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DAN BARBASCH AND ALLEN MOY 

1. INTRODUCTION 

The main result of this paper is to show that the problem of the determi-
nation of the unramified unitary dual of a split p-adic group is equivalent to 
the problem of determining the unitary dual of the corresponding graded Hecke 
algebra. 

In [BM], the authors established this equivalence in the case of Iwahori spher-
ical representations under a certain restriction; namely, it was essential for the 
infinitesimal character to be real (in the terminology of [BMD. In terms of the 
Langlands-Deligne-Lusztig parameters (s, U, p) [KL], the restriction is that 
S E L G be a purely hyperbolic element. The technique used in [BM] was to 
combine the notion of the signature of a K -character in [V] with some facts 
which follow from [KL], namely, that the Kw-characters of tempered repre-
sentations are linearly independent. This is essentially true precisely when the 
infinitesimal character is real; for if not, S has an elliptic part se such that 
LG(se) t- LG. Then the Kw-characters of tempered representations behave like 
induced characters from this smaller group and there is no a priori reason why 
they should be independent; in general, they are not. 

The removal of the real infinitesimal character restriction is Theorem 8.1. 
The proof of Theorem 8.1 is entirely different from [BM]. What we prove, based 
on ideas of Lusztig [Ls2], is that a certain Jantzen type filtration for standard 
modules for K is equivalent to the same kind of filtration for a corresponding 
Hecke algebra K(se)' In this equivalence, representations with infinitesimal 
characters with elliptic part se correspond; but since se is a central element in 
LG(se) , we are reduced to the setting of [BM]. 

We give a few more details. Consider the polar decomposition S = sesh of S 
into its elliptic and hyperbolic parts. Let rtf (G, &) be the category of represen-
tations of G of finite length and with infinitesimal character having elliptic part 
in the Weyl group orbit & of se' If G has connected center, the centralizer 
CG(se) of se in LG is connected. Let G' be the split p-adic group whose 
L-group is CLG(se)' Then Theorem 4.3 states that there is a category equiva-
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lence between ~(G, &') and ~(G', {se}). The category ~(G', {se}) in turn 
is naturally equivalent to ~(G' , {I}) , the category of representations with real 
infinitesimal character. The idea of the proof as well as the statement is due 
to Lusztig. In [Ls2], he first constructs a graded Hecke algebra 1HI correspond-
ing to the Hecke algebra Jf'(Gj jJ) of Iwahori spherical functions. Then he 
shows for fixed matching infinitesimal characters X and X that there is an 
isomorphism between Jf' ( G j j J) x and lHIf . 

In order to apply these ideas to questions of unitarity we need two additional 
ingredients. The first is a slight generalization of Lusztig's methods to yield an 
isomorphism between Jf'(Gj jJ)x and lHIf in an analytic family setting. This 
is done in §4. The differences to [Ls2] are technical, but they are essential for 
our argument. When CLG(Se) is a Levi subgroup of L G , the group G' is a 
Levi subgroup of G. In this case the equivalence of categories is effectively the 
irreducibility of certain unitarily induced representations from G' to G and 
is of course much simpler. This is analogous to reduction to real infinitesimal 
character in real reductive groups [B, V]. However, the group CG(se) need not 
be a Levi subgroup. Here, the equivalence of categories between ~ ( G ,&') and 
~ (G', 1) should be thought of as a strong realization, in a limited situation, 
of endoscopic transfer of representations between G' and G. The transfer has 
the important property that certain data, related to the signature character of a 
hermitian representation, are preserved. 

The second ingredient needed for unitarity is defining a natural * opera-
tion on the graded Hecke algebra 1HI&, and relating it to the * operation on 
Jf'(Gj jJ). This is done in §5. In §8, the unitarity ofIwahori spherical repre-
sentations is reduced to the question of the determination of the unitary dual 
of a corresponding graded Hecke algebra at real infinitesimal character. In this 
respect Theorem 5.6 for the * operation is essential. We hope to pursue the 
problem of determining this dual in future work. 

We also note Theorem 6.3 which basically describes the Hecke algebra module 
of an induced module in terms of the action of the affine part of the Hecke 
algebra. Undoubtedly this is known to the specialist. 

Finally we comment on the validity of our results for the cases when G is 
a nonsplit group. In this setting, the Hecke algebra with respect to an Iwahori 
subgroup is a Hecke algebra associated to a parameter set. The allowable pa-
rameter sets can be found in [T]. When these algebras are graded at the orbit 
&' = {I}, one obtains a graded Hecke algebra with parameter as described in 
[Ls3, §2.13]. For these graded Hecke algebras, it is known that there are only 
finitely many real tempered representations. The fact that the W characters of 
these real tempered representations are linearly independent follows (presum-
ably) from [Ls4] (generalization of [BM, Theorem 4.4]). Then the techniques 
of [BM] apply, so the unitarity of real representations for these groups can be 
detected on the Iwahori fixed vectors. 

2. REVIEW OF BASIC RESULTS 

We use the notation in [BM]. Fix a p-adic field IF, and let G be the IF-
rational points of a split reductive group. We do not require G to be a specific 
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type in its isogeny class. Thus, for example, in the extremes, G can be adjoint 
or simply connected. The Hecke algebra Ji?(Gj jJ) of compactly supported 
Iwahori-spherical functions has a vector space decomposition 

(2.1 ) Ji?(Gj jJ) = ~ ®,SQ', 

where ~ and ,SQ' are subalgebras of Ji?(Gj jJ). 
The subalgebra ~ = Ji?(Kj jJ) is the finite Hecke algebra of functions 

whose support lies in K = G(RJF) , the integral points of G. 
The subalgebra ,SQ' is abelian. To describe it explicitly, choose a Borel sub-

group B = AN compatible with K. Let fC' = Hom( G m ' A) be the algebraic 
homomorphisms of G m = GL( 1 , IF) into A . Also, let n ~ R+ ~ R ~ fC' be the 
simple coroots, the positive coroots, and the coroots determined by B and A 
respectively. Similarly, let 'Y = ii' = Hom(A, Gm ) and let tI ~ R+ ~ R ~ ii' 
be the simple roots, the positive roots, and the roots. 

We mention for later use that LG is the (connected) complex alegbraic group 
attached to the data ('Y, fC' , R, R, tI) dual to (fC', 'Y, R, R, n). In partic-
ular, LA = ii' ®z eX is a maximal torus in LG , and the group algebra CfC' is 
the representation algebra of LA. 

The double cosets of J in G are naturally parametrized by the semi direct 
product W a = W ~ fC' of the Weyl group Wand fC'. Let sa E W denote the 
reflection corresponding to the simple root a, and let So E W a be the affine 
reflection. A basis for the algebra ~ is given by the elements 

(2.2) Tw = characteristic function of J iiJJ , 

where w E Wand iiJ E K is a representative of w. The algebra ~ is 
generated by the elements Ts ' a En. Of course, we have Tww' = Tw . Tw' if 
i(ww')=i(w)+i(w') and (Ts +1)(Ts -q)=O. Here, q is the order of the 
residue field. a 0 

Let fC'+ = {x E fC' I a(x) :::; 0 V a E tI}. For x E fC'+ and w a prime 
element in IF, set 

(2.3) ()x = characteristic function of Jx(w)J . 

An element L E fC' can be written as the difference L = x - y with x and y 
in fC'+ . Then the element 

(2.4) 

does not depend on the particular choice of x and y used in writing L = x - y. 
The algebra ,SQ' is the subalgebra generated by the () L 'so Identify CfC' with ,SQ' 

via the isomorphism L 1-+ () L for L E fC'. Each L is a character of LA, hence 
we can view () L as a regular function on the torus L A and ,SQ' as the algebra 
of regular functions on LA. 

In order to describe the cross multiplication between the subalgebras ~ and 
,SQ', it is useful to recall [Ls2] the generic affine Hecke algebra Ji? based on the 
datum (fC', 'Y, R, R, n) with parameter set c, c*. A parameter set is a pair 
of maps c: n --+ Nand c*: {a E n, a E 2.r} --+ N satisfying c(a) = c(a') 
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whenever (0:, a') = (0:', a) = -1. We write Ca ' c: for the parameters. The 
special case of }If'(G/ /J) in (2.1) corresponds to all the ca's and the c: 's 
being equal to 1. 

The generic affine algebra with parameters is an algebra }If' over q z , Z -1] , 
where z is an indeterminant. It has generators Ta = TSa (0: E II), ()L (L E 2") 
and relations 

(2.5a) 

(2.5b) 

(2.5c) 
(2.5d) 
(2.5e) 

(Ta + 1)(Ta - ic(a)) = 0 for 0: E II, 

, 
Ta Tal Ta ... = Ta' Ta Ta" .. , 0: =f. 0: , m factors on both sides, 
where m is the order of sasa' in W; 

() L () L' = () L+L' , L, L' E 2" ; 
() L = 1 when L is the trivial element of 2" ; 

()L(Tsa + 1) - (Tsa + 1)()sa(L) = (()L - ()Sa(L)):§a' 

where by Proposition 3.9 in [Ls2] ! () z2ca _ 1 
a 

(2.5f) 

Let }If'w be the subalgebras of }If' generated by the Ta's (0: E II), .91 the <c-
subalgebra generated by the ()L'S (L E 2"), and .9I[z, z-I] = qz, Z-I]0c .91 . 
As a qz, z-I]-module, }If' has the decomposition 

-I (2.6) }If' =}If'w 0 .9I[z, z ]. 
C[z,z-') 

When the indeterminant z is specialized to q, the order of the residue field, 
the algebras }If', }If'w' and .9I[z, Z-I] specialize to }If'(G/ /J), ~, and .91 
respectively. 

We identify the algebra .9I[z, z-I] with the algebra of regular functions on 
<c x xL A. In this identification, the algebra .91 is the algebra of regular functions 
on LA, while z and z -I generate the algebra of regular functions on <C x . The 
center of }If' is characterized as follows. 

Theorem 2.1 (Bernstein). The center of}lf' is .9I w 0 c qz, Z-I]. 

An immediate consequence of Theorem 2.1 is that a character X of the 
center, also called an infinitesimal character, is given by a semisimple 

(2.7) W-orbit in <c X xL A. 

Let & be the corresponding orbit in LA and S a representative. The element 
S has a canonical polar decomposition S = se ,sh into an elliptic and hyperbolic 
element. 
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Definition 2.2. An infinitesimal character X is called real if the corresponding 
W-orbit of se consists of a single element. 

The Weyl group W acts as automorphisms on .N'[z, z-I] by the formula 
W«(JL) = (JW(L) and w(z) = z. The algebra .N'[z, z-I] has no zero divisors. 
Let !T be its quotient field. As in [Ls2], consider the two algebras defined as 
follows. The first algebra is 

(2.8a) J'I' (!T) = J'l'w 18) !T , 
N[z, Z-l] 

with cross multiplication between J'l'w and !T given by the obvious extension 
of (2.Se). The second algebra is the algebra semidirect product 

(2.8b) CW ~!T, 

with multiplication given by 

(2.9) 

An important result on the two algebras is the following. 

Theorem 2.3 [Ls2, Proposition 5.2]. The map 

1 : CW ~!T --+ J'I'(!T) , 
l(to) = (To + 1)~0-1 - 1, 
l(f) = f (f E !T) 

defines an algebra isomorphism. 

3. GRADED ALGEBRAS 

In [Ls2], Lusztig associates a graded Hecke algebra lHl to the Hecke algebra 
J'I' . Lusztig defines the graded Hecke algebra lHl as follows. Let J be the ideal 
in .N' [z , Z -I] consisting of the regular functions on C x x L A which vanish at 
the element (1, 1). For k a natural integer, Jk = J'I' . Jk is an ideal in J'I' . 
The graded Hecke algebra lHl is obtained from J'I' as the graded algebra with 

~I ~2 ~k respect to the descending sequence of ideals J :J J :J ... :J J :J .... We 
need a generalization of Lusztig's construction. Observe that the single element 
1 E LA is W -invariant. Our generalization consists of replacing 1 by a finite 
W -invariant set & in LA. In analogy with 1, the set & defines an ideal J 
in .N'[z, Z-I], namely, 

x L (3.1) J = {f: C x A ---> C I f(l, 0') = 0 for all 0' E &}. 

The ideal Jk consists of those functions which vanish to order at least k at 
every element in & . Let Jk = J'I' .Jk . Exactly as in [Ls2], J'I' .Jk = Jk.J'I' 
so that 

(3.2) 

is a descending sequence of ideals. 
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Definition 3.1. Let 1HIt:9' be the graded algebra obtainedfrom Jf' and the sequence 
of ideals in (3.2). 

We summarize the properties of 1HIt:9' relevant for our needs. The proofs are 
slight modifications of those found in [Ls2]. 

Define elements in 1HIt:9' as follows: 

(3.3a) 
(3.3b) 

r = z - 1 (mod J) 

t = T (modJ), a E II. a Sa 

The element r is central in 1HIt:9' and by (2.5a,b) 

(3.4) t~ = 1 and (tata,)m = 1 where m is the order of s,A:>:' in W. 

The subalgebra generated by the t,/s is canonically the group algebra CW. 
Let {Fq } qEt:9' be functions on L A satisfying 

(3.5) Fq - c5q , q' vanishes to order at least 2 at each (J' E&'. 

In 1HIt:9" the elements 

(3.3c) 

are well defined and satisfy 

(3.6) 

For 0 = 0LE.9I and (J E &' , set 

(3.3d) 

(3.3e) 

Then 

(3.7a) 

and 

(3.7b) 

O-O((J) ~2 
EqwO = O((J) Fq (mod J ), 

Wo = LEqwo· 
qEt:9' 

The Weyl group W acts on the algebra spanned by the wo's via (3.7b). This 
algebra is clearly canonically W -isomorphic to the symmetric algebra Y of 
2' = .f!C' 0 z C. Let W be the commutative C-algebra generated by the Eq's 
and A the commutative algebra W 0(: Y . 

Proposition 3.2 [Ls2, Proposition 4.4]. (1) If S = Sa' then 

(3.8) W· ts - ts· sew) = r(w, a) L Eqhq,,,, 
qEt:9' 
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if sa i= a, 
if sa = a , 0: tt 2']/ , 
ifsa = a, 0: E 2']/. 

(2) The generator r lies in the center oj 1HI& and 
(3.10) 1HI& = CW o([ (C[r] O([ A) 
with the cross multiplication between CW and A given by (3.8). 

617 

(3) IJ & is the disjoint union oj two W -invariant sets &1 and &2' then as 
algebras 1HI& = 1HIe: EB 1HIe: . 

I 2 

(4) The center oj 1HI& is C[r] O([ AW. 

The description of 1HI& given in Proposition 3.2 leads immedately to a de-
scription of the characters of the center. We can assume that & = W . a is a 
single orbit. Let Stab(a) = {w E W I w(a) = a}. Multiplication by Ea de-
fines an isomorphism between the Weyl group invariant elements of A and the 
Stab(a) invariant elements in .9. Under this identification, an infinitesimal 
character for 1HI& is a 

(3.11 ) Stab(a)-orbit in C x (2" 0 z C). 

We recall some notation from [Ls2] describing the root datum necessary for 
defining a smaller graded Hecke algebra. Set: 

(3.12a) Stab(a) = {w E WI w(a) = a}; 

{ I if a tt 2']/ , 
(3.12b) Ra = {o: E R I (Ja(a) = ±1 if a E 2']/; 
(3.12c) 

(3.12d) 
(3.12e) 

(3.12f) 

R+ = R nR+· 
a a ' 

IIa = {o: E R; I 0: is simple for R;}; 
Wa = subgroup of W generated by sa (0: E IIa); 

la = {w E Stab(a) I w(R;) = R;}. 
Let ~ be the Hecke algebra associated to the root system (2", ']/ , R a , Ra , 

IIa). The Weyl group of this root system is Wa. The element a is of course 
Wa-invariant. Denote the graded version of ~ at a as lHIa . By (3.10), 

(3.13) lHIa = CWa O([ .9[r] , 

where .9 is the algebra of polynomial functions on 2" 0 z C. The group I a 
acts as algebra automorphisms of lHIa via its actions on Wa and .9 . Let 

I 
(3.14) lHIa = la ~ lHIa 
denote the algebra semi direct product. 

Let {WI = 1, w 2 ' ... , w n } be coset representatives of W /Stab(a). In par-
ticular, the elements of & are given by 'i = wia. Define, as in [Ls2], 
(3.15) 

Clearly, Er = E 1" ". 
i ,I 
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Theorem 3.3. (1) For each 'l' = 'l'j' ET .lHl& . ET is naturally isomorphic to ~' . 
(2) The E j ,/s generate an n x n matrix algebra L". The algebra lHl& is 

naturally isomorphic to the matrix algebra 

Mn (lHlu') = L" ~<C lHlu'· 

The vector space ~ = E7=1 CEj , 1 is, up to isomorphism, the unique irre-
ducible representation of L" . The next corollary follows easily from Theorem 
3.3. 

Corollary 3.4. (1) The functor 'Y ~ ~ ~<C 'Y is an equivalence between the 
categories of finite-dimensional modules of r u ~ lHlu and lHl&. 

(2) As a CW module, 7('Y) = Ind;!: 'Y. 
a 

Following [Ls2], we describe a completion of lHl& which will be useful later. 
For our purposes it is sufficient to work in the setting of holomorphic functions 
rather than formal power series. 

The algebras C,[r], Y, and C,[r] ~<C Y consist of the polynomial functions 
on C, ~ ~z C, and M = C x (~ ~z q respectively. Let C[r] , .7, and 
C[r] ~<c.7 denote the corresponding algebras of holomorphic functions, and 
let .% and % be the fields of rational and merom orphic functions on M. Set 
A = A ~.9'.7 . In analogy with (3.10) let 

(3.16) @& = CW ~<C (C[r] ~<C A), 
and in analogy with (2.8) set 
(3.17a) lHl&(.%) = CW ~ (,w ~<c.%) :::> lHl&, 

(3.17b) @&(%) = cw ~ (,w ~<C %) :::> @&' 

Multiplication for these algebras are defined via (3.8). The algebra @&(%) 
contains lHl&('%). In [Ls2], Lusztig shows for &' = {I} that the algebra 
@&(%) is naturally isomorphic to a semidirect product algebra (cf. Theorem 
2.1). Lusztig's methods easily generalize to our setting, i.e., consider as in (2.8) 
the semidirect product algebra 
(3.18) 
Let 

rh 
(3.19) g =1+~. a ,0: Q: 

Theorem 3.5 [Ls2, Proposition 5.2]. The map 
I: CW ~ (,w ~<C %) ~ @&(%), 
I(Eu) = Eu ' 
l(f) = f (f E 7), 

l(t,,) = (t" + 1) ( L g;,i"Eu) - 1 
u 

defines an algebra isomorphism. 
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4. ANALYTIC FAMILIES 

Given a character X of the center 2: of l'I', let ~ = {z E 2:lx(z) = O} 
be the kernel of X. Both ..w'[z, z-I].~ and l'I'.~ are ideals in ..w'[z, z-I] 
and l'I' respectively. Let 

-I -I 
~ = ..w'[z, z ]/{..w'[z, z ] .~}, 

~ = l'I' / {l'I' . ~} 
(4.1) 

be the quotient algebras. The analogues for the graded algebras A, JH[&, A, 
and :@& are clear. If X is an infinitesimal character of JH[& ' set 

Ax = A/{A 'Jf} = A/{A.J-x} = Ax' 
JH[x = JH[& / {JH[& • Jf} = :@&/ {:@& • J-x} = :@x-

(4.2) 

The main result in this section is Theorem 4.3. It gives conditions under 
which it is possible to match an infinitesimal character X of JH[& to an infinitesi-
mal character X of l'I' so that there are compatible natural isomorphisms from 
Ax to ~ and from JH[x to ~ . Theorem 4.3 is essentially Theorem 9.3 in [Ls2], 
the difference being that for applications to unitarity, we need to verify that the 
isomorphism is analytic in the v parameter. 

Assume &' = W· a is the Weyl group orbit of an element a with trivial 
hyperbolic part. Let Stab(a) be the centralizer of a. By (2.7) and (3.11), 
infinitesimal characters for l'I' and JH[& are parameterized by W -orbits in C x X 

L A and Stab(a)-orbits in C x (2' ®z q respectively. 

Proposition 4.1. (1) The map 

(4.3) 
v x L 

C x (.fr ®z q -+ C x A, 
, t 

(r, t) 1--+ (e , a . e ) 

is Stab(a)-equivariant. It matches the infinitesimal character X = W(e' , a . et ) 

with the infinitesimal character X = Stab(a)(r, t). The map ,p defined by 
-I ~ ~ 

,p:..w'[z,z ]-+C[r]®cA, 

(4.4) ,p(z) = e' , 

,p(()x) = E ()x(a)· E(J . eX (x E.fr c Y) 

is a C-algebra homomorphism. It maps ~ to Jf and defines, by passage to 
the quotients, an isomorphism between ~ and Ax' 

(2) The map 

<1>: l'I' ---+ :@&(%) , 

(4.5) 
-I <I>(a) = ,p(a) (a E ..w'[z, z ]), 

<I>(Ts + 1) = E E(J(ts + 1) ,p;Jl() , 
(JE& (J,a 
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where ~a and ga,a are defined as in (2.5f) and (3.19) respectively, is an algebra 
homomorphism. 
Proof. Clearly the map defined by (4.3) is Stab(a)-equivariant. It matches 
infinitesimal characters because if a· et and a· / represent X then t and t' 
must be conjugate by an element of Stab(a). Consider now the map ¢. That 
¢ is a ([::-algebra homomorphism follows from the definition. Furthermore, if 
y = Lx cx()x' then 

¢(y) = 2: Cx 2: ()x(a)Ea ex = 2: Ea (2: cx()x(a)ex). 
x aE& aE& x 

Relating the coefficient of Ea to the coefficient of Ew(a) , we see that ¢(y) 

lies in i.w if and only if y is in .9f w. This means ¢(Y) c Yf' which 
in turn implies both the existence of the quotient map from .w;. to Ax and 
its injectivity. Since both .w;. and Ax are of dimension I WI over C, the 
homomorphism is in fact an isomorphism. 

For part (2), note that <I> is the composition of 10 (id, ¢) 0 I- 11ft", where I 

is defined in Theorem 2.3, I is defined in Theorem 3.5, and 

(id, ¢): CW D< sr -+ CW D< (g'@c%)' 
(id, ¢): (w, f) f-+ (w, ¢(f)). 

(4.6) 

That <I> is an isomorphism follows from the definitions of the cross multipli-
cations in terms of ~ and g . D 

0: U,O: 

Definition 4.2. Suppose M is a real analytic manifold. An analytic family of 
C-algebras depending on a parameter v E M is a finite-dimensional space A 
equipped with an algebra multiplication . v such that, for each linear functional 
A E Homc(A, C) and any ai' a2 E A, 

A(a l •v a2 ): M -+ C 

is real analytic. In coordinates this means that ifwe choose a basis {XI' ... , xm} 
then 

X i ' v Xj = 2: «v)xk 
k 

where the < are real analytic for v E M. 
A morphism of analytic families is an algebra map <I> v : A ---> B such that when 

<l>v is expressed as a matrix with respect to the basis {XI' ... , x m}, all entries 
are analytic in v. Clearly these notions are independent of the basis chosen. 

I ~ ~ 

The algebras .9f[z, z- ] and A @c C[r] can be used to construct analytic 
families of C-algebras of dimension I WI parameterized by M = C x (% @z C) 
which contain .w;. and AX = AX respectively. To see this, we choose a basis 

W k W {ai' ... , am} (m = IWI) of .9f as a free.9f module. Define ci ,j E.9f by 

ai • aj = 2: c7,jak • 
k 
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By Proposition 4.1(1), ¢(aJ is a basis of A as a free AW module. 
For v = (r, t) E M and X = W(e r , a . et ), the algebra Ax is just the 

finite-dimensional algebra Av given formally as the commutative algebra with 
C-basis ai and multiplication 

ai 'v aj = E c7jx)ak • 
k 

Similarly, AX = AX is the commutative algebra Av with formal C-basis ¢(a;) 
and multiplication 

¢(aJ·v ¢(a) = E ¢(c7)(x)¢(ak )· 
k 

In terms of analytic families, since c7jx) = ¢(c7,j)(x), the map ai t-+ ¢(ai ) 

on the basis vectors is an isomorphism between Av and Av' 
In a similar fashion, the three algebras J'I', lHl&, and H& can also be viewed 

as analytic families of C-algebras of dimension I WI 2 , i.e., used to construct 
C-algebras of dimension I WI 2 • The parameter space is the same. Inclusion of 
lHl& into H& yields an inclusion of analytic families. The main result we want 
to show is that ~ and lHlx are isomorphic under suitable conditions on the 
parameter v. We may of course view the three algebras as analytic families 
over M]R =]R x (te 0 z ]Rx) eM. 

Theorem 4.3. For v E M]R the homomorphism <I> v : ~ -> Hx defined via 
Proposition 4.2 is an analytic isomorphism of the two families of algebras. 
Proof. It is enough to show fq, a = ¢( ~a) 1 gq , a E % is analytic and nowhere 
zero on M]R' Adapting the proof of Lemma 9.5 in [Ls2] to our situation, we 
find 

Note that 
then 

e2rCaeaOa(a) - 1 
eaOa(a) - 1 

e2rcaea - 1 a 

ea - 1 2rca + a 

if sa i= a, 

if sa = a, it fj. 2$1', 

(er(Ca+c:)eaOa(a) - 1) (er(Ca-<)eaOa(a) + 1) a 
if sa = a, it E 2$1'. 

(e 2a - 1) {r(ca + c:O_a(a)) + a} 
0a(a) is not a positive real number if sea) i= a. Also, if sea) = a 

0a(a) = { ±l 1 if it fj. 2$1', 
if it E 2$1'. 

It is clear that f is a nonzero nonvanishing function on M]R' In particular, q,a 
<l>v is an isomorphism for all X = Wq-orbit of (r, v). 0 

5. HERMITIAN STRUCTURES 

An important property of J'I' (G 11.5) is that it is a *-algebra with an inner 
product. For It, f2 E J'I'(GII.5), 
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t(g) = J;(g-l) , 
(5.1) 

U;, h} = if1(g)h(g)dg = 1; *.r;(1). 

There is a natural * operation on the generic affine Hecke algebra .Ji? com-
patible with the corresponding one on .Ji?(G/ /J). We describe * on a set 
of generators. Assume R is irreducible. Recall that .Ji? is generated by the 
elements 

(5.2) 

where the To's and To are generators indexed by the simple reflections in the 
affine Weyl group and 

(5.3) ~ = {x E:le I (x, a) = 0 for all a E R}. 
We need to describe •. The group As = {x(a) E G I x E ~, a ElF} is the 
split component of the center of G. Let Ns be the normalizer of AsJ in G. 
Denote by tff the IE span of the elements in R. By [S], we have ~ n tff = 
o and :le /[tff +~] is finite and isomorphic to Nsf {AsJ}. Because R is 
irreducible, these quotients are cyclic. Let tAsJ be a generator of Ns/{AsJ}. 
Then Jt = tJ = JtJ. In .Ji?(G/ /J), the characteristic function Tt of 
JtJ is invertible. The inverse is the characteristic function of Jt-1J = 
Jt- 1 = t-1J. Let. be the element in .Ji? which goes to Tt • In terms of the 
generators (5.2), * is the unique complex conjugate linear antiautomorphism 
which satisfies 

(5.4a) 
(5.4b) 
(5.4c) 

(5.4d) 

(5.4e) 

* z = z, 
T* = T o 0' 

T; = To' 
* -1 . =. 

X E ~ (split reductive group) . 

The next lemma gives some indication of how * behaves on .Y1' . 

Lemma 5.1. 

(5.5) 
Proof. Observe that 

-1 -1 Tw == TW-I (mod(z - z ).Ji?), 
-I 

TJ1x == (}w(X)TW (mod(z - z ).Ji?). 
(5.6) 

In view of the relations in (5.4) it is sufficient to prove (5.5) for one 0 i- x E tff. 
Let y be the negative of the highest short root in R+ and Ty = Ts, the element 
in .Ji? corresponding to the reflection Sy E W about y. Then 

(5.7) () =TT. y 0 y 
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Choose a simple root a and a sequence of simple reflections Sl' ... , Sk so that 

Y = SI •.... sk(a). 

In the Hecke algebra 

Thus 
()* = (T )*r. = T () (T )-1 y yO yy Y • 

By (S.6) and (S.7), this gives 
* -I -I 

(()y) = (()y) =()_y (mod(z-z )Jr'). 0 

If (1l, V) is a finite-dimensional representation of Jr'(G/ /J), let (1l*, V*) 
be the hermitian dual with respect to * . To describe the hermitian dual of an 
irreducible representation, we review their classification. Kazhdan and Lusztig 
have shown in [KL] that the equivalence classes of irreducible. modules for 
Jr' are in 1-1 correspondence with LG conjugacy classes of pairs {¢, p}, 
where ¢ : Z x SL(2, q -+ L G is an admissible homomorphism, i.e., ¢( 1, 1) 
is semisimple, and p are certain characters of the component group of the 
centralizer of ¢. It is well known that ¢ is equivalent to a pair of elements 
s, u E LG with S semisimple, u unipotent, and SUS-I = uq • If S E LG , let 
S = sesh be the polar decomposition of S into its elliptic and hyperbolic parts. 
Set 

(S.8) 

For n E Z and g E SL(2, q, set ¢(n, g) = ¢(n, 1)¢(0, g). 

Theorem S.2. Let (1l, V) correspond to { ¢, p} . Then the hermitian dual 
(1l * , V*) corresponds to {if), p}. In terms of the pair {s, u} an irreducible 
module admits a hermitian structure precisely when s is L G conjugate to s. 

The proof is similar to the corresponding result for real reductive groups. We 
omit the details. 

To proceed further, we need to understand when lHl&, is a *-algebra. If 
s E LA, let s = se . S;;I be as in (S.8) and set 

(S.9) &* = {a I a E &}. 

By Lemma S.l, the ideal of Jr' corresponding to &* is the * of Jr'.J . The 
* operation on Jr' induces an anti-isomorphism between lHl&, and lHl&,*' The 
* operation satisfies 

* r = r, 
* -I 

(S.10a) 

(S.10b) W =W 

It follows from the relation 

(S.ll ) 

(W E W). 
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that 

(5.lOc) 

Definition 5.3. The set & is said to be hermitian if it is equal to &* . 

In this setting, it follows from Lemma 5.1 that the ideal 7?J is * invariant, 
so that lElIt9' and iHtt9' are * algebras. A particularly important instance in which 
& is hermitian is when it is the Weyl group orbit of an elliptic element. We 
assume for the remainder of the section that & is hermitian. 

We compute a formula for w* for WE <C I8>z 2'. 

Lemma 5.4. Let y E R+ be the highest short coroot, let s-y E W be the cor-
responding reflection, and let T-y = ~ be the corresponding element in 7?w' 

y 

Then 

(5.12) 

where tl is the element in the graded Hecke algebra corresponding to the long 
element wI in the Weyl group. 
Proof. As in the proof of Lemma 5.1, choose a simple root a and a sequence 
of simple reflections Sl ' .•. ,sk so that 

(5.13) 

Then in the Hecke algebra 

(5.14) T =T ·····T,k·T .Tk·····T -y I <> I' 

and similarly in the Weyl group. By relation (2.5a), 

( 5.15) 

Thus 

( 5.16) 

then 

( 5.17) 

To simplify notation, set () = ()-y. If we apply * to (5.17) and use the fact that 
by (5.14) (T-y)* = T-y' we get 

( 5.18) 

Then 

( 5.19) 
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This expression is in J* and we must grade it modulo (J*)2. Thus we can 
take (T .. ) * , (Fuf, and (Ty)-l modulo J*. We get 

* ,,\_ .. tyOly - O(a) - 2 "\'""' 0 - O(ty(a)) 
Y = w E- (mod J ) = I w E- t 

uEt! O(a) u y UEt! u O(ty(a)) y 
"\'""' 0 - O(a) 

= Iy wE(j O(a) Iy = lyY ty . 
uEt! 

(5.20) 

The second part of (5.12) follows from the fact that tl = ty · tY , where tY is a 
product of simple roots all commuting with y. 0 

We obtain a more general formula for * on .9 as follows. For WE Jl? , set 
(5.21) OJ = -tl(w) 
and extend it to a conjugate linear automorphism of .9. This map defines a 
permutation of the set of simple roots. The map - extends to an automorphism 
of.9 . 

Corollary 5.5. For j E .9 C JH[t! ' 

* -(5.22) j =tl·j·tl. 
Proof. It is enough to prove the formula for w(y) with w E W, or equiva-
lently, it is enough to show that for a E nand WE Jl?, 

(5.23) if w* = tl · OJ· tl , then sa(w)* = tl · SJW'). II' 
By Proposition 3.2, 

(5.24) 

Therefore, 

(5.25) 

SaW = ta . W . la - r(w, 0:) L Euhu, ata' 
uEt! 

* * V) "\'""' h* * sa(w) =ta' w ·ta-r(w,a wta u,aEu 
uEt! 

= la . II· OJ • tl . ta - r(w, 0:) L tahu" ,aEu" 
uEt! 

= tl · (ta· OJ· la)' tl - r(w, 0:) L tahu' ,aEu"' 
uEt! 

Thus, by using the *-invariance of &', we can rewrite this as 

sa(w)* = II . [ta· OJ· la - r L rs;:(o;) , a)tahu ,aEu] . II 
(5.26) 

We now prove a different more explicit formula for *. Recall the definition 
of hu, a in Proposition 3.2. We extend it to any root PER, subject to 
h = h . This is well defined in view of the properties of the functions 

W(/ ,wa f1 ,0' 

* C, C . 
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Theorem 5.6. For WE,2', 

(5.27) 
PER+ UE& 

Proof. For each w, consider the expression 

(5.28) r(w) = W - ~ L tp(w, /1) L Euhu,p' 
PER+ uE& 

We claim that r(w) has the property that 

(5.29) 

To prove this it is enough to consider the case w = So. for a a simple root. 
Here, it is enough to show that 

(5.30) 

By Proposition 3.2(1) 

(5.31) tswts = s(w) + r(w, it) L Eaha,ats' 
aE& 

On the other hand, 

ts L tp(w, /1) LEuhu,p 
PER+ uE& 

= L ts(P)(w, /1) L Es(u)ha,pts 
PER+ uE& 

= L ts(P)(w, /1) L ES(u)hu,pts + (w, it) L Euhu,a 
(5.32) 

PER+\a aE& uE& 

= L tp(w, /1) L Eaha,pts - 2r(w, it) L Euhu,a 
PER+ uE& UE& 

because of (5.24). Formula (5.29) follows by combining (5.30) and (5.31). 
We now apply this to the highest coroot y. In view of Lemma 5.4, 

(5.33) 

Therefore, 

(5.34) 

y*= -y+~ty L tp(y,/1)LEaha ,pty 
PER+ uE& 

+ ~ L tp(Y, /1) LEuhu,p' 
PER+ uE& 

The proof is complete once we observe that 

(5.35) ty L tp(w, /1) L Eaha,pty = L tp(w, /1) L Euhu,p' 
PER+ uE& PER+ uE& 
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This completes the proof of (5.27) for y. Formula (5.27) now follows for any 
w(y) with W E W by 

* -1 * * -1 r(w(y)) = (twr(y)tw ) = twr(y) tw = -r(w(y)). 
The general case follows from the fact that * is a (complex conjugate) antiau-
tomorphism. 0 

At this point we are ready to explain the relationship between the * operation 
on .It' and the * operation on lHI&" Recall that f(1,o = ¢(:Yo)/g(1,o' Define 

(5.36) 

where 1[ is the element in .It' corresponding to WI' 

Theorem 5.7. For v real, the isomorphism <I> of Theorem 4.3 is compatible with 
the * structures on ~ and lHIx in the following sense: 

(5.37a) 

(5.37b) 

* *-1 <I>(To) = m· <I>(TJ . m , 
* *-1 <1>( 8 ) = m . <1>( 8) . m , 

0: E n, 
8ESi1'. 

Proof. The fact that m is invertible follows from the fact that f(1, 0 are analytic 
nowhere zero on Milt established in the proof of Theorem 4.3. 

Observe first that T: = To' Furthermore, 

(5.38) 

and since faFp-1 is ta invariant, 

(5.39) -1 -1 Fp [[fa(ta + 1) - 1] = [Ja(ta + 1) - l]Fp . 

Then (5.37a) follows by applying (5.38) and (5.39). 
For (5.37b) it is enough to show the relation for 8 = 8)1' This is clear from 

Lemma 5.4 and Corollary 5.5. 0 

Corollary 5.S. The relation 
(5.40) 

holds. 

* m =m 

Proof. Relation (5.40) can be rewritten as 
* -1 (5.41) <I>(TI) = tl . Fp . <I>(1[) • Fp . tl· 

because Fp = Fp' Then (5.41) follows by repeated application of (5.37a) and 
formulas (5.38) and (5.39). 0 

Suppose (n, V) is a representation of lHI&, with infinitesimal character X 
and via <I> a representation of .It' with infinitesimal character X. It follows 
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from Corollary 5.8 that (n, V) is a hermitian or unitary representation of lHI&, 
precisely when it is a hermitian or unitary representation of Jf' . 

We conclude this section with a few words on the relationship of hermitian 
representations and Theorem 3.3. The * structure on the matrix algebra L" 
in Theorem 3.3 is given by E;,j = Ej,i. The irreducible module ~ of L" 
admits a compatible positive definite hermitian form, namely, 

(5.42) (v,w)~ =w*·v. 
n 

The functor gr of Corollary 3.4 has the property that 'P" admits a compati-
ble hermitian form precisely when gr('P") does. The two are related as follows. 
If'P" has invariant hermitian form ( , ), then gr('P") has invariant hermitian 
form ( , ).'7 = ( , )~ . ( , ). Every * compatible invariant hermitian form on 
gr ('P") is a multiple n of one of this type. The ( , ) is positive definite if and 
only if ( , ).'7 is positive definite. 

6. PARABOLIC INDUCTION 

In this section, we relate the functor gr of Corollary 3.4 with parabolic 
induction. We begin by recalling some preliminary facts. Let nM be a subset 
of the simple roots n and let P = M N :J B be the corresponding parabolic 
subgroup and J M = J nM. Denote by W M the subgroup of W corresponding 
to M. Then the Iwahori Hecke algebra Jf'(Mj jJM) of M is a subalgebra 
of Jf'(Gj jJ). The algebra Jf'(Gj jJ) is obtained from the generic Hecke 
algebra Jf' by specializing the variable z to q. The subalgebra Jf'(Mj jJM) C 
Jf'(Gj jJ) is obtained from a subalgebra of Jf' by the same specialization. Let 
Jf'M denote the generic Hecke algebra of M, and let Jf'w be the subalgebra 

M 

of Jf'w generated by TSa (a E n M). Then, 

(6.1 ) 

A representation V of M is JM-spherical if it is admissible, of finite length, 
and if each submodule is generated by its JM-fixed vectors. 

Theorem 6.1 (Bernstein). 

(Ind~(V)rl'" = Jf'(Gj jJ) Q9jf'(M//JM) rM. 
The analogue of (6.1) in lHI&, is the sub algebra 

(6.2) 

If V is a finite-dimensional lHI; module, we define the induced module Ind(V) 
to be 

(6.3) 

Theorem 6.2. View Jf' and lHI&, as analytic families and recall cI> = cI> v from 
Theorem 4.3. Then the diagram 
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:J?M ~ lHl~ 
X X 

(6.4) 

commutes. 
Proof. This follows from Theorem 4.3 and the discussion above. 0 

We recall some results on tempered representations. Let V be a tempered 
representation (of ~ or equivalently of lHlx via the isomorphism CI». Since 
the subalgebra 3"[r] c lHll'? is abelian, there is a filtration 

(6.5) {O} = Va c V; c Vi c ... C Vd = V (dimcY; = i) 
such that each Y; is 3" invariant and 3" acts by a character on Y; I Y;-I (1 ::; 
i ::; d). This character is completely determined by its restriction to £ = 
C®z2' c 3" . Moreover, £ can be viewed as the dual to the Lie algebra £ = 
C ®z 'Y of LA. Thus it acts via a linear functional ¢i E.:? = Homd£, q 
on Y;IY;-I (1 ::; i ::; d). The ¢i'S are called the generalized coweights of the 
action of 3" on V. If we write the infinitesimal character as X = (e', et ) , 

then / and e<pj are in the same Weyl group orbit. Let IF denote either the real 
JR. or the complex C numbers, and set 

(6.6) 
~(IF) = IF-span of simple roots a in R 
vJ.. 
~ (IF) = {v E £(IF) I (a, v) = 0 for all a E R}. 

Then':? = ~(qEB~J..(q. With the obvious notation, we write i~J..(JR.) 
the imaginary elements in ~J..(q. Set 

v . v J.. 
~ = {YI + Y2 IYI E ~(q, Y2 E l~ (JR.), 

and Re( (y I ' w)) < 0 for w a fundamental weight} , 
- v. v J.. 
~ = {YI + Y2 IY I E ~(q, Y2 E l~ (JR.), 

(6.7) 

and Re«y l , w)) ::; 0 for w a fundamental weight}. 
A restatement of the condition on Y I is that 
(6.8) 

YI E L Co: ® a, where Re(co:) < 0 for YI E ~ (Re(co:) ::; 0 for YI E ~). 
aER+ 

for 

Suppose (n, V) is an irreducible J -spherical representation of G, such that 
VJ has infinitesimal character X. 

Theorem 6.3 (Casselman). The representation (n, V) is tempered (resp. discrete 
series) if and only if all the coweights ¢i of vJ lie in ~ (resp. ~). 

Theorem 6.4. (1) Suppose V is a module for lHl; and {¢ i} are the coweights 
of V. Let {WI = 1, w2 ' •.. ,wn } be the coset representatives of W/WM of 
minimal length. Then {w j¢ i} are the coweights of Ind( V) . 
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(2) Suppose a E &', V is a module for r aJH[a' and {<I> J are the coweights 
of V. Let {WI = 1, w2 ' ••• ,wn } be the coset representatives of W/Stab(a) of 
minimal length. Then {Wj<l>J are the coweights of Y(V). 
Proof. The proof of case (1) and (2) are essentially the same. We give the details 
only in the case of parabolic induction. Let {O} = Va c ~ c Vz c ... C Vd = V 
be as in (6.5). For each i>O choose a vector ViE ~-~_I' The set {tw I8ivJ 

k 
is a basis for Ind(V) (over C). 

Arrange the coset representatives Wj 's so that i(wj ) ::; i(wj +I ). Let -< be 
the lexicographical ordering on the pairs (j, i) (1::; j ::; n, 1 ::; i ::; d) , i.e., 

(j, i) -< (k, I) if j ::; k or j = k and i::; I, 

and set 
V(i ,j) = span of all wk I8i vI with (k, I) :::5 (j, i). 

If (1, 0) -< (j, i), let 

( . ')' = { (j, i-I) 
J, 1 (j _ 1, d) 

if i > 0, 
if i = O. 

Then V(j,i)/V(j,i)' is one dimensional generated by the image of Wj I8i Vi' Re-
lation (3.8) shows that in general 

wtw = w(w)tw + ~ txwx 
x--<w 

where -< is the Bruhat order. In particular, I(x) < I(w), so by (6.5), 

w(twj I8i Vi) = w j( <l>i)( w)w j I8i Vi (mod V(j, i)') 

for wEi? 0 

Corollary 6.5. If V is a tempered module for JH[~ (resp. raJH[a) , then Ind(V) 
(resp. Y(V)) is a tempered module of JH[&. 

Proof. In the case of parabolic induction, let R~ be the positive roots of M. 
, ,+ + + For W = WM (resp. Wa)' let R be RM (resp. Ra)' The representatives 

{ Wi} of W / W' of minimal length are the elements 

(6.9) 
-I ,+ + 

{wJ={wEWlw (R )cR}. 

The corollary follows from this characterization of the minimal length ele-
ments. 0 

We recast the Langlands classification in terms of the graded algebra JH[&. 

We assume r has been specialized to log(ql/2). For nM en, let i? = 

~ (C) ffi~.L (C) where ~ (C) and ~.L (C) are defined, with the obvious 
M M M M 

change in notation, as in (6.6). Denote by J'R (resp. J'R.L ) the symmetric 
M M 

algebra of ~ (C) (resp. ~.L (C)). The symmetric algebra J' is then the 
M M 
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algebra tensor product Y = ~M 0(; ~~. Then ~~ commutes with the 
subalgebra 

and lHl; decomposes as 
M .L (6.10) lHl& = B 0(; ~ . 

M 

• .L 
Each v E ~ (C) defines an algebra homomorphism ¢v : ~ ----+ C. If 

M M 

(n, V) is a lHl;-module, define (nnu, ~) to be the lHl;-module whose space 
is V with the action 

nv(h . A) v = ¢v(A)n(h . A) v, 
where h E B and A E ~.L • This construction is the analogue of twisting a 

M 
representation of MeG by a one-dimensional character of M. 

Given data (M, V, v) such that V is tempered irreducible, define the stan-
dard module X(V, v) to be Ind(nv' Vv). 
Theorem 6.6 (Langlands classification). (1) Suppose V is an irreducible tem-

M '.L + + pered module for lHl& and v E ~ (JR) with (a, v) > 0 for all a E R - R M . 
M 

Then X (V , v) = Ind( V 0 v) has a unique irreducible quotient X (V , v) . 
(2) Any irreducible module of lHl& occurs as some X(V, v). The data 

(M, V, v) are unique (up to conjugation). 

7. COMPARISON 

We need to relate the functor Y with parabolic induction. Let S = sesh be 
the polar decomposition of an element in LA such that & = W· se is finite. 
Write sh as eV , where v E Ji' 0 z JR. The centralizer L M = CG(sh) of sh in 
LG is obviously a Levi subgroup. The Weyl group WM of L M is generated by 
the roots 

IIM = {a E IIls,,(sh) = sh}' 
For (J E &, define R; C R+ and R~ u c R~ as in (3.12). Obviously, 

() 'f + + + + 7.1 1 (v,a»O'v'aER -RM,then(v,a»O'v'aERu-RM,u' 

The orbit & decomposes under the action of W M . These W M-orbits in fact 
lead to a decomposition of lHl; into two-sided ideals. In order to formulate this 
decomposition we need to parametrize the W M-orbits. This is accomplished by 
considering the double cosets WM\WjStab(se)' Suppose WI' w 2 ' .•• ,wk are 
representatives for the double cosets. The desired parameterization is given by 

WMw;Stab(se) +-+ &; the WM -orbit of w;(se)' 

Let Tj = wj(se)' The stabilizer Stab(T;) of T; in W is w;Stab(se)w;-1 . Like-
wise, the stablizer W M, 'j of T j in W M is W M n Stab ( T;). It is the Weyl group 
of 
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In particular, 

Let ,7f'M; be the Hecke algebra associated to L Mi. Then we can form the 
M M M M,. graded algebras IH[tr and lH[i ~ IH[T and (IH[T) as m §3. 
, " 

Proposition 7.1. (1) For each orbit ~, 

1H[~ = CWM ®c ( ffiCET) ®c 3"[r] 
TE&; 

is a two-sided ideal of 1H[;. It is isomorphic to (1H[~)' ® Mn(C). , , 
(2) The ideals 1H[; commute and , 

1H[; = ffilH[;. , 
i 

Proof. The fact that 1H[; are commuting ideals and the decomposition in (2) 
follow from the commutation relations (3.3) between the ET's. The isomor-
phism 

is Theorem (3.3) applied to this setting. 0 

We now apply these results to compare Langlands standard modules for the 
Hecke algebras IH[tr and IH[s • 

Write LGi for the grou~ Wi LG(se)w:', where LG(se) is the stabilizer of 
se. It is important to note that L Mi is a Levi subgroup of L Gi ; indeed, it IS 
the centralizer of W:'ShWi. Thus, given a module V' of (1H[~)' we have two 
ways to form a module of IH[tr • ' 

One way is to induce V' from (1H[~)' to (IH[T)' and then apply Theorem 3.3. , , 
This gives 

v; = [Ind~~),v'] ®c~· 
The other way is first to obtain a module V' ®c~. of 1H[; via Proposition 

7.1. Since 1H[; is a two-sided ideal of 1H[;, we ca~ view ~his module as a 

module for 1H[; and therefore induce it to IH[tr. This gives 

Vz = IndJHI~(V' ®c ~ .). JHI(9' n, 

Theorem 7.2. The modules V; and Vz of 1H[& obtained in this fashion are iso-
morphic. The isomorphism is compatible with *. 
Proof. The modules V; and Vz are spanned (over 1H[& ) by vectors of the form 

E, ,®JHI (hT ® v) (hT E 1H[, ) 
, T f I I I 
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and 
I M 

1 ®Il!; (E", ® v) (h E lHI&,' h E lHI&, ) 
respectively. Then the correspondence 

E, ,®" (h, ®v) ...... h, ®"M (E, ,®", M v) 
, 'fj I Ie' 'f; 

defines an lHI&, isomorphism between ~ and ~. This isomorphism is in fact 
a * isomorphism. 0 

We are now ready to compare standard modules. 

Corollary 7.3. For v E~.L satisfying (v, a) > 0 for all a E R+ - R~ and V 
M 

tempered irreducible, 
X(V, v) = X(V', v) ®c~. 

I 

Proof. Suppose V is an irreducible tempered module of lHI: . By Proposition 
7.1(2), there is a WM-orbit ~ c & such that V is a representation of the ideal 
lHI:. As a module of lHI:, V is tempered; so there is a tempered module V' 

of '(lHI~)1 so that V = v"®c~ .. If v E ~~ satisfies the positivity conditions 
needed to form a standard m~dule X(V, v), then by (7.1) X(V' , v) is a 
standard module of (lHI,),. 0 

I 

8. UNITARITY 

Let G be a split reductive p-adic group. Our goal is Theorem 8.1. It shows 
that the unitarity of an Iwahori spherical representation of G can be detected 
on the Iwahori fixed vectors. An easy reduction is that we need only consider 
the case when G has connected center. This means the centralizer of any 
semisimple element s E LG is a connected reductive group. 

Recall 
x (V , v) = unique irreducible quotient of X (V , v) 

and that X admits a hermitian form if and only if there is a 

WE Weyl(G, %(LM» 

satisfying 
W(v) = -v and V ~ w(V). 

There are two ways to place a hermitian form on the family of standard modules 

X t = Iwahori fixed vectors of Ind~(V ® /11) (t E JR); 

they are: 
(1) , )t : the form obtained from the standard intertwining operator 

G - G lL: I(P, a, v) = Indp(V ® v) -> I(P, a, v) = Indp(V ® v). 

(2) (,); : the form gotten, via Corollary 7.3, from the form on X; = 
X (V' , tv) and the isomorphism X t = X; ® ~ . 
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Both forms have the property that 

X t = Xt/{radical of form} (t > 0), 
radical of form = unique subrepresentation of X t (t < 0) . 

We conclude ( , )t and ( , )~ differ by a memomorphic function which has no 
zeros or poles along the real axis. 

Theorem 8.1. (1) X I is unitary if and only if X~ is unitary. 
(2) The unitarity of X I is detected on the J -fixed vectors. 

Proof. It is obvious that the unitarity of the Iwahori fixed vectors of X I is 
equivalent to the unitarity of the Iwahori fixed vectors of X~. For G', the 
group corresponding to LG(se) ' we are in the situation of real infinitesimal 
character as in [BM]. Therefore, the unitarity of X~ is equivalent to the uni-
tarity of its Iwahori fixed vectors. We need only show that X'I unitary implies 
X I unitary. Let 9'"'(se) (resp. 9'"" (se) ) be the set of tempered representations 
of G (resp. G') whose infinitesimal character has compact part se. Corollary 
6.5 establishes a natural one-one map 7C .... 7C' between these two sets so that 

The unitarity of X~ means either a;, or a;;, is identically zero for all 7C' • This 
means a; or a;; is identically zero for all 7C and thus X I is unitary. 0 
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