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I. INTRODUCTION 

The modem mathematical theory of fluid dynamics began over 50 years ago 
when Leray (1933, 1934a, 1934b) published his pioneering works on the Navier-
Stokes equations. These equations describe the time. evolution of solutions of 
mathematical models of viscid incompressible fluid flows. Because of this basic 
role in the modelling of fluid flows, there is considerable interest in developing a 
good mathematical theory of the behavior ofthe solutions of the Navier-Stokes 
equations. Since the solutions of these equations depend on both space and 
time, one is especially interested in the phenomenon of the time evolution of 
the spatial variations of the solutions. This phenomenon, which is described 
with more precision later, is referred to as the regularity of solutions, and it is 
the primary focus of the theory we present in this paper. 
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The Navier-Stokes equations on a bounded region n c ]Rn, n = 2, 3, are 
given by 

(1.1) 
Ut - vl!:t.U + (U· \1)U + \1P = F, 

\1·U=O, 
where \1 is the gradient operator and I!:t. is the Laplacian. In this paper we 
treat the case where 0 = Oe is a thin 3-dimensional domain, i.e., 0e = Q2 X 

(0, e), where Q2 is a suitable bounded region in R2 and e is a small positive 
parameter. In particular we will study (1.1) with periodic boundary conditions 
where Q2=(0,/I)x(0,/2),and 11 and 12 are positive. 

Recall that the Navier-Stokes equations (1.1) on n can be written in the 
abstract form 
( 1.2) U' + vAU + B(U, U) = IP'nF, 

where IP'n is the orthogonal projection of L 2(n, ]Rn) onto the space of diver-
gence-free vector fields, AU = -lP'nI!:t.U, and B(U, V) = IP'n(U, \1)V. We will 
be interested in solutions of (1.2) under the assumption that the initial data Uo 
satisfy 

(1.3) 

where D(AI/2) is the domain of AI/2; see Temam (1977, 1983) and Constantin 
and Foia§ (1988). We also assume that the forcing function F = F(t) satisfies 

(1.4) F(.) E WI,DO([O, 00), L 2(0)). 

In the case of periodic boundary conditions one has D(A 1/2) C H~er(n). We 
will also assume, in this case, that 

l Uo dy = l F dy = O. 

The phrase global regularity of solutions, or existence of strong solutions, 
refers to the property that when Uo and F satisfy (1.3) and (1.4), then (1.2) has 
a solution U(t) that satisfies U(O) = Uo and U E CO([O, 00), HI (0)). The 
principal outstanding problem for the 3-dimensional Navier-Stokes equations 
(3DNS) is to determine whether or not (1.2) has a global regular solution for 
every Uo and F satisfying (1.3) and (1.4). 

The study of the regularity of solutions, both in 2-dimensions and 3-dimen-
sions, has attracted widespread interest beginning with Leray (1933, 1934a, 
1934b). We are unable to give a complete history of this study here, but special 
mention should be made of the important contributions of Hopf ( 1951), Kise-
lev and Ladyzhenskaya (1957), Serrin (1962), Fujita and Kato (1964), Masuda 
(1967), Komatsu (1980), and Caffarelli, Kohn, and Nirenberg (1982). Addi-
tional references can be found in Giga (1988). Before describing our results on 
the global regularity of solutions of the 3DNS, let us review some aspects of the 
classical theory of regularity of these solutions. 

For the 3DNS it is known that for every Uo and F satisfying (1.3) and (1.4) 
there is aT, which depends on Uo and F, 0 < T ~ 00, such that (1.2) has a 
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unique strong, or regular, solution V(t) that satisfies V E CO([O, T), Hi (0)) 
n L~«O, T), D(A)) and Vi E L~«O, T), L2(Q)). Furthermore, if the data 
Vo and F are small, then (as is known and as we show in §2.11) one has 
T = 00, i.e., (1.2) has a globally regular solution for small data. Other than 
several theorems which establish the global regularity of solutions for small data, 
it is essentially unknown whether there are any other initial conditions Vo and 
F for which (1.2) has a globally regular solution, see Constantin and Foia§ 
(1988), Ladyzhenskaya (1969), Lions (1969), Temam (1977, 1983, 1988), and 
von Wahl (1985). 

The theory of global regularity of solutions of the 2-dimensional Navier-
Stokes equations (2DNS) is quite different. In this case there exists a globally 
regular solution of (1.2) for all Vo and F satisfying (1.3) and (1.4). Further-
more, one has V(t) E H2(0) for all t > 0, and there exist positive constants 
K and L I , L2 where LI and L2 do not depend on Vo' such that 

( 1.5) O::;t<oo, 

and 

( 1.6) i = 1,2. 

These classical results can be found in Ladyzhenskaya (1969), as well as in 
Constantin and Foia§ (1988) and Temam (1977, 1983, 1988). Because of the 
relevance of (1.5) and (1.6) for the 3-dimensional theory presented here, proofs 
of these relations are included in §5. 

As a result of (1.5) and (1.6), it follows that in 2-dimensions, when F is time 
independent, (1.2) has a global attractor ~,and ~ is a compact set in HI(O) 
and compact in H2(0); see Ladyzhenskaya (1972), Hale (1988), and Temam 
(1988). This means that ~ is a Lyapunov stable attracting invariant set l in 
HI(Q). If F is time-varying, but has some compactness property (e.g., F(t) 
is Bohr almost periodic in t), then by using the theory of skew-product flows 
(see Sacker and Sell (1977, 1990) and §2.1l) one can show that (1.2) generates 
a global attractor in HI (0) x !T, where !T is a compact positively invariant 
subset of Wi ,00([0, 00), L 2(Q)). 

It is the existence of the global attractor for the 2DNS which is the raison 
d' etre of our study of the 3DNS on thin domains. Because a thin 3-dimensional 
domain is somehow close to a 2-dimensional domain, it is natural to ask whether 
one can use the good properties of the 2DNS to study the global regularity of 
the 3DNS. As we shall see, the theory presented here gives an affirmative answer 
to this question. 

The idea of exploiting the existence of a global attractor of an evolutionary 
equation on an n-dimensional domain to obtain better information for a cor-
responding equation on a thin (n + 1 )-dimensional domain has already been 
used in Hale and Raugel (1990, 1992a, 1992b). Also see Raugel (1989). 

lIt is also the case that the global attractor 21 for the 2DNS has finite dimension; see Mallet-
Paret (1976). The dimensionality of 21 has been widely studied; see Temam (1988) for references 
to this literature. 



506 GENEVIEVE RAUGEL AND GEORGE R. SELL 

The process of exploiting the fact that nl) is close to Q2' when e is small, 
is far from being trivial. The main reason for the complication is due to the 
fact that the 3DNS on nil is a singular perturbation of the 2DNS on Q2' The 
regularization of this singular perturbation is done in two steps, and it follows 
the methods introduced in Hale and Raugel (1992a, 1992b) for reaction diffu-
sion equations and damped wave equations on thin domains. First one maps 
nil onto Q3 = Q2 x (0, 1) by means of dilation. The Navier-Stokes equations 
(1.1) on nil are then transformed to the dilated Navier-Stokes equations on 
Q3; see (2.4). This dilation alone does not remove the singular perturbation 
because some of the differential operators in (2.4) contain coefficients with e- l , 

or e -2 , and e is small. Nevertheless, since the domain is now fixed to be Q3 
for all e > 0, this opens up the possibility of using other techniques from the 
theory of partial differential equations to regularize the singular perturbation in 
(2.4). The second step is accomplished by introducing the orthogonal projection 
v = Mu where 

V(Xl' x 2) = 101 
U(XI ' X 2 ' s) ds. 

By applying M and (J -M) to the dilated Navier-Stokes evolutionary equation 
(2.5) one finds an equivalent system (2.23). What we effectively show in this 
paper is that the system (2.23) is a regular perturbation of the 2DNS when e 
is small. 

In Raugel and Sell (1989), we described the above method and announced 
some of our existence results. Since that time, we noticed that a more accurate 
Sobolev inequality given in Hale and Raugel (1992a) (also see the appendix, §8) 
can be used to improve the existence theorem in HI (nil) in a significant way. 

The following theorem is the principal result in this paper: 
Theorem A. Consider the 3DNS (1.1) on ne with periodic boundary conditions. 
There is an eo = eo(v, AI) > 0 such that for every e, 0 < e :5 eo, there are large 
sets 9f ( e ) and .9"( e) where 

9f(e) c {u E H l (n ll ): V· U = 0, k. U dy = O}, 

.9"(e) C {F E WI ,00([0,00), L2(nl))): k. F dy = o}, 
such that if Uo E 9f(e) and F E .9"(e), then (1.2) has a strong solution U(t) 
with U(O) = Uo' defined for all t ~ 0, and 

2 ~ 

IIU(t)IIHI(n.) :5 Kl < 00, 

where /(1 depends on Uo and F. Furthermore, there exist constants il and 
i 2 , which do not depend on Uo and which satisfy 

limsupIlU(t)IIH I(n):5 ii' lim sup IIU(t)II H2(n) :5 i 2 • 
t~oo e. 1-+00 e 

The proof of Theorem A, including a clarification of the significance of the 
assertion that 9f(e) and .9"(e) are large sets, will be incorporated into the HI 
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and H2 -Regularity Theorems, which are discussed in the next three sections. It 
is a consequence of these Regularity Theorems that the set of strong solutions 
of the Navier-Stokes evolutionary equation has a local attractor 2(e = 2(e(F) 
whenever F satisfies some compactness property and F E /7(8). The basin 
of attraction of 2(e contains the set 9i'(8) x H+(F); see §2.11. Moreover, 
we show that for F E /7(8) the set 2(e is the global attractor for the Leray 
solutions of the 3DNS on 0e' i.e., those weak solutions that satisfy the energy 
inequality (3.35). Furthermore, when F is time-independent, 2(e is a compact 
set in H 2(Oe). We also show that, under reasonable assumptions, 2(e is upper 
semicontinuous at 8 = 0 . 

In the next section we introduce the notation used in this paper, and we state 
the main theorems proved herein. The proofs of the regularity theorems will 
be given in §3 and §4, and the theory of the reduced 3DNS is presented in §5. 
The reduced 3DNS describe solutions of the 3DNS which depend only on two 
spatial coordinates. In §6 we study the attractor 2(e for the 3DNS and we show 
that, under reasonable hypotheses, 2(e is close to the global attractor 2(0 of the 
reduced 3DNS. 

The theory of the 3DNS on thin domains, which we present in §§2-6, will be 
formulated in the context of spatially periodic boundary conditions; however, 
the methods we use are valid in other settings. In §7 we will show how the theory 
presented here can be extended to cover the Navier-Stokes equations with other 
homogeneous boundary conditions. In a forthcoming paper we will present the 
theory of global regularity for the Navier-Stokes equations with inhomogeneous 
boundary conditions on thin 3-dimensional domains, and we will consider other 
types of thin domains. 

The results described in this paper were presented at the Workshop on Dy-
namical Systems Approaches to Turbulence held at the IMA at the University 
of Minnesota in May 1990. Related contributions appear in Raugel and Sell 
(1989, 1992a, 1992b). It should be noted that by imposing various symmetry 
conditions on the solutions of the 3DNS, one can show the global regularity of 
these solutions; see Ladyzhenskaya (1970) and Mahalov, Titi, and Leibovich 
(1990). 

2. NOTATION: STATEMENT OF THEOREMS 

The Navier-Stokes equations on a bounded region 0 in ]Rn , n = 2, 3 , are 
given by 

(2.1) 
Ut - vtl.U + (U· '\1)U + '\1P = F, 

'\1·U=O, 

where '\1 is the gradient operator and tl. is the Laplacian. In this paper we 
will be especially interested in the case where n = 3 and n is a thin domain 
of the form 0e = Q2 X (0, 8) ,where Q2 is a suitable bounded domain in ]R2 
and 8 is a small positive number. In particular, we will assume that Q2 = 
(0, 1\) X (0, 12) , where 1\ and 12 are positive. We will assume that 8 ~ 12 ~ 1\ 
and 0 < 8 ~ 1 and that the solutions U of (2.1) satisfy the periodic boundary 
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{ V(y + Ije;> t) = V(y, t), 
V(y + ee3, t) = V(y, t), 

i = 1,2, 

where {e l , e2, e3} is the natural basis in ]R3. In addition, we will require that 
F and the initial data Vo satisfy 

1 F dy = 1 Vo dy = o. 
n. n. 

It then follows that any solution V of (2.1) with V(O) = Vo will also satisfy 
In Vdy=O for t>O. Set Q3=Q2 x(0,1),anddefine a=(a l ,a2,a3), 
where aj = 1";1 , i = 1, 2, 3, and 13 = 1 . The change of variables (YI' Y2' Y3) 
1-+ (XI' x2' x3) where Xj = Yj' i = 1,2, and x3 = e- IY3 maps Qe onto Q3. 

We will present some aspects of the theory of the Navier-Stokes equations 
in this section. For further information, consult Constantin and Foia~ (1988), 
Ladyzhenskaya (1969), Lions (1969), Temam (1977,1983), or von Wahl (1985). 

2.1. Dilated Navier-Stokes equations. The linear operator Je given by V = 
Jeu, where 

(2.2) 

sets up a one-to-one correspondence between measurable functions on Q e and 
measurable functions on Q3. Furthermore, one has Je(Wk,P(Q3)) = Wk,P(Qe) 
for any Sobolev space Wk,p. We will need the identity 

(2.3) l::::;p<oo, 

where V = Jeu. We shall use capital Roman letters to denote functions on Q e 
and lower case Roman letters for functions on Q3. 

We want to let e vary in our study of the solutions of (2.1). Rather than 
studying a fixed equation on a variable domain, it is more convenient to fix 
the domain and permit the equation to vary. Therefore, we shall follow the 
construction in Hale and Raugel (1992a). In particular, by using the operator 
Je , the Navier-Stokes equations (2.1) are transformed to the following system 
on Q3 : 

Ut - vdllU + (u· V'e)u + V'IlP = f, 
V'e·u=O, 

(2.4) 

where V'e = (DI' D2 ,e- I D3), de = D; +D;+e-2 Di, Dj = 8/8xj , i = 1,2, 3, 
U = Je- I V, f = Je- I F , and p = Je- I P. We will refer to (2.4) as the dilated 
Navier-Stokes equations on Q3. Because of the terms e -I D3 and e -2 Di where 
e is small, the system (2.4) is a singular perturbation of the two-dimensional 
Navier-Stokes equations. 

2.2. Abstract formulation. The next step is to reformulate the initial value 
problem for (2.4) as an abstract nonlinear evolutionary equation on a suitable 
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Hilbert space He' The approach we use is an adaptation of the theory presented 
in Temam CI983). 

Let L2CQ3) = L 2 CQ3, JR3) denote the collection of all functions u: Q3 -+ JR3 

with the property that 

and let 
def (1 2 )1/2 Ilull = lI u Il L 2(Q3) = Q3 lui dx 

denote the usual norm. For m = 0, 1, 2, ... let the Sobolev spaces H; C Q3) = 

H;CQ3, JR3) be the closure in H mCQ3' JR3) of those smooth functions that are 
periodic in space, i.e., 

i = 1,2,3. 

One then has ~CQ3) = L 2CQ3)' Also the norm on H;CQ3) is generated by 
the inner product 

Cu, v)m = L 1 Dctu ·Dctv dx. 
JctJ$;m Q3 

Let He = HeCQ3) denote the closure in L2(Q3) of those smooth functions 
u that are periodic on Q3 and satisfy 

1 d 0 def -I 
U x= and Ve·u = Dlul +D2u2+e D3u3 =0. 

Q3 

Let lP'e denote the orthogonal projection of L2(Q3) onto He' By applying lP'e 
to (2.4) and using the fact that lP'/v'eP) = 0, we obtain the following abstract 
nonlinear evolutionary equation on He: 

(2.5) u' + vAeu + Be(u, u) = lP'e f , 

where au/at = u', u = lP'eu E He' Aeu = -lP'i~eu (with the periodic boundary 
conditions), and the bilinear form Be satisfies Be(u, v) = lP'e(u, Ve)v. We shall 
refer to (2.5) as the dilated Navier-Stokes evolutionary equation. We define ~m 
for m = 0, 1 , 2, ... by 

~m = He n Hpm(Q3). 

Thus ~o = He' Also Ae is a selfadjoint operator with compact resolvent, and 
one has D(Ae) = ~2 and D(A~/2) = ~I . Furthermore, Ae satisfies 

(2.6) Aillul12 $ IIA~/2uI12 , u E D(A~/2), 

where Al > 0 is the smallest eigenvalue of Ae' Since 0 < e $ 12 $ II ' one has 
2 2 2/-2 Al = 41l al = 41l I . 

The evolutionary equation (2.5) does not contain the pressure term VeP. In 
order to recover the pressure term we apply (I-lP'e) to (2.4) to obtain 

(2.7) (I-lP'e)(ut - v.1.eu + Cu· Ve)u) + VeP = (I-lP'e)f, 



SIO GENEVIEVE RAUGEL AND GEORGE R. SELL 

or in the case of periodic boundary conditions 

(2.8) 

If U E ~l and IE L2(Q3) are known, one can solve (2.7) or (2.8) for p by 
classical techniques; see Constantin and Foia§ (1988) and Temam (1977, 1983). 

We will assume the forcing term I in (2.4) to be a time-varying function in 
the space Loo((O, 00), L 2 (Q3)) ' and we define the norm 11/1100 by 

III 1100 ~f ess supll/(t)II L 2(Q )" 
O<t<oo 3 

For some applications, we will assume that IE W1,00([0, 00), L2(Q3)) , in 
which case the function I is absolutely continuous and the mapping t ~ l(t) 
is uniformly continuous. 

We shall say that u(t) is a strong solution of (2.5) on an interval [0, T) , 
where 0 < T::; 00, if for every r, 0 < r < T, one has 

° 1 2 2 (2.9) U(')EC ([O,r], ~)nL ((O,r), v,,). 
Recall that if u(t) is a strong solution of (2.5) on [0, T) , then it is uniquely 
determined; see Temam (1977, 1983) or Constantin and Foia§ (1988). Further-
more, if u(t) is a solution of (2.5) on an interval [0, T), where 0 < T::; 00, 
and satisfies u(·) E CO ([0 , r], v"l) for every r, 0 < r < T, then u(·) E 
° 2 C ((0, r], ~ ). (See §4.) 
A strong solution u(t) on an interval [0, T) is said to be maximally defined 

if u(t) does not have a proper extension to a strong solution of (2.5) on a larger 
interval. Recall that if u(t) is a maximally defined strong solution of (2.5) on 
an interval [0, T) and if T < 00 , then one has 

(2.10) IIA~/2u(t)1I ~ 00 as t ~ T-; 

see Temam (1977, 1983), or Constantin and Foia§ (1988). 

2.3. Fourier series. The spaces ~m can also be described in terms of the 
Fourier series expansion for functions u E L 2(Q3)' For k in the integer lattice 
Z3 , we define 

ka ~ (k1a1 ' k2a2, k3a3). 

Then the Fourier series expansion for u E L2(Q3) is given by 

(2.11) () '"' k 27tika'x ux =~ce , 
k EZ3 

where ck E ((;3, ck = c-k , and 

k 1 -27tika'x 3 C = a1a2a3 u(x)e dx, k E Z . 
Q3 

Consequently, one has u E ~o = He if and only if CO = 0 and 

(2.12) 
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Similarly one has U E ~m for m ~ 0 if and only if CO = 0, condition (2.12) 
holds, and 

L Ikl2mlll2 < 00, 
k EZ3 

where Ikl2 = k; + k; + k; . Furthermore, it follows from the Parseval equality 
that 

(2.13) lIulI~;(Q3) = (a1a2a3)-1 L L 1(271)lol(ka)". ckl2, U E H;(Q3) , 
lol$m kEZ3 

where O! = (O!l ' 0!2' 0!3) E N3 , N = {O, 1, 2, ... } , and 

(ka)".l = (klal)"lc~ + (k2a2)"2c; + (k3a3)"3c~. 
The eigenvalues of Ae are given by 

2 2 2 -2 2 A. = 471 [(k1 a1) + (k2a2) + e (k3a3)], 

where k E Z3 - {(O, 0, On. If U E ~2 = D(Ae) , then one has 

2 '"" k 2 k 2 -2 k 2 k 2nika'x Aeu = 471 L..t [( la1) + ( 2a2) + e (3a3)]C e . 
kEZ3 

By using the Fourier series representation, it is easily verified that if U E ~2 , 
then Ve' deU = O. This implies that Aeu = -deU for all U E D(Ae) . 

The Navier-Stokes equations (2.1) on ne can be written in the abstract form 

(2.14) U' + lIAU + B(U, U) = P3F, 

where P3 is the orthogonal projection of L2(Qe) onto the space of divergence-
free vector fields, AU = -P3dU, and B(U, V) = P3(U· V)V; cf. Temam 
(1983). One can use the operator Je given by (2.2) to compare the solutions 
of (2.14) with those of (2.5). For example, if U = Jeu, where U is given by 
(2.11), then U has the Fourier expansion 

U(y) = L l e2ni(kla .. k2a2 ,e- 1k3a3)'(YI 'Y2 'Y3). 

kEZ3 

The following identities are easily verified: 
/) -{i} /) 1 P 
~Jeu=Jee ~U, i= 1, 2, 3, foruE W' (Q3)' 
uYi uXi 

where {I} = {2} = 0, {3} = 1. Also one has 

dJeu = JedeU, AJeu = JeAe u 

As a consequence of (2.3) one then obtains 

{
"/) U //)Yill~2(n.) = elle-{i} /)u//)xill~2(Q3) , 

(2.15) 
IIArUII~2(n.) = eIlA~ulI~2(Q3)' 

U E H 1(Q3); 

U E D(A~), r ~ O. 
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If u is given by (2.11) and belongs to D(A~/2), we have 

'/2 2 2 -, " k2 2 k2 2 -2k 2 2 k 2 (2.16) IIAe ull =(Aeu,u)o=4n (a,a2a3) ~(,a,+ 2a2+ 8 3a3)le I· 
k EZ3 

Moreover, if u belongs to D(Ae) , one has 

2 4 -'" 2 2 2 2 -2 2 2 2 k 2 IIAeull = 16n (a,a2a3) ~ (k, a, + k2a2 + 8 k3a3) Ie I . 
k EZ3 

From the Parseval equality (2.13), we conclude that there exist two positive 
constants C6 and C7 , which are independent of e, such that 

-, 'P 
C6(lI u IlHl(Q3) + e IID3uIlL2(Q):$ IIAe UIl L2(Q3) 

-, 
:$ C7(lI u Il Hl(Q3) + e IID3UIlL2(Q3)) 

(2.17) 

and 
-, -2 2 

C6(lI u IlH2(Q3) + e IID3UIlHl(Q3) + e IID3UIlL2(Q) 

(2.18) :$ II AeuIIL2(Q3) 
-, -2 2 

:$ C7(lI uIl H2(Q3) + e IID3UIlHl(Q3) + e IID3UIlL2(Q3))' 

From (2.15) and (2.18), we deduce that U = Jeu satisfies 

(2.19) C611UIIH2(n,) :$ IIAUIIL2(n.) :$ 3C7I1UIIH2(n,J" 

2.4. The projection M. For any u E L2(Q3) we define v = Mu by 

vex, ' x2 ) = 10' u(x, ' x2 , s) ds 

and set w = (/ - M)u. Since w = (I - M)u, one has Mw = 0, and M is an 
orthogonal projection on L 2 (Q3) which satisfies 

MDiu = DiMu, i = 1,2, for all u E W"'(Q3)' , 
MD3U = D3Mu = 0 for all u E Hp (Q3)' 

and, therefore, 

as well as 

(2.20) 

As a consequence of all these properties, we conclude that M(~m) C ~m and 
that M is an orthogonal projection in ~m for all integers m 2:: O. In particular, 
we have 

(2.21) 
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In terms of the Fourier series 

() "'""' k 2nika'x 
WX =~ee , 

kEZ} 

one has M W = 0 if and only if 

e(k\,k2 ,O) = 0 for all (k1 , k2 ) E'l}. 

To put it another way, if l is any nonzero Fourier coefficient for w, where 
Mw = 0, then k = (k l , k2, k3) satisfies k3 1= O. Consequently, one has the 
Poincare inequality 

(2.22) 1 
WEv;" Mw=O, 

where C5 does not depend on e. Indeed, from the Parseval equality (2.13) 
with m = 0 and from (2.16) one obtains 

1/2 2 2 -I","", 2 2 2 2 -2 2 2 k 2 IIAe wII L2(Q3) = 4n (a l a2a3) ~ (k l al + k2a2 + e k3a3)le I 
kEZ} 

2 -I","", 2 2 2 2 -2 2 2 k 2 = 4n (a l a2a3) ~ (k l a l + k2 a2 + e k3 a3)1e I 
k3~O 

2 -2 -I","", k 2 2 -2 2 
;::: 4n e (a l a2a3 ) ~ Ie I = 4n e Ilw IIL2(Q3) , 

kE'J} 

which completes the proof of (2.22). As we shall see, (2.22) plays a critical role 
in the theory presented here. 

2.5. The v and w equations. We now apply the projections M and (I - M) 
to the equation (2.5) where v = Mu and w = (/ - M)u. Since one has 
M Be (v, v) = Be (v, v) , it follows from (2.20) that one obtains the system 
(2.23) 

{ v',+ vAev + Be(v, v) = MlP'J - M(Be(v, w) + Be(w, v) + Be(w, w)), 

w + vAew = (/ - M)lP'J - (I - M)(Be(v, w) + Be(w, v) + Be(w, w)). 

Since v does not depend on x 3 ' one has Aev = D;v + D;v, i.e., Aev is 
independent of e. Similarly Be(v, v) is independent of e. The initial con-
dition u(O) = uo = Vo + Wo also splits into a v and W component. We will 
be studying solutions (v, w) = (v(t) , w(t)), where v(O) = Vo = Muo and 
w(O) = Wo = (/ - M)uo . 

2.6. Reduced 3D Navier-Stokes evolutionary equation. The system (2.23) has 
an invariant set which occurs when 

(I - M)lP'J = 0, 

i.e., both the forcing term lP'ef and the initial condition uo depend only on Xl 
and x 2 • In this case w(t) == 0 for all t;::: 0 and 'if = v(t) satisfies 

(2.24) 
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with v(O) = vo. We refer to (2.24) as the reduced 3D Navier-Stokes evolutionary 
equation. Note that v = (VI' v 2 ' v 3) is a three dimensional vector field on Q3' 
and v does not depend on x3 • 

The reduced 3D Navier-Stokes evolutionary equation incorporates the 2DNS 
on Q2. In order to see this, we let L2(Q2' 1R?) denote the L2 space of 2-
dimensional vector fields m = (m l , m 2) which depend on (XI' x 2) E Q2. Let 
lP2 denote the orthogonal projection of L2(Q2' JR.2) onto H(Q2) , where H(Q2) 
is the closure in L 2 (Q2 ' JR.2) of those smooth functions m that are periodic on 
Q2 and satisfy fQ2 m dx = 0 and (DI m l + D2m 2) = O. One then has 

and 

where g = (gl' g2' g3) E ML2(Q2' JR.3). Furthermore, v is a solution of the 
reduced 3D Navier-Stokes evolutionary equation (2.24) if and only if m = 
(VI' v2) is a solution of the 2D Navier-Stokes evolutionary equation 

d 2 2 
dt m - v(DI + D2)m + lP2(m· V')m = (gl ' g2)' 

and v 3 is a solution of the linear equation 

:t V3 - v(D: + D~)V3 + (viDI + v 2D2 )V3 = g3' 

where g = (gl ' g2' g3) = MlPJ. 
If we want to emphasize that the terms in (2.24) do not depend on e or 

X3 ' we introduce the following notation. For i = 1, 2, 3 we set v~ = M~i , 
Ho = Va° = M He (Q3). We denote by Ao the restriction of Ae to Va2 . If v is 
in Va2 , then Aov = _(8 2 /8x~ + 8 2 /8xi)v. We also set Bo(v, v) = lPe(V. V')v 
if v is in Val. Note that Bo(v, v) = Be (V , v). The reduced 3D Navier-Stokes 
evolutionary equation (2.24) now becomes 

v' + vAov + Bo(v, v) = g 

with v(O) = Vo in Val and g = MlPef. 

2.7. The trilinear form be. The trilinear form be(u, V, w) is defined by 

(2.25) 
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provided the integrals are all defined, where {I} = {2} = 0 and {3} = 1. 
If u, v, W E ~' , then (2.25) is well defined, and since lPe is an orthogonal 
projection with lPew = W , one has 

(Be(u, v), w) = (lPe(u, Y'e)v, w) = ((u· Y'e)v, lPeW) 
= ((u· Y'e)V' w) = be(u, V, w). 

Note that 
(2.26) I 2 I 2 be(v ,W,V )=-be(v ,v ,W)=O, I 2 be(w, v ,V ) = 0, 

whenever M Vi = Vi, i = 1 , 2, and M W = O. 
2.8. Statement ofregularity theorems. Theorem A, which is stated in §l, gives 
a sufficient condition for the nonlinear evolutionary equation (2.5) to have a 
strong solution u(t) that remains in ~I for all t 2: 0 and in ~2 for all t > O. 
In a moment we shall define the sets .9f(e) and 9(e) , and in §2.10 we explain 
why these are large sets. The key to this is the following Hypothesis H(a, b): 

We shall say that the bounded monotone functions 11;(e) defined for 0 < e ::; 
1, i = 1,2, 3,4, and constants rand p satisfy Hypothesis H(a, b), where a 
and b are positive, provided: 

(1) p2:-1, r>-2. 
(2) e l / 411;1 -t 0 as B -t 0, i = 1, 2. 
(3) e l / 811;' -t 0 as e -t 0, i = 3, 4. 
(4) 81/4Q(8) is bounded for 0 < 8 ::; 1, where 

Q(8) = Ilog(2C~v -282+r-p 11;211~)1. 

(5) Let a> 0 be fixed. Then one has 

(2.27) { 
e5/811-2exp(a11-4) -t 0, 

-2 11 -t 00 

as 8 -t 0+ , where 
-2 def -2 k2 -4 k2 2+r -2 (2.28) 11 = max( 4111 + I 113 + 28 114 ,1) 

and 8 5/ 8 exp(2a11;4) is bounded for 0 < 8 ::; 1. (The constants kl and k2 are 
defined in Lemma 3.1.) 

(6) Let b > 0 be fixed. Then for any A, 0 < A < 1, there is an 84 = 
84(b, A) > 0 such that one has 

-2 . -4 -2 2-4 112 exp(b112 )::;A(4111 + k l 113)' 0<8<84, 

(7) The function 8 4+2r 11;4 (log 11-4 + 1) is bounded as 8 -t 0+ . 

Remarks. 1. The choice of the function 11; may depend on the parameters 
p , r, a , and b. 

2. Here is an example where Hypothesis H(a, b) is satisfied for any given 
choice of a > 0 and b > O. We begin with statement (5). If 11 is given by 
(2.28), then 
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Next fix p 2:: -1 and set 

{ 
r = -2+J, 
17;1 = -loge; 

-2 -1 
173 = 171 . 

J > 0; 

If 17;2 = (_logeo)1/2, where a > 0, then conditions (1), (2), and (3) hold. 
Furthermore (4) and (7) are valid. In addition, one has 

-4 k4 ° k4 2(2+r) 4 17 $ (48 + 3 1) ( -log e ) + 3 2 e (-loge) . 

Consequently (2.27) is valid provided 

5/8( 1 0)1/2 -a(48+3k~)0 0 0+ e - og e e ---+ as e ---+ • 

In other words, if a is chosen such that i > (48 + 3k~)aa, then (2.27) is 
satisfied. Likewise, by choosing 17:;2 so that 

17;2 = (log( -logeo)P/12 , where P > 0 and 2bP < 1, 

we see that statement (6) is valid. (17:;2 = log(log(-loge)) is another possible 
choice of 17:;2.) Also note that this example satisfies condition (2.55) below, 
provided -1 $ p < O. 

3. Another example of interest occurs when 172 and 174 are positive constants 
and 171 and 173 are as in Remark 2. This situation arises in the study of the 
semicontinuity of the attractors, see §6. 

In order to prove Theorem A we shall analyze the dilated Navier-Stokes evo-
lutionary equation on Q3. This analysis consists of two major steps. The first 
step, which we call the nl-Regularity Theorem, is to show that there is a con-
stant Kl such that IIA~/2u(t)112 $ K~ for all t 2:: 0 and that there is a constant 
L5 , which does not depend on the initial data, such that limsuPt-+oo IIA~/2U(t)112 
$ L;. The second step, which we call the H2 -Regularity Theorem, is to show 
that u(t) E D(AB) for all t > 0 and that there is a constant L6 , which does 
not depend on the initial data, such that lim SUPt-+oo IIABu(t)112 $ L~ . 

Theorem 1. HI-Regularity. Let 17i' i = 1, 2, 3, 4, r, and p satisfying Hy-
pothesis H(a, b), where a and b are sufficiently large. Then there exist eo> 0, 
k2 > 0, a continuous function r E C([O, 00), JR), and for all e, 0 < e $ eo' a 

~ ~ 1/2 time Tl = Tl (e) > 0 such that for all e, 0 < e $ eo' whenever Uo E D(Ae ) 
and f E Loo«O, 00), L2(Q3)) satisfy 

(2.29) II MlP'ef II~ $ 17:;2, 

II (l - M)lP'J II~ $ er 17;2 , 

then (2.5) has a solution u that belongs to Co([O, 00), ~I) n L 00«0, 00), ~I), 
i.e., one has 

(2.30) 
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where K, depends on v, A, ' and l1i' i = 1, 2, 3, 4, but not on t ~ O. More-
over, the components of u = v + w satisfy 

(2.31 ) 

where r is given by (3.84), and 

(2.32) '/2 2 2 2 2+r -2 IIAe w(t)11 :::; max(e ,k2e 114)' 

Remarks. 1. The principal objective in any study of the global regularity of 
solutions of the 3DNS is to show that the conclusions of Theorem 1 apply for 
all Uo E v:: , and P J E L 00 (( 0, 00) , L 2 (Q3))' Since the techniques developed 
in this paper seem to fall short of achieving this goal, we seek, instead, to find the 
largest possible Uo and f (see (2.29)) for which we can prove global regularity. 

2. It follows from (2.21), (2.31), and (2.32) that 

(2.33) 

where L; = nl1;-2) + max(e2 , k;e 2+r 11;2). Since L; does not depend on 11" 
113 , or p, it is independent of the initial condition uo' Furthermore, if 11;-2 
and e2+r 11;2 are bounded for 0 < e :::; 1 , it follows from Theorem 1 that L; 
can be chosen independent of e. 

Theorem 2. H2 -Regularity. Let r, p, and l1i' i = 1 , 2, 3, 4, satisfy Hypothe-
sis H(a, b), where a and b are sufficiently large. If uo E ~' and 

(2.34) PJE CO([O, 00), He)nLoo((O, 00), He)n W"oo((O, 00), D(A;'/2)) 

satisfy (2.29), then for 0 < e :::; eo' where eo is given by Theorem 1, the solution 
u(t) of(2.5) belongs to CO((O, 00), v::2). Furthermore there exist three positive 
constants K2, K3 and K4 , which depend on v, A, ' l1i' i = 1, 2, 3, 4, and 
K, ' where K, is given by (2.30), such that 

{ IIAeu(t)112 :::; K; + K~IIA;'/2PJ'II~ + K;t-' for 0 < t :::; 1, 
(2.35) 

IIAeu(t)112 :::; Ki + K~IIA;'/2PJ'II~ for t ~ 1. 

Moreover, there is a positive continuous function r2 on [0, 00) given by (4.22), 
such that 

(2.36) 

where 1', is given by Theorem 1, L~ = r2(L;) , and L; is given in (2.33). 
If, in addition, Uo belongs to D(Ae)' then the solution u of(2.5) belongs to 

the space CO ([0, 00)), ~2), and one has 

(2.37) IIAeu(t)112 :::; K: + K:IIAeuoIl2 + K;IIA;'/2PJ'II~, 0:::; t:::; 1, 

where K5 , K6 , and K7 are positive constants depending on v, A, ' l1i' i = 
1 , 2, 3, 4, and K I . 
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Let ~eO , ~el ,and ~e2 denote the following bounded sets in ~I = D(A~/2): 

(2.38) ~eo ~f {u = v + w: IIA~/2v 112 :s ,,~2, IIA!/2W 112 :s eP ,,~2}, 
(2.39) 

r27JI ~f {_ . IIAI/2 112 < 4 -2 k 2 -4 IIAI/2 112 < k 2 2+r -2} <»e - U - v + W • e V _ "1 + 1"3' e W - 2 e "4 ' 

(2.40) 2defU 0 I ~e = S/W'J, t)(~e U~e)' 
t~O 

where u(t) = Se(W'J, t)uo is the strong solution of the equation (2.5) with 
initial data uo' Due to the Lemmas 3.1 and 3.2, ~e2 is well defined and is a 
bounded set in ~I. 

Remarks. 1. Since L; does not depend on the initial condition uo' it follows 
from Theorem 2 that the bound L~ does not depend on uo' Furthermore, if 
f is chosen so that IIW'JIL", and IIA;I/2W'J'II"" are bounded for 0 < e :s 1, 
then L~ can be chosen to be independent of e. 

2. One can obtain other H2 -regularity results if one assumes that f has more 
spatial regularity, e.g., W'J E L""((O, 00); ~I) instead of satisfying (2.34). (See 
Foia§, Guillope, and Temam (1981).) 

3. If in addition to the hypotheses of Theorem 2, the function f belongs to 
WI,,,,,((O, 00), He), then from (2.6) and (2.22) one finds that 

(2.41) IIA;I/2W'ef'll~ :s A.~IIIMW'J'II~ + C;e211(J - M)W'ef'II~, 
which can be used in (2.35) (2.36), and (2.37). 
2.9. Small data regularity. As mentioned in the introduction, it is known that 
the 3DNS has a globally regular solution whenever the data of the problem 
are small. The global regularity with small data, which is valid for any rea-
sonable bounded 3-dimensional region, is a simple consequence of the Stable 
Manifold Theorem. We emphasize that our theorems, which are valid for thin 
3-dimensional regions, are not consequences of the small data arguments. Be-
fore showing this though, it will be useful to recall one of these small data 
arguments at this time.2 

The argument we give here will be for the Navier-Stokes evolutionary equa-
tion (2.14) on an arbitrary bounded region n in ]R3. We will not exploit, at 
this time, the assumption that n = ne is a thin domain, an assumption which 
is of special interest elsewhere in this paper. We assume here, for simplicity, 
that FE L 2(n) does not depend on time. 

We will use the standard 3D estimate for B( Vi , V 2 ): 

I 2 3 1/2 I 1/2 2 1/2 2 1/2 3 11 I(B(V , V ), V )1 :s CsllA V II L 2(n)IIA V II L 2(n)IIAV II L 2(n)IIV L2(n); 

see Temam (1977, 1983) or Constantin and Foia§ (1988). The constant Cg = 
Cg(n) depends on n. 

2There are several approaches to proving the global regularity of solutions with small data. For 
all practical purposes, these arguments all lead to the same conclusions described here. 
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By taking the scalar product of (2.14) with AU we find that 

1 d 1/2 2 2 "2 dt IIA UIIL2({l) + vIIAUIIL2({l) 
1/2 3/2 3/2 

:5 1IlP'3F IIL2({l)IIAUIIL2({l) + CSIIA UIIL2({l) IIA UIIL2({l) 
v 2 1 2 27 4 1/2 6 

:5 -2I1AUIIL2({l) + -11lP'3F IIL2({l) + -3 CSIIA UIIL2({l)" v 4v 
We then get 

d 1/2 2 2 2 2 27 4 1/2 6 
dtliA UIIL2({l) + vIIAUIIL2({l) :5 Z;1IlP'3F IIL2({l) + 2v3 CsliA UIIL2({l)' 

which in tum implies that 
(2.42) 

d 1/2 2 1/2 2 2 2 27 4 1/2 6 
dtliA UIIL2({l) +AlviiA UIIL2({l):5 Z;11lP'3F IIL2({l) + 2v3CsiiA UII L2({l)" 

Now set R~ = IIAI/2Uolli2({l)+ 1IlP'3F lli2({l) and N> max(l, 4A~lv-2). Since 
R~ ~ IIAI/2Uolli2({l) and N> 1, it follows from Lemma 3.0 below that there is 
a TN, 0 < TN :5 00 , such that 

(2.43) 

We assume, without loss of generality, that [0, TN) is the maximal time interval 
for which (2.43) is valid. 

Next assume that 
4 27Cs 2 4 AIV 

(2.44) --3 N Ro :5 -2 . 
2v 

Inequality (2.44) is the precise assumption that the data for (2.14) are small. 
Because of (2.43) and (2.44), it follows from (2.42) that 

d 1/2 2 AIV 1/2 2 2 2 
(2.45) dt IIA UIIL2({l) + TIIA UIIL2({l):5 Z;1IlP'3F IIL2({l)" 

By applying the Gronwall inequality to (2.45) we get 

1/2 2 ( AIV) 1/2 2 4 2 2 IIA U(t)IIL2({l):5 exp -T t IIA UoIIL2({l) + -211lP'3F IIL2({l) < NRo 
AIV 

for 0 < t :5 TN. Consequently (2.10) implies that TN = 00 , which completes 
the proof of global regularity of solutions for small data. 

Remark. In the case of a thin domain nt' one has Cs = Ce- I/2 , where C is 
independent of e. As a result, inequality (2.44) can be rewritten as 

(2.46) 

where C* depends on v and AI but not on e. 
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2.10. Large data regularity. We now show that the inequalities (2.29) describe 
large data conditions on both Q3 and the thin domain ne' The inequalities 
(2.29) describe the norms of the data for (2.5) in the space L 2(Q3)' We now 
set p = r = -1 and assume that 11i(e) ---+ 0 as e ---+ 0+ for 1::; i::; 4. By using 
the mapping Je together with (2.3), (2.15), and (2.21) one finds that 

1/2 2 1/2 2 1/2 12 IIA VoIIL2(0,) = IIA VaIIL2(0,) + IIA WO IL2(0,) 

(2.47) 1/2 2 1/2 2 = eliAe voIIL2(Q3) + eliAe woIIL2(Q3) 
-2 -2 

::; e111 + 113 
Similarly one has 

(2.48) 

Inequalities (2.47) and (2.48) imply that 

(2.49) 

Assume that we choose 113(e) = 114(e) = 1. Then, even in this case, condition 
(2.49) is much weaker than condition (2.46) since we allow 11;2(e) and 11;2(e) 
to go to 00 as e ---+ 0+ . To put it another way, assume that F satisfies (2.46) 
and really depends on the three variables (Y I , Y2' Y3) , and let VI = VI (Y I ' Y2) 
satisfy VI E H 2(Q2' JR3) , with periodic boundary conditions, divergence free, 
and II VI II L2(Q2) = 1 . Then 

-I 
VO(Y I ' Y2' Y3) = 111 (e)VI (Y I ' Y2) 

will satisfy (2.49), but not (2.46), for small e, whenever 11;1 (e) ---+ 00 as e ---+ 

0+ . 
For 0 < e ::; eo we define RI (e) to be the collection of Vo E MT':/ such that 

1 1/2 2 2-2 
1 Ae vollL2(Q3l = Ilvollv,,' ::; 111 

and R2(e) to be the collection of Wo E (I - M) ~I such that 
1/2 2 2 -1-2 

IIAe woIIL2(Q3) = IIwollv,,' ::; e 113 . 

Set R(e) = RI (e) + R2(e), and let .9f1 (e) = JeRI (e), .9f2(e) = JeR2(e), and 
.9f(e) = JeR(e) denote the corresponding sets in HI (ne)' The sets RI (e) and 
R2(e) are bounded sets in M~I and (I - M) ~I with ~I-radius being 11;1 
and e-I/211~1 , respectively. From (2.3) we see that Va = Jevo E .9f1 (e) and 
Wo = Jewo E .9f2(e) if and only if 

1/2 2 -2 1/2 2 -2 IIA VaIIL2(0,)::; e111 and IIA WoIIL2(0,)::; 113 . 

Thus .9f1(e) and .9f2(e) contain bounded sets in MHI(ne) and (I-M)HI(ne) 
with HI(ne)-radius being Ce l / 211;1 and C11~I, respectively. The example 
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constructed in §2.8 gives information on the size of these radii as e ---> 0+ . 
The point to note in this example is that 11~1 = (-10ge,,)1/8. The assertion 
in Theorem A that 9f(e) is large is a heuristic formulation of the fact that 
-I 0+ . 1 3 11i ---> 00 as e ---> , 1 = , . 

Similarly we define S (e) to be the collection of f E L 00 (( 0, 00) , L 2 (Q 3)) 
that satisfy 

f 2 -2 f 2 r -2 IIMlPe (t)II L2(Q3) ~ 112 and 11(1 - MWe (t)II L2(Q3) ~ e 114 

for 0 < t < 00 and set .9'(e) = JeS(e), where r = -2+J, say 0 < J ~ !. One 
then has F = JJ E .9'(e) if and only if 

2 -2 2 r+1 -2 
IIMIP3F(t)IIL2(n.) ~ e112 and 11(1 - M)1P3F(t)IIL2(n.) ~ e 114· 

Once again, the assertion that .9'(e) is large is a heuristic formulation of the 
fact that 11;1 ---> 00 as e ---> 0+, i = 2,4. The example in §2.8 shows that one 
can choose 11;1 = (-loge) . 

If the initial condition Uo belongs to D(Ae)' as in the case of Theorem 2, 
then one has vo' Wo E D(Ae) , and (2.6) and (2.22) imply that 

{ 
IIA~/2volI~2(Q3) ~ A~IIIAe VolI~2(Q3) , 

IIA~/2wolI~2(Q3) ~ C; e2 11 Ae Wo 11~2(Q3)" 
This means that Uo = Vo + Wo will satisfy (2.29) provided one has 

(2.50) 

By using the mapping 
equivalent form 

{ 
IIAevoll~2(Q3) ~ AI11~2 , 
II 11 2 c-2 p-2 -2 
AewO L2(Q3) ~ 5 e 113· 

Je and (2.3), we see that (2.50) can be written in the 

{ IIA JOII~2(n.) ~ Al e11~2 , 
II 11 2 C-2 p-I -2 
AWo L 2(n.) ~ 5 e 113· 

Thus 9f2(e) contains a bounded set in (1 - M)H2(ne ) of H 2(ne )-radius 2: 
CeP- 1 , where p 2: 1. 

2.11. Skew-Product dynamics. We will review here some aspects of the theory 
of skew-product flows in order to describe the (local) attractors for the Navier-
Stokes equations with a time-varying forcing function f. We will formulate 
this general theory for the Navier-Stokes equations on an arbitrary bounded 
domain n in IRn , where n = 2, 3. For simplicitl we will consider forcing 
functions f in the space 

(2.51 ) 

3By using other topologies one can describe attractors when the forcing function f is discon-
tinuous. See Miller and Sell (1970) or Sacker and Sell (1977) for details. 
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where L2(Q) = L2(Q, lRn). For any linear operator T on L2(Q) we let 

TW(Q) = CO(lR, TL2(Q)) n Loo(lR, TL2(Q)). 

A metrizable topology is introduced in the space W(Q) by defining sequential 
convergence J" ---+ f to mean that for any compact set K c lR one has 

sup 1IJ,,(t) - f(t)II L 2(n) ---+ 0 as n ---+ 00. 
tEK 

We will denote the associated metric by distw(n)' 
For any f satisfying (2.51) and any T E lR we define the translate f.(t) ~f 

f(T + t). Note that f. E W(Q) , and the mapping (f, T) ---+ f. is a continuous 
mapping of W(Q) x lR onto itself. This means that f. defines a (two-sided) 
flow on W(Q). For each f satisfying (2.51) we define the positive hull H+(f) 
as 

H+(f) = ClosureW(n){f.: T 2: O} 

and the hull H(f) as 

H(f) = ClosureW(n){f.: T E lR}. 

If f E W(Q) , then H+(f) and H(f) lie in W(Q). The omega-limit set 
w(f) is defined by 

Note that w(f) is an invariant set in the translational flow on W(Q). 
Without further assumptions on the forcing function f, the omega-limit set 

w(f) can be empty. However, if H+(f) is a compact set, then so is H+(f.) 
for every T 2: O. Since H+(f.) c H+(f) for T 2: 0, we see that if H+(f) is 
compact, then the omega-limit set w(f) is nonempty and compact. 

The question of the compactness of H+ (f) can be resolved by using the 
Ascoli-Arzehi Theorem; see Sell (1967a, 1967b). In particular, if there is a 
compact set .% ~ L2(Q) such that f(t) E.% for all t 2: 0 and the mapping 
t ---+ f(t) is a uniformly continuous mapping of [0,00) into L2(Q) , then 
H+ (f) is a nonempty compact set; furthermore, the omega-limit set w(f) is 
nonempty, compact, and invariant under the translational flow. We list here 
five examples of functions f for which H+ (f) is compact: 

(1) f E W1,OO«0, 00), L2(Q)) , and there is a compact set .% ~ L2(Q) 
such that f(t) E.% for all t 2: 0 . 

(2) f E W1,OO«0, 00), Hl(Q)). 
(3) f(t) is continuous and Bohr almost-periodic, or periodic, in t. 
(4) f = g + h, where g and h satisfy (2.51), Ilh(t)IIL 2(n) ---+ 0 as t ---+ 00, 

and g(t) is Bohr almost-periodic, or periodic, in t. 
(5) f E L2(Q) is independent of 1. 

The evaluation mapping Ev: W(Q) ---+ L2(Q) given by Ev(f) = f(O) is a 
continuous mapping of W(Q) in L 2(Q). Therefore if H+(f) is a compact 
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set in W(O) , then 

Ev(H+(J)) = {g(O): g E H+(J)} 

is a compact set in L2(0) , and one has g(t) E Ev(H+(J)) for all t;::: 0 and 
g E H+(J). 

Let H be a Banach space with a norm II· IIH ' and let !F be any positively 
invariant subset of W(Q). Let & be an open set in H x !F x [0, (0) with 

{( u, J, 0): (u, J) E H x !F} c & , 

and let 1C: & --+ H x!F be a mapping of the form 

(2.52) 1C(U, J; .) = (S(f, .)u, Ir), (U,J")E&. 

For each (u, J) E H x!F, let I(u,f) = [0, .), where. = .(u, J), denote the 
maximal time interval for which (u, J, t) E & for 0 ~ t < •. We say that 1C 
is a skew-product semiflow on H x!F if the following properties are satisfied: 

(1) S(J,O)u=u,forall (u,J)EHx!F. 
(2) Whenever t E I(U,f) and s E I(S(f,t)u,J;) ' then (t + s) E I(U,f) and one 

has 
SU;, s)S(J, t)u = S(f, t + s)u. 

(3) The mapping (u, J, t) --+ 1C(U, J; t) is continuous in (u, J) E H x!F 
for t fixed and continuous in t for (u, J) fixed. 

(4) If (u,J)EHx!F and .(u,J) <oo,thenonehas 

lim sup IIS(f, t)ull H = 00. 
t-->T 

It is a consequence of (2) that one has 

1C(U, J; t+s) = 1C(1C(U, J; t); s). 

Let :J't be a subset of H x!F and assume that t satisfies 0 ~ t < .(u, J) 
for all (u, J) E :J't. For this t we define 1C(:J't; t) to be the collection of all 
1C( u, J; t) with (u, J) E :J't. A subset :J't in H x!F is said to be invariant 
for 1C if one has .(u, J) = 00 for all (u, J) E:J't and 1C(:J't; t) =:J't for all 
t ;::: O. If :J't is any subset of H x!F with .(u, J) = 00 for all (u, J) E:J't , 
we define the omega-limit set of :J't as w(:J't) where 

w(:J't) = n ClosureHxS' ( U 1C(:J't; t)). 
T~O t~T 

In the case of the dilated Navier-Stokes evolutionary equation on Q3 with 
periodic boundary conditions, for Vo E ~1 and FE W(Q3) , we set 

(2.53) S(F, t)Vo = V(t), 0 ~ t < ,(Vo' F), 

where V (t) is the maximally defined strong solution on [0,.( VO' F)) that 
satisfies V(O) = VO' One can show that 

& ~f {(V, F, t) E ~1 x W(Q3) x [0, (0): 0 ~ t < .(V, FH 
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is an open set, and the mapping n defined by (2.52) and (2.53) generates a 
skew-product semiflow on ~I x W(Q3) . 

The same construction generates a skew-product semiflow for the Navier-
Stokes equations on any reasonable bounded domain Q in ]Rn , for n = 2, 3, 
and under other homogeneous boundary conditions; see Constantin and Foia~ 
(1988). In this case, the semiflow is on the space VI x W(Q) , where VI = 

D(A I / 2). For the 2DNS, one has r(u, f) = 00, for all (u, f) E VI x W(Q) , 
i.e., n is a global semiflow in this case. Furthermore, by using the Leray solu-
tions of the 2DNS instead of the strong solutions, this global semiflow extends 
to a global semiflow on H x H(Q) , where H = lP'2L2(Q); see Constantin and 
Foia~ (1988). 

For the Navier-Stokes equations we will be studying the semiflow generated 
by (2.53) on ~I x g- , where g- is a compact invariant set in W(Q3)' For 
example, with equation (2.5) one might assume either g- = H+ (f) to be com-
pact, or g- = H+(lP'J) to be compact. Either assumption leads to a reasonable 
dynamical theory for (2.5). The stronger condition that H+(f) be compact is 
important primarily in the study of the original system (2.4) where (/ -lP'o)f is 
used. Similarly for the reduced 3D Navier-Stokes evolutionary system (2.24), 
one gets a good dynamical theory by assuming anyone of the following three 
sets to be compact: H+(f) , H+(lP'J) , or H+(MlP'J). 

If the forcing term f is time-independent and in L2(Q) , then the hull H(f) 
consists of a single point {f}, and the N avier-Stokes equations generate (local) 
semiflows on appropriate Hilbert spaces. For the 3DNS equations the strong 
solutions S(t)uo generate a semiflow on the Hilbert space lP'3(HI(Q)). The 
weak solutions of the 2DNS generate a semiflow on lP'2(L2(Q)). 

2.12. Local and global attractors. We will continue to use the notation intro-
duced in §2.11. Let n be the skew-product semiflow on H x g- given by (2.52), 
where g- is a compact, positively invariant subset of W(Q3)' A subset Ql in 
H x g- is said to be a (local) auractor for n if Ql is a compact, invariant set 
for n, and Ql = w( U) is the omega-limit set of some bounded neighborhood 
U of Ql in H xg-. The basin of attraction B(Ql) defined to be the collection 
of all (u, f) E H x g- with the property that 

(2.54) distHxs«n(u, f; t), Ql) ~ 0 as t ~ 00. 

If it happens that Ql is an attractor with B(Ql) = H x g- , then Ql is said to be a 
global aUractor for n. Note that any attractor Ql attracts the bounded set U, 
as well as every compact set K in the basin B(Ql). Recall that Ql attracts a set 
B c H x g- provided that for every 0 > 0 there is a time T = T(B, 0) 2: 0 
such that 

n(u, f, t) E N(HXS< ,J)(Ql), for all (u, f) E B and all t 2: T, 

where N(HXS< ,J)(Ql) denotes the o-neighborhood of Ql in H xg-. Recall that 
the skew-product semiflow n is said to be compact, if for every r > 0, the 
mapping 
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given by 7rT (u, f) = 7r(U, f, r), maps bounded sets into compact sets. For a 
compact semiflow, the attractor !2l attracts all bounded sets in the basin B(!2l) , 
see Hale (1988) and Sell and You (1993). 

We note that the flow generated by the strong solutions of the 2DNS is com-
pact and always has a global attractor, provided the positive hull H+ (f) of the 
forcing function f is compact. As we shall see, the reduced 3DNS also has a 
global attractor, when H+ (f) is compact. The theorems, which we describe in 
the next section, effectively state that when e is small the full 3DNS has a local 
attractor !2le and that 2le has a large basin of attraction. 

2.13. Statement of theorems about attractors. In this section we assume that 
f E W(Q3) is chosen so that H+(f) is compact; see §2.11. This includes the 
case where f E L2(Q3) is time-independent. We assume that Hypothesis H(a, 
b) is satisfied, where a and b are sufficiently large. Let .£geo , .£gel , and .£ge2 be 
given by (2.38), (2.39), and (2.40). It is an immediate consequence of Theorems 
1 and 2 that for Uo E .£geo U .£gel the solution Se(f, t)uo = SJPJ, t)uo lies in 
a bounded set in ~2 for t ;::: TI . Therefore, Se (f, t)uo lies in a compact set 
in ~I for t ;::: TI • As a matter of fact, we are able to prove the following 
compactness result: 

Theorem 3. Let Y1i' i = 1, 2, 3, 4, r, and p satisfy Hypothesis H(a, b), where 
a and b are sufficiently large. Assume that f E W(Q3) is chosen so that PJ E 

Wi ,00((0,00), He)' H+(f) is compact, and (2.29) is satisfied. Let Se(f, t)uo 
denote the strong solution of(2.5) with initial data Uo E ~I. Then for any r > 0 
there is a compact subset %(r) of ~2 such that 

o I Se(f,t)(.£ge u.£ge )c%(r), t;:::r. 

The proof of Theorem 3 is given in §4. If we do not assume H+ (f) to be 
compact in Theorem 3, then we can only prove, for t > 0, Se(t)(.£geo U.£9/) 
belongs to a compact set £(t) which may depend on t. 

The following theorems are proved in §6. Let u(t) = Se(PJ, t)uo denote 
the strong solution of the equation (2.5) with initial data Uo in ~I, and let 
7re(uO' PJ; r) = (SeePJ, r)uo' (PJ)T) denote the skew-product semiflowgen-
erated by the strong solutions of the dilated 3D Navier-Stokes evolutionary 
equation (2.5). 

Theorem 4. Let Y1i' i = 1, 2, 3, 4, r, and p satisfy Hypothesis H(a, b), where 
a and b are sufficiently large. Assume that f E W(Q3) is chosen so that 
PJE WI,oo((O, 00), He)' H+(f) is compact, and one has 

f 2 r-2 11(1 - M)Pe 11 00 ::; e Y14 . 

Let eo > 0 be given by Theorem 1. Then, for 0 < e ::; eo' the skew-product flow 
7re generated by the strong solutions of the dilated 3D Navier-Stokes evolutionary 
equation (2.5) has a unique, maximal, compact (local) attractor 2le included in 
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.5Ie2 X w(Pef)' which attracts .5Ie2 x H+(PJ) in the space ~I X Pe W(Q3) , where 

.51/ is given by (2.40). Furthermore, one has 

2(e c {u = v + w: IIA~/2vIl2 $ r('1;2) , IIA~/2wIl2 $ k;i+r'1:;2} x w(PJ). 

Moreover, 2(e is bounded and compact in ~2 x w(Pef) and attracts the bounded 
set (.5Ie2 n ~2) X H+(Pef) in the space ~2 X PeW(Q3)' 

In the next result we show that, under an added condition on '1 i' i = 
1, 2, 3, 4, see (2.55) below, the attractor 2(e is the global attractor for the 
Leray solutions of the dilated 3D Navier-Stokes evolutionary equation (2.5), 
i.e., the weak solutions that satisfy the energy inequality (3.35); see Foia§ and 
Temam (1987).4 Note that the example given in Remark 2 prior to the state-
ment of Theorem 1 satisfies (2.55). 
Corollary 4.1. Let the hypotheses of Theorem 4 be satisfied. Assume in addition 
that for every l > 0 there is an elO = elO(l) > 0 such that 

-2 2+r -2 1 • (-2 p -2) 0 . ( ) (2.55) '12 + e '14 $ II. mm '11 ,e '13' < e $ mm eo' elo . 
Then for any e satisfying 0 < e $ min(eo' elO ) and any p > 0, there is a 
time T = T(p, e) > 0, and, for every weak (Leray) solution u(t) of (2.5) with 
lIu(O)11 $ p, there is a time to satisfying 0 < to $ T(p, e) and u(to) E .5Ieo . 
In particular, u(t) is a regular solution of (2.5) for t ~ to' and the attractor 
2(e given in Theorem 4 is the global attractor for the Leray solutions of (2.5), 
provided 0 < e $ min(eo' elO ). 

Let us now consider the reduced 3D Navier-Stokes evolutionary equation 
(2.24), and let us denote by So(g, t)vo the strong solution of (2.24) with 
initial data Vo in M~I , where g = MPJ. We denote by 1to(vo' g; r) = 
(So(g, r)vo' g,) the skew-product semiflow generated by the strong solutions 
of (2.24). As noted in §2.6, the terms in (2.24) do not depend on X3 and e. 
We have the following result: 

Corollary 4.2. Assume that f E W(Q3) is chosen so that Pe f E WI,OO«O, 00); He) 
and H+(f) is compact. Then 1to admits a global attractor 210 = 21o(g) in 
M~I x H+(g). Furthermore, if IIMPJII~ $ '1;2, where '12 is given by Hy-
pothesis H(a, b), then 

(2.56) 2(o(g) c {u = v + w: v E M~I, IIA~/2vIl2 $ r('1;2) , W = O} x w(g). 
If, in addition, one has 

(/ -M)PJ= 0, 
then the attractors 2(e and 2(o(g) coincide for 0 < e $ eo' where eo is given by 
Theorem 1. 

If (I - M)PJ =1= 0, a comparison of the two attractors 21e and 21o(g) is 
more difficult. Nevertheless, we are able to derive some results establishing the 
upper semicontinuity of 21e at e = 0 . 

4Recall that the 3DNS can have weak solutions that do not satisfy the energy inequality (3.35); 
see Temam (1983). 
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Let US consider a sequence of positive numbers en -+ 0 when n -+ 00. We 
introduce a sequence of functions I" in W(Q3)nW"00((0, 00), L2(Q3)) such 
that I" -+ 10 in W(Q3) , where 10 E MW(Q3) n W, ,00((0, 00); ML2(Q3)) . 
We set gn = 1P'8 I" and go = MlP'8 10. According to the comments made in 
§2.6, 1P'8 fo(t) b~longs to MH8 ,fo; every t, and consequently . . 
(2.57) g =1P' fr = (1P'2(Z~)) o 8. 0 r ' J03 
where 10 = (10, ' 102' f03)' It follows from the above convergence hypothesis 
and from (2.57) that 

lim Ilgn - goll = o. 
n~oo 00 

We consider next the reduced 3D Navier-Stokes evolutionary equation 

(2.58) v' + vAov + Bo(v, v) = go 

with initial data v(O) = Vo in Va', and we let So (go , t)vo denote the strong 
solutions of (2.58) with initial data Vo in Va'. As a consequence of Corollary 
4.2, the skew-product semiflow 1to(vo' go; r) = (So (go ' r)vo' gOT) admits a 
global compact attractor '1{.0 = Q(o(go) in Va' x w(go) , which is also the global 
compact attractor in Va2 x w(go) . 

Let E be a subset of ~' x W(Q3)' For any tJ > 0, we denote by 

.lYVI xW(Q )(E, tJ) the tJ-neighborhood of E in ~' x W(Q3)' We will prove 
en 3 n 

the following result: 
Theorem 5. Let f/j' i = 1, 2, 3, 4, r, and p satisfy Hypothesis H(a, b), where 
a and b are sufficiently large, and assume that 

(2.59) 4+2r -4 + e f/4 (e) -+ 0 as e -+ 0 . 
Let en be a sequence of positive numbers with en -+ 0 as n -+ 00. Let Y 
be any positively invariant compact subset of W(Q3) n w' ,00((0, 00), L 2(Q3))' 
and let I" be a sequence of functions in Y that satisfies 
(2.60) lim lI.f.n - fro II = 0, 

n-+oo 00 

where 10 E MY . Assume further that 
2 -2 2 r-2 

IIMlP'8 fnlloo < f/2' 11(1 - M)1P'8 1,,1100 ::; enf/4 . . . 
Then the attractors '1{.8 ,given in Theorem 4, are upper semicontinuous in ~'xY 
at e = 0, i.e., for any' tJ > 0, there is an no > 0 such that • 

Q(8 c .lYVI xW(Q ) ('1{.o(go) , tJ) 
n en 3 

for n 2: no, where go = M1P'8.fo = lP'e.fo· 

Theorem 5 has some interesting extensions. The following result, which we 
formulate in the case where the forcing terms I" are independent of time t, 
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allows for the possibility that I" can be chosen so that 
2 11(1 - MWe 1,,11 -> 00 as n -> 00. 

n 

If f is independent of t, the mapping Se(t) ~ SlPJ, t) is a (local) C o_ 
semigroup on ~I. We then deduce from Theorem 4 that Se(t) admits a unique 
maximal compact (local) attractor ~e included in ~e2 which attracts ~/ in 

I the space ~ . Actually, we have 

2(e = ~e X {PJ}. 

Likewise, So(t) ~f So(g, t) is a CO -semigroup on Val = M~l , where g = 
Mf'e f . We deduce from Corollary 4.2 that So(t) admits a global, compact 

~ ~ I 
attractor 2(0 = 2(o(g) in Va ; and we have 

2(0 = ~o x {g}. 

The following result is proved in §6. 

Corollary 5.1. Let l1 j , i = 1, 2, 3, 4, r, and p satisfy Hypothesis H(a, b), 
where a and b are sufficiently large, and assume that (2.59) holds. Let en be 
a sequence of positive numbers with en -> 0 as n -> 00. Let fn be a sequence 
in L2(Q3) that satisfies 

lim IIMf'e f. - goll = 0 
n~CX) n n 

for some go E Ho' Assume further that 

Then the attractors ~en of(2.5) with forcing term f'e/n are upper semicontin-
O · Vi . uous at e = me' I.e., 

n 

(2.61) 

where ~o = ~o(go) is the global auractor of (2.58). 

Using the fact that 2(0 = 2(o(go) is also the global compact attractor of the 
skew-product semiflow 1to(" go; r) in Va2 x H+ (go) , one also obtains the result: 

Corollary 5.2. Assume that the hypotheses of Theorem 5 hold and that 

(2.62) lim Ilf'n - fo' II = O. 
n-too 00 

Then the attractors 2(e are also upper semicontinuous at e = 0 in ~2 x W(Q3)' 
i.e., for any <5 > 0, th;re exists an integer n l > 0 such that, for n 2: n l ' 

(2.63) 2(en C A'"v,,! x W(Q3) (2(0 (go), <5). 
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Remark. We now give an example where the condition (2.60) is satisfied. Let 
F=F(t,Y) be given, where FECo(JR, W I,CXl(Q3))nLCXl (JR, W I ,CXl(Q3))' As 
in §2.1, we introduce the mapping fe by setting F = Jefe 

fe(t, XI ' x 2 ' x 3) = F(t, XI' x 2 ' ex3) , (XI' x 2 ' x 3) E Q3' 

Next set fo(t, XI ' x 2 ' x 3) = F(t, XI' x 2 ' 0). By applying the integral Taylor 
formula, we obtain 

fe(t, x) - fo(t, x) = F(t, xi' x 2 ' ex3) - F(t, xi' x 2 ' 0) 

118F 
= e -;:;-(t, XI ' X 2 ' SX3 )X3 ds, o UX3 

and therefore 

life - follco([0,CXl);L OO (Q3)) ~ eIlD3Fllco([0,CXl);LOO(Q3))' 
In particular, we have 

life - 101lCXl ~ Ceo 
If, in addition, F belongs to C l (JR, Wi, CXl (Q3)) nL CXl (JR, Wi, CXl (Q3)) , then the 
condition (2.62) is also satisfied; more precisely, we have 

III: - 1~IICXl ~ Ceo 

3. HI_REGULARITY: THEOREM 1 

In this section we prove Theorem 1, the HI-Regularity Theorem, which gives 
the global regularity of the Navier-Stokes equations on ae in the Sobolev space 
HI. We assume that the forcing function I is in L CXl ((0, 00) , L 2 (Q3)) and 
that the initial condition Uo satisfies Uo E D(A~/2). Also we assume that one 
has 

(3.1 ) { II A 1/2 112 < -2 
e Vo - 111 ' 

IIA I/2 112 < p -2 e Wo _ e 113 ' 

IIMJIDJ II~ ~ 11~2 , 
II (I - M)JIDJ II~ ~ er 11:;2, 

where 11j(e) is bounded and monotone for 0 < e ~ 1, i = 1, 2, 3, 4. (We are 
primarily interested in the case where 11i(e) -> 0 as e -> 0, i = 1, 2, 3, 4.) 
Throughout this section we let D I , D2 , • •• denote positive functions of the 
viscosity 1/ and Al ' the first eigenvalue of Ae' These functions will not depend 
on e for 0 < e < 1 . 

The proof of the HI-Regularity Theorem is done in two steps. In the first 
lemma, which is the Short Time Argument, we show that the w(t)-term becomes 
small very rapidly. The second lemma is referred to as the Long Time Argument. 
This is the induction step needed for the proof of the HI-Regularity Theorem. 
(See §§3.2 and 3.3.) 

We will use the following auxiliary estimates concerning the trilinear form 
be: If Vi, v 2 , v 3 E R(M) , then these functions depend only on XI and x 2 ' 
and one has 

(3.2) Ibe(v l , v 2 , v 3)1 ~ Clllvllll/21IA~/2vllll/21IA~/2v2111/21IAev2111/21Iv311. 
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The proof of (3.2) is accomplished by using 2D Sobolev embeddings; see Temam 
(1983) or Constantin and Foia~ (1988) for details. If one has v E R(M) and 
Mw l = Mw 2 = Mw = 0, then the following inequalities hold: 

{ 
Ibe(w l , w 2, u)1 :::; C2el/2I1A~/2wIIIIlA;/2w2111/21IAew2111/2I1ull, 

(3.3) Ibe(w, u2, u3)1 :::; C3e5/321IA;/2wIl15/321IAewIl17/321IA;/2u211I1u311, 

Ibe(v, w, u)1 :::; C4el/4I1A;/2vIIIIA;/2wlll/2I1Aewlll/21Iull. 
The proof of (3.3) is given in the appendix, §8. It is important to note that the 
constants C1, C2 , C3 ,and C4 above do not depend on e, for 0 < e :::; 1 . 

We shall also use the Young inequality 
c! aP bq q 

(3.4) ab:::; - + -q = t5ff +c6b , p qc 
where a, b , c , t5 , and c 6 are positive, 1:::; P , q, P -I + q -I = 1 , as well as 

(3.5) (a+b)3:::;4(a3+b3), a,b2:0. 
The proof of the following result can easily be derived from the theory pre-

sented in Constantin and Foia~ (1988), Temam (1977, Chapter III, Lemma 
1.2 and Theorem 3.11), Temam (1983, §3, Theorem 3.2), as well as the other 
references cited above. 
Lemma 3.0. Let Uo E D(A;/2) and f E Loo(O, T; He)' Then there exists a 
time T., 0 < T. :::; 00, such that there exists a unique solution u of (2.5) on 

. 0 1 2 2 (0, T.). Moreover, u satIsfies: UE C ([0, T.]; v" )nL (0, T.; v,,), and ut E 

L2(0, T.; He)' Assume furthermore that R~ 2: IIA;/2uoI12 and N > 1. Then 
there exists a positive time TN, 0 < TN :::; T*, such that IIA;/2U(t) 112 :::; N R~ 
for 0:::; t < TN. 
3.1. The short time argument. We shall say that Hypothesis HI is satisfied if 
one has: 

(1) p 2: -1, r> -2. 
(2) el/411;1 ~ 0 as e ~ 0, i = 1, 2. 
(3) el/811;1 ~ 0 as e ~ 0, i = 3, 4. 
(4) el/4Q(e) is bounded for 0 < e :::; 1, where 

2 -2 2+r-p -2 2 (3.6) Q(e) = llog(2C5 v e 114 113)1· 
Here l1i(e) denote bounded monotone functions defined for 0 < e :::; 1, i = 
1 , 2, 3, 4, and rand p are negative constants. 

We now prove the following result. 

Lemma 3.1. Assume that Hypothesis HI is satisfied and that (3.1) is valid. Then 
there are positive constants kl and k2 and an e 1 > 0 such that for all 0 < e :::; e 1 

there exists a time TI = TI (e) > 0 such that u(t) E D(A;/2) for 0:::; t:::; TI and 

{ IIA;/2v(TI)1I2 :::; 411;2 + k~I1~4, 
(3.7) 

IIA;/2W (T1)11 2 :::; kie2+r 11;2. 
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Proof. Define R~ by 
2 def -2 p -2 -4 -2 r/3-2 

(3.8) Ro = '11 + 8 '13 + '13 + '12 + 8 '14' 

Since R~ ~ IIA~/2uoIl2 , it follows from Lemma 3.0 that for any N> 1 there is 
a time TN > 0 such that 

(3.9) IIA!/2U(t)112 :::; NR~, 0:::; t < TN. 

Without loss of generality we let [0, TN) denote the maximal time interval for 
which (3.9) is valid. If TN < 00, then one must have 

(3.10) IIA!/2U(TN)112 = NR~. 
For the remainder of the proof of this lemma we restrict our attention to t E 

N (0, T ). 
The equation satisfied by W = (1 - M)u in (2.23) is 

dw 
(3.11) dt +vAew = (1 -M)Pef - (1 - M)(Be(w, v) +Be(v, w) +Be(w, w)) 

since (1 - M)Be(v, v) = O. By taking the scalar product of (3.11) with Aew, 
we obtain 

1 d 1/2 2 2 2" dtllAe wil + vllAewll :::; 1(1 - M)PJ, Aew)1 + Ibe(w, v, Aew)1 

+ Ibe(v, w, Aew)1 + Ibe(w, W, Aew)l. 
By using (3.3) and the Young inequality (3.4) we obtain 

(3.12) 

1 d 1/2 2 2 V 2 1 2 
2" dt llAe wil + vllAewl1 :::; 2"IIAew ll + 2,)(1 - M)Pefll(XJ 

+ C385/321IA!/2vIIIIA!/2wII15/321IAewI149/32 

+ C481/41IA!/2vIIIIA!/2wIII/21IAewI13/2 

+ C281/2I1A!/2w 113/211 Aew 113/2. 

Since Mw = 0, one can use (2.22) together with (3.12) to find 

:tIIA!/2WII2 + vllAewlI2:::; ~1I(1 - M)PJII~ + 2C;5/32C385/8I1A!/2vIIIIAewII2 

+ 2C;/2C483/4I1A!/2vIIIlAewII2 
1/2 1/2 2 

+ 2C5 C2811 Ae wlllIAewlI· 
From the Pythagorean relation (2.21) one obtains 

(3.13) :tIlA!/2WIl2 + (v - DI85/81IA!/2ull)IIAewI12 :::; ~1I(1 - M)PJII~, 

where DI = 2(Ct/32C3 + C~/2C4 + C~/2C2)' From Hypothesis HI we see that 
for 0 :::; t < TN one has 
(3.14) 
DI85/8I1A!/2ull :::; D185/8 N I/2 Ro :::; DI NI/285/8('1~1 +8P/2'1~1 +'1~2 +'1t +8r/6'1;\ 
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which goes to 0, as 8 --+ 0+. Consequently there is a positive number 82 = 
82(N) that satisfies 

(3.15) DINI/28S/8Ro~~' 0<8~82' 

(Later N will be fixed, and it will depend only on v and AI') For 0 < 8 ~ 82 
and 0 ~ t < TN it follows from (3.13), (3.14), and (3.15) that 

(3.16) :tIIA~/2WI12 + ~IIAew112 ~ ~II(I- M)J!PJII~ 
and from (2.22) that 

(3.17) :t IIA~/2WI12 + VC;:8-21IA~/2WI12 ~ ~II(I - M)J!Pefll~. 
We then apply the Gronwall inequality to (3.17) to obtain 

(3.18) IIA!/2W(t)112 ~ exp (-VCC8 -
2 t) IIA!/2woI1 2 + 2~~8211(I - M)J!PJII~ 

for 0 ~ t < TN and 0 < e ~ 82, By integrating (3.16) we also obtain 

11 2 2t 2 2 1/2 2 
(3.19) IIAew(s)11 ds ~ 2"11(1 - M)J!PJILXl + -IIAe woll o v v 
for 0 ~ t < TN and 0 < 8 ~ 82 • 

For the remainder of the proof we shall restrict our attention to 0 < 8 ~ 82 • 

We will need an estimate of f~ IIA!/2wII31IAewll ds. From (3.5) and (3.18) we 
obtain 
(3.20) 

101 IIA!/2WII6 ds 

1 [ (3 C-2 -2 ) 8C6 6 ] ~ 410 exp - v ~ 8 S IIA!/2WoIl 6 + )8 11(1- M)J!Pefll~ ds 

2 2 2 6 6 

~ 4( ~~8 IIA!/2WoI1 6 + 8~6e tll(l_ M)J!Pefll~). 
By using the Schwarz inequality with (3.19) and (3.20) we next obtain 

101 IIA!/2wII3I1Aewll ds ~ (10 1 IIA!/2wII6 dS) 1/2 (10 1 II Aew II2 dS) 1/2 

(321) -111/23 S8t 3 ( 2C2 2 1/2 ) 
. ~ 4CSv 8 j3IIAe woll + vS/2 11(1- M)J!Peflloo 

x (IIA!/2Woll + ~II~: 11(1 - MWef 1100)' 

Let us return to inequality (3.18). Note that there is a time TI = TI (8) > 0 
such that 

C - 2 -2 2C2 2 P -2 (-V S 8 ) _ S 8 r-2 
8 113 exp 2 TI - ~8 114 • 
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Indeed, this time T, is given by 

(3.22) T, ~f2C~iv-'Q(e), 

where Q(e) is given by (3.6). It follows from (3.18) that if T, < TN, then one 
has 
(3.23) 

where ki = 4C;v-2 • 
The next step is to return to (2.23) and the equation satisfied by v = Mu: 

(3.24) 
dv dt + vAev = MlPe f - MBe(v, v) - MBe(v, w) - MBe(w, v) - MBe(w, w). 

By taking the scalar product of (3.24) with Aev we obtain 
(3.25) 

1 d '/2 2 2 2" dt IIAe vII + vllAevll ~ I (MlPJ ' Aev ) - be(v, v, Aev ) - be(w, w, Aev)1 

since be(v, w, Aev) = be(w, v, Aev) = 0 from (2.26). By using the Young 
inequality (3.4) with (3.2) and (3.3) we obtain 

1 d '/2 2 2 V 2 1 2 
2" dt IIAe vii + vllAevll ~ IllAevll + 2v"MlPJ100 

(3.26) + C,llvll'/21IA~/2vIlIIAevI13/2 
+ C2e'/21IA~/2wI13/21IAewll'/2I1Aevll, 

which implies that 
(3.27) 

dd IIA~/2VI12 + vilAevll2 ~ .!.IIMlPefll~ + ~211Aev1l2 + 273 C~lIvIl21IA~/2VI14 
t v 2v 

v 2 2 2 '/2 3 + I11Aev11 + ~C2e1lAe wll IIAewll· 

Consequently 

(3.28) 
:t IIA~/2VI12 ~ (22:3 C~IIVIl2I1A~/2VI12) IIA~/2VI12 

2 

+ .!.IIMlP f 112 + 2C2 e IIA~/2wI131IA.wll. v e 00 V ~ ~ 

By using the Gronwall inequality with (3.28) one finds that 

(3.29) IIA~/2V(t)112 ~ eG(t)(IIA~/2voIl2 + H(t)), t ~ 0, 
where 

(3.30) 

(3.31) 

(3.32) 

H(t) = lot h(s) ds , G(t) = lot g(s) ds, 

2 
h(t) = .!.IIMlPe f II~ + 2C2e IIA~/2wIl3I1Aewll, 

v v 

g(t) = 273 C~lIvI121IA~/2VI12. 
2v 
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Restricting to (:s min(TI' TN) and using (3.21) we see that 
(3.33) 

2C;e t IIA~/2wII3I1Aewll ds:S D2i(IIA~/2woll + (1/211(/ - M)lP'eflloo) 
v 10 

x (1IA~/2woI13 + e2(1/211(/ - M)lP'efll~), 

where D2 = 8C;Csv-2max(r l / 2 , 2C;v-s/2)max(l, v- I/2). By using (3.1) 
and (3.33) one obtains 

H(t):s Tlv-I",~2 +D2e2(e3P/2",~3 + TII/2i+3r/2",;3)(eP/2",~1 + TII/2er/2",;I) 

for 0 :s ( :s min(TI' TN). Consequently from (3.22), the fact that p ?: -1, 
r> -2, and the Young inequality (3.4) one deduces that 

where 

and 

H(t):s EI(e) + iD2",~4, O:s t:S min(TI' TN), 

+ EI(e) --+ 0 as e --+ 0 . 

It follows from (3.1) and (3.29) that 

(3.34) IIA~/2V(t)112:s eG(t)(",~2 + EI (e) + iD2",~4), 
The next objective is to show that G(t) is small. By taking the scalar product 

of (2.5) with u and using the fact that be(u, u, u) = 0, we obtain 

1 d 2 1/2 2 -1/2 1/2 
2dtllull +vllAe ull :S1(lP'ef,u)I=I(Ae IP'J,Ae u)1 

< ~IIAI/2 112 _1 IIA- I/21P' fl12 - 2 e U + 2v e e 00 ' 

which implies that 

lIu(t)11 2 - Ilu(to)11 2 + V It IIA~/2u(s)1I2 ds :s t - to IIA;I/2IP'ef II~ 
to V 

:s 2(t ~ to) (1IA;I/2 MIP'J II~ + IIA;I/2(/ - M)lP'e f II~). 
(3.35) 

By using (2.6), (2.22), and the Gronwall inequality one finds 
(3.36) 
IIv(t)1I 2 :s lIu(t)1I 2 :s lIuoll2 + 2A~2v -21IMIP'JII~ + 2C;A~lv -2ill(I - M)IP'J II~. 

Since vo' Wo E D(A~/2) , one has from (2.6) and (2.22) that 

(3.37) Iluoll2 = Ilvol12 + Ilwol12 :s A~IIIA~/2voIl2 + c;iIIA~/2woI12. 
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Now putting (3.36) and (3.37) together we obtain 

(3.38) IIv(t)1I2 ::; D4(IIA~/2VoIl2 +e2I1A~/2WoI12 +IIMlPJ II~ +e211(1 -M)lPef II~), 

where D4 = max(A~1 , C;, 2A~2v-2, 2C;A~lv-2). From (3.9) one has 

(3.39) IIA~/2V(t)112 ::; IIA~/2U(t)1I2 ::; NR~, 0::; t < TN. 

Next we use (3.1), (3.22), (3.38), and (3.39) to observe that 

(3.40) 
where 

def 2 -2 2+p -2 -2 2+r -2 2 
(3.41) E2(e) = e QD5('f/1 + e 173 + 172 + e 174 )NRo 

and D5 = 27C:C;v-4D4 • After using (3.8) and expanding, one observes that 
the right-hand side of (3.41) contains 13 terms of the form 

b -2 -2 1/4 
ce °17j 17j e Q(e), 

3 terms of the form 3/4 -2 -2 1/4 ce 17j 173 e Q(e) , 
and 4 terms of the form 

b -2 -4 1/4 ce l17j 173 e Q(e), 

where bo ~ 1, b l ~ i, i, j = 1, 2, 3, 4, and where c denotes positive 
constants which are bounded as e -+ 0+. By using Hypothesis H 1, it is a 
straight-forward verification to see that each of these terms goes to 0 as e -+ 0 . 
In other words, E2(e) -+ 0 as e -+ 0+. By combining (3.34) and (3.40) one 
obtains 
(3.42) IIA~/2V(t)1I2::; eE2(e\17~2 +EI(e)+ iD217;4) , 0::; t::; min(TI' TN), 

provided 0 < e ::; e2 • 

Now set N ~f 1 + max( 4, ! D2 ) , where D2 is given above, and choose e3 so 
that 0 < e3 ::; e2 (N) and 

(3.43) 
for 0 < e ::; e3 • 

We claim that for 0 < e ::; e3 one has TI < TN. To prove this we assume 
on the contrary that TN ::; TI < 00. Then (3.1) and (3.18) imply that 

IIA~/2w(TN)1I2::; IIA~/2woIl2 + tk~ill(l- M)lPJII~ ::; eP17;2 + tk~i+r 17;2, 

where ki ~ 4C;v-2 • Since r> -2, we have 2 + r ~ i + J' and consequently 
(3.43) implies that 

(3.44) IIA~/2w(TN)112 ::; eP17;2 + er/317;2, 0 < e::; e3• 

On the other hand, (3.42) and (3.43) imply that for 0 < e ::; e3 one has 

( 1/2 2 -2 7 -4 . N) 3.45) IIAe v(t)1I ::; 2(2171 + J,D2 173 ), 0::; t ::; mm(T. ,T . 
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By adding (3.44) and (3.45) we obtain 

IIA I/2 (N)112 (4 -2 7 -4 P -2 r/3 -2) 2 
Ii U T $ 111 +zD2113 +e 113 +e 114 <NRo' 0<e$e3, 

which contradicts (3.10). Hence one has TI < TN for 0 < e $ e3 . 

Finally we set k~ ~ !D2 and e l ~ e3 . It then follows from (3.45) that 
1/2 2 -2 k2-4 II All v(TI )1I $ 4111 + 1113 

and from (3.23) that 
IIA~/2W(TI)1I2 $ k;i+r 11;2, 

which completes the proof of Lemma 3.1. 0 

Remark. The proof of Lemma 3.1 still works if we take r = -2. However, the 
result of Lemma 3.1 is interesting only in the case where e2+r 11:;2 is bounded as 
e --+ 0+ ; see also Hypothesis H2(a, b) given below. If 11:;2 --+ 00 as e --+ 0+ , this 
implies that r must satisfy r > -2. In Theorems 7, 8, and 9 we will impose 
a stronger requirement, viz. that e2+r 11:;2 --+ 0 as e --+ 0+. This is the reason 
why we impose the requirement that r> -2 in Hypothesis HI. 
3.2. Strategy of proof. The argument of Lemma 3.1 can of course be repeated 
with the new initial conditions satisfying (3.7) instead of (3.1). By making the 
realistic assumption that 
(3.46) k; i+r 11;2 $ eP 11;2 

one needs only to replace 1I~2 with (411~2 + k~1I;4), and the entire argument 
carries through. Unfortunately, this is not a good strategy, because one is forced 
to choose a smaller value for e2 , and thereby a smaller value for e l . It is 
important to take advantage of the fact that kie2+r 11:;2 can be made small 
instead of using the crude bound (3.46). As a result of Lemma 3.1 we can now 
assume the initial condition IIA~/2woI12 to be small for 0 < e $ el . 

For the Long Time Argument we begin by assuming IIA~/2woIl2 is small, 
i.e., IIA~/2woIl2 $ kie2+r 11:;2 and IIA~/2voIl2 $ 411~2 + k~1I;4. In the course 
of the argument we show that if e is sufficiently small, then the dilated 3D 
Navier-Stokes evolutionary equation (2.5) has a strong solution on a suitable 
interval [0,2To1 where To = To(e) is finite but large. We also show that 
IIA~/2w(t)1I2 $ kie2+r 11:;2 and IIA~/2v(t)112 $ 1(411~2 + k~1I;4) on the half-
interval t E [To, 2To1. This, of course, permits one to prove the HI -Regularity 
Theorem by using the Long Time Argument with induction. 
3.3. Long-Time argument. In this section we continue the analysis of the Short-
Time Argument. The terms 11; (e) , 1 $ i $ 4, r, and p will be assumed to 
satisfy Hypothesis H 1. In addition, we will assume that the following Hypoth-
esis H2(a, b) is satisfied, where a and b are sufficiently large: 

( 1) Let a > 0 be fixed. Then one has 

{ e~:11-2 exp(all-4) --+ 0, 
11 --+ 00 



NAVIER-STOKES EQUATIONS ON THIN 3D DOMAINS. I 

as 8 -4 0+ , where 

-2 def -2 k2 -4 k2 2+r -2 
11 = max(4111 + 1113 + 28 114' 1), 
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are 8 5/ 8 exp(2a11;4) is bounded for 0 < 8 :::; 1 . (The constants kl and k2 are 
given in Lemma 3.1.) 

(2) Let b > 0 be fixed. Then for any A, 0 < A < 1, there is an 84 = 
84(b, A) > 0 such that one has 

11~2 exp(b11~4) :::; A(411;2 + k~11~4), 0 < 8 < 84. 

(3) The function 84+2' 11;4 (log 11-4 + 1) is bounded as 8 -4 0+ . Our objective 
now is to prove the following result: 

Lemma 3.2. Assume that both Hypotheses HI and H2(a, b) are satisfied, where 
a and b are sufficiently large. Then there is an 80 > 0 such that for every 8, 
o < 8 :::; 80 , there is a time To = To (8) > 0 with the property that, for 0 < 8 :::; 80 ' 
whenever the initial conditions 

{ 
IIA~/2VoI12 :::; 411;2 + k~11~4 , 

(3.47) IIAI/2 112 < k2 2+r -2 
B Wo - 28 114' 

IIMlP'J II~ :::; 11;2, 

II (J - M)lP'J II~ :::; 8' 11;2 

are satisfied, then the solution u(t) of(2.5) satisfies u(t) E D(A~/2) for 0:::; t :::; 
2To and 

(3.48) { 
IIA~/2v(t)112 :::; !(411;2 + k~11~4), 
IIA~/2w(t)1I2 :::; k;i+r 11;2 

for To :::; t :::; 2To . 
Proof. The proof begins as in Lemma 3.1. For any positive numbers dl and 

2 2 d2 we define Ro = RO(8, d l ' d2) by 

(3.49) R~ = 1 + (11-2 + 11~2 + dl )[1 + exp(d211-4) exp(2d211~4)]. 

The values of dl and d2 will be fixed later. Note that R~ 2:: 11-2 2:: IIA~/2uo 112 . 
Therefore, it follows from Lemma 3.0 that for any N> 1 there is a time TN, 
o < TN :::; 00 , such that 

(3.50) 

Without loss of generality we let [0, TN) denote the maximal time interval for 
which (3.50) is valid. Therefore if TN < 00 one must have 

(3.51 ) 

By taking the scalar product of the w-equation (3.11) with ABw, we then 
obtain (3.13) with the same value for DI . For 0:::; t < TN one has 

(3.52) 
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where R~ is given by (3.49). From Hypotheses HI and H2(a, b), the right-
hand side of (3.52) goes to 0 as e -+ 0+ , provided a 2:: d2 and b 2:: 2d2 • 

Consequently there is an e5 = e5(N, d l ' d2), 0 < e5 :::; el ' where el is given 
by Lemma 3.1, such that 

As a result, (3.16), (3.17), (3.18), and (3.19) are valid for 0 :::; t < TN and 
o < e :::; e5 • We now restrict to 0 < e :::; e5 for the remainder of the argument. 
By using (3.47) we see that for 0 < e :::; e5 inequality (3.18) now assumes the 
form 

(3.53) IIA~/2w(t)1I2:::; [k;exp (-vCCe- 2 t) + 4k;]e2H17;2:::; ~k;i+r17;2 
for 0:::; t < TN. By using (3.47) once again, (3.19) becomes 

11 2 2 1/2 2 2t 2 IIAew (s)11 ds:::; -IiAe woll + 211(1 - M)lP'eflloo o v v 
2 2 r -2 :::;D9 (e +t)e 174 

for 0:::; t < TN, where D; = max(2k~v -I , 2v -2). In addition, by integrating 
(3.16) and using (3.53) we have for 0 < e :::; e5 :::; 1 

II 2 2 1/2 2 2 2 2 r -2 
IIAewll ds:::; -IIAe w(t - 1)11 + 211(1- M)lP'Jlloo :::; DJOe 174 ' 

~I V V 

for 1 :::; t < TN, where D~o = 3k~v -I + 2v -2. It follows from (3.5) and (3.53) 
that 

I I [ (3 C-2 -2 ) ] fa IIA~/2wIl6 ds :::; 4 fa k; exp - v l e s + 4k; e6+3r 17;6 ds 

:::; D: I (i + t)e6+3r 17;6 

for 0:::; t < TN, where D~I = 4k; max(2C;(3v)-1 , !). Using 0 < e :::; lone 
has II IIA~/2wIl6 ds :::; 2D: l e6+3r 17;6 

I-I 

for 1 :::; t < TN. Using the argument in (3.21) one then obtains 

r 1/2 3 2 3+2r -4 N (3.54) 10 IIAe wll IIAewll ds :::; D9D l1 (e + t)e 174' 0:::; t < T , 

and, since 0 < e :::; 1 , 

(3.55) 

Next we return to the v-equation (3.24). By taking the scalar product of 
(3.24) with v and using be(v, v, v) = 0 together with (2.26) and (3,.3) we 
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obtain 
1 d 2 2 1 d 2 1/2 2 
2dtllVil +AIVllvll ::; 2dtllVII +vllAe vII 

::; (1IMlP'Jlloo + C2el/21IA~/2WI13/21IAewlll/2)llvll 
::; A~I/2 (1IMlP'J 1100 + C2e 1/2I1A~/2W 113/211Ae W 111/2) IIA~/2V II. 

By using the Young inequality we get 
d 2 2 1 2 2 1/2 3 

(3.56) dtllvll +Alvllvll ::; AI)IIMlP'Jlloo + C2eliAe wll IIAewlD 

and 

(3.57) :t IIvll2 + vIIA~/2VI12 ::; A: v (1IMlP'J II~ + C;eIIA~/2wIl31IAewID. 
By using the Gronwall inequality for (3.56) one finds that 

Ilv(t)112 ::; e -vAllllvol12 + A~2v -21IMlP'J II~ 
(3.58) -I -I 2 t 1/2 3 

+ AI v C2e 10 IIAe wll IIAewl1 ds 

for 0::; t < TN. Next by using (2.6), (3.47), and (3.54) we find 

(3.59) 2 IIv(t)11 ::; D 12 Y(e, t), 

h (,-1 ,-2 -2 ,-1 -IC2 ) d were DI2 = max 11.1 ,II.I V ,II.I V 2D9DII an 
def -VA I -2 -2 2 4+2r -4 (3.60) Y = Y(e, t) = (e I r, + r,2 + [e + t]e r,4)' 

Similarly by integrating (3.57) and using (3.47) and (3.54) we obtain 

101 IIA:/2vI1 2 ds ::; v -lllvol12 + A~I v -2 tIIMlP'J II~ 

(3.61) 
-I -2 2 t 1/2 3 +AI v C2e10 IIAe wllllAewlids 

-I -I -2 2 -4 -I -2 -2 ::; AI V (4r,1 + kl r,3 ) + AI V tr,2 
-I -2 2 2 4+2r-4 +A I v C2D9D II (e +t)e r,4 

for 0::; t < TN . It follows that 

t 1/2 2 (3.62) 10 IIAe vii ds::; D 13Y(e, t), o ::; t < min( 1, TN), 

( -I -I VA ,-1 -2 -I -2C2 ) F h b where DI3 = max AI vel, 11.1 V ,AI V 2 D 9D II · urt ermore, y 
integrating (3.57) once again we find 

(3.63) 
i l IIA~/2VI12 ds ::; v -llIv(t - 1)11 2 + A~IV -21IMlP'efll~ 

I-I 
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From (3.47), (3.55), (3.59), and (3.60) we get 

(3.64) 

where 

I I 1/2 2 
IIAe vII ds ~ D I4y(e, t), 

I-I 

-I -I -I VA -I -I 2 
DI4 = II max(Dl2 + AI II ,D12e 1 + 2DIODIIAI II C2). 

By combining (3.59), (3.60), (3.62), and (3.64) we find 

(3.65) 
1 1 2 1/2 2 211 1/2 2 Ilvll IIAe vII ds ~ sup IIV(S)II IIAe vii ds 
o 099 0 

(3.66) 

Next by taking the scalar product of (3.24) with Aev we obtain (3.25), (3.26) 
(3.27), and (3.28). For 0 ~ t < min(1 , TN) we apply the Gronwall inequality 
to (3.28) to obtain 

IIA~/2v(t)1I2 ~ eG(t)(IIA~/2voIl2 + H(t)) , 0 ~ t < min(1, TN), 

where H(t) and G(t) are given by (3.30), (3.31), and (3.32). From (3.47), 
(3.54), and (3.65) we find 

(3.67) 1/2 2 2 IIAe v(t)11 ~ D I6 y(e, t) exp(D17 y(e, t) ), 

where 
VA -I -I 2 -I -3 4 VA DI6 = max(e 1, II ,211 C2D9D II ) and DI7 = 2 2711 CI e 1 D 12D 13 . 

For 1 ~ t < TN we use the uniform Gronwall inequality (see Foias, et al. 
(1987))5 on (3.28) to obtain 

(3.68) IIA~/2v(t)112 ~ (1~1 IIA~/2vI12 ds + 1~1 h(s) dS) exp (1~1 g(s) dS) , 

where hand g are given by (3.31) and (3.32). For t ~ 1 we use (3.55), (3.66), 
and (3.64) to derive an inequality similar to (3.67). This can be combined with 
(3.67) to obtain 

(3.69) 1/2 2 2 IIAe v(t)11 ~ Dlsy(e, t) exp(DI9 y(e, t) ), 

5Let y, g, h be nonnegative locally integrable functions on (0, 00) , where y is absolutely 
continuous on (0, 00) , and which satisfy y' :::; gy + h, 0 < t < 00. Then one has 

y(t) :::; (t ~ 'f [ y(s) ds + [ h(s) dS) exp ([ g(s) dS) , 

where 'f = max(O, t - 1). 

O<t<oo, 



where 

NAVIER-STOKES EQUATIONS ON THIN 3D DOMAINS. I 

{ D'8 = max(D'6' D'4 + max(v-' , 4C;DIODllv-')) , 

D'9 = 27C:eVA1 T'v-3max(D,3' D'4)D'2· 

54' 

The next step is to define To = To(e). Since 11-4 ---- 00 as e ---- 0+ , there is 
no loss in generality in assuming that 

-4 
2D'9 11 > 1. 

We then define To by requiring 

(3.70) 

that is, set 

(3.71 ) def 1 -4 
To = 2vA,log(2D'911 ). 

Also define 

(3.72) 

It follows from Hypothesis H2(a, b) that there are constants D20 and D2, such 
that 
(3 73) E ( ) 3 k 2 2+r -2 D 

• 3 e ::; D20 , 2 2 e 114 ::; 2' 

for 0 < e ::; 1 . The term R~ = R~(e, d, ,d2 ) is now fixed so that 
2 2 (3.74) Ro = Ro(e, D20 , 2D'9)' 

and the term N is fixed so that 

(3.75) N> max(l, D2, ' D22 ) , 

where D22 = D'8 exp(4D,9D;O). Finally we fix e5 = e5(N, D20 , 2D'9) for these 
choices of N, d" and d2 • Furthermore, we require that the constants a and 
b in Hypothesis H2(a, b) satisfy a 2: 2D'9 and b 2: 4D'9. 

Let us return to the function y, which we will write as 
-VA t -2 

Y = y(e, t) = e 1 11 + p, 
where 

def -2 2 4+2r-4 P = p(e, t) = 112 + (e + t)e 114· 
Note that 

(3.76) 

and from (3.72) and (3.73) we have 
-2 (3.77) p(e, t) ::; 112 + D20 , 

From (3.70) we see that 

(3.78) 
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From (3.53) and (3.73) we find 

(3.79) 

By using (3.69), (3.76), and (3.77) we find that 

( 1 1/2 2 -VA t -2 -2 -4-4 3.80) 1 Ae v (t) II ~ D22 (e I rt + rt2 + D20) exp(2Dl9 rt ) exp( 4DI9 rt2 ) 

for 0 ~ t ~ min(2To' TN). 
We claim that 2To ~ TN. In order to prove this, we assume on the contrary 

that TN < 2To' From the Pythagorean relation (2.21) and (3.79) and (3.80) it 
follows that 

1/2 N 2 -2 -2 -4-4 IIAe u(T )11 ~ D21 + D22 (rt + rt2 + D20 ) exp(2Dl9rt ) exp( 4DI9rt2 ). 

From the definition of R~ in (3.49) and (3.74) and the characterization of N 
in (3.75) we obtain 

IIA~/2u(TN)112 < NR~, 

which contradicts (3.51). Hence one has 2To ~ TN. 
Finally we tum to the verification of (3.48). For this purpose we restrict t 

to the interval [To, 2To]' From (3.53) we have 

1/2 2 2 -v 5 8 1 2 2+r -2 [ ( C -2 -2 ] 
IIAe w(t)11 ~ k2 exp 2 To) + Zk2 8 rt4 ' 

From the definition of To in (3.71), we see that there is an 86 , 0 < 86 ~ 85 , 

such that 
-I 2 2 (3.81) 2v C5 8 log2 ~ To(8) , 0 < 8 ~ 86, 

Now (3.81) implies that exp(-vC;28 -2 To / 2) ~ t, and consequently, 

(3.82) IIAI/2w(t)112 < k282+r -2 1: < t < 21: e - 2 rt4' 0 - - 0 ' 

for 0 < 8 ~ 86 , From (3.69), (3.70), and (3.78) one finds 

(3.83) IIA~/2v(t)112 ~ qrt~2), To ~ t ~ 2To' 

where 

(3.84) 

where D24 = (2DI9 )-1/2 + D20 . From Hypothesis H2(a, b) we see that there is 
an 87 , 0 < 87 ~ 86 ' such that for 0 < 8 ~ 87 one has 

-2 I -2 k2-4 
qrt2 ) ~ "2(4rtl + Irt3 ), 

It then follows that for 0 < 8 ~ 87 one has 

IIA~/2v(t)112 ~ t(4rt~2 + k~rt~4), 
By setting 80 = 87 ' we complete the proof of the lemma. 0 
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Proof of Theorem 1. Since 0 < eo :::; el ' where el and eo are given by Lemmas 
3.1 and 3.2, the proof of Theorem 1, for 0 < e :::; eo' now follows by first 
applying Lemma 3.1 and then using Lemma 3.2 with induction, with TI = 
To + TI . The estimate for L; appearing in (2.33) follows from the Pythagorean 
identity (2.21) together with (3.82) and (3.83). The fact that u(·) belongs to 
CO ([0, 00), ~ I) is now a direct consequence of the local result contained in 
Lemma 3.0. 0 

4. H2 -REGULARITY: THEOREMS 2 AND 3 

In this section, we will prove Theorems 2 and 3. 

Proof of Theorem 2. It is known that if Uo belongs to ~2 = D(Ae) and IP'J 
belongs to CO([O, 00), He) n WI,OO«O, 00), D(A;I/2)) , then u is in the space 
CO ([0, 00), ~2), and the time-derivative u' belongs to CO ([0, 00); He) and is 
the solution of the equation 

(4.1) du' /dt + vAeu' + Be(u' , u) + Be(u, u') = IP'J' 
with initial condition 

u' (0) = IP'J(O) - Be(uO' uo) - vAeuO ; 

see Temam (1982,1983). On the other hand, if Uo belongs only to ~I ,we will 
show that one can choose to> 0, arbitrarily close to 0, such that u(to) belongs 
to D(Ae)' It then follows that u' (to) belongs to He for every such to' that u 
belongs to CO([to' 00), ~2), and that u' is in the space CO ([to ' 00); He) and 
is the solution of the equation (4.1) on (to' 00). Our main objective here is 
to prove the estimates (2.35), (2.36), and (2.37) of Theorem 2. The proof will 
be given in four steps. We will not use here the decomposition u = v + w . 
The results of Steps 1 and 2 are already contained in Lemma 3.0. However, 
we will reproduce the proof here because we require the precise estimates of 
J~ IIAeu(s)1I 2 ds and J~ Ilu'(s)11 2 ds used to obtain (2.35), (2.36), and (2.37). As 
is usual, the formal estimates given here can be rigorously justified by using the 
Bubnov-Galerkin approximation method. 

Step 1. First we derive an estimate for J: IIAeu(s)11 2 ds. Taking the scalar 
product of (2.5) with Aeu, we obtain 
(4.2) 
1 d 1/2 2 2 1 2 V 2 
2dt ilAe ull +vllAeull :::;;lIlP'eflloo+4"IIAeull +lbe(u,u,Aeu)l, t~O. 

From the inequalities (8.8) and (2.18), we deduce that 

(4.3) Ibe(u' , i, u3)1 :::; C91IA~/2u'IIIIA~/2u211'/2I1Aeill'/2I1u311 

for any ul E D(A~/2), u2 E D(Ae)' u3 E He' where C9 is a positive constant, 
independent on e. This in turn implies that 

b 1/2 3/2 3/2 
(4.4) I e(u, u, Aeu)1 :::; C911 Ae ull IIAeul1 . 
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Using (4.4) and the Young inequality (3.4), we deduce from (4.2) that 

(4.5) 

By integrating (4.5) we infer that for max(O, t - 1) ::; r ::; t one has 
(4.6) 

t ~ O. 

I t 2 2 2 1/2 6 1 1/2 2 
IIAeu(s)1I ds::; 2(t-r)IIPJII<Xl+D25(t-r) sup IIAo u(s)1I +-IIAo u(r)ll, 

T v T~s9 v 

where D25 = 27C:r l v-4 • Since the right-hand side of (4.6) is bounded for 
any t > 0, it follows that the integrand on the left-hand side is finite almost 
everywhere. Therefore, there exists arbitrarily small to > 0 such that u(to) E 
D(A t ) . 

Step 2. Next we derive an estimate of f: lIu'(s)112 ds for 0::; r::; t. First we 
observe that (2.5) yields the identity 

(u', u') = (!PJ, u') - (vAtu, PJ - vAtU - Bo(u, u)) - (Bo(u, u), u'), 

and consequently one finds that 

By applying the Young inequality (3.4) several times and using (4.2) and (4.4), 
we obtain 

As a result one has 

t ,2 t 2 2 2 4 4 1/2 6 
(4.8) iT Ilu (s)11 ds::; ir (3(v +1)IIAou(s)1I +31IlPJII<Xl+v C9 11Ao u(s)11 )ds 

for t ~ r ~ O. The inequalities (4.6) and (4.8) imply that for max(O, t - I) ::; 
r ::; t one has 
(4.9) 

I t , 2 2 1/2 6 1/2 2 
Ilu (s)11 ds::; D26 (t-r)IIPJII<Xl+D27(t-r) sup IIAo u(s)11 +D2811Ao u(r)lI, 

r r~s9 

2 -2 2 4 4 where D26 = 3 + 6(v + l)v ,D27 = 3(v + I)D25 + V C9 , and D28 = 

3(v2 + l)v- 1 • 

Step 3. Next we shall derive an estimate of Ilu' (t)11 2 for t > O. Let to be 
fixed so that 0 ::; to < t, and to is close to 0 with u(to) E D(Ao)' By taking 
the scalar product of (4.1) with u' (t) , we obtain 
(4.10) 

!~II '11 2 + IIAI/2 '11 2 < !IIA- I/2p f'I12 ~IIAI/2 '11 2 Ib ( , ')1 2 dt u v 0 U - V 0 0 <Xl + 4 0 u + 0 u , u, u , 
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for t ~ to. However, 

which gives 

(4.11) Ihe(u' , u, u')1 :::; CIOIIA!/2ullllu'III/21IA!/2u'1I3/2. 
Once again by using the Young inequality (3.4), we infer from (4.10) and (4.11) 
that 

(4.12) :t lIu' (t)112 + vIIA!/2u' (t)112 :::; ~ IIA;I/2lP'J'II~ + D291IA!/2U(t)1141Iu' (t)1I2 

for t ~ to' where D29 = 27C~02-lv-3. Next we apply the uniform Gronwall 
inequality, as in (3.68), on (4.12) to obtain 

lIu'(t)1I2:::; (~lt lIu'(s)112 ds + It ~IIA;I/2lP'J'II~) 
t TO Yo Yo V 

X exp (1: D29I1A!/2u(s)114 dS) , 
(4.13) 

where TO = max (to ' t - 1). Therefore, by using (4.9) for to:::; t :::; lone has 

, 2 (2 -1/2 , 2 2 1/2 6 Ilu (t)11 :::; /7IIAe lP'J 11= +D2611lP'JII= +D27 tos~~tIlAe u(s)11 

(4.14) + t~2~0 IIA!/2U(to)112) 

x exp (D29 sup IIA:/2U(S)1I4). 
to~s9 

Likewise for t ~ lone has (t - to) ~ t and (4.13), together with (4.9), implies 
that 

( 4.15) 
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Let us now assume that Uo belongs to D(Ae). Thanks to the Gronwall 
inequality, we deduce from (4.12) that one has 

( 4.16) 
lIu'(t)1I2 ~ (lIu'(0)1I 2 + ~IIA;I/2IP'J'II~) 

O~t~1. 

However, (4.7) implies that 

lIu'(0)1I2 ~ 3(v2 + 1)IIAeuo1l2 + 3111P'JII~ + 3v4C:IIA~/2uof 
By combining the last two inequalities, we find that for t ~ lone has 

lIu'(t)1I2 ~ (3(v2 + 1)IIAeuoll2 + 3V4C:IIA~/2uoIl2 

(4.17) + 3111P'JII~ + ~IIA;I/2IP'J'II~) 

x exp (D29 sup IIA~/2U(S)1I4) . 
099 

Step 4. In this last step we shall verify inequalities (2.35), (2.36), and (2.37). 
By taking the scalar product of (2.5) with Aeu we obtain 

2 , 
vllAeull ~ Ilu IIIIAeul1 + IIIP'JllllAeull + Ibe(u, u, Aeu)l· 

By using the Young inequality (3.4) with (4.4) we find that 
3 4 

(4.18) IIAeu(t)1I2~ 321Iu'(t)1I2+ 3211IP'efll~+ 9 C!IIA~/2U(t)116, t?to' 
v v 16v 

and consequently u(t) E D(Ae) for all t ? to. Since to can be chosen arbitrarily 
small, one has u(t) E D(Ae) for all t > O. Inequalities (4.14) and (4.18) then 
imply that for 0 < to ~ t ~ lone has 

2 ( -1/2 f' 2 f 2 1/2 6 IIAeu(t) II ~ D30llAe lP'e 1100 + D3111lP'e 1100 + D32 sup IIAe u(s)1I 
0~s9 

(4.19) + t~3~0 IIA~/2u(to)112) 

x exp (D29 sup IIA~/2U(S)1I4) , 
099 

where D30 = 6v-3, D31 = 3v-2(D26 + 1), D32 = 3v-2D21 + 93C:(2v)-4, and 
D33 = 3v -2 D28 . Since (4.19) is valid for any to satisfying 0 < to < t ~ 1 , we 
can replace to with its limit value to = 0 to obtain 

IIAeu(t)1I2 ~ (D301IA;I/2IP'ef'll~ + D3111lP'ef II~ + D32 sup IIA;/2U(s)116 
099 

(4.20) +D33t-IIIA;/2uoI12) 

x exp (D290~~tIIA;/2U(S)114) 
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for 0 < t ::; 1 . For t ~ lone obtains from (4.15) instead that 
(4.21 ) 

IIAeu(t)112 ::; 

1/2 2) +2D33 sup IIAe u(s)11 
t-I::;s::;t 

The quantities Ki, K~ , and K; appearing in (2.35) are now readily identified 
from (4.20), (4.21), and (2.31). In the case that t ~ TI + 1 ,where TI is given 
by Theorem 1, we are able to use the bound (2.33) for IIA~/2uI12. As a result 
(4.21) implies that 

IIAeu(t)112 ::; L~ ~f 12(L~), t ~ TI + 1, 

where 

(4.22) 12(p) = (D30IlA;1/2lP'J'II~ + D3111lP'J II~ + 2D33 P + D32 P3) exp(D29 /)· 

Note that since L; does not depend on the initial condition uo' it follows from 
(4.22) that L~ is independent of Uo as well. This completes the proof of (2.35) 
and (2.36). 

Let us now assume that Uo belongs to D(Ae). Then we deduce from (4.18) 
and (4.17) that for t ::; lone has 

IIAeu(t)112 ::; (D301IA;1/2lP'J'II~ + D3411lP'JII~ + D351IA:12u(t)116 
1/2 2 2 

+ D3611 Ae uoll + D3711 AeuoII ) (4.23) 

x exp (D29 sup IIA:/2U(S)11 4) , 
0::; s::; t 

h -2 3C4 -4 4 2 d were D34 = 12v , D35 = 9 9(2v) , D36 = 9C9v ,an D37 = 
9(v 2 + l)v- 2 . The quantities K;, Ki, and Ki appearing in (2.37) are now 
readily identified in (4.23). This completes the proof of Theorem 2. 0 

Remarks. 1. Depending on the choice of 112' 114' and r, one could have L; --+ 

00 as e --+ 0+. If this happens, then one finds that L~ --+ 00 as well. On 
the other hand, one can easily give conditions whereby both L; and L~ are 
bounded for 0 < e ::; 1. We will be treating the latter situation in detail in §6 
wherein we prove the upper semicontinuity of the attractors at e = 0 . 

2. The decomposition u = v + W , as used in §3, together with the argu-
ments used here, may lead to slight improvements in the estimates appearing 
in Theorem 2. 

3. The proof of the Theorem 3, which we give next, is similar to the argument 
in Babin and Vishik (1989, Theorem 2, §6, Chapter 1) for the 2DNS. 
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Proof of Theorem 3. Let f satisfy the hypothesis of Theorem 3, and let Uo be 
any point in tHeo U tHe! . Let r > 0 be fixed. Without loss of generality we will 
assume that 0 < r < 1 . 

Assume for the ;oment that there is a compact set %o(r) in L2(Q3) such 
that 
(4.24) ° I t ~ r, Uo E tHe U tHe ' 
or equivalently 

° I -I ° Se(f, t)(tHe utHe ) cAe (% (r)), t ~ r. 

The continuity of A;! assures us that % (r) ~f A; 1(%0 (r)) is a compact set in 
~2 • In order to prove (4.24) we will use the fact that if ~ , ~ are compact 
sets in L2(Q3) , then ~ +~ is compact in L 2(Q3). 

Since H+(f) is assumed to be compact, the sets EV(H+(f)) and ~ ~f 
EV(lPeH+(f)) are compact sets in L2(Q3) that satisfy 

(4.25) lPeg(t) E ~ for all g E H+(f) , t ~ 0; 
see §2.11. Now the equation (2.5) can be rewritten as 

(4.26) 11 Aeu(t) = lPef(t) - u' (t) - Be (u(t) , u(t)) , t > O. 
Assume next that there are functions LI (r) and L2 (r), defined for r > 0, 
which depend only on 11, Al ' and '1i' i = 1, 2, 3, 4, such that 

(4.27) IIA~/2u'(t)112~LI(r), t~r, 
and 
(4.28) t ~ r. 

In this case there is a set ~(r), which is bounded in ~I and compact in 
He C L 2(Q3) ' such that 

(4.29) _(U' (t) + Be(u(t) , u(t))) E ~(r), t ~ r. 
By combining (4.25), (4.26), and (4.29) one has 

1IAeu(t) E~ +~(r), t ~ r, 
which implies (4.24). 

From Constantin and Foia§ (1988) we note that there is a constant E3 such 
that6 

(4.30) 
Ihe(u l , i , A~/2U3)1 ~ E311Aeu11i11Aeu21111u311, u l , u2 E ~2, u3 E ~I. 

Now (4.30) implies that IIA~/2Be(u, u)11 ~ E311Aeu112, when u E ~2. Hence 
(2.35) implies that (4.28) holds. In order to prove (4.27), we note that from 
(2.30), (2.35), (2.41), (4.14), and (4.15) one has 

I 2 2 2-1 (4.31) lIu (t)II + IIAeu(t)1I ~ K8 r, t ~ r, 

60ne can show that E3 is independent of e. 
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where Ki is a positive constant depending only on v, A. I , and rJi , i = 
1,2,3,4. 

In order to prove (4.27) we derive once again some formal estimates, which 
can be justified rigorously by using the Bubnov-Galerkin approximation method. 
Let us now take the scalar product of (4.1) with Aeu' for I> O. We obtain 

~ :1 IIA!/2u'1I2 + vlIAe u'112 
-I ,2 V , 2 , , " :s: v IlJIPef 1100 + "4 l1Aeu II + Ibe(u , u, Ae u )1 + Ibe(u, U , Ae u )1· 

However, using (4.3) and (4.30) one then obtains 

(4.32) :1 IIA!/2u' (1)11 2 +vIlAeu' (1)11 2 :s: 2v -\IIJIPJ'II~ +8E~K;r -IIIA!/2u' (1)112) 

for I ~ r, where E; = (C; + Ei)(A.~1 + 1). Now apply the uniform Gronwall 
inequality to (4.32) to obtain 

IIA!/2u' (1)11 2 :s: (~ t IIA!/2u' (s)11 2 ds + 2v -IIIJIPJ'II~(I - r I)) 
(4.33) t r l iT} 

-I 2 2 -I xexp(8v E4KSr (I-rl)) 

for t ~ r , where r I = max( r , t - 1) . 
It remains to estimate the term t IIA~/2U' (s)11 2 ds. Integrating the inequality 

T} ~ 

(4.12) between r l and t and using the estimates (2.30) and (4.31), we obtain 

(4.34) _1_ t IIA!/2U' (s)1I2 ds:S: 22I1A;I/2JIPJ'II~ + .!.K;r -I (1 + D29K~). 
t - r l iT} v v 

By combining (4.33) and (4.34) we deduce that (4.27) holds where 

LI(r) = (221IA;I/2JIPJ'II~ + .!.K;r-l(l +D29K~) + ~IIJIPJ'II~) 
v v v 

-I 2 2 -I 
X exp(8v E4KS r ), 

which completes the proof of Theorem 3. 0 

5. THE REDUCED 3-DIMENSIONAL THEORY: THEOREM 6 

We return to the study of the reduced 3D Navier-Stokes evolutionary equa-
tion 

(5.1 ) 

where (I - M)JIPJ = O. In this case, {w = O} is a positively invariant set for 
(2.5), the dilated Navier-Stokes evolutionary equation. Since v and MJIPJ do 
not depend on x3 ' the terms in (5.1) do not depend on e. Nevertheless the esti-
mates derived in §§3 and 4 are valid for (5.1); see, for example, Ladyzhenskaya 
(1969, 1972). 
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We define a ~ IIA;/2voll and P ~f IIMIref 11 00 , Let L I , L2, ... denote 
functions of v, AI' and P which are independent of a and M I , M2 , ••• 
denote functions of v, AI ' a, and p. Let D I , D2 , ••• be defined as in §3. 

Instead of applying directly the results of Ladyzhenskaya (1969, 1972) we can 
use the estimates derived in §3 and take into account that v does not depend 
on x 3 • Thus by defining LI = LI (P) and MI = MI (a, P) as 
(5.2) 

LI = DlsP exp(Dl9P ), { 
def 2 4 

def 2 4 4 2 2 2 2 2 2 2 MI = DIS(a exp(Dl9P ) + D19(a + 2a P )(a + P )) exp(DI9 (a + P ) ), 
we obtain the following result. 

Theorem 6 (Part 1). Let v(t) be a solution of the reduced 3D Navier-Stokes 
evolutionary equation (5.1) with Vo E MD(A;/2). Then there are functions 

1/2_ 2 2 2 
MI = MI(IIAe voll ,IIMIrJlloo), LI = LI(IIMIrJll oo ) 

given by (5.2), such that 

(5.3) 

Notice that, by the definition (3.84), one has 
2 (5.4) LI ::; r(P ). 

t 2: O. 

-VA t c Moreover, there exists a time 'I > 0, such that one has Mle I::; LI lor 
t 2: 'I . Combining this with (5.3) and (5.4) we get 

IIA:/2V(I)1I 2 ::; 2r(p2) , t 2: 'I' 

If p2 ::; rt~2 and if 0 < 8 ::; 80 ' we then have 

IIA~/2V(t)1I2 ::; 2r(rt~2) ::; (4rt;2 + k~rt~4), t 2: 'I ' 

that is, for 0 < 8 ::; 80 and t 2: 'I ' v(t) belongs to !Bel. 

Let us denote by So(g, t) the mapping generated on MD(A;/2) by the strong 
solutions of equation (5.1), where g = MIrJ. Arguing as in §4, one has the 
following regularity result. 

Theorem 6 (Part 2). If 

MIrJ E CO([O, 00); MHe)nL 00«0,00); MHe)n WI,oo«O, 00); MD(A;I/2)) , 

then there exist six positive functions K; = K;OIA!/2voll, IIMIrJ 11 00 ) such that 

{ IIAev(t)112 ::; K;2 + K;2I1A;I/2 MIrJ'II~ + K;2 t-1 for 0 < t ::; 1, 
(5.5) 

IIAev(t)1I2 ::; K;2 + K;21IA;I/2 MIref'lI~ for t 2: 1. 

Moreover, if Vo belongs to MD(Ae) , then one has 

II Aev (t)112 ::; K;2 + K;211 Aev o11 2 + K:21IA;I/2 MIrJ'II~, o ::; t ::; 1. 
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Moreover, if f belongs to W(Q3)' then, for any 'C > 0, So(g, t)vo belongs to a 
compact set of M"V,;2 for t ~ 'C, provided Vo belongs to a bounded set of M"V,;' . 
Furthermore, if f belongs to W(Q3)nW"00((O, 00); L2(Q3)) and is chosen so 
that H+(f) is compact, then, for any bounded set !B of M"V,;' and any 'C > 0, 
So(g, t)!B is included in a compact set Ko( 'C ,!B) of M"V,;2 , for t ~ 'C . 

If H+ (f) is no longer compact, then, under the above hypotheses, we can 
prove that, for t> 0, So(g, t)!B is included in a compact set Ko(t, !B) which 
may depend on t. 

Assume now that f E W(Q3) n W"oo((O, 00); L2(Q3)) is chosen so that 
H+ (f) is compact. Due to Theorem 6 (Parts 1 and 2), So(g, t) maps MD(A!/2) 
into itself, is bounded dissipative in MD(A!/2) , and for t ~ t, > 0 is com-
pletely continuous in MD(A!/2). Therefore, the skew-product semiflow 
1to(v, g, t) = (So(g, t)vo , gt) defined in §2.11 admits a global compact at-
tractor 21o(g) in MD(A!/2) x H+(g); see, for example, Hale (1988, Theorem 
2.4.7). Since, by Theorem 6 (Part 2), So(g, t) is also bounded dissipative in 
MD(Ae) and for t ~ t, > 0 completely continuous in MD(Ae)' 21o(g) is also 
the global compact attractor in MD(Ae) x H+(g). By the estimates (5.3) and 
(5.4), we have 

21o(g) c {u = V + w: IIA~/2VIl2 ~ L, ~ nIIMlP'JI12) , w = O} x w(g) 
(5.6) I 

c!Be X w(MlP'e f ). 

6. PROPERTIES OF ATTRACTORS: THEOREMS 4 AND 5 
We tum next to the proofs of Theorems 4 and 5 concerning the attractors for 

the Navier-Stokes equations. Let !Beo , !Bel, and !Be2 be given by (2.38), (2.39), 
and (2.40). By Lemmas 3.1 and 3.2, !Be2 is well defined and is a bounded set 
. Vi 
In e' 

Proof of Theorem 4. Set ~2 = !Be2 x H+(lP'J). For Uo E "V,;! and f E W(Q3) 
with lP'J E Wi, 00((0, 00) ; L 2(Q3)) we let 

1te(uO' lP'J, 'C) = (Se(lP'J, 'C)uo ' (lP'J\) 
denote the skew-product semiflow generated by the strong solutions of the di-
lated Navier-Stokes evolutionary equation (2.5); see §2.11. Let 21e = W(~2) be 
the w-limit set of ~2 in "V,;I X lP'eW(Q3) ' i.e., 

21e ~f n Closure~'Xll',w(Q3) (u 1te(~2, t)). 
T20 t2T 

It follows from (2.36) in Theorem 2 that for 'C ~ 1', + 1 the set 

U Se(lP'J, t)!Be2 
t2T 
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lies in a bounded set in ~2 and, thus, a compact set in ~I. Since H+(ff!>ef ) 
is compact, it then follows that 

Closurev.lxP,w(Q3) (U 'IleClle2 , t)) 
t~T 

is a nonempty compact set in ~I x H+ (ff!>J) for each r ~ 7'1 + 1 . Consequently 
2le is a nonempty compact invariant set in ~I x H+(ff!>e f ). Since 

2 2 
Se(ff!>J, t).£We c.£We ' t ~ 0, 

~2 is a positively invariant neighborhood of 2le . Therefore, 2le is a local 
attractor for the strong solutions of (2.5) in ~I x H+(ff!>J) , and the basin of 
attraction satisfies ~2 x H+(ff!>J) C B(21e). 0 

Remarks. 1. While the basin of attraction B(21e) isalargesetin ~lxH+(ff!>J), 
we do not know whether B(21e) = ~I X H+(ff!>J). As a result we do not know 
whether 2le is the global attractor of 'Ile • The reason for this is that there 
may exist Uo E ~I such that the solution Se(ff!>ef, t)uo is not globally regular. 
Because of this, the fact that Corollary 4.1 allows us to conclude that 2le is the 
global attractor in the space of Leray solutions and B(21e) = He X H+(ff!>e f ) is 
all the more surprising. 

2. The fact that the Leray solutions of (2.5) may not be unique is not a 
concern from the point of view ofthe dynamics. One can overcome this problem 
by using the Bebutov flow; see Sell (1973). 

Proof of Corollary 4.1. For any Leray solution of (2.5) we use (3.35) to obtain 
t -I + fo IIA:/2uIl 2 ds ~ ;-lIuoll2 + 2v -2(IIA;I/2 Mff!>J II~ + IIA;I/2(l- M)ff!'J II~) 

for all t > O. From (2.6), (2.22), (3.1), and (2.55) with A-I> 2v -2 max(A~ I , C;) 
we obtain 

+ fot IIA:/2uIl 2 ds ~ v ~I Il uol1 2 + 2v -2(A~IIIMff!>J II~ + C;ill(l- M)ff!>J II~) 
-I v 2 -2 -I -2 2 2+r -2 

~ -t-Iluoll + 2v (AI 112 + C5 e 114) 
-I 

~ ;-lIuol1 2 + kmin(11;2, eP11~2) 

for all t> 0 and 0 < e ~ eIO(A) , where 0 < k < 1 . Therefore, for 

T = 2v- I ll uol1 2 

(1 - k) min(11~2, eP11;2) 

there is a to' 0 ~ to < T , such that 

IIA I/2 ()11 2 . (-2 P -2) e U to ~ mm 111 ,e 113 ' 
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For this to' it follows from (2.21) that 

IIA~/2V(t0)112 :::; IIA~/2U(t0)1I2 :::; ",;2, 

IIA~/2w(t0)1I2:::; IIA~/2U(t0)1I2:::; eP",~2. 
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Consequently for 0 < e :::; min (eo ' elO), where eo is given by Theorem 1, one 
has u(to) E gel . Theorem 1 then implies that u(t) is regular for all t 2: to. It 
follows that for the Leray solutions the basin of attraction B(2.(e) is He xH+U) . 
Consequently 2.(e is the global attractor for the Leray solutions. 0 

Remark. The concept of a weak attractor for the 3DNS was studied in Foia~ and 
Temam (1987). It follows from Corollary 4.1 that the weak attractor coincides 
with 2.(e for thin domains. 
Proof of Corollary 4.2. The proof of the existence of a global attractor 2.(0 for the 
skew-product semiflow 1to(·' g, t) in MD(A:/2) x H+(g) , where g = MlPef, 
has been given in §5. The proof of (2.56) follows from (5.6) and (5.4). 

Assume now that (/ - M)lPef = 0 and that 0 < e :::; eo. Clearly, any 
solution v(t) of (2.24) with initial data Vo E MD(A~/2) is a solution of the 
dilated Navier-Stokes evolutionary equation (2.5). As 2.(0 (g) is included in 
gel X w(MlPef) c B(2.(e) and is an invariant set for equation (2.5), it follows 
that 2.(o(g) c 2.(e. Let us now show that 2.(e C 2.(o(g). Since (1- M)lPef = 0, 
inequality (3.53) takes on the form 

IIA:/2W(t)112:::; k;e2+r",;2exp(_vC;2e-2t/2) , t 2: 0, 

provided Uo E gel. This implies that the u-component of the w-limit set of 
gel X H+(lPJ) belongs to the set of functions in gel which are independent 
of the variable x3' i.e., 2.(e c 2.(o(g). 0 

Proof of Theorem 5 and Corollary 5.1. We begin with Theorem 5. Let us con-
sider a sequence of positive numbers en --+ 0 as n --+ 00. Let gr be any 
positively invariant compact subset of W(Q3) n Wi ,00((0, (0), L 2 (Q3» ' and 
let fn be a sequence of functions fn E gr that satisfies 

(6.1) lim IIIn-folloo=O, n-+oo 
where 10 E M gr. Then each of the positive hulls H+ (In) and H+ (10) are 
compact sets in gr. We set gn = lPe In and go = MlPe 10. According to the 
comments made in §2.6, lPe fo(t) belongs to MHe fo; every t, and conse-
quently n n 

(6.2) 

where 10 = (101,102,103). It follows from (6.1) and (6.2) and the fact that lPe 
n 

is a projection that 
(6.3) 
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and 
lim 11(1 - M)lP' f. II = O. 

n--+oo En n 00 

The last two conditions can be written as 

(6.4) lim IIlP'e f. - goll = O. n--+oo n n 00 

For every n, we consider the dilated Navier-Stokes evolutionary equation, i.e., 

(6.5) u' +vAe u+B (u, u) = g. 
n en n 

Let Sen (gn' t)UOn un(t) = vn(t) + wn(t) denote the strong solution of the 
equation (6.5) with initial data UOn in v::'. We also consider the reduced 3D 
Navier-Stokes evolutionary equation n 

(6.6) v' + vAov + BoCv, v) = go' 

with initial data v(O) = Vo in Va'. Let So (go , t)vo denote the strong solution 
of (6.6) with initial condition Vo E Va'. It follows from (6.4) that there exist 
an integer n, and a positive constant Eo such that 

max(llgoll~, IIMgnll~, IIgnll~)::; Eo, n ~ n,. 
According to Theorem 1 and Lemmas 3.1 and 3.2, every solution of (6.5) 

with initial data in the bounded set B8eo ultimately enters into the bounded set 
n 

B8e: as well as the bounded set B8e~ where 

B8/ ~f {u = V + W E B8e' : IIA~/2vIl2 ::; 1(E o) , IIA~/2WII2::; k~e~+r 11;2}. 
n n n n 

In particular, the (local) attractor 2(e of (6.5), see Theorem 4, is included 
in B8e3 x w(gn) , for n ~ n,. Likewi;e, due to the property (5.6), the global 

attract~r 2(0 = 2(o(go) of (6.6) is included in the bounded set B8~ x w(go) , 
where 

3 , . '/2 2 B80 = {u = v + W E v:: . IIAo vii ::; 1(Eo), W = O}. 
n 

Note that, for every n one has MB8/ = B8~ . Now define E, = 1(Eo)' 
For T E IR, we let In, r' gn, r ' and ngo , r ' denote the translate of In, gn ' and 

go ; see §2.11 Then from (6.4) it follows that for every J > 0 there is an integer 
n2 ~ n, such that 

Furthermore, there is a T ~ 0 such that 

dist w(Q3) (go, r' w(go)) < J /2, 

It then follows that 

(6.7) 

T> T. 

which implies that the attractors w(gn) are upper semicontinuous as n ---+ 00 . 



NAVIER-STOKES EQUATIONS ON THIN 3D DOMAINS. I 555 

In the remainder of the argument we shall use the weaker condition (6.3) in 
place of (6.1). As a result the argument now applies both to Theorem 5 and 
Corollary 5.1. 

We claim that there exists an integer n3 2: n2 and two positive constants k3 
and E2, with E2 2: max (Eo , E\) , such that 

(6.8) 

for 8 = 8n , n 2: n3 , and t 2: 0, provided Uo E ~e3 • Furthermore, one has 
n 

(6.9) 

for t 2: 0, provided (vo' 0) E ~~. Indeed (6.8) and (6.9) are immediate 
consequences of (3.82), (3.84), and Theorem 6 (Part 1). 

Now we want to compare the orbits of the dilated Navier-Stokes equation 
(6.5) with those of the reduced 3D Navier-Stokes equation (6.6) when UOn 
belongs to ~e3. To this end, we consider the equation satisfied by zn(t) ~f 
vn(t) - v(t) where zn(O) = 0 (i.e., vn(O) = v(O) = vOn)' Wn(O) = WOn' and 
UOn = vOn + WOn belongs to ~e3 • We have 

n 

for t 2: O. However, we can write 
( 6.12) 
Ibe (vn' vn' Ae zn)-be (v, v, Ae zn)1 = Ibe (zn' v, Ae zn)+be (vn' zn' Ae zn)l· 

11 n n n 11 11 n n 

From inequality (8.13) we obtain 

(6.13) 

Since zn does not depend on the variable x 3 ' we can apply the following 
Gagliardo-Nirenberg type inequality: 

(6.14) II znIl L oo(Q3) :::; cllznll~;(Q3)llznll~~Q3); 

see Friedman (1964). The estimates (6.13), (6.14), and (2.18) imply that 

( 6.15) 
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for some constant CIO • From (6.11), (6.12), (6.15), (3.2), and (3.3), we find 
that 

( 6.16) 

for t ~ o. Using the Young im,:quality we derive from (6.16) that one has 
d 1/2 2 2 
-d IIAG znll + vllAG znll t • • 

4 2 4 2 1/2 3 
::; V-IIMgn - golloo + V-C28nIIAG. wll IIAG• wll 

+ 1038 (C~lIvn 112I1A~/2vn 112I1A~/2 znl12 + C~ollzn 1121IA~/2vIl4) 
V n n n 

for t ~ 0, or, by (6.8) and (6.9), 
d 1/2 2 2 4 2 4 2 1/2 3 
dtllAe. Znll + 1/Ii Ae. znll ::; V-IIM gn - golloo + V-C28nIIAG. wll IIAG• wll 

2 1/2 12 + D24E211AG znl , . 
(6.17) 

where D24 = 108A.~lv-3(C: + C:o). 
Integrating the inequality (6.17) from 0 to t and using a Gronwall inequality, 

we deduce that . 
1/2 2 4 ( 2 2 t 1/2 3 ) IIAG• zn(t)1I ::; V- tllMgn - golloo + C28n 10 IIAG• w(s)11 IIAG• w(s)11 ds 

2 
x exp(D24E2 t) 

for t ~ o. Arguing as in the proof of (3.54), we see that there exists a positive 
constant D25 such that 

4 2 1t 1/2 3 4+2r -4 -C28n IIAG w(s)11 IIAG w(s)11 ds ::; D25( 1 + t)8n 174 ' 
1/ o' • 

t ~ o. 
Finally, we obtain 

1/2 2 (4 2 4+2r -4) 2 (6.18) IIAG• zn(t)1I ::; V-tllMgn - goll + D25 (1 + t)8n 174 exp(D24E2t). 

Thanks to hypothesis (2.59) and condition (6.3), we infer, from (6.18) that, for 
any positive numbers 0 and T, there exists an integer n4 , n4 ~ n3 ~ 0, such 
that 
(6.19) 

Let 0 be a positive number. Since ~o is the global attractor of (6.6), there 
exists a positive time .0 == .0(0) such that 

",,3 + (6.20) 1to(.:::9o ,H (go), t) c ffvOI x W(Qj~o' 0/3) , t ~ .0' 
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where A'''<i x W(Q3) (~o' a) denotes the a-neighborhood of 1J.0 in Yc} x W (Q3) . 
Using the properties (6.8) and (6.19), as well as the hypothesis (2.59), we see 
that exists an integer no' no ~ n4 , such that 

(6.21) IIA~/2(vn('ro) - v(ro))11 2 + IIA~/2wn('ro)1I2 :::; U/3, n ~ no' . . 
where un(t) = vn(t) + wn(t) = Se (gn' t)UOn ' v(t) = So(go, t)MuOn ' and uOn E 

ge3 • From (6.7), (6.20), and (6.21), we infer that . 
t:l21 3 + 

7Ce• (.;if}e. ,H (gn) , ro) c A'v.~ x W(Q3) (1J.0 ' c5) , 

and, in particular, 

(6.22) 7Ct • (lJ.en ' ro) c A'v.~ x W(Q3) (1J.0 ' c5) , 

Due to the invariance property of the attractors ~e ' we at once deduce the 
upper semicontinuity result (2.61) from (6.22). This completes the proof of 
Theorem 5 and Corollary 5.1. 0 

Proof of Corollary 5.2. We shall only give a sketch of the proof of Corollary 5.2. 
We keep here the notation of the proof of Theorem 5. 

According to Theorems 2 and 6 (Part 2), every solution of (6.5), for n ~ n, 
(resp. of (6.6)), with initial data in the bounded set geO (resp. in any bounded 

set of Vo') ultimately enters into the bounded set ge4 (resp. g04) where 
n 

4 def 2 2 ge = {u E ~ : IIAe ull :::; E4 } 
• • n 

(resp. g04 = {v E vt IIAovII2 :::; E4}) where E4 is a positive constant inde-
pendent of n. Note that, for every n, Mge4 = g04. In particular, the (local) 
attractor 'It of (6.5) (resp. the global attract~r 'lo of (6.6)) is included in the 

bounded set" ge4 X w(gn) (resp. g04 x w(go)). Furthermore, due to Theorems 
2 and 6 (Part 2), there exist an integer n5 , n5 ~ n4 , and a positive constant 
E5 ' with E5 ~ max(E4 ,E2) such that, for t ~ 0, 

2 3 4 IIAe un(t)11 :::; E5 for n ~ n5, UOn E ge n ge ' 
n n n 

and 
IIAoV(t)112 :::; E5 for Vo E g~ ng04. 

Let c5 be a positive number. Since 1J.0 is the global attractor of (6.6) in Vo2 x 
W(Q3) , there exists a positive time r, == r, (c5) , with r, > 1 for instance, such 
that 

3 4 + 
(6.23) 7CO(go ngo ' H (go), t) CA'Vo2xW(Q3)(IJ.O' c5/3) , t ~ r,. 
As in the proof of Theorem 5, due to the properties (6.7) and (6.23), the upper 
semicontinuity result (2.63) is valid if we show that there exists an integer n6 , 

n6 ~ n5 ' such that, for n ~ n6 , one has 

(6.24) IIAe (un(r,) - v(r 1))11 2 :::; 2c5/3 
n 
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where un(t) = Se (gn' t)uOn ' v(t) = So (go , t)vo' and uOn E ~/ n ~e4 . 
• n • 

N h def -' hi' fh . ote t at zn = un - V IS t e SO utIOn 0 t e equatIOn 

z: + vAe zn = (gn - go) - (Be (un' Un) - Be (v, v)), 
n •• 

with initial condition zn(O) = UOn - MUOn = wOn' The proof of the estimate 
(6.24) follows the lines of the proof of the estimates (2.35), (2.36) of Theorem 
2 (see §4, Steps 1 to 4). As the proof of (6.24) is rather long and completely 
similar to the proof of Theorem 2, we omit the details. Let us just point out 
that, as in §4, we use the auxiliary equation 
d, , '" '-' ___ , -d zn+vAe zn = (gn-gO)-(Be (un' un)+Be (Un' un)-Be (V ,v)-Be (V, V)), t n n n n n 

with initial condition 

«0) = (gn - go)(O) -- (Be (UOn ' UOn ) - Be (VOn' VOn)) - vAe (UOn - VOn)' 0 
• n n 

7. REMARKS ON OTHER BOUNDARY CONDITIONS: THEOREM 7 
In this section, we assume that Qe = Q2 X (0, e), where Q2 is a bounded 

domain in ]R2 with a boundary of class CS , s 2: 2. The smoothness hypoth-
esis s 2: 2 is made to avoid any problem of regularity of the solutions of the 
corresponding stationary Stokes equation. As in §2, we set Q3 = Q2 X (0, 1) 
and use the change of variables (Y1 ' Y2' Y3) I---> (XI' x2 ' x3), where Xi = Y i , 

i = 1, 2, and X3 = e -I Y3' This change of variables sends Q e onto Q3' 

7.1. Mixed periodic-Dirichlet boundary conditions. We are interested here in 
solutions of the Navier-Stokes evolutionary equation (2.5) that satisfy periodic 
boundary conditions on r I = Q2 X {O} U Q2 x {e} and Dirichlet boundary 
conditions on r 2 = 8Q2 x (0, e). As before we use the operator Je of §2.1. 
Let He (respectively v,/) denote the closure in L 2 (Q 3) (respectively HI ( Q 3) ) 
of those smooth functions U that satisfy periodic boundary conditions on r l ' 

Dirichlet boundary conditions on r 2 , and Ve' U = 0 in Q3' We denote by 
lPe the orthogonal projection of L2(Q3) onto He' By applying lPe to (2.4), 
we obtain (as in §2.2) the nonlinear evolutionary equation (2.5) on He' where 
U E He' Aeu = -lPe~eu, We set ~2 = D(Ae)' Using regularity results (see 
Dauge (1984) and the references therein), one can show that ~2 = ~I nH2(Q3) . 
One also has ~I = D(A~/2). Using the classical Poincare inequality, one easily 
shows that the inequalities (2.17) still hold. Likewise, thanks to the estimates 
(2.17) and to regularity results in Dauge (1984), one can prove the inequalities 
(2.18). Like in §2.4, we introduce the projection M. All the properties given 
in §2.4 are still true. In particular, if U E D(Ae) , we have 

(7.1) (/ - M)Aeu = Ae(I - M)u. 
The crucial estimate (2.22) still holds (see Hale and Raugel (1989)). The above 
property (7.1) allows us to write the equation (2.5) as the system (2.23) of two 
equations in V = Mu and W = (/ - M)u. 
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As in §2.6, we obtain a reduced 3D Navier-Stokes evolutionary equation 
which is given by (2.24). The reduced 3D Navier-Stokes evolutionary equation 
incorporates the 2DNS equation on Q2 with homogeneous Dirichlet boundary 
conditions. In order to see this, we let L 2 (Q2 ' ~?) denote the L 2 -space of 2-
dimensional vector fields m = (ml' m2) which depend on (XI' x2) E Q2 and 
let H(Q2) denote the closure in L2(Q2' ]R2) of the smooth functions u that 
satisfy Dlml + D2m2 = 0 on Q2' Finally we let lP'2 denote the orthogonal 
projection of L2(Q2' ]R2) onto the space H(Q2)' Then lP'e and lP'2 satisfy the 
relations described in §2.6. Furthermore, v is a solution of the reduced 3D 
Navier-Stokes evolutionary equation (2.24) if and only if m = (VI' v2) is a 
solution of the 2D Navier-Stokes evolutionary equation 

d 2 2 dt m - vlP'2(D I + D2)m + lP'2(m· V)m = (gl' g2) 

and v 3 is a solution of the linear equation 

;t V3 - v(D~ + D;)V3 + (viDI + v 2D2)V3 = g3' 

where g = (gl ' g2' g3) = MlP'ef. With the changes made above in the defini-
tions of the spaces He' ~I , ~2 and the operators lP'e and lP'2' all the results 
given in §§2-6 (see also §8) are still true in the case where we have periodic 
boundary conditions on r 0 uri and homogeneous Dirichlet boundary condi-
tions on r 2 . Moreover, the proofs given in §§3-6 are exactly the same. 
7.2. Homogeneous Dirichlet boundary conditions. This case is quite different 
from the cases previously studied. Here we consider the Navier-Stokes equa-
tions (2.1) on ne (resp. (2.4) on Q3) with homogeneous Dirichlet boundary 
conditions on 8ne (resp. on 8Q3)' Here we introduce the spaces 

2 He = {u E L (Q3): Ve' U = 0, U· nlaQ3 = O} 

and 
I I 

~ = {u E HO(Q3): Ve' U = O}, 

and we denote by lP'e the orthogonal projection of L2(Q3) onto He' Byapply-
ing lP'e to (2.4), we obtain (as in §2.2) the dilated Navier-Stokes evolutionary 
equation (2.5) where U = lP'eu E He' Aeu = -lP'e..:leU (with homogenous Dirich-
let boundary conditions). One has ~I = D(A~/2) and we set ~2 = D(A£) . 
Using the regularity results given in Dauge (1984, 1989), one obtains that 
~2 = ~I n H 2 (Q3)' Using the classical Poincare inequality, one shows at once 
that the estimates (2.17) still hold. Arguing as in Hale and Raugel (1992a, 
Corollary 2.8) one shows that 

(7.2) IIA~ull :::; CII eIlA!+1/2 ull for i = 0, 1 , 
where C II is a positive constant that does not depend on e. Using the in-
equality (7.2) several times and the regularity results of Dauge (1984, 1989), 
one proves that 
(7.3) 

-I -I -I -2 2 -I 
C6 (lIuII H2(Q) + e IID3UII + e IIDID3UII + e IID2D3uII + e IID3ulI):::; e IIA£ulI 
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and 
-I -2 2 

UAeuU :'5 C7 (UUUH 2(Q3) + e IID3uUH l(Q3) + e UD3uU). 
The inequalities (7.3) and (8.20) imply that 

(7.4) Ibe(u l , i, u3)1 :'5 CdIA:/2uIUUA:/2u2UI/21IAeiUI/2Uu3U, 

for ul E D(A~/2), u2 E D(Ae)' and u3 E He' We now state the following 
results which do not use the decomposition u = Mu + (J - M)u. We assume 
that 0 < e :'5 1 . 
Theorem 7. Let p and r be two real numbers satisfYing -1 < p < 0 and 
r> -3, and let CI and C2 be two positive constants. Then there exists eo> 0 
such that, for 0 < e :'5 eo' whenever Uo E D(A~/2), f E L 00 «0, 00) , L 2 (Q3)) 
satisfY 

1/2 2 ~ p 2 ~ r 
IIAe uoll :'5 CI e, IIlP'J 1100 :'5 C2e , 

then (2.5) has a solution u that belongs to CO([O, 00), ~I) and we have 
1/2 2 -2 -2 ~ p 2 ~ -2 2+r 

UAe u(t)11 :'5 exp( -vCII e t/2)Cle + 2CIl C2v e, t 2: O. 
Proof. 7 We set 

2 ~ p 2 ~ -2 2+r Ro = CI e + 2CIl C2v e . 
Since R~ 2: UA~/2UOU2 , it follows from Lemma 3.0 that there is a time TO > 0 
such that 
(7.5) 

Without loss of generality, we let [0, TO) denote the maximal time interval for 
which (7.5) is valid. If TO < 00, then we must have 

(7.6) IIA:/2u(To)1I2 = 2R~. 
By taking the scalar product of (2.5) with Aeu and using (7.2) and (7.4), we 
obtain, for 0 :'5 t :'5 TO , 

d 1/2 2 2 1 2 1/2 1/2 1/2 2 
(7.7) dt UAe ull + vUAeul1 :'5 vUlP'J Uoo + 2CI2 CII e IIAe ullllAeull· 

For 0 :'5 t :'5 TO , we have 
2CI2C:{2e l / 21IA;/2ull :'5 2..nCI2C:{2el/2(CII/2eP/2 + ..nCII C;/2v -I el+r/2), 

which goes to 0 as e -> 0+ . Consequently there is a positive number eo such 
that 

r;:; 1/2 1/2 V (7.8) 2v 2CI2CII e Ro :'5"2. 
For 0 < e :'5 eo' we deduce from (7.7), (7.8), and (7.2) that 

:t IIA;/2UI12 + ;~~2UA;/2uU2 :'5 ~1IlP'JII~, 0:'5 t:'5 TO, 
II 

7This proof of Theorem 7 is, in fact, a small data argument. 
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which, by the Gronwall inequality implies that 
2 2 

IIA~/2UI12::::; exp(_vC~2e-2t/2)IIA~/2uoI12 + 2C1i e IIlP'JII~, 
or 

(7.9) 

for 0::::; t ::::; TO. From (7.9), it follows that 

IIA~/2u(To)1I2 ::::; R~ < 2R~, 

which contradicts (7.6). Therefore TO = 00. D 

v 

561 

Remark. Like in §4 (see Theorem 2), one can show that, under the hypotheses 
of Theorem 7, if moreover lP'ef belongs to 

CO([O, (0), He)n WI,oo((O, (0), D(A;I/2)) , 

then the solution u(t) of (2.5) belongs to CO((O, (0), ~2). Let Se(lP'J, t)uo 
denote the strong solution of (2.5) with initial data uo E ~I , and let ~/ = 
{u E ~I; IIA~/2UIl2::::; CleP + 2C~IC2v-2e2+r}. As in §4 (see Theorem 2) one 
can show that, under the assumptions of Theorem 7, if in addition, fEW (Q3) 
is chosen so that lP'e f E WI,OO((O, (0); He) and H+(f) is compact, then for 
any r> 0 there is a compact subset K(r) of ~2 such that 

1 Se(lP'J, t)~e C K(r), t ~ r. 
The results below are more interesting than Theorem 7. We recall that 

71:e(UO' lP'J, r) = (Se(lP'J, r)uo, (lP'J),) denote the skew-product semiflowgen-
erated by the strong solutions of (2.5). 
Corollary 7.1. Assume that the hypotheses of Theorem 7 hold and that f E 
W(Q3) is chosen so that lP'J belongs to WI,OO((O, (0), He) and H+(f) is 
compact. Let eo > 0 be given by Theorem 7. Then, for ° < e ::::; eo' the skew-
product semiflow 71:e(', lP'J, r) has a unique maximal compact (local) attractor 
'.2le included in ~el X w(lP'J) which attracts ~el X H+(lP'J) in the space ~I X 

lP'e W(Q3)' Futhermore, 

'.2le c {u E ~I: IIA:/2uI1 2 ::::; 2C~1 C2v -2e2H } x w(lP'J). 

Moreover, '.2le is bounded and compact in ~2 x w(lP'J) and attracts the bounded 
set (~el n ~2) x H+(lP'J) in the space ~2 X lP'e W(Q3)' Finally, the attractor 
'.2le is the global attractor for the Leray solutions of (2.5). 
Proof. The first part of this theorem is proved in the same way as Theorem 
4. We will only give the argument that '.2le is the global attract or for the Leray 
solutions of (2.5), i.e., the weak solutions of (2.5) that satisfy the energy estimate 

(7.10) Ilu(t)112 -lIu(O)112 + v t IIA:/2u(s)112 ds::::; iIIA;I/2lP'JII~, t > o. 10 v 
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which implies that 
t -I 1 ( 1/2 2 V 2 2 - -2 2+r t 10 IIAB u(s)1I ds::; -t-Iluoll + C ll C2v 8 , (7.11) t> O. 

Therefore, for T = C~2C;lv8-(2+r)lIuoI12 , there is a time to' 0::; to ::; T, such 
that 

IIA~/2U(t0)1I2 ::; 2C~1 C2v -2i+r, 

that is, u(to) belongs to gel and, according to the proof of Theorem 7, u(t) is 
regular for all t ~ to. This implies that 21B is the global attractor for the Leray 
solutions of (2.5). 0 

Corollary 7.2. Assume that the hypotheses o/Corollary 7.1 hold. Then we have 

(7.12) sup Ilull ~ 0 as 8 ~ o. 
(u,h)E!1I.. 

If, in addition, r > -2, then the first components 0/ the aUractors 21B converge 
to 0 in D(A~/2), i.e., 

(7.13) 1/2 sup IIAe ull ~ 0 as 8 ~ O. 
(u,h)E!1I.. 

Proof. Property (7.13) is an obvious consequence of Theorem 7 and Corollary 
7.1, and property (7.12) is a direct consequence of Corollary 7.1 and (7.2). 
Indeed, we have 

d -2 c2 2 

dt IIull 2 + V8 2 lIull 2 ::; ~ IIPJ 11 2 , t > 0, Cll v 

which by Gronwall inequality implies that 
2 -2 -2 2 4 - -3 4+r (7.14) lIuli ::;(exp(-vC1l 8 t))lIuoll +Cll C2v 8, t~O. 

Now (7.12) follows from (7.14), the fact that r > -3, and the invariance of 
21£. 0 

8. ApPENDIX: PROOFS OF AUXILIARY ESTIMATES 

In this section we give the proof of the estimates (3.3) in the case of periodic 
boundary conditions and of the corresponding estimates in the case of other 
boundary conditions. We use cI ' c2 ' ••• to denote constants which do not 
depend on e for 0 < e ::; 1 . 

8.1. Periodic boundary conditions. We will keep the notation of §§2 and 3. Let 
us begin with the following lemma. 
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Lemma 8.1. For any q, 2:::; q :::; 6, there exist two positive constants c1 ' and 
c2' such that for any w satisfying M w = 0, one has 

2q-l -I 
(8.1) IIwIILQ(Q3) :::; c1e (1IwIIHl(Q3) + e IID3wIIL2(Q3») 

and 

(8.2) 

for 0 < e:::; 1. 
Proof. Inequality (8.2) is a direct consequence of (8.1) and (2.17). In order to 
prove (8.1) we will use two inequalities from Hale and Raugel, (1992b, Lemma 
4.1 and Proposition 4.2), which can be written (in the notation of §2) as 

-I 
(8.3) IIwIlL2(Q3) :::; c3e(lIwIIHl(Q3) + e IID3WIlL2(Q3») 

and 

(8.4) 

whenever Mw = o. Inequality (8.1) is then obtained by interpolation between 
(8.3) and (8.4). (Note that inequality (8.1) could also be derived by replacing 
q = 6 in the proof of Hale and Raugel (1992b, Proposition 4.2) by any q, 
2:::; q:::; 6.) 0 

The next step is to prove the following result. 

Lemma 8.2. There exist positive constants c5 ' c6 ' and c7 such that for all u l E 

D(A!/2) , u2 E D(Ae) , and u3 E He the following hold: 
(1) If Mu l = 0, then 

(8.5) Ihe(ul, i, u3)1 :::; c5el/3I1A~/2uIIIIlA~/2illl/2I1Aeillllu311. 

(2) If Mu2 = 0, then 

(8.6) Ihe(u l , u2, u3 )1 :::; c6el/61IA!/2uIIIIlA~/2illl/21IAeu2111Iu311. 

(3) If Mu l = Mu2 = 0, then 

(8.7) Ihe(u l , u2 , u3 )1 :::; c7el/2I1A~/2uIIIIIA~/2illl/21IAeillllu311. 
Proof. Let us recall that 

where {I} = {2} = 0 and {3} = 1. Using the Holder inequality several times, 
we obtain 
(8.8) 
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Assume now that Mu l = o. Then we deduce from (2.17), (8.2), and (8.8) 
that 
(8.9) 

Ibe(u l , i, u3)1 ::::; c8el/3I1A~/2uIIIIIA~/2illl/2I1u311 ( tile -{j} DjU2I1Hl(Q3l) , 
1=1 

and (8.5) is now a direct consequence of (8.9) and (2.18). 
Assume next that M u2 = o. Then obviously, M D j u2 = 0 for i = 1, 2 . 

Since u2 is periodic with respectto the third variable, we also have M D3 u2 = 0 . 
Therefore, we can apply inequality (8.1) to w = e -{j} DjU~ to obtain 
(8.10) 

-{j} 2 1/2 1/6 -{j} 2 -I -{j} 21 )1/2 
lie DjUjIlL6(Q3l ::::; cge (lie DjUj1lHl(Q3l + e lie D3D jU) L2(Q3l . 

The estimate (8.6) is a direct consequence of (8.8), (8.10), and (2.18). 
The case Mu l = Mu2 = 0 is a combination of the above, and (8.7) is a 

straightforward consequence of the inequalities (8.2), (8.8), (8.10), (2.17), and 
(2.18). 0 

Note that (8.7) establishes the first inequality in (3.3). In order to prove the 
other two inequalities in (3.3), we need the following results. 

Lemma 8.3. The following statements are valid: 
(1) For any real numbers rand (), satisfying 2 ::::; r ::::; 6, !::::; () ::::; 1, and 

r() - 6( 1 - ()) > 0, there exists a positive constant clO = clO(r, ()) such that, for 
any W E D(Ae) with Mw = 0, and any u2 E D(A~/2) and any u3 in He' one 
has 

(8.11) Ibe(w, u2 , u3)1 ::::; clOi(I-8l/rIlAewIl81IA~/2wlll-81IA~/2u211I1u311. 

(2) For any real number q, 2 < q ::::; 6, there exists a positive constant 
cl1 = cl1 (q) such that, for any w E D(Ae) with Mw = 0, and any v E 

.9f(M) n D(A:/2) and any u E He' we have 

(8.12) Ibe(v, w, u)1 ::::; cl1el/qIIA~/2vIIIlA~/2wlll/21IAewlll/21Iull. 
Proof. Using the inequalities (2.17) and the Cauchy-Schwarz inequality, we ob-
tain 

or 

(8.13) 

It is well known that, for any p > 3, there exists a positive constant Cl2 such 
that 

(8.14) 
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Now, using a Gagliardo-Nirenberg inequality (see Friedman (1964, Theorem 
10.1) for instance), we obtain, for ! $; (j $; 1 and r( (j - 2 + ~) = 6( 1 - (j) , that 

8 1-8 
(8.15) II w ll w l,P(Q3) $; c13llwIlH2(Q3)lIwIlL'(Q3) ' 

where c13 is a positive constant depending only on r, (j, p. Combining the 
inequalities (8.14) and (8.15), we see that actually, for any real numbers r, (j, 
satisfying 2 $; r $; 6, ! $; 0 $; 1 , and rO - 6( 1 - 0) > 0, we have 

8 1-8 
(8.16) II w Il C "(Q3) $; CI4 I1wIIH2(Q3)lIwIIL'(Q3) ' 

where Cl4 is a positive constant depending only on r, O. Now the estimate 
(8.11) is a direct consequence of the inequalities (8.13), (8.16), (8.2), and (2.18). 

Let us now prove the estimate (8.12). Using a HOlder inequality, we obtain, 
for any 1 < q $; 3, that 
(8.17) 

where p = ~ . Let us point out that the inequality (8.17) has a meaning since 
the vector v depends only on the variables XI' x2 and therefore belongs to 
any space L 4P (Q3) ' * $; p < +00, as soon as it belongs to H I (Q3)' As in the 
proof of Proposition 8.2, we remark that MDiw = 0, i = 1,2, 3; whence we 
may apply the inequality (8.1) to w = e -{i} Di w. Using the estimate (2.18) in 
addition we obtain 
(8.18) Ibe(v, w, u)1 $; cI5el/2qIlA~/2vIIIlAewlll/21IA~/2wlll/21Iull, 
where CI5 is a positive constant depending only on q. By replacing 2q with 
q we see that (8.12) follows from (8.18). 

The second estimate in (3.3) is simply the estimate (8.11) in the particular 
case where r = 6, 0 = g. Likewise the third estimate (3.3) is derived from 
(8.12) by choosing q = 4. 0 

8.2. Other boundary conditions. In the proofs of §8.1, we never used the fact 
that the boundary conditions on 8Q2 x (0, 1) were periodic ones. In particular, 
the estimate (8.1) is independent of the boundary conditions. Therefore, by 
using (2.17) and (2.18), one easily checks that Lemma 8.1 and Propositions 
8.2 and 8.3 still hold if we replace the periodic boundary conditions on 8Q3 
by homogeneous Dirichlet boundary conditions on 8 Q2 x (0, 1) and periodic 
boundary conditions on (Q2 x {O}) U (Q2 X {I}). Hence the estimates (3.3) are 
still true in this case. 

Finally, let us consider the case where we have homogeneous Dirichlet bound-
ary conditions on 8Q3' Arguing as in Hale and Raugel (1992b, Lemma 6.1) 
and in Lemma 8.1, one can prove the following result: 
Lemma 8.4. For any q, 2 $; q $; 6, there exists a positive constant Cl6 such 
that,jorany UEH I (Q3) with u=O on (Q2 x{0})U(Q2 x{1}),onehas 

(8.19) 
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This lemma enables us to prove the following result. 

Le 8 5 Tn . . . h h fi u l E D(A~/2), mma .. .I J ere eXists a posltlve constant c17 suc t at, or " 
u2 E D(Ae) and u2 E He' one has 

Ibe(u l , i, u3)1 :5 Cd,I/2I1A;/2UIIlIlA;/2U2111/2I1u3 11 

x (t lie -{i} D1u211 + e -I lie -{i} D3Dju211) 1/2 
1=1 

(8.20) 

Proof. From (8.8), (8.19), and (2.17), we deduce that 
(8.21) 

Ibe(u l , u2, u3)1:5 cI8el/3I1A;/2ulllllu311I1A;/2illl/2(.t lIe-{j}DjU~II~~Q3))' 
I,J=I 

It remains to estimate lIe-{i} Dju~II~~Q3) for 1 :5 i, j :5 3. Since Dju} is equal 
to zero on (Q2 x {O}) U (Q2 x {I}) if i = 1,2 and since MD3u) = 0, for 
1 :5 j :5 3, one can apply Lemmas 8.4 and 8.1 to Dju} , i = 1,2, and D3 U} , 
respectively, for 1 :5 j :5 3. From (8.1), (8.18), and (8.21), we at once infer 
the estimate (8.20). 0 
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ABSTRACT. We examine the Navier-Stokes equations (NS) on a thin 3-dimen-
sional domain n. = Q2 x (0, e), where Q2 is a suitable bounded domain in 
lR? and e is a small, positive, real parameter. We consider these equations 
with various homogeneous boundary conditions, especially spatially periodic 
boundary conditions. We show that there are large sets ~(e) in HI (n.) and 
Y(e) in WI,oo«O, 00), L 2(n.)) such that if Uo E ~(e) and FE Y(e) , 
then (NS) has a strong solution U(t) that remains in HI (n,) for all t ~ 0 and 
in H 2(n,) for all t > O. We show that the set of strong solutions of (NS) has 
a local attractor 'll, in HI (n,) , which is compact in H 2(n,). Furthermore, 
this local attractor 'll, turns out to be the global attractor for all the weak 
solutions (in the sense of Leray) of (NS). We also show that, under reasonable 
assumptions, 'll. is upper semicontinuous at e = 0 . 
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