to zero (in a certain invariant sense) after 
each Fibonacci number of iterations. In the real case, it follows that 

IZII > IZ21 > IZ31 > IZ51 > IZsl > IZ131 > .... 
In §2 we will prove that a real quadratic map is uniquely defined by the last 
property; more precisely, we prove the following. We denote the Fibonacci 
numbers by 

u(l) = 1, u(2) = 2, ... with u(n + 1) = u(n) + u(n - 1). 

Theorem 1.1. There is one and only one real quadratic map of the form fc(x) = 

X2 + c with the property that the critical orbit 0 = Xo 1-+ Xl 1-+ .•. has closest 
recurrence at the Fibonacci values, so that IXII > IX21 > IX31 > IX51 > ... , with 
IX31 < IX41· The kneading invariant for this uniquely defined map fc can be 
described by the conditions that 

and that 

xu(n) < 0 for n == 0, 1 mod 4, 
xu(n) > 0 for n == 2, 3 mod 4, 

sgn(x) = sgn(xi_U(n)) for u(n) < i < u(n + 1). 

In fact, numerical computation shows that 

c = -1.8705286321646448888906 .... 

The associated topological entropy is h = log 1.7292119317 .... 
For a fairly general unimodal map f with this same kneading data, we prove 

the following. Let &' = {xO' Xl ' ... } c R be the critical orbit. 

Theorem 1.2. If f is C2 -smooth with nonflat critical point, and with kneading 
data as above, then 

(I) The closure &' of the critical orbit is a Cantor set, with the Xi' i 2': I , as 
the end points of the complementary intervals. 

(2) The map f from &' onto itself is one-to-one except that the critical point 
has two preimages. This map fl&' is minimal and is uniquely ergodic with 
entropy zero. It is semiconjugate to the golden rotation 

t 1-+ t - (V5 - 1)/2 (mod 1) 

of the circle R/Z. 

The proof, in §3, will give an explicit description of the ordering of this 
critical orbit closure. It will also show that it is canonically homeomorphic 
to the set of all infinite sequences (at, a2 , ••. ) of zeros and ones with no 
two consecutive ones, or to the set of all finite or infinite "Fibonacci sums". 
(Compare Definition 2.2 and Lemma 3.3.) 
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Theorem 1.3. If f is C2 -smooth with nondegenerate critical point, then 
(1) The ratio of xu(n) to xu(n-l) decreases exponentially, with 

__ nj3 
An = IXu(n)l/lxu(n-I)1 rv al2 as n -+ 00 

for some constant a > O. 
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(2) The critical orbit closure &' has Hausdorff dimension zero, and the Lia-
punov exponent at the critical value is equal to zero. 

(3) Any two Fibonacci maps with the same parameter a are smoothly con-
jugate on &'. 

(4) If the Schwarzian derivative is negative, then f has a unique absolutely 
continuous invariant measure, with support equal to the entire closed 
interval [Xl' X2] and with positive entropy. 

Remark 1.1. Uniqueness and other properties of an absolutely continuous in-
variant measure hold automatically (see [BL2]). We will derive existence from 
the Nowicki-van Strien "series" condition [NvS]. 
Remark 1.2. Unlike the Feigenbaum map, the geometry of &' goes down to 
zero and is not rigid but depends on the parameter a. (We can effectively vary 
this parameter.) 
Remark 1.3. It is essential here that the critical point be nondegenerate 
(/'(0) =f 0). For example, a Fibonacci map of the form f(x) = X4 + c has 
completely different behavior, with bounded geometry and perhaps with no ab-
solutely continuous invariant measure. A computer experiment by Lyubich and 
Tangerman suggests that the corresponding map x 1---+ X6 + c has the Cantor set 
w(O) as "wild" attractor. 

Let us describe the structure of the proof of the last theorem, which is some-
what complicated. In §4 we get some a priori bounds on the ratios An' In §5 we 
prove Theorem 1.3 assuming that inf An = O. In order to verify this assumption 
we introduce in §6 an appropriate notion of renormalization so that infinitely 
renormalizable maps are exactly Fibonacci ones. Applying Sullivan's ideas [S] 
to our case we prove that if geometry of &' is bounded from below, then there 
is a sequence of renormalizations converging to a map which can be analytically 
continued in a quite big domain of the complex plane. 

In §7 we discuss polynomial-like maps, in an appropriate generalized sense. 
A version of the Douady-Hubbard theorem is valid in this situation: any cubic-
like map is quasi-conformally conjugate to a cubic polynomial with one escap-
ing critical point. It follows that all real cubic-like Fibonacci maps are quasi-
symmetrically conjugate. So, any example of a cubic-like Fibonacci map with 
unbounded geometry shows that all of them have unbounded geometry. Fi-
nally, we renormalize a quadratic-like Fibonacci map into a cubic-like one, 
which completes the proof for the polynomial-like case. 

In the last §8 we show that the limits of the renormalizations of a smooth 
Fibonacci map are actually polynomial-like, which completes the proof of The-
orem 1.3. 
Remark 1.4. The Fibonacci recurrence is a well-known phenomenon for mono-
tone maps of the circle with golden rotation number. The scaling laws in this 
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situation were studied by Herman (at least implicitly), by Swiatek [Swl] (smooth 
homeomorphisms with critical points), and by Tangerman and Veerman [TV] 
(maps with flat spots). In the two former cases one has bounded geometry, 
in the latter the geometry goes down to zero in the similar manner as in our 
example. Such circle maps are explicitly related to certain unimodal maps of 
the interval which are different from ours but also have a sort of Fibonacci 
recurrence; see [PTT]. 

The notation fn will always be used for the n-fold iterate of f. 

2. KNEADING 

Let f: I -; I be a unimodal map with minimum at x = O. As usual, let 
0= Xo f-+ Xl f-+ • •• be the critical orbit, and let 

u(l)=l, u(2)=2, u(3)=3, u(4)=5, 

be the Fibonacci numbers. In order to avoid the hypothesis that f is an even 
function, we will use the notation X f-+ x' for the order-reversing involution, 
defined on some suitable subinterval of I, which satisfies f(X') = f(x). Let 
IIxll be the larger of x and x' . 

Definition 2.1. We will say that f is a Fibonacci map if Ilxu(n) II > Ilxu(n+l) II for 
n ;::: 1, so that 

(2.1) Ilxlll> IIx211 > II x 311 > Ilxsll > II x 811 > IIx 1311 > ... , 
and if II x 311 < IIx411. 
Lemma 2.1. The map f is a Fibonacci map if and only if the signs of the 
successive images Xi are given by 
(2.2) sgn(x) = sgn(xj_U(n)) for u(n) < j < u(n + 1) 

with 
(2.3) ( ) - (_I)(n+l)(n+2)/2 sgn xu(n) - . 

Remark 2.1. The condition IIx311 < IIx411 may not be dropped. For example, 
the pattern 

Xl < X9 < X6 < X8 < x13 < 0 < Xs < x7 < x4 < X3 < xlO < x2 
is compatible with (2.1). 

Remark 2.2. We can describe these conditions in a different language as follows. 
If we assume that Xl < 0 < x 2 ' then Conditions (2.2) and (2.3) are completely 
equivalent to the statement that the interval between 0 and xu(n) is mapped 
homeomorphically by the iterate ji for 0:::; i:::; u(n - 1) but is not mapped 
homeomorphically by jU(n-I)+I. The condition that some large iterate of f 
restricted to an interval [a, b] is a homeomorphism is an invariant way of 
specifying that a is very close to b. Thus Lemma 2.1 can be thought of as 
giving an invariant description of just how close xu(n) is to the critical point. 

Remark 2.3. The Branner-Hubbard description of f would be rather different. 
Following Yoccoz, they cut the interval not at the critical point, but rather at the 
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interior fixed point n < O. In terms of the resulting partition of the interval, 
the appropriate description of the critical orbit is that the two images Xi and 
xi+u(n) lie on the same side of n for i < u( n + 1) - 2 but on opposite sides of 
ex for i = u(n + 1) - 2. 

Proof of Lemma 2.1. If (2.2) and (2.3) are satisfied, then according to Remark 
2.2, we see that the successive images xu(n) are closer and closer to zero. Since 
f[x i ,x4] 1J x 4 ' it follows that IIx411 > Ilx311. Hence f is a Fibonacci map. 
Conversely, the proof that every Fibonacci map satisfies (2.2) and (2.3) will be 
by induction on n, using the following induction hypothesis. 

Hypothesis Hn' For i in the range 0 < i < u( n) with i i= u( n - I), the 
points Xi have sign as specified in conditions (2.2) and (2.3), and furthermore 
Ilxill> IIxu(n_ljll· 

The following elementary observation will be used over and over. For any 
unimodal map with minimum at Xo = 0 

if Ilxpll < Ilxqll then Xp+1 < x q+I ' 

To start the induction, we must show that every Fibonacci map satisfies H 4 . 

Since Ilxlll > IIx211 > IIx311 and IIx411 > IIx311 by definition, we need only show 
that XI' x4 < 0 < x2 • Note first that the Ilxill must all be distinct. For 
otherwise the critical orbit would have only finitely many distinct elements. If 
o < XI then we see inductively that 0 < XI < x2 < ... , which contradicts 
our hypothesis. Similarly, if x2 < 0 and hence XI < x2 < 0, then we see 
inductively that 

XI < x3 < Xs < ... < X6 < x 4 < x2 < 0, 
which contradicts our hypothesis. Finally, let us show that x4 < O. Observe 
that f(y) < y for y E [0, x2]. Thus, if x3 > 0 then x4 < X3 and hence 
x 4 < O. If X3 < 0 but x4 > 0 then Xs = fX4 < fX2 = x3 contradicting our 
hypothesis. This proves H 4 . 

We will show that Hn '* Hn+1 for n ~ 4. Since 0 < Ilxu(n)11 < Ilxu(n_I)II, 
we have 

XI < xI+u(n) < xI+u(n-lr 
Now Xi and xi+u(n-I) have the same sign for 0 < i < urn - 2) by Hn' 
Hence it follows by induction on i that xi+u(n) lies between them and hence 
also has the same sign, for i in this range. Since both Xi and Xi+U ( n- I) have 
absolute value greater than Ilxu(n-1J II by H n , it follows also that Ilxi+U(n) II > 
Ilxu(n_1j1l > IIxu(n) II , for i in this range. For i = u(n - 2), this argument proves 
that x u(n-2)+u(n) lies between xu(n-2) and xu(n) but does not determine its sign. 
However, it does follows that 

0< Ilxu(n-2)+u(n) II < IIxu(n-2) II, hence XI < x I+u(n-2)+u(n) < x I+u(n-2j" 

Now a similar inductive argument shows that x i+u(n-2)+u(n) lies between Xi and 
xi+u(n-2) and hence has the required sign, for 0 < i < urn - 3). Furthermore, 
this shows that IIxi+u(n-2)+u(n) II > Ilxu(n-l) II > Ilxu(n) II for i in this range. In the 
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limiting case i = u(n - 3) , this argument proves that xi+u(n-2)+u(n) = xu(n+l) 

lies between x u(n-3) and x i+ u(n-2) = xu(n_l) but does not determine its sign. 
However, since IIxu(n+1)1I < Ilxu(n_1)11 < Ilxu(n-3)11, this proves that xu(n-3) and 
xu(n_l) have opposite sign, so that xu(n-I) also has the required sign. Thus, we 
have almost proved Hn+1 . The only missing pieces of information are the sign 
and magnitude of Xi for i = u(n - 2) + u(n). 

We must prove that Ilxu(n-2)+U(n) II > Ilxu(n) II· But if Ilxu(n-2)+u(n) II < Ilxu(n) II 
then 

XI < xl+u(n-2)+u(n) < xl+u(n)" 

This is impossible, for a similar inductive argument would show that 
xi+u(n-2)+u(n) must be between Xi and xi+u(n) for 0 < i :::; u(n - 2). In partic-
ular, taking i = u(n - 3) it would follow that xu(n+l) must be between x u(n-3) 

and x u(n-3)+u(n)' By the part of Hn+1 which has already been proved, these 
two have the same sign, and it would follow that Ilxu(n+I)11 > Ilxu(n)ll, which 
contradicts our hypothesis. Thus Ilxu(n-2)+u(n) II > Ilxu(n) II . 

Now recall that x u(n-2)+u(n) is known to lie between x u(n-2) and xu(n) . Since 
IIxu(n-2)+u(n) II > IIxu(n) II , it follows easily that x u(n-2)+u(n) has the same sign as 
x u(n-2) • This completes the proof that Hn ::::} Hn+1 • D 

To show that this result is not vacuous, we must prove the following. 

Lemma 2.2. Fibonacci maps exist. 

We will outline two different proofs. (A third proof could be based on §6.) 
The proof below is an immediate application of the formal machinery of knead-
ing theory, as developed in [MT]. An alternative proof, which is more direct and 
gives a more explicit description of the critical orbit, will be given in Lemma 
3.1. Both proofs will make use of the following. 

Definition 2.2. By a Fibonacci sum we will mean a finite or infinite formal sum 

f.l = u(n 1) + u(n2) + u(n3) + ... 
of nonconsecutive Fibonacci numbers. That is, we always assume that ni+1 ~ 

n i + 2, with n1 ~ 1. It is not difficult to check that every positive integer has 
a unique expression as a finite Fibonacci sum. As an example, the difference 
u(n) - 1 can be expressed as 

{ u(l) + u(3) + u(5) + ... + u(n - 1) for n even, 
(24) u(n)-I= 
.. u(2) + u(4) + u(6) + ... + u(n - 1) for n odd. 

(For infinite Fibonacci sums, compare the proof of Lemma 3.1.) 
As in [MT], we describe the kneading invariant of a unimodal map f by a 

formal power series D(t) = 1 +e l t+e2t2 + ... , where each coefficient en is equal 
to + 1 or -1 according as the function X f-> l.Tn (x) I has a local minimum or 
local maximum at the origin. Since the Xi are nonzero for i > 0, we can check 
inductively that 

(2.5) 



THE FIBONACCI UNIMODAL MAP 431 

Such a kneading invariant is admissible (i.e., actually occurs) if and only if the 
inequality 

ClO ClO 

(2.6) Eel::; E(ernern+ i )/ 
o 0 

is satisfied for every m ~ 1 . Here, by definition, an inequality I: a/ < I: b/ 
between formal power series means that the first difference bi - ai which is 
nonzero is actually positive. Thus, for each m we require that the smallest i 
for which ern+ i i= erne i (if any such exist) must satisfy e i = -1 . 

In the case of a Fibonacci map, it follows inductively from (2.2), (2.3), and 
(2.5) that we must have eu(n) = -1 for every Fibonacci number u(n). In 
fact, according to (2.5), eu(n+l) is equal to eu(n) multiplied by the sign of the 
product xu(n)+lxu(n)+2·· ·xu(n+I). This coincides with sgn(x l x 2 ·· .xu(n_I») = 
eu(n-I) = -1 except that the very last factor xu(n-I) has the wrong sign. Thus 
it follows inductively that eu(n) = eu(n+l) = -1 for all n. In other words, each 
map x 1-+ If'u(n)(x)1 must have a local maximum at x = o. For a k-fold 
Fibonacci sum 

(2.7) m = u(n l ) + ... + u(nk ), where always n l ~ 1 and ni+1 ~ ni + 2. 

Equations (2.2) and (2.5) imply that em equals the product eu(n\)+--+u(nk_\)eU(nk) . 

Hence it follows inductively that em = (_I)k . Thus, in orde~ to prove Lemma 
2.2 we need only show that the formal power series I: erntrn , with em defined 
by this equation, satisfies condition (2.6). That is, for each fixed m the small-
est i with ern+ i i= erne i must satisfy e i = -1. However, if we express m as 
a Fibonacci sum as above, then it is not hard to show that the smallest i with 
ern+ i i= ernei is either i = u(n l -1) or i = u(n l ) or (in the special case n l = 1) 
i = 2. Since ei = -1 in each of these cases, the required inequality (2.6) 
follows. This completes the proof of Lemma 2.2. 

Proof of Theorem 1.1. Since any unimodal kneading invariant which is admis-
sible can be realized by a quadratic map, we can certainly find at least one 
quadratic map fc which realizes the given kneading invariant. (See, e.g., [MT].) 
But for any real quadratic map fc which is not infinitely renormalizable and 
has no attracting periodic orbit, Yoccoz has recently shown that the constant c 
is uniquely determined by its kneading invariant. (This is an immediate corol-
lary of his much more general result about complex quadratic parameter space.) 
Since it is easy to check that a quadratic Fibonacci map is not renormalizable 
and has no attracting periodic orbit, this proves Theorem 1.1. D 

3. THE CRITICAL ORBIT 

Out of the kneading data, it is not difficult to determine the precise ordering 
of the points xrn in the critical orbit. We can describe the resulting ordering by 
a fairly concrete model as follows. The construction will provide an alternative 
proof of Lemma 2.2. 
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Choose a parameter 0 < t < 1 - t2 , or in other words 

0< t < (VS - 1)/2 = 0.61803 ... , 

for example, t = !. Now for each integer m ::::: 0, expressed as a Fibonacci 
sum (2.7), define a real number y m by the formula 

Ym = ±(tnl - tn) + _ ... ± tnk ), 

where the initial sign is to be -1 for n, =0,1 (mod4) and +1 for n, =2, 
3 (mod4) , as in (2.3). Thus the initial term ±tnl is the dominant one, and 
subsequent terms alternate in sign, decreasing by a factor of t2 or more at each 
step since n i+, ::::: n i + 2. 

Remark 3.1. More precisely, this ordering can be described as follows. For 
Fibonacci sums m with different dominant terms, the order of the Y m is de-
termined by the rules 

Y,+ ... < Y5+'" < Ys+··· < Y34+ ... < ... < 0 < ... < Y2'+··· < Y13+ ... < Y3+'" < Y2+·· 
Here, in each case, the dots in the subscript stand for higher terms, which may 
be zero, for an arbitrary Fibonacci sum. For two Fibonacci sums which have the 
same leading summands u(n,)+·· ·+u(nk ) but differ at the (k+ l)st summand, 
the relative order is determined as follows. Setting s = u(n,) + ... + u(nk ), we 
have 

IYsl > ... > IYS+U(nk +5)+ ... 1 > 1YS+U(nk+4)+ ... 1 > IYS+U(nk+3)+ ... 1 > IYS+U(nk+2)+ ... 1 

if k is odd and the same but with all inequalities reversed if k ::::: 2 is even. 
Here all of these points Ys+ ... have the same sign, depending only on the leading 
summand n I ' as described above. . 

We claim that the resulting ordering of the Y m is precisely the required 
ordering of the points xm in the critical orbit. More precisely, we will prove 
the following. 

Lemma 3.1. The correspondence Ym r-+ Ym+l is unimodal, that is, it is monotone 
increasing on the set of Y m for which Y m ::::: 0 but monotone decreasing for 
Y m ::; O. Furthermore, this correspondence is uniformly continuous. Thus, if 
we extend linearly over each gap between the Y m' then we obtain a continuous 
unimodal map F from the interval [Y" Y2] to itself, satisfying the Fibonacci 
condition that 

Y, < Y; < Y; < Y5 < Ys < Y;3 < ... < 0, 

where Ym = Fm(O). (Here, as in §2, we use the notation Y r-+ Y' for the 
orientation-reversing involution of the subinterval [Y;, Y2] which satisfies the 
condition that F(y') = F(y).) 
Proof. It is convenient to divide the various Y m into intervals An' n ::::: 0, 
which are ordered according to the following pattern: 

A2 < A6 < AIO < ... < As < A4 < Ao ::; A, < A5 < A9 < ... < All < A7 < A 3· 

(Here the two sequences {A 2n } and {A 2n+,} converge toward the two pre-
images of zero. Compare Corollary 3.4.) Let Ao = [Y5 ' 0] be the closed interval 
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containing all Yu(n)+'" with n == 0, 1 (mod4) , n ~ 4, and also containing the 
limit point zero. Here, as above, the notation u(n) + ... stands for an arbitrary 
Fibonacci sum with leading term u( n). Similarly, let A I = [0, Y 3] be the 
interval containing all Y u(n)+... with n == 2, 3 (mod 4), n ~ 3, together with 
the limit point zero. For n ~ 2 even, let An be the smallest interval containing 
all Ym with m of the form u(l) + u(3) + ... + u(n -1) + (higher terms), where 
the higher terms if any must start with u(n + 2) or higher. Using the identity 
(2.4), it follows easily that An is equal to the closed interval spanned by the 
two points Yu(n)-l and Yu(n)+u(n+Z)-I' Here the relative order of these two 
end points depends on whether n is congruent to 0 or 2 modulo 4. Similarly, 
for n ~ 3 odd, we define An to be the smallest interval containing all Y m 
with m of the form u(2) + u(4) + ... + u(n - 1) + (higher), where again the 
higher summands if any must start with u(n + 2) or higher. Again using the 
identity (2.4), we see that this interval An is again spanned by the points Yu(n)-l 

and Yu(n)+u(n+Z)-1 ' where the relative order of the two end points depends on 
whether n is congruent to 1 or 3 modulo 4. 

It is not difficult to show that every Y m with m > 0 belongs to exactly one 
of these intervals and that these points are ordered according to the pattern 
described above. For Ym E An a brief computation shows that the map Ym f-t 

Ym+1 is linear with slope (_I)n-l. In particular, it is either order preserving 
or order reversing according as An C [0, Yz] or An C [y I ' 0]. If we extend this 
map to be linear in the gap between An and A n+4 , then computation shows 
that the slope in this gap takes the value 

llF( ) _ t n _ tn+Z _ t n+4 
__ x_ = (_ 1 ) n I ---.,...,.--_----,;-_------;;-

!lx t n+1 _ tn+Z _ t n+3 

for n > O. This is independent of n except for sign. For n = 0 it takes a 
different value but still with the appropriate (negative) sign. As an example, for 
t = ! this gap slope is equal to ± IZI for n > 0 and is - ~ for n = O. In this 
way, we obtain the required explicit unimodal map F which realizes the given 
kneading data. This proves Lemma 3.1, and completes the alternate proof of 
Lemma 2.2. 0 

Lemma 3.2. If the Fibonacci map f has no "homtervals" within the interval 
[XI' x z], that is, if the precritical points are everywhere dense, then f restricted 
to this interval is topologically conjugate to this model map F. 

The proof is straightforward. 

Remark 3.2. By definition, a homterval is a subinterval of I which is mapped 
homeomorphically by all iterates of f. A wandering interval is a homterval 
which is not contained in the basin of attraction for any periodic orbit. Accord-
ing to Guckenheimer [Gl], a unimodal map has no wandering intervals within 
[XI' xz] provided that it has negative Schwarzian, with nonflat critical point. 
According to de Melo and van Strien [MvS], it has no wandering intervals pro-
vided that it is sufficiently smooth, with non flat critical point. (See also Blokh 
and Lyubich [Ll, BLl].) 
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Lemma 3.3. More generally, if a Fibonacci map has no wandering intervals, then 
its critical orbit closure &' is a Cantor set, homeomorphic to the corresponding 
critical orbit closure for the model map F. In particular, this Cantor set is canon-
ically homeomorphic to the set of all finite or infinite Fibonacci sums, suitably 
topologized. 
Proof of 3.3. The appropriate topology for the set of all finite or infinite Fi-
bonacci sums can be described as follows. Let L be the "Fibonacci shift", con-
sisting of all sequences (a\ ' a2 , .•. ) of zeros and ones with no two consecutive 
ones. In other words, L is a one-sided subshift of finite type corresponding to 
the matrix T = ( : 6)' (The name is suggested since the number of cylinders in 
L of length n is equal to u( n + 1) .) This set L is topologized as a subset of 
the infinite Cartesian product {O, I} x {O, I} x ... . Each sequence {an} E L 
determines an associated Fibonacci sum 11 = L,anu(n) , and we give the set 
consisting of all Fibonacci sums the corresponding compact topology. It is easy 
to check that the correspondence m f-+ xm ' where m ranges over positive 
integers expressed as finite Fibonacci sums, extends uniquely to a homeomor-
phism 11 f-+ x ll E &' , where now 11 ranges over finite or infinite Fibonacci sums. 
Further details of the proof are straightforward. 0 

Remark 3.3. It is sometimes convenient to order partially the Cantor set L using 
lexicographical order from the right. Thus two sequences of zeros and ones, 
with no two consecutive ones, are comparable whenever they are eventually 
equal or, in other words, have the same tail. In terms of this ordering, the 
map from L to itself which corresponds to the map fl&' can be described 
as the immediate successor function, which carries each such sequence to the 
next largest sequence with the same tail (such a transformation is called an 
adic shift, compare [VL]). However, there are two exceptional sequences which 
are maximal and hence have no successor, immediate or otherwise, namely, 
the two sequences (1, 0, 1, 0, ... ) and (0, 1, 0, 1 , ... ) corresponding to the 
Fibonacci sums 1 + 3 + 8 + . .. and 2 + 5 + 13 + . .. respectively. These both 
map to the zero sequence. (Compare (2.4).) 

Corollary 3.4. The mapping f from the Cantor set &' onto itself is one-to-one 
except that the point zero has two different pre-images, corresponding to the 
infinite Fibonacci sums u( 1) + u( 3) + u( 5) + . .. and u(2) + u( 4) + u( 6) + .... 

The proof is straightforward. 
Here is a more explicit description of this Cantor set as a subset of the real 

line. For each n 2: 1 let In c R be the smallest closed interval containing 
all of the points xu(q) with q 2: n. Thus In is a closed neighborhood of the 
origin. One end point of this interval is xu(n) and the other end point is either 
xu(n+l) or x u(n+2) according as n is odd or even. Note that the map f folds In 
over onto the closed interval [XI' xu(n)+ rl ' which in turn maps onto the closed 
interval [xU(n)+2' x 2 ] provided that n 2: 3. For each k 2: O. we will use the 
notation I; for the image fk(ln). According to §2, this image I; is disjoint 
from the origin for 1 ::; k < u(n - 1) but contains the origin for k = urn - I) . 
However, In contains a smaller interval I n+ I which again is dis]' oint u(n-I) u(n-I) 
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from the origin. It will be convenient to use the notation 
n n+1 n I n n+1 

J = Iu(n_I) ' and more generally, J k = (J) = Ik+u(n-I)" 

N . . I h In In+1 ote, m partlcu ar, t at u(n-2) = u(n)' 

Definition 3.1. Let M n be the u(n)-fold union 

u u 
O~k<u(n-I) 0~k<u(n-2) 

For example (lising the subintervals from left to right), 
I 

M = [XI' X 2], 
2 

M = [XI' x4] U [X5 ' X 2] , 
3 

M = [XI' X 4 ] U [X5 ' X 3] U [X7 ' X 2 ] , 
4 

M = [XI' X 6] U [XI2 , X 4 ] U [X5 ' X 13 ] U [XII' X 3] U [X7 ' x2], 

and so on. 

Lemma 3.5. The u(n) closed intervals 
n n n d n n 

10 , II ' ... ,Iu(n-I)-I an Jo ' ... , J u(n-2)-1 

435 

are pairwise disjoint. Denoting their union by M n as above, the M n form a 
nested sequence of closed sets MI :::l M2 :::l M3 :::l . .. with intersection equal to 
the Cantor set &. 
Proof. We will show by induction on n that the u(n) subintervals of M n 
are pairwise disjoint, that the M n are nested, and that each M n contains the 
critical orbit closure. The idea of the proof is to show that, as we pass from 
M n to M n+ I , each of the u( n - 1) intervals I; c M n will be replaced by two 
subintervals 1;+1 and J;+I in M n+l , while each of the u(n - 2) intervals 
I n In+1 . h d k = k+u(n-I) remams unc ange . 

To start the induction, it is trivially true that MI = [XI' x2] contains the 
critical orbit closure. The first step in the induction is to note that each In 
contains I n+ I and I n+ I as disjoint subsets. For example, if n == 3 (mod 4) 
then these two subintervals of 

n 
I = [xu(n+ll' xu(n)] 

are situated as shown in Figure 1. 

f+l 

Iii 
x x 0 x u(n+ 1) u(n+2) u(n+3) x x u(n)+u(n+2) u(n) 

FIGURE 1. The interval III in the case n == 3 (mod 4) . 
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The picture for n == I (mod 4) is a mirror image, and the pictures for n == 
0, 2 (mod 4) are quite similar. Note that the map fu(n) folds the subinterval 
I n+2 C In+I over onto I n+1 , while the map fu(n-I) carries I n+1 back onto a 
neighborhood of the origin, spanned by the two points xu(n+l) and x u(n+3). In 

the case n == 3 (mod 4) as illustrated, I n+2 is the interval [xU(n+2) ' xU(n+3)] ' 
while the image Ju(n-I\J n+l ) = [xU(n+I) ' xu(n+3)] coincides with the interval 
In+l. 

It follows easily from Remark 3.1 and Lemma 3.3 that the two subintervals 
In+1 , I n+1 c In 

are indeed disjoint and together contain all of the points of & n In . For 1 ::; 
k < u( n - 1) , a similar argument shows that the two subintervals 

I n+1 In+1 In 
k 'k C k 

are disjoint and together contain all of the points of & n I;. This completes 
the induction and shows that 

MI :J M2 :J M3 :J ... :J &. 

Since each end point of each subinterval of M n belongs to the orbit & , using 
the hypothesis that there are no wandering intervals we see easily that n M n is 
equal to &. 0 

Using the sets M n one can give another description of the above correspon-
dence between & and L (see Lemma 3.3). Given x E & , let Mn(x) be an 
interval of the set M n containing x. Then set an = 0 if Mn(x) = I; and 
an = 1 if Mn(x) = 1;+1 (for appropriate k's). One can check that {an} E L 
is the sequence corresponding to x E & . 

In what follows we will use the notation M n for the interval of Afn 
a1,··an 

corresponding to the cylinder [a l ... an] C L. 
Lemma 3.6. Still assuming that there are no wandering intervals, the points Xi' 
i ~ 1 , are the end points of the complementary intervals for the critical orbit clo-
sure & cR. More explicitly, the Cantor set & can be obtained from the closed 
interval [XI' x2] by removing a dense collection of disjoint open subintervals 
(xp ' x q ) as follows. If one of p, q is a Fibonacci sum of the form 

u(n l ) + ... + u(nk_l ) + u(nk) + u(nk + 2) 

with k ~ 2, then the other is equal to 
u(n l ) + ... + u(nk_l ) + u(nk + 1). 

On the other hand, if one is u( n) + u( n + 2), then the other is either u( n + 1) 
or u(n + 3) according as n is even or odd. 

As an example, the first seven open subintervals to be removed are as follows, 
in their natural order: 
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In other words, the Cantor set & is contained in the disjoint union 

[XI' X9] U [X I9 , X6] U [X I2 , X4] U [X5 , XIS] 

U [XS ' X13 ] U [XII' X3] U [X7 ' X20 ] U [X IO ' x 2] 

(which coincides with the closed set M 5 ). The proof of this statement is a 
straightforward consequence of the ordering of the points in the critical orbit, 
as described above. 

We can obtain a different model for this critical orbit closure as follows. Let 

y = (1 - Vs)j2 = -.61803 ... , 

so that y = y2 - 1. To each finite or infinite Fibonacci sum Jl = u(n l ) + u(n2) + 
... , let us assign the real number ¢(x,J = y(yn, + l2 + ... ) modulo one. 

Lemma 3.7. The resulting map ¢ from the critical orbit closure & onto the circle 
RjZ is one-to-one except at the countably many iterated pre-images of zero. It 
semiconjugates the map fl& onto the golden rotation t t---> t + Y (mod 1 ) . 
Proof. It is easy to check that ¢ is well defined and continuous. Note that the 
identity u(n-l)+u(n) = u(n+ 1) corresponds to the identity yn-I +l = yn+1 . 
Using this fact, it is not difficult to check the required identity 

¢(f(X/l)) = ¢(x/l+ 1) == ¢(x/l) + y (mod 1). 

Thus the image is a compact subset of the circle, invariant under the golden 
rotation, and hence is equal to the entire circle. Now consider any Fibonacci 
sum with leading term u(n). A brief computation shows that the corresponding 
image 

n+1 A.(x ) - y + ... 'f' u(n)+ ... -

lies somewhere between 
n+1 n+3 n+5 n+lj(1 2) n y + y + y + ... = y - y =-y 

and 
n+1 n+4 n+6 n+l n+3 n+2 y + y + y + ... = y - y = -y . 

Thus, depending on the leading summand, the image ¢(x/l) lies in one of the 
nonoverlapping intervals 

[_/, _y4] U [_y4, _/] U [_y6, _ys] U ... U to} U ... 

U [-/, -/] U [_y5, -l] U [-l, -y], 

having total length -y - (_y2) = 1. Hence the value ¢(x/l) E RjZ determines 
the leading summand u(n) uniquely, except in countably many cases which 
can be explicitly described. For two Fibonacci sums with the same leading 
term, a similar argument shows that the value ¢(x/l) determines the second 
term uniquely, again with the exception of countably many cases which can be 
explicitly described; and a similar argument applies to higher terms. 0 
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Corollary 3.8. With hypotheses as above, the map fl&' is minimal, that is, every 
orbit is dense, and has topological entropy zero. Furthermore this map is uniquely 
ergodic, that is, it has one and only one invariant probability measure. 
Proof. This follows easily from the corresponding assertion for an irrational 
rotation of the circle. 0 

Combining the results of this section, this evidently completes the proof of 
Theorem 1.2. 0 

4. A PRIORI BOUNDS 

In the following two sections we assume that f: [-1, 1] --+ [-1 , 1] is a C 2_ 

smooth unimodal map with nondegenerate minimum point 0, and normalized 
by the condition f( -1) = f( 1) = 1 (which does not restrict the generality). 
Denote the class of maps by 'lI, and let us discuss topology on this space. 

We will mainly be interested in the subspace 'lIo c 'lI consisting of those 
f for which f is an even function, f( -x) = f(x). We will first discuss the 
differentiability conditions and topology on this subspace and then generalize 
to the full space .'lI. If f is even, then we can write it uniquely as 

f(x) = A 0 g 0 Q 
XI 

where Q is the squaring map c; ...... C;2, g is some orientation-preserving diffeo-
morphism of [0, 1], and Ax is the orientation-preserving affine map which 

I 

carries [0, 1] onto [Xl' 1], where Xl = f(O) is the critical value. 
k k Now the C -topology on 'lIo' k ~ 2, comes from the C -topology on the 

space of diffeomorphisms g, together with the line topology on the range of 
the parameter Xl . Let Ilfll denote the maximum of the C 2 -norms for g, g-l 

which is a continuous functional in C 2 -topology on our space. 
To obtain a corresponding topology of the full space 'lI, we need one extra 

step. Let X ...... x' be the orientation-reversing diffeomorphism of T which 
satisfies f(x) = f(x') . This involution is certainly C2 -smooth. Consider a map 
B: x ...... (x -x')/2. Evidently f can be expressed as a function of (x -X')2/4 , 
so that we have a presentation f(x) = A 0 g 0 Q 0 B instead of that above. 

XI 

Now we must incorporate the Ck topology on the involution as part of our 
topology. In practice, it is easiest simply to carry out this symmetrizing change 
of coordinate x ...... (x - x')/2 in the beginning and thereafter to deal only with 
even maps f. Moreover, we can also assume without loss of generality that f 
is purely quadratic x ...... x 2 - c near 0 (since any f E 'lI is C 2 -conjugate to 
such one). 

Denote by !T the subspace of Fibonacci maps f E 'lI . 
The following notation will be used throughout the paper: 

The goal of this section is to obtain some a priori estimates for the An (compare 
[G2, Ll, BL3, M, S], etc.). The proofs are based upon the Schwarz lemma and 
the Koebe principle, both of which are stated in the appendix. 
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First let us introduce convenient terminology and notation. A family of 
intervals G = {GJ ;=0 is called a chain of intervals if G j is a component of 
f-1Gj+1 for i = 0, 1, ... , n - 1. The chain is called monotone if all maps 
f: G j -+ Gi+1 are homeomorphisms. 

For a given interval G and a point x such that fn x E G one can construct 
a chain Go' G1 ' ••• , Gn == G pulling G back along the n-orbit of x. This 
construction is an efficient tool in one-dimensional dynamics because it is often 
possible to estimate the distortion of fn along chains of intervals (see [Ll, S]). 

For a family of intervals G = {GJ denote by IGI = :EIGjl the total length of 
intervals Gj and by mult G the maximal intersection multiplicity of intervals 
G j , that is, the maximum number of G j having nonvacuous intersection. 

Let us consider now the pull-back 
(4.1) H n+1 = {H;+I}~:~-I , H;+I == H n+1 =:) I~+I 

of the interval T n- 2 along the orbit {fm I~+I} ~:~-I . The following two topo-
logical lemmas easily follow from the above combinatorics. 

h h n+1 h fn . II H n+1 Lemma 4.1. T. e cain H is monotone (so t at monotomca y maps 
onto T n- 2). 

Let us consider any interval I = Ii, I E {n, n + I}, of the family M n 

different from I; , I~ , I; . Define an interval F == Fn (/) =:) I as follows: 
(i) If I =1= In then F is the convex hull of two neighbors of I in the 

family Mn; 
(ii) If 1= In then F is the half of the interval T n- 2 containing I. 

Now consider the pull-back G = {G j } 7=0 of F == G k along the k-orbit of I~. 
Lemma 4.2. Under the above circumstances 

(1) {GJ 7=1 is a monotone chain of intervals; 
(2) Go C T'-I . 

Lemma 4.3. The intersection multiplicities of the above chains G and H n+1 are 
uniformly bounded: 

multG::; 8 and multHn+ l ::; 8. 
Proof. If t intervals of the chain {G j}7=1 have a common point, then there 
is an interval Gj among them containing at least (t - I) /2 intervals Ns of 
the (k - 1 )-orbit of I;. Since f- i IG i is monotone, f- i Ns belongs to the 
(u(l- 1) - 1 )-orbit of I; . But Gk contains at most three intervals of this orbit. 
Hence t::; 7 . 

The argument for H is similar, and we omit it. 0 

Now we have enough topological information for getting a priori bounds. 

Lemma 4.4. sUPn An)'n+1 < I . 

Proof. Choose the smallest interval I among [0, x u(n)l and I~ E M n with 
k > O. It is easy to analyze the cases I = [0, x u(n)l or 1 = I; for k = I, 2. 
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So, we restrict ourselves to other cases, and then the interval F is well defined. 
Moreover, the Poincare length [I: F] does not exceed log4. 

It follows from Lemmas 4.2( 1), 4.3 and the Schwarz lemma that the Poincare 
length [I~ : Gtl is uniformly bounded (by a constant depending on 11/11). Since 
I is quadratic (and hence quasi-symmetric) near the critical point, the ratio 

IGol 
IGo\TII 

can be estimated through [I~ : Gtl, and hence the ratio ITll/IGol is bounded 
away from 1. 

By Lemma 4.2(2), Go c T I- I , so AI :S ITIIIIGol. It remains to mention that 
AI is equal to either An or An+I. 0 

Lemma 4.5. 
1 (1+AA)2 

_ 2 :S l_An/- 1 (1+0(lHn+ I I)). 
1 An+1 n n-I 

Proof. Applying the Schwarz lemma to the monotone map 
IU(n)-I: (Hn+1 , I~+I) -+ (Tn- 2 , I;) 

we get 
2 1 +A A (4.2) [I~+I: Hn+I]:s [Tn: T n- ] + O(IHn+11) = 210g 1 _ //-1 + O(IHn+II). 

n n-I 
Let G be the component of I-IHn+1 containing 0, f.,l = ITn+II/IGI. The 
calculation for the quadratic map shows that 

(4.3) log _1_2 :S [I~+I : H n+I]. 
I-f.,l 

Furthermore, since lu(n) is not unimodal on Tn, G c Tn . Hence An+1 :S f.,l. 
The last estimate together with (4.2) and (4.3) yield the required. 0 

From Lemmas 4.4 and 4.5 we get immediately an a priori bound of An : 

Lemma 4.6. sUPn An < 1 . 

Lemma 4.7. Let C be the gap between Tn and I n . Then 
ILnl 

sUP-I -I < 1. 
n xu(n) 

Proof. Because of Lemma 4.6, it is enough to show that the gap L is not too 
small as compared with I n . Let N be a monotonicity interval of lu(n-21 
adjacent to In on its outer side. Consider the map lu(n-2)IL U In U Nand 
apply to it the Schwarz lemma taking into account Lemmas 4.1 and 4.6. 0 

Now we can prove that the Lebesgue measure of M n and H n go down 
exponentially fast (compare [G2, BL3, S]). Let [[a, P]] denote the smallest 
closed interval containing both a and P (similarly, ((a, P)) will denote the 
smallest open interval containing a and P). 
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Lemma 4.8. There exist constants C > 0 and q < 1 such that 
IHnl ~ Cqn and IMnl ~ Cqn. 

Hence, the Lebesgue measure of w(O) is equal to zero. 
Remark 4.1. The last statement is a corollary of more general results [BL2, M]. 

Proof. By Lemma 4.7, density of M n+1 in I; is bounded away from 1. Con-
sider now an interval I; E M n , I > O. It follows from Lemmas 4.1 and 4.6 
that the map 

f U(n-I)-1 n 
: II -> [[xU(n_I) ' xu(n+,)ll 

h b d d d · . B h· . M n+1 In. In+1 In B as oun e IstortlOn. ut t IS map carnes n I mto 0 U . Y 
Lemma 4.7, density of the latter set in [[xu(n_I) ' xu(n+,)ll is bounded away 
from 1. Hence density of M n+1 in lin is bounded away from 1 as well. So, 
there is a q < 1 such that 

u(n-I)-I u(n)-I 
A(Mn+I)~qA( U Iln)+A( U It+l). 

1=0 I=u(n-I) 
Applying this estimate twice we get 

A(Mn+2) ~ qA(Mn) , 

and we are done with M n . 
Now consider a pair H n+1 ::::> H n+2 and apply fu(n)-,. Then H n+1 is 

mapped onto T n- 2 , while H n+2 is mapped into Tn-I (since fU(n-,) is mono-
tone on its image). By Lemma 4.6 and the Schwarz lemma, the density of 
fm H n+2 in fm H n+ I is bounded away from 1 for m = 0, ... , u( n) - I . Fur-
thermore, 

f u(n)+m Hn+2 In-I 
em' m = 1, ... , u(n - 1). 

Consequently, for some ql < 1 we have 

IHn+21 ~ qllHn+11 + IMn-11 + IMn - 21, 

and the required follows. 0 

Lemma 4.9. (i). There is a q < 1 such that A~+I = O(AnAn_1 + qn). 
(ii). A~+I = O(IJnI/ITn-II)· 

Proof. The point (i) follows from Lemmas 4.5 and 4.8. To prove (ii), consider 
fu(n-'): IHI -> In and apply the Schwarz lemma. 0 

Remark 4.2. All constants in the above estimates depend only on Ilfll. More-
over, they are uniform over the maps with negative Schwarzian derivative (since 
the Schwarz lemma and the Koebe principle are uniform over this class). Fi-
nally, all estimates are asymptotically uniform over the whole class 'l/ ("beau 
estimates", see Sullivan [S]). For example, Lemma 4.6 can be improved in such 
a way: 

lim sup An ~ C < 1 
n--+oo 

for an absolute constant C. 
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5. SCALING, CHARACTERISTIC EXPONENT, AND HAUSDORFF DIMENSION 

In this section we will prove Theorem 1.3 assuming that there is a good 
enough a priori bound of An. It follows that Theorem 1.3 holds for an open 
set of Fibonacci maps invariant under quasi-symmetric conjugacy. 

Let q < 1 be the constant from Lemma 4.8, an = maxn_l~i~n+1 (Ai' Ai+I)· 

Lemma 5.1. For any x E I~+I 

d n -I u(n)-I , d n 
+(1 + O(an + q)) ::::; I(J ) (x)1 ::::; +(1 + O(an + q )). 
dn+1 dn+1 

Proof. Let us apply the Koebe Principle to the map 

fu(n)-I: (Hn+1 , In+l) -+ (Tn- 2, Tn) 

taking into account Lemma 4.8 

Besides, 

I(JU(n)-I)'(x)1 n 
l(Ju(n)-I)'(y)1 = 1 + O(AnAn_1 + q ), 

n+1 x, YEll 

d Ilnl d _n_ < __ < (1 +A A )_n_ 
d2 - Iln+11 - n+1 n+2 d2 ' 

n+1 I n+1 
and the lemma follows. 0 

Lemma 5.2. There is a p = p(llfll) and L = L(llfll) E N such that if AI < p 
for some I ~ L then An exponentially decrease. For maps with nonpositive 
Schwarzian derivative one can choose L = 1 and uniform p. 
Proof. Let n be so large that f(x) is a quadratic map in the neighborhood 
Tn_I. Then by the chain rule, 

(5.1) I(JU(nl-I), (xl)1 = l(Ju(n-ll-I)' (XI )1· 2dn_ l l(Ju(n-2)-I), (xu(n-ll+1 )1. 

By Lemma 5.1, 

(5.2) d~;1 . 2dn_1 d~_2::::; ~n (1 + O(an _ 2 + an_I + an + qn)). 
n dn _ 1 dn+1 

It follows from Lemma 4.5 that Ak remains small for k = n - 2, ... , n + 1 , 
once An_ 3 becomes small for big enough n. Hence, by (5.2) 

(5.3) 

for some y < 1. Setting An = max (An ,An-I)' we get from (5.3) that 

(5.4) 

So, once An become small, they start to decrease exponentially. It follows that 
they exponentially decrease forever. 
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The final remark: since the constants in the Schwarz lemma and the Koebe 
principle depend only on Ilfll, the constants p and L depend only on this data 
as well. Moreover, all estimates are uniform in the case of negative Schwarzian 
derivative. D 

Recall that a one-dimensional homeomorphism h is called quasi-symmetric 
if any two adjacent commensurable intervals I and J are mapped into those 
commensurable: 

III If II TJT S; K =} If JI S; y(K). 

Denote by yO the set of Fibonacci maps for which inf An = O. 

Lemma 5.3. (1) The set yO is invariant under quasi-symmetric conjugacy. 
(2) The set yO is CO-open in the C 2-balls B(r) of the space ,'7. 

Proof. The first point is clear from the definitions. The second follows from 
the fact that the constants in the previous lemma are uniform over B(r). D 

Let us write an '" Pn if Ilog(an / Pn)1 exponentially decrease and an ;::::: Pn if 
it is bounded. 

The next lemma gives the asymptotical formula of Theorem 1.3( 1) for the 
subclass yO (compare Tangerman and Veerman [TV]). 

Lemma 5.4. For any f E yO the following asymptotical formulas hold: 
(1) An+! "'An/~' 
(2) An '" aTn j3 . 

(3) dn '" (1/2)n"/6+ fJ n+ y 

for some constants a > 0, p, and y. Moreover, 

and the constant R is uniform over maps with negative Schwarzian derivative. 
Proof. Since An exponentially decrease, Lemma 5.1 yields for x E I~+! 

(5.5) 

Substituting this into the recurrent equation (5.1), we get 

(5.6) 

Setting sn = 10g(An/An _ I ), we have from the last formula 

s· =-~s -~IOg2+0(qn) 
n+1 2 n 2 

with q < 1 . It yields 

(5.7) 

with P = max(! ' q) , which proves the first point of the lemma. 
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Setting now c = t log2, Vn = logAn + en we get from (5.7) 

vn+1 = vn + O(pn). 
So, there is a limit 

lim v n == log a = Vo + O( 1) , 
with exponential convergence and the constant depending only on Ilfll and 
uniform over maps with negative Schwarz ian. Equivalently 

a == limAnenc ;:0::: Ao' 
It proves the second point together with the last remark. The reader can easily 
derive the third point from the second one. 0 

Let us estimate now the ratio of any two intervals Msn ... s C Msn~.~ . The 
I n I n~1 

previous lemma gives the asymptotics for the ratio An == IM; ... oI/IM;.~~ I. Be-
sides, Msn ... 10 = Msn~.\ . Other cases are covered by the following lemma. 

I I 

Lemma 5.5. For f E yO the following scaling laws hold: 

IM; ... oll _ IJnl a2 
IMn-11 = Ir-II rv 22(n+I)/3' 

0···0 

If [Sl ... sn_d 1= [0···0] then 

and 

where a 
nential. 

22(n-I)/3 

IMsn~.~ I 
1 n-l 

22(n-2)/3 

is the constant from Lemma 5.4. All asymptotics are uniformly expo-

Proof. Let us consider a chain of two maps 

Note that by Lemma 5.4 IInl rv IXu(n)l. Setting rn = IJnI/IIn-11 we get 

If In I rv 1 _ (l _ r )2 rv 2r . 
Ifr-II n n 

On the other hand, f u(n-2)-1 has an exponentially small distortion on I~-I , 
and hence 

IInl a2 
2r rv -- rv A A rv --;;;----,-,-.,-;;: n IIn-2 n n-I 2(2n-I)/3 ' 

and the first asymptotical formula is proved. 
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In order to get the others, consider the map 

for an appropriate k. It carries MS~"'Sn_IO into I n- I and MS~"'Sn_11 into In 
with exponentially small distortion. It yields the result. 0 

Now we can prove the next piece of Theorem 1.3 for f E yO . 

Lemma 5.6. For f E yO the critical orbit closure &' has Hausdorff dimension 
o. 
Proof. Let us consider covering of &' by the intervals Msn ... s . By the above 

I n 
two lemmas, the lengths of these intervals decrease uniformly superexponential 
(O(qn) for any q E (0, 1)), while their number increases exponentially (:::; 2n). 
Let y = -log 2/ log q; ly be the Hausdorff measure on &' of exponent y. Then 

ly(&') :::; C2n qnr :::; C. 

Hence, dim&':::; y, and y is arbitrary small positive number. 0 

Now we are going to show that the geometry of the set &' is completely 
determined by only one parameter a from Lemma 5.4. Let f and g be two 
Fibonacci maps, 

¢: &'(f) -> &'(g) 
be the natural topological conjugacy. Let us say that ¢ is smooth if for any 
x E &' there exist 

lim I¢(x) - ¢(y)1 =J 0 
Ix-yl 

as y -> x along &'(f), and this limit depends continuously on x. 

Lemma 5.7. If two Fibonacci maps f and g in yO have the same parameter 
a, then the conjugacy ¢ is smooth on &'(f). 
Proof. Indeed, it follows from Lemmas 5.4 and 5.5 that for any Fibonacci 
sequence S = sos I . .. there is a limit 

IMsn ... s (f) 1 lim I n 

n ..... oo IMsn ... s (g)1 
I n 

depending continuously on s. 0 

Lemma 5.8. Let f E yO, n = [Sl ... Sk] be the Fibonacci expansion of n. Then 

l(fn)'(xl)1 rv 2(2/3) L: mSm+Y2::>m+o 

for some constants y and t5 . 
Proof. Let m i be the places where sm, = I. Decompose the n-orbit of XI 

into the parts of length u(m). By (5.5) it gives the factorization of the deriva-
tive into factors of order 2A.;;;2+1. Now Lemma 5.4 implies the required 

I 

asymptotics. 0 
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Clearly, it follows from the last lemma that the growth of the n-fold deriva-
tive at XI is sub exponential. The maximal growth of order expK(logn)2 
(which is faster than any power nY ) is attained at moments u(m) - 1. How-
ever, at the next moments n = u(m) the derivative drops to nY with y = 
210g2/310g('1+ I ) < 1. These oscillations are balanced in a "convergent way". 

Lemma 5.9. The series 

is convergent for any 0: > o. 
Proof. By the last lemma, this series has a majorant of the form 

L 2- L:~=l(am+b)sm = IT (1 + a!+b) < 00. 0 
smE{O, I} m=1 2 

This lemma and the Nowicki-van Strien Theorem [NvS] imply the existence 
of an ahsolutely continuous invariant measure for f E yO. So, Theorem 1.3 
is proved for the subclass yO . 

6. REAL RENORMALIZA TIONS 

Now we need another class of maps on which we can define a renormalization 
in such a way that the Fibonacci maps can exactly be characterized as infinitely 
renormalizable. Let 

J = [a, b], T = [0:, P]' where - 1 < a < b < 0: < P < 1, 

Dom(f) = JuT, and let f: Dom(f) ---+ [-1 , 1] be a C2 -smooth map such 
that (see Figure 2) 

(i) flJ is a diffeomorphism from J onto [-1, 1], which may be either 
orientation preserving or orientation reversing. 

(ii) fiT is a unimodal map from T into [-1, 1] with nondegenerate min-
imum point Xo = 0 and with f( f) T) = 1 . 

J T 

FIGURE 2. Graph of a function in sfo + . 
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Let us denote the space of all such maps by S1I. Since we do not specify 
whether IIJ preserves or reverses orientation, S1I can be decomposed into the 
union of two connected components S1I + and S1I- , where "+" corresponds to 
the case of orientation-preserving II J . 

Now suppose that some map I E S1I , with critical point Xo E T, satisfies 
the conditions that the critical value XI = I(xo) lies in J and that its image 
x2 = l(x l ) lies back in T. Then we will be interested in two segments of the 
first return map from T to itself, as follows. There is an interval TI around the 
critical point which is mapped unimodally by f into T, with both end points 
of TI mapping to one end point of T. Further, there is a disjoint interval 
JI C T which maps diffeomorphic ally onto T under the map I itself. Here 
we choose JI to the left of TI if IIJ preserves orientation, or to the right of 
TI if II J reverses orientation (so that J I lies on the same side of a as x 2)· 

The resulting map V I: JI UTI -+ T, affinely conjugated (rescaled) so that T 
is replaced by the original interval [-1 , 1], is the required renormalization RI 
(there is choice of two rescalings; select that one which makes the critical point 
to be the minimum point). This renormalization interchanges the two spaces 
S1I + and S1I- . If I is n-fold renormalizable, then Rn I comes as rescaling of 
a map Vn I == In ' the restriction of appropriate iterates of I to the union of 
two appropriate intervals, Tn and I n . 

Let T+ and T_ be the semi-intervals on which a divides T. The kneading 
sequence of IE S1I is the sequence of symbols Un E {T+, T_ , J} such that 
xn == Ina E Un' Two maps IE S1I+ (or S1I-) with nonescaping critical point 
and without limit cycles are topologically conjugate if and only if they have the 
same kneading sequence (compare [MT]). 

In terms of kneading sequences the above renormalization can be described 
in the following way. The renormalizable kneading sequences start with J Ts ' 
s E {+, -}. To write its renormalization perform the following operations 
moving along the sequence 

(i) When you see J, cross it; 
(ii) When you see TJ, s E {+, -} , change Ts for Tks provided IE S1I k , 

kE{+,-}; 
(iii) When you see Ts Tr ' change the first Ts for J. 

Let us say that a map I E S1I+ is a Fibonacci map if it has the following 
kneading sequence: 

fib + = JITjT+IJT+IJT_ T_IJT_ T+JTj··· . 

(In order to write the block from u( n) + I to u( n + 1) , repeat the beginning 
of the sequence until the moment u(n - 1) and then change the last symbol Ts 
for the "opposite" one, T_ s ') Denote this class of maps by .gr+ . Similarly, the 
kneading sequence of a map I E ,gr- is produced by the same rule but with 
different initial: 

fib- = JIT+IT+IJTjJT+TjJT+T+JT+I'" . 

A class sr of Fibonacci maps is defined as .gr+ U .gr- . One can also describe 
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this class by the following properties: XI E J, and lu(n-I) is well defined and 
monotone on the interval [[0, xu(n)]] , and 

l u(n-I) -
(6.0) ((0, xu(n))) = ((xU(n_I) ' XU(n+I))) 3 O. 

If we want to emphasize that IE.w , then we say that I has type (2, 1). In 
the unimodal case we say that I is of type (2) (see the next section for more 
general discussion). As in the unimodal case, we will use the notation Tn and 
In for the intervals [[xu(n) ' x~(n)]] and [[xu(n_I) ' xU(n-I)+U(n+I)]] correspond-
ingly (do not confuse with Tn and I n introduced above). 

Lemma 6.1. A map I E.w is infinitely renormalizable if and only if it is a 
Fibonacci map: I E !T. In this case the lollowing inclusions hold: 

(6.1) Tn+2 T T n+ 1 C n C , 

(6.2) I n+2 C I n . 

Proof. Let I E.w be infinitely renormalizable. Then one can check by induc-
tion that 

(6.3) 

Since In-I is renormalizable, 

xu(n) = In-I (0) E I n _ 1 and xu(n+l) = f,,(0) E Tn_I' 

Hence, xu(n+l) lies closer to 0 than Xu(n) , n = 1, 2, .... 
Let us study now the combinatorics of several first iterates of O. Since I is 

renormalizable, 

(6.4) 

Furthermore, X3 = ./;(0) E TI ; hence, x 4 = IX3 E J. So, 

(6.5) 

Consider now the map a: N --> N of the set of natural numbers: if m = 
L, u(/j) is the Fibonacci expansion of m then a(m) = L, u(/j+ 1) (a is induced 
by the shift on the space of Fibonacci expansions). Then we have the following 
rule: 

(6.6) 

So, if we have a combinatorial property of several points x m ' then replacing 
I by In we immediately get the same property of points xanm (provided I 
is infinitely renormalizable). In particular, we can replace points XI' x 2 ' x4 in 
(6.4) and (6.5) by xu(n+I) ' x u(n+2) ' x u(n+I)+u(n+3) . Then we obtain the required 
properties (6.1) and (6.2). 

Let us show now that Xl and x 2 lie on the same side of 0 for I E .w + , and 
they lie on the opposite sides of 0 for I E .w-. Indeed, otherwise consider 
II[x l ' x 4 ] and conclude that X5 lies farther from 0 than x 2 • 



THE FIBONACCI UNIMODAL MAP 449 

Changing f for It we get the same statement for the points x2 and x3 . 

Since the renormalization interchanges sf + and sf -, we conclude that 
((XI' X 3)) 3 O. Replacing f by f n- 2 we get (6.0). 

Finally, since x 2 E T, fl [0, x 2] is well defined and monotone. Replacing it 
again by f n- 2 we conclude that fu(n-I)I[O, xu(n)] is well defined and monotone. 
So, f is a Fibonacci map. 

Vice versa, let fib~, S E {+, -}, be the initial parts of length u( n) of 
the kneading sequences fibs. Then one can easily check by induction that the 
renormalization turns fib~ into fib~~ I. SO, it interchanges fibs and fib -s , 
which certainly implies that both sequences are infinitely renormalizable. 0 

Now let us briefly discuss topology on the space sf (compare §4). We can 
restrict ourselves to the subspace Jfo c sf consisting of those f for which fl T 
is an even function, f(-x) = f(x). Then we can write fiT uniquely as 

f(x) = Ax, 0 fT 0 Q 0 AT 

where AT is the orientation-preserving linear map which carries Tonto 
[-1, 1], Q is the squaring map ~ l--> ~2, fT is some orientation-preserving 
diffeomorphism of [0, 1], and A is the orientation-preserving affine map x, 
which carries [0, 1] onto [Xl' 1], where Xl = f(O) is the critical value. Simi-
larly, we can write flJ as fJ oA J where A J is the orientation-preserving affine 
map from J onto [-1, 1] and where fJ is a diffeomorphism of [- 1, 1]. 

2 k Now we suppose that both fJ and fT are C -smooth. The C -topology on 
Jfo, k :$ 2 , comes from the C k -topology on the space of diffeomorphisms fT 
and fJ' together with the Euclidean topology on the finite-dimensional space 
of parameters a, b, a, f3 , Xl . Let Ilfll denote the maximum of the C2 -norms 
for fJ' f J- 1 and fT' r; I which is a continuous functional on our space. 

We can assume without loss of generality that the original map f is quadratic 
near 0 (thOUgh this property is not preserved under renormalization). Let us 
remark also that clearly all estimates of §§4, 5 hold not only for unimodal maps 
but in the class sf as well. 

Lemma 6.2. The norms IIRn fll are uniformly bounded. 
Proof. By (6.3), fnlTn = fU(n+l) which can be decomposed as a quadratic map 
and the diffeomorphism 

(6.6) 

(see Lemma 4.1). On the other hand, 

(6.7) fU(n+I)-1 (fT ) = f. T T Tn n nne n-l C 

(the last inclusion is by (6.1)). It follows from (6.6), (6.7), and a priori bounds 
proven in §4 that fu(n+I)-llfTn has bounded distortion. By rescaling we get 

I (Rn f)~(x) I 
log (Rn f)~(Y) = O(lx - yl) 
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for any X, Y E [0, 1]. This implies 

I (Rn f); 1= 0(1). 
(Rnf)~ 

Because of bounded distortion, the derivative (Rn f)~ is uniformly bounded 
from below and above, and the boundedness property for the second derivative 
(Rn f); follows. The same argument applies to (Rn f) J and to the inverse 
maps. 0 

Corollary 6.3. If inf An > 0 then there is a Cl-convergent sequence ofrenormal-
izations Rni ---> g E .91 . 
Proof. It follows from the assumption and inclusions (6.1) that the ratio 
ITnl: ITn_11 is bounded away from O. Moreover, Lemma 4.9 and (6.2) im-
ply the same for the ratio IJnl: ITn_ll. Now one can play the "distortion game" 
in manner of §4 to check that three complementary gaps (that is, components of 
Tn_I \(TnUJn)) are also commensurable with Tn_I' After rescaling we conclude 
that the domains Dom(Rn f) do not degenerate, so we can select a convergent 
sequence Dom(Rni f). Then by the last lemma, families of diffeomorphisms 
{(Rnif)T} and {(Rnif)J} are Cl-precompact, and we can extract from them 
convergent subsequences as well. 0 

For an interval Ie R denote by P(I) the plane slitted along two rays 

P(I) = C\(R\I). 

Let us introduce now a subspace W c.91 consisting of maps f: T U J ---> 

[-1, 1] with the following property: The map f; I: [0, 1] ---> [0, 1] can be 
analytically continued to a map P[O, 1] ---> P[O, 1], and f-' : [-1, 1] ---> J can 
be analytically continued to a map P[ -1 , 1] ---> P( J) . 

Lemma 6.4. Let Rni f ---> g in Cl-topology. Then the limiting function g be-
longs to the class W. 
Proof. The map (Rnf)~1 can be written as long compositions of type hI oql 0 

... hk 0 qk where hi are diffeomorphisms between appropriate intervals with a 
small total distortion while qi are square root maps (we reserve this term for 
affine conjugates to the standard square root). Such a map can be rewritten as 
Hn 0 Qn where the distortion of Hn does not exceed the total distortion of hi' 
i = 1 , ... , n , and Qn is the composition of Qi renormalized by appropriate 
Mobius maps (see [So Sw2]). The maps Qn analytically map P[ -I, 1] into 
itself and hence form a normal family. So, we can select a convergent sequence 
Qn ---> Q with Q to be a selfmap of P[ -1 , 1]. On the other hand, Hn ---> id 
in Cl-topology. So, (gT)-1 = Q. In the same way we can treat gj' 0 

Correspondence between Fibonacci maps of classes 11 and .91- . We are going 
to describe an easy surgery interchanging these classes without touching the 
critical orbit. It will follow that any result about the critical orbit established in 
one of the classes immediately yields the same statement in the other class. 
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Let I E 'lI be a unimodal Fibonacci map. Let us restrict it onto the union 
of two disjoint intervals 

(6.8) 

Then let us embed these intervals into disjoint intervals T and J correspond-
ingly and continue I to a map of class .PI - defined on T U J . 

Vice versa, given a Fibonacci map g E .PI - , we can also restrict it onto the 
union (6.8) and then continue to a unimodal map of class 'lI. This is possible 
since g(x5) == x6 < X5 == g(x4) . 

Since orb(O) c /2 U J2 , the above surgeries keep the critical orbit untouched. 

Remark 6.1. We would like to thank E. Aurell and M. Zaks who have recently 
informed us of the paper [KP] which contains a computer-assisted attempt to 
apply renorm-group method to the Fibonacci map. Unlike [KP], our approach 
does not destroy the dynamics. 

7. POLYNOMIAL-LIKE MAPS 

Now we are going to show that all polynomial-like maps IE.PI- (or .PI+) 
are quasi-symmetrically conjugate. It is convenient to introduce more general 
terminology. 

Consider k + 1 topological disks Vi and V bounded by piecewise smooth 
curves, and such that cl Vi are disjoint and contained in V. Let us say that 

is a polynomial-like map 01 type (nl' ... ,nk ) if II Vi is a branched covering 
of degree ni ; d = L ni is called the degree of I. Note that polynomial-like 
maps of type (d) are exactly polynomial-like maps in the sense of Douady and 
Hubbard [DH]. 

Lemma 7.1. Any polynomial-like map I: VI U V2 --+ V oltype (2, 1) is quasi-
conlormally conjugate to a cubic polynomial with at least one escaping critical 
point. 
Prool. Consider an "eight-like" neighborhood N of VI U V2 and smoothly 
continue I there so that I becomes a double covering on the annulus around 
VI and a diffeomorphism on the annulus around Vi" and both annuli are 
mapped on the same annulus around V (see Figure 3, p. 452). 

Then continue I to a slightly bigger domain so that it turns into a three-
sheeted smooth covering of a topological disk over a bigger disk. Now use the 
Douady-Hubbard surgery [DH] in order to conjugate quasi-conformally this 
map to a cubic polynomial. 0 

Lemma 7.2. Any polynomial-like map I E .PI - is quasi-symmetrically conjugate 
to a real cubic polynomial with one escaping critical point. 
Proof. For I E .PI - one can carry out the above construction in an R-symmetri-
cal way. 0 
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FIGURE 3 

Lemma 7.3. All Fibonacci real cubic polynomials are quasi-symmetrically conju-
gate. 
Proof. Consider a locus F+ of real cubic polynomials z f-+ z3 - 3a2 z + b for 
which the critical point a is a preimage of the left fixed point (it is equivalent 
to b = 2a3 - 2a) and a < t. By Branner and Douady [BD], there is a 
natural one-to-one correspondence between F+ and the i-locus of quadratic 
polynomials z f-+ z2 - c with -2 :::; c < - i. Hence, in F+ there is only one 
Fibonacci map (Theorem 1.1). On the other hand, conjugacy classes of cubic 
maps with escaping critical point a (which means b < 2a3 - 2a) are in one-to-
one correspondence with F + as well: go toward the curve b = 2a3 - 2a along 
external rays (this argument is due to Douady). 0 

From the last two lemmas we have immediate 
Corollary 7.4. All polynomial-like Fibonacci maps I E Y- are quasi-symmetri-
cally conjugate. 
Corollary 7.5. All polynomial-like Fibonacci maps belong either to the set Yo or 
to its complement. 
Proof. For maps IE Y- this follows from Corollary 7.4 and Lemma 5.3. For 
maps I E y+ just observe that it belongs to yO or its complement together 
with the renormalization. 0 

Now we will give an example of a polynomial-like map belonging to Yo which 
will yield that all Fibonacci polynomial-like maps belong to Yo. 
Example 7.1. Consider disjoint union of two intervals I = [-1, A] and J = 
[-c, -c + qA 2] with positive c, q, A, c is big, A is small. Let III be a 
quadratic map x f-+ qx2 - c, while IIJ be linear x f-+ O:X + b. 

Let us adjust parameters 0:, b, c, q ,A in such a way that 

o f-+ -c --+ -1 f-+ A f-+ -c + qA2 f-+ V E [0, A]. 
It yields the relations 

(7.1 ) 1 + v 1 
0: = (c + A)A2 "-' cA2' 

1 
b = o:C - 1 "-' 2". 

A 
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There remain three free parameters c, A , and v . Let us show that for c2 A 2 < 1 
this map is cubic-like. To this end consider a disk D = {z: 1=1 < 2}. On its 
boundary a D our map acts as 

227 f(z) = c(z - 1) + AZ ,...., c(z- - 1). 

Hence, 

(7.2) 3c < If(z)1 < 5c for Z E aD. 
Consider a disk V = {z: 1 z 1 < 2c} and its inverse image VI (under the 
quadratic map.) By (7.2), VI c D and f: VI --> V is a quadratic-like map. 
Moreover, VI:::> [-1,1] since f[-I, 1] = [-c, A] C V. 

Furthermore, consider the preimage V2 of V under the linear map Z I--t 

az + b. It is a disk containing J of radius 
2 2 2c / a ,...., 2c A < 2 

(by (7.1)). Hence, for big enough c the closure of this disk is contained in V 
and does not intersect cl VI . So, f: VI U V2 --> V is a polynomial-like map. 

Now one can adjust v to get a Fibonacci map. Since f has nonposi-
tive Schwarzian derivative, it belongs to :To provided A is sufficiently small 
(Lemma 5.2). 

Renormalization of a quadratic-like Fibonacci map. This procedure associates to 
a quadratic-like Fibonacci map (of type (2)) a cubic-like Fibonacci map (of type 
(2, 1)). It will complete the proof of Theorem 1.3 for quadratic-like Fibonacci 
maps (in particular, for the quadratic polynomial). We can restrict ourselves to 
the case of the quadratic Fibonacci polynomial. Now let us consider the begin-
ning of the Yoccoz partition construction (see [H]). Draw a curve S consisting 
of two external rays through the fixed point a and an equipotential level y. 
We will obtain two pieces of level 0, namely, W O (containing 0) and WID (con-
taining x I). Define pieces of level n as n-fold preimages of the pieces oflevel 
O. Denote by Wn(x) the piece of level n containing x; set W n == Wn(O). 
Let us consider the piece V == W 4 :::> T4 satisfying the property that 

(7.3) 4 3 clW C W . 

Define a piece VI == W 9 :::> T 5 as the pull-back of V of order 5 and V2 :::> J5 as 
the pull-back of V of order 3. One can check that cl VI and cl V2 are pairwise 
disjoint and are contained in V (it is a formal corollary from (7.3)). So, the 
map g defined as f5 1 VI and f3 1 V2 is polynomial-like of type (2, I). 

Remark 7.1. The above construction actually can be applied to any noninfinitely 
renormalizable "persistently recurrent" quadratic polynomial (see [L2]). 

Geometry of w(e) is not rigid. We would like to show that parameter a can 
really be changed in class '!I, so the geometry of w(e) is not rigid. The above 
example provides us with a Fibonacci map of class sf with arbitrary small 
AD = l/e. By Lemma 5.4, parameter a ;:::: AD is getting arbitrarily small as 
well. Renormalizing f if necessary we obtain a Fibonacci map of class sf-
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with arbitrarily small a. Now the surgery of §6 turns this map into a unimodal 
Fibonacci map with the same parameter a. 
Remark 7.2. Actually, in order to vary parameter a in class ~ it is enough to 
observe that the renormalization turns a into a/.J2. 

8. POLYNOMIAL-LIKE PROPERTY OF ANALYTIC FIBONACCI MAPS 

In this section we will prove that analytic Fibonacci maps f E g become 
polynomial-like after appropriate renormalization. Together with the results of 
the previous two sections it will complete the proof of Theorem 1.3. 

For an interval Ie R denote by D(I) the Euclidean disk based upon I as 
the diameter. 

Lemma 8.1 (see [S]). Let ¢: P(I) --+ P(J) be an analytic map which maps I 
diffeomorphicallyonto J. Then ¢D(I) c D(J). 
Proof. The interval I is a Poincare geodesic in P(I), and the disk D(I) is its 
Poincare neighborhood (of radius independent of I). Since ¢ contracts the 
Poincare metric, we have the required. D 

Lemma 8.2. Let f E g be an analytic Fibonacci map. Given n, consider a disk 
V = D(Tn) and its pull-backs UI :::) Tn+1 and U2 :::) I n+1 of order u(n + 2) and 
u(n + 1) correspondingly. Then cl Ui are disjoint and are contained in v. 
Proof. Let Tn = [[tn ' t~]] with tn being closer to xu(n+2). 

The branch ¢: V --+ U2 of f-u(n+l) satisfies the assumptions of Lemma 
8.1, and hence U2 c D(Jn+I). By the same reason, fUI C D(Q) where Q == 
[b, a] 3 XI is the monotone pull-back of Tn of order u(n + 2) - 1 (b < XI is 
the preimage of tn ). 

Now let Xn_1 be the component of Tn_1 \Tn adjacent to tn· Since L: IXnl < 
00 , we can select such an n that 

(8.1 ) 

By Lemma 4.1, the map f u(n+2)-1 has a monotone continuation beyond the 
point b to the interval W which is mapped onto X n _ 1 • So, we have a three-
interval map 

u(n+2)-1 I 
(8.2) f : W u [b, xd U [XI' a] --+ Xn_1 U [[tn' Xu(n+2)]] U [[Xu(n+2) ' tn))· 

Let q = IXu(n+2)1: Itnl. Applying the Schwarz lemma to (8.2) taking into 
account (8.1) we get 

so that 

(8.3) 

a-b 2 
log -- :::; log 2 + log -1 - , 

a -XI + q 

X -b 3-q _1_< __ 
a-xI - l+q· 

Now let us take the f-preimage of D(Q). Since f- I is just a square root 
'II: , f-+ ~ on D( Q) , this preimage is contained in a domain based upon 
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T with attitude n+1 

h = Itn+IIJ:I_-x~ ~ Itn+IIJ~ ~: ~ Itn+ll/q < tn' 

Moreover, this domain is contained in the disk centered at zero of radius 
max(tn+I' h) < tn' So, cl VI C V. 

Let us show now that cl VI n cl V2 = 0. If a - XI ~ XI - b then If/D(Q) c 
D(Tn+I ) , and the statement follows. Assume that XI - b > a - XI' Then one 
can check the following elementary fact about the square root map: If/D[b, a] 
is convex if and only if XI - b ~ 3(a - XI)' By (8.3), the last estimate holds, 
so If/D(Q) is convex. Hence, If/D(Q) n D(Jn+ l ) = 0, and we are done. 0 

ApPENDIX. SCHWARZ LEMMA AND KOEBE PRINCIPLE 

We refer the reader to [YI, G2, Swl, Sw2, MvS, S] for the following technical 
background. 

Let us consider four points a < b < c < d and two nested intervals L = 
[a, d) and H = [b, c). The Poincare length of H in L is the logarithm of an 
appropriate cross-ratio 

(d-b)(c-a) 
[H: L] = log (d _ c)(b - a)" 

Let g: (L, H) --+ (L' , H') be a C3 diffeomorphism, and let 

S g = ~:' - ~ ( ~; r 
be its Schwarzian derivative. 

Schwarz Lemma. If g has nonnegative Schwarzian derivative, then it contracts 
Poincare length [H': L'] ~ [H : L] . 

Koebe Principle. Let g has nonnegative Schwarzian derivative. If [H : L] ~ I 
then Ig'(x)/g'(y)1 ~ K(l) for any x, y E H. Moreover, K(I) = 1+0(1) as 
1--+0. 

One can essentially extend the range of applications of these results com-
bining the Schwarzian derivative condition on some intervals with bounded 
nonlinearity on others. Let us consider a chain of (closed) interval diffeomor-
phisms 

II --+ J I --+ ... --+ In --+ I n 

where gi: Ii --+ Ji have nonnegative Schwarzian derivative while hi: Ji --+ Ii+ I 
arejust C2 smooth. Set F = hnogn o ... oh l ogl . Let Gi C intli and Hi C int Ji 
be closed subintervals related by diffeomorphisms. 

Denote by h the family of maps hi' by I the family of intervals Ii' etc. 
Let Ilhill = max Ih"(x)/h'(xll. IIhll = max Ilhill be the maximal nonlineari!.v of 
h, III = z= IIil be the total length of I. 1= [G I : II]' 
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Schwarz Lemma (smooth version). Expansion of the Poincare length by the map 
F is controlled by h in the manner 

[Hn: In] :::: 1+ O(IJI) 
with the constant depending on Ilhll. 
Koebe Principle (smooth version). Distortion of FIG[ can be estimated as 

I ;:~~~ I:::: K(l; Ihl, IJI) 
where K = 1 + 0(1 + IJI) as IJI, 1--->0 with the constant depending on Ihl. 
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