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1. INTRODUCTION

The modern mathematical theory of fluid dynamics began over 50 years ago
when Leray (1933, 1934a, 1934b) published his pioneering works on the Navier-
Stokes equations. These equations describe the time evolution of solutions of
mathematical models of viscid incompressible fluid flows. Because of this basic
role in the modelling of fluid flows, there is considerable interest in developing a
good mathematical theory of the behavior of the solutions of the Navier-Stokes
equations. Since the solutions of these equations depend on both space and
time, one is especially interested in the phenomenon of the time evolution of
the spatial variations of the solutions. This phenomenon, which is described
with more precision later, is referred to as the regularity of solutions, and it is
the primary focus of the theory we present in this paper.
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The Navier-Stokes equations on a bounded region Q c R”, n =2, 3, are
given by

m U -vAU+(U-V)U+VP=F,

v.-U=0,

where V is the gradient operator and A is the Laplacian. In this paper we
treat the case where Q = Q_ is a thin 3-dimensional domain, i.e., Q, = Q, x

(0, &), where Q, is a suitable bounded region in R? and ¢ is a small positive
parameter. In particular we will study (1.1) with periodic boundary conditions
where Q, =(0,/,) x(0,1,), and /, and /, are positive.

Recall that the Navier-Stokes equations (1.1) on Q can be written in the
abstract form

(1.2) U +vAU+B(U,U)=P F,

where P, is the orthogonal projection of Lz(Q, R") onto the space of diver-
gence-free vector fields, AU = -P,AU, and B(U, V) =P, (U-V)V. We will
be interested in solutions of (1.2) under the assumption that the initial data U,
satisfy

(1.3) U, e D(4'?%),

where D(Al/ 2) is the domain of 4"/ ; see Temam (1977, 1983) and Constantin
and Foias (1988). We also assume that the forcing function F = F(¢) satisfies

(1.4) F() e Wh™([0, ), L}(Q)).

In the case of periodic boundary conditions one has D(Al/ 2) C H;er(Q) . We
will also assume, in this case, that

/Uody=/de=o,
Q Q

The phrase global regularity of solutions, or existence of strong solutions,
refers to the property that when U, and F satisfy (1.3) and (1.4), then (1.2) has

a solution U(¢) that satisfies U(0) = U, and U € CO([O, 00), HI(Q)). The
principal outstanding problem for the 3-dimensional Navier-Stokes equations
(3DNS) is to determine whether or not (1.2) has a global regular solution for
every U, and F satisfying (1.3) and (1.4).

The study of the regularity of solutions, both in 2-dimensions and 3-dimen-
sions, has attracted widespread interest beginning with Leray (1933, 1934a,
1934b). We are unable to give a complete history of this study here, but special
mention should be made of the important contributions of Hopf (1951), Kise-
lev and Ladyzhenskaya (1957), Serrin (1962), Fujita and Kato (1964), Masuda
(1967), Komatsu (1980), and Caffarelli, Kohn, and Nirenberg (1982). Addi-
tional references can be found in Giga (1988). Before describing our results on
the global regularity of solutions of the 3DNS, let us review some aspects of the
classical theory of regularity of these solutions.

For the 3DNS it is known that for every U, and F satisfying (1.3) and (1.4)
there is a 7', which depends on U, and F, 0 < T < oo, such that (1.2) has a
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unique strong, or regular, solution U(¢) that satisfies U € CO([O, T), H(Q))
NL. ((0,T), D(4)) and U’ € L} ((0, T), L*(Q)). Furthermore, if the data
U, and F are small, then (as is known and as we show in §2.11) one has
T = oo, i.e., (1.2) has a globally regular solution for small data. Other than
several theorems which establish the global regularity of solutions for small data,
it is essentially unknown whether there are any other initial conditions U, and
F for which (1.2) has a globally regular solution, see Constantin and Foias
(1988), Ladyzhenskaya (1969), Lions (1969), Temam (1977, 1983, 1988), and
von Wahl (1985).

The theory of global regularity of solutions of the 2-dimensional Navier-
Stokes equations (2DNS) is quite different. In this case there exists a globally
regular solution of (1.2) for all U, and F satisfying (1.3) and (1.4). Further-

more, one has U(t) € H 2(Q) for all ¢ > 0, and there exist positive constants
K and L,, L, where L, and L, do not depend on U, such that

(1.5) ”U(t)”Hl(Q) <K, 0<t<oo,

and

(1.6) lim sup ||U(t)||H,-(Q) <L, i=1,2.
t—o0

These classical results can be found in Ladyzhenskaya (1969), as well as in
Constantin and Foias (1988) and Temam (1977, 1983, 1988). Because of the
relevance of (1.5) and (1.6) for the 3-dimensional theory presented here, proofs
of these relations are included in §5.

As a result of (1.5) and (1.6), it follows that in 2-dimensions, when F is time
independent, (1.2) has a global attractor 2, and 2 is a compact set in H l(Q)
and compact in HZ(Q); see Ladyzhenskaya (1972), Hale (1988), and Temam
(1988). This means that 2 is a Lyapunov stable attracting invariant set! in
H 1(Q). If F is time-varying, but has some compactness property (e.g., F(¢)
is Bohr almost periodic in ?), then by using the theory of skew-product flows
(see Sacker and Sell (1977, 1990) and §2.11) one can show that (1.2) generates
a global attractor in H 1(Q) x # , where ¥ is a compact positively invariant
subset of W' ([0, 00), L*(Q)).

It is the existence of the global attractor for the 2DNS which is the raison
d’étre of our study of the 3DNS on thin domains. Because a thin 3-dimensional
domain is somehow close to a 2-dimensional domain, it is natural to ask whether
one can use the good properties of the 2DNS to study the global regularity of
the 3DNS. As we shall see, the theory presented here gives an afirmative answer
to this question. '

The idea of exploiting the existence of a global attractor of an evolutionary
equation on an n-dimensional domain to obtain better information for a cor-
responding equation on a thin (n + 1)-dimensional domain has already been
used in Hale and Raugel (1990, 1992a, 1992b). Also see Raugel (1989).

'It is also the case that the global attractor 2 for the 2DNS has finite dimension; see Mallet-
Paret (1976). The dimensionality of 2 has been widely studied; see Temam (1988) for references
to this literature.
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The process of exploiting the fact that Q, is close to Q,, when ¢ is small,
is far from being trivial. The main reason for the complication is due to the
fact that the 3DNS on Q, is a singular perturbation of the 2DNS on Q, . The
regularization of this singular perturbation is done in two steps, and it follows
the methods introduced in Hale and Raugel (1992a, 1992b) for reaction diffu-
sion equations and damped wave equations on thin domains. First one maps
Q, onto O, =Q, x (0, 1) by means of dilation. The Navier-Stokes equations
(1.1) on Q, are then transformed to the dilated Navier-Stokes equations on

Q;; see (2.4). This dilation alone does not remove the singular perturbation

because some of the differential operators in (2.4) contain coefficients with e,

or g2 , and ¢ is small. Nevertheless, since the domain is now fixed to be 0,
for all ¢ > 0, this opens up the possibility of using other techniques from the
theory of partial differential equations to regularize the singular perturbation in
(2.4). The second step is accomplished by introducing the orthogonal projection
v = Mu where

1
v(x,, Xx,) = /0 u(x,, x,, s)ds.

By applying M and (I —-M) to the dilated Navier-Stokes evolutionary equation
(2.5) one finds an equivalent system (2.23). What we effectively show in this
paper is that the system (2.23) is a regular perturbation of the 2DNS when ¢
is small.

In Raugel and Sell (1989), we described the above method and announced
some of our existence results. Since that time, we noticed that a more accurate
Sobolev inequality given in Hale and Raugel (1992a) (also see the appendix, §8)

can be used to improve the existence theorem in H 1(Qe) in a significant way.
The following theorem is the principal result in this paper:

Theorem A. Consider the 3DNS (1.1) on Q, with periodic boundary conditions.
Thereis an e, = gy(v, A,) > 0 such that for every ¢, 0 < ¢ < g, there are large
sets K (e) and F(¢) where

R(e) C {UeHl(Qe): V-U=0,/Q Udy=0},

Y(s)c{F6W1’°°([0,oo),L2(Qe)):/Qde=O},

such that if Uy € #(¢) and F € F(¢), then (1.2) has a strong solution U(t)
with U(0) = U,, defined for all t >0, and

2 ~
U@, < Ky < o0,

where I?l depends on U, and F . Furthermore, there exist constants il and
L, , which do not depend on U, and which satisfy

limsup |U()l g, <L, limsup |U@)] 2, < Ly
t—o0 € t—00 €

The proof of Theorem A, including a clarification of the significance of the
assertion that #(e) and .#(¢) are large sets, will be incorporated into the H !
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and H’ -Regularity Theorems, which are discussed in the next three sections. It
is a consequence of these Regularity Theorems that the set of strong solutions
of the Navier-Stokes evolutionary equation has a local attractor 2, = %A (F)
whenever F satisfies some compactness property and F € .#(¢). The basin
of attraction of 2, contains the set F#(g) x H*(F); see §2.11. Moreover,
we show that for F € S(¢) the set 2, is the global attractor for the Leray
solutions of the 3DNS on €2, , i.e., those weak solutions that satisfy the energy
inequality (3.35). Furthermore, when F is time-independent, 2, is a compact

setin H 2(95) . We also show that, under reasonable assumptions, 2, is upper
semicontinuous at ¢ =0.

In the next section we introduce the notation used in this paper, and we state
the main theorems proved herein. The proofs of the regularity theorems will
be given in §3 and §4, and the theory of the reduced 3DNS is presented in §5.
The reduced 3DNS describe solutions of the 3DNS which depend only on two
spatial coordinates. In §6 we study the attractor 2, for the 3DNS and we show
that, under reasonable hypotheses, 2, is close to the global attractor 2, of the
reduced 3DNS.

The theory of the 3DNS on thin domains, which we present in §§2-6, will be
formulated in the context of spatially periodic boundary conditions; however,
the methods we use are valid in other settings. In §7 we will show how the theory
presented here can be extended to cover the Navier-Stokes equations with other
homogeneous boundary conditions. In a forthcoming paper we will present the
theory of global regularity for the Navier-Stokes equations with inhomogeneous
boundary conditions on thin 3-dimensional domains, and we will consider other
types of thin domains.

The results described in this paper were presented at the Workshop on Dy-
namical Systems Approaches to Turbulence held at the IMA at the University
of Minnesota in May 1990. Related contributions appear in Raugel and Sell
(1989, 1992a, 1992b). It should be noted that by imposing various symmetry
conditions on the solutions of the 3DNS, one can show the global regularity of
these solutions; see Ladyzhenskaya (1970) and Mahalov, Titi, and Leibovich
(1990).

[

2. NOTATION: STATEMENT OF THEOREMS

The Navier-Stokes equations on a bounded region Q in R”, n =2, 3, are
given by

@1 U-vAU+ (U-V)U+VP=F,
' ' vV.-U=0,

where V is the gradient operator and A is the Laplacian. In this paper we
will be especially interested in the case where n» = 3 and Q is a thin domain
of the form Q, = Q, x (0, ¢), where Q, is a suitable bounded domain in R’
and ¢ is a small positive number. In particular, we will assume that Q, =
(0,1,)x (0, 1,), where [, and [, are positive. We will assume that ¢ </, </,
and 0 < &£ <1 and that the solutions U of (2.1) satisfy the periodic boundary
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conditions:

1

{U(y+l,.e.,t)=U(y,t), i=1,2,
Uy +ee,, t)=Uly, 1),

where {e, , e,, e;} is the natural basis in R?. In addition, we will require that
F and the initial data U, satisfy

/de=/ U,dy =0.
Qt Ql

It then follows that any solution U of (2.1) with U(0) = U, will also satisfy
Jo Udy =0 for t >0. Set Q; = Q, x (0, 1), and define a = (a,, q,, a;),
where a; = l,."l , i=1,2,3,and /; = 1. The change of variables (y,, y,, y3)

~ (X, X,, x;) where x;=y;, i=1,2,and x; = £_1y3 maps Q, onto Q,.

We will present some aspects of the theory of the Navier-Stokes equations
in this section. For further information, consult Constantin and Foias (1988),
Ladyzhenskaya (1969), Lions (1969), Temam (1977, 1983), or von Wahl (1985).

2.1. Dilated Navier-Stokes equations. The linear operator J, given by U =
J,u, where

(22) Uy, ¥y, 93) =4y, ¥, 87 93),
sets up a one-to-one correspondence between measurable functions on Q, and
measurable functions on Q,. Furthermore, one has JE(Wk’p (Qy) = wk.p (€,)
for any Sobolev space W*'? . We will need the identity

(2.3) 10N = elullipg,» 1<P<oo,
@) ©)

where U = J,u. We shall use capital Roman letters to denote functions on €,
and lower case Roman letters for functions on Q,.

We want to let ¢ vary in our study of the solutions of (2.1). Rather than
studying a fixed equation on a variable domain, it is more convenient to fix
the domain and permit the equation to vary. Therefore, we shall follow the
construction in Hale and Raugel (1992a). In particular, by using the operator
J, , the Navier-Stokes equations (2.1) are transformed to the following system

on Q,:
u,—vAu+wu-vyu+V,p=f,

2.4
(2.4) V,-u=0,

where V, = (D,, D,, ¢ 'D,), A, = D:+Dj+¢ 'D;, D, =9/dx;, i=1,2,3,
u= Je_lU, f= J;IF ,and p = Je_lP. We will refer to (2.4) as the dilated

Navier-Stokes equations on Q, . Because of the terms s_’D3 and 8—2D§ where
¢ is small, the system (2.4) is a singular perturbation of the two-dimensional
Navier-Stokes equations.

2.2. Abstract formulation. The next step is to reformulate the initial value
problem for (2.4) as an abstract nonlinear evolutionary equation on a suitable
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Hilbert space H,. The approach we use is an adaptation of the theory presented
in Temam (1983).

Let L2(Q3) =I’ (Qs, Rs) denote the collection of all functions u: Q; — R®
with the property that

|u|2dx=/ u-udx < oo,
Q3 3

and let
def 2 1/2
< g, = ([ 1 dx)
3

denote the usual norm. For m =0, 1, 2, ... let the Sobolev spaces H;"(Q3) =

H;" (05, R*) be the closure in H "(Q5, R*) of those smooth functions that are
periodic in space, i.e.,

u(x +lLe;) = u(x), i=1,2,3.

One then has Hl? (Qy) = LZ(Q3) . Also the norm on H:‘ (Q,) is generated by
the inner product
(u,v), = Z D*u-D*vdx.
lal<m %
Let H, = H,(Q,) denote the closure in L? (@) of those smooth functions
u that are periodic on Q, and satisfy

/ udx=0 and V, -u qf-fDlul + D,u, + s_lD3u3 =0.
o
Let P, denote the orthogonal projection of Lz(Q3) onto H,. By applying P,
to (2.4) and using the fact that P,(V,p) = 0, we obtain the following abstract

nonlinear evolutionary equation on H, :

(2.5) u +vAu+B,(u,u)=P,f,

where du/dt = U, u= Puec H,, A.u=—PA,u (with the periodic boundary
conditions), and the bilinear form B, satisfies B,(u, v) =P, (u-V,)v. We shall
refer to (2.5) as the dilated Navier-Stokes evolutionary equation. We define ng
for m=0,1,2,... by
m m
V. =HNH(Q,).

Thus Ve0 = H,. Also A, is a selfadjoint operator with compact resolvent, and
one has D(4,) = V? and D(Al/ 2) = VE1 . Furthermore, A4, satisfies

& €
(2.6) Ml < 14, ul®, uweD(4,),
where 4, > 0 is the smallest eigenvalue of 4, . Since 0 <& </, </, one has
A= 47z2af = 47t211_2.
The evolutionary equation (2.5) does not contain the pressure term V, p. In
order to recover the pressure term we apply (I —P,) to (2.4) to obtain

2.7 (I=P)(u,—vAu+u-VY)u)+V,p=(I-P)f,
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or in the case of periodic boundary conditions
(2.8) (I-P)u-V,)u+V,p=(1-P,)f.

If ueV, and f € L*(Q,) are known, one can solve (2.7) or (2.8) for p by
classical techniques; see Constantin and Foias (1988) and Temam (1977, 1983).
We will assume the forcing term f in (2.4) to be a time-varying function in

the space L™((0, c0), L2(Q3)) , and we define the norm ||f||_ by
def
= esssu t .
"f"oo 0<t<°£”f( )”LZ(Q3)

For some applications, we will assume that f € W1’°°([0, o0), LZ(Q3)), in
which case the function f is absolutely continuous and the mapping ¢t — f(¢)
is uniformly continuous.

We shall say that u(¢) is a strong solution of (2.5) on an interval [0, T),
where 0 < T < oo, if forevery 7, 0 <7 < T, one has

(2.9) u(-) € C°([0, 71, ¥, ) N L*((0, 7), ;).
Recall that if u(¢) is a strong solution of (2.5) on [0, T'), then it is uniquely
determined; see Temam (1977, 1983) or Constantin and Foias (1988). Further-
more, if u(t) is a solution of (2.5) on an interval [0, T), where 0 < T < 0,
and satisfies u(-) € C°([0, 7], ¥,') for every 7, 0 < T < T, then u(-) €
C°((0, 71, %)) (See §4.)

A strong solution u(¢) on an interval [0, T) is said to be maximally defined
if u(¢) does not have a proper extension to a strong solution of (2.5) on a larger

interval. Recall that if u(¢) is a maximally defined strong solution of (2.5) on
an interval [0, T) and if T < oo, then one has

(2.10) |4

[

see Temam (1977, 1983), or Constantin and Foias (1988).

2.3. Fourier series. The spaces Vs'" can also be described in terms of the

Fourier series expansion for functions u € ) (Q5) . For k in the integer lattice
z? , we define

ut)| >0 ast—-T ;

def
ka = (k,a,, kya,, kya,).
Then the Fourier series expansion for u € L’ (Qs) is given by

(2.11) u(x) = Y cFetm,
kez?

k —
where ¢ eC3, & =c k,and

k _2mikar 3
c =a1a2a3/ u(x)e " dx, ke
Q

3

Consequently, one has u € v’ = H if and only if ® =0 and
€ &

(2.12) klalcf + kzazc;( + s—lk3a3c§ =0 forall k€2’
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Similarly one has u € V;’” for m > 0 if and only if ¢® = 0, condition (2.12)

holds, and
> k"I < oo,
kez?

where |k|2 = k12 + k22 + k32 . Furthermore, it follows from the Parseval equality
that

2 a
(2.13) ullgm g, = (a,8,5)” Y Y e ke KL we BN,
|a|<m kez3
where a = (a,, @,, a;) €N’, N={0,1,2,...}, and

(ka)® - ¢ = (kya,)"c} + (kya,)™ch + (kqay) k.

The eigenvalues of A4, are given by
2 2 2, -2 2
A=4dn"[(ka,) + (kya,)" +& “(kyay)71,
where k € Z° - {(0,0,0)}.If ue Vg2 = D(A,), then one has

2, k 2mika'x

2 2 2, =2
A,u=4n Z [(k,a))” + (ka,)" +¢& “(kyay)]ce
kez?
By using the Fourier series representation, it is easily verified that if u € Vg2 ,

then V,-A,u=0. This implies that 4,u = —A,u forall u € D(4,).
The Navier-Stokes equations (2.1) on Q, can be written in the abstract form

(2.14) U'+vAU +B(U, U) =P,F,

where P, is the orthogonal projection of L’ (€,) onto the space of divergence-
free vector fields, AU = -P,AU, and B(U, V) = P,(U - V)V; cf. Temam
(1983). One can use the operator J, given by (2.2) to compare the solutions
of (2.14) with those of (2.5). For example, if U = J,u, where u is given by
(2.11), then U has the Fourier expansion

Uy) = Z FePritkha Jhyay ek ay) (v, Y2s33)
kez?
The following identities are easily verified:
9 -{i} 0

9 - - 1,p
8y.J3u Je 8xu i=1,2,3, foruew (Q5),

1 1
where {1} = {2} =0, {3} = 1. Also one has
AJu=JAu, AJu=JAu for u € D(4,).
As a consequence of (2.3) one then obtains
15 { 18U/0y 2, = elle™ P oufoxllzg,,  ue H'(Qy);

2 2
”ArU"Lz(Qz) = e||A;u||L2(Q3), ueD(A), r>0
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If u is given by (2.11) and belongs to D(Ael/ 2) , we have

1/2, 2 2 -1 22,22 =2,2 2. k2

(2.16) 14Y2ull® = (4,u, u)y = 4n’(a,a,a,) " S (kiai +h;a;+e  kyay)|c" ).
kez?
Moreover, if u belongs to D(A4,), one has
2 4 -1 22, .22 —2;2 2.2 k2
I A,ull” = 167" (a,a,a,) > (kyay + kyay + & kyaz)”|c"|".
kez?

From the Parseval equality (2.13), we conclude that there exist two positive
constants C¢ and C,, which are independent of &, such that

-1 12
C6(“u”H‘(Q3) +e ”D3u”L2(Q3)) < ”Ag u”LZ(Qs)

(2.17) .
< C7(”u”H'(Q3) +é ”D3u”L2(Q3))
and
-1 -2 2
Cé(llulle(Qs) +é& ”D3u”1{’(Q3) +é& ”D3u”L2(Q3))
(2.18) < N4gull 2,

-1 -2 2
< C7(||u”H2(Q3) +é ”D3u”H'(Q3) +é ”D3u”L2(Q3))'
From (2.15) and (2.18), we deduce that U = J,u satisfies
(2.19) C6”U“H2(Q£) < {|AU||L2(Q€) < 3C7||UI|H2(Q€).

2.4. The projection M . For any u € L*(Q,) we define v = Mu by

1
v(x,, x,) = / u(x,, x,,s)ds
0

and set w = (I — M)u. Since w = (I — M)u, one has Mw =0, and M is an
orthogonal projection on L2(Q3) which satisfies
MDu=DMu, i=1,2, forallue w"'(Q,),
MDyu=D;Mu=0 forallueH,(Q,),
and, therefore,
V, -Mu=MV,-u forallueH,(Q,),
as well as
(2.20) AMu=MAu forallue D(A,).

As a consequence of all these properties, we conclude that M (V;’") C Vem and

that M is an orthogonal projection in V;’" for all integers m > 0. In particular,
we have

r 2 ro .2 r 2
(2.21) ALl = Al + 4w, r=0,4,1.
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In terms of the Fourier series
w(x) _ Z ckeZnika'x ,
kez?
one has Mw = 0 if and only if

hkO _ o for all (k,, k) € 2.

To put it another way, if & s any nonzero Fourier coefficient for w , where
Mw = 0, then k = (k, k,, k;) satisfies k; # 0. Consequently, one has the
Poincaré inequality

(2.22) lw|? < C2e |4 *wl?,  weV!, Mw=0,

where C, does not depend on ¢. Indeed, from the Parseval equality (2.13)
with m = 0 and from (2.16) one obtains

1/2 2 —1 2 2 22 —2,2 2., k.2
14w ||L2(Q)_47z (@,a,a;) " S (kia} + kyay +& kyaz)lct|

kez?
22, 2,2 20 k2
=47z (a,a,a;) Z(k a1 +kya, +¢ “kja3)c|
ky #0
2 2 -2, 2
>4n'e a 18,a5) Zl | =4n’e ||w||Lz(Q3),
kez?

which completes the proof of (2.22). As we shall see, (2.22) plays a critical role
in the theory presented here.

2.5. The v and w equations. We now apply the projections M and (I — M)
to the equation (2.5) where v = Mu and w = (I — M)u. Since one has
MB,(v,v)=B,(v, v), it follows from (2.20) that one obtains the system
(2.23)

v' +vAv +B,(v,v)=MP,f— M(B,(v, w)+B,(w,v)+B,(w, w)),

w' +vAw=(I-MP,f~(I-M)B,(v,w)+B,(w,v)+B,(w,w)).
Since v does not depend on Xx;, one has 4,v = Dlzv + ng , le., A is
independent of ¢. Similarly B,(v, v) is independent of ¢. The initial con-
dition u(0) = u, = vy + w, also splits into a v and w component. We will

be studying solutions (v, w) = (v(¢), w(t)), where v(0) = v, = Mu, and
w(0) =wy, = - M)u,.

2.6. Reduced 3D Navier-Stokes evolutionary equation. The system (2.23) has
an invariant set which occurs when

(I-MP,f=0, w,=0,

i.e., both the forcing term P,/ and the initial condition %, depend only on x,
and x,. In this case w(z) =0 forall 1 >0 and v = v(¢) satisfies

(2.24) T +vAT+B,(U,0)=MP,f
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with 7(0) = v, . We refer to (2.24) as the reduced 3D Navier-Stokes evolutionary
equation. Note that U = (U, , U, , U,) is a three dimensional vector field on Q,,
and U does not depend on x;.

The reduced 3D Navier-Stokes evolutionary equation incorporates the 2DNS

on Q,. In order to see this, we let L’ (Q,, R’ ) denote the L? space of 2-
dimensional vector fields m = (m,, m,) which depend on (x,, x,) € Q,. Let

P, denote the orthogonal projection of L2(Q2 R ]Rz) onto H(Q,), where H(Q,)

is the closure in L2(Q2 , Rz) of those smooth functions m that are periodic on
0, and satisfy fQ2 mdx =0 and (D,m, + D,m,) = 0. One then has

(le)1 + ﬁzDz)ﬁl P (51D1 + i2D2)v|
P, | (W,D, +7,D,)v, | = (v,D, +v,D,)v,
and
& P, (g1>
Pg g2 = g2 )
& 83
where g = (8,, &,,8) €M L2(Q2 R R? ). Furthermore, v is a solution of the

reduced 3D Navier-Stokes evolutionary equation (2.24) if and only if m =
(v,, U,) is a solution of the 2D Navier-Stokes evolutionary equation

d 2 2
v Tk V(D] + Dy)m+P,(m-V)m=(g,, &),
and U, is a solution of the linear equation

d_ 2 2 o
703 v(D] + Dy)v, + (v, D, +0,D,)v, = g,

where g =(g,, &,, &) = MP,f.
If we want to emphasize that the terms in (2.24) do not depend on ¢ or

X5, we introduce the following notation. For i =1, 2,3 we set Voi =M I/;i ,
Hy =V, = MH,(Q,). We denote by A4, the restriction of 4, to V. If T is
in V7, then 4,0 =—(8/dx; +8°/9x)v. We also set By(T,T) =P,(T- V)T
if 7 isin VO1 . Note that B\(v, v) = B,(U, U). The reduced 3D Navier-Stokes
evolutionary equation (2.24) now becomes

T+ VAU + By(v,v)=g
with T(0) = v, in ¥, and g = MP,f.

2.7. The trilinear form b, . The trilinear form b,(u, v, w) is defined by

3 .
(2.25) b, v, w)= 3 /Q e M (D yw, dx,
3

i,j=1
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provided the integrals are all defined, where {1} = {2} = 0 and {3} =
If u,v,we V;‘ , then (2.25) is well defined, and since P, is an orthogonal
projection with P,w = w, one has

(B,(u,v), w)=(P,(u-V,)v,w)=((u-V,)v, Pw)
=((u-V,)v,w)=>b,(u,v,w).
Note that
2.26) b, w,v’)=—-b@", v}, w)=0, bw,v', v})=0,

whenever Mvi=vi, i=1,2,and Mw=0.

2.8. Statement of regularity theorems. Theorem A, which is stated in §1, gives
a sufficient condition for the nonlinear evolutionary equation (2.5) to have a
strong solution u(t) that remains in Ve1 forall £ >0 and in V: forall t>0.
In a moment we shall define the sets % (¢) and .#(¢), and in §2.10 we explain
why these are large sets. The key to this is the following Hypothesis H(a, b):

We shall say that the bounded monotone functions #,(¢) defined for 0 < & <
1,i=1,2,3, 4, and constants r and p satisfy Hypothesis H(a, b), where a
and b are positive, provided:

()p>2-1,r>-=-2.

2 &' 50ase—0,i=1,2.

3) e ' 50ase—0,i=3,4.

4) 81/4Q(8) is bounded for 0 < ¢ < 1, where

2,2 —2.2
Q(e) = |log(2C5v 6™ " ).

(5) Let a > 0 be fixed. Then one has

5/8. 2 —4y
2.27) {8_2n exp(an™) — 0,
n? — oo

as ¢ — 07, where
(2.28) n 2 max(dn; > + kiny + ke’ n %)
and &/® exp(2an, %) is bounded for 0 < ¢ < 1. (The constants k, and k, are
defined in Lemma 3.1.)

(6) Let b > 0 be fixed. Then for any 4, 0 < A < 1, there is an ¢, =
g4(b, ) > 0 such that one has

nz“z exp(bn2—4) < /1(4?71_2 + klzn3_4) , O<e<e,.

4+2r

(7) The function &***'n; *(logn™* + 1) is bounded as ¢ — 0*.

Remarks. 1. The choice of the function 7, may depend on the parameters
p,r,a,and b.

2. Here is an example where Hypothesis H(a, b) is satisfied for any given
choice of a > 0 and b > 0. We begin with statement (5). If 5 is given by
(2.28), then

-4

1<t < @8n 43k + 3567 Y,
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Next fix p > —1 and set

r=-2+9, d0>0;
ny = —loge;
’7;-2 - ’11—1.
If 72 = (—loge®)'/?, where « > 0, then conditions (1), (2), and (3) hold.
Furthermore (4) and (7) are valid. In addition, one has

n~* < (48 + 3k)(—loge®) + 3kye” " (— loge)*.

Consequently (2.27) is valid provided

4
/8 1/2 ,~a(48+3k

(—loge”) -0 ase—0".

In other words, if « is chosen such that -g— > (48 + 3kf)aa, then (2.27) is
satisfied. Likewise, by choosing 7, % so that

n,° = (log(—loge®)”)"/*, where > 0and 268 < 1,

we see that statement (6) is valid. (n, 2= log(log(—loge)) is another possible

choice of 7, 2 .) Also note that this example satisfies condition (2.55) below,
provided -1 <p < 0.

3. Another example of interest occurs when 7, and 7, are positive constants
and 7, and 7, are as in Remark 2. This situation arises in the study of the
semicontinuity of the attractors, see §6.

In order to prove Theorem A we shall analyze the dilated Navier-Stokes evo-
lutionary equation on Q,. This analysis consists of two major steps. The first

step, which we call the H 1-Regularity Theorem, is to show that there is a con-
stant K, such that ||A£1/ 2u(t)||2 < K12 for all ¢+ > 0 and that there is a constant

L, which does not depend on the initial data, such that limsup,_, ||A;/ 2u(t)ll2

< Lg . The second step, which we call the H 2-Regularity Theorem, is to show
that u(t) € D(4,) for all £ > 0 and that there is a constant L., which does

not depend on the initial data, such that limsup, HAeu(t)ll2 < Lé .
Theorem 1. H'-Regularity. Let n,, i=1,2,3,4, r, and p satisfying Hy-

pothesis H(a, b), where a and b are sufficiently large. Then there exist ¢, > 0,
k, > 0, a continuous function T € C([0, o), R), and forall ¢, 0 <e<¢,, a

time T‘l = Tl(s) > 0 such that for all ¢, 0 < ¢ < ¢,, whenever u, € D(A;/Z)
and f € L™((0, 00), L}(Q,)) satisfy
2 2 -2 2 -2
{ 4} vgl* < 2, IMBf12, <ny°,
_ -2
4 2 wll* < e ny?, N - M)PfI2 <e'n”,

then (2.5) has a solution u that belongs to C°([0, c0), V,'YNL>((0, o), V1),
i.e., one has

(2.30) 4

(2.29)

1/2
€

u|> <k?, 1>0,
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where K, dependson v, ,and n;, i=1,2,3,4, but not on t > 0. More-
over, the components of u=v +w satisfy

2 2 -2 ~
(2.31) 14,2 v < T, t>T,,
where T is given by (3.84), and
(2.32) 14 2w (n))* < max(e?, k2e™*'n%), 1> T,

Remarks. 1. The principal objective in any study of the global regularity of

solutions of the 3DNS is to show that the conclusions of Theorem 1 apply for

all uye V' and P,f € L™((0, o), L*(Q;)) . Since the techniques developed

in this paper seem to fall short of achieving this goal, we seek, instead, to find the

largest possible u, and f (see (2.29)) for which we can prove global regularity.
2. It follows from (2.21), (2.31), and (2.32) that

(2.33) 142w <Ly, =T,

where L? =TI(n, 2) + max(s2 , k2282+';14_ 2) . Since Lg does not depend on 7,
N3, Or p, it is independent of the initial condition u,. Furthermore, if 7, 2

and & +’n4_2 are bounded for 0 < ¢ < 1, it follows from Theorem 1 that Lg
can be chosen independent of ¢.

Theorem 2. H2-Regularity. Let r,p,and n;, i=1,2,3, 4, satisfy Hypothe-
sis H(a, b), where a and b are sufficiently large. If u, € V;l and

(234) P,/ € C([0, %), H)NL™((0, 00), H) n W' (0, ), D(4; "))

satisfy (2.29), then for 0 < & < g, where ¢, is given by Theorem 1, the solution

u(t) of (2.5) belongs to Cc°((0, o), VEZ). Furthermore there exist three positive
constants K,, K, and K,, which depend on v, ,n;, i =1,2,3,4, and
K, , where K, is given by (2.30), such that

235) { l4,uN’ < K7 + K2|l4] P, f|12 + kit~ for0O<t <1,

2 2 2 ,=1/2 2

l4,u®|® < K + K3)147 'R, 111, fort>1.
Moreover, there is a positive continuous function T, on [0, co) given by (4.22),
such that

2 2 e
(2.36) lau®If <L2,  t>T, +1,

where Tl is given by Theorem 1, Lé’ = I“Z(Lg), and Lg is given in (2.33).

If, in addition, u, belongs to D(A,), then the solution u of (2.5) belongs to
the space CO([O, 00)), ng), and one has
2 2 2 2 20 —1/2 2
(2.37)  4,u0I < K; + Kl A,u,l" + Ko 4, PP Sl 0<i<1,

€

where K, K., and K, are positive constants depending on v, A, ,n,, | =
1,2,3,4,and K,.
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1/2 ) .

[

Let %0 , ﬁ‘el , and ﬂ: denote the following bounded sets in Ve1 = D(A

0 def 172 ,,2 -2 1/2 2 -2
(238) B L{u=v+w: |4 <n’, 14, )’ <57,
(2.39)
QBI def {lu=v+w: ||A;/2v||2 < 4111—2 + k12n3_4, ||A;/2wl|2 < k2282+'174_2} ,
2 def 0 1
(2.40) BES, B, (B VB,

>0
where u(t) = S,(P,f, t)u, is the strong solution of the equation (2.5) with
initial data u,. Due to the Lemmas 3.1 and 3.2, fé’f is well defined and is a

bounded set in Vgl .

Remarks. 1. Since L? does not depend on the initial condition u, it follows
from Theorem 2 that the bound Lg does not depend on u,. Furthermore, if
f is chosen so that ||P,f||  and ||A8'1/2]P’€f'||00 are bounded for 0 < e <1,
then Lé can be chosen to be independent of €.

2. One can obtain other H 2-regularity results if one assumes that f has more
spatial regularity, e.g., P, f € L™((0, 00); V;l) instead of satisfying (2.34). (See
Foias, Guillopé, and Temam (1981).)

3. If in addition to the hypotheses of Theorem 2, the function f belongs to
Wl’°°((0, o), H,), then from (2.6) and (2.22) one finds that

(2.41) 4, 2 12, < A M, £ + CRE T - MRS,
which can be used in (2.35) (2.36), and (2.37).

2.9. Small data regularity. As mentioned in the introduction, it is known that
the 3DNS has a globally regular solution whenever the data of the problem
are small. The global regularity with small data, which is valid for any rea-
sonable bounded 3-dimensional region, is a simple consequence of the Stable
Manifold Theorem. We emphasize that our theorems, which are valid for thin
3-dimensional regions, are not consequences of the small data arguments. Be-
fore showing this though, it will be useful to recall one of these small data
arguments at this time.’

The argument we give here will be for the Navier-Stokes evolutionary equa-
tion (2.14) on an arbitrary bounded region Q in R®. We will not exploit, at
this time, the assumption that Q = Q_ is a thin domain, an assumption which
is of special interest elsewhere in this paper. We assume here, for simplicity,
that F € LZ(Q) does not depend on time.

We will use the standard 3D estimate for B(U YU 2) :
1 2 3 1/2,,1 1/2,,2,,1/2 2,1/2 3
(B, U%), U)] < Gyl U | 2 g 14" U g AU i 10 2

see Temam (1977, 1983) or Constantin and Foias (1988). The constant C; =
C;(Q2) depends on Q.

2There are several approaches to proving the global regularity of solutions with small data. For
all practical purposes, these arguments all lead to the same conclusions described here.
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By taking the scalar product of (2.14) with AU we find that

2dt||A *Ullz) + 714U 12

3/2
LQ)

1/2 3/2
< |IPyF 20 |4Vl 2 g + Cell 42U )

v 2 1 2 27
< 'Q“HAU”LZ(Q) + ;”P;:.F”LZ(Q) 4 8”A U”LZ(Q

14U

We then get
AU AU P,F 27 chiau)
” "LZ(Q) + V” ”L (Q) “ "LZ(Q 5_3 8 “ “LZ(Q) s
which in turn implies that

(2.42)

d, 12
EE”A

27 a4, 1726
Ulljzq + 414" 2 Ul < ||11» Flljzg + —5Gll4 Ul 3q-
2 _ w4277 2 2 -1 -2y
Now set R = [|4 Uolle(Q)+|)P3F||Lz(Q) and N > max(1, 44, v 7). Since
Rg > ||A1/ 2 U0||iz(g) and N > 1, it follows from Lemma 3.0 below that there is
a TN, o<1V < oo, such that

(2.43) 142U} < NRy,  0<t<T".

We assume, without loss of generality, that [0, TN) is the maximal time interval
for which (2.43) is valid.
Next assume that

27CY 5, 4 Aw
-8 < 17
(2.44) 2 N°Ry < =

Inequality (2.44) is the precise assumption that the data for (2.14) are small.
Because of (2.43) and (2.44), it follows from (2.42) that

d . 12,2
(2.45) EHA/U||L2(Q)+ 214U g, < nn» Fll72q).

By applying the Gronwall inequality to (2.45) we get
1/2 2 A 12,, 2
||A / U(t)”LZ(Q) < exp (——12—-t> 14 / Uo“Lz(Q) 0 ||]P’ F”LZ(Q) < NR
v

for 0 <t < . Consequently (2.10) implies that ™ = , which completes
the proof of global regularity of solutions for small data.

Remark. In the case of a thin domain Q_, one has C; = C e /2 , where C is

independent of &. As a result, inequality (2.44) can be rewritten as
1/2,, 2 2 .
(2.46) 14" Uyllroa, + IPsF 2 ) < Ce,

where C* depends on v and A, but not on .
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2.10. Large data regularity. We now show that the inequalities (2.29) describe
large data conditions on both @, and the thin domain Q, . The inequalities

(2.29) describe the norms of the data for (2.5) in the space L’ (Q5). We now

set p =r = —1 and assume that 7,(¢) —» 0 as ¢ — 0" for 1 <i<4. By using
the mapping J, together with (2.3), (2.15), and (2.21) one finds that

12, 2 125,12 1/2 2
”A Uo“LZ(Qe)=”A VE)”LZ(QH)"'”A Wo”ﬁ(gs)

12 2 1/2 2
(2.47) = ell 4, vl g, + el 4, woll g,

[
-2, 2
<enm +ny.
Similarly one has
2 2 -2, -2
(2.48) “P3F”L2(Qz) = 8||PefHL2(Q3) <éen, +n, .
Inequalities (2.47) and (2.48) imply that
1/2,, 12 2 -2, -2 -2, =2
(2.49) 14" Uyliz2q,) + IBsFll2g,) < 60ny " +1,7) 4037 417

Assume that we choose 7,(¢) = n,(¢) = 1. Then, even in this case, condition
(2.49) is much weaker than condition (2.46) since we allow 771_2(8) and 7, 2(8)

to go to oo as ¢ — 07 . To put it another way, assume that F satisfies (2.46)
and really depends on the three variables (y,, y,, y;),andlet U, = U,(y,, y,)

satisfy U, € H2(Q2, R3) , with periodic boundary conditions, divergence free,
and ||Ul||Lz(Q2) = 1. Then

—1
Uoisyysv3) =n (U (v, »,)
will satisfy (2.49), but not (2.46), for small ¢, whenever nl—l(s) — 00 as & —
0.
For 0 < ¢ < ¢, we define R (¢) to be the collection of v, € M V;l such that

1/2

2 2 -2
€ U0||L2(Q3) = “UOHVE' <n

|4
and R,(¢) to be the collection of w, € (I — M) Vsl such that

1/2 2 2 -1 =2
”Ag wO”Lz(Qs): ”woanl <e Ny

Set R(¢) = R,(¢) + R,(¢), and let Z,(¢) = J,R|(¢), #,(¢) = J R,(¢), and
Z(e) = J,R(¢) denote the corresponding sets in H 1(QE). The sets R,(¢) and
R,(¢) are bounded sets in MVgl and (I — M)Vsl with Vgl-radius being 171_1

and s_l/zn;' , respectively. From (2.3) we see that V, = J v, € #,(¢) and
W, = Jw, € #,(¢) if and only if

1/2 2 -2 1/2 2 -2
14 I/()”LZ(QE) < en, and |4 / W()”L?(Qe) < UERE

Thus &, (¢) and #, (&) contain bounded sets in MHI(Q ) and (I—M)Hl(Q )

1 2 [ (3

with H l(Q )-radius being ce 277_1 and C 71_’ , respectively. The example
€ 1 3
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constructed in §2.8 gives information on the size of these radii as ¢ — 0F
The point to note in this example is that 7, ' = (—loga“)l/ % . The assertion
in Theorem A that % (e) is large is a heuristic formulation of the fact that
n'—oc0ase—0",i=1,3.

Similarly we define S(g) to be the collection of f € L*((0, o), L2(Q3))
that satisfy

|1MP8f(1)||L2 ) S '72 and ||(/ - M)Pef(t)ﬂiz(@ < ﬁrﬂ;z
for 0 <t < oo and set .%(¢) = J,S(¢), where r=—-2+J,say 0<J6 < 1. One
then has F = J f € &(e) if and only if

r+1 -2

2 -2 2
IMBF (@2, <eny” and [[(1 = M)PF ()l <2,

Once again, the assertion that .%(¢) is large is a heuristic formulation of the
fact that r]i_l — oo as ¢ —» 07, i =2, 4. The example in §2.8 shows that one
can choose n4—1 = (—loge).
If the initial condition %, belongs to D(4,), as in the case of Theorem 2,
then one has v,, w, € D(4,), and (2.6) and (2 22) imply that
1/2 -
14,201 720,y < A7 14,941 7240,
1/2 2
“As wonL Q) = < C € “A wo”L2 Q)

This means that u; = v, + w, will satisfy (2.29) provided one has

4 ’U0||iz(Q) < 11’71_2 >
(2.50) { 2,02, -2

|4 w()”LZ(Q ) < Cse” "nyt
By using the mapping J, and (2.3), we see that (2.50) can be written in the

equivalent form
2 -2
”AVE)”[}(Q ) = <i €My
-2 p—1_-2
AW, ”LZ(Q) < C e’ n3 -

Thus #,(¢) contains a bounded set in (1 — M)Hz(Qs) of HZ(QE)-radius >
Ce?™! where p > 1.

2.11. Skew-Product dynamics. We will review here some aspects of the theory
of skew-product flows in order to describe the (local) attractors for the Navier-
Stokes equations with a time-varying forcing function f. We will formulate
this general theory for the Navier-Stokes equations on an arbitrary bounded
domain Q in R", where n =2, 3. For simplicity3 we will consider forcing
functions f in the space

(2.51) Few @) ¥R, L} Q)N LR, L (Q)),

3By using other topologies one can describe attractors when the forcing function f is discon-
tinuous. See Miller and Sell (1970) or Sacker and Sell (1977) for details.
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where LZ(Q) = LZ(Q, R"). For any linear operator 7 on LZ(Q) we let
TW(Q) = C'(R, TLX(Q))n L®(R, TL(Q)).

A metrizable topology is introduced in the space W (Q) by defining sequential
convergence f, — f to mean that for any compact set K C R one has

sup “f;,(t) - f(t)”L2(Q) — 0 asn— oo.
tek

We will denote the associated metric by dist, g, .

For any f satisfying (2.51) and any 7 € R we define the translate f,(¢) =3

f(r+1). Note that f, € W(Q), and the mapping (f, 7) — f. is a continuous
mapping of W(Q) x R onto itself. This means that f, defines a (two-sided)
flow on W(Q). For each f satisfying (2.51) we define the positive hull H*(f)
as

H'(f)= Closure, o {f,: 7 > 0}

and the hull H(f) as
H(f)= ClosureW(Q){fT: 7 € R}.

If f e W(Q), then H'(f) and H(f) lie in W(Q). The omega-limit set
w(f) is defined by
o(f) =V H"(£).
>0
Note that w(f) is an invariant set in the translational flow on W (Q).

Without further assumptions on the forcing function f, the omega-limit set
o(f) can be empty. However, if H'(f) is a compact set, then so is H' (/)
for every > 0. Since H'(f,) C H'(f) for t > 0, we see that if H'(f) is
compact, then the omega-limit set w(f) is nonempty and compact.

The question of the compactness of H'(f) can be resolved by using the
Ascoli-Arzela Theorem; see Sell (1967a, 1967b). In particular, if there is a
compact set 7 C LZ(Q) such that f(¢) € Z for all ¢ > 0 and the mapping
t — f(¢) is a uniformly continuous mapping of [0, co) into LZ(Q) , then
H*(f) is a nonempty compact set; furthermore, the omega-limit set w(f) is
nonempty, compact, and invariant under the translational flow. We list here
five examples of functions f for which H"(f) is compact:

(1) fe W1’°°((0, 00), LZ(Q)) , and there is a compact set Z C Lz(Q)
such that f(¢) € Z forall t >0.

(2) feW" (0, ), H'(Q).

(3) f(t) is continuous and Bohr almost-periodic, or periodic, in ¢.

(4) f=g+h,where g and & satisfy (2.51), nh(t)||L2(Q) —0as t— oo,
and g(¢) is Bohr almost-periodic, or periodic, in ¢.

(5) fe LZ(Q) is independent of ¢.

The evaluation mapping Ev: W (Q) — LZ(Q) given by Ev(f) = f(0) is a
continuous mapping of W (Q) in L2(§2). Therefore if H(f) is a compact
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set in W (Q), then
Ev(H'(f)) = {g(0): g € H'(f)}

is a compact set in LZ(Q) , and one has g(z) € Ev(H"(f)) forall ¢t > 0 and

geH (f).
Let H be a Banach space with a norm ||- ||, and let & be any positively
invariant subset of W (Q). Let & be an open set in H x.% x [0, oo) with

{(u, £,0)0:(u, f)eHxF}CO,
and let n: @ — H x ¥ be a mapping of the form
(2.52) n(u, f57)=(S(f, Du, f), (u, f,1)€0.

For each (u, f)e Hx % , let I(u,f) =[0, 1), where 7= 1(u, f), denote the
maximal time interval for which (u, f,t) € @ for 0 <t < t. We say that =
is a skew-product semiflow on H x # if the following properties are satisfied:

(1) S(f,0u=u,foral (u, f)e HxS .

(2) Whenever ¢ € I(u,f) and s € I(S(f,t)u,fl) , then (t+s) € I(u,f) and one
has

S(f,, )S(f, hu=S(f, t+s)u.

(3) The mapping (u, f,t) — n(u, f;t) is continuous in (u, f) € H xS
for ¢ fixed and continuous in ¢ for (u, f) fixed.

4 If (u, f)e HxS and 1(u, f) < oo, then one has

limsup ||S(f, t)ul|,; = occ.
-

t—

It is a consequence of (2) that one has
nu, fit+s)=n(n(u, f;10);s).

Let % be a subset of H x.¥ and assume that ¢ satisfies 0 <t < t(u, f)
for all (u, f) € Z . For this ¢t we define n(Z ; ¢) to be the collection of all
n(u, f;t) with (u, f) € Z . Asubset Z in H x.% is said to be invariant
for m if one has t(u, f) =00 forall (u, f) € # and #n(% ;t) =% forall
t>0.If % isany subset of H x ¥ with t(u, f) =00 forall (u, f)e %,
we define the omega-limit set of % as w(%) where

w(Z) = [ Closure,,, (U (X ; z)).
>0 t>1

In the case of the dilated Navier-Stokes evolutionary equation on @, with
periodic boundary conditions, for U, € Vsl and F € W(Q,), we set

(2.53) S(F,nU,=U(1), 0<t<t(U,,F),

where U(f) is the maximally defined strong solution on [0, t(U,, F)) that
satisfies U(0) = U,,. One can show that

(U, F, eV xW(Qy) x[0,x):0<1<1(U, F)}
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is an open set, and the mapping 7 defined by (2.52) and (2.53) generates a
skew-product semiflow on V;l x W(Q,) .

The same construction generates a skew-product semiflow for the Navier-
Stokes equations on any reasonable bounded domain Q in R”, for n =2, 3,
and under other homogeneous boundary conditions; see Constantin and Foias
(1988). In this case, the semiflow is on the space vl x W (Q), where v =
D(AI/Z). For the 2DNS, one has t(u, f) = oo, forall (u, f) € V! x w(Q),
i.e., m is a global semiflow in this case. Furthermore, by using the Leray solu-
tions of the 2DNS instead of the strong solutions, this global semiflow extends
to a global semiflow on H x H(Q), where H = ]P’2L2 (Q) ; see Constantin and
Foiag (1988).

For the Navier-Stokes equations we will be studying the semiflow generated
by (2.53) on Vﬁ1 x & , where ¥ is a compact invariant set in W (Q,). For
example, with equation (2.5) one might assume either .7 = H" () to be com-
pact,or & = H +(]P’E f) to be compact. Either assumption leads to a reasonable
dynamical theory for (2.5). The stronger condition that H*(f) be compact is
important primarily in the study of the original system (2.4) where (I —P,)f is
used. Similarly for the reduced 3D Navier-Stokes evolutionary system (2.24),
one gets a good dynamical theory by assuming any one of the following three
sets to be compact: H'(f), H'(B,f), or H (MP,f).

If the forcing term [ is time-independent and in Lz(Q) , then the hull H(f")
consists of a single point {f }, and the Navier-Stokes equations generate (local)
semiflows on appropriate Hilbert spaces. For the 3DNS equations the strong
solutions S(#)u, generate a semiflow on the Hilbert space P,(H 1(Q)). The

weak solutions of the 2DNS generate a semiflow on PZ(LZ(Q)) .

2.12. Local and global attractors. We will continue to use the notation intro-
duced in §2.11. Let 7 be the skew-product semiflow on H x.%# given by (2.52),
where & is a compact, positively invariant subset of W (Q,). A subset 2 in
H x % is said to be a (local) attractor for n if 2 is a compact, invariant set
for n, and A = w(U) is the omega-limit set of some bounded neighborhood
U of 2 in H x ¥ . The basin of attraction B(2) defined to be the collection
of all (u, f) € Hx.% with the property that

(2.54) dist,, o (m(u, f;1),A) -0 ast— oo.

If it happens that 2 is an attractor with B(2) = H x.# , then 2 is said to be a
global attractor for n. Note that any attractor 2 attracts the bounded set U,
as well as every compact set K in the basin B(2). Recall that 2( attracts a set
B C H x ¥ provided that for every 6 > 0 there is a time T = T(B,d) > 0
such that

(u, f, 1) € Ny, 5®), forall (u, f)eBandallt>T,

where N( HxS a)(Q‘) denotes the d-neighborhood of 2 in H x.# . Recall that
the skew-product semiflow 7 is said to be compact, if for every 7 > 0, the
mapping

n:0 — Hx%
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given by = (u, f) = n(u, f, t), maps bounded sets into compact sets. For a
compact semiflow, the attractor 2 attracts all bounded sets in the basin B(),
see Hale (1988) and Sell and You (1993).

We note that the flow generated by the strong solutions of the 2DNS is com-
pact and always has a global attractor, provided the positive hull H*(f) of the
forcing function f is compact. As we shall see, the reduced 3DNS also has a
global attractor, when H'(f) is compact. The theorems, which we describe in
the next section, effectively state that when & is small the full 3DNS has a local
attractor 2, and that 2, has a /arge basin of attraction.

2.13. Statement of theorems about attractors. In this section we assume that
f € W(Q,) is chosen so that H *(f) is compact; see §2.11. This includes the
case where f € L2(Q3) is time-independent. We assume that Hypothesis H(a,
b) is satisfied, where a and b are sufficiently large. Let %’80 , %‘E' , and u@‘f be
given by (2.38), (2.39), and (2.40). It is an immediate consequence of Theorems
1 and 2 that for u, € 35’80 U%’El the solution S,(f, Hu, = S, (P, f, t)u, lies in
a bounded set in Vf for ¢ > T”l . Therefore, S,(f, t)u, lies in a compact set

in Ve1 for t > Tl . As a matter of fact, we are able to prove the following
compactness result:

Theorem 3. Let n,, i=1,2,3,4, r,and p satisfy Hypothesis H(a, b), where
a and b are sufficiently large. Assume that f € W(Q,) is chosen so that P, f €
W1'°°((0, o), H,), H*Y(f) is compact, and (2.29) is satisfied. Let S.(f, Dy,
denote the strong solution of (2.5) with initial data u, € V;l . Then forany © >0
there is a compact subset % (t) of Vs2 such that

S(f, B UB)CH (1), t>1

The proof of Theorem 3 is given in §4. If we do not assume H'(f) to be
compact in Theorem 3, then we can only prove, for ¢t > 0, Se(t)(,@e0 u fé’e')
belongs to a compact set % (¢) which may depend on ¢.

The following theorems are proved in §6. Let u(f) = S,(P,f, t)u, denote
the strong solution of the equation (2.5) with initial data u, in Vgl , and let
n(uy, P f; 1) = (S,(P,.f, T)uy, (P,f),) denote the skew-product semiflow gen-
erated by the strong solutions of the dilated 3D Navier-Stokes evolutionary
equation (2.5).

Theorem 4. Let n,, i =1,2,3,4, r,and p satisfy Hypothesis H(a, b), where
a and b are sufficiently large. Assume that f € W(Q,) is chosen so that
P f e W1’°°((0, o), H,), H*(f) is compact, and one has

2 -2 2 —2

IMP fll,<m, ", (1 = MP S, <€ n, .
Let ¢, > 0 be given by Theorem 1. Then, for 0 < € < g, the skew-product flow
n, generated by the strong solutions of the dilated 3D Navier-Stokes evolutionary
equation (2.5) has a unique, maximal, compact (local) attractor 2, included in
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ﬁ’: xa(P,f), which attracts %’82 X H‘L(]P’.e ) inthe space V;l xP W (Q,), where
Qez is given by (2.40). Furthermore, one has

1/2 2 -2

Pl <T(1; %), |4

4

2 24r

Vwl < ke x o(P,f).

€

A, C{u=v+w:|4

Moreover, 9, is bounded and compact in VE2 xw(P, f) and attracts the bounded
set (B>NV))x H'(P,f) in the space V x B,W(Q5).

In the next result we show that, under an added condition on 7,, [ =
1,2,3,4, see (2.55) below, the attractor 2, is the global attractor for the
Leray solutions of the dilated 3D Navier-Stokes evolutionary equation (2.5),
i.e., the weak solutions that satisfy the energy inequality (3.35); see Foias and
Temam (1987).4 Note that the example given in Remark 2 prior to the state-
ment of Theorem 1 satisfies (2.55).

Corollary 4.1. Let the hypotheses of Theorem 4 be satisfied. Assume in addition
that for every A >0 there is an €, = €,,(4) > 0 such that

2.55) om0+ <Amin(n?, ¢'n;0),  0<e<min(e,, &)
Then for any ¢ satisfying 0 < ¢ < min(g,, &,,) and any p > 0, there is a
time T =T(p, &) >0, and, for every weak (Leray) solution u(t) of (2.5) with
lu(0)|| < p, there is a time t, satisfying 0 < t, < T(p,¢) and u(t,) € %’80.
In particular, u(t) is a regular solution of (2.5) for t > t,, and the attractor
A, given in Theorem 4 is the global attractor for the Leray solutions of (2.5),
provided 0 < ¢ < min(ey, ¢,,) .

Let us now consider the reduced 3D Navier-Stokes evolutionary equation
(2.24), and let us denote by S,(g, t)v, the strong solution of (2.24) with
initial data 7, in M V;l , where g = MP,f. We denote by n,(v,, g; 1) =
(Sy(g, 1)V, &) the skew-product semiflow generated by the strong solutions
of (2.24). As noted in §2.6, the terms in (2.24) do not depend on X, and ¢.
We have the following result:

Corollary 4.2. Assume that f € W(Q,) is chosen so that P, f € W"°°((0,oo);H8)
and H'(f) is compact. Then n, admits a global attractor A, = A,(g) in
MVBl x H*(g). Furthermore, if ||M]P’8fnio < nz_z, where 1, is given by Hy-
pothesis H(a, b), then
(2.56) A, (g) C{u=v+w:veMV,, |4 %> <T(n;?), w=0}x w(g).
If, in addition, one has

(I - M)P,f =0,
then the attractors A, and %,(g) coincide for 0 < & < ¢,, where &, is given by
Theorem 1.

If (I -M)P,f# 0, acomparison of the two attractors A, and ,(g) is
more difficult. Nevertheless, we are able to derive some results establishing the
upper semicontinuity of A, at ¢ =0.

“Recall that the 3DNS can have weak solutions that do not satisfy the energy inequality (3.35);
see Temam (1983).
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Let us consider a sequence of positive numbers ¢, — 0 when n — co. We
introduce a sequence of functions f, in W(Q;)N w! "°((0, o0), L? (Q5)) such

that f, — f, in W(Q,), where f, € MW(Q;)N W1’°°((O, 00); MLZ(Q3)).
We set g, = P, f, and g, = MP, f,. According to the comments made in
§2.6, P, f,(¢) belongs to MH, , for every ¢, and consequently

P. (Jor
(2.57) &="F, fo= ( ijfoz)) ,
03

where f, = (fy,> fo25 fo3) - It follows from the above convergence hypothesis
and from (2.57) that

1im g, gl =
We consider next the reduced 3D Navier-Stokes evolutionary equation
(2.58) v + VAU + By(U, D) = g,

with initial data 7(0) = 7, in V! and we let Sy(&y> 1)U, denote the strong
solutions of (2.58) with initial data 7, in VO1 . As a consequence of Corollary
4.2, the skew-product semiflow 7,(v,, g&,; 7) = (5)(&,, T)V;, &,) admits a
global compact attractor 2, = 2,(g,) in VO1 x w(g,), which is also the global
compact attractor in V02 x w(g,) -

Let E be a subset of Vé‘,l. x W(Q,). For any 6 > 0, we denote by

M xW(Q;)(E , 0) the J-neighborhood of E in V;l x W(Q,). We will prove

the following result:
Theorem S. Let n,, i=1,2,3,4, r, and p satisfy Hypothesis H(a, b), where
a and b are sufficiently large, and assume that

4+2r

(2.59) e ne) >0 ase—0"
Let ¢, be a sequence of positive numbers with ¢, — 0 as n — oco. Let F

be any positively invariant compact subset of W(Q,) N w! "°((0, 00), LZ(Q3)),
and let f, be a sequence of functions in & that satisfies

(2.60) Jm |1, = folloo
where f, € M . Assume further that
2 -2 2 ro =2
"M]ng” <'72 5 ”(I_M)P f“ 58,,7]4 .

Then the attractors 2, , given in Theorem 4, are upper semicontinuous in V xF
at ¢ =0, i.e., for any 5> 0, there is an ny > 0 such that

A, C/VV‘xWQ)( 0(&o)» )
Jor n > ng, where go-_—M]P’enfo=]P’£nf0.

Theorem 5 has some interesting extensions. The following result, which we
formulate in the case where the forcing terms f, are independent of time ¢,
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allows for the possibility that f, can be chosen so that

I - 114)1113,:"f,,||2 — 00 asn— oo.

If f is independent of ¢, the mapping S, (¢) &f S.(P.f, 1) is a (local) c’-
semigroup on V;l . We then deduce from Theorem 4 that S,(¢) admits a unique
maximal compact (local) attractor 2~ls included in 9382 which attracts %’82 in
the space V; . Actually, we have

A, =2A x{P,f}.
Likewise, S,(?) gef So(g,1) is a Co-semigroup on Vb’ =M VE1 , where g =

MP,f. We deduce from Corollary 4.2 that S,(¢) admits a global, compact

attractor 2 = ,(g) in VOl ; and we have

A, = A, x {g}.
The following result is proved in §6.

Corollary 5.1. Let n,, i =1,2,3,4, r, and p satisfy Hypothesis H(a, b),
where a and b are sufficiently large, and assume that (2.59) holds. Let ¢, be
a sequence of positive numbers with ¢, — 0 as n — co. Let f, be a sequence

in LZ(Q3) that satisfies
1im [[MP, £, - g =0
for some g, € H,. Assume further that
IMP, fIF <yt U= MR, £ < el
Then the attractors 5(8 of (2.5) with forcing term P, f, are upper semicontin-
uous at € =0 in Vel , ”i.e., "

(2.61) sup inf |42 (u, —v)|| -0 ase=¢,—0,
uneacn UE%O "

where 5(0 = 510( 8&,) i the global attractor of (2.58).

Using the fact that A, = 2(g,) is also the global compact attractor of the
skew-product semiflow 7,(-, g,; 7) in VO2 x H( &) » one also obtains the result:

Corollary 5.2. Assume that the hypotheses of Theorem 5 hold and that
. !’ !
(2.62) tim |11~ £oll = 0.

Then the attractors 2, are also upper semicontinuous at € =0 in Vs2 xW(Q,),
i.e, for any 6 >0, there exists an integer n, >0 such that, for n > n_,

(263) Q‘(e" - '/I/;/Ei xW(QJ)(QIO(gO) ’ 5)
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Remark. We now give an example where the condition (2.60) is satisfied. Let
F =F(t, y) be given, where F € C'(R, W"®(Q,))n LR, W"(Q,)). As
in §2.1, we introduce the mapping f, by setting F = J, f,

Lt x, %y, x3) = F(t, X, %, 8x3),  (X), X, X;) € Q5.

Next set fy(¢, x,, x,, x;) = F(t, x|, x,, 0). By applying the integral Taylor
formula, we obtain
fi(t,x) = fot, x) =F(t, x|, x,, ex5) = F(t, x, x;, 0)
1
OF
=¢ ; gg(t, X\, Xy, $X5)X;5ds,
and therefore

17 = fUHCO([O,OO);Lw(QQ) < 8”D3F”C°(l0,00);L°°(Q3))'

In particular, we have
If, = follos < Ce.

If, in addition, F belongsto C'(R, W' *(Q,))NL™(R, W'*(Q,)), then the
condition (2.62) is also satisfied; more precisely, we have

If = foll < Ce.

3. H'-REGULARITY: THEOREM |

In this section we prove Theorem 1, the H 1-Regularity Theorem, which gives
the global regularity of the Navier-Stokes equations on €, in the Sobolev space

H'. We assume that the forcing function f is in L((0, 00), L2(Q3)) and

that the initial condition u, satisfies u, € D(4"/ 2) . Also we assume that one
h 0 0 €
as
172, 2 -2 2 -2
G3.1) I 0l <, IMBLIS <0y
’ 1/2 2 p,—2 2 r.o =2
”Ag wo“ <en T, N - ]M)Pf;f“oo <en,,

where 7,(¢) is bounded and monotone for 0 <¢ <1, i=1, 2, 3,4. (We are
primarily interested in the case where 7,(¢) - 0 as ¢ -0, i =1,2,3,4.)
Throughout this section we let D, D,, ... denote positive functions of the
viscosity v and 4, , the first eigenvalue of A, . These functions will not depend
on ¢ for 0<e<l.

The proof of the H 1-Regularity Theorem is done in two steps. In the first
lemma, which is the Short Time Argument, we show that the w(¢)-term becomes
small very rapidly. The second lemma is referred to as the Long Time Argument.
This is the induction step needed for the proof of the H 1-Regularity Theorem.
(See §§3.2 and 3.3.)

We will use the following auxiliary estimates concerning the trilinear form
baz If v' , v? , v® e R(M), then these functions depend only on x, and x,,
and one has

1 2 3 1,1/2 1/2 1,,1/2 1/2 2,1/2 2,1/2, 3
(3.2)  |b,", 0%, V) < C o' ) Al o ) A 2R A A0 P
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The proof of (3.2) is accomplished by using 2D Sobolev embeddings; see Temam
(1983) or Constantin and Foias (1988) for details. If one has v € R(M) and

Mw' = Mw? = Mw =0, then the following inequalities hold:
1 2 1/2 1/2 1 1/2 2,1/2 2,1/2
b, (w", w?, u)] < Cye' A 2w | 142w ) 4,07 P ull
2 3 5/32 1/2 15/32 17/32 122
(3.3) b, (w, u*, )| < Cy&™ | 4L w2 4,w) P AV )
1/4 1/2 1/2 1/2 1/2
b, (v, w, u)| < Ce" AV || | 42w )14, w2 u).

The proof of (3.3) is given in the appendix, §8. It is important to note that the
constants C,, C,, C;, and C, above do not depend on ¢, for 0 <e < 1.
We shall also use the Young inequality

q
(3.4) ab<éa—+—b———§a P 4 csb?,
p qc?
where a, b, c,d, and ¢ are positive, 1 <p, ¢, p_1 +q_1 =1, as well as
(3.5) (a+b)’ <4@+b’), a,b>0.

The proof of the following result can easily be derived from the theory pre-
sented in Constantin and Foias (1988), Temam (1977, Chapter III, Lemma
1.2 and Theorem 3.11), Temam (1983, §3, Theorem 3.2), as well as the other
references cited above.

Lemma 3.0. Let u, € D(Al/z) and f € L*(0,T; H,). Then there exists a
time T,, 0 < T, < o0, such that there exists a unique solution u of (2.5) on
(0, T,). Moreover, u satisfies: u € CO([O, T,1; Vel)ﬂLz(O, T,; I/;z), and u, €
L2(0, T,; H,). Assume furthermore that Rf, > ||A,:/2uO||2 and N > 1. Then
there exists a positive time TV, 0 < TV < T,, such that ||A;/2u(t)||2 < NRf)
for 0<t < y i
3.1. The short time argument. We shall say that Hypothesis H1 is satisfied if
one has:

(1) p>—1 r>-2.
(2) ¢ 1/4 'S0ase—0,i=1,2.
(3) ¢ .l—>0ass—+0 i=3,4.
(4) ¢ el Q(e) is bounded for 0 < & <1, where

(3.6) Q0(e) = [log(2Cv 2™ Py nd).

Here 7,(¢) denote bounded monotone functions defined for 0 < e <1, i =
1,2,3,4,and r and p are negative constants.
We now prove the following result.

Lemma 3.1. Assume that Hypothesis H1 is satisfied and that (3.1) is valid. Then
there are positive constants k, and k, andan €, > 0 such that forall 0 < ¢ < g

there exists a time T, = T (e ) > 0 such that u(t) € D(Ael/z) for 0<t<T, and

. 4, *o(T)I < 4n” + king™
(3.7) 1/2 2 2+r —2
14 ()1 < kye* .
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Proof. Define Rf) by

2 def ~ 4 -2 32
(3.8) R g wen w40 4670

Since Rg > ||A:/2u0|| , it follows from Lemma 3.0 that for any N > 1 there is
atime T" >0 such that
(3.9) 4 2un)® < NRy,  0<t<T".
Without loss of generality we let [0, ™ ) denote the maximal time interval for
which (3.9) is valid. If TV < o0, then one must have

1/2, Ny 2 2
(3.10) 4 2u(T™))* = NRE.

For tl};: remainder of the proof of this lemma we restrict our attention to ¢ €
0,77).
The equation satisfied by w = (I — M)u in (2.23) is

(3.11) ‘i,—-l-l/A w=(I-M)P,f—(I-M)B,(w,v)+B,v, w)+B,w,w))

since (I — M)B,(v, v) = 0. By taking the scalar product of (3.11) with 4w,
we obtain

12,2 2
L A w4 vl A < (- MBS, Aw)|+ 15, v, Aw)
+1b,(v, w, A,w)| +|b(w, w, Aw)|.

By using (3.3) and the Young inequality (3.4) we obtain

1/2, 2 2 _V 21 2
N R e PR L 1V Vo

5/32 1 2 1/2 15/32 49/32
(3.12) +Cye’ 4, v vl 4, 2w ) 4 w )
1/4 1 2 1/2 1/2 3/2
+ Ce A 2o 14 2wl P 4,0
1/2 1/2 3/2 3 2
+ Cye A4 2wl 4w
Since Mw = 0, one can use (2.22) together with (3.12) to find
12 .2 2 1 15 32 5 8, .1/2 2
||A Pl +viawl’ < SIU - MR, 1% + 26577 Ce ™" |14, 0] 14,
1 2 3 4 1/2
+2C57C,g 14, ||A8w||
+ 2c‘/zc Lell AL 2wl | 4,w].

From the Pythagorean relation (2.21) one obtains

1/2, 2 5/8, 1/2 2 _ 1 2
(313) L1404 w - DA A < DI - MRS,

where D, = 2(C515/32C3 + C51/2C4 + CSI/ZCZ) . From Hypothesis H1 we see that

for 0<t< TV one has

(3.14)

5/8“A1/2u” SD 85/8 R <D Nl/2 5/8(771_1+8p/27]3_l+7]3_2+7]2—1+8r/6114_1),
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which goes to 0, as ¢ — 07. Consequently there is a positive number & =
€,(N) that satisfies
R, < = 0<e<e,.

(3.15) D,N 0S5

(Later N will be fixed, and it will depend only on v and 4,.) For 0 <& <¢,
and 0<t< TV it follows from (3.13), (3.14), and (3.15) that

1/2,5/8 v

2.2V 2 1
(3.16) DA w4 Ll < Dja - anp g2,
and from (2.22) that
-2,
12 vCs 2 1
(3.17) L4l +—||A” w|® <~ = MRS,

We then apply the Gronwall inequality to (3.17) to obtain

—2 -2 22
12 2 -v(C ¢ 12 .2 2C:e
(.18) 14wl < exp (5 0) 14wy + 25

2
(I - MYP,fI2,
for 0<t< TV and 0<e < ¢,. By integrating (3.16) we also obtain
t
2
(3.19) /0 4,w(s)|” ds < —||<1 M)P,f|2, nA” w,|®

for 0<t<T" and 0<e<e,.
For the remainder of the proof we shall restrict our attention to 0 <& <¢,.

We will need an estimate of fot ||Ael/2w||3||AEw|| ds. From (3.5) and (3.18) we
obtain
(3.20

)
t
/OHA:/ZwIlGds
¢ _3 C—2 8C6 6
54/ [exp(%f—)uA‘” ol + =511 - M)Pfu]

2C2e% 1 6 8CIe%t 6
54( I g+ =5 II(I—M)PefIIoo>-

By using the Schwarz inequality with (3.19) and (3.20) we next obtain

Pz 3 Lo 6 V2ot 2 12
[iaPwpiawnds < ([ 14 01 as) ([ 14w as)
_ 2C2e?
62 <acu e+ 250 - aoe 12,

A2
1/2
< (14wl + L100 - 207,11 )

Let us return to inequality (3.18). Note that there is a time T, = T,(¢) > 0
such that _— 5 5
-2 -vC. e 2C:e )
e'ny “exp <——§—Tl) = U—Szarm )
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Indeed, this time 7 is given by
(3.22) T, ¥2cte’v '),

where Q(e) is given by (3.6). It follows from (3.18) that if 7| < TV, then one
has
(3.23) 4,
where k22 = 4C521/—2.

The next step is to return to (2.23) and the equation satisfied by v = Mu:

1/2w(t)|| <k282+r 4—2’ T, <t< ™,

(3.24)
dv
Tr +vAv=MPf—-MB,(v,v)-MB,(v,w)- MB,(w,v)—- MB,(w, w).
By taking the scalar product of (3.24) with 4,v we obtain
(3 25)
12,12 2
2dt1|A Pol? + vl 4] < |(MP,f, Av) = b (v, v, Aw) —b,(w,w, 4,0)]

since b (v, w, 4,v) = b,(w, v, A4,v) = 0 from (2.26). By using the Young
inequality (3.4) with (3.2) and (3.3) we obtain

1/2 2 2 UV 2 1 2
2dJA/MI+w4w|$§MwH+—WMKﬂu
1/2 1/2 3/2
(3.26) + Cy ol 1A o) 4,00
1/2 1/2 3/2 1/2
+ G 1A 2w )PP 4,0 214,011,
which implies that
(3. 27)
12,2 2 1 2 v 2 1/2
HAWW+WMMISﬂMRﬂu+—MUH+2<HHNA/N
14 2 1/2
+ 200 + 2 e wl 4,0
Consequently
1/2 1/2 2 1/2
dmA/|1_<;—cnnnA/w)nA/n
(3.28)

2C 1/2

2 3
+ ;IIMIP’,,;fIIoo + wl|"||4,wl|.

By using the Gronwall inequality with (3.28) one finds that

(3.29) 4 20())F < (14 o + H(t)), >0,

where

(3.30) H(t):/o h(s)ds, G(t):/o g(s)ds,
2C

(3.31) W) = LM I+ 284 P 4,0

(3.32) <n—5—cnnuM“n
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Restricting to ¢ < min(7, ™ ) and using (3.21) we see that
(3.33)

2C% (' 1 .3 2, ,1/2 1/2
= /0 4, *w ]’ ll4,wl ds < Dye*(14, *woll + £ 2T = MOP,fII.,)
1/2 3 2.1/2
x (14, "ol + & )T = MO, 1 12,

where D, = 8C22C51/_2 max(3_l/2, 2C5u_5/2)max(l , 1/_1/2). By using (3.1)
and (3.33) one obtains

12 r/2 -1

Ny )

for 0 < ¢ < min(T,, ™ ). Consequently from (3.22), the fact that p > —1,
r > —2, and the Young inequality (3.4) one deduces that

HWO) < T 'ny 2 + D0 + 172 20 ) e Pny + T

H(t)<E,(e)+ 1D,  0<t<min(T,, T"),

where
def 2,0 -2 2, -4 2.2 _4 -1 -3

1(3) = 3(8 Qﬂz +8Q774 +£Q’74 +£ Q '73 M4 )

and
D, ¥ max(2Civ™?, 2D,Civ™", V2D,Cov ', D,CHv 7).
By using Hypothesis H1 we see that
E (¢) -0 ase— 0"

It follows from (3.1) and (3.29) that
(3.34) 140> <™  + E(e) + ID,my Y, 0<t<min(T,, TY).

The next objective is to show that G(t) is small. By taking the scalar product
of (2.5) with u and using the fact that b (u, u, u) = 0, we obtain

1d
5l + vl 2w < (B, f )l =14, R, 1 4 u))
1 _
< 204l + 14, PR LI,
which implies that
(@)l = )l + v / 14 Pu(s) P ds < ¢ °||A‘”2P .
(3.35) »
< 20 g e A P - MR, s )

By using (2.6), (2.22), and the Gronwall inequality one finds
(3.36)

@I < Nl < llugll* + 2477072

R 075 A e

||MIP£fH +2C A
Since v, w, € D(Al/z) one has from (2.6) and (2.22) that

1/2 1/2 2
(3.37) litg* = llogll” + g I* < 47114, % vgll” + Coe® (14, *wy 1.
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Now putting (3.36) and (3.37) together we obtain

2 1/2 122 22 2
(3.38) [lv(®)I” < D,(I4,’ Wl HIMP, f 2+ e | I-M)P,f]I2,).

where D, = max(4;', C2, 247°v ™%, 2C22;'v™?). From (3.9) one has

2 2
vl +&7 |4

(3.39) 14, " v@)I* < 14, we)|* < NRy,  0<t<T".
Next we use (3.1), (3.22), (3.38), and (3.39) to observe that
(3.40) G(t) < E,(¢), 0<t<min(T,, T"),
where

(3.41) E,(e) def 82QD5(711_2 + £2+p113_2 + n2_2 + 82“114_2)NR3

and Dy = 27Cf C52 1/_4D4. After using (3.8) and expanding, one observes that
the right-hand side of (3.41) contains 13 terms of the form
by -2 —2 1/4

cen; 0 e 0(e),
3 terms of the form 34 2 -2 18

ce” ' ny e Qe),
and 4 terms of the form b 2 —4 14

ce'n; "y e Q0(e),
where by, > 1, b, > 7, i,j =1,2,3,4, and where ¢ denotes positive
constants which are bounded as ¢ — 0. By using Hypothesis H1, it is a
straight-forward verification to see that each of these terms goesto O as ¢ — 0.
In other words, E,(¢) — 0 as ¢ — 0" . By combining (3.34) and (3.40) one
obtains

(3.42) 14,001 <™+ E\(0)+ 3Dy ), 0<t<min(T,, T"),
provided 0 <& <e,.

1/2
€

Now set N def +max(4, %Dz) , where D, is given above, and choose ¢; so
that 0 <é&; <é&,(N) and

(3.43) P <2,  E@e)<n?, 20 <

for 0<e<e,.
We claim that for 0 < ¢ < ¢, one has 7| < ™. To prove this we assume
on the contrary that TV < T, < oco. Then (3.1) and (3.18) imply that

12 Nyy2 122 22 2 -2 2 24r -2
14, 2w (T < 14, 2w |1P + L2 (T = MOR,FI, < e”ny” + Shge™ .2,
where k22 def 4C52 v~ 2. Since r> -2 , we have 2+r > % + 3, and consequently

(3.43) implies that

(3.44) 142w < &0y + 62, 0<e<e,
On the other hand, (3.42) and (3.43) imply that for 0 < ¢ < &; one has
1/2

(3.45) 14201 <2207+ ID,mY,  0<t<min(T,, T").

&
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By adding (3.44) and (3.45) we obtain
1A 2u(T™)P < @@n2 + 1Dym; + %0y + € PnY) < NRY,  O<e<e,,

which contradicts (3.10). Hence one has T, < T for 0<e< €.

def

Finally we set k12 def %DZ and ¢, = ¢;. It then follows from (3.45) that

2 2 -2 2 —4
14, 2o (TN < 40, + ks

€

and from (3.23) that
1/2 2 _ 2 24r =2
14, *w(T)I” < kye™n

4 9
which completes the proof of Lemma 3.1. O

Remark. The proof of Lemma 3.1 still works if we take r = —2. However, the
result of Lemma 3.1 is interesting only in the case where 82“17;2 is bounded as

¢ — 0" ; see also Hypothesis H2(a, b) given below. If 114“2 — 00 as ¢ — 0", this
implies that r must satisfy r > —2. In Theorems 7, 8, and 9 we will impose
a stronger requirement, viz. that 82”714_2 — 0 as ¢ — 0". This is the reason
why we impose the requirement that » > —2 in Hypothesis H1.

3.2. Strategy of proof. The argument of Lemma 3.1 can of course be repeated
with the new initial conditions satisfying (3.7) instead of (3.1). By making the
realistic assumption that

(3.46) k22£2+r774_2 < 8”713_2

one needs only to replace ”1—2 with (4n, 24 k12 Ny 4) , and the entire argument
carries through. Unfortunately, this is not a good strategy, because one is forced
to choose a smaller value for ¢,, and thereby a smaller value for ¢,. It is

important to take advantage of the fact that k22 & +’n4’2 can be made small

instead of using the crude bound (3.46). As a result of Lemma 3.1 we can now

assume the initial condition ||A1/ 2wOH2 to be small for 0 <¢<¢,.

€
1/2

For the Long Time Argument we begin by assuming |4, wO“2 is small,
-2

ie., |4 2w, ll* < kZe**n;? and |4 v ) < 4n77 + kin;*. In the course
of the argument we show that if ¢ is sufficiently small, then the dilated 3D
Navier-Stokes evolutionary equation (2.5) has a strong solution on a suitable
interval [0, 27;] where T, = T(¢) is finite but large. We also show that

14 2w(@)? < ke n;? and |4 %v(0))? < L(4n;? + kln;*) on the half-

interval ¢ € [T}, 27;]. This, of course, permits one to prove the H 1-Regularity
Theorem by using the Long Time Argument with induction.

3.3. Long-Time argument. In this section we continue the analysis of the Short-
Time Argument. The terms #,(¢), 1 < i< 4, r, and p will be assumed to
satisfy Hypothesis H1. In addition, we will assume that the following Hypoth-
esis H2(a, b) is satisfied, where a and & are sufficiently large:

(1) Let a > 0 be fixed. Then one has

{ e n*explan™™) — 0,

-2
n -
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as ¢ — 0", where
n e max(4;7l + k1 Ny g k282+r 4_2, 1),

are &/ exp(2an, 4) is bounded for 0 < & < 1. (The constants k, and k, are
given in Lemma 3.1.)

(2) Let b > 0 be fixed. Then for any 4, 0 < A < 1, there is an ¢, =
g,(b, ) > 0 such that one has

"2—2 exp(bn2_4) < /1(4771_2 + k12n3—4) , 0<e<e,.

(3) The function &*"*'n; *(log™*+1) is bounded as & — 0" . Our objective
now is to prove the following result:

Lemma 3.2. Assume that both Hypotheses H1 and H2(a, b) are satisfied, where
a and b are sufficiently large. Then there is an ¢, > 0 such that for every ¢,
0<e<eg,,thereisatime T, = T,(¢) > O with the property that, for 0 < ¢ < ¢,
whenever the initial conditions

2 2 —4 2 -2
(3 47) { ”Al/ IUO” < 4'71 + kl '73 > “Mng”oo < 772 ’
: 1/2 2 2 -2
14, 2wol* < kge™ m; 2, I - MB,fI2 <&,

are satisfied, then the solution u(t) of (2.5) satisfies u(t) € D(Asl/ 2) for 0<t <
2T, and

(3.48) {IIA'/Zv(t)II < 30+ king ),

1/2 22 -2
14 2w () < ke,

for Ty <t<2T,.
Proof. The proof begins as in Lemma 3.1. For any positive numbers d, and
d, we define R(z) = Rg(&‘ ,d,,d,) by

(3.49) R= 1+ +ny" +d)[1+exp(dyn ) exp(2dym; )],

The values of d, and d, will be fixed later. Note that R > 7> > |4 2u,|”.
Therefore, it follows from Lemma 3.0 that for any N > | there is a time ™,
0 < TV < o0, such that

(3.50) 14, u

O <NR;, o0<t<T".

Without loss of generality we let [0, TN) denote the maximal time interval for
which (3.50) is valid. Therefore if TV < oo one must have

1/2 N2 2
(3.51) 14 2u(T™)|* = NRE.

By taking the scalar product of the w-equation (3.11) with 4,w, we then
obtain (3.13) with the same value for D,. For 0 <7< TV one has

2 442y 5/4 2

(3.52) 142 %u)? < D2NE*R],
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where R(z) is given by (3.49). From Hypotheses H1 and H2(a, b), the right-

hand side of (3.52) goes to 0 as ¢ — 0", provided a > d, and b > 2d,.
Consequently there is an &5 = &(N, d,, d,), 0 < &5 < ¢, where ¢, is given
by Lemma 3.1, such that

D,N'?&PR <vj2,  O<e<e,.

As a result, (3.16), (3.17), (3.18), and (3.19) are valid for 0 < ¢ < TV and
0 < e <e;. We now restrict to 0 < ¢ < &g for the remainder of the argument.
By using (3.47) we see that for 0 < ¢ < &5 inequality (3.18) now assumes the
form

—vC 272 _ .
(3.53) 4w < [kj exp (% ) + ik ] 22 o 32y 2

for 0<t<TV. By using (3.47) once again, (3.19) becomes
12, 2 2t 2
[ 1,06 ds < 21l + 210 - ane 112
< D9(8 + t)a'174_2

for 0<t< TV, where Dg = max(2k22y—1 , 21/‘2) . In addition, by integrating
(3.16) and using (3.53) we have for 0 <& <¢; <1

t
1/2 2 2 2 2 -2
/t 14, w’ ds < —IIA Pwe -1 + FII(I—J‘J)IF”,,.fHOo <Dye'n, ",

for 1<t < TV, where D}y = 3k;v™' +2v 7% It follows from (3.5) and (3.53)

that
/||A w| ds<4/ [k exp ( 3"C e >+8k] e S ds

6+3r —6
SD“(s +te T n,

i'lor 0<t<T", where Dfl = 4k§’ max(2C52(3z/)_1 ,3). Using 0 <& <1 one
as

/t 4w ® ds < 2D? ey,

for 1<t<TV. Using the argument in (3.21) one then obtains

t
(3.54) /0 14w 4wl ds < DD, (& + e n;*,  0<t<TV,
and, since 0<e <1,
(3.55) / 14 2w |4, wl ds < 2D, D, & n Y, 1<i< T
t

Next we return to the wv-equation (3.24). By taking the scalar product of
(3.24) with v and using b,(v, v, v) = 0 together with (2.26) and (3.3) we
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obtain

2 12,12
2L ol + 2ol < 5 ol + w4, )

1/2 1 2 3/2 1/2
<||MP Fll + G 2114 2wl a,w)' ) v

l 2 1/2 1/2 3/2 1/2 1 2
P(me, 1|, + Coe 1A 2w )P4, )4l o).
By using the Young lnequahty we get
d 2 2 1 12,3
(3.56) ZIl* + 4, vvl” < T (IMB,f |, + Cyell4, Pw)’|l4,w])
1

and

(3.57) - N'ull + )4

2 1 1/2 .3
vl|” < I—V(IIMPJH +C el 4, || l4,wl)).
1

By using the Gronwall inequality for (3.56) one finds that
-2 -2 2
IMP_ [l

—vAt

2
o) < e Jlugll” + 41

(3.58) o
+ a7 Cza/o 14w 4,w] ds

for 0 << TV . Next by using (2.6), (3.47), and (3.54) we find
(3.59) @I’ <Dyye. 0, 0<t<T",

where D, = max(A]', A, 2v™%, 47w ™' CIDyD,,) and

(3.60) y=v, ) & iy? +n, 21 le +t]s4+2rn4_4).

Similarly by integrating (3.57) and using (3.47) and (3.54) we obtain

1/2 —1 —2 2
/ 14 0P ds < v ol + 4, v M, f |2

- — 1/2 3
(3.61) +a W /0 14" w] |4 w] ds

11, -2 g2 4 -1 =2, =2
<A v (An T Hking )+ A v T
+ /11_11/_2C22D9D”(£2 + t)£4+2'114_4
for 0 <t < TV . It follows that
t
(3.62) / 14" 20| ds <Dy, 1), 0<t<min(l, TV),

where D13 = max(4, y~let v Ay v AI_IV_ZC22D9D“). Furthermore, by
integrating (3.57) once again we ﬁnd

/ N4 ol ds < v o= DI+ 2 MRS
(3.63) -

+ /ll—lu—zszs/ 14w 4,w|| ds.
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From (3.47), (3.55), (3.59), and (3.60) we get
(3.64) / 14?0 ds < D ye, 1), 1<t<T",
t—1

where
-1 1 -1 VA, S1—1 2
D,=v max(D,+4, v ,D,e " +2D D i v C,)).
By combining (3.59), (3.60), (3.62), and (3.64) we find
L2y 122 2 [t a2 2
| w4 o ds < sup oes)I? [ 14 o) ds
0 0<s<t 0

< e"'{‘DlzDBy(e 1)

(3.65)

for 0 <t < min(1, T") and
(3.66) / lol?14) v ds < "1 D,D,y(e, 1)}, 1<t<T".
t

Next by taking the scalar product of (3.24) with 4,v we obtain (3.25), (3.26)
(3.27), and (3.28). For 0 < ¢ < min(1, TN) we apply the Gronwall inequality
to (3.28) to obtain

14 Po (Ol < O 0P + H@),  0<t<min(1l, T),

where H(t) and G(¢) are given by (3.30), (3.31), and (3.32). From (3.47),
(3.54), and (3.65) we find

1/2

(3.67) |14, 0" < Dygr(e, exp(Dyy(e, "), 0<t<min(l, T"),

where
D - vi, -1 -1,2 -3 .4 vi,
g =max(e ', v ,2v C,DyD,) and D, = 27270 C/e "'D,D,;.
For 1 <t< TY we use the uniform Gronwall inequality (see Foias, et al.
(1987))° on (3.28) to obtain

(3.68) ||A1/2v(t)||2§</ 14Y%0))* ds + th(s)ds) exp( t g(s)ds),

t—1 t—1

where 4 and g are given by (3.31) and (3.32). For ¢ > 1 we use (3.55), (3.66),
and (3.64) to derive an inequality similar to (3.67). This can be combined with
(3.67) to obtain

12,

(3.69) 14 20(0) < Dygy(e, )exp(Doy(e, ),  0<t< TV,

SLet ¥, &, h be nonnegative locally integrable functions on (0, co), where y is absolutely
continuous on (0, co) , and which satisfy y' < gy + &, 0< t < oco. Then one has

y(t) < (;i—f/;ty(s)dSJr/:h(s)ds) exp (/ttg(s)ds> R 0<t<oo,

where 7 = max(0,¢-1).
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where . s .
D,y =max(D,¢, D,, + max(v ~,4C,D,,D,,v ")),

D,y =27C}e"" 27 v max(D,,, D,,)D,,.

The next step is to define 7, = Tj,(¢). Since n'4 — 00 as &€ — 0", there is
no loss in generality in assuming that

2D, 0" > 1
We then define 7|, by requiring
(3.70) e T <, T, <,
that is, set
(3.71) T, % 21%1 log(2D,4n " ).
Also define
(3.72) Ey(e) ¥ (6" + 2T () *.

It follows from Hypothesis H2(a, b) that there are constants D,, and D,, such
that

(3.73) Ey(e) <Dy,  3kyet'n;? <D,

for 0 <e < 1. The term R(Z) = R(z)(s, d,, d,) is now fixed so that
2 2

(3.74) Ry, = Ry(&, Dy, 2D,y),

and the term N is fixed so that

(3.75) N >max(1, D,,, D,,),

where D,, = D exp(4Dl9D§0) . Finally we fix & = ¢(N, D,,, 2D ,) for these
choices of N, d,, and d, . Furthermore, we require that the constants a and
b in Hypothesis H2(a, b) satisfy a > 2D,y and b > 4D,,.

Let us return to the function y, which we will write as

y=ye,)=e""n 18,
where
B=B ) n "+ +0e "
Note that
(3.76) v <2 My 2B
and from (3.72) and (3.73) we have
(3.77) Ble,t)<m, +Dy, 0<1<2T,

From (3.70) we see that

-V -2 -2 —4
(3.78)  Dgrexp(D,o7’) < Dyyle 02 + 1y % + D) exp(4D,gn; " + 1)
for T, <1 <2T,.
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From (3.53) and (3.73) we find

(3.79) 14, " w@)* <D, o0<t<TV.
By using (3.69), (3.76), and (3.77) we find that
1/2 —vAt

2 2 2 —4 —4
(3.80) [|4, v(DII" < Dy,(e n " +m," + Dy)exp(2Dgn ") exp(4Dyn, )

&
for 0 <t <min(27,, T").
We claim that 27, < TV . In order to prove this, we assume on the contrary

that TV < 2T, . From the Pythagorean relation (2.21) and (3.79) and (3.80) it
follows that

1/2 Ny ,2 -2 -2 -4 —4
14 2w(T™ )1 < D,y + D,y (n™ + 0, + D,y) exp(2D,n ") exp(4D,gm; ).

[

From the definition of R(z) in (3.49) and (3.74) and the characterization of N

in (3.75) we obtain
1/2

Ny 2 2
4, u(T)|I” < NRy,
which contradicts (3.51). Hence one has 27, < ™.
Finally we turn to the verification of (3.48). For this purpose we restrict ¢
to the interval [T}, 27,]. From (3.53) we have

-2 -2
1/2 2 2 -vC, "¢ 1,2] 24r —
||A£/ w(t)]” < [kz exp (—%——To) + jkz]s * M4 2, T, <t < 2T,

From the definition of 7; in (3.71), we see that there is an ¢,, 0 < ¢, < &,
such that

(3.81) w'Clellog2 < Ty(e), O<e<e,
Now (3.81) implies that exp(-vCs 28—2T0 /2) < % , and consequently,
(3.82) 14, " w (Ol < ket T, <t<2T;,
for 0 < ¢ <¢,. From (3.69), (3.70), and (3.78) one finds
2 —
(3.83) 14,2 v()* <T(ny?),  T,<t<2T,,
where
(3.84) I(r) & D,,(r + D,,) exp(4D,o1* + 1)

where D,, = (2D19)—[/ 24 D,, . From Hypothesis H2(a, b) we see that there is
an ¢g,, 0 <e, <g, such that for 0 <& < ¢, one has
-2 -2 2 -4
T(n,") < 35(4n "+ kny ), 0<e<e,.
It then follows that for 0 < & < &, one has

1/2
€

2 2, .2 -4
A4 v < %(4711 +kiny ), T, <t <27,

By setting ¢, = &,, we complete the proof of the lemma. O
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Proof of Theorem 1. Since 0 < ¢, < ¢, , where &, and ¢, are given by Lemmas
3.1 and 3.2, the proof of Theorem 1, for 0 < ¢ < ¢,, now follows by first
applying Lemma 3.1 and then using Lemma 3.2 with induction, with TI =
T,+T, . The estimate for Lg appearing in (2.33) follows from the Pythagorean
identity (2.21) together with (3.82) and (3.83). The fact that u(-) belongs to

C 0([0, 00), Vel) is now a direct consequence of the local result contained in
Lemma 3.0. O

4. H’-REGULARITY: THEOREMS 2 AND 3
In this section, we will prove Theorems 2 and 3.

Proof of Theorem 2. 1t is known that if %, belongs to Ve2 = D(A,) and P, f
belongs to CO([O, ), H)N W1’°°((0, 0), D(A;l/z)) , then u is in the space

CO([O, 00), V;z) , and the time-derivative u belongs to CO([O, o0); H,) and is
the solution of the equation

(4.1) du'jdt+vAu + B, ,u)+B,(u,u)="P,f
with initial condition
u'(0) =P, f(0) — B,(uy, ug) —vA,u,;

see Temam (1982, 1983). On the other hand, if u, belongs only to VE1 , we will
show that one can choose 7, > 0, arbitrarily close to 0, such that u(¢,) belongs
to D(A,). It then follows that u'(to) belongs to H, for every such ¢, that u
belongs to CO([IO, 00), Vez) , and that «' is in the space CO([tO, o); H,) and
is the solution of the equation (4.1) on (¢,, c0). Our main objective here is
to prove the estimates (2.35), (2.36), and (2.37) of Theorem 2. The proof will
be given in four steps. We will not use here the decomposition ¥ = v + w.
The results of Steps 1 and 2 are already contained in Lemma 3.0. However,
we will reproduce the proof here because we require the precise estimates of
JENA,u(s))’ ds and f] |14 (s)|* ds used to obtain (2.35), (2.36), and (2.37). As
is usual, the formal estimates given here can be rigorously justified by using the
Bubnov-Galerkin approximation method.
Step 1. First we derive an estimate for f; HAEu(s)szs. Taking the scalar
product of (2.5) with 4,u, we obtain
(4.2)
1d
2dt
From the inequalities (8.8) and (2.18), we deduce that

1 2 3 1/2 1 1/2 2,,1/2 2,1/2
(4.3) lb,(u', i, w) < Coll ) 2u | 114) 222 4,2

1/2
€

2 2 1 2 v 2
14wl + vl Al < IS+ S Al + 1B, (u, w, A, 120,

3

for any u' e D(A:,/Z) ,ule D(4,), ue H_, where C; is a positive constant,
independent on &. This in turn implies that

(4.4) b, (u, u, Au)| < Cy|l4,."

€

3/2 3/2
w4 ul*?



544 GENEVIEVE RAUGEL AND GEORGE R. SELL

Using (4.4) and the Young inequality (3.4), we deduce from (4.2) that

12 27C9 12

2 2
(4.5) IIA ull” + vl Aull” < —||1P’ f1I% 14,ul®,  t>0.

By integrating (4.5) we infer that for max(0, t — 1) < t <t one has
(4. 6)

2
/ 14U ds < 2 (=0, f o +Dg(1-7) sup 14,

u(s)|*+— nA‘” @17

where D,; = 27C,2”'v™*. Since the right-hand side of (4.6) is bounded for
any t > 0, it follows that the integrand on the left-hand side is finite almost
everywhere. Therefore, there exists arbitrarily small 7, > 0 such that u(z)) €
D(4,).

Step 2. Next we derive an estimate of ftt ||u'(s)||2 ds for 0 <t <t. First we
observe that (2.5) yields the identity

(u', u') =(P,f, u') —(vAu, P f—vAu—B,(u,u)— (B,(u,u), u') ,
and consequently one finds that

2 2 2
1417 < 1B, £ W |+V B, LI 1A ull+v A ull +vlb,(u, u, Au)l+b,w, u, u)|.

By applying the Young inequality (3.4) several times and using (4.2) and (4.4),
we obtain

(4.7) 11 < 30° + D) aul + v Cal?ul® + 31,1117

As a result one has
t t

(4.8) / 1w’ ()] ds < / B+ V) 4,u) 1 +31B, £ 115+ ClA P uis))®) ds
T T

for t > © > 0. The inequalities (4.6) and (4.8) imply that for max(0, ¢t — 1) <
T <t one has
(4.9)

2

/ 14 S ds < Dyg(1=)B,f I D (1=7) sup 14! (o) + Doyl 4,

where Dy, = 3+ 6(” + )v™>, D,, = 3’ + )D,s + v*Cy, and D,y =
307 + !

Step 3. Next we shall derive an estimate of [|u'(¢)||* for ¢ > 0. Let ¢, be
fixed so that 0 <, < 1, and ¢, is close to O with u(t,) € D(A,). By taking
the scalar product of (4.1) with u'(¢), we obtain

(4. 10)

1/2 —-1/2 2 v 1/2 2
DI+ 1A < LA PR 1+ A b, ),

2dt
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for ¢ > t,. However,

>

|b8(u', u, u')| =

/ u;s_{i}(Diuj)u; a’x}
1%

i,j=1
3 . 1/2 1/2
<y ( / 8_2{'}(Diuj)2dx) ( / (u;)z(u;)zdx>
i, j=1 \"@ %]
3 1/4 1/4
2 2 6
< Cll4,’ un( > ( / (u;) dx) ( / (u;>) )
i,j=1 \Y& )
which gives
/ 1/2 1/2 1/2 1,3/2
(4.11) b, u, w)] < Cyoll AL 2ull 116 2142 P2,

Once again by using the Young inequality (3.4), we infer from (4.10) and (4.11)
that

d 2 1/2 2 _ 2, —1p2 2 1/2 4 2
(4.12) Ll O + w146 O <S4, 7B, 112 + Daglla, w1 )]

€

for ¢ > ¢,, where D,, = 27Cf02_11/_3. Next we apply the uniform Gronwall
inequality, as in (3.68), on (4.12) to obtain

’ 1 t / t2 - I
Wor < (= [ Werds+ [ 214 e 1)
0J1, T,

t
X €Xp (/ D29|1A81/2u(s)”4 dS) ,
To

where 1, = max({,, t — 1). Therefore, by using (4.9) for 7, <7 <1 one has

(4.13)

a2 20 12 o2 2 1/2 6
WO < (204, P, 1, 4 Daglf I+ Dy sup 14 ()]
0SS

D 1/2 2
(4.19) + 25 )1
0

1/2 4
x exp ( D,y sup [|4)%u(s)|*).
t,<s<t

Likewise for > 1 one has (z—1)) > % and (4.13), together with (4.9), implies
that

~1/2

2 2 2 2 1/2 6
' (DI < (;nAs PS5 + DyglIP, 12 + Dy sup_ |14, u(s)]
t—1<s<t -

(4.15) +2D,; sup IIA:/Zu(S)Hz)
t—1<s<t

1/2 4
X exp (D29 S1lip< ||AE/ u(s)|| )
t—1<s<t



546 GENEVIEVE RAUGEL AND GEORGE R. SELL

Let us now assume that u, belongs to D(4,). Thanks to the Gronwall
inequality, we deduce from (4.12) that one has

2 2 2, - 2
WO < (10 OF + 214, 7,71, )
(4.16)

X exp (D29 sup ||A;’2u(s)||“) , 0<t<l.
0<s<t

However, (4.7) implies that
2 2 2 2 4 4, 1/2 2
14 017 < 3% + Dl uol® + 3B, £ 112, + 30" Cy 114, ug ).
By combining the last two inequalities, we find that for ¢ < 1 one has

’ 2
' (0)]I> < (3(,,2 + D)l 4,ul” + 30 Col Al ug |

2. -
(4.17) 3R+ 214, e 1)

1/2 4
X eXp (D29 0s<u1<)t “Ae/ u(s)|| ) .
_s_

Step 4. In this last step we shall verify inequalities (2.35), (2.36), and (2.37).

By taking the scalar product of (2.5) with 4,u we obtain
2
vildul)” < o |14l + 1B, f 1Al + [by(u, u, ).

By using the Young inequality (3.4) with (4.4) we find that
9*cy 4
16v*
and consequently u(t) € D(A,) forall ¢ > ¢,. Since #, can be chosen arbitrarily

small, one has u(t) € D(4,) for all ¢ > 0. Inequalities (4.14) and (4.18) then
imply that for 0 <, <¢<1 one has

1/2 6
. u@l, t>t,,

3 3
(4.18) || 4,u(0)]” < el o1 + ynuzfuio +

2 -1/2 2 2 1/2 6
4O < (Daglla; B f 12, + DoIBL I, + Dy sup 4 ()]

D 1/2 2
4 )1
0

(4.19) +

1/2 4
X exp <D29 sup 14 u(s)) ) ,
_S_

where Dy, = 61>, Dy, =3 (Dyg+ 1), Dy, =30 2D,, +9°C4(2v)™*, and
Dyy = 31/_2D28 . Since (4.19) is valid for any ¢, satisfying 0 <f, <t <1, we
can replace ¢, with its limit value 7, = 0 to obtain

2 —-1/2 2 2 1/2 6
l4,u(0))* < (DsonAg B, f'I2. + Dy, IR, f |2, + Dy, sup. 4L 2 u(s)|
_s__
(4.20) + Dyt 14, )

1/2 4
X exp (D29 Os<ugt||Ae/ u(s)|| )
SSS
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for 0<t<1. For t>1 one obtains from (4.15) instead that
(4.21)

2 —1/2 2 2 1/2
IO < (Daglla; B f I + Dyl 1+ Dy sup_ 1)

Pys))®

1/2 2
+2D,, sup |4 u(s)H)
—1<s<t

X exp <D29z s tnA:/Zu(s)H“) .

up
—1<s<
The quantities K22 , K32 , and Kf appearing in (2.35) are now readily identified
from (4.20), (4.21), and (2.31). In the case that ¢ > T, + 1, where 7, is given

by Theorem 1, we are able to use the bound (2.33) for ||A8'/2u||2. As a result
(4.21) implies that

l4u@))’ <L ¥r,L), t>T,+1,

where

—1/2 12 2 3 2
(4.22) T'y(p) = (Dyyl4, ""P f |, + Dy, P, f o +2D33p+ D3yp7) €xp(Dygp).
Note that since L§ does not depend on the initial condition , it follows from

(4.22) that Lé is independent of u, as well. This completes the proof of (2.35)
and (2.36).

Let us now assume that u, belongs to D(4,). Then we deduce from (4.18)
and (4.17) that for £ <1 one has

2 —1/2 2 2 1/2
|4, u(t)|l” < (Dl A, / P, f 'Iloo + Dy,IIP, f I, +D35IIA6/ u(t)

1/2 2 2
(4.23) + Dyl *ug|* + Dyl A,ug 1)

1/2 4
X exp <D29 sup 14 2 u(s)| ) :
<s<t

6
Il

where D,, = 12072, D, = 9°Cy(2v)™*, Dy = 9Cyv*, and Dy, =
9(1/2 + l)v_z. The quantities K52 , K(f , and K72 appearing in (2.37) are now
readily identified in (4.23). This completes the proof of Theorem 2. O

Remarks. 1. Depending on the choice of #,, 7,, and r, one could have Lg —
o as ¢ — 0'. If this happens, then one finds that Lé — oo as well. On

the other hand, one can easily give conditions whereby both Lg and Lé are
bounded for 0 < ¢ < 1. We will be treating the latter situation in detail in §6
wherein we prove the upper semicontinuity of the attractors at ¢ = 0.

2. The decomposition u = v + w, as used in §3, together with the argu-
ments used here, may lead to slight improvements in the estimates appearing
in Theorem 2.

3. The proof of the Theorem 3, which we give next, is similar to the argument
in Babin and Vishik (1989, Theorem 2, §6, Chapter 1) for the 2DNS.
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Proof of Theorem 3. Let f satisfy the hypothesis of Theorem 3, and let %, be

any point in gg" U ﬂsl . Let 7 > 0 be fixed. Without loss of generality we will
assume that 0 <7< 1.

Assume for the moment that there is a compact set % O(r) in L2(Q3) such
that

(4.24) AS(f, uge F°(1), t>1, u € B UZ,,
or equivalently
0 1 -1 0
S, 0B uE) c A (F ), 1>«

The continuity of A;l assures us that 7' (1) oo A;l 674 0(r)) is a compact set in

V;z . In order to prove (4.24) we will use the fact that if 7|, JZ, are compact
sets in L*(Q,), then %, +.%, is compact in L*(Q;).

Since H(f) is assumed to be compact, the sets Ev(H'(f)) and Z, def
Ev(]P’eH+( f)) are compact sets in Lz(Q3) that satisfy

(4.25) P,g(t)e %, forallge H'(f), t>0;
see §2.11. Now the equation (2.5) can be rewritten as
(4.26) vAu(t) =P, f(t) —u'(t) - B,(u(t), u(t)), t>0.

Assume next that there are functions L,(7) and L,(t), defined for 7 > 0,
which depend onlyon v, 4, ,and 7,, i =1, 2, 3, 4, such that

(4.27) 4% o) <L), 1>1,
and
(4.28) 14, B,(u(r), u(t)|* < Ly(r), 12

In this case there is a set %,(t), which is bounded in Vsl and compact in
H, C L2(Q3) , such that
(4.29) —( (1) + B,(u(r), u(n) € Z(1), 12t
By combining (4.25), (4.26), and (4.29) one has
vAu(t) € Z + Z, (1), t>1,

which implies (4.24).

From Constantin and Foias (1988) we note that there is a constant E; such
that®
(4.30)

1.2 1723 1 20103 ) 2 3 1

b, (', A < Byl 4l 1), wl eV W e
Now (4.30) implies that ||4./°B,(u, u)|| < E,||4,u4|*, when u € V,>. Hence
(2.35) implies that (4.28) holds. In order to prove (4.27), we note that from
(2.30), (2.35), (2.41), (4.14), and (4.15) one has

(4.31) @O + 4,40l < Kgr™', 1>,

®One can show that E; is independent of .
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where Kg is a positive constant depending only on v, 4,, and 7,, i =
1,2,3,4.

In order to prove (4.27) we derive once again some formal estimates, which
can be justified rigorously by using the Bubnov-Galerkin approximation method.
Let us now take the scalar product of (4.1) with A4, u' for t > 0. We obtain

1/2
LA A

_ 2
<v IR, S, + Z”Aeu'll b, u, A )+ |b(u, u', A4
However, using (4.3) and (4.30) one then obtains

1/2 /

(4.32) ||A (O +vlau O <207 (1B, £ 12 +8E Kt 14 (1))

for t > 7, where Ef = (Cg + Eg)(/ll_I + 1). Now apply the uniform Gronwall
inequality to (4.32) to obtain

/2 1 1/2 1 —1 12
I o < (= / 4 0 ) ds+ 2717 e - )
(4.33)
x exp(8v E4K8 - 7,))
for ¢ > v, where 7, = max(7r,7-1).
It remains to estimate the term f HAI/ 2 u'(s )||2ds. Integrating the inequality
(4.12) between 7, and ¢ and using 'the estimates (2.30) and (4.31), we obtain

t
(034) —— [P O ds < S04 PR + KT 1+ Dy
t— Tl :, & 1/2 & & [ v
By combining (4.33) and (4.34) we deduce that (4.27) holds where
2 —1/2 1,2
L0 = (34,211,

X exp(SV_IEngr_l) ,

2 —l 1,2
(1+Dyok?) + 21,/ uw)

which completes the proof of Theorem 3. O

5. THE REDUCED 3-DIMENSIONAL THEORY: THEOREM 6

We return to the study of the reduced 3D Navier-Stokes evolutionary equa-
tion

(5.1) T +vA,U+B,(U, V)= MP,f,

where (I — M)P,f = 0. In this case, {w = 0} is a positively invariant set for
(2.5), the dilated Navier-Stokes evolutionary equation. Since v and MP,f do
not depend on Xx;, the terms in (5.1) do not depend on & . Nevertheless the esti-
mates derived in §§3 and 4 are valid for (5.1); see, for example, Ladyzhenskaya
(1969, 1972).
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We define o & || 4%5|| and g & |MP,f|_. Let L,,L,,... denote
functions of v, 4,, and B which are independent of a and M, M,, ...
denote functions of v, 4,, a,and B. Let D,, D,, ... be defined as in §3.

Instead of applying directly the results of Ladyzhenskaya (1969, 1972) we can
use the estimates derived in §3 and take into account that U does not depend
on x,. Thus by defining L, = L,(8) and M, = M|(«a, f) as
(5.2)

{ L, ¥ DB’ exp(D, %),
M, & D (a®exp(D,,8) + D (0 + 202 B%)(® + 7)) exp(D o (* + 1)),
we obtain the following result.

Theorem 6 (Part 1). Let v(t) be a solution of the reduced 3D Navier-Stokes
evolutionary equation (5.1) with v, € M D(Ael/ 2 ). Then there are functions

/2. 2 2 2
M, = M, (14,5, IMP,f12), L, =L,(IMPf]3)

given by (5.2), such that

(5.3) 14501 < Me ™™ + L,  t>0.
Notice that, by the definition (3.84), one has
(5.4) L, <T(B).

Moreover, there exists a time 7, > 0, such that one has Mle_”’l" < L, for
t > 7, . Combining this with (5.3) and (5.4) we get

14 B <2, 1>x,

If stnz—z and if 0 <é& <¢;, we then have

12—, 2 -2 -2 2 —4
14250 < 20,5y < (@n 2+ king Yy, 1>,

€

that is, for 0 <& <¢; and ¢ > 7, U(f) belongs to %’8' .

Let us denote by S(g, t) the mapping generated on M D(Agl/ 2) by the strong
solutions of equation (5.1), where g = MP,f. Arguing as in §4, one has the
following regularity result.

Theorem 6 (Part 2). If

—1/2

: )

then there exist six positive functions K; = Kf(HA;/ 2 Toll, IMB,f ) such that

MP,f € ([0, o); MH)NL™((0, c0); MHs)r\Wl "*((0, 00); MD(A

. { 14,7017 < K72+ K247 P Me, )2+ K for0<i <,
14T < K* + K247 P M )12 fort>1.
Moreover, if v, belongs to MD(A,), then one has
— 2 *2 *2 — 2 *2 —-1/2 2
14,500 < K;* + K2 14,5,1° + K214, PP 2, 0<i<1.
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Moreover, if f belongs to W(Q,), then, forany © >0, Sy (g, t)v, belongs toa
compact set of M Vs2 for t >, provided U, belongs to a bounded set of M V;l .
Furthermore, if f belongs to W(Q,)N w0, 0o); L2(Q3)) and is chosen so
that H*(f) is compact, then, for any bounded set B of M VKl and any t© >0,
Sy(&, )& is included in a compact set Ky(t, &) of MVE2 ,for t> 1.

If H +( f) is no longer compact, then, under the above hypgtheses, we can
prove that, for ¢ >0, S,(g, )& is included in a compact set K(¢, %) which
may depend on ¢.

Assume now that f € W(Q;) N W1’°°((O, 00); LZ(Q3)) is chosen so that
H*(f) is compact. Due to Theorem 6 (Parts 1 and 2), Sy(&, t) maps MD(A;/Z)
into itself, is bounded dissipative in MD(A;/ 2) , and for ¢ > ¢, > 0 is com-
pletely continuous in MD(A 61 / 2). Therefore, the skew-product semiflow
n, (U, g,t) = (Sy,(g, 1)V,, &) defined in §2.11 admits a global compact at-
tractor 2,(g) in MD(A:/z) x H'(g); see, for example, Hale (1988, Theorem
2.4.7). Since, by Theorem 6 (Part 2), S)(g, ) is also bounded dissipative in
MD(A,) and for ¢ >t > 0 completely continuous in MD(4,), A,(g) is also
the global compact attractor in MD(A,) x H"(g). By the estimates (5.3) and
(5.4), we have

1/2
€

C B x wo(MP,f).

2%,(8) C {u=v+w: [40)> < L, <T(IMB,f|’), w =0} x w(g)

(5.6)

6. PROPERTIES OF ATTRACTORS: THEOREMS 4 AND 5

We turn next to the proofs of Theorems 4 and 5 concerning the attractors for
the Navier-Stokes equations. Let %’eo , %fgl , and %2 be given by (2.38), (2.39),

and (2.40). By Lemmas 3.1 and 3.2, @: is well defined and is a bounded set
in V.

Proof of Theorem 4. Set ?/82 = %’82 x H+(]P’£f). For u, € VBl and f € W(Q,)
with P,f € W' ((0, 00); L*(Q;)) we let

n(uy, P S, 1) = (S, (RS, Du,, (P.f),)

denote the skew-product semiflow generated by the strong solutions of the di-
lated Navier-Stokes evolutionary equation (2.5); see §2.11. Let A, = w(%z) be

. 2. 1 :
the w-limit set of % in V' x P, W(Q,), i.e.,
2 ¥MNa u*
=N osure, 1 p g, Ur# .0).
>0 >t

It follows from (2.36) in Theorem 2 that for 7 > T, + 1 the set

Us.®,r. 0]

t>1
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lies in a bounded set in Vs2 and, thus, a compact set in Vs1 . Since H +(]P’E )
is compact, it then follows that

2
Closure,,enxPeW(Ql) (U n (%, , t))
>t
is a nonempty compact set in Vel x H +(IP’E f) foreach 7 > Tl +1. Consequently
21 is a nonempty compact invariant set in Ve1 x H +(]P’8 f). Since

€
S,(Bf, 0B c B, 1>0,

%2 is a positively invariant neighborhood of 2, . Therefore, 2, is a local

attractor for the strong solutions of (2.5) in V;l x H+(]P’8 f), and the basin of
attraction satisfies &’ x H'(P,f) C B(,). O

Remarks. 1. While the basin of attraction B(2,) is a large set in Val xH* (P f),

we do not know whether B(2,) = VEl X H+(]P’£f) . As a result we do not know
whether 2 is the global attractor of =,. The reason for this is that there
may exist u; € V;l such that the solution S (P, f, f)u, is not globally regular.
Because of this, the fact that Corollary 4.1 allows us to conclude that 2, is the
global attractor in the space of Leray solutions and B(%,) = H, x H‘L(]P’8 f) is
all the more surprising.

2. The fact that the Leray solutions of (2.5) may not be unique is not a
concern from the point of view of the dynamics. One can overcome this problem
by using the Bebutov flow; see Sell (1973).

Proof of Corollary 4.1. For any Leray solution of (2.5) we use (3.35) to obtain

1Y o2 2 v 2 2, —1)2 2 -172 2
Z /0 14,2l ds < ——llugll” + 20 (14, P MB,f 12, + 14, (1 = MOR,fI2,)

forall ¢ > 0. From (2.6), (2.22), (3.1), and (2.55) with 2" >20"?max(3] ', CJ)

we obtain

1" a2 2 ! 2 -2, -1 2 22 2
;/0 ||A8/ ul|“ds < Tlluoll +2v (4, (IMP S + CseTll(I = M)P,f|,)

-1

v 2 —2,,-1 -2 2 24r =2
STHuOH +2v (A n, +Cie )
v 2 2 2
. — p —
< T llugll® + kmin(n;*, &"n; )

forall >0 and 0 <eé& < ¢y (4), where 0 < k < 1. Therefore, for
_ 20w
(1= k)ymin(n;*, ¢"n3%)
thereisa f,, 0 <t, < T, such that

1/2 2 . -2 -2
14, 2u(tg)I < min(n,*, &’n;),  O<e<e,
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For this £, it follows from (2.21) that

1/2 2 1/2 2 -2
1420 ()P < 14 2ut)l* < n; 2,

14, 2wt < 14, 2u(t,)I” < &3
Consequently for 0 < ¢ < min(¢,, €,,), where g, is given by Theorem 1, one
has u(¢)) € %’: . Theorem 1 then implies that u(¢) is regular for all ¢ >1¢,. It
follows that for the Leray solutions the basin of attraction B(2,) is H,xH ().
Consequently 2, is the global attractor for the Leray solutions. O

Remark. The concept of a weak attractor for the 3DNS was studied in Foias and
Temam (1987). It follows from Corollary 4.1 that the weak attractor coincides
with 2, for thin domains.

Proof of Corollary 4.2. The proof of the existence of a global attractor 2, for the

skew-product semiflow 7z(-, g, ) in MD(A:/z) x H"(g), where g = MP,f,
has been given in §5. The proof of (2.56) follows from (5.6) and (5.4).
Assume now that (I — M)P,f = 0 and that 0 < ¢ < ¢,. Clearly, any

solution 7(#) of (2.24) with initial data 7, € MD(A;/ 2) is a solution of the
dilated Navier-Stokes evolutionary equation (2.5). As 2,(g) is included in

ﬂsl x w(MP,f) C B(2,) and is an invariant set for equation (2.5), it follows
that 2,(g) C %, . Let us now show that 2, C 2,(g). Since (I - M)P,f =0,
inequality (3.53) takes on the form

142 w@))? < kie™ n P exp(—vC; e 21/2), >0,

provided u, € %l . This implies that the u-component of the w-limit set of

ggs‘ x H +(]P’e f) belongs to the set of functions in %81 which are independent
of the variable x,,i.e., 2, C2)(g). O

Proof of Theorem 5 and Corollary 5.1. We begin with Theorem 5. Let us con-
sider a sequence of positive numbers ¢, — 0 as n — oo. Let & be any

positively invariant compact subset of W (Q;) N w' (0, o), L2(Q3)) , and
let f, be a sequence of functions f, € # that satisfies
(6.1) 1im [/, = folloo =0,

where f; € MF . Then each of the positive hulls H'(f,) and H'(f;) are
compact sets in # . Weset g, =P, f, and g, = MP, f,. According to the

comments made in §2.6, P, f,(¢) belongs to MH, for every ¢, and conse-
quently

P, ()
(6.2) gO=M1p8f0=1pef0=< foz),
n n fos
where fy = (fy,» fo2» fo3) - It follows from (6.1) and (6.2) and the fact that P,

is a projection that
(63) Tim || MP, f, - g, =0
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and
nli_)xgo (I - M)]P’snfn”oo =0.

The last two conditions can be written as

(6.4) 1im ||, f, — &, =0.

For every n, we consider the dilated Navier-Stokes evolutionary equation, i.e.,
(6.5) u + vA, u+B, (u,u)=g,
Let S, (g,, t)uy, = u,(t) = v,(t) + w,(t) denote the strong solution of the
equati(;n (6.5) with initial data u,, in V;l . We also consider the reduced 3D
Navier-Stokes evolutionary equation

(6.6) T +vA, 0+ By(U,7) = g,

with initial data v(0) =7, in V;)l . Let S,(g,, t)v, denote the strong solution
of (6.6) with initial condition 7, € VOl . It follows from (6.4) that there exist
an integer n, and a positive constant E; such that
2 2 2
max(||gyll, . Mgl 18,l.) < Ey,  nz=ny.

According to Theorem 1 and Lemmas 3.1 and 3.2, every solution of (6.5)
with initial data in the bounded set %’80 ultimately enters into the bounded set

QBI as well as the bounded set %f where

12
8"

2 2+4r

& Elu=v+wes,: 14 20)? < T(E,), |4 w|* < kel n, ).

Eﬂ = 87!
In particular, the (local) attractor 2, of (6.5), see Theorem 4, is included
in %’f x w(g,), for n > n,. Likewise, due to the property (5.6), the global
attractor 2, = 2,(g,) of (6.6) is included in the bounded set B, x w(g,),
where

By ={u=v+weV,: |40’ <T(E,), w=0}

Note that, for every n one has M@: = %03 . Now define E, =I'(E;).

For Tt € R, we let fn o &1 and "go’r , denote the translate of f, , g, , and
&, ; see §2.11 Then from (6.4) it follows that for every 6 > 0 there is an integer
n, > n, such that

18, :— & .llo £6/2,  n2n,, 120.
Furthermore, there isa 7" > 0 such that

distW(Ql)(gO,r, w(g,) <d/2, t>T.
It then follows that
(6.7) distW(QB)(gn,T , w(gy)) <9, n>n,, 1>T,

which implies that the attractors w(g,) are upper semicontinuous as n — oo.
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In the remainder of the argument we shall use the weaker condition (6.3) in
place of (6.1). As a result the argument now applies both to Theorem 5 and
Corollary 5.1.

We claim that there exists an integer n, > n, and two positive constants k;
and E,, with E, > max(E, E,), such that

(6.8) 4% I <E,, 14w o)) < ke n,?,

for e=¢,, n>n,,and ¢ >0, provided u, € %3 . Furthermore, one has
n

(6.9) 4y *T(0)* < E,,

for ¢t > 0, provided (v,,0) € .%’03 . Indeed (6.8) and (6.9) are immediate
consequences of (3.82), (3.84), and Theorem 6 (Part 1).
Now we want to compare the orbits of the dilated Navier-Stokes equation

(6.5) with those of the reduced 3D Navier-Stokes equation (6.6) when u,,
belongs to %’ . To this end, we consider the equation satisfied by z,(¢) def
v, (t) — (1) where z,(0) = 0 (ie., v,(0) = v(0) = v,,), w,(0) = w,,, and

Uy = Vg, + W,, belongs to %n . We have
(6.10) z + vA, 2, = (Mg, — &) - M(B, (u,,u,) - B, (U,7)),
and Mz, = z, . Taking the inner product of (6.10) by 4, z,, we obtain
(6.1 1)

12 2 2
LAz, + v, 2,
< llMg,, — &olloll4; 2,

+ |be"(vn, v,, Aa,,zn) - bsn(i, v, Ae,,Zn)| + |b, (w sw,, A, z,)|

n’ e,

2dt

for t > 0. However, we can write
(6.12)
lbsn(vn Uy Asnzn)—ben(i)", T, Agnzn)| = |b8n(zn , U, Aenzn)+b8n(vn s Zps Aenzn)l.

From inequality (8.13) we obtain

1/2
(6.13) b, (2,57, 4, 2,)| < ¢z, an(Q)nA/

i” ”Ag" Zn” °
Since z, does not depend on the variable x,, we can apply the following
Gagliardo-Nirenberg type inequality:

1/2 1z
(6.14) 1ZallL=(0,) < ellzull o I1Zall Zg, 5

see Friedman (1964). The estimates (6.13), (6.14), and (2.18) imply that

12 3/2

— 1/2_
(6.15) b, (2,. 7, 4, 2,)| < Cyollz, 1114, 1114, 2,
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for some constant C,,. From (6.11), (6.12), (6.15), (3.2), and (3.3), we find
that

1/2 2 2
LA vl 2,

1/2 1/2 3/2 1/2
24 w4, w)'?)

<14, z,I(1Mg, - g, + Cyt
1/2 1/2 1/2 1/2 1/2 3/2
+ Cillo 214, v, 1214, 2, 11204, 2,1
1/2 1 2_ 3/2
+ Cyollz, 14,3l 14, 2,1

for ¢t > 0 Using the Young 1n¢quahty we derlve from (6.16) that one has

(6.16)

1/2_ 2 2
IIA z,|I" +vil4, z,|l

2 1/2 3
s—nMg — gl + cze,,nA w4, wl)

108 2 2 _
— (v, 114, 0, 1714, 2,1 + Cliz, 1114, o)

for ¢t >0, or, by (6.8) and (6.9),
47, 2 2 4 2 12,13
< — —
6.17) dz” e, 2l +vl4, |7 < Mg, g(l)/ll2 C e,ll4; w4, wil
+D24EZIIA z,I°
-1, =3, 4 4
where D,, = 1084, 'v "(C| + C},).
Integrating the inequality (6.17) from O to ¢ and using a Gronwall inequality,
we deduce that

12, o2 < 4 2 2 [t 3
142,007 < 5 (t13, - g, + Clz, [ 14 w14, w(s)l ds )

x exp(D,,E;1)

for ¢t > 0. Arguing as in the proof of (3.54), we see that there exists a positive
constant D25 such that

/ 142w ()14, wis)l ds < Dyg(1 + 0™t 120,

Finally, we obtain
12 2 4 2 4+2r -4 2
(6.18) HA / z,(DlI" < (;t”Mgn = &lI” + Dys(1 + t)8n+ r'74 ) exp(Dy, E;t).

Thanks to hypothesis (2.59) and condition (6.3), we infer, from (6.18) that, for
any positive numbers J and T, there exists an integer n,, n, > ny > 0, such
that

(6.19) ||A‘/2 (D> <6/3, n>n,

Let J be a positive number. Since 2, is the global attractor of (6.6), there
exists a positive time 7, = 7,(d) such that

(6.20) 7o(By s H' (8), 1) C My o) (o5 /3), 127,
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where ./, VI xW(Qy) (%,, @) denotes the a-neighborhood of 2, in 01 x W(Q,).
Using the properties (6.8) and (6.19), as well as the hypothesis (2.59), we see
that exists an integer n,, n,>n 4 , such that

12 1/2 2
(6.21) 4, 2w a(To) — (10))II +14, P 2(TII" <20/3, nzng,
where u,(t) = vn( )+w, (1) =S, (gn , t)uOn , U(t) = Sy(8y, )Mu,, , and u,, €
B . From (6.7), (6.20), and (6.21), we infer that

3
nen(%" , H+(gn)’ 7o) c/I/Vel xW(QS)(QlO’ d), n>ng,,

and, in particular,
(6.22) m, (Ql s To) C/VVI <W(Q,) (™A, 9), n2>n,.

Due to the invariance property of the attractors 2, , we at once deduce the

upper semicontinuity result (2.61) from (6.22). ThlS completes the proof of
Theorem 5 and Corollary 5.1. O

Proof of Corollary 5.2. We shall only give a sketch of the proof of Corollary 5.2.
We keep here the notation of the proof of Theorem 5.
According to Theorems 2 and 6 (Part 2), every solution of (6.5), for n > n,

(resp. of (6.6)), with initial data in the bounded set @80 (resp. in any bounded
set of Vol) ultimately enters into the bounded set @4 (resp. ‘@04) where

By E{ue V|4, ul* <E,}

(resp. %4 ={v € V2 ||AOv|| <E }) where E, is a positive constant inde-
pendent of n. Note that, for every n, M@ 934 In particular, the (local)
attractor 2( of (6.5) (resp. the global attractor 2, of (6.6)) is included in the
bounded set ﬂ x w(g,) (resp. @ x w(g,)). Furthermore, due to Theorems
2 and 6 (Part 2) there exist an integer ns, ng > n,, and a positive constant
E,, with E; > max(E,, E,) such that, for >0,
4, un(t)ll2 <E; forn2>ng, u,, € %: ﬂ%f ,

and 2 3 4

4, o()I" < Eg forv, € &y NE,.

Let 6 be a positive number. Since 2, is the global attractor of (6.6) in VO2 x
W(Q,) , there exists a positive time 7, = 7,(d), with 7, > 1 for instance, such
that

(6.23) 7o(By N By, H' (g,), 0 C Moy o> 8/3), 127,

As in the proof of Theorem 5, due to the properties (6.7) and (6.23), the upper
semicontinuity result (2.63) is valid if we show that there exists an integer n,,
ng > ng, such that, for n > ne , one has

(6.24) 4, (u,(z)) =B < 26/3
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— — 3 4
where u, (t) = Ssn(g" > Dug, > U(t) = Sy(&,, 1)V, and u,, € gé’s" nﬁ’sn .

Note that z, def u, — U is the solution of the equation
’ S —
z, + VAe,,Zn =(&,— &) — (Ben(un s U,) — Ben(v , 1)),

with initial condition z,(0) = u,, — Mu,, = w,, . The proof of the estimate
(6.24) follows the lines of the proof of the estimates (2.35), (2.36) of Theorem
2 (see §4, Steps 1 to 4). As the proof of (6.24) is rather long and completely
similar to the proof of Theorem 2, we omit the details. Let us just point out
that, as in §4, we use the auxiliary equation

d —r I
JrZntvd, 2, = (8,~8)~ (B, (u,. u,)+B, (u,. u,)~B, (@, 70)-B, (.7)),

with initial condition
!

Zn(o) = (gn - gO)(O) - (Bsn(uOn > uOn) - Bs”(UOn > UOn)) - VAsn(uOn - vOn)‘ g

7. REMARKS ON OTHER BOUNDARY CONDITIONS: THEOREM 7
In this section, we assume that Q, = Q, x (0, &), where Q, is a bounded

domain in R* with a boundary of class C*, s > 2. The smoothness hypoth-
esis s > 2 is made to avoid any problem of regularity of the solutions of the
corresponding stationary Stokes equation. As in §2, we set Q5 = @, x (0, 1)
and use the change of variables (y,, y,, y3) = (X, X,, X3), where x; = y,,

i=1,2,and x,=¢ ' ¥, . This change of variables sends Q_ onto Q..
3 3 € 3

7.1. Mixed periodic-Dirichlet boundary conditions. We are interested here in
solutions of the Navier-Stokes evolutionary equation (2.5) that satisfy periodic
boundary conditions on I, = Q, x {0} U Q, x {¢} and Dirichlet boundary
conditions on I', = 90, x (0, &). As before we use the operator J, of §2.1.
Let H, (respectively Vel) denote the closure in LZ(Q3) (respectively H l(Q3))
of those smooth functions u that satisfy periodic boundary conditions on I",,
Dirichlet boundary conditions on I',, and V,-u = 0 in Q,. We denote by
P, the orthogonal projection of LZ(Q3) onto H,. By applying P, to (2.4),
we obtain (as in §2.2) the nonlinear evolutionary equation (2.5) on H,, where
ueH, Au=-PAu. We set VE2 = D(A4,). Using regularity results (see
Dauge (1984) and the references therein), one can show that Vf = V;l NH Z(Qs) .
One also has Ve1 = D(Asl/ 2) . Using the classical Poincaré inequality, one easily
shows that the inequalities (2.17) still hold. Likewise, thanks to the estimates
(2.17) and to regularity results in Dauge (1984), one can prove the inequalities
(2.18). Like in §2.4, we introduce the projection M . All the properties given
in §2.4 are still true. In particular, if u € D(A ¢)» we have

(7.1) (I = M)Au= A (I — M)u.

The crucial estimate (2.22) still holds (see Hale and Raugel (1989)). The above
property (7.1) allows us to write the equation (2.5) as the system (2.23) of two
equations in v = Mu and w = (I — M)u.
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As in §2.6, we obtain a reduced 3D Navier-Stokes evolutionary equation
which is given by (2.24). The reduced 3D Navier-Stokes evolutionary equation
incorporates the 2DNS equation on Q, with homogeneous Dirichlet boundary

conditions. In order to see this, we let L* (Q,, R’ ) denote the L2-space of 2-
dimensional vector fields m = (m,, m,) which depend on (x,, x,) € Q, and

let H(Q,) denote the closure in L2(Q2 , ]RZ) of the smooth functions u that
satisfty D;m, + D,m, = 0 on Q,. Finally we let P, denote the orthogonal

projection of L*(Q,, R) onto the space H(Q,). Then P, and P, satisfy the
relations described in §2.6. Furthermore, ¥ is a solution of the reduced 3D
Navier-Stokes evolutionary equation (2.24) if and only if m = (v,,7,) is a
solution of the 2D Navier-Stokes evolutionary equation

d 2 2
Em —vP, (D} + Dy)m +P,(m-V)m = (g,, &)

and U, is a solution of the linear equation
d_ 2 2 I
2;1)3 —v(D| + Dy)vy+ (v, D, +U,D,)v, = g5,
where g = (g, &,, &) = MP,f. With the changes made above in the defini-

tions of the spaces H,, V;l , V;z and the operators P, and P,, all the results
given in §§2-6 (see also §8) are still true in the case where we have periodic
boundary conditions on I'y UT', and homogeneous Dirichlet boundary condi-
tions on I',. Moreover, the proofs given in §§3-6 are exactly the same.

7.2. Homogeneous Dirichlet boundary conditions. This case is quite different
from the cases previously studied. Here we consider the Navier-Stokes equa-
tions (2.1) on €, (resp. (2.4) on Q,) with homogeneous Dirichlet boundary
conditions on 9Q, (resp. on 9(Q,). Here we introduce the spaces

2
H ={ueLl(Q):V,-u=0, u-nl,, =0}

and | |
V., ={ue Hy(Q;):V,-u=0},

and we denote by P, the orthogonal projection of LZ(Q3) onto H,. By apply-
ing P, to (2.4), we obtain (as in §2.2) the dilated Navier-Stokes evolutionary
equation (2.5) where u =P,u € H,, A,u = —-P,A,u (with homogenous Dirich-
let boundary conditions). One has VEl = D(A;/ 2) and we set Ve2 = D(4,).
Using the regularity results given in Dauge (1984, 1989), one obtains that
VE2 = Vel nH* (Q;) . Using the classical Poincaré inequality, one shows at once
that the estimates (2.17) still hold. Arguing as in Hale and Raugel (1992a,
Corollary 2.8) one shows that

(7.2) l4pull < C, &)l A

where C,, is a positive constant that does not depend on ¢. Using the in-
equality (7.2) several times and the regularity results of Dauge (1984, 1989),
one proves that

(7.3)

—1 —1 —1 -2 2 -1
Colllull )+ Dyl + &~ 1D, Dyull + &~ | D,Dyull + & > D3ull) < & A,

i+1/2

. ull fori=0,1,
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and
-1 -2 2
”Agu“ < C7(“u”H2(Q3) +é “D3u”H‘(Q3) +é& ”D3u”)

The inequalities (7 3) and (8.20) imply that
2
(71.4) (b, u uN<CdM”1MMmuH )],

for u' € D(Al/z), u e D(4,), and w e H,. We now state the following
results which do not use the decomposition u = Mu + (I — M)u. We assume
that 0 <e<1.

1/2 2”1/2

|4, u

Theorem 7. Let p and r_ be two real numbers satisfying —1 < p < 0 and
r> =3, andlet C, and C, be two positive constants. Then there exists &, > 0
such that, for 0 < & < g,, whenever u; € D(Ael/z), f e L0, ), L2(Q3))
satisfy

1/2 2 =~ 2 =~ r
14, "ugl* < C,&" . IS, < Gof
then (2.5) has a solution u that belongs to CO([O 00), Vel) and we have
||A‘/2 O < exp(-vC; 2 2t/2)C,ef +2CL Cw 2™, 1>0.
Proof. | We set
-2 2+r
= C,&’ +2C] Cr 2.

Since R(z, > IIA:/ 2u0”2 , it follows from Lemma 3.0 that there is a time 7° > 0
such that

(7.5) 14} % u

ut)|> <2R>,  0<t<T'

Without loss of generality, we let [0, TO) denote the maximal time interval for
which (7.5) is valid. If T° < 0o, then we must have

(7.6) 14 2T = 2RE.

By taking the scalar product of (2.5) with 4, u and using (7.2) and (7.4), we
obtain, for 0<t< 70 ,

1/2 2 2 1 1/2 1/2, 1/2 2

1) Ll s via? < Lie 12+ 20,00 A ul 4,00
For OStST , we have

2Clzclxl/zsl/z”A;/zun S2\/§Cl2C111/281/2(C1/2 p/2+\/_C“Cl/2 —181+r/2),

which goes to 0 as ¢ — 0. Consequently there is a positive number g, such
that

(7.8) 2V2€,C % "Ry < 3.

For 0 < ¢ <¢,, we deduce from (7.7), (7.8), and (7.2) that

12,2 12,2
IIA ul® + 2 ul|

1 2 0
4! <SPS, 0<e<T,

2
11

"This proof of Theorem 7 is, in fact, a small data argument.
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which, by the Gronwall inequality implies that

1/2

2 12, 2 2C € 2
4" ull < exp(—vC; e t/2)|| 4, uy| +%I|Pef||oo,

or
Cy 24r
(7.9) 14, ul < exp(—v Cy e 7 1/2)C " + U2 Cn 22t

for 0 <t < T°. From (7.9), it follows that
12 0y ,2 2 2
14, u(T)|I” < Ry < 2Ry,
which contradicts (7.6). Therefore T'=w. D

Remark. Like in §4 (see Theorem 2), one can show that, under the hypotheses
of Theorem 7, if moreover P, f belongs to

c’([0, o), H,)nW">((0, o), D(4; %)),

then the solution u(¢) of (2.5) belongs to c? (0, ), V8 ). Let S,(P,.f, Du,
denote the strong solution of (2. 5) with initial data u, € Vel , and let %I =
{uev'; 14%u)? < Ce" +2C;,Cov ~2¢**"1 . As in §4 (see Theorem 2) one
can show that, under the assumptions of Theorem 7, if in addition, f € W(Q,)
is chosen so that P, f € wh "*((0, 00); H,) and H*(f) is compact, then for
any 7 > 0 there is a compact subset K(7) of ng such that

1
S.(P.f,)%®, CK(1), t>1
The results below are more interesting than Theorem 7. We recall that
n,(uy, P f, 1) = (S,(B,f, ©)u,, (P,f),) denote the skew-product semiflow gen-
erated by the strong solutions of (2.5).
Corollary 7.1. Assume that the hypotheses of Theorem 71 hold and that f €

W (Q,) is chosen so that B,f belongs to w0, o), H,)) and H'(f) is
compact. Let ¢, > 0 be given by Theorem 7. Then, for 0 < & < &, the skew-
product semiflow 7: (-, P.f, T) has a unique maximal compact (local) attractor

A, included in %’ x (P, f) which attracts ﬂ xH+(]P’ f) in the space V x
P W (Q,). Futhermore

% C{ueV,: |4’ <2, Cr 72y x 0(B, 1).

ek

Moreover, 2, is bounded and compact in Vf xw(P,f) and attracts the bounded

set (ﬁsl n Vsz) x H+(P8 f) in the space Ve2 x P,W(Q,). Finally, the attractor
. 18 the global attractor for the Leray solutions of (2.5).

Proof. The first part of this theorem is proved in the same way as Theorem
4. We will only give the argument that 2, is the global attractor for the Leray
solutions of (2.5), i.e., the weak solutions of (2.5) that satisfy the energy estimate

t
t —
(7.10) u®I* = |u(O)]* + v /0 4, uis)I*ds < —ll4, "B f15,, >0,
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From (7.10) and (7.2) we infer that

C22

lu())? = |u©))* + v / 142 u(s)P ds < =gy 4] PR 1|2,

which implies that

-1
(7.11) ]nA‘”u(s)n ds < VNl + CLEp T, 1> 0

Therefore, for T = C|; Cz_lus—(2+')||u0|| , thereisa time ¢, 0 <¢, < T, such
that

12

142 u(ty))? < 2C}, Cv 2™,

that is, u(t,) belongs to QB and, according to the proof of Theorem 7, u(?) is
regular for all ¢ > ¢,. This implies that 2, is the global attractor for the Leray
solutions of (2.5). O

Corollary 7.2. Assume that the hypotheses of Corollary 7.1 hold. Then we have

(7.12) sup |ul| -0 ase— 0.

(u,h)e,
If, in addition, r > -2, then the first components of the attractors 2, converge
to 0 in D(Al/z) ie,

(7.13) sup |4 u| -0 ase— 0.
(u,h)e,

Proof. Property (7.13) is an obvious consequence of Theorem 7 and Corollary
7.1, and property (7.12) is a direct consequence of Corollary 7.1 and (7.2).
Indeed, we have

2

Ch
|| ull’ + il < IIIP’fII t>0,
Cll
which by Gronwall inequality implies that
(7.14)  Jul® < (exp(—vCp e D)l |* + €1, Cr 6™, 1> 0.

Now (7.12) follows from (7.14), the fact thatr > —3, and the invariance of
A . O

€

8. APPENDIX: PROOFS OF AUXILIARY ESTIMATES

In this section we give the proof of the estimates (3.3) in the case of periodic
boundary conditions and of the corresponding estimates in the case of other
boundary conditions. We use ¢, c,, ... to denote constants which do not
dependon ¢ for 0<e<1.

8.1. Periodic boundary conditions. We will keep the notation of §§2 and 3. Let
us begin with the following lemma.
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Lemma 8.1. For any q, 2 < q < 6, there exist two positive constants c,, and
c,, such that for any w satisfying Mw = 0, one has

27! -1
(8.1) 10l o0, < €18 (1Wligy +& 13wl 2 g,)
and
207 4112,
(8.2) lwllzeg, < ™ 14wl
for 0<e<1.

Proof. Inequality (8.2) is a direct consequence of (8.1) and (2.17). In order to
prove (8.1) we will use two inequalities from Hale and Raugel, (1992b, Lemma
4.1 and Proposition 4.2), which can be written (in the notation of §2) as

(8.3) ||’w||L2 <C3 (lwl g Q) +8 ”D3w“L2(Q3))
and

1/3 -1
(8.4) Il sy < ce Ul +2 1D3wl )

whenever Mw = 0. Inequality (8.1) is then obtained by interpolation between
(8.3) and (8.4). (Note that inequality (8.1) could also be derived by replacing
g = 6 in the proof of Hale and Raugel (1992b, Proposition 4.2) by any ¢,
2<g<6.) O

The next step is to prove the following result.

Lemma 8.2. There exist positive constants ¢, cg, and ¢, such that for all u' e
D(Al/z), u e D(4,), and ue H_ the following hold.:

[4

(H If Mu' =0, then

8.5) b, ut, W) < cse A Pul 1A Pl R Al )
() If Mu* =0, then

8.6) b, u’, wd) < e OlA Pul 1A P P Al )
(3) If Mu' = Mu* =0, then

®.7) b, ud) < e At A2 P Al 1)

Proof. Let us recall that

1
be( = Z / —Uy, ,Dlu]ujdx
i,j=1
where {1} = {2} =0 and {3} = 1. Using the Holder inequality several times,
we obtain
(8.8)

3
1 2 3 1 —{i} 2,1/2 —{l} 2,172 3
lbe(u s U , U )l < Z ”u[”L(’(Q})llg Diuj“LZ(Q )“ Dl j”LG(Q )“u}HLz(Q)
i,j=1
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Assume now that Mu' = 0. Then we deduce from (2.17), (8.2), and (8.8)
that
(8.9)

3
1 2 3 1/3 1/2 1 1/2 2,1/2,, 3 —{i 2
b, (u', )] < cge A, u | 114,20 ||(Zns Y ||H.(Q3)),

and (8.5) is now a direct consequence of (8.9) and (2.18).

Assume next that Mu” = 0. Then obviously, MD,.u2 =0fori=1,2.
Since u’ is periodic with respect to the third variable, we also have M D, W =0.
Therefore, we can apply inequality (8.1) to w = e_mDiui to obtain
(8.10)

” {I}D 1/2

” 1/2
i%illLs0,)

1/6
<ot (le Dl i o, + & e DD )

The estimate (8.6) is a direct consequence of (8.8), (8.10), and (2.18).

The case Mu' = Mu* = 0 is a combination of the above, and (8.7) is a
straightforward consequence of the inequalities (8.2), (8.8), (8.10), (2.17), and
(2.18). O

Note that (8.7) establishes the first inequality in (3.3). In order to prove the
other two inequalities in (3.3), we need the following results.

Lemma 8.3. The following statements are valid:

(1) For any real numbers r and 0, satisfying 2 <r <6, £ <0 <1, and
r6 — 6(1 —6) > 0, there exists a positive constant c¢,, = c,,(r, ) such that, for
any w € D(4,) with Mw =0, and any u e D(A 1/2) and any u® in H,, one
has

2 3 (1-6 1/2 1-6 1/2 2 3
@.11) (b, (w, u’, w)| < o T A, w14 Pw ) APl 1)

(2) For any real number q, 2 < q < 6, there exists a positive constant
¢,y = ¢,,(q) such that, for any w € D(A,) with Mw = 0, and any v €
Z(M)nD(A 1/2) and any u € H,, we have

1/2 1/2

1 172 1/2
(8.12) by (v, w, w)| < e84, v 14, Hw)| 2 4, )
Proof. Using the inequalities (2.17) and the Cauchy-Schwarz inequality, we ob-
tain

3
2 3 (i} 2 3
|bg(w9 u.,u )l < § : |'wi|lL°°(Q3)l|£ Diujlle(Q3)||uj||Lz(Q3),
i,j=1
or

2
(8.13) Iby(w, u*, 1)] < epyllwll e g 14y 18 1)

It is well known that, for any p > 3, there exists a positive constant ¢, such
that

(8.14) lwll =g, < ciallwliprog,-
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Now, using a Gagliardo-Nirenberg inequality (see Friedman (1964, Theorem
10.1) for instance), we obtain, for <6 <1 and r(6 -2+ §)=6(1-06), that

0 1-6
(8.15) |'w||W1,p(Q3) < C13”w”}12(Q3)||w”L’(Q3) >

where c,; is a positive constant depending only on r, 6, p. Combining the
inequalities (8.14) and (8.15), we see that actually, for any real numbers r, 8,
satisfying 2<r<6, $ <6 <1,and rf —6(1—6) >0, we have

/] 1-6
(8.16) 10ll =0,y < Cralllo, Wl

where c,, is a positive constant depending only on r, 6. Now the estimate

(8.11) is a direct consequence of the inequalities (8.13), (8.16), (8.2), and (2.18).
Let us now prove the estimate (8.12). Using a Holder inequality, we obtain,

forany 1 <4 <3, that

(8.17)

1/2

L2(Q,) oy illzo,)

3
1/2 -

b,(v, w, u)| < Z 10l g, lle ~Wp w2 e Wb, wll

where p = q . Let us point out that the inequality (8.17) has a meaning since

the vector v depends only on the variables x,, x, and therefore belongs to

any space L4”(Q3) , % < p < +oo, as soon as it belongs to HI(Q3) . As in the
proof of Proposition 8.2, we remark that M Dw=0, i=1,2,3; whence we

may apply the inequality (8.1) to w = e—{i}Diw . Using the estimate (2.18) in
addition we obtain

1/24 1/2 1/2 1/2 1/2
(8.18) lb,(v, w, u)| < c5& A} o) | 4,w) ) A 2wl |l

where ¢, is a positive constant depending only on §. By replacing 2§ with
q we see that (8.12) follows from (8.18).

The second estimate in (3.3) is simply the estimate (8.11) in the particular
case where r =6, 6 = % . Likewise the third estimate (3.3) is derived from
(8.12) by choosing g =4. O

8.2. Other boundary conditions. In the proofs of §8.1, we never used the fact
that the boundary conditions on 9Q, x (0, 1) were periodic ones. In particular,
the estimate (8.1) is independent of the boundary conditions. Therefore, by
using (2.17) and (2.18), one easily checks that Lemma 8.1 and Propositions
8.2 and 8.3 still hold if we replace the periodic boundary conditions on 9Q,
by homogeneous Dirichlet boundary conditions on 9Q, x (0, 1) and periodic
boundary conditions on (Q, x {0})U(Q, x {1}). Hence the estimates (3.3) are
still true in this case.

Finally, let us consider the case where we have homogeneous Dirichlet bound-
ary conditions on 0Q,. Arguing as in Hale and Raugel (1992b, Lemma 6.1)
and in Lemma 8.1, one can prove the following result:

Lemma 8.4. For any q, 2 < q < 6, there exists a positive constant c¢,, Such
that, for any u € Hl(Q3) with u=0 on (Q, x {0})U(Q, x {1}), one has

2 -1
(819) ”u“Lq(Q3) < 6168 /q(”u”H'(Q3) +& ”D3u“L2(Q3))'
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This lemma enables us to prove the following result.

Lemma 8.5. There exists a positive constant c,, such that, for u' € D(Al/ 2)
u* € D(A,) and u’ € H_, one has
1 2 3 1/2, (1/2 1/2, 2,172
by (', u, ) < g8 N, Ml 14, P el
(8.20) P L 1/2
x (Zne DDl +e7 e {'}D3Diu2|[> .
i=1
Proof. From (8.8), (8.19), and (2.17), we deduce that
(8.21)
1 13 4121 1/2.2,1/2 U 1/2
by (', o, )| < ey Al | 1) )14 % ( Zl le™" D,u ,||L6(Q3)).
l,_]——
It remains to estimate |l& ip. u2|ilL/62(Q) for 1 <i,j<3. Since Du; is equal
3

to zero on (Q, x {0}) U(Q, x {1}) if i =1,2 and since MD,u; =0, for
1 < j <3, one can apply Lemmas 8.4 and 8.1 to Diuj, i=1,2,and D3uj ,
respectively, for 1 < j < 3. From (8.1), (8.18), and (8.21), we at once infer
the estimate (8.20). O
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ABSTRACT. We examine the Navier-Stokes equations (NS) on a thin 3-dimen-
sional domain Q, = Q, x (0, &), where Q, is a suitable bounded domain in
R® and ¢ is a small, positive, real parameter. We consider these equations
with various homogeneous boundary conditions, especially spatially periodic
boundary conditions. We show that there are large sets #(¢) in H ! (Q,) and
& (&) in W"°°((0, 00), LZ(Qe)) such that if U, € #(¢) and F € F(e),
then (NS) has a strong solution U(¢) that remains in H l(QE) forall 1 >0 and
in HZ(QC) for all ¢ > 0. We show that the set of strong solutions of (NS) has
a local attractor 2, in H l(Qe) , which is compact in HZ(QS) . Furthermore,
this local attractor @, turns out to be the global attractor for all the weak

solutions (in the sense of Leray) of (NS). We also show that, under reasonable
assumptions, 2, is upper semicontinuous at ¢ =0.
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