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L-FUNCTIONS OF 2 X 2 UNITARY GROUPS AND FACTORIZATION 
OF PERIODS OF HILBERT MODULAR FORMS 

MICHAEL HARRIS 

INTRODUCTION 

The object of this paper is to prove, under mild local hypotheses, a conjecture 
of Shimura on the factorization of Petersson norms of Hilbert modular forms. 
A special case of the conjecture is the following. Let E be a totally real field 
of degree dover Q, and let 1: = {ai' ... , ad} be the set of real embeddings 
of E. Let I be a Hilbert modular cusp form of weight (kl' ... , kd), where 
kl == k2 == ... == kd (mod 2), ki 2:: 2 for all j. Suppose I is arithmetic in 
the sense that its Fourier expansion at every cusp has coefficients in Q, and 
that I belongs to an irreducible automorphic representation n of the adeles 
of GL(2, E). Up to algebraic factors, the normalized Petersson norm (I, I) 
actually depends only on n, and not on the choice of arithmetic modular form 
in n. Suppose that, for j = I , ., . , d , there exists a quaternion algebra D(j) 
over E, which splits at ai but is ramified at all other archimedean places, 
and an automorphic representation nD(j) of the adeles of D(j) x such that 
the local components n~(j) and nv are isomorphic for all v at which D(j) 
is unramified. It is equivalent to suppose that the system of Hecke eigenvalues 
associated to I at almost all primes can be realized on the space of hoi om orphic 
modular forms of some weight on the Shimura curve ~ associated to D(j). 
Let Ii be an arithmetic modular form on ~ belonging to nD(j) . In this case 
the curve ~ is compact, Ii has no Fourier expansion, and the arithmetic 
modular forms are those identified by Shimura in [38] in terms of their values 
at special points on ~. The Petersson norm (Ii, Ii) is again an invariant of 
the representation nD(j) , up to algebraic factors. Shimura conjectured, and we 
prove here, under a local hypothesis, that 

d 

(*) The ratio (I, I) / II (/ , /) is an algebraic number. 
i=l 

Shimura proved (*) for d = 2, and more generally showed in most cases how 
to write (I, I) as the product of two factors corresponding to a partition of 1: 
into two pieces. 
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More generally, if D is any quaternion algebra over E, let ~(D) be the set 
of real places at which D splits. Suppose there exists an automorphic repre-
sentation 1CD of the adeles of D X such that the local components 1C~ and 1Cv 
are isomorphic for all v at which D is unramified. By the work of Jacquet-
Langlands it is known that the existence of such 1CD is a purely local question: 
1CD exists if and only if 1Cv belongs to the discrete series of GL(2, Ev) for 
every v at which D is ramified. Again, one can define the notion of arithmetic 
holomorphic modular forms in 1CD • Our local hypothesis is that, for at least 
one finite prime vo' 1Cv belongs to the discrete series of GL(2, Ev). Under 

o 
this hypothesis, if fD is an arithmetic form, we prove Shimura's conjecture 
that 

(**) The ratio (fD, fD) / II (/, /) is an algebraic number. 
jHo(D) 

The conjecture treated in the present article is one of a series of conjectures 
made by Shimura in [42, 43] regarding the periods of Hilbert modular forms. 
In the first place, Shimura conjectured the existence of a factorization, not only 
of the Petersson norms, but of the actual periods of Hilbert modular forms over 
cycles. We do not touch upon this question here; Shimura's work in [41] sug-
gests that this question is related to the theory of modular forms of half-integral 
weight. In addition, Shimura proved in most cases the result, which evidently 
follows from (**), that (fD, fD) depends only on ~(D), up to algebraic fac-
tors. He then conjectured that, for each set I of distinct real embeddings of 
E, there exists an invariant l (1C) which plays the role of the (fD, fD) even 
when there is no D with ~(D) = I for which 1C D exists. In [9, I] we suggested 
a candidate, which we called vI (1C) , for this invariant. This invariant satisfies 
another of Shimura's conjectures; namely, the critical values of Rankin-Selberg 
convolutions of Hilbert modular forms can be expressed in terms of the vI (1C) . 
It remains to be shown that VI (1C) is an algebraic multiple of (fD, fD) when 
1CD exists with ~(D) = I; this will be proved in [9, II]. 

A different point of view was stressed by Oda in [29, 30]. To each 1CD 

one can associate a compatible system of A-adic representations {M).(1C D )} in 
the /-adic cohomology with twisted coefficients of the corresponding Shimura 
variety. Here {A} is the set of finite places of a certain number field E(n), 
and the representations take Gal(Q/E(D» -> G/(M).(1CD » , where E(D) is a 
number field associated to ~(D). When D = D(j), E(D) = (Jj(E) c lR; when 
D = M(2, E) is split, E(D) = Q. It has been proved by Carayol that 

d 
M).(1C) ~ ®M).(1CD(j). 

j=1 

Oda pointed out that the M). (1C D ) should be regarded as the A-adic realizations 
of motives M(1CD ) attached to 1CD , and that the Tate conjecture suggests that 
the Hodge structures associated to the de Rham and Betti realizations of M (1C) 
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should also factor. The relation (*) can be seen as a partial Hodge-de Rham 
analogue of Carayol's theorem. 

Indeed, the theory of automorphic vector bundles [8, 27] allows us to define 
arithmetic modular forms over specific number fields. It should then be possible 
to prove a reciprocity law for the action of Gal(Q/Q) on the ratios in (*) and 
(**). At least in principle, this is clear from the motivic point of view, and 
Panchishkin has formulated a conjecture along these lines in some generality 
[31]. At various times I have been convinced that the methods of this paper 
could easily be extended to prove such a reciprocity law, and I have even said 
as much in public. I continue to believe that the reciprocity law can be derived 
from the present methods, but it is certainly not as easy as I previously believed. 
This is primarily because my methods are based on the theory of the theta 
correspondence, whose definition only makes sense over the field Qab obtained 
by adjoining to Q all roots of unit. More precisely, if D is a quaternion 
algebra over E and % is a totally imaginary quadratic extension of E which 
embeds in D, one can define a hermitian structure on D as a % -vector space, 
and the group GU ,%(D) of unitary similitudes of D is closely related to D X • 

If D' is another such algebra, one can study the theta correspondence from 
automorphic forms on GU ,%(D') to automorphic forms on GU ,%(D). When 
either D' or D is split, the Schrodinger model and the q-expansion principle 
for Hilbert modular forms make it possible to finesse the problems arising from 
roots of unity; cf. [20, 39] for two such approaches (which do not, however, 
carry out the descent to finite extensions of Q). However, the present proof 
of factorization is essentially an induction on the number of ramified places at 
infinity, and there are no simple formulas for the Schrodinger models in the 
general case. 

The proof of Shimura's conjecture is rather convoluted, but the basic idea is 
not so hard to explain. An automorphic representation of GU ,%(D) is actually 
given by a pair (nD, w), where nD is an automorphic representation of D X 

and w is a Hecke character of ~x /%x , with the property that the restriction 
of w to E: is the inverse of the central character of n D • It turns out that 
the choice of w plays a crucial role, both in the analytic theory of the theta 
correspondence and in its arithmetic properties. It is not difficult to prove that, 
if (nD', w) is an automorphic representation of GU,%(D') , then its theta-lift 
8(n, w) to GU,%(D) either vanishes or equals (feD, w- I ), where nD and nD' 
correspond via the Jacquet-Langlands correspondence and the feD is the contra-
gredient of nD . Following the pattern first observed by Waldspurger, the van-
ishing of 8(n , w) is determined by local and global obstructions. As a first step, 
we prove in §4 in almost all cases that the local obstruction at v is determined 
by the local root number of the L-function of n,% 18) w, where n,% is the base 
change of n (or nD') to an automorphic representation of GL(2, %). This 
uses Shimizu's approach to the Jacquet-Langlands correspondence (also called 
the lacquet-Langlands-Shimizu correspondence) and a theorem of Tunnell, re-
cently extended by H. Saito, on root numbers and characters of representations 
of GL(2). 
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The global obstruction is determined using a method invented by Rallis [34]. 
One wishes to compute the Petersson norm of a function in S(nD' , w). Us-
ing Kudla's method of seesaw pairs [21], an extension of the Weil-Siegel for-
mula, along the lines of Kudla and Rallis [22, 24] and the doubling method 
of Piatetski-Shapiro and Rallis [6], one shows that this norm can be written as 
an Euler product. The unramified local factors have been determined in this 
case by J.-S. Li [26], and the essential part of the Euler product turns out to be 
the value at s = ! (the center of the critical strip) of L( n % 0 w, s). It now 
becomes necessary to show that one can choose w so that L( n % 0 w, !) =I- 0 
and the local obstructions also vanish. This is the main result of [10]. Thus we 
can assume S(n, w) =I- o. 

It should be mentioned that the extension of the Weil-Siegel formula men-
tioned above has not yet appeared in print. Although the generalization of 
the methods of Kudla and Rallis to unitary groups is not expected to present 
any difficulties, the cautious reader may wish to regard the main theorem as 
conditional. 

As indicated, we now want to induct on d - I~(D)I ,where I * I indicates 
the cardinality. In order to do so, we have to assume there exist D, with ~(D) 
of arbitrary parity, such that nD exists. Thus we assume we have D' and D 
with ~(D') 11 {O"j} = ~(D), such that nD' and nD exist, and satisfying some 
additional local conditions at finite places. Let w be a Hecke character of 

D' % such that S( n ,w) =I- o. Rallis' method compares the Petersson norm 
of an arithmetic form fD' EnD' with that of its theta lift 0 rp (fD' ) ; here ({J 

is a variable Schwartz-Bruhat function defining the theta kernel. The main 
remaining step is to show that 0 rp (fD') is arithmetic, up to factors which depend 
only on w. In doing so, we adapt an idea used by Shimura in [39]. To test 
for arithmeticity, we restrict Orp(fD') to a subgroup of the form U(l) x U( I) , 
integrate against a character of the latter subgroup, and divide the result by the 
CM period invariants introduced by Shimura in [38]. If the final result is an 
algebraic number, we are done. 

Again we use seesaw pairs, to reduce this calculation to an integral of fD' 
against a product of binary theta functions on GU %(D'). If D' were split we 
would be done, since the arithmetic of the binary theta functions on GL(2) is 
well understood. But D' is not split, and we have to work out the theta lift 
{characters of U(l)} ---> {automorphic forms on U(D')} from scratch. This 
also turns out to be surprisingly subtle. The simplest method is to use Rallis' 
inner product formula again. Start with a Hecke character 1'/ of U( 1). One 
again appeals to the Weil-Siegel formula, and one again finds that the Peters son 
norm of the lifted form is given by an L-value: in this case, the value of a 
Hecke L-series for % attached to a twisted base change to %x of 1'/. 

The upshot of this argument is that we obtain a formula of the following 
type: 

(fD, fD) .p(w)/C. (fD', fD') .L(n% 0w, !) E iCf, 
where pew) is a certain CM period attached to wand C is a constant which 
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depends only on the archimedean data. After some additional fiddling using 
Shimura's earlier results (which we reprove in §7), we are able to verify that, if 
DU) is as in (*), then 

This completes the proof of the induction step. 
It should be mentioned that our notion of arithmetic forms is adapted to the 

canonical models of the quatemionic Shimura varieties attached to D X and 
not to those attached to GU ,%(D). This is done for simplicity, but the reader 
may observe that the arithmeticity of the theta lifting is actually much better 
adapted to the canonical model of the Shimura variety attached to GU ,%(D). It 
appears that the theta correspondence prefers some canonical models to others, 
and very much wants to come from something like an absolute Hodge cycle on a 
product of Shimura varieties. Similar phenomena have been observed in many 
other examples. The reasons for this deserve to be investigated, since there is no 
good reason a priori to expect the theta correspondence to have any reasonable 
arithmetic properties. 

The first two sections develop the theory of eM periods and arithmetic auto-
morphic forms on quatemionic Shimura varieties. Over Q, this theory is due 
to Shimura. The descent to the reflex field was carried out by the author in [8], 
and the descent to Q is due to Milne [27]. However, the material in the first two 
sections has not previously appeared in print. Although the results presented 
here are stronger than what we need for the proof of Shimura's conjecture over 
Q, the exposition is not greatly lengthened by the more precise treatment. The 
main theorem is stated as Theorem 2.6.1. 

Section 3 introduces conventions for the theta correspondence. None of 
this material is new, but some subtleties arise due to our decision to work out 
the theta correspondence in the context of similitude groups. We follow the 
approach of [12, 13]. An additional subtlety arises from the choice of a splitting 
of the metaplectic covering over the unitary dual reductive pair; this was brought 
to my attention by work of Gelbart-Rogawski [7]. Since the hermitian spaces 
D and D' are of even dimension over .% , the Schrodinger model provides a 
natural splitting, but the problem resurfaces when we consider the lifting from 
U(I) to U(D'). Section 4 works out the local theta lifting from U,%(D') to 
U,%(D) . 

The heart of the proof of the main theorem is contained in §5, which reduces 
the theorem to consequences of the Rallis inner product formula. This formula 
is proved, modulo the anticipated generalization of the Weil-Siegel formula of 
Kudla-Rallis, in §6, which also contains a description of the integral represen-
tation for the standard L-functions of unitary groups. Finally, §7 proves a 
formula for the special values of certain Rankin-Selberg convolutions in terms 
of eM periods and Petersson norms of quatemionic forms, including some 
cases not covered by previous results of Shimura; it also explains the relation 
between the main theorem and the transcendental part of the Birch-Swinnerton-
Dyer conjecture for factors of lacobians of Shimura curves. There is a brief 
appendix on the action of complex conjugation on eM periods. 



642 MICHAEL HARRIS 

NOTATION 

Notation for algebraic groups and adelic automorphic forms is standard and 
for the most part follows the conventions of [13, 9]. We have especially adopted 
the conventions of [9], with one important difference in the global normalization 
of measures. Let E be a totally real field, .% a eM quadratic extension of E, 
D a quaternion algebra over E, and V a hermitian vector space over .%. 
If G = RE/QGL(2)E' RE/QD x , RE/QGU(V) (unitary similitudes of V) or 
R.JY/QGm,.JY' there is a natural embedding RE/QGm,E ---+ G as the maximal 
E-split torus in the center of G. We choose a global Haar measures dg on 
E:G(Q)\G(A) such that 

f dg = 1. 1 E; G(Q)\G(A) 

In § 1.2 measures are imposed on adele groups of more general tori, but these 
are of no importance in the sequel. Similarly, if G = RE/QSL(2)E' RE/QD1, 
RE/QU(V) (unitary group), where DI c D X is the kernel of the reduced norm, 
then we require of our Haar measure on G(Q)\G(A) that 

f dg = 1. 
lG(Q)\G(A) 

This choice of measure is dictated by the desire to express the Weil-Siegel for-
mula as simply as possible. 

In §6 we are required to decompose dg as a product TI dgv of local mea-
sures, where v runs through the places of E. Let G(A) = TI' Gv (restricted 
direct product). For v finite, we require that dgv take rational values on 
open compact subgroups, and, for almost all v, that the volume of a special 
maximal compact subgroup equal 1. For v a real place such that Gv/Ev 
is anisotropic, we let dgv have total mass 1 on Gv/Ev. Finally, suppose 
Gv ~ GL(2, JR) = B(JR) . SO(2) , where B is the upper triangular subgroup. 
Then dgv is the measure (21l)-1 . db· dk, where dk is the Haar measure on 
SO(2) with total volume 1 and db is the Haar measure on B(JR)/JR x which 
induces y-2 dx dy on the quotient space GL(2, JR)/JR x SO(2) ~ C - JR. The 
familiar formulas for the volumes of fundamental domains (for example, in [37, 
(2.29-30)]) make it clear that this is consistent with the previous normalization. 

For (relative) ease of typesetting, the left action of Gal(Q/Q) on Shimura 
varieties and automorphic forms is written on the right. Thus if Sh is a Shimura 
variety and T E Gal(Q/Q), the T-conjugate of Sh, denoted ShT in the present 
manuscript, is what in [27] is denoted T Sh. Thus Sh T·T' = (Sh T') T • 

1. PERIODS OF ALGEBRAIC HECKE CHARACTERS 

In this section we define analogues of the period invariants constructed in Part 
I, for cusp forms defining coherent cohomology classes on the Shimura varieties 
attached to quaternion algebras over E. In order to carry out this program, we 
have to explain what we mean by arithmetic holomorphic automorphic forms. 
The relevant constructions are contained implicitly in [8, II], refining Shimura's 
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constructions in [38, 39] over Q. However, as we already discovered in [13], a 
more explicit method is desirable for applications to the theta correspondence. 
This approach which, with more foresight on the author's part, could have been 
included in [8], was sketched in the appendix to [13]; here we give a more 
complete treatment. 

1.1. Let (G, X) be a pair consisting of a reductive group G/Q and a G(JR)-
conjugacy class X of homomorphism RC;JR G m , C -+ G JR' satisfying the usual 
axioms defining a Shimura variety Sh( G, X) , whose set of complex points is 
given by the familiar construction 

Sh(G, X)(C) = lim G(Q)\X x G(Af )/K, 
+--

where the limit runs over the set of open compact subgroups K c G(Af) (cf. 
[8, 27]). Let E( G, X) denote the reflex field of (G, X), as in [27]; then 
Sh( G, X) has a canonical model over E( G, X), and the natural action of 
G(Af) on Sh( G, X) is rational over E( G, X). We do not assume initially 
that the weight map w: G m , JR -+ GJR ' defined as the composite 

h 
Gm,JR -+ RC;JRGm,c -+ GJR , 

for any hEX, is defined over Q, nor that the maximal Q-split subtorus of the 
center ZG of G is of dimension ::; 1 . A special pair is a pair (G, X) = (H , h) 
where G = H is a torus (and X = h is thus a single point); a special pair is 
called a eM pair if the corresponding weight map is defined over Q. To any 
special pair (H, h) we can associate a rational torus H and a surjective map 
u: H -+ H such that (H, u 0 h) is a eM pair and (H, h) -+ (H, u 0 h) is 
universal for maps to eM pairs. Let HO be the kernel of the map H -+ H. 

As in [27, p. 330], for any hEX and any finite-dimensional Q-rational 
representation p: G -+ GL(V), po h: Rc/JRGm,c -+ GL(VJR) defines a Hodge 
structure on V; if p is faithful then h can be recovered from this Hodge 
structure. Our basic example of special pairs will be the following. We fix 
a totally real field E of degree dover Q, and let L denote the set of real 
embeddings of E , as in the introduction; the elements of L are denoted aj , or 
simply j, j E {I , ... , d}. Let % be a totally imaginary quadratic extension 
of E, and let L..% denote the set of complex embeddings of %. Let <1> be a 
eM type of % , i.e., a set of d complex embeddings of % such that L = <1>1£ • 
If 1 E Gal(%/E) denotes complex conjugation, then the condition that <1> be a 
eM type is equivalent to saying that <I> n 1<1> = 0, <I> U 1<1> = L..%. Let 'I' C L..% 
be any subset such that 'I' n 1'1' = 0, so that 'I' can be completed to a eM 
type (generally in more than one way). Let H..% = R..%/'flGm,..%; then H..% has 
a natural faithful 2d-dimensional representation over Q: 

Then (% Q9'fl C, p..%,d ~ EBaE~%(~' a), where ~ denotes the completion 
of % at the valuation defined by a. We let h'l': Rc/,~Gm,c -+ H..%,JR be the 
homomorphism such that, in the induced Hodge structure on % , the subspace 
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~ C % ®QC is of type (-1,0) if (J E '1', of type (0, -1) if (J E z'¥, and of 
type (0, 0) otherwise. 

One sees easily that (H.%, h'l') is a special pair, and is a CM pair if and only 
if 'I' is a CM type. Let HE = ker(NE / Q): RE/QGm,E --+ Gm,Q. We view HE 
as a subtorus of H.%, and let T.% = H.% / HE. Then T.% = H.% for any 'I' such 
that 'I' is not a CM type. We call a character X E X(H.%) motivic if X factors 
through T.%. The group of characters X(H.%) over Q is naturally isomorphic 
to the space of functions 

A = {k 1: --+ Z} . 
def .% ' 

r 

where the product is taken over the set of r E 1:.%. As explained in [1; 
13, Appendix], the character X;. is motivic if and only if the motivic weight 
w(X;.) := -A(r) - A(zr) is independent of r E 1:.%. The automorphic weight 
of X;. is then defined to be the d-tuple 15..(X".} = (k(X;.), ' ... , k(X;')d) ' where 
k(X;')j = IA(zr) - A(r)1 + 1, if rjlE = (Jj. 

If r E Gal(Q/Q), let ,¥(r) = {r 0 (J, (J E '¥}. Then h'l'(r) = (h'l')(r), in the 
notation of [4], and there are canonical isomorphisms [4, V] 

Sh(H.%, h'l')r ~ Sh(H.%, h'l'(r)). 
Let (H, h) be any special pair. An algebraic Hecke character 

w: H(Q)\H(A) --+ C X 

is a Hecke character whose restriction Woo to H(R) coincides with an algebraic 
character X E X(H). We call X the infinity type of w, and we denote by X(X) 
the set of algebraic Hecke characters of infinity type X . Let H m be the maximal 
Q-anisotropic subtorus of H which splits over R; H m :::) HO , defined above. 
We say X is motivic if its restriction to H m is trivial; in this case the elements 
of X (X) are also called motivic. If X is motivic, W E X (X) , then the motivic 
and automorphic weights of w, denoted 15..(w) and w(w), respectively, are 
defined to be those of X. 

Let cI> be a CM type of % , as above, and, for each (Jj E 1:, let r j E cI> be 
the element restricting to (Jj. The motivic character X = X;. of H.% is said 
to be compatible with cI> if A( r) ::; A( zr) for all r E cI>; X is of type cI> if the 
inequalities are strict. More generally, if 'I' C cI>, X is compatible with 'I' if 
A( r) ::; A(lr) for all r E 'I' , and strictly compatible with 'I' if the inequalities are 
strict. Let W E X(X) ; then W is compatible with (or strictly compatible with, 
or of type) cI> (or '1') if X is. Evidently, if the motivic character X is of type 
cI>, then it can be reconstructed from the (d + 1 )-tuple (15..( w) , W (w)) , and we 
have, in the notation of [9, I, Corollary 1.2.9] 
( 1.1.2) E(X) = E(k(w)) = E(k(x)). 

1.2. As in [13, Appendix] any motivic X E X(H) defines an H(Af )-homoge-
neous line bundle [~] on the Shimura variety Sh(H, h), with a canonical 
isomorphism 

[vxHc) ~ ~ H(Q)\H(A) x ~(C)/H(R) x K. 
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Here the limit runs over the set of open compact subgroups K C H(Af) , 
and ~ is the space of the representation x, with the obvious H(IQ) action. 
Then the H(Af )-equivariant line bundle [~] has a canonical model over a 
certain extension E(X) of the reflex field E(H, h) [8,27]. Let MDR(X) denote 
the set of E(x)-rational sections of [~] over Sh(H, h). More generally, if 
• E Gal(IQ/IQ), then [~]l", as automorphic vector bundle over Sh(H, h(l") , is 
canonically isomorphic to [~d, where X t-+ Xl" is the natural left action on 
X(H) [27]. 

We may canonically identify 

(1.2.1 ) 
HO(Sh(H, h), [~]) ~ Cx := {f E COO (H(IQ)\H(A) , ~(q)1 

f(tt oo ) = X(tO'o>-1 - f(t) , 
t E H(A) , too E H(R)}. 

Denote this isomorphism Lift. In particular, any w E X(X) defines a linear 
form 

° Lw: H (Sh(H, h), [~]) -t e, 
Lw(s) = r Lift(s)(t) -w(t) dt. J H(Q)-H(lR)\H(A) 

( 1.2.2) 

Here and henceforward we normalize Haar measure on tori so that 

( 1.2.3) 
vol(H(IQ). Hm(A)\H(A» = vol(Hm(lQ) -Hm(R)\H(A» 

= vol(Hm(R)\H(R» = 1_ 

If WE X(X), let E(w) denote the extension of E(X) generated by the values 
of w on H(Af) _ The Galois group Gal(lQ/ E(X» acts on the set X(X) by the 
formula 

U ) U W (y = (w(y» , 
More generally, if (J E Gal(IQ/IQ), X is a motivic character of X(H %), then 
XU is also motivic, and if WE X(X) ,then WU , defined by the above formula, 
is the H(Af )-component of an element W U E X(X u ) . 

As explained in [13, Appendix], the canonical local systems constructed in [8, 
§4] allow us to associate to each WE X(X) a number p(w) E eX , well defined 
modulo E(w( ,such that the following lemma holds (cf. [13, Lemma A.6]): 

1.3. Lemma. Let s E HO(Sh(H, h), [~]). Let L be a finite extension of 
E(X)· Then s E MDR(X) @E(X) L if and only if the following conditions are 
satisfied: 

(i) For all WE X(X), p(W)-1 Lw(s) E IQ. 
(ii) For all (J E Gal(IQ/L), [p(W)-1 Lw(s)t = p(wu)-l Lwu(s). 

More generally, let l.:(w) denote the set of embeddings of E(w) into IQ inducing 
the given embedding on E(H, h). Then the vector (P(WU»UEI:(W) is well defined 
as an element of (E(w) @E(H,h) e( /E(w( . 
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1.3.1. Remark. If we allow the Shimura variety Sh(H, h) to vary among its 
Gal(Q/Q)-conjugates, then E(H, h) can be replaced by Q, cf. [27]. The 
formulas for the action of Gal(Q/Q) on the set {Sh(H, h)} are given in (1.1.1). 

If L is a finite extension of the number field L' and (a), (b) E (L i8l L' 

C( U {O}, we write (a) "'L (b) if and only if (a) = a(b) for some a E LX. 
More generally, if L::J L" ::J L' and a = a(YI ' ... ,Yr) and b = b(YI ' ... , Yr) 
are functions of auxiliary data {Y I ' ••• , Yr} , such that Gal(r" / L") act on the 
set of {Y I ' ... , Yr }, then we write (a) "'L'L" (b) if (a) "'L (b) and if either 
(b) = (0) or if ' 

[a(YI' ... , yr)/b(y l , •.. , yr)t = [a(y~ , ... , y;)/b(y~ , ... , Y;)] 
-II II 

for all (J E Gal(L /L ). 
The following abstract versions of Shimura's "monomial relations" [38, 39] 

follow immediately from the definitions: 

1.4. Proposition. Let (H, h) be a special pair, X E X(H) a motivic character, 
WE X(X). Define H, u: H ~ H as above. 

(a) If X = X 0 u, w = w 0 UA ' for some X E X(H), w E X(X) , then 
E(w) = E(w)· E(H, h) and 

(p(wu))UE1:(W) "'E(w);E(H,h) (p((wt))UE1:(W) 

as elements of (E(w) i8lE(H ,h) C( . 
(b) Suppose (H", h") = (H, h) x (H' , h'), and let X" = X X X', w" = w X w' 

be the corresponding factorizations. Then E(H", h") = E(H, h) . E(H' , h'), 
E(w") = E(w)· E(w') , and 

(p((W'Y))UE1:(W) "'E(w);E(H,h) (p(wu). p((WY))UE1:(W)' 

(c) With (H, h) fixed, if w = w' . w" is a product of two motivic Hecke 
characters, then E(w) c E(w') . E(w") , and 

(p(wu))UE1:(W) "'E(w);E(H,h) (p((wy). p((W'Y))UE1:(W)' 

Proof. In general, a map of pairs r: (H', h') ~ (H, h) induces a pullback map r: X(X) ~ X(X 0 r) for any motivic X E X(H). Let w E X(X), and define 
E(w), E(w 0 r), 1:(w), 1:(w 0 r) as above; note that E(w 0 r) ::J E(H' , h') ::J 
E(H, h). Since formation of canonical models of automorphic vector bundles 
and of canonical local systems commutes with pullbacks (cf. [8, §4]), it is clear 
that 

(1.4.1) (p( wu) )uE1:(wor) '" E(wor); E(H, h) (p( w 0 r)u )UE1:(Wor) , 

and (a) is a special case of (1.4.1). The first two assertions of (b) are obvious 
from the definitions, whereas the last one is a consequence of the isomorphism 
MDR(X") ~ MDR(X) i8l MDR (x') (external tensor product) and the corresponding 
factorization of canonical local systems, cf. [8, Remark 4.5.4]. Finally, (c) 
follows from (b) with (H', h') = (H, h), and from (1.4.1), applied to the 
diagonal map (H, h) ~ (H, h) x (H, h). 
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For our purposes, the most important corollary is the following application 
to the Shimura varieties (H.%, h'¥). Let OJ be an algebraic Hecke character of 
H.%(Q)\H.%(A) ';;E %x\~x . The invariant p(OJ) associated to OJ and the pair 
(H.%, h'¥) obviously depends on'll. We write P.%(OJ, 'II) instead of p(OJ) to 
emphasize this dependence. Likewise, we write E.% (OJ, 'II) instead of E (OJ) . 
Let E,¥ = E(H.%, h'¥) . 

Suppose 'II is the disjoint union '¥' II,¥/I of two subsets of ~.% . Then it is 
easy to see that E,¥ c E,¥, . E'¥". The following proposition is a refinement of 
Shiroura's [39, Theorem 1.1]. 

1.5. Corollary. Under the above hypotheses, let ~(OJ, 'II' , '11/1) denote the set of 
embed dings of E.%( OJ, 'II') . E.%( OJ, '11/1) into Q, inducing the given embedding 
on E'¥· E'¥". Then 

(P.%( OJ(J , 'II) ) (JEl:(w , '¥' , ,¥") 
(J u" (J uP 

"'Ex (w,'¥').Ex (w,'¥");E'I' (P.%(OJ ,'1'). P.%(OJ ,'1' ))(JEl:(W,'¥' ,'¥")' 
Proof. Our proof more or less follows that of Shimura. Consider the homo-
morphism m: H.% x H.% ---+ H.% given by multiplication. Then 

m 0 (h,¥, X h,¥lI) = h,¥ . 

We consider OJ 0 m as an algebraic Hecke character associated to the Shimura 
variety Sh(H.% x H.%, h,¥' X h,¥lI) ; then E(OJ 0 m) = E .%(OJ, 'II') . E .%(OJ, '11/1) . 
Now formula (1.4.1) shows that 

(P(OJ(J))(JEl:(W,'¥' ,'¥") "'E(wom);E'I' (p(OJ(J 0 m))(JEl:(W,'!" ,,¥"). 

The corollary now follows from Proposition 1.4(b). 

The following lemma is treated as an axiom by Shimura in [39]. 

1.6. Lemma. Under the above hypotheses, let OJI(X) = OJ 0 l(X). For any'll as 
above, P.%(OJ, 1'11) "'E(w);E'I' P.%(OJ' , 'II). 

Proof. Note that E(OJ' ) = E(OJ) , since OJ and OJ' take the same set of values. 
Now the map 1: H.% ---+ H.% ' viewed as an automorphism of algebraic groups 
over Q, defines an isomorphism (H.%, h'¥) ~ (H.%, h,'¥) , hence an isomor-
phism ,.: Sh( H.%, h'¥) ~ Sh( H.% ' h,'!') . This in turn defines isomorphisms 

1*: HO(Sh(H.%, h,'¥) , [Vx]) ~ HO(Sh(H.%, h'¥), [~,]) 

for all X, where x' = X 0 1 , and 

• ° Lw,(l (s)) = Lw(s) for all S E H (Sh(H.%, h,'¥) , [Vx])' OJ E X(X)· 

The lemma is now clear. 

1.7. Remark. (a) It is easy to see that, if OJ, OJ' E X(X) for some X E X(H%) , 
then P.% (OJ, 'II) "'ij P.% (OJ' , 'II) '" P.% (X , 'II) , where P.% (X , 'II) is a well-defined 
element of eX /QX . We roay identify X(H.%) with the free abelian group !% 
on ~.%. Then if 1'111 = ~(JE'¥ a E !%' the p.%(X, 1'111) defined by Shiroura 
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in [38, §1] coincides with our {p,%(X, lJI)jp,%(X, IlJl)]1/2. Note that we have 
assumed X to be motivic; thus Shimura's invariants are apparently more general 
than ours. However, an inspection of Shimura's arguments shows that all of his 
periods can be obtained by taking products of half-integral powers of ours. 

(b) As in Remark 1.3.1, the period relations in Proposition 1.4, Corollary 1.5, 
and Lemma 1.6 can all be made homogeneous with respect to Gal(ijjij), if we 
take into account the conjugation by Gal(ijjij) of the varieties Sh(H, h). We 
use this fact without comment in the applications. 

1. 8. The character X;., defined as in § 1. 1, is said to be critical [1, § 5.1] if 
A(r) i= A(lr) for all r. In particular, every critical character X;. is of type 
cl>;., in the sense of §1.2, for a (unique) CM type cl>;.. The following theorem 
of Blasius is stated as Proposition A.10 in [13]; we refer to [loc.cit.] for an 
explanation of the terminology. 

1.8.1. Proposition (Blasius, [1]). Suppose X = X;. is a critical character of H,% , 
and let wE X(X). Let L,%(w, s) be the L-function of the Heeke character w, 
and let s = m be a critical value of L,%(w, s), in the sense of Deligne. Let DE 
denote the absolute discriminant of E. Then 

1/2 . dm (1.8.1.1) L,%(w, m) ""E(w);E(x) DE . (2nl) . p(w, cl>;.)' 

In fact, E(X) can be replaced by ij in the above statement; then of course 
w runs through the elements of U X(X u ) , where a runs through Gal(ijjij), 
and cl>;. varies among the CM types of % . In place of (2ni)dm , one has to use 
e(a)m. (2ni)dm , where e(a) is a {±1 }-valued function on complex embeddings 
of E(w)·%, cf. [2, Corollary H.5]. 

Let e,% denote the quadratic Dirichlet character of EX\E: ' correspond-
ing to the quadratic extension % j E. The L-function L,% (w, s) can also be 
viewed as an automorphic L-function of G = GL(2, E), by the following the-
orem of Jacquet-Langlands and Shalika-Tanaka, cited (in a slightly different 
form) as Theorem 4.6.1 of [9, I]. 

1.8.2. Proposition. (a) Let v be a place of E. Thereisa map Wv 1---+ n(wv'~) 

from characters of ~x to admissible irreducible representations of G, which 
preserves local L-factors, up to a shift: 

L(n(wv' ~), s) = L.'}f'(wv' s + i)· 
v 

If w = ®v Wv is an automorphic representation (Heeke character) of GL( 1 ).% ' 
then n( w, %) = ®v n( Wv ' ~) is an automorphic representation of G. The 
representations n(wv'~) and n(w~,~) are isomorphic if and only if w;, = 

, I 
Wv or Wv = wv ' 

(b) If ~w = WIGL(I)E ' then the central character of n( w, %) is ~w· e.% . II . IIA . 
The contragredient fr(w, %) is equal to n(w- I ,%) 0 II· II~I . 

(c) The representation n(w, %) is cuspidal if and only if w =1= w' . 

An automorphic representation of G is called motivic if it corresponds to 
a Hilbert modular form of weight (k., r), as in [9, I, 1.2]. Here r E Z and 



L-FUNCTIONS OF 2 x 2 UNITARY GROUPS 649 

k = (kJ ' ••• ,kd ) is a d-tuple of positive integers, all congruent to r (mod 2). 
To all subsets I c l:, and to any motivic automorphic representation n of 
G, we have associated in [9, I, Lemma 1.4.5] a certain numerical invariant 
vI (n) ; this is a nonzero complex number well defined up to multiplication by 
scalars in the field denoted Q(n, l) in [9, I]. We generalize these constructions 
to quaternion algebras in §2, below. 

The representation n(w, %) is motivic if w is a motivic algebraic Hecke 
character; then n( w ,%) corresponds to a Hilbert modular form of weight 
(k(w) , 1 - W(w)) , in the notation of §1.1 [9, I, 4.6]. In this case, we write 
vI(W, %) = vI(n(w, %)). 

The following lemma may be taken as a normalization of the invariants 
pz(w,·) (which differs from Shimura's, cf. Remark 1.7(a)). 

1.8.3. Lemma. For any subset 'P C l:, 

pz(II·IIA , 'P) "'Q (2ni)-I'¥1 . 

Proof. By Corollary 1.5, and Lemma 1.6, we may assume I'PI = 1 . The absolute 
value factors through the norm N z /Q : Hz -t G m , Q' and we have a map of 
special pairs Nz /Q: (Hz, h'¥) -t (Gm,Q' N), in the notation of [5, Appendix]. 
By Proposition 1.4(a), this reduces the assertion to the corresponding assertion 
for this latter Shimura variety, and this is contained in [5, A. 1.6]. 

Under certain hypotheses, the critical values of the Rankin-Selberg L-func-
tions L(n(w, %) ® n(w', %), s)) have been computed in [9, I, §3], in terms 
of these invariants. We consider two examples, which will be used in §7. Let 
(k, r) be a (d + I)-tuple with kj == r (mod 2) for all j. Let (a) be ad-tuple 
of nonnegative integers. Partition l: into disjoint subsets I and I'. Let w, 
w' be motivic Hecke characters of % such that C;w· C;w' = 1 , in the notation 
of 1.8.2(b), and: 

k(w)j=kj +1+2aj , jEI, k(w)j=kj -1, jEI'; 

k(w\ = kj + 1 + 2aj , j E I' , k(w\ = kj - 1, j E I; 

w(w) = -w(w') - r. 

Furthermore, let <I> be a CM type, and assume wand w' are compatible with 
<1>. Then n( w, %) and n( w' ,%) correspond to Hilbert modular forms of 
weights (k(w) , 1-r) and (k(w') , r+ 1), respectively, and Proposition 1.8.2(b) 
implies that C;x(w,Z) • C;x(w' ,Z) = II . II!. Bearing in mind our normalizations of 
L-functions, we have 

(1.8.4) L(n(w, %) ® n(w', %), s) = Lz(w· w', s)· Lz(w. W"I, s), 

where Lz(w.w', s) and Lz(W.W"I, s) are L-functions of Hecke characters 
of %. Write <I> = 'P II 'P' , where 'PIE = I, 'P'IE = I'. It follows from the 
hypotheses that W· w' and W· w" 1 are both critical, and that W· w' is of type 
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CI>, whereas W· w" I if of type CI>' := 'I' II I'l" • More precisely, 
k(w· w')j = 2(kj + a) - 1 for all j; 

k(w. w' ,\ = 3 + 2aj for all j. 

Thus, if X (resp. 
( 1.8.5) 

X v) is the infinity type of W· w' (resp. W· w' , ') , we have 

E(X)' E(Xv ) = E(k) 
by (1.1.2). Moreover, C;w' C;w' = 1 implies that W· w' and W· W"I are uni-
tary characters; hence the L-functions L,%(w· w', s) and L,%(w· W"I , s) 
do not vanish for Re(s) ;::: 1. Finally, the r-factors of L,%(w· w' ,s) and 
L,%(w. W"I ,s) are easily computed, and one verifies that s = 1 is a critical 
value for each of these L-functions. By Blasius' Theorem 1.8.1 and (1.8.5), we 
thus have 

o ¥= L,%(w· w' , 1)· L,%(w· W"I , 1) 

'" E(w)'E(w') ;E~ (2n i)2d . p,%( w . w' , CI» • p,%( w . w" I , 'I' III'¥') . 
( 1.8.6) 

Here we have used the obvious fact that E(w· w')· E(w· W"I) c E(w)· E(w' ) . 
On the other hand, by [9, I, Theorem 3.5.1], s = 1 is a critical value for 
L( n (w, JY) (8) n ({jJ , JY) , s), A. = 2 in that theorem and we have the formula 

L(n( w, JY) (8) n( w' , JY), 1) 
(1.8.7) . 2d od(l-r) [ [' I • 

"'E(w)'E(w')'E(lf([));E~ (2m)·' v (w,JY)·v (w,JY), 
here we are using the obvious fact that Q(n(w, JY)), defined as in [9, I], co-
incides with E(w) , and the power of i is computed easily. The homogeneity 
of (1.8.7) with respect to Gal(Q/Q) corresponds to [9, I, (3.5.3)]. Combining 
(1.8.6) and (1.8.7), we have 
1.8.8. Lemma. Under the above hypotheses 

p,%(w, w', CI». p,%(w, W"', 'I'll I'¥') 
od( I-r) [( C?Y) [' ( I C?Y) 

"'E(w)'E(w')'E(lf{l));E~ I v W, Vb • V w, Vb • 

We now analyze the left-hand side of the above formula. Using Corollary 1.5 
and Remark 1.7(b), we have (with * = E(w).E(w' ) ·E(k(I)) and with subscript 
JY omitted): 

I I I lY" p(w· W , CI». p(w· w' ,'I'll I'!') 

"'*oE p(w· w', '1'). p(w· w', ,¥,)p(w. W"I, ,¥)p(w· W"', I'¥') , ~ 

"'*oE p(w, '1')2. p(w, ,¥,). p(w, I'¥'). p(w' , '1'). p(W"', '1') , ~ 
( I ni) (" I lY") . P w ,T • P w ,I'!' , 

by Proposition 1.4(c). Applying Lemma 1.6 several times, we find that 
p(w· w', CI». p(w· W'" , 'I'll I'¥') 

2 lY" I I I I I I 2 '" * ° E p( w, '1') . p( W, '!' ) . p( W , 'I' ) . p( w, '1') . p( W' , '1') . p( w , 'I' ) , ~ 

"'*oE p(W, '1')2. p(W' , ,¥,)2. p(W' W', '¥'). p(W' . W"', '1') 
, ~ 
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by Proposition 1.4(c). Now 

w·wl = woN.%/E =~WoN'%/E' 
, ',I -I 

W • W = (~w 0 N.%/E) . 

For any Hecke character 1] let ij = 1]/1]1 . Applying Proposition 1.4(c) several 
more times, we obtain 

p(w· w', cI». p(w· W"I, 'I'll 1'1") '" .E p(iiJ, '1'). p(iiJ', '1"). 
*, '" 

Combining this with 1.8.8, we find 

1.8.9. Lemma. Under the above hypotheses, 

( - \T1) (-' n") .d(l-r) I( Off) 1'(' Off) P w, T .p W, "1' "'E(w)'E(w')'E(!s.(I));E", I 1.1 W,oA '1.1 W,oA . 

1.9. We modify the above analysis; [, [', '1', '1" and ware still as above, 
and take 1], strictly compatible with '1" and compatible with cI>, such that 

(1.9.1) ;:;: -1' '=w' '=1t{'7,.%) - , W(1]) = r. 

In this case we write 

(1.9.2) L(n(1] , %) Q9 n(w, %) , s) = L(n(1]w, %), s)L(n(1]wl , %), s) . 

Again, 1]w and 1]WI are both critical, of types cI> = 'I'll '1" and cI>' = 1'1' II 'I" , 
respectively; s = 1 is a critical value for each of them, and 

k(11W)j = 2kj + 2aj (resp. 2kj ) , j E [ (resp. j E 1'), 
k(11WI) j = 2 + 2aj (resp. 2), j E [ (resp. j E 1'). 

Moreover, ~1t(w,.%),o· ~1t('7'.%)'O = e.%, in the notation of [9, I, Theorem 3.5.1]. 
We make the hypothesis, which is no longer automatic, that 

( 1.9.3) 

By Blasius' Theorem (1.8.1), and [9, I, Theorem 3.5.1], we thus have 

(1.9.4) 

Here G(e.%) is the Gauss sum attached to e.% [9, I, §3.5]. The above analysis 
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can now be repeated. We obtain 

(21Ci)d • p(y/w, <1». p(y/w' , <1>') 
2, 2 I I , 

"'.'E p(y/ ,'I')·p(w ,'I'),p(Y/'y/, 'I')·p(w·w, '1') 
, <II 

2 n" 2 "'.;E<II p(Y/ ,'r)' p(w , '1'). p(C;rJ 0 N'%/E ·11·11, '1') 
-I , . p(II·11 ,'1'). p(C;w 0 N'%/E' '1') 
2, 2 

"'.;E<IIP(Y/ ,'I')·p(w ,'I'),p(C;rJ0N.%/E·II·II, '1') 
-I , . p(II·1I ,<I» • p(C;w 0 N .%/E ·11 ·11 , '1') 

2 -I' 2 -I -I "'.;E<IIP(Y/ ·(C;rJ0N.%/E) ,'I')·p(w ·(C;WoN.%/E) ,'I')·p(II·1I ,<I» 

(since by hypothesis C;w . C;rJ = II . II-I . e.%) 

"'*'E p(~, '1") ·p(w, '1') ,p(II'II-I, <1» "'*'E (21Ci)d .p(~, '1") ·p(w, '1'), 
, <II ' <II 

where the last identity follows from Lemma 1.8.3. Hence 

1.9.5. Lemma. Under the above hypotheses, 

G(e.%)[i'11'l.v l ' (y/, %)]'U(I-rl1l1vl(w, %)] "'E(wl'E(rJl'E(!s.(l)l;E<II p(~, 'I").p(w, '1'). 

2. ARITHMETIC AUTOMORPHIC FORMS ON QUA TERNION ALGEBRAS 

2.1. Quaternionic Shimura varieties and automorphic forms. Let D be a quater-
nion algebra over E, and let 'L(D) c 'L denote the set of real embeddings a 
of E such that D(J := DOE (J JR ~ M(2, JR). Let 'L(D)' = 'L - 'L(D). Let 
ND: D X -+ EX denote the reduced norm, Tr D: D -+ E the reduced trace. As 
in [9, I], we denote the elements of 'L { aj } or {j}, where j = 1, 2, ... , d . 
Let JH[ denote the algebra of Hamiltonian quatemions over JR. Write D X 

for the reductive group RE/QD x over Q. There is an obvious action of 
DX(JR) ~ GL(2, JR)!:(Dl xJH[!:(Dl' on (.fj±)!:(Dl, where .fj± = IC-JR is the union of 
the upper and lower half-planes, and it is known that the pair (Dx, (.fj±)!:(Dl) 
naturally defines a Shimura variety, which we denote LD = Sh(Dx , (.fj±)!:(Dl) 
[36; 27, p. 336]. The reflex field E(Dx , (.fj±)!:(Dl) , over which LD has a canon-
ical model, is the subfield of ij fixed by the stabilizer of 'L(D) in Gal(Q/Q). 
let DCrl be the quatemion algebra over E ramified at the same set of finite 
places as D, such that 

'L(D(Tl) = {r 0 ala E 'L(D)} . 

A special case of the Langlands conjectures (cf. [4, 27]) states that any choice 
of special pair (H, h) c (Dx , (.fj±)!:(Dl) yields a canonical isomorphism 

(2.1.1 ) r E Gal(ij/Q) . 
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The choice of (H, h) also canonically identifies D X (Ai) ~ D(r:), x (Ai), and 
the isomorphism (2.1.1) respects the actions of D X (Ai) with respect to this 
identification. 

2.1.2. Lemma. Let (H, h) c (Dx ,(S)±)~(D)) be a special pair. Then (H, h) 
is isomorphic to some special pair (H %, h'¥), where % is a eM quadratic 
extension of E over which D splits and 'I' C ~% is a subset such that 'I' n 1'1' = 
o and 'l'IE = ~(D). Moreover, each such (H%, h'¥) embeds in (Dx , (S)±)~(D)). 
Proof. This is well known and due to Shimura, cf. [40, II, §2]. 

Let (H %, h'¥) c (Dx , (S)±)~(D)) ; after conjugating by an element of D X (((1)) 
we may and will assume that h,¥ E (S)+)~(D). If fJ E 'I' restricts to (J E ~(D), 
we use fJ to identify C ~ ~ := % ® E, C1 JR. Then each (J E ~(D) defines a 
map 

(2.1.3) 

If (J = (Jj E ~(D) , we let K; = K; (% , '1') denote the image of the unit circle 
under the map (2.1.3), and let 

f) E JRj2nZ . 

Let lHIl C lHI x denote the kernel of the reduced norm. Let k and r be 
integers of the same parity and assume k ~ 2. We define n'fl(k, r) denote an 
irreducible (k - I)-dimensional representation of lHI x on which Z E JRx = Z'fIx 
acts as zr; since lHIl ~ SU(2), ne(k, r) is unique up to isomorphism. If 
(Jj E ~(D)' , let K; = K; (% ,'I') be the subgroup of D~ corresponding to 

lHIl; denote by nlll(k) the restriction of n'fl(k, r) to K; (or to lHIl) and let 
nlfl(k) v ~ nlll(k) denote the contragredient to nlll(k). 

Fix the embedding (H%, h'¥) c (Dx , (S)±)~(D)) as above. Let (k., r) E Zd+1 

be a (d + 1 )-tuples as in [9, I]; recall that ki == r (mod 2), i = I , ... , d. Let 
K:;' = K;' (% , '1') = f1 j K; . Let L~, r) denote the space of the representation 
f1jE~(D)' nlfl(k) v , and define the representation 

D + D (2.1.4) p(/i,r): ZD x (JR). Koo --+ GL(L(/i,r)) ' 

zoo' II rif))· II hj' 1---+ NE/Q(zoo) -r. II e -ikjOj ® n'fl(k) v (hj'); 
jH(D) j' E~(D)' jH(D) j' H(D)' 

here Zoo E ZD x (JR), rj(f)) E K; for j E ~(D), and hj' E K; for j' E ~(D)' . 

As in [9, I, 1.2], we write D; ~ f1~=1 DjX , Lie(DX)c ~ EfJ~=1 Lie(Dnc' Let 
Zj denote the center of D; . For j E ~(D) , let t j = Lie(KjX)c ' and write the 
Harish-Chandra decomposition 

Lie(D;)c ~ Lie(Z)c EB tj EB P; EB P 7 . 
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As in [9, 1,1.2], let t= = Lie(K;') , p+,D = ffijEl:(D)P;, p-,D = ffijEl:(D)Pj. 
Let gJ % , 'I' denote the connected subgroup of D x with complex Lie algebra 
Lie(ZDx)c E9 t=,c E9 p-,D , and let MD be the homogeneous space D X /gJ%, '1" 

Then gJ % , 'I' is a parabolic subgroup, M D is a complete variety with a natural 
model over E(Dx , (S)±l(D)) , and there is a D X (ll~.)-homogeneous holomorphic 
embedding 

p: (S)±)l:(D) --+ MD 

sending h'l' to the fixed point under gJ % '1" 

The representation P~,r) of ZDx (1R) . K;' is algebraic, hence defines a 
representation-also denoted P~,r)-of ZDx (IC) . K;'(IC) , which in tum ex-
tends to a representation of gJ % 'I' trivial on RugJ % 'I' = exp( p- , D). Let 
2(:,r) be the D X -homogeneous ve~tor bundle on MD a;sociated to p~,r)' Let 
kD be the d-tuple such that kf = k j if j E I:.(D) , kf = 0 if j E I:.(D)' . 

Then (cf. [9, I, 1.2.9]) 2(:,r) is rational over E(kD) as a homogeneous vec-
tor bundle. Applying the main theorem of [8], as in [9, I, §l], we can define 
a DX(Af)-homogeneous, E(kD)-rational vector bundle ~f,r) = [2(:,r)] over 
..ltD: 

(2.1.5) 

where, as usual, the limit is over the set of open compact subgroups K f C 

DX(Af). Let 15.' = (k~, ... , k;), where k; is the .-l.aj-index of 15. (there is 
a misprint in the definition of 15.' in [9]). It follows from the results of Milne 
[27] that 

2.1.6. Proposition. For any. E Gal(IQ/IQ), there is a canonical isomorphism 
D ,~ D(') 

(~k,r)) --+ ~k' ,r) 

over (..ltD)' ~ ..ItD(,) (cJ (2.1.1)). 

Let .s;f'D(k, r) denote the space of (L~,r/ -valued automorphic forms f 
on D X (1Q)\D x (A) such that 

(2.1.7) f(z=g)NE/Q(z=)r . f(g) , z= E ZDx (1R), g E D X (A); 

f(g· k=) = II eik/ J} ® 7lJ(k)(hj')' f(g) 

(2.1.8) 
jEl:(D) j' El:(D)' 

if k= = II rj(()j)' II hj' as in (2.1.4), g E DX(A); 
jEl:(D) j' El:(D)' 

(2.1.9) R(p-,D)f= 0 (notation as in [9, I, §l]). 
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When necessary, we write .s;(D(k, r;.%, lJI) to emphasize the dependence on 
the latter data. There is a canonical isomorphism 

(2.1.10) Lift = Lift~,r): r(LD(C) , ~f,r» ~ .s;(D(k, r). 

A holomorphic automorphic form of type (k, r) for D X is a function on 
DX(Q)\DX(A) of the form AO/, where / E .s;(D(k, r) and A E L~,r); we 
denote the space of such forms (L 0 .s;()D(k, r) (or (L 0 .s;()D (k, r; .% , lJI» , 
and refer to them as coefficients of .s;(D(k, r). 
2.2. Automorphic forms. Let Koo = Koo(.%' lJI) denote the (unique) maximal 
compact subgroup of the normalizer in D; of K';" and define K j C D; 
analogously. Let (nD, H7CD) be an irreducible cuspidal automorphic repre-
sentation of D X (A) which is generated by a holomorphic automorphic form 
of type (k, r) for DX. Then nD factors as a (restricted) tensor product 
®v n~ of representations of D: ; here v runs over places of E, and n~ 
is a (Lie(D:) , Kv)-module if v is archimedean. If v corresponds to the real 
embedding (Jj E ~(D) (resp. (Jj' E ~(D)/) then nv ~ n(kj , r) , in the notation 
of § 1.1 (resp. nv ~ nTrR(kj' , r)) . 

The Jacquet-Langlands correspondence [17, §16] associates to (nD, H7CD) an 
irreducible cuspidal automorphic representation (n, H7C ) of G(A) = GL(2, EA) 
such that, if n ~ ®v nv ' then n~ ~ nv for all v such that D: ~ Gv ' We 
define Q(n) to be the field of definition of the representation n f as in [9, I, 
1.3], and define Q(nD ) analogously. More generally, if S is any finite set of 
nonarchimedean primes, let 

nf,S = ® nv ' 
v~S 

v finite 

D 10\ D 
nf,s = 'C>I nv ' 

v~S 
v finite 

and let Q(n, S) c C be the field fixed by (J E Aut(C) such that nf,s ~ n f,s; 
define Q(nD , S) analogously. Then it follows from strong multiplicity one for 
G (and the Jacquet-Langlands correspondence) that 

(2.2.1) Q(n, S) = Q(n), Q(nD , S) = Q(nD ) for any finite S 
(compare [47, Corollary 1.8.3]). In particular, letting S be the set of finite 
primes for which D is ramified, we find 

D (2.2.2) Q(n ) = Q(n) 
(cf. [47, Lemma 11.1.1]). It is known (cf. [37]) that Q( n) is either totally real 
or a CM field. 

The isomorphism (2.1.10) defines an embedding 
D", D DK::C D 

(2.2.3) nf = (L(~,r) ~ n) <-+ r(LD(C) , ~~,r»' 

Denote by r(LD(C) , ~f,r/ the image of this map. Let Q(n, D) = Q(n) . 
E(kD) . 
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2.2.4. Proposition. (a) There is a natural ((l1(n, D)-rational structure on the sub-
space r(LD(C) , S(f,r/ ~ n~ ojr(Lo(C) , S(f.r}) , compatible with the E(kD)-

rational structure on r(LD(C) , S(f,r})' 
(b) For 'l" E Gal(((l1j((l1), 

D :n; D(f) :n;(f) 
'l"(r(LD(C) , S(!v}) ) = r(LD(f)(C) , S(l£f ,r}) • 

Proof. Let Sf(D) be the set of nonarchimedean places at which D ramifies. 
For v ~ Sf(D) , v finite, fix an isomorphism D: ~ GL(2, Ev) and, for 
n 2: 0, let 

(2.2.4.1 ) 

where mv is the maximal ideal in the ring of integers &'v of Ev' Let c( v) 
be the smallest integer such that n~ ~ nv has fixed vectors under K J (m~); 
then c( v) = 0 for almost all v and, by the theory of new forms, the sub-
space n~(new) of K J (m~(V})-fixed vectors in n~ is one-dimensional. Let K = 

Kf(nD) = I1v f/. Sf(D} K J (m~(V}); then the Kf(nD)-fixed subspace 

(2.2.4.2) ( D)K rv 1\:)\ D nf = \(Y nv' 
VESf(D) 

Now let W = r(LD' S(f,r})(((l1(n, D)), Wo = WK. Then Wo is a ((l1(n, D)-
rational subspace of W. Let T be the finite set of nonarchimedean primes 
containing S f(D) and all v such that c( v) > O. For v ~ T, let ~ denote the 
local Hecke algebra at v, with coefficients in ((l1(n, D), relative to GL(2, &'v) ; 
let jf' = ®v f/. T~' Then jf' acts on (n~)K through a character a:n;: jf' -+ 

((l1(n) .E(kD). Let UO(n) c UO denote the a:n;-eigenspace for the natural action 
of jf' on Wo' Then UO(n) is rational over ((l1(n, D) since the D X (Af )-action 
on r(LD' S(f,r}) is E(kD)-rationai. It follows from strong multiplicity one and 
(2.2.4.2) that Wo(n) is a I1vESf(D} D: -invariant ((l1(n, D)-form of ®VESf(D) n~ . 

Now elementary arguments show that the D X (Af )-translates of UO(n) generate 
a ((l1(n, D)-form of r(LD' S(f,r/' This completes the proof of (a), and (b) 
follows easily from Proposition 2.1.6 and strong multiplicity one. 

As explained in [13, Appendix], the L-rational elements of r(LD' S(f, r») , 
for any L :J ((l1(n, D), can be recognized in terms of their restrictions to the 
Shimura subvarieties Sh(H % ,h,¥) and their D X (Af )-translates, for different 
(% , '1') , satisfying the conditions of Lemma 2.1.2. We fix such a pair (%, '1') 
and the corresponding space (L 0 .9I)D(k, r). Now the space L~,r) admits 
a finite-dimensional algebraic representation p = p~,r)IH% of H%. Say p ~ 

EB: J Xi over some finite extension E' of E(kD) , where each Xi E X(H}f')' 
Let 
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Any W = (WI' ••• , wm ) E X(p) , Wi E X(x) , defines a linear form 

Lw = (LW1 ' ••• , Lw): HO(Sh(H%, h"J, t[S(k,r)]) -t em 

where i: Sh (H %, h'¥) -t LD is the natural embedding. Let 
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-I -I -I -I 
p(w) Lw = P%(w, 'P) Lw = (p%(w l ,'P) Lw "'" P%(wm, 'P) Lw)' 

1 m 

Then Propositions A.8 and A.9 of [13, Appendix] amount to the following: 

2.2.5. Proposition. A section s E r(LD' S(f, r)) is rational over the extension 
L of E(!s..D) if and only if, for every pair (%, 'P) as in Lemma 2.1.2 and every 
Y E DX(Af), the restriction of the translate y*(s) to Sh(H%, h'¥) satisfies the 
conditions 

(i) For all WE X(p), P%(w, 'P)-I Lw(Y*(s)) E IQm; 
(ii) For all (J E Gal(lQ/ L . E'¥) , 

-I * a a -I * [p %(w, 'P) Lw(Y (s))] = p %(w ,'P) Lw" (y (s)). 

Moreover, if s E 1(LD' S(f,r)) is rational over the extension L then we can 
replace Gal(lQ/ L· E'¥) in (ii) by Gal(Q/ L), where Gal(Q/ E(!s..D)) acts on the 
set X(p), possibly allowing permutations of the components X(X), and on the 
set of Shimura subvarieties Sh(H % ,h,¥) by Deligne's theorem [4, IV]. 

2.2.6. Remark. As explained in [9, I, 1.3.6], the truth of this proposition de-
pends on the choice of a canonical trivialization. For the cotangent bundle 
n~ , we take the trivialization analogous to the one described in [loc.cit.], 

D 

based on the cotangent vectors d Zj' j E I,(D) , to (Sj±)L(Dl at h'¥. We iden-

tify n~ ~ EBaEL(Dl w,(~. 0) , where 2. is the d-tuple with 2 in the (Jth place 
D ) -)' } } 

and zeros elsewhere. Letting 2.D = LaEL(Dl 2.j' we may then identify the sheaf 
) 

niL(Dll f d'ffi . I . h q:>D LD 0 top I erentla s WIt IZ'cf.D ,0) . 

2.3. Automorphic forms on unitary groups. In practice, we will be looking at 
slightly more general groups. Let D be as above, and let (%, 'P), (%', 'P') 
be pairs as in 2.1.2; thus there exist embeddings i, i': % , %' -t D of algebras 
over E. Let 

GU%(D) = H% x D X /RE/<QGm,E' 
where RE/<QGm,E is embedded diagonally. The notation will be explained in 
§3. The pair (GU %(D), 1 x (Sj±)L(Dl) where 1 is the trivial homomorphism 
to H % ' satisfies the axioms for Shimura varieties; the variety 

L%,D := Sh(GU;r(D) , 1 x (Sj±)L(Dl) 

has a canonical model over E(Dx , (Sj±)L(Dl) , and there is an obvious morphism 
of canonical models: 
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Indeed, the factor H yt contributes nothing to the arithmetic of the canoni-
cal model, and only makes the space of connected components larger. Other 
Shimura varieties, involving H yt in a nontrivial way, can also be associated 
to GU yt(D); these varieties play an essential role in what Shimura calls the 
"second descent" in his construction of the canonical model of L D • These 
canonical models are also used in studying the special values of L-functions 
of 2 x 2 unitary groups in [11], and they could just as well have been used 
here, but the present formulation makes bookkeeping easier (however, cf. the 
Introduction) . 

There are morphisms Sh(H yt' , h'J") --t LD --t Lyt D associated to the maps 

(2.3.1 ) 

of Shimura data; here the map D X --t GU yt(D) is the obvious one. Let 

(2.3.2) 

be the map associated to the obvious map on the first factor and (2.3.1) on the 
second. 

A triple (li, X, r) , where (li, r) is a (d + I)-tuple as above and X E X(H yt) , 
defines an automorphic vector bundle ~:r;x) on Lyt,D which pulls back to 

[~] ® ~f,r) on Sh(Hyt, 1) x L D , if and only if r = w(X). Clearly, ~:r;x) 
has a canonical model over E(liD). Let Pyt' = p~,r)IHK' ~ 61:1 Xi' and write 
X(Pyt') = X(Xt) x ... x X(Xm ) , as above. There are isomorphisms 

Lift~,r;x): r(Lyt ,D(C) , ~:r;x)) ::::".9Iyt (li, r, X), 

where .9Iyt(li, r, X) ~ Cx ®.9I D(li, r), with Cx as in (1.2.1), but now where 
.9ID (li, r) = .9ID (li, r; .%' , qt'). We let (L o.9l)yt (li, r, X) denote the spaces 
of coefficients of functions in .9Iyt (li, r, X) , as in the remarks following (2.1.10). 

Proposition 2.2.5 immediately yields the following corollary. 

2.3.3. Corollary. A section s E qLyt,D~:r;x)) is rational over the exten-
sion L of E(liD) if and only if, for every (.%', qt') as above and every y E 
GU yt(D, AI), the pullback by i yt' of the translate y* (s) to Sh(H yt, 1) x 
Sh(H yt' , h'J") satisfies the conditions 

(i) Forall (00, 00') E X(X)xX(Pyt') ' Pyt,(w', qt')-ILw®Lw'(Y*(s)) E ((It; 
(ii) For all a E Gal(ij/ L . E'J' . E'J") , 

[Pyt,(w', 0/)-1 Lw ® Lw,(y*(s))t = [Pyt,(w"a , qt,)]-I Lwu ® Lw"u(Y*(s)). 

In (i) and (ii), the vector Pyt'(w', qt,)-I Lw ®Lw'(s) E em is defined in analogy 
with the considerations preceding Proposition 2.2.5. 

Moreover, if X(Pyt') = X(xl)x ... xX(xm ), as above, write Lw®Lw'(y*(s)) = 
(Lw®Lw~(Y*(s))), w~ EX(XJ. Then it suffices to verify the analogues of (i), (ii) 
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for (Lw 0 Lw' (y*(s))) with WE X(X), W~ E X(Xa) , for one fixed a (bearing 
in mind that a(w~t E X(Xb) where possibly Xb =1= Xa)' 
Proof. Everything is obvious except the final assertion. We treat the analo-
gous assertion for DX; the case of GU is identical. Thus we place our-
selves in the situation of Proposition 2.2.5. Suppose L (y*(s)) satisfies (i) 

Wi 

and (ii) for all Wi E X(X i ). Now Lift~,r/Y*(s)) is an L~,rfvalued func-
tion on D X (Q)\D x (A) which satisfies the automorphy condition (2.1.8). Write 
L~,r) = EB:, L~,r)(XJ. Fix (j E Gal(Q/L· E'I")' Under our hypothesis, the 
L~,r)(Xa)-component of Lift~,r)«s - sa)) is identically zero (by density of 
DX(Af)-orbitsin DX(Q)\Dx(A)). But L~,r) is an irreducible ZDx(JR).K:'-
module, so the automorphy condition implies that Lift~,r)«s - sa)) is identi-
cally zero. Thus s = sa . 

2.3.4. Remark. The distinction between the coefficients of .s;(D (k, r) , and the 
elements of .s;(D(k, r), which are vector-valued automorphic forms, compli-
cates the notation considerably, but is otherwise of no significance. 
Here is how to pass from one to the other; a similar procedure can be 
applied to .s;('%(k, r, X). Let {V(X i ) , i = 1, ... , m} be a basis of H,%-
eigenfunctions of L~,r)(Q) with the property that v(Xit = v(xf) for all (j E 

Gal(Q/E(kD ) • E'I')' Note that each Xi has multiplicity one in L~,r)' The 
{v (XJ} define a canonical trivialization of .2(:, r) , or of ~f, r) , near the point 
h'l" Let r(LDUC), ~f,r/r, for some n, and let l. = ,£1;, v(X) = Lift(s) E 

.s;(D(k, r). If WE X(X i ) , then we may write Lw(s) = Lw(1;) , where the latter 
is defined by the integral (1.2.2). But 1; belongs to the automorphic repre-
sentation nD • In this way, using a canonical trivialization as above, we can 
translate the arithmeticity criterion of 2.2.5 and 2.3.2 into a statement about 
holomorphic elements of nD , which can then be tested directly. We do this 
with minimal further comment in what follows. 

2.4. Complex conjugation. Henceforward, we restrict attention to the case %' 
= %. Thus the rationality criterion of Proposition 2.3.3 is only verified for 
fields containing E(kD ). E'I" In order to carry out a "second descent" for 
automorphic forms on D X , we can let the group GU ,%(D) vary; however, 
this will not be done in this paper. Choose a main involution 1 = 1,%, of D 
which induces the nontrivial element, also denoted 1 in § 1, of Gal(%' / E) on 
%'. Then / makes D into a %' -vector space of dimension 2. Moreover, 
/(%"x) is of index 2 in its normalizer NDx(i(%"x)) in D X , and we may 
choose an element J = J,%, E NDx (i'(%" x)) - /(%" x) such that J2 E EX , 
such that conjugation by J induces 1 on %', and such that Jl = -J. Let 
e(%) = J2 E EX . 

Let J 00 E D X (JR) be the archimedean component of J, and let J f be its 
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finite adelic component, so that ~ = ~(X) • ~ f as elements of D X (A). For any 
function rp on D X (A), let rpf(.%)(g) = rp(g. ~(X)) ; for Is.., r as above, let 

.9ID(Is.., r)l:.(D) = {rpf(.%), rp E .9ID(Is.., r)}. 

Then the space .9ID (Is.., r)l:.(D) does not depend on the choice of ~ and, for 
any FE .9ID(Is.., r), the complex conjugate FE .91 D (Is.. , r)l:.(D) ,just as in [9, I, 
§1]. Thus the map F 1-+ f(F) := F f (.%) is a complex antilinear involution of 
.9ID(Is.., r). 

On the other hand, complex conjugation I E Gal(ijjij) preserves LD and 
Z(~,r)' hence acts semilinearly on r(LD' Z(~,r)). Let n be a cuspidal auto-
morphic representation of D X • Evidently 

q,D 11: q,D 11: u q,D 11:' 
(2.4.1) I (r(LD , B(k,r)) ) = f(r(LD, B(k,r)) ) = r(o/ItD, lD(k,r)) , 

where n' is the conjugate of n, as in the discussion preceding Lemma 1.4.6 
of [9, I]. Denote again by I the corresponding complex antilinear involution of 
.9ID(Is.., r). 

We want to compare I and f. In the case of GL(2) , Shimura observed 
that they can be more or less identified, at least in their actions on new vectors; 
cf. [9, I, Lemma 1.4.6] for an account in the present language. In general, there 
is no theory of new vectors, because of the finite places at which D ramifies. As 
a substitute, we use the fact that characters of ~x occur with multiplicity one 
in n~ [33, Remark 3.5]. Thus, define Sf(D) as in the proof of Proposition 
2.2.4, and, for each v E SeD) := I.(D)' II S f(D) , let Xv be a character of 
~x which occurs in the restriction of n~. Note that ~ is necessarily a 
quadratic field extension of Ev for v E S(D). Let ~Sf(D) E I1vESf(D) D: be 
the Sf (D)-component of ~ , viewed as an element of D X (A), and similarly, let 
~D = ~(X) ·~Sf(D)· Let (Lo.9l)D(Is.., r)1I: = nD n (L o.9l)D(Is.., r) (the holomorphic 

vectors in nD), and let (Lo.9l)D (Is.., r)1I:( {Xv}) C nD be the ®VES(D) Xv-isotypic 
subspace of (Lo.9l)D(Is.., r) for I1vES(D)~x. Finally, let nD({xvl)new be the 
fixed space under the compact open subgroup Kf(nD ) defined in the proof of 
Proposition 2.2.4. Then nD ( {Xv} )new is one-dimensional, and the map F 1-+ 

F(· ~D) defines an antilinear isomorphism 

(2.4.2) f({xv}): nD({Xv})new ~ n"D({X~})new. 

Let {Xv}(X) E X(P~,r)) be the character corresponding to the Xv with v E 

I.(D)'. Let E(nD, {Xv}) denote the extension of ij(nD) .E({Xv}(X)) obtained 
by adjoining the values of {Xv} for v E Sf(D); since Xv occurs in n~, this 
is clearly a eM field (cf. the remark following (2.2.2)). Then E(n"D, {X~}) = 

E(nD, {Xv})' = E(nD, {Xv}) = E(nD, {Xv}), and both sides of (2.4.2) have 
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natural E(nD, {Xv})-rational structures, with the property that 
D{ new D (1 D (1 new D (1 (2.4.3) n (Xv}) (E(n, {Xv})) = n ({Xv}) (E(n, {Xv})) 
- D for all a E Gal(Q/Q(n ). E'I'). Indeed, the comparable statement without the 

conditions at finite primes has already been observed in Remark 2.3.4 (cf. 2.5.7, 
below), and the action of D X (Ai) is rational over the field E(kD ) c E(nD) . 
Let c( {Xv}) E C x be a constant such that 

f({xv})(nD({Xv}))new(E(nD , {Xv})) 
ID,new D{} = c({Xv})· n' ({Xv}) (E(n, Xv )). 

(2.4.4) 

The following lemma is a more precise version of [40, II, Lemma 4.2], and is a 
generalization to automorphic vector bundles of [27, II, Theorem 7.2]. 

2.4.5. Lemma. The c( {Xv}) can be chosen so that c( {xvl t = c( {X:}) for all 
a E Aut(C/Q(nD) . E'I'). In particular, c( {xvl) E E(nD , {Xv} ( . 
Proof. It would be preferable to have a more precise identification of the ac-
tion of complex conjugation on automorphic vector bundles, but (for reasons 
having to do with the nonuniqueness of 0) this may be the best possible. 
We imitate Shimura's proof in [40], using the rationality criterion of Propo-
sition 2.2.5. Suppose FE nD({Xv}tew(E(nD, {Xv})). It suffices to verify that 
f({Xv})(Ft = f({X:})(F) for all a E Aut(C/Q(nD) . E'I'). We compute 
Lw(f({xv})(Y*(F))) , where w is a Hecke character of.% with ~w .~7r = 1 
and I' E D X (Ai) (here we abuse notation by confusing F with the section of 
an automorphic vector bundle defined by F). It has to be shown that 
(2.4.5.1 ) 
[PJY(wl , '1')-1 Lw(f( {Xv} )(y*(F)))t = pJY((W')1 , '1')-1 Lw(f( {X:} )(y*(F))) , 

for all a E Aut(C/Q(nD). E'I') and all WE X(X). Now 

Lw(f( {Xv} )(y*(F))) = Lw(y*(F)(.OD)) 

= ( \ F(t· 0D . 1') . w(t) dt (H = H JY) J H(Q)·H(R)\H(A) 

= ( F(O-I .l . y') . wet) dt, where 1" = 0;;1 ·0· I' E D X (Ai) J H(Q)·H(R)\H(A) 

= ( F(l . 1") • w(t) dt (since 0- 1 E D X (Q)) J H(Q)·H(lR)\H(A) 

= ( F(t.yl).wl(t)dt=L,(y"*(F)). J H(Q).H(R)\H(A) w 

But it is shown in the appendix (A. 1 ) that we may take 

PJY(wl , '1') "'£'I'.£(w) PJY(w, '1'). 

This proves (2.4.5.1), at least for a E Gal(Q/Q(nD) ·E(w)), and the descent to 
Q(nD) . E'I' follows similarly from (A.2). 
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2.4.6. Remark. A special case of this lemma is used implicitly in § 15 of [13], 
and should have been proved there. 

2.4.7. It follows that 10 f defines a Q(nD ). E'I'-rational automorphism of 
r(LD' ~f.rl: . The case of GL(2) used in the appendix relies heavily on the 
theory of the q-expansion. 

2.5. Quadratic periods. We now introduce the basic quadratic period of the 
automorphic representation nD • Following [9, I, (1.4.3.2-3)], we may asso-
ciate to rp E s;(D(k, r)I.(D) a (0, I:I:(D)I)-form wrp on LD with coefficients in 
~f(I.(D)). r) • Here k(:I:(D)) is the d-tuple such that k(:I:(D)) j = kj if j tI. :I:(D) , 
k(:I:(D))j = 2 - kj is j E :I:(D). Now (2.2.6) defines a homomorphism 

(2 ) cpD cpD cpD '" nlI.(D)1 
.5.1 Ii:>(k.,r) ® Ii:>(MI.(D».-r) --+ li:>(lD' O) = u,.LD 

In fact, 

D D '" D II JH[k v II JH[k L(!£,r) ® LUs.cr.(D» . -r) = L(lD' 0) ® n () ® n ( ) 
jEI.(D)' jEr.(D)' 

as K/;, -module, and contraction of the last two factors defines the first arrow in 
(2.5.1). If rp E s;(D (k, r)I.(D) , let 

rp(-r)(g) = (2ni)-r lI.(DlIrp(g) ·IIND(g)ll~r E s;(D(k, _r)'f.(D). 

Then 

(2.5.2) I • -''f.(Dlil rp '-' rp = (2nl) [Wrp A Wrp'(_r)] ' 
def .LD 

where [*] denotes contraction, is a well-defined pairing 
=:0 D -1'f.(D)I D 

(2.5.3) H (~k,r») ® H (~k('f.(D» .r») --+ e. 
Here the subspaces H q (~f.r») c H q (~f.r») are defined as in [9, I] when D is 
split, and Ir(~f.r») = Hq(~f,r») when D is anisotropic. 

If F, G E s;(D(k, r), we define the normalized Petersson inner product 
(F , G) D = F '-' G. Then 

(2.5.4) (F ® C;, G ® C;)D = (F, G) D for any character C; of D X (A)j D X 
• 

We identify r(LD' ~f,r/ with the space of holomorphic forms in (the space 
of) nD , and denote r(LD' ~f,r/(Q(n, D)) the Q(n, D)-rational structure 
constructed in 2.2.4. 

2.5.5. Lemma. Foreach D such that nD exists. thereisaconstant qD(n) E eX 
such that. for every pair rp, rp' E r(LD' ~f.r/(Q(n, D)). 

I D 
(rp,rp)D"'Q(1C,D);Qq (n). 
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Moreover, if rp' E r(LD, ~f,r)t satisfies 
D -1' fi q:>D n q (n) . (rp, rp ) DE lQ(n, D) or all rp E r(LD , 0(~,r)) (lQ(n, D)), 

then rp' E f(LD, ~f,r)t(lQ(n, D)). 
Proof. The first statement follows exactly as in [13, §15], except for the 
Ga1(lQ/lQ)-equivariance; the power of (2ni) comes from the definition of rp( -r). 
But one can tautologically choose the q(nT, D(T)) consistently so that, for all 
r E Gal(lQ/lQ) , 

D -I , T D(T) T -I T ',T 
[q (n) . (rp , rp ) D) = q (n) . (rp , rp ) D' 

The second statement is obvious. 
It is practical to translate this into a criterion for rationality of the coeffi-

cients of vector-valued forms, which are elements of the automorphic represen-
tation nD • Let rp, rp' E r(LD , ~f,r/ ' and write Lift(rp) = L rpj . v(XJ E 

.s;1D(/s.., r, K, '1'), in the notation of Remark 2.3.4, Lift(rp') = L rp~ . v(XJ. 
Let (.,.) denote the L2-innerproducton (Lo.s;1)D(/s..,r,.%,'I'). We write 
rpj('%, '1') = rpj to emphasize dependence on the chosen point of trivia liz at ion. 

2.5.6. Corollary. For every pair rp, rp' E r(LD, ~f,r)t(lQ(n, D)) as above, 
, D 

(rpj('%, '1'), rpj('%, '1')) "'Q(n,D)'E(x;);Q q (n) 

where it is understood that Gal(lQ/lQ) permutes the Xj and the eM pairs (.% , '1') 
and thus permutes the rp J.% , '1') . Moreover, if rp' E r(LD , ~f, r/ 
satisfies (rpj('%, '1'), rp~(.%, '1')) "'Q(n,D)'E(x;);Q(n,D) qD(n) for all rp E 

r(LD , ~f,r/(lQ(n, D)) then rp' E r(LD , ~f,r/(lQ(n, D)). 

Proof. The space of coefficients of r(LD , ~f,r/(lQ(n, D)) defines a DX(Af)_ 

invariant lQ(n, D) . E,¥-rational structure on (L~,r/ 0 n~. Each rp/'%, '1') 
is an lQ(n, D) . E'¥. E(xj)-rational vector such that rpj('%, 'I')T = rpT(i)('%, '1') 
for r E Gal(lQ/lQ(n, D) . E'¥) , where r(i) is defined in the obvious way. Fur-
thermore, (.,.) is a D X (Af )-invariant hermitian or skew-hermitian form on 
(L~, r/ 0n~ . The argument in [13, § 15] thus shows the existence of a constant 
q(n, D;'%, '1') such that 

(rp j(.% , '1') , rp;(.% , '1')) "'Q(n, D)'E(X); Q(n, D)'E'I' q(n , D; .% , '1') . 

Expressing (rp, rp') D in terms of (', .), it follows from Lemma 2.5.5 that 
D 

q(n, D; .%, '1') "'Q(n ,D)'E'I' q (n). 

Here we are making use of the fact that (rpJ.%, '1'), rp~(.%, '1')) = 0 for i =I- j, 

because the characters Xj have multiplicity one in L~,r)' The Gal(lQ/lQ)-
equivariance and the second statement follow as in the proof of the lemma. 
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The following statement can be extracted from the proof of the above corol-
lary. 

2.5.7. Lemma. Let X(p~,r»)={Xi' ... , Xm }. Let 9'Er(LD' ~f,r/r(Q(n, D)) 
and, for each i, let 9';(%, '1') E nD be the corresponding coefficient of 9', so 
that 

9';(%, '1') E n~'Xi := V(X;)«L~,r»)*) ® n~ C n D . 

Then the D X (AI )-translates of 9'; generate a Q(n, D) .E'P.E(x;)-rational struc-
t D'Xi(tnI( D) E E()) D,Xi ", D ure n I "'£ n, . 'P. X; on n I = n I . 

Finally, we observe the following normalization: 

2.5.8. Lemma. If I.(D) = 0; then we may take qD(n) = 1. 
Proof. If I.(D) = 0, then E(Dx , (Sl)l:(D») = Q, E(kD) = E(k) , and LD is 
a profinite scheme over Q. The space Lift(r(LD' ~f,r»)(E(k))) may then be 
identified, by restriction, with the space of (L~,r)(E(k))*)-valued functions on 
{1} 00 x D X (AI) ,where {1} 00 is the identity in D X (JR). Since E(k) c Q(n) , 
Lift(r(LD' ~f,r)t(Q(n))) is a space of (L~,r)(Q(n))*)-valued functions on 
{I} 00 x D X (AI). Since the volume of LD is a rational number, the lemma is 
thus clear. 

2.6. Statement of the main theorem. The following theorem is a partial answer 
to a conjecture of Shimura in [42, 43]. 

2.6.1. Theorem. Let n be an irreducible, cuspidal, motivic automorphic repre-
sentation of GL(2, E), associated to automorphic forms of weight (k, r), with 
k j 2: 2 for all j. Suppose there is a finite place Vo of E such that the local 
factor nv of n is special or supercuspidal. Let I and J c I., and let D1 , 

o 
D2 , D3, and D4 be quaternion algebras over E with I.(D1) = I, I.(D2 ) = J, 
I.(D3) = In J, I.(D4) = I U J, and such that nDi exists for i = 1, 2, 3, 4. 
Then 

D D D D q I (n) . q 2 ( n) "'ij q 3 ( n) . q 4 ( n) . 

2.6.2. Remarks. (a) As stated, this is not the most general theorem which can 
be proved by the methods of this paper. For example, it will be shown in 
§7 that, if d, III, IJI, and II n JI are all even, then the local hypothesis 
at Vo is unnecessary (cf. Theorem 2.6.5, below). Furthermore, the case in 
which In J = 0, I u J = I. was proved by Shimura in [42, Theorem 5.4]. 
However, Shimura's conjecture is more general in an essential way: he predicts 
the existence of invariants which play the role of the qD (n) even when n D does 
not exist. We have suggested elsewhere that the invariants denoted vI (n) in § 1.8 
should satisfy Shimura's conditions, and in particular have the multiplicativity 
property asserted in the Theorem for the qD(I) (n) . A proof that this is the case 
will appear in [9, II]. 
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The case In J = 0, I u J = 1: will be referred to as Shimura's case 0/ 
Theorem 2.6.1, and will be used in the induction step of the proof. Another 
proof of this case, independent of Shimura's theorem, is given in §7.3. 

(b) The local conditions ensure that, for every subset I c 1:, there exists at 
least one quatemion algebra D(I) with 1:(D(I)) = I, such that nD(I) exists. 
Indeed, letting S = IU{vo}' n is in the discrete series at all places in S. Thus, 
if D is any quatemion algebra over E unramified outside S, nD exists. There 
exists exactly one quatemion algebra D(I) ramified at 1: - I and unramified 
outside S. We use this notation in the sequel. 

(c) Shimura has proved [42, Theorem 5.6] that, if D and D' are quater-
nion algebras over E with 1:(D) = 1:(D') , such that nD and nD' exist, then, 

D D' under the hypotheses of Theorem 2.6.1, q (n) '" q (n). In fact, Shimura's 
statement is slightly different. His argument proves the following: if there ex-
ists a quatemion algebra D" with 1:(D") = 1:(D)' , such that nD" exists, then 
D() D' II • q n '" q (n). Such a D eXIsts (as we have seen) under the hypotheses of 

the theorem, but also if we assume 11:(D)'1 to be even, which is one of the hy-
potheses made by Shimura. He gives a different argument to demonstrate that 
qD(n) '" qD' (n) if k j ~ 3 for all j E 1:(D)' . Our methods also provide a slight 
strengthening of this result, but we again prefer to prove this fact in complete 
generality. The proof, which makes no direct use of the theta correspondence, 
will appear in [9, II]. 

(d) Shimura also conjectures that the actual periods of arithmetic automor-
phic forms on quatemion algebras over E satisfy multiplicative relations, anal-
ogous to those asserted in Theorem 2.6.1 for the quadratic periods qD(n). As 
explained in the introduction, the methods of this paper shed no light on this 
question. 

More generally, the truth of the Tate conjecture would imply the existence of 
a factorization over E of motives M(n) ~ ®~=1 M(nD({Gj })), where M(nD) is 
the motive attached to the automorphic representation nD , which can actually 
be realized, by Jannsen's methods [18], as a motive for absolute Hodge cycles. 
Such an isomorphism, on the level of Hodge-de Rham structures, would imply 
more precise period relations than those proved in the present paper, in the 
sense that the action of Gal(Q/Q) on the ratio of the two sides of Theorem 
2.6.1 could be read in terms of the Galois action on the arguments. 

When n is of the form n( w, %), the invariants qD (n) are denoted 
qD (w , %). These have been identified by Shimura in terms of the eM periods 
introduced in § 1. With our normalizations, Shimura's theorem is as follows: 

2.6.3. Theorem (Shimura, [42]). Let w be a motivic Hecke character 0/ %. 
Let D be a quaternion algebra over E which splits over %, and let S(D) 
denote the set o/primes at which D ramifies. Suppose that, for all v E 1:uS(D) , 
Wv =I- w~. Then n(w, %)D exists, and qD(W, %) "'ij p.%(w/w', '1'), where 
'I' is the unique subset 0/1:.% such that 'I' n 1'1' = 0, 'l'IE = 1:(D) , and w is 
strictly compatible with '1'. 
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Proof. The local conditions at S(D) are necessary and sufficient for n( w, %) 
to be in the discrete series at all places of S(D) [17]. Thus n(w, %)D exists. 
The existence and uniqueness of \}' is a consequence of the local conditions 
at ~, which imply that k j (w) ~ 2 for all j. Shimura expressed his formula 
in terms of P%(X, 1\}'1)2 , in the notation of Remark 1.7(a), where wE X(X). 
But, taking into account our slightly different normalizations of the Petersson 
norm, our formulation follows from his because 

p %(X, 1\}'1)2 "'"ij p %( w, \}') / p %( w, l\}') "'"ij p % (w / WI ,\}') (by Lemma 1.6). 

(He also only considered a fixed choice of r for each If. But replacing w by 
w . (II . IIA)i , for i E Z, allows us to shift r within its residue class mod 2, 
and the character W· (1I·II A )i/(w. (1I·II A)i/ is independent of i. Since (by 
(2.5.4)) qD(n) is also invariant under twists, this shows that it suffices to verify 
the assertion of the theorem for a fixed r == kj (mod 2) . 

We give a different proof of Theorem 2.6.3 in §7.2. 
2.6.4. Corollary (Shimura, [42]). Let % be a quadratic CM extension of E, 
and let w be a motivic Heeke character of % such that, for some place Vo of E 
which does not split in %, Wv i- w~ . Then the conclusions of Theorem 2.6.1 

o 0 

are true when n = n( w , %) . 
Proof. This is an immediate consequence of Shimura's Theorem 2.6.3 and 
Corollary 1.5 (which was also proved up to «Y by Shimura). 

We will actually prove the following weaker version of Theorem 2.6.1. 
2.6.5. Theorem. Let (If, r) be a d + 1 tuple with k j ~ 2, k j == r (mod 2) for 
all j. Let I C I' ~~, J = I' - I. There exists a constant C = C(If, I, J) E 

eX with the following property: Let n be an automorphic representation of 
GL(2, E) satisfying the hypotheses of Theorem 2.6.1, with D, = D(I), D2 = 

D(J), D3 = D(0), D4 = D(I'). Then 
D D D D D q I (n) . q 2(n) "'"ij Cq 3(n)· q 4(n) "'"ij C. q 4(n). 

Moreover, if d, I~ - II, I~ - JI, and IJI are all even, then the local hypothesis 
at Vo is unnecessary. 
2.6.6. Corollary. Theorem 2.6.1 follows from the first part of Theorem 2.6.5, 
and it is sufficient to consider the case I J I = 1 . 
Proof. Note first that, by Remark 2.6.2 (c), it suffices to prove Theorem 2.6.1 
when D, = D(I), D2 = D(J), D3 = D(I n J), D4 = D(I U J), in the notation 
of 2.6.2(b). For aj E ~, let D(j) = D( {a)). Then Theorem 2.6.1 is clearly 
equivalent to the relation 

(2.6.6.1 ) qD (n) "'"ij II qD(j) (n) . 
jEr-(D) 

By induction on I~(D)I, it suffices to prove Theorem 2.6.1 for In J = 0, 
IJI = 1. Furthermore, by Shimura's case of Theorem 2.6.1 (cf. Remark (a) 
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and §7.3 below), we may assume 1:.(D) =/:-1:.. Let [' = [u J. Assume we have 
a constant C such that qDI (n) . qD2(n) "'Q C· qD4(n) for any n satisfying the 
hypotheses of Theorem 2.6.5. Take n = n(w, %), for some Hecke character 
w of % as in Corollary 2.6.4, with Ii(w) = Ii, 1- w(w) = r. Then Corollary 
2.6.4 implies that C "'Q 1 , and we are done. 

3. THETA CORRESPONDENCES FOR QUATERNION ALGEBRAS: GENERALITIES 

3.1. Let D be a quaternion algebra over E, and let l: D ---- D be a main 
involution, respectively, so that ND(d) = TrD(d.d' ). Then (x, Y)D = TrD(x.y') 
is a nondegenerate inner product on the E-vector space D, and we let GO(D) 
denote the group of similitudes of (', .) D : 
(3.1.1) 

GO(D) = {g E GLE(D): (gx, gY)D = va(g)(x, Y)D for all x, Y ED}. 

The homomorphism va: GO(D) ---- RE/QGm is defined by (3.1.1). There is a 
map p: D X x D X ---- GO(D) , with kernel RE/QGm , embedded diagonally: 

The image of p may thus be identified with the group GOo(D) introduced in 
§2.3, and indeed is equal to the algebraic connected component of GO(D). If 
we define t E GO(D) by t(x) = x' ,then GO(D) is the semidirect product of 
GOo(D) with the group of order two generated by t. 

Let % be a totally imaginary quadratic extension of E over which D 
splits, and let i: % ---- D be an embedding of % in D; choose f5 = f5,% E 
NDx (i(%x)) - i(%x), as in §2.3. 

Let GU ,%(D) denote the subgroup of % -linear elements of GO(D). There 
exists a unique l-hermitian form (.,.) D'% on D such that (.,.) D = 

Tr'%/E(" ')D,'% and such that (K, A)D,'% = KI for K, A E % cD. Then 
GU,%(D) is the group of unitary similitudes of (', ')D,'%' The map p of 
(3.1.2), restricted to H,% x D X , evidently has image in GL,%(D) n GO(D) , and 
it is easy to see that p induces an isomorphism H,% xDx / RE/QGm ..:::. GU ,%(D) ; 
thus GU ,%(D) is the group defined in 2.3. The restriction of va to GU ,%(D) is 
denoted v,%. When D is the matrix algebra M(2, E), we write GU,%(s) for 
GU ,%(D). Let j{ E % be a nonzero element such that Tr '%/E(j{) = O. Then 
(', .) D, JI := j{. (', .) D,'% is a skew-hermitian form on D, whose similitude group 
is again given by GU ,%(D) . 

3.2. The following construction is taken from [12, 5.1] and [13, §3]; it has 
been used elsewhere. Let .W' / E be an algebra with involution (J. If V is 
an .W' -vector space endowed with a hermitian or skew-hermitian bilinear form 
p, relative to (J, let G~(V) denote the group of similitudes of (V, P), let 
vp: G~(V, P) ---- Gm denote the similitude character, and let ~(V, P) 
Ker(vp)' Let (V, P) and (V', p') be two such spaces; we assume p is 
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skew-hermitian and p' is hermitian. We let 
(3.2.1) 
R(V, V') = R~(V, V') = {(g, g') E G~(V, P) X G~(V', P')lvp(g) = Vp/(g')}. 

I 0)/ I 0)/ I I Let prl : R(V, V) -+ Gu (V, P), pr2 : (V, V) -+ Gu (V , P) be the natural 
projections. Then R(V, V') is an algebraic group, and over any completion 
Ev of v, the image prj(R(V, V')(Ev)) is of finite index in the corresponding 
similitude group. We always have the inclusion 

~(V, P) X ~(V', p') c R(V, V'). 

We regard V as a right d -module and V' as a left d -module. The tensor 
product V ® ~ V' , viewed as an E -vector space, has a natural skew-symmetric 
form defined by p ® p' . The map 
(3.2.2) 
i: G~(V, P)xG~(V', p') -+ GL(V®~ V'); • I I I -I I l(g, g )(v®v ) = vg®(g) v 

takes R(V, V') to Sp(V ®~ V'); this map is a homomorphism under the 
convention that similitude groups of skew-hermitian forms act on the right. 

We write GL(2)E for RE/Q GL(2)E. Let R(D) = {(g, g') E GL(2) x 
GO(D)I det(g) = VO(g')}. In the notation of (3.2.1), this is R(E2 , D), where 
E2 is given the standard symplectic structure and D is viewed as a quadratic 
space; define prl : R(D) -+ GL(2) , pr2 : R(D) -+ GO(D) as above. For any 
place v of E, we write R(Dv) = R(D)(Ev) ' etc. As remarked in [13, §3), pr2 
maps R(Dv) onto GO(Dv) for all v; pr l maps R(Dv) onto GL(2, Ev) for 
all finite v, and for all v E l:(D) ; for vEl: - l:(D) , the image of prl is the 
subgroup GL(2, lR)+ c GL(2, Ev) of elements with positive determinant. 

Endow E2 with the standard symplectic form ( , ) = (~I ~) and view 
G L( 2, E) as the group G Sp( W) of symplectic similitudes. The tensor product 
(., .) ® (., .) D defines a nondegenerate alternating form on W = W ® D. The 
map (3.2.2) defines a natural homomorphism 

j: R(D) -+ Sp(W) . 

3.2.3. Fix a nontrivial additive character If/ of E\E A' Let , '" denote the 
usual action of SL(2, E) (Schrodinger model) on the Schwartz-Bruhat space 
.9'(D(A)) of D(A). This is given by the following familiar formulas: 

(3.2.3.1) 

(3.2.3.2) 

(3.2.3.3) 

, '" ( (~ a~I)) qJ(x) = Ila11 2 • qJ(xa) , 

'", (( ~ ~)) qJ(x) = If/(b· ND(x))· qJ(X) , 

, '" (C~\ ~ ) ) qJ(x) = _¢(Xl) , 

where rjJ is the Fourier transform of qJ with respect to If/ and a self-dual mea-
sure for If/. For future reference, we note that, if % is a quadratic extension 
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of E which embeds in D, then '", extends to the quasi split 2 x 2 unitary 
group U %(s) by letting 

(3.2.3.4) '", (( ~ (al~-J)) qJ(x) = IIN%/E(a)II A • qJ(a· x), a E ~x . 
For hE GO(D(A)) and qJ E 9(D(A)) , let 

(3.2.4) L(h)qJ(x) = Ivo(h)I- J qJ(h -J x), X E D(A). 

Since det(h)2 = vO(h)4 , these operators are unitary. The restriction of (3.2.4) 
to O(D(A)) then commutes with,,,,, and these are the usual actions associated 
to the dual reductive pair (SL(2, E), O(D)). As explained in [12, 5.1], if we 
let GO(D) act on SL(2, E) by the formula 

h*g= (~ v~h))g(~ V~h))-J, 
then R(D) ~ SL(2, E) )q GO(D) (semidirect product), and,,,, and L together 
define a unitary representation, again denoted,,,,, of R(D(A)) on 9(D(A)) . 

For (g, h) E R(D) and qJ E 9(D(A)) , let 

O(g,h;qJ)= L ,,,,(g,h)qJ(x). 
xED(E) 

Let D, D' be two quatemion algebras which split over % , and let i: % ---+ 

D, i': % ---+ D' be embeddings as above. View D, D' as % -vector spaces 
and endow them with the hermitian (resp. skew-hermitian) forms (., .) D % and 
(., ·)D',lI' respectively; then (., ·)w' := (., ·)D,% 0 (., ·)D',lI is a skew-he~mitian 
form on W' := D 0% D'. Denote by U(W') the unitary group of (., ·)w" 
and by GU(W') the similitude group. Write R(D, D' ,%) = R(D, D'), in 
the notation (3.2.1). The projections prJ: R(D, D', %) ---+ GU%(D) , pr2: 
R(D, D' , %) ---+ GU %(D') define surjective morphisms on points over Ev for 
all finite v, and for all v E 1: such that Dv ~ D~. If v E 1: is such that Dv 
(resp. D~) is ramified and D~ (resp. Dv) is split, then prJ (resp. pr2) is 
surjective over Ev and the image of pr2 (resp. prJ) is the identity component 
of GU%(D~) (resp. GU%(DJ). 

We may also view D' as a right GU %(D')-module by letting 

x(h,d)=h-Jxd, hEH%, dED"x, XED'. 

When D' = M(2) , the restriction of this right action to D" x = GL(2) coin-
cides with the one used in (3.2.2). 

Thus, we view D' (resp. D) as a right (resp. left) module over GU,Jr(D') 
( ,. ,,, 
resp. GU%(D)), and W as a fight module over GU(W). Let W = 

R%/E W'; then Tr%/E(·' ·)w' is a skew-symmetric form, so U(W') embeds 
naturally in Sp(W"). The map (3.2.2) then defines a natural homomorphism 

j: R(D, D' , %) ---+ U(W') ---+ Sp(W") . 
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For any symplectic vector space W over E, let Mp(W) denote the meta-
plectic cover of Sp(W)A' which we view as an extension of Sp(W)A by eX 
as in [28]. If v is a place of E, we let Mp(~) be the local metaplectic cover 
of Sp(~). If U c Sp(W)A' f) denotes the inverse image of U in Mp(W). 

3.3. Lemma. Let U = j(R(D, D' ,%)) c Sp(W"). There exists a splitting 
U ---> f) c Mp(W") whose restriction to Un Sp(W") (E) = j(R(D, D' , %)(E)) 
coincides with the canonical splitting defined by Wei!. 

•• o,~/" """. " Proo). Let H' denote the double space W EI7 (-W ), where (-W ) 1S W 
with its symplectic form multiplied by -1. Similarly, let W' be the skew-
hermitian double space W' EI7 (-W') , so that U(W') c Sp(W"). We may 
identify W' ~ D 18>,% D' EI7 D 18>,% (-D') ~ D 18>,% (D' EI7 (-D')) , and define 
R(D, (D' EI7( -D'))) by (3.2.1), and j' : R(D, (D' EI7( -D'm ---> U(W') by (3.2.2). 
As in the orthogonal case, there is an isomorphism 

(3.3.1) R(D, (D' EI7 (-D'm ~ U(D' EI7 (-D')) ~ GU ,%(D). 

We define an action of the right-hand side of (3.3.1) on the Schwartz-Bruhat 
space .9'(D(Al) as follows: For h E GU,% (D(A)) and rp E .9'(D(A)2) , let 

(3.3.2) L(h)rp((xi ' x2)) = Ivo(h)I-2 rp(h -I XI ' h -I x2) , XI ' x2 E D(A) . 

Now let D'(A) = {(d, d) ED' EI7 (-D'n, D'(-A) = {(d, -d) ED' EI7 (-D'n; 
then 

(3.3.3) 

is a full polarization of D' EI7 (-D'). Since D is even-dimensional, the formulas 
for the Schrodinger model, derived in this case by Kudla [51, §5] and reproduced 
in part in §3.4 below, define a Weil representation rlfJ of U(D' EI7 (-D')) on 
.9'(D(A)2) . As in the previous case, these actions together define an action r IfJ 

of R(D, (D' EI7 (-D'))) on .9'(D(A)2) , which splits Mp(W") over the image 
of R(D, (D EI7 (-D'm. But now 

U = /(R(D, (D' EI7 (-D')), %)) n (U(W') x {l}). 

The restriction of r IfJ to U is the desired splitting. 

3.4. Remark on splittings. The existence of splittings at all finite primes of the 
restriction of Mpv(W~) over U(W~) is demonstrated in [28, p. 51 ff.]. This 
is the main reason we prefer to define the metaplectic cover as an extension by 
eX , rather than the more familiar two-fold cover. An easy cocycle computation 
shows that Mpv(W~) splits over U(W~) for archimedean primes as well-
certainly the corresponding statement is not true of the double cover for real 
primes. The set of splittings is a principal homogeneous space under the set of 
characters U(W~) ---> eX = Ker(Mp(W~) ---> Sp(W~)), and Lemma 3.3 serves 
to normalize the splitting globally. 

When the residue characteristic of v is different from 2 and v is inert 
in %, this splitting has a different description. In that case, the covering 
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Mp(W~) -+ Sp(W~) splits over the maximal compact subgroup K" stabilizing 
a self-dual lattice A" c W~ (the lattice model, cf. [28, 1I.8]), and this splitting 
is necessarily unique. 

In what follows, we will have to consider splittings over subgroups of 
j(R(D, D', %)), and we will always assume them to have been induced by 
the doubling construction of the preceding lemma; we call this procedure "dou-
bling D (as a hermitian space)". When D' is itself split (as in §3.4, below), 
we use the splitting of j(R(D, D' , %)) defined by a complete polarization of 
D'; but this is equivalent to the splitting constructed in §3.3, since any two 
Schrodinger models for U(D' EB (-D')) define equivalent representations. 

Unfortunately, some of the seesaw pairs described below introduce new dual 
pairs in which one of the hermitian spaces is odd dimensional, in which case the 
splitting cannot be defined canonically as above. The necessary modifications 
are described in §3.6 below. 

We will need some of the formulas for the Schrodinger model below. Let 
x = (XI' x2) E D(A)2 . As special cases of [51, loc.cit.], we have 

(3.4.1) 

r'll ( (~ (A~-I)) qJ(x) = liN .%)E det(a)IIA • qJ(x, A); A E GL(2,~), 

(3.4.2) 

r'll ( (6 ~)) qJ(X) = V/(B[x]) • qJ(X) , B E M(2, ~) hermitian. 

In (3.4.2), B[x] E EA is the trace of the 2 x 2 matrix of inner products 
«XI' x2), (XI' x2) • B))D,Z' 

3.5. Seesaw pairs (a catalogue). Most relations between periods of automor-
phic forms on different groups are derived from seesaw dual reductive pairs. An 
abstract definition can be found in [21]; we will be content to explain a few 
examples, including most of those listed in [loc.cit.]. In what follows, % / E IS 
a quadratic extension of local or global fields. 

3.5.1. Let (V, P) be a hermitian space, (V', P') a skew-hermitian space, 
relative to the quadratic extension %/E. Then (Uz(V), Uz(V')) form a 
dual reductive pair, and the product Uz(V) x Uz(V') lies inside a group 
R(V, V') as in (3.2.1), which acts on V ®z V'. Then (RZ/E(V), Trz/E(p)) 
(resp. (RZ/E(V'), Tr Z/E(p'm is naturally an orthogonal (resp. symplectic) 
space. Assume V = % ® W, V' = % ® W' in such a way that Plw is 
symmetric and P'l w' is skew-symmetric. Then (O(W), Sp(RZ/E(V')) and 
(O(RZ/E(V)), SpeW')) are dual reductive pairs. The relations between these 
pairs and the pair (Uz(V), Uz(V')) are represented by the following "seesaw 
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diagrams," which we write in terms of the similitude groups: 

GU%(V') GO(R%/E(V)) 

(3.5.1.1 ) Xl 
GSp(W') 

GSP(R%/E(V')) GU%(V) 

(3.5.1.2) X 
GO(W) 

The vertical segments represent inclusions (the group below is included in the 
group above), the diagonal segments represent dual reductive pairs. 

An example of the first diagram is given by V = M(2, E), V' = D, as 
in §3.2, above. The E-structure W is the space of fixed points of the main 
involution I, defined relative to the embedding .% -t M(2, E). We write 
GU%(s) = GU%(M(2, E)); the corresponding seesaw diagram is 

GU %(s) GO(D) 

(3.5.1.3) X 
GL(2)E GU%(D) 

with notation as above. 

3.5.2. Retain the notation of 3.5.1, and suppose V = ~ EEl ~ is an orthogonal 
direct sum of hermitian spaces. We then have the seesaw diagram: 

Gu,Jf(V) G(U%(V') x UJf(V')) 

(3.5.2.1) X 
G(U%(~) x U%(~)) GUJf(V') 

where, in general, we let 

G(U %(V) x U%(W)) = {(g, h) E GUJf(V) x GUJf(W))!vv(g) = vw(h)}. 

When V' = D', V = D as above, let ~ = i('%) , f2 = i('%) . J as above. 
Then (3.5.2.1) becomes 

GU,5r(D) G(U,Jf(D') x U,Jf(D')) 

(3.5.2.2) X 
G(UJf(~) x UJf(~)) GUJf(D') 
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Similarly, if D' = M(2, E) , we obtain a seesaw diagram: 

GO(D) GL(2)dOub 

(3.5.2.3) x 
G(O(~) x O(V;)) GL(2)E 

where GL(2)doub = {(g, h) E GL(2, E)21 det(g) = det(h)}. 

3.5.3. The doubling method [14, 34] provides another source of seesaw pairs. If 
V and V' are as above, let (- V') denote the skew-hermitian space (V', _p'); 
the same definition is used for hermitian spaces in §6. We have the diagram (a 
special case of (3.5.2.1)): 

GU%(V' EfJ (-V')) G(U%(V) x U%(V)) 

(3.5.3.1 ) x 
where G(U %(V') xU,%( - V')) acts diagonally on V' EfJ( - V') and the right-hand 
vertical segment is the diagonal embedding. 

This can be combined with (3.5.2.1) as follows: 
(3.5.3.2) 

G(Ujf"(V' Ef) V2) x ujf"(V, Ef) V2 ))) 

I 
G(Ujf"(~) x ujf"(V2) x ujf"(V,) x ujf"(V2 )) G(Ujf"(V') x ujf"(-V')) 

3.6. Assume that, in diagram (3.5.3.1), the space V is odd dimensional. As 
remarked at the end of §3.4, the metaplectic covers of the groups R( V, ± V') , 
can no longer be split canonically by means of the construction of Lemma 
3.3. The same problem evidently arises in (3.5.3.2) if ~ and V; are both 
odd dimensional, even though R( V, V') has a canonical splitting in that case. 
Suppose ~ = %, V; = % J as in (3.5.2.2), but V'is arbitrary, of dimension 
n; we explain how to interpret the diagram (3.5.3.2) in this case, which will be 
sufficient for our purposes. Write GU(%) instead of GU %(%). 

Note first that, as a skew-hermitian space, 
(3.6.1) 
(~0% VI)EfJ(~0%(_V')) ~ (~0% V')EfJ((-~)0% V') ~ (~EfJ(-~))0% V', 

for i = 1 , 2. Write U %(n , n) for the quasi-split unitary group in its standard 
representation on %2n , so that U % (~ EfJ (- ~)) ~ U % (1 , 1). Let '?O (resp. 
'?d) be the lower left-hand (resp. upper right-hand) corner of (3.5.3.2); then 
the theta-lifting from '?O to '?d is the same as that from 

'?:= G(U%(~) x U%(V;) x U%(-V1) x U%(-V;)) 

to 
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Define R(~',~) c ~'(A) x ~(A) by analogy with (3.2.1). Now we may place 
these two in the doubled diagram for (3.5.3.1): 

G(U%(V; E9 (-V;» x U%(Vi E9 (-Vi))) ~' 

(3.6.2) x 
Now the splitting for the upper-Ieftjlower-right diagonal can be defined by 
doubling the Schrodinger model for the action of U%(I, 1) )<I GU%(V') on 
..9'(V'(A)). (When V' = D', the case of interest to US, this is given by for-
mulas (3.2.3.2-4) and (3.2.4) with D replaced by D', viewing GU %(D') as 
a subgroup of GO(D').) This defines by restriction an action of ~(A) on 
..9'(V'(A» , which has to be extended to an action of R(~',~). 

It suffices to define the analogous extension for the pair R(V', V;) of (3.2.1), 
i = 1, 2, so that R(~' , ~) c R(V', V;)2 x R(V' , Vi)2. Now as skew-hermitian 
space, V' E9 ( - V') ~ % 0 E W' ,where W' is the standard symplectic space of 
dimension 2n. Thus we have a special case of diagram (3.5.1.1): 

GU%(V' E9 (-V')) GO(R%/E%) 

(3.6.3) x 
GSp(W') 

The group R(W', R%/E%) of (3.2.1) is isomorphic to Sp(W') )<I 

GO%(R%/E%) as before, and its action r /fI on the Schwartz-Bruhat space 
..9' = ..9'(%(A)n) is defined in the Schrodinger model by the analogues of the 
formulas (3.4.1-2), (3.3.2). Especially, if 

a(A) = (~ lAO-I) E Sp(n, EA) ~ Sp(W'(A», A E GL(n, EA), 

then instead of (3.4.1) we have 
(3.6.4) 
r/fl(a(A))tp«x)) = 8%(det(A» II det(A)IIA · tp«x)· A), 

where 8%: EX\E: ---+ eX is the quadratic character associated to % jE. Now 
each extension y: % X \~X ---+ e X of 8% to a Hecke character of % defines 
an extension of r/fl to a Schrodinger model r/fl,)': U%(V' E9 (-V'» ---+ Aut (..9') , 
uniquely determined by the formula 
(3.6.5) 
r/fl,)'(a%(A»tp«x)) = y(det(A» II det(A)IIA·tp«x)·A), (x) E %(A)n, tpE..9', 

for 

AEGL(n,~), 

a%(A) = (~ CA~I)/) E U%(n, n)(A) ~ U%(V' E9 (-V'»(A) , 
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where I is conjugation of % over E . Then r IfI ,Y likewise extends to an action 
of the group R( (V' EB (-V'), ~) on Y. From here we reason as in the proof 
of Lemma 3.3 to obtain a splitting over R(V', ~). (For a different approach, 
cf. [7, §3.2].) 

However, in our applications, as in (3.5.3.2), we always work with the dou-
ble of the pair (GU%(V' EB (-V')), GU%(~)). Thus we are free to define the 
Schrodinger model for the pair (G(U %(V' EB (-V'))2) , G(U %(~)) x U %( - ~))) 
to be the restriction of rJl1 0 r -(, and then restrict to R(V', VI-) x ... ,Y 1fI, Y 
R(V' , (- ~)). It is easy to see that this choice is in fact forced upon us by the di-
agram (3.6.2) when the action of R( V; EB (-V;), V') is given by the Schrodinger 
model. 
3.7. Let 

G'V G')/' 

IXI 
G')/ G'V' 

be any of the seesaw diagrams above, where the groups are similitude groups of 
certain bilinear forms. Let 'V, 'V', ')/, and ')/' be the corresponding symme-
try groups (the kernels of the similitude homomorphisms). Define R('V, 'V') c 
G'V X G'V', R(')/, ')/') c G')/ X G')/' , as in (3.2.1). There are maps 

j~: R('V, 'V') ~ Sp(Y) , jr: R(')/ , ')/') ~ Sp(Y) 
as in (3.2.2), for some symplectic space Y (the same for the 'V's and the 
')/ 's), such that (j('V) , j('V')) and (j(')/) , j(')/')) are dual reductive pairs in 
Sp(Y) (cf. [21]). In practice, we will also be given splittings 

f~: R('V, 'V') ~ Mp(Y) , f r : R(,)/ , ')/') ~ Mp(Y) 

which coincide on j~(R('V, 'V')) n jr(R(')/, ')/')) (see Remark 3.7.5, below). 
Thus, if IfI is an additive character, we obtain representations, denoted gener-
ically r 1fI' of R('V, 'V') and R(')/, ')/'), on a space Y, which will usually 
be the space y(y+) of Schwartz-Bruhat functions on a Lagrangian subspace 
y+ of Y. 

The local theta correspondence is defined as follows. First consider the nonar-
chimedean case. Let 

G'V+ = prJ R('V, 'V') c G'V, Gr; = pr2 R(')/, ')/') c G')/' , 
(3.7.1) , , , 

G~ = G'V+ n G')/, G'V+ = G~ n G'V (note the asymmetry). 
Thus [G'V: G'V+] < 00 , etc. Let 7C be an admissible irreducible representation 
of G'V:, and define the G'U+ -module 

0, 0' CL7 (3.7.2) 8 (G'V ~ G'V; 7C) = 81f1(G'V ~ G'V; 7C) = [<.7 0 7C]~/, 

the maximal quotient of Y 0 7C on which 'V' acts trivially. Here the G'U+ 
action is deduced from the action r IfI of R('V, 'V') on Y, as in [12]. It follows 
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from the Howe duality conjecture, proved in residue characteristic 1= 2 [45], 
that 9 0(G'lI' -+ G'lI; it) has a unique irreducible G'lI+-quotient, the Howe 
quotient, which we denote 9( G'lI' -+ G'lI; it) = 9'11 (G'lI' -+ G'lI ; it). Let 

~ , G'lI, 
(3.7.3) 9(G'lI -+ G'lI; it) = IndG'lI 9(G'lI -+ G'lI; it). 

+ 

3.7.4. Lemma (local seesaw duality, cf. [21, 12]). Let it be as above. and let 
(J be an admissible irreducible representation of G~. Then 

° , 0' HomGr ((J (8) 9 (G'lI -+ G'lI; it) , q ~ HomG'lI' (e (GCY -+ GCY ; (J) (8) it , q . 
+ + 

Proof. We write (J and it for group actions as well as spaces. Let 

be the natural maps. Let A E HomGr ((J (8) 8( G'lI' -+ G'lI; it) , q , so that, for 
+ 

all v E (J, £fJ E !7, w E it, h E G~ , we have 

(3.7.4.1) A((J(h)v (8) it'(h)8'l1'(£fJ (8) w)) = A(v (8) 8'l1'(£fJ (8) w)), 

where it' is the natural action of G'lI+ on 8( G'lI' -+ G'lI; it) . Since h E G~ , 
we may find h' E G'lI' such that v(h') = v(h); necessarily h' E G'lI; . Then 

(3.7.4.2) 

and this is independent of the choice of h' , by the definition of 8'l1' . Thus A 
defines a map from (J (8) !7 (8) it to C with the property that 

(3.7.4.3) A((J(h)v (8) r'll(h, h')£fJ (8) it(h')w) = A(v (8) £fJ (8) w) 

whenever h E G~, h' E G'lI;, v(h') = v(h). But this condition is symmetric 
in G~ and G'lI;. Note that the compatibility of the splittings j'll and jr is 
used in an essential way. 

3.7.5. Remark. The compatibility ofthe splittings j'll and jr in general needs 
to be verified. If one is not careful the splittings can differ by a quadratic char-
acter attached to the quadratic space. This quadratic character is always trivial 
for the quadratic space defined by a quatemion algebra D, but may not be for 
the norm form on .% . But in our applications, the similitude groups GU(.%) 
and GO(.%) only appear in the context of the doubled diagram (3.5.3.2) with 
~ = 1'2 = .% ; hence the quadratic characters play no role. 

In the archimedean case we define G'lI+ as before; admissible G'lI+ -modules 
are understood to be (Lie(G'lI), Koo,+)-modules, where Koo is a chosen max-
imal compact subgroup of G'lI and Koo, + = Koo n G'lI+ is not necessarily its 
identity component. Define 8~ (G'lI' -+ G'lI; it) and 8'11 (G'lI' -+ G'lI; it) as in 
(3.7.2) and the discussion which follows. In the situation treated in the present 
paper, the most important new feature in the archimedean case is that the van-
ishing or not of 8'11 (G'lI' -+ G'lI; it) may depend on 1fI. Let 1fI- (x) = IfI ( - x) , 
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and define 

(3.7.6) 

(3.7.7) 

8±(GW' -+ GW; 1C) = 8",(GW' -+ GW; 1C) EI7 8",- (GW' -+ GW; 1C); 
~ , G'V' 
8(GW -+ GW; 1C) = IndG'V+ 8",(GW -+ GW; 1C) 

(if 8", and 8",- are both nontrivial) 

= Ind~~ e ± (GW' -+ GW; 1C) ( otherwise) . 
+ 

Here Ind~~ is defined to be induction from (Lie( GW) , Koo +)-modules to 
+ ' 

(Lie(GW), Koo)-modules. Then 8(GW' -+ GW; 1C) is irreducible in all cases. 
Lemma 3.7.4 remains valid as stated. 

Unfortunately, Lemma 3.7.4 concerns the full space 8 o(GW' -+ GW; 1C) 
corresponding to 1C, and not its Howe quotient 8( GW' -+ GW; 1C). For appli-
cations, we will need something stronger. 

3.7.8. Lemma. Under the hypotheses of Lemma 3.7.4, suppose local Howe du-
ality is valid for the pair (W, W'). Suppose further that either (i) 1C is supercus-
pidalor (ii) W is compact. Then 8~(GW' -+ GW; 1C) = 8",(GW' -+ GW; 1C). 
This is true in particular when W' is compact. 
Proof. In case (ii), e~(GW' -+ GW; 1C) is fully reducible, so the equality is 
clear. In case (i), let Y denote the L 2-completion of Y. When 1C is super-
cuspidal, we can use a matrix coefficient of its contragredient fc to define a pro-
jector realizing 8~(GW' -+ GU; 1C) tZI fc as an R(W, W')-invariant direct sum-
mand of Y. It then follows that 8~(GW' -+ GW; 1C) is a completely reducible 
GW+-module. It then follows from Howe duality that 8~(GW' -+ GW; 1C) is 
irreducible. 

3.8. Finally, we need to state the global version of Lemma 3.7.4. Let FW' E 
~(GW'), Fer E ~(Gr). Let rp be an element of the adelic Schwartz-
Bruhat space Y(~+) on which the global representations r", are realized. Let 
GW(A)+ denote the restricted direct product of the GWv ,+' as v runs through 
the places of the ground field E, and let GW(A)o = GW(E) . GU(A)+. Simi-
larly, we define GW' (A)+, GW' (A)o' Gr(A)+, Gr(A)o' etc. For (g, g') E 

R(W, W')(A) let 

(3.8.1) 0rp(g, g') = L r ",(jw(g, g'))(rp)(x); 
xE7r+(E) 

for (h, h') E R(r, r')(A) we define Orp(h, h') similarly. For g E GW(A)+ ' 
there exists g' E GW' (A)+ such that (g, g') E R(W , W')(A). We define 

(3.8.2) Orp(F'V/)(g) = L 0rp(g, g'u')FW/(g'u')du'. 
'V/ (E)\'V' (A) 
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Then (),(Fw') is a function on G'l/(E) n G'l/(A)+ \G'l/(A)+, hence extends 
naturally to a function on G'l/(E)\G'l/(A)o. Likewise, 

, 1 ' (),(Fr)(g) = (),(gv, g )Fr(gv) dv, 
r(E)\r(A) 

(3.8.3) 

extends naturally to a function on Gr'(E)\Gr'(A)o. Let .Yw' and .Yr be 
the centers of G'l/' and Gr, respectively, and define the scalar products 

(F, ' F2)r = f F, (gr )F2 (gr ) dgr ' 
J %r(A)Gr(E)\Gr(A)o 

F" F2 E coo(Gr(E)\Gr(A)o)' 

(F, ' F2)w' = f F, (gw' )F2(gw') dgw' , 
J %'1/' (A)GW' (E)\GW' (A)o 

F, ' F2 E COO (G'l/' (E)\G'l/' (A)o) 

whenever the product F, . F2 factors through the quotient by the center. 

3.8.4. Proposition (seesaw reciprocity). The measures dgr and dgw' can be 
normalized so that, for all Fw' and Fr as above and all (jJ E Y(~:~+), 

«(},(Fw')' Fr)r = «(},(Fr ), Fw')w'· 

Proof. Let Gr(E)+ = Gr(E) n Gr(A)+, G'l/' (E)+ = G'l/' (E) n G'l/' (A)+ . 
Then 

«(},(Fw')' Fr)r = f (},(Fw,)(gr)Fr(gr)dgr , 
J %r(A)Gr(E)+ \Gr(A)+ 

«(},(Fr ), Fw')w' = f (},(Fr)(gw,)Fw,(gw,)dgw'; 
J %'1/' (A)GW' (E)+ \GW' (A)+ 

here we are using the easily verified fact that 'yr(A) c Gr(A)+, .Yw' (A) c 
G'l/' (A)+. But now the first integral can be rewritten 
(3.8.4.1 ) 

f f f (},(vgr , g'u')Fw,(g'u')Fr(vgr)du' dvdgr , 
J'Er Jr(E)\r(A) JW'(E)W'(A) 

where gr is a variable in 3 r =.Y r(A). Gr(E)+ . r(A)\Gr(A)+. On the 
other hand, g' and gr determine each other mutually, and we may identify 
3 r ~ 3 w' := .Y w,(A) . G'l/'(E)+ . 'l/'(A)\G'l/'(A)+, by the very definition 
of G'l/' (A)+ and Gr(A)+. Thus (3.8.4.1) is symmetric in 'l/' and r; the 
proposition follows. 

4. LOCAL THETA CORRESPONDENCES FOR QUATERNION ALGEBRAS 

In this section, we work out the local theta correspondences for the pairs 
(GL(2) x GO(D)) and (GU,%(D) x GU,%(D')), where we write GL(2) = 
GL(2, E). Thus we modify our notation and assume E to be a local field 
of characteristic zero, D and D' to be quaternion algebras over E , and % to 
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be a quadratic extension given with embeddings i: % ~ D and i': % ~ D' . 
The quatemion algebras D and D' are allowed to be split, and % may be the 
split quadratic extension E EI7 E. All representations of GL(2) (and of D X , 
when the latter is split) are assumed to be infinite-dimensional. 

The set of admissible irreducible representations of a reductive algebraic 
group Gover E (or (g, Koo)-modules, when E is archimedean) is denoted 
Rep ( G). If 7r: E Rep( G) , we denote by C;1l the central character ZG ~ eX = 
AutG(7r:). If w: %x ~ eX is a character of %x ,we let C;w: EX ~ eX denote 
the restriction of w to EX . The homomorphism (3.1.2) D X x D X ~ GO(D) , 
with image GOo(D) , allows us to index the set Rep(GO(D)) by pairs 7r: I8i 7r:' , 
where 7r:, 7r:' E Rep(D x ) , C;1l' C;Il' = 1 , together with information on the action 
of the element t E GO(D) of order two. The isomorphism %x x DX\E x .::. 
GU.%(D) of §3.1 identifies Rep(GU.%(D)) with the set of pairs w I8i 7r:, W a 
character of %x , 7r: E Rep(D x ) , such that C;w' C;1l = 1. 

Let e(D) = 1 if D is split, e(D) = -1 if D is a division algebra. Let 
7r:.% E Rep(GL(2, %)) denote the representation obtained from 7r: by base 
change. For any 'l" E Rep(GL(2, %)), let e(r, s, 'II 0 Tr.%/E) denote the e-
factor in the functional equation of the standard local zeta function of r, so 
that s = ! is the center of symmetry if r has a unitary central character. Here 
s is a complex variable, 'II is a character of E, and the e-factor is defined 
relative to the Haar measure on E which is self-dual relative to 'II 0 Tr.% / E' If 
C;w 'C;1l = 1, the value e(7r:.% I8i w, !, 'II o Tr.%/E) = ±1 is independent of 'II (cf. 
[44]), and is denoted e(7r:.% I8i w, !). 

Let D and D' be two quatemion algebras. If 7r: E Rep(GL(2)) let 7r: D E 

Rep(D x ) , 7r:D' E Rep(D" x) , denote the representations which correspond to 
7r: under the Jacquet-Langlands correspondence; we make the convention that 
7r: D = {O} if D is ramified and 7r: is not in the discrete series. The theta 
correspondence 8: Rep(GU.%(D')) ~ Rep(GU.%(D)) is defined below. The 
main result of the present section is a part of the following theorem, which has 
been proved jointly by Kudla and the author. 

d d 4.1. Theorem. Let w I8i 7r: E Rep(GU.%(D')). The theta lift 8(w I8i 7r: ) -I- 0 
if and only if e(7r:.% I8i w, ! )e(D)· e(D') . C;1l ( -1) = 1 . If this condition is satisfied, 
h D . d O( D' ) - 1 • D t en 7r: eXlsts an 0 w I8i 7r: = w I8i 7r: . 

The proof will appear in forthcoming joint work with S. Kudla. For the 
reader's convenience, we include here short proofs in the two cases needed in 
this paper: (i) D and D' arbitrary, E = lR, % = e; (ii) E nonarchimedean 
and D' split. 

4.2. The case of D split is easily reduced to the theta correspondence for the 
pair (GL(2) x GO(D')). This has been worked out by Shimizu [35], and we 
recall his results briefly. We have constructed unitary representations r'lf' of 
R(D) on Y(D') , where Y(D') is now the space of Schwartz-Bruhat functions 
on the four-dimensional E-vector space D. First suppose E nonarchimedean. 
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If n E Rep(GL(2)), let 8(n) = 6 0(GL(2) --+ GO(D'); n) = [Y"(D')lZ>n]SL(2)' in 
the notation of (3.7.2). In this case 6(n) = 6(GL(2) --+ GO(D'); n) is already 
irreducible. Indeed, when D' is ramified or n is supercuspidal this follows 
from Lemma 3.7.8. When D' is split and n is principal series or special this 
can be deduced by computing the Jacquet module of 8(n), as in [28, §3]; we 
omit the details. Furthermore, 6(n) does not depend on If! ([35], cf. [13] for 
the extension to similitude groups). More precisely, 

(4.2.1 ) If D' is split, then D"x ~GL(2), Rep(D"x)~Rep(GL(2)), 
and 8( n) ~ n IZ> fr. , where fr. is the contragredient of n. 

If D' is a division algebra, then 8( n) = 0 unless n is a discrete 
(4.2.2) series representation. If n is a discrete series representation, 

d d d then n exists and 8( n) ~ n IZ> fr. • 

We also have to specify the action of the element t E GO(D') on 6(n). As ex-
plained in [13, §7], the representation n D' IZ>fr. D' of Gd(D') has two extensions 
to GO(D'); the extension given by 8(n) is characterized by the conditions of 
Lemma 7.2.3 (equivalently, Corollary 7.2.4) of [13]. 

Finally, every (J E Rep(D" x) is of the form nD' , for some n E Rep( G L(2)) . 
If nD' IZ> n"D' E Rep(GO(D')), let 

8' (nD' IZ> n" D') = 8( GO(D') --+ GL(2) ; nD' IZ> n" D' ) 

(notation 3.7.3 or 3.7.7). Since the!educed norm from D"x to EX is surjective 
for E nonarchimedean, 8", =I 6 is only possible at ramified archimedean 
places. In this case, it can be verified easily (cf. §4.4) that 8 'II ~s a nontrivial 
irreducible discrete series (9[(2, JR), SO(2))-module, and then 8 = 6± is the 
corresponding discrete series (9[(2, JR), O(2))-module. 

Similarly, by [17, Theorem 4.2] and the preceding discussion, we have: 

(4.2.4) 

Let II be an irreducible representation of GO(D') whose re-
striction to GOo (D) contains nD ' IZ> n" D'. Then 6' (ll) = 0 
unless n' = fr. and II satisfies Lemma 7.2.3 of [13]; in that 
case, 8' (ll) = n . 

4.3. We next consider the pair (GU ,%(s) xGU ,%(D')) , where GU%(s) = GU%(D) 
for D split. Then we have the seesaw pair (3.5.1.3): 

GU ,%(s) GO(D') 

GL(2) 
D' , If OJ IZ> n E Rep(GU,%(s)) (resp. OJ IZ> n E Rep(GU;;r(D ))), let 

8(OJ IZ> n) = 6(GU.;;r(s) --+ GU.;;r(D'); OJ IZ> n), 
, D' , D' 

8 (OJ IZ> n ) = 8(GU.;;r(D ) --+ GU;;r(s); OJ IZ> 7C ), 



L-FUNCTIONS OF 2 x 2 UNITARY GROUPS 681 

relative to the given Schrodinger model on sP(D') . For real places at which D' 
ramifies, we let 8' (w0nD') = 8(GU %(D') -+ GU %(s); w0n;) , as in (3.7.7). For 
the purposes of the statement of Theorem 4.1, we define 8(w0n;D) in the same 
way, if D is ramified and D' split; however, it is unnecessary to work out this 
case separately, because the nonvanishing of the theta lift is symmetric in the 
two groups. Wenotethat,forall kEH%(A), ((k, ID,), (k, ID )),where I D , 

1 D' are the respective identity elements, belongs to the center of R(D, D' , %) . 
Moreover, if j: R(D, D', %) -+ U(W') is defined as above, then j(k, k) = 1. 
Thus if 8' (w 0 n;D') is nontrivial, it must be of the form W -1 0 n;' for some 

, x·, 0 D' , 0' D' 
n; ERep(D ). Wnte 8' (w0n; )=8' (GU%(D)-+GU%(s);w0n; ). 

Suppose 8' (w 0 n;D') = W -1 0 n;' =1= {O}. Then 8' (w 0 n;D') restricts non-
trivially to n;' E Rep(GL(2)). By seesaw duality (Lemma 3.7.4), we have 
(4.3.1) 

HomGL(2) (8' (w 0 n;D') 0 ie', q c HomGL(2)(8"O(w 0 n;D') 0 ie' , q 
~ HomGU7r (D')((W 0 n;D') 0 8(ie') , q, 

(see Remark 4.3.3 for the archimedean case). It follows that there exists a 
nonzero GU %(D')-invariant pairing 

[8(ie')I GU (D')] 0 [w 0 n;D'] -+ C. 
,7r 

But 8(ie') = ie"D' 0 n;"D' by (4.2.2). It follows from (4.3.1) that 

The space 8'(w 0 n;D') = w- 1 0 n;' =1= {O} if and only if 
(4.3.2) (0:) n;' ~ ie , and (ft) there exists a nonzero ~%-invariant pair-

D' ing W 0 n; -+ C . 

4.3.3. Remark. In the archimedean case, when D' is ramified and D is split, 
it can be verified using [19] (cf. §4.4 below) that, in the notation of §3. 7, both 
8",(w 0 n;D') or 8",- (w 0 n;D') are nontrivial if either of them is. In particular, 
the assertion (4.3.1) follows from Lemma 3.7.4 and Frobenius reciprocity. 

4.3.3. Lemma. The space 8'(w 0 n;D') =1= {O} if and only if e(n;% 0 W, ~). 
e(D') . ~1r (-1) = I , and in that case 8' (w 0 n;D') = W -1 0 ie . 

Proof. If % is split, then (4.3.2) (P) is satisfied if and only if e(D') = 1 , by the 
theory of the Kirillov model (cf. [46, Lemma 8]). In that case, W = (WI' ( 2) 
is a pair of characters of EX with the property that WI . w2 • ~1r = 1. With 
the obvious convention: e(n; % 0 W, ~) = e(n; 0 WI ' ~). e(n; 0 w2' ~), note that 
WI . w2 . ~1r = 1 implies that n; 0 WI and n; 0 w2 are contragredient to one 
another. Then it is elementary (cf., e.g., [33, 8.1.3]) that 

e(n; 0 wi' ~) . e(n; 0 w2' ~) = ~1r®W (-1) = ~1r( -1) . WI (_1)2 = ~1r( -1) , 
I 

so e(n;.% 0 w, ~). e(D') '~1r(-I) = 1, as claimed. 
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If .% is not split then the following theorem of Tunnell [44] and Waldspurger 
[48], recently generalized by H. Saito [50], translates (4.3.2) into the condition 
of the lemma. 

4.3.4. Theorem [44, 48]. Let .% be a nontrivial quadratic extension of a local 
field E. Let D and D' denote the two nonisomorphic quaternion algebras over 
E; embed.% x as a subgroup of D x and D" x. With OJ and n as above, 

dim Hom%x (OJ ® nD , q + dim Hom%x (OJ ® nD', q = 1, 

and Hom%x (OJ ® nD , q i- 0 ifand only if e(n% ® OJ, !) '~Il(-I) = e(D). 

The references cited only treat explicitly the case of nonarchimedean E, 
with e(D) = 1. The case e(D) = -1, E nonarchimedean, and the state-
ment about the dimensions follows from the remarks preceding Theorem 8.2 of 
[33]. In the real case, the e-factors are easily computed, and the assertion is an 
elementary consequence of the structure theory of irreducible (g[(2, JR) , 0(2))-
modules (cf., e.g. [17, §5]) and the representation theory of SU(2). Note that 
the result is again independent of the choice of additive character If!. 

4.4. It remains to treat the case E = JR, D = D' a division algebra. In this 
case, the theta correspondence between U %(D) and U %(D) can be extracted 
from [19], although the connection with epsilon factors does not seem to have 
been noticed previously. Before translating the results of [19] into the present 
language, we make the following concrete interpretation of Theorem 4.1 for 
E = JR. This is, in a sense, the principal observation of the present paper: 

4.4.1. Corollary. Let E = JR, .% = C, and suppose D is the algebra of 
Hamiltonian quaternions. Let OJ ® nD be an irreducible, necessarily finite-
dimensional representation of GU%(D). Let ken) = dim(OJ ® nD ) + 1 be the 
weight, in the sense of classical holomorphic modular forms, associated to the 
discrete series representation n of G L( 2, JR) , and define k (OJ) as in § 1.1. Then 
e(GU %(D) --+ GU %(D'); OJ ® nD ) i- 0 precisely in the following cases: 

(i) The algebra D' is split and k(OJ) < k(n); or 
(ii) The algebra D' is ramified and k(OJ) > k(n). 

It is easy to see that this is equivalent to Theorem 4.1, using known formulas 
for the epsilon factors of representations of the Weil group of C. Alternatively, 
when D' is split, one can apply Theorem 4.3.4 and the fact that OJ occurs in n 
(resp. nD ) if and only if k(OJ) and ken) have opposite parity and k(OJ) < ken) 
(resp. k(OJ) < k(n)). Note that k(OJ) and ken) are necessarily of different 
parity, since ~w· ~1l = 1 (cf. the remarks following Proposition 1.8.2). 

When D = D' = lHI, the corollary is a special case of [19, III, Theorem 7.2]. 
In their notation, we have k = 2 and (p, q) = (2, 0) or (0, 2) depending 
on n. The representation OJ ® nD , restricted to U(k, 0) = U(2, O)-denote 
this restriction (OJ ® nD)u-lifts to U(0,2) (resp. to U(2, 0)) if and only if 
the associated parameter A is of the form (n" n2) (resp. (-n2' -n,)), with 
n, ;::: n2 > O. In the former case (OJ ® nD)u lifts to the restriction to U(p, q) 
of the dual representation OJ-' ® feD and it follows immediately that, in the 
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similitude correspondence, W 0 nD lifts to W -I 0 feD • Replacing the additive 
character 'II by 'II - has the same effect as replacing U (p, q) by U (q , p) . 
Thus [19] asserts that, in the notation of (3.7.7), 

(4.4.2) 

if and only if the parameter is the form (nl' n2) or (-n2' -nl ), with n l ;::: 

n2 > O. It remains to observe that if the parameter of (w 0 nD ) u is of the 
form (a, b), in the usual parametrization of representations of U(2), then 
k(n) = a - b + 2, k(w) = la + bl + 1. The condition k(n) < k(w) then 
comes down to the condition that either b > 0 or a < 0, which is exactly the 
condition given by Kashiwara and Vergne. 

If w 0 nD has parameter (n 1 ' n2) , then Wi 0 nD has parameter (-n2 ' - n I) . 
Thus we can assert more precisely that 

4.4.3. Corollary. In Theorem 1, assume E = lR, % = C, D = D' = JH[, 
and e (n,% 0 w, i) . e:n; ( -1) = 1. Then for fixed'll, exactly one of the spaces 
{a",(w 0 nD), 8",(wl 0 nDn does not vanish, and exactly one of the spaces 
{a",(w 0 nD), 8",- (w 0 nDn does not vanish. 

Of course, the e-factor criterion does not distinguish between w 0 nD , and 
W l 0 nD , which are L-indistinguishable for the L-function L( n,% 0 w, s) , which 
is also the L-function attached to the representation (n,%0w)u of U,%(D) and 
the standard representation of its L-group (cf. §5, below). At least in the case of 
classical groups over lR, numerous examples of Adams and Li, among others, 
suggest that the vanishing of a theta lift is highly sensitive to the individual 
members of an L-packet. There is reason to believe that this is also true over 
nonarchimedean fields. 

4.4.4. We now return to the global setting of the previous sections. Thus E is 
a totally real field, % a eM quadratic extension, n is an automorphic cusp-
idal representation of GL(2, E), and D and D' are two quaternion algebras 
over E which split over %. In our global applications, we will only be lift-
ing from GU ,%(D') to GU ,%(D) when both D and D' are division algebras, 
~(D) ~ ~(D'), and where D and D' have no finite places of ramification in 
common. At finite places v or places in ~(D'), it follows from the previous 
discussion that the nonvanishing of a",v (wv 0 n~f) entails the nonvanishing of 

a",; (wv 0 n~f) for any 'II~; this is because the reduced norm from D~' x to Evx 

is surjective in these cases. 
At v E ~(D) - ~(D'), the methods of §4.2-3 show again that the vanishing 

of a",v (wv 0 n~f) is independent of the choice of 'IIv' but now the image of 
the reduced norm from D~' x to Evx ~ lR x is of index two. Thus W~I 0 fe~ = 

8",v (wv0n~f )EBa(",v)- (wv0n~f) is the sum of hoI om orphic and antiholomorphic 
pieces. We note that replacing 'IIv by ('IIv)- is equivalent to replacing U(D') 
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by U( -D'); thus 

If the lfI-lift of a form from U(D') to U(D) is holomorphic 
(4.4.4.1) at v, the lfI-lift of the corresponding form from U( -D') to 

U(D) is antiholomorphic at v. 
At v E L(D)' , both Dv and D~ are isomorphic to JH[, and the vanishing of 

the local lift 8(11v (Wv 0 7r~/) is determined by Corollary 4.4.3. For our purposes, 
n' it suffices to observe that, for fixed If! ,we can arrange that 8 (w 0 7r ) =1= 0 v 'l'v v v 

by replacing Wv by w~. In this context, the main theorem of [10] has the 
following immediate consequence. 

4.4.5. Corollary. Assume that L(D') C L(D) , and that D and D' have no finite 
places of ramification in common. Fix a global additive character 1fI: E AI E -+ 

eX. Fix a finite set of primes T of E which do not split in %, T:) L, and a 
character Xv of~: at each VET, such that 

(a) e(7r.Jr,v 0 Xv' !) . e(Dv) . e(D);nv (-1) = 1 for all vET; 
(b) C;n" . C;xv = 1 for all vET, where C;xv is the restriction of Xv to E!~ . 

Possibly after replacing Xv by X~ for some subset of v E L(D)' , there exists an 
algebraic Hecke character w of % , with C;w· C;n = 1 , such that 

(i) Wv = Xv for all vET; 
(ii) 8(11v (Wv 0 7r~') = W~l 0 ii:~ =1= 0 for all places v of E; and 

(iii) L(7r.Jr 0 w, !) =1= O. 

Proof. Let S denote the set of places at which e(DJ . e(D~) = -1. Then the 
cardinality of S is even. The main theorem of [10] asserts the existence of w 
with the prescribed restrictions Xv at vET, satisfying (i), (iii), and 

(4.4.6) e(7r.Jr v 0 wv ' !). e(Dv)· e(D~)C;n (-1) = 1 for all places v of E. 
, v 

We have proved in this section that, under the given hypotheses, (4.4.6) is 
equivalent to condition (ii), except possibly for places in L(D)' , where it may 
be necessary to replace Wv by w~ (equivalently, to replace Xv by X~). But 
condition (c) of Theorem 1 of [10] says precisely that this can be done without 
changing the conclusions. 

The global analogue of Theorem 4.1 is 

4.5. Theorem. Suppose (a) D ~ D' and (b) D and D' have no finite places of 
ramification in common. Let w be a Hecke character of %, with C;w· C;n = 1 , 
such that 

(i) e(7r.Jr v 0 wv ' !). e(Dv)· e(D~)c; (-1) = 1 for all places v of E, 
, ltv 

(ii) L(7r.Jr0W, !)=I=O, 
and (if necessary) the additional hypothesis (ii) of Corollary 4.4.5 at places v E 
L(D)'. Then the global theta lift 

n' , n' 8(11(w 0 7r ):= 8(11(GU .Jr(D ) -+ GU .Jr(D); W 0 7r ) 
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. . . I d .0.( D') -I v D IS nontrlVla, an u OJ ® n = OJ ® n . 

The hypothesis D ~ D' is unnecessary, and will be removed in forthcom-
ing joint work with Kudla; however, it simplifies the proof in §6. Provided 
8( OJ ® n D') is nontrivial, its identification with OJ -I ® feD is an immediate con-
sequence of the corresponding local theorem and the multiplicity one theorem 
for D X • When D or D' is split, the proof of nonvanishing follows the local 
argument given in 4.3. The special value of the L-function intervenes by an 
argument used in [13, 10], which in turn is based on ideas of Waldspurger. 

The hypotheses and the conclusion are symmetric in D and D'; thus we 
may assume D split, and write GU ,%(s) = GU ,%(D). Returning to the seesaw 
diagram, we have the following global analogue of (4.3.2): 

(4.5.1) 

The space 8' (OJ ® nD') = OJ -I ® n =J {O} if and only if the linear 
form 

is nontrivial. 

Now the global theta lift of §3.8 from GL(2) to GO(D') defines maps 

(jJ E S"'(D' (A)) , 

see [13, §7] for details. By [10, (2.3.11)], there exist J E feD' , fEnD' , C E eX 
such that 

(4.5.2) 
v 

Here J ® f = ()tp(F) for some FEn and (jJ E S"'(D'(A)) , C is a product of 
local Euler factors and a volume, and Av(s) are local zeta integrals, depending 
on J, f, and (jJ, of the type studied in Jacquet's work on the Rankin-Selberg 
convolution. We write Av(O) = Av(s)ls=o. It thus remains to be shown that we 
can find local data for J, f, and (jJ, and for all v, such that the Av(O) =J O. 

We use the notation of §2 of [10] without comment. For v split in .% , the 
local Weil representation for the pair (GL(2) , GO(.%)) extends to an action 
of GL(2, Ev); in other words, the v-component of the subgroup G(e,%) 1 c 
GL(2, E A ) is all of GL(2, Ev). It follows that, as (jJ varies, the local data 
denoted WV'v((jJ2' OJ) and <1>1 v in the integral (2.3.8) defining Av(s) are ar-
bitrary in the split case. We ~an then appeal to Jacquet's results to conclude 
that, for an appropriate choice of local data at v, the local zeta integral does 
not vanish at s = 0 . 

Now suppose v does not split in .%. Then the proof of the main theorem 
of [10] (especially (1.4.9.1)) shows that we can find a Hecke character OJ' , with , 
OJv = OJv ' such that 

v v D' D' 
Lw,-t (1)· L w'(/) =J 0 for some 1 E fe , fEn . 



686 MICHAEL HARRIS 

Since none of the factors in (4.5.2) has a pole at s = 0 (cf. [10, 2.3.12]), it 
follows that none of them equals zero. But the local factors at v for 01' and 
01 are the same. 

This completes the proof of Theorem 4.5 when D or D' is split. The proof 
of nonvanishing in the remaining cases is based on Rallis' doubling method, 
and will be given in §6. 

4.5.3. Remark. (i) Although the local Howe duality conjecture (cf. §3.7) is not 
known in general in residue characteristic two, [35] and the arguments of §4.3 
show that it is valid for the pair (GU,%(D') , GU,%(D)) when D or D' is split. 
Since under our hypotheses this is true locally everywhere, we use local Howe 
duality without comment in what follows. 

(ii) Let (G, G') be any dual reductive pair which verifies local Howe duality 
at every place. Let n be an irreducible automorphic representation of G. 
A familiar argument of Rallis [52] shows that, if 8(G ....... G'; n) is a space 
of cusp forms, then it is irreducible. This applies in particular to the pair 
(GU,%(D) , GU,%(D')) when D' is a division algebra. 

4.6. We will need one more local result. Let V be a one-dimensional hermi-
tian space over .% , and let 01 be a character of G U,% (V) ~ .% x • We consider 
a Schrodinger model for the pair (GU,%(V) , GU,%(s)) acting on .9'(V) , and 
obtain a representation 8(01) = 8(GU,%(V) ....... GU,%(s); 01) of GU,%(s)+ (no-
tation of (3.7.1)). This model depends on the choice of a splitting, as in §3.6. 
However, the restriction of 8(01) to GL(2, E)+ c GU ,%(s)+ is independent 
of the splitting, as one sees from the seesaw diagram (3.5.1.1), with W' = any 
two-dimensional symplectic space. Indeed, we can apply Lemma 3.7.4 and 3.7.8 
(since U,%(V) is compact) to deduce that, for any irreducible representation a 
of GL(2, E)+ ' 

(4.6.1) HomGL(2,E)+ (a 08(01), C) ~ HomGUx(V)(8(a) 001, C) 

where 8(a) = 9(GL(2, E) ....... GO(R'%/EV); a). Let a: GL(2, E) ....... eX de-
note the character 11·11 0 det. Now the right-hand side of (4.6.1) is clearly trivial 
unless i'J 0 a'/2 is a constituent of the representation n(w,.%) of Proposition 
1.8.2, restricted to GL(2, E)+. Indeed, the proof of that proposition (cf. [17, 
§4]) identifies 

( 4.6.2) '" - .' '/2 n(w,.%) = 9(GO(R,%/EV) ....... GL(2, E), 01) 0 a , 

where 01' is a certain irreducible representation of GO(RJf /E V) whose restric-
tion to GU,%(V) contains w. Thus 

4.6.3. Lemma. Under the above hypotheses, 8(01) 0 a'/2 is an irreducible con-
stituent of n(w, .%), restricted to GL(2, E)+ . 

The irreducibility, which is an issue at most in residue characteristic two, can 
be deduced from the seesaw diagram (3.5.1.1) and the proof of (4.6.2) in [17, 
loc.cit.]. 
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5. RATIONALITY PROPERTIES OF THE THETA CORRESPONDENCE 

5.1. Henceforward, D and D' are both division algebras, D ~ D'. Assume 
as before that 1CD' ® OJ is attached to automorphic forms on GU ,%(D') of type 
(Ii, r, X), i.e., to holomorphic sections of ~tr,x). We have seen in the remarks 

- D' - D' 1 D following Theorem 4.5 that, if 8( OJ ® 1C ) =f 0, then 8( OJ ® 1C ) = OJ - ® fe . 
I h d · f· fD' D' d f" D " D h . n ot er wor s, gIven any unctIOns E 1C an E 1C ,t ere eXists a 

D' l"D Schwartz function rp such that () rp (OJ ® f ) = OJ - ® f . 
It is more convenient for us to work in the doubled picture, as in Lemma 

3.3; it is also easiest to work with H,% x H,%-eigenvectors at infinity. Thus fix 
D D D' D' X E X(P(k,r)) ' X E X(P(k.,r)) , in the notation of §2.2. Let 

D D D 1C ,x C 1C 
I 

D' D' D' 1C ,x C 1C 
I ' 

be the subspaces of automorphic forms defined in Lemma 2.4.7. Then 1C~' xD ~ 
D D' D' D' x I D D - D' D'_ 

1C I and 1C I ,x ~ 1C I as D (A )-modules. Let 1C I ,x (Q), and 1C I ,x (Q) 
D I Dt 

be the D X (AI )-invariant Q-rational structures on 1Crx and 1C~ ,x ,respec-
D D D - D' D' D'_ 

tively, introduced in Lemma 2.4.7. Fix f(x ) E 1C /x (Q) ,f(x ) E 1C I ,x (Q). 
Define the operator f (%) as in §2.4, and let 

(5.1.1) 
J(XD) = f(xDyY('%) ® <!;I E (1CrxD (QyY('%)) v, 

J(XD') = f(xD' yY('%) ® <!;I E (1C~' ,/ (QyY('%)) v 

The double of the theta correspondence of Theorem 4.5 can be realized by 
using Schwartz-Bruhat functions in sP'(D(A)2) , as in the proof of Lemma 3.3. 
We would like to let 

( 5.1.2) 
D' D' -I D' [OJ ® 1C ](2) = [OJ ® 1C ] ® [OJ ® fe ], 

[OJ -I ® feD](2) = [OJ -I ® feD] ® [OJ ® 1CD]. 

These are to be viewed as automorphic representations of 

G':= G(U,%(D') x U,%(-D')) and G:= G(U,%(D) x U,%(D)) , 

respectively. In most cases, this is sufficient, but when 1C = 1C(IJ,.2") is a space 
of binary theta functions attached to a Hecke character IJ of a quadratic eM 
extension .2" of E, the spaces defined in (5.1.2) decompose as infinite sums 
of L-indistinguishable irreducible representations of G' and G, respectively, 
indexed by sets of places of E (cf. [25] and Proposition 1.8.2). This is not too 
serious, since the theta lift from G' to G of any of these components is again 
irreducible, by Remark 4.5.3(ii). We let [OJ ® 1CD' ](2), [OJ- 1 ® feD](2) denote 
irreducible components of the spaces defined in (5.1.2). Later we will make 
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more precise choices in order to specify the holomorphy type of the component 
chosen, and to guarantee nonvanishing of certain linear forms (cf. the remarks 
following (5.2.1) and (5.3.6)). 

Let [w ® f(xD' )](2) = [w ® f(xD')] ® [w -1 ® J(XD')] E [w ® 7rD' ](2), and 
define [w- 1 ® J(XD)](2) E [w- 1 ® frD](2) analogously. For brevity, we write 

d d D l' D F = [w ® f(x )](2), F = [w- ® f(x )](2), when there is no danger of 
D' D' 1 D D 

confusion. Asabove,welet [w®7rf 'x ](2) and [w- ®frf'x ](2) denote the 
G' (Af)_ and G(Af )-subrepresentations spanned by F D' and FD , respectively. 

, f f D' D Then the G (A )- (resp. G(A )-) translates of F (resp. F ) generate an 
, d D 

invariant Q-structure [w ® 7r~'x ](2)(Q) (resp. [w- 1 ® frrx ](2)(Q)). 
Now L(fr.% ® w- 1 ,s) = L(7r.% ® w, s), under our hypothesis C;n • C;w = 1. 

Assuming Theorem 4.5, there thus exists 'Po E .9"(D(A)2) such that 

(5.1.3) Orp/FD') = FD. 

Here we are using the remarks in §4.4.4 to identify the archimedean constituents 
of 9",( G' ---+ G; w ® 7rD') ; specifically, it suffices to recall that, for v E I,(D') , 

J(XD ) is antiholomorphic and f(x D ) is holomorphic at v. 
D' D Since both F and F are of pure (H.% x H.% x H.% x H.% ) (JR)-type, 

we may assume 'Po to be of the form 'P 00 ® 'P f' where 'P 00 E .9"(D(JR)2) , 
'Pf E .9"(D(Af)2). Howe's theory of minimal K-types [15] even allows us 
to pick an optimal 'P 00' determined uniquely, up to scalar multiples, by the 
property of being of pure H .%(JR)8 type (four copies of H .%(JR) for G', four 
copies for G), by property (5.1.3), and by the condition of being of minimal 
degree in the (polynomial) Fock model. (This is actually completely trivial ex-
cept at places for which D' and D are both split.) Since we will not need 
to compute archimedean integrals, it is not important which 'P 00 we choose; 
but let .9"(D(JR)2)(k, r, X) denote the (one-dimensional) complex vector space 
spanned by some 'P 00 ' which is minimal in Howe's sense. It is not difficult to 
write down 'P 00 explicitly in terms of majorants. 

Now let .9"(D(Af )2)(Qab) denote the space of Qab-valued Schwartz-Bruhat 
functions on D(Af)2 , where Qab is the field obtained by adjoining all roots of 
unity to Q. Let .9"(Qab) = .9"(D(A)2)(k, r, X)(Qab) = 'Poo ®.9"(D(Af )2)(Qab ), 
.9"(Q) = .9"(Qab) ® Q. The oscillator representation of the big metaplectic 
group Mp(Y")(Af ) of Lemma 3.3 preserves .9"(Qab); this is clear by the 
standard formulas for the Schrodinger model, which involve only Fourier trans-
form, translation of variables, and multiplication by values of abelian characters 
or characters of second degree. The construction of the splittings in Lemma 
3.3 then shows that G(Af) and G' (Af) also preserve .9"(Qab). It should 
be remarked that replacing the polarization of the big symplectic vector space 
Y" by another polarization respects the spaces of Qab -valued Schwartz-Bruhat 
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functions, since the operation is again carried out by means of translation of 
variables, multiplication by values of abelian characters, and partial Fourier 
transform. 

In particular, the kernel of the map (cf. (3.7.2)) 
, D' 

[w ® n~ ,x ](2)(Q) ®Qab Y(Qab) 

D' ,xD' - ab 
--+ [[w ® nf ](2)(Q) ®Qab Y(Q )](UxCD')XUxC-D'))CAi ) 

is defined over Q (even over Qab 'Q(n, D') 'Q(n, D) .E'I" .E'I'.E(XD) .E(XD')). 
It follows that 

D ()' f 
[w- I ® fcrx ](2) := {(JqJ(FD ), rp E Y(Q)} is a G(A )-

invariant Q-structure on [w- I ® fcrXD](2). 
(5.1.4) 

But we already have a G(Af )-invariant Q-structure on the latter space, 
namely [w- I ® fcrXD](2)(Q). Since the representation of G(Af) on this 
space is irreducible, it follows from Schur's lemma that there is a constant 
c(rpoo' w ® n, D' , D) E eX such that 

-I D xD () , -I D xD -
(5.1.5) [w ®fc/ ](2) =c(rpoo,w®n,D,D)·[w ®fc/ ](2)(Q). 

5.2. In order to compare the constant c(rpoo' w ® n, D', D) with something 
we understand, we introduce a linear form on [w- I ® fcrXD](2). Namely, the 
diagonal subgroup 

ZG(A) = {(z, z) E GU %(D)(A) x GU %(D)(A)lz E ~x} c G(A) 

acts trivially on [w -I ® fc~' xD 
]( 2) , by construction, and we can define 

(5.2.1) BD(F) = ( F(g) dg, J ZGCA)'GU xCD)(Q)\GU xCD)(A) 
where the integral is computed along the diagonally embedded GU %(D)(A) C 

G(A). Given our choice of FD it is easy to see that-possibly after changing the 
irreducible component [w- I ® fcD](2) in the case of binary theta functions-
the linear form BD is not identically zero. Indeed, we may take f(xD) E 
nD < {Xv} )new , as in §2.4. Then Lemma 2.4.5 implies that J(XD ) is a nonzero 
algebraic multiple of f<XD) , and BD(FD) is a nonzero multiple of the (square 
of the) L 2-norm of f<xD). It thus follows from 2.4.5 and 2.5.6 that 

(5.2.2) BD(F) '" qD (n) for any FE [w -I ® fcr xD ](2)(ij). 

Our first relation is then 
- D , d 5.2.3. Lemma. Forany rp EY(Q) , q (n)·c(rpoo' w®n, D, D) "'ij BD«(JqJ(F )). 

Using Rallis' doubling method, it will be proved in §6.3 that 
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5.2.4. Proposition. There exists a constant C1 = C1 (qJ 00 ' Is.., X, 'L.(D') , 'L.(D)) E 
(e such that, for all qJ E 3"(Q) , 

D' 1 D' BD(Orp(F )) "'ij" C1 • L(n.'7{ (9 w, 2)' q (n), 

where the L-function is given the Jacquet-Langlands normalization, for which 
s =! is the center of symmetry of the functional equation. 

5.3. The argument leading up to (5.1.5) works more generally when D' is re-
placed by any hermitian space V, including the I-dimensional hermitian space 
V = %. Write D = V; EB Vz = i(%) EB i(%)r5 as in §3, a sum of two 1-
dimensional % -spaces. We will soon have use for the seesaw diagram (3.5.3.2), 
with V = D', V' = D : 
(5.3.1) 

G(Ux(D') X Ux(D') x Ux(-D') x Ux(-D')) 

X I 
G(Ux(V,) x UX (V2) x ux(V,) x UX (V2)) G(Ux(D') x Ux(-D')) 

Let Jl (resp. Jl') denote the lower left-hand (resp. upper right-hand) group in 
this diagram. We wish to study the rational structure induced on the represen-
tation of Jl' (A!) obtained by theta lift from characters of the abelian group 
Jl(Q)\Jl(A). Thus, let 171 and 172 be motivic Hecke characters of % , and 
consider the character 171 (9172(2) := 171 (9172 (917~1 (917~' of 

=x x4", 2 2 (db \~) = [GU%(V;) x GU .'7{(Vz)] (Q)\[GU .'7{(V;) x GU .'7{(Vz)] (A), 

restricted to Jl(Q)\Jl(A). Define [n(17, (9 172' %)](2) to be the restriction to 
(D" X)4 n Jl' of the automorphic representation n(171 , %)D' (9 n(172 , %)D' (9 

fr(17" %)D' (9 fr(172 , %)D' of (D" X)4 . 
Consider the space of functions 

(5.3.2) 

Here 3"(ij) C 3"(D(A)2) is the same space used in §5.1; the definition (5.3.2) 
makes sense because (Jl, Jl') and (G, G') fit into the seesaw diagram (5.3.1). 
We may retroactively impose the hypothesis that qJ 00 is an eigenfunction for 
a maximal compact connected subgroup K;ff x K;ff' C Jl(R) X Jl' (R), chosen 
compatibly with the maximal compact subgroups of G(R) and G' (R) . Actually, 
Howe's theory of minimal K -types implies that this is redundant, given that we 
have already chosen qJ 00 to be of minimal degree for the pair G x G' . 

In particular, n(17, (9172(2))() (9 C is a certain K;ff,-type subspace: 
~, h , 
e(Jl -+ Jl ; 17, (9 172(2)) c e(Jl -+ Jl ; 17, (9 172(2)). 

This will be made more precise in §5.4 when we make specific choices of 171 
and 172' Just as before, we find that n(17, (9 172(2)/ is a Jl'(A! )-invariant ij-
form of the space e(Jl -+ Jl'; 17, (9 172(2))h. Here we need to be a little bit 
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careful, since n(111 ® 11i2))8 only becomes a ~' (AI )-module upon choosing a 
splitting of the metaplectic group, as in §3. This depends in tum on the choice 
of a Hecke character y of % , extending the quadratic Hecke character e,% 
of E. However, y can be chosen of the form y'. II . II~2 , where y' is an 
algebraic Hecke character. Such a y certainly takes only algebraic values on 
~~ , although the values do not lie in a finite extension of Q. With more care, 
it can be shown how to compensate for the effects of y. 

5.3.3. Lemma. If e(~ ~ ~' ; 111 ® 112(2)) =I- 0, then its restriction to (D" X)4 n 
~' is a sum of irreducible constituents of [n(111 ® 112' %)](2). 

By the strong multiplicity one theorem for D" x , any irreducible automor-
phic representation a of (D" X)4 n~' is a constituent of a unique irreducible 
automorphic representation of (D" x ) 4 , which is determined by the local con-
stituents of a at almost all places. Thus Lemma 5.3.3 reduces to the following 
assertion, an immediate consequence of Lemma 4.6.3. 

5.3.3 (bis). Lemma. If e(~ ~~'; 111 ®112(2» =I- 0, then, at almost all places v 
of E, the restriction to (D:,X)4n~'(Ev) ofe(~(Ev) ~~'(Ev); 111,v®112,v(2» 
is a sum of irreducible constituents of [nv(11I,v ® 112,v' ~)](2). 

Here the local representations [nv(111 v®112 v' ~)](2) are defined by analogy 
with [n(11t ® 112' %)](2). " 

We can regard [n(111 ® 112' %)](2) as a representation associated to a space 
of motivic holomorphic automorphic forms on (D" x ) 4 of multiweight 

(k(11I) ' 1 - W(11I); k(112) , 1 - W(112); k(11I) , W(11 I) - 1; k(112) , w(112) - 1). 
9:" "9:" Let .y (2) = G(U,%(D) x U,%(D» c .y , where the first (resp. the second) 

U ,%(D') is embedded diagonally in the first and third factors (resp. the sec-
ond and fourth factors) of ~'. Let Z:§, = {(z, z, z, z) E GU,%(D)2(A) x 
GU,%(-D)2(A)lz E %;} C ~'(A). Define a linear form on 

e(~ ~~' ; 111 ® 112(2» 
in analogy with (5.2.1): 

(5.3.4) BD,(F) = [ F(g') dg' . J z~, (A)':§' (2)(Q)\:§' (2)(A) 

5.3.5. Lemma. If e(~ ~ ~'; 111 ® 112(2» =I- 0, then the linear form ED' is not 
identically zero. 
Proof. This is a consequence of a general principle regarding theta lifts. Suppose 
V and V' are hermitian spaces over % , and the theta lift from U (V) to 
U(V') is defined in terms of a splitting)' and an additive character I/f, as in 
§3. Suppose the theta lift from U(V) ~ U( - V') is defined in terms of the 
complex conjugate splitting y and the additive character I/f. Then 

(5.3.5.1) e(u(v) ~ U( -V'); n) = e(U(V) ~ U(V'); n), 
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where - denotes complex conjugation acting on the space of automorphic 
forms. In particular, integration along the diagonally embedded U(V') defines 
a nontrivial linear form on 

9(U(V) ---+ U(V'); 1l) ° 8(U(V) ---+ U( - V'); n). 

We apply this when V = .%, V' = D' . 

It follows that e(~ ---+ ~'; 171 ° 172(2»h, restricted to (D"X)4, has a non-
trivial intersection with the space spanned by functions of the form 

(5.3.6) 

where, at each archimedean place, 1; is either a holomorphic or an antiholomor-
phic vector in ll( 17i' .%)D' and C;i = 1C;1t('1; ,.%)1, i = 1, 2. The holomorphy can 
also be seen from an analysis of K-types, which we carry out in §5.6. We there-
fore assume it holomorphic and 1; antiholomorphic at all places in J:.(D'); 
this hypothesis is justified following Table 5.6.2. 

Just as in § 1, the theory of arithmetic automorphic forms defines a ~' (AI )-
invariant Q-structure 1l(1710172(2»(Q) on 1l(171 0172(2»8 0e. Again, we have to 
take care to choose the splitting character y appropriately . Now 1l (17, ° 17, (2» 8 ° 
e is an irreducible ~' (AI )-module. Indeed, since ~' is anisotropic, this fol-
lows from local Howe duality by Remark 4.5.3(ii); since U .%(.%) is a torus, it 
is easy to verify that local Howe duality is valid for the pair (U.%(.%) , U.%(D» 
even in residue characteristic 2 (cf. [15, §6]). Thus the two Q-structures 

- 8 , 
1l(17,0172(2»(Q) and 1l(17,0172(2» are proportional. Define c(rpoo' 17" 172' D) 
E eX to be the constant of proportionality relating these two Q-structures: 

(5.3.7) 

D' D' Write q (17i'.%) = q (ll( 17i' .%», i = 1, 2. The analogue of Lemma 5.2.3 
IS 

5.3.8. Lemma. For any rp E ..9"(Q) , 
D' D' , 

q (17".%)' q (172'.%)' c(rpoo' 17" 172' D ) "'ij BD'(()rp(17, ° 172(2»). 

The analogue of Proposition 5.2.4 is 

5.3.9. Proposition. Let iii be the Hecke character 17)17;, i = I, 2. There 
exists a constant C2 = C2 (rpoo' kJ17,) , 15.( 172)' J:.(D'» E eX such that, for all 
rp E ..9"(Q) , 

BD'(()rp(17, ° 172(2») "'ij C2 . L.%(ii, ' 1) . L.%(ii2 , 1), 

where the L-function is given the Jacquet-Langlands normalization, for which 
s =! is the center of symmetry of the functional equation. 

The proof, which again uses Rallis' doubling method, is given in §6.4. 
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5.4. The next step is to combine the formulas of §5.3 with the rationality criteria 
of §2 to determine the constant c( rp 00 ' W I8l n, D' ,D) of (5.1.5). For this 
purpose we have to specify the Hecke characters 171 and 172 more precisely. 

We apply criterion (i) of Corollary 2.3.3 to a lifted form erp(FD' ) , which we 
may assume to be decomposable as in (5.1.3): 

D' D -I· D D (5.4.1) erp(F )=c·F =c,(w I8lf(x ))I8l(wl8lf(x )) 

with c = c(rpoo' W I8ln, D' , D). We assume I:.(D) to be nonempty. Now it 
follows from 2.3.3(i) that, if p E X(XD ) is a Hecke character of .%X , then 

D (5.4.2) LW-l I8l Lp(w I8l f(x )) "'ij P,%(P, \f). 

Similarly, write J = Joo .J!, as in §2.4, and let f(x D)t5f (g) = f(xD)(g.J!), 
g E D X (A) . By imitating the proof of Lemma 2.4.5, we find that 

-I • D D t5 -I • 
(5.4.3.) Lw I8l Lp-l (w I8l f(x )) = Lp(f(X ) f I8l ~1l ) "'ij P,%(P , \f), 

where for any Hecke character a of.%x we let a = (a')-I. Combining 
(5.4.1-3), we find a second formula for c(rpoo' W I8ln, D', D): 

5.4.4. Lemma. For any rp E Y(Q) and any P E X(X D ) , 

~, D' 
P,%(P, \f). c(rpoo' W I8ln, D , D) "'ij Lw I8l Lp-l I8l LW-l I8l Lp(()rp(F )), 

where /J = P / p' . 
Here we have used the monomial relation (Proposition 1.4(c)): 

P,%(P, \f) . P,%(/J , \f) "'ij p,%(p. /J, \f) = P,%(/J , \f). 

Refer to diagram (5.3.1). Consider the composition 

( 5.4.5) 
where the first map is the natural inclusion and the second map is the one 
defined in §3.1. Then a(H,% x H,%) c G(U,%(V.) x U,%(V2 )) , and by dimension 
considerations we see that this inclusion is an equality. The Hecke character 
W I8l P -I I8l W -I I8l P of (H,%) 4 , used in Lemma 5.4.4, is the restriction to g; of 
the Hecke character 17118l172(2) of (.%X)4 ~ GU,%(v.) x GU,%(~) x GU,%(V1) x 
GU,%(~) if and only if 

I -I -I 
(5.4.6) 171'172=W; (171'172) =P . 
5.5. We can solve (5.4.6) for the weights of 171' 172 in terms of the weights of 
wand p, which means that it is time to specify the latter. In doing so, we are 
subject to four constraints: 
(5.5.1) for each i, the k j ( 17i) must all have the same parity; 

( 5.5.2) kj(w) > kj for j E I:.(D') II I:.(D)', kj > kj(w) for j E ~(D) -
~(D') ; 
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(5.5.3) 

(5.5.4) 
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P E X(XD); in particular, P is strictly compatible with '1'; 

w(w)=w(p)=r. 

Here (5.5.1) ensures that the Yli are motivic, (5.5.2) is the condition of Corollary 
4.4.1 that that local theta lift at Gj of w ® nD ' be nontrivial, and (5.5.3) is 
necessary in order that the right-hand side of the formula in 5.4.4 not vanish. 
Finally, (5.5.4) follows from the formula ~1r • ~w = ~1r • ~p = 1. 

We now specify that w be a Hecke character of %x , with ~1r ·~w = 1, such 
that 

(5.5.5) 

(5.5.6) 

!s..(W)j = kj + 3 (resp. kj + 1, resp. kj - 1) for j E I:.(D') , 
(resp. I:.(D)', resp. I:.(D) - I:.(D')) 

L(n,% ® w, t) =I- O. 
Here (5.5.5) corresponds to conditions (i) and (ii) of Corollary 4.4.5, with 

T = I:. , and (5.5.6) corresponds to condition (iii) of that corollary, which asserts 
that such w do exist; note that the existence of nD implies that ki ~ 2 for 
i E I:.(D). We have taken care of (5.5.2). 

By (5.5.5) there is a CM type <P of % such that, if 'I' = {T E <PITIE E I:.(D')U 
I:.(D')} , then w is strictly compatible with 1'1'. We may assume w compatible 
with I<P, and say WE X(x,t) , as in §1.1. Write <P = {Tj } , TjlE = Gj . Then 
(5.5.5) and (5.5.4) translate as k(w)j = A(T) - A(IT) + 1 = kj ± 1 or kj + 3, 
depending on j, -A(T) - A(IT) = w(X,t) = r. Solving for A, we find 

A(T) = t(kj - r) + 1, A(IT) = -t(kj + r) - 1 if j E I:.(D') 

(5.5.7) A(Tj ) = t(kj - r), A(ITj ) = -t(kj + r) if j E I:.(D)', 

A(T) = t(kj - r) - 1, A(IT) = -t(kj + r) + 1, j E I:.(D) - I:.(D'). 

We are forced (by (5.5.3)) to take k(P)j = kj + 1 for j E I:.(D) , and 

0< k(P)j :::; kj - 1, k(P)j = kj - 1 (mod 2) for j E I:.(D)'. 

We specify XD so that 

(5.5.8) k(X D ) j = kj - 1 (mod 2) for j E I:.(D)' . 

Any CM type with which XD is compatible has to contain '1', by (5.5.3), and we 
may assume XD to be compatible with the <P introduced above. Say XD = X,tD . 
We can solve for AD as before, and we find that 

AD(IT) = t(kj - r), AD(T) = -t(kj + r), j E I:.(D); 
(5.5.9) D D 

A (IT) = t(kj - r) - 1, A (T) = -t(kj + r) + 1, j E I:.(D)' . 

Finally, say Yli E X(Xk ) , 1 = 1,2. Then (5.4.6) translates as 
I 

D (5.5.10) Al (T)+A2(T)=A, A\(T)+A2(IT)=A, \iT E I:.. 



L-FUNCTIONS OF 2 x 2 UNITARY GROUPS 

Combining (5.5.7), (5.5.9), and (5.5.10), we conclude: 
(5.5.11) 

A,(t) -A,(lr) = 1, A2(r j ) -A2(lr) = kj + 1, 

A,(r) -A,(lr) = -1, A2(r j ) -A2(lr) = kj - 1, 

A, (r) - A, (lr j ) = 1, A2(r) - A2 (lr) = k j - 1, 

j E I:,(D') ; 

j E I:,(D) - I:,(D') ; 

j E I:,(D)' . 

695 

Let 'P' = {r E 'PI rlE E I:,(D')}. The weights W(17J are not determined 
uniquely; we have only specified the restriction 17, @ 172(2) to :Y. However, 
we can conclude from (5.5.11) that 

k(17,)j=2 for all j, 17, is of type ('P-'P') II 1'P'IIl(<I>-'P); 
(5.5.12) k(172)j = kj + 2 for j E I:,(D') , = kj for j E I:,(D')', and 172 is 

of type 1<1>. 
We have incidentally verified (5.5.1). The choice of W(17 i ) == k(17) + 1 

(mod 2), subject to the condition W(17,) + W( 172) = w(w) = r (5.4.6), plays 
no role in what follows. 

5.6. We can use the seesaw reciprocity formula 3.8.4 for diagram (5.3.1) to 
interpret the right-hand side of the formula in Lemma 5.4.4 as an integral over 
G' . Write L(w,p-Il) instead of L w @ Lp-I @ LW-I @ L p(.). The result is 

d 1 d (5.6.1) L(w p-1)(()rp(F » = ()rp(17, @ 172(2»(g). F (g). dg, 
, ZG' (A)·G' (IQ!)\G' (A)o 

with G' (A)o = G' (Q) . G' (A)+ ' as in §3.8. In order to analyze the right-hand 
side of (5.6.1), we need to compute the K-types of () '1(17, @ 172(2» , as promised 
in §5.3. This is again a matter of consulting Kashiwara-Vergne, this time for 
the (U(I), U(p,q» liftings,with p+q=2. We have to suppose U(I) to be 
the symmetry group of a skew-hermitian form h, and to distinguish between 
signs we say U(I) = U(I, 0) (resp. U(O, 1» if -ih is positive-definite (resp. 
negative definite), where i is the square root of -1 used to define the additive 
character "'00. 

Thus suppose Xk(eiO)=eikO, k E Z, is a character of U(I). Let S8(Xk; p, q) 
denote the restriction of 8(U(I, 0) --+ U(p, q); Xk) to SU(p, q). For k ~ 2, 
define the representation nlH!(k) of SU(2) as in §2.1, and let nk denote the 
discrete series representation of SL(2, 1R) with lowest U( 1 )-type Xk. With 
our choice of additive character, we have the following table: 

TABLE 5.6.2 
p q S9(Xk; p, q) (U(I) = U(I, 0)) S9(Xk; p, q) (U(I) = U(O, I)) 

2 0 7rH (k + I) if k > 0, trivial if k::S 0 7rH(_k + I) if k < 0, trivial if k 2:: 0 
o 2 7r1ll(-k + I) if k < 0, trivial if k 2:: 0 7r H (k + I) if k > 0, trivial if k::S 0 

7rk+1 if k > 0, 7r_k_1 if k < 0 7r_k+1 if k > 0, 7rk_1 if k < 0 

In the last line we have omitted the case k = 0, which is irrelevant for our 
purposes, since k(17)j ~ 1 for all j, i = 1,2. 
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Recall that our theta correspondence depends on the choice of » E % with 
Tr%jE(») = O. We may assume» satisfies i'l'(») < 0 for all 'l' E <I>. Then 

U(~)(E) ~ U(1, 0), U(~)(E) ~ U(O, 1) for j E "f.(D). 

With these conventions, and recalling that rp 00 is chosen to be of minimal 
Howe degree, we find, comparing 5.6.2 with the information in (5.5.12), that 
0,/111 ® 'h(2» is in the space spanned by functions of the form (5.3.6), with 1; 
holomorphic of weight 2 and h. antiholomorphic of weight kj + 2 at places 
in "f.(D'). The K-types away from "f.(D') can also be determined, but they are 
less important. 

We assume henceforward that 0",(111 ® "2(2»)(g) =I- 0 for some rp E Y(Q); 
otherwise the rationality criterion in Lemma 5.4.4 is vacuous. Then we may ap-
peal to Lemma 5.3.5, and (5.3.7) and the subsequent results are valid. Applying 
(5.3.7), we can rewrite the right-hand side of (5.6.1): 
(5.6.3) 

, -I D' 
c(rpoo' "1' 112' D ) . L(W,p-l)(O",(F » 

= "ea ( [1; a®h. a®(fl a®~;I)®(f2 a®~;I)] 7 } ZG' (A)'G' (Q)\G' (A)o' " , 

D' 
x (g)F (g) dg. 

Here a is a finite index set, ea E Q, and for each a, h.,a E n("2' %)D' 

(resp. 1; ,a E n("1 ' %t) is an arithmetic automorphic form (resp. the com-
plex conjugate of an arithmetic automorphic form) of type (k("2) ' 1 - W("2» 
(resp. (k("I), 1 - W("I»)' 

Here is what is going on in the classical language. Viewed by restriction 
as modular forms on the symmetric space (S)±)l:(D') x (S)±)l:(D') for (D" X)2 , 
- - I D' ± l:(D') [II ,a ® (/1 ,a ®~; )·F ] are all holomorphic in the first copy of (S) and 

antiholomorphic in the second copy, of weight = (weight of l(xD'» + k("I) j = 

k. + 2 at all j E "f.(D'). Similarly, [/2 ® (f2 ® ~2-1)], is antiholomorphic J ,a ,a 

in the first copy of (S)±)l:(D') and antiholomorphic in the second copy, again of 
weight k( "2) j = kj + 2 at places in "f.(D'). Thus the left-hand side of (5.6.1) 
is a Petersson inner product of [h.,a 0 (f2,a ® ~;I)] against an arithmetic 
holomorphic modular form of the same weight, where here (and only here!) 
complex conjugates of arithmetic holomorphic forms are viewed as arithmetic 
antiholomorphic forms. 

Let pr"l: ~(G') ---- ~(G') denote the orthogonal projection onto the space 

offorms whose restrictions to G' (A)n(D x )2(A) lie in n("2' %)D' 0ir.("2' %)D' . 
By strong multiplicity one, this is the same as the projection onto the space of 
forms which transform under (Dx )2(Af) via n("2' %)D' 0 ir.("2' %)D'. In 
particular, this projection takes arithmetic automorphic forms to arithmetic 
automorphic forms. 
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Now it is clear that the right-hand side of (5.6.3) equals 

Lea f [J; a®cJ2 a®c;~I)](g).pr" [h a®cJ1 a®C;;I).Fv'](g) dg. 
a iZa'(A)'G'(Q)\G'(A)o" "1]" 

Applying Corollary 2.5.6 and (2.5.4), we find that the right-hand side of (5.6.3) 
is an algebraic multiple of qV' (1h' Yti . We have proved 
5.6.4. Lemma. For all 111 and 112 satisfoing (5.4.6), we have 

v' 'v' 2 
L(W,p-l)(8rp(F )) "'ij c(rpoo' 111' 112' D ). q (112' %) . 

5.7. Proof of the main theorem. Now we can compute. Comparing Lemmas 
5.4.4 and 5.6.4, we have 

- , 'V' 2 p.%(P, 'P). c(rpoo' (j) ® 1t, D , D) "'ij c(rpoo' 111, 112' D ). q (112' %) ; 
recalling (5.4.6), this is equivalent to 
(5.7.1) 

P.%(i11 • i1~, 'P). c(rpoo' (j) ® 1t, D' , D) "'ij c(rpoo' 11, ' 112' D') . qV' (112' %)2. 
Comparing Lemma 5.3.8 and Proposition 5.3.9, we have 
(5.7.2) 

qV' (11" %). qV' (112' %). c(rpoo' 11" 112' D') "'ij C2 . L.%(i1" 1) . L.%(i12 , 1). 
Together, (5.7.1) and (5.7.2) yield 

(5.7.3) qV' (11, ' %) . P.%(i11 • i1~, 'P) . c(rpoo' (j) ® 1t, D' , D) 

"'ij C2 . L.%(i1 I , 1) . L.%(i12 , l)qV' (112' %). 

By Lemma 1.6, we may replace P.%(i11 . i1~, 'P) by P.%(i1; • i12, 1'P). Applying 
Shimura's Theorem 2.6.3 (cf. §7.2, below), Blasius' Theorem 1.8.1, and recalling 
(5.5.12), we may replace the quadratic periods and L-values above with CM 
periods: 

L.%(i1" 1) "'ij (21ti)d . P.%(i11 ' ('P - 'P') II 10/ II 1(<1> - 'P)), 

qV' (11 1 , %) "'ij P.%(i11 ' 1'P') , 

L.%(i12, 1) "'ij (21ti)d . P.%(i12, I<I», qV' (112' %) "'ij P.%(i12, 10/). 

If we set C3 = (21ti)2d . C2 , then (5.7.3) yields 
(5.7.4) 

P.%(i1I , I'P'). P.%(i1; . i12, 1'P)C(rpoo' (j) ® 1t, D', D)) 

"'ij C3• P.%(i1I , ('P - 'P') II 10/ II I(<I> - 'P)). P.%(i12, I<I» . P.%(i12, 10/). 

After several applications of the "monomial relations" (Proposition 1.4(c) and 
Corollary 1.5), and observing that i11 • i1; = 1 , (5.7.4) simplifies as follows: 

c(rpoo' (j) ® 1t, D', D) "'ij C3 • P.%(i11 . i12, I'P'II 1(<1> - 'P)) 

"'ij C3p.%(w, 10/ II I (<I> - 'P)). 
(5.7.5) 
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Note that the factor of proportionality in (5.1.5) depends only on wand 
not on n! One can find a conceptual justification for its independence of P (P 
depends on the choice of CM point, and one could in principle choose a different 
CM point), but it can be shown that c(qJoo' W Q9 n, D', D) is independent of 
n only if I:.(D') c I:.(D) . 

Note further that C3 , like C2 , depends only the archimedean data. 
Lemma 5.2.3 and Proposition 5.2.4 provide another equation for 

c(qJoo' W Q9 n, D' , D): 

(5.7.6) 

Combining (5.7.5) and (5.7.6), we obtain 

C3· qD(n). P%(w, l'P' II 1(<1> - 'P)) "'ij C, . L(n% Q9 W, !). qD' (n), 

or 

(5.7.7) 

where C4 depends only on the archimedean data. We write 

C4 = C4 (k, L(D) , I:.(D')) , 

the remaining data (qJ 00 and XD) presumed subordinate to those indicated. 
Now we employ a trick. Replace D' by D(0), in the notation of 2.6.2(b), 

I . II II { II and rep ace D by an arbItrary D . Let 'P = T E <1>1 TIE E I:.(D )}. Then 
qD(0)(n) = 1 (Lemma 2.5.8), and we obtain anotherformula for L(n %Q9W, !) : 

k ( II) ,D" - II (5.7.8) C4C, I:. D ,0)· L(n% Q9 w, 2) "'ij q (n)· P%(w, /(<1> - 'P )). 

This formula is only valid if W satisfies the local conditions (i) of Theorem 
4.5 for the pair (D(0) , D"). Suppose W satisfies these conditions for the pair 
(D' , D). If D, and D2 are quaternion algebras over E, let S(D, ' D2) be the 
set of places v such that e(D,). e(D2) = -1. In order to guarantee that the 
local conditions remain satisfied for the pair (D(0) , D") , it suffices to assume 
S(D' , D(0)) = S(D, D"). In that case, <I> - 'P" = 'P' II (<I> - 'P) . 

Now assume D = D(I), D' = D(I') , and that I = I' u {a } , for some jo E 
io 

{I, ... , n}. Then S(D, D") = S(D', D(0)) if and only if D" = D({a}). 
io 

Furthermore, exactly one of each pair (D, D') and (D", D(0)) is ramified at 
Vo ; the other is unramified at finite places. Thus the hypotheses of Theorem 4.5 
are satisfied; in particular, formulas (5.7.7) and (5.7.8) are valid. Combining 
(5.7.7) and (5.7.8) with the relation <I> - 'P" = 'P' II (<I> - 'P), we obtain 

II D _ II 
C4(k, I:.(D ),0)· q (n)· P%(w, /(<1> - 'P )) 

I D" "" /I DI 
"'ij C4(k, L(D) , L(D )) . q (n)· P%(w, /(<1> - 'P )). q (n), 

or 

(5.7.9) D I D" D' q (n) "'ij Cs(k, I:.(D) , L(D )) . q (n)· q (n). 
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This completes the proof of the first part of Theorem 2.6.5 in the case IJI = 1. 
By Corollary 2.6.6, this completes the proof of the main Theorem 2.6.1. Of 
course, the first part of Theorem 2.6.5 is a consequence of Theorem 2.6.1. 

It remains to prove the second part of Theorem 2.6.5. But under the hy-
potheses of the second part, D j is unramified at all finite primes, 1 ~ i ~ 4. 
Thus (by Corollary 4.4.5), with an appropriate choice of w, the hypotheses 
of Theorem 4.5 are satisfied for the pairs (D!, D2) and (D3' D4 ); indeed, 
SeD! ' D 3 ) = S(D2' D4 ) = I. The argument thus proceeds as above. 

5.7.10. Remark. Formula (5.7.8) is a result on special values of L-functions, 
along the lines of those proved by Shimura in [42], but including cases (where 
k(w)j = 1 for some j) which Shimura was unable to treat. It will be noticed 
that, for D' = D(0) , Lemma 5.3.7 asserts simply that 

(5.7.11) 

Thus (5.7.8) can be proved without reference to Shimura's Theorem 2.6.3. In 
fact, we can compute C4 (k, I,(D") , 0), up to algebraic factors, using the rela-
tions proved in §§ 1.8-9, and deduce the main results of Shimura's paper [loc.cit.] 
from (5.7.8). This will be shown in §7. 

6. RALLIS' INNER PRODUCT FORMULA IN THE UNITARY CASE 

In the monograph [34], Rallis introduced a method for computing the inner 
product with itself of the theta-lift of an automorphic form from a symplectic 
group to an orthogonal group. Using an extension of the Weil-Siegel formula, 
which identifies certain theta functions with Eisenstein series, beyond the range 
of absolute convergence, the inner product can be identified with the special 
value of the standard L-function of the original symplectic automorphic form, 
by means of the doubling construction of Piatetski-Shapiro-Rallis. 

This program has been completely worked out by Kudla and Rallis [21, 22] 
for symplectic/orthogonal dual reductive pairs. For general classical groups 
considered in §3, including the unitary dual reductive pairs of concern to us here, 
J-S. Li [26] has established all elements of Rallis' program with the exception of 
the generalized Weil-Siegel formula; this should appear in forthcoming work of 
Kudla-Rallis. The purpose of this section is to work out the doubling method 
for dual reductive pairs over totally real fields of the form (U(l) x U(l), U(2) x 
U(2» and (U(2) , U(2». We begin by developing the theory of standard L-
functions of unitary groups. For future reference, we treat the case of arbitrary 
dimension. 

6.1. Eisenstein series. Let n be a positive integer, and let Sn be the 2n x 
2n matrix [~~]. Let GU(n, n) c R'%/QGL(2n),% be the group of unitary 
similitudes of Sn: 
(6.1.1 ) 
GU(n, n) = {g E R'%/QGL(2n),%l t g'. Sn' g = v(g)Sn' v(g) E RE/QGrn,E}' 

Let U(n, n) = Ker(v) be the unitary group. 
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The Siegel parabolic of GU(n, n) is the maximal parabolic subgroup 

(6.1.2) GP = {g = [~ ~]} c GU(n, n) 

where A, B, and Dare n x n matrices over %; P = G P n U (n, n). The 
Siegel parabolic is the stabilizer of a maximal isotropic subspace of %2n. In 
general, we view these groups as schemes over ij; in particular, GU(n, n)(ij) 
(resp. GU(n, n)(A)) is the subgroup of GL(2n, %) (resp. GL(2n, ~)) de-
fined by (6.1.1). However, it is occasionally convenient to view these groups as 
schemes over E , especially when looking at the points over completions of E. 
This should not cause any confusion. 

The matrix g in (6.1.2) has the property that D = v(g). (tAl)-1 . We write 
A(g) = A for g E GP. For any place v of E, let 

~ (I 1/2 x uP,v g) = detoAd(g)lv : GP(Ev) --> R+, 

be the modulus character. Then 
n/2 -n2/2 

(6.1.3) ap,v(g) = IN%/E 0 det(A(g))lv 'Iv(g)lv . 

Let ap,A(g) = IN %/Eodet(A(g))1~2'lv(g)l~n2/2 be the adelic modulus character, 
and let 

(6.1.4) 
SEC; 

Let 
(6.1.5) 

I I dGU(n, n)(A) ~o ()s ( l' d' d . ) s,A = n GP(A) up,A g norma lze m uctlOn 
= {7: GU(n, n)(A) --> Q7(pg) = ap A (p, s)7(g) , p E GP(A) , 

g E GU(n, n)(A)}. 

The local induced representations Is, v and the finite adelic representation Is, AI 

are defined analogously. 
The group U(n) x U(n) is embedded in GU(n, n)(R) in the obvious way. 

Let Koo(n, n) = ZGU(n,n)(R) . [U(n) x U(n)] c GU(n, n)(R) , and let Koo be 
any subgroup of GU(n, n)(R) which is conjugate to Koo(n, n). The choice 
of Koo will be dictated by the circumstances. The lattice (& % )2n C %2n is 
self-dual with respect to the form Sn' Let KI,n C GU%(n, n, AI) be the 
stabilizer of the corresponding adelic lattice. Then Koo' K I satisfies the Iwasawa 
decomposition U %(s , A) = P(A) . Koo . K f' Define 

an(g) = Ilt-n N %/E det(A)II A , 

g = (~ t(Al!)-I) k E GU%(n, n, A), k E Koo .Kf' 
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A section !T (g , s) is a function which, to each SEe, associates a function 
!T(g, s) E I A satisfying the following continuity property: s, 

( 6.1.6) r5n(g)-S .!T(g, s) is a continuous Koo-finite function of g, 
holomorphic in s. 

For Re(s) sufficiently large, the Eisenstein series 

(6.1.7) E(g, s,!T) = !T(yg, s) 
)lEGP(Q)\GU(n, n)(Q) 

converge absolutely to an automorphic form on GU(n, n), and extends mero-
morphically to a function on e, with no pole on the imaginary axis. 

6.2. The doubling method for unitary groups. Let V be an n-dimensional vec-
tor space over % with hermitian inner product (', .) v ' relative to E; let U ( V) 
and GU(V) be the corresponding unitary group and group of unitary simili-
tudes. Define - V as in 3.5.3. Then the hermitian space V(2) = V EB (-V) 
contains a maximal isotropic subspace V~ = {(v, v), v E V} of dimension 
n. Thus GU(V(2») ~ GU(n, n) as algebraic groups over Q. Fixing such an 
isomorphism, it follows that the group 

G(U(-V) x U(V)) = {(g, g') E GU(-V) x GU(V)lv(g) = v(g')} 

embeds in GU(n, n) through its natural diagonal action. 
In this section, we write G = G( U ( - V) x U (V)), Z the identity compo-

nent of its center, and let (g, g') be a typical element of G. Projection on 
the two factors identifies Z ~ ZGu(V) ~ ZGU( _ V)' Let Zo c Z denote the 
subgroup fixed by conjugation of % over E. Choose a Haar measure dg 
on G(A); we assume it is of the form IIdgv where, for almost all places v 
of E, dgv takes volume 1 on a fixed hyperspecial maximal compact subgroup 
Kv c GU(Ev)' Let (7r, Hn) be an irreducible cuspidal automorphic represen-
tation of GU(V) ~ GU(-V) with central character Kn: Z(A)jZ(Q) ..... eX; let 
en denote the restriction of Kn to Zo(A)jZo(Q). Let fc be the contragredient 
to 7r. 

The standard L-function of 7r is an Euler product attached to the restriction 
of 7r to U(V). Fix an irreducible automorphic representation 7ru of U(V) 
in this restriction. There is a finite set S of places of E such that, for v f{; S, 
the local component 7ru v is unramified and is generated over U(V, Ev) by a 
Kv-fixed vector. Let <l>n' be the n x n matrix with ij-entry (-l)i-l r5i ,n_J+I' 
Now the L-group of U(V) over E has a quotient of the form GL(n, q XI 

Gal(%jE), where IE Gal(%jE) acts on GL(n,q by g 1-+ <l>nt;I<I>~I. 
This group has a standard 2n-dimensional representation St, induced from 
the identity map GL(n, <C) ..... GL(n, <C). Let L(7rv ' S, St) be the Langlands 
Euler factor for v E S, corresponding to the unramified representation 7r U II 

and St, and let L S (7r , s, St) be the partial Euler product I1v ~ S L( 7rv ' S , St) . 
Choose isomorphisms of G(A)-modules: 

(6.2.1) 
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where 1I:v is an admissible irreducible representation of GU(V)v ; the product 
is taken over primes of ij. If 1 E Hn , / E Hit, and Y(g, s) is a section, the 
Piatetski-Shapiro-Rallis zeta integral: 

(6.2.2) Z(s, I, / , Y) = f E(iv(g, g'), s, Y)/(g)/ (g') dg dg' 1 Z(A)·G(IQ)\G(A) 

is well defined. Suppose Y, I, and / are factorizable, relative to (6.2.1), as 
elements of ® Is, v' ® 1I:v ' and ® frv ' respectively: 

In particular, for almost all primes v, 1I:v is unramified and Iv and Iv are 
normalized spherical vectors, so that the local pairing (Iv, Iv) = 1. Then 
the basic identity of [6, Part A], worked out in this case by Li [26], takes the 
following form: 

(6.2.3) dn(s)Z(s, I, / ,7) = (I, /)v· IT Zv(s, I, / , Y).Ls (11:, s+!, St). 
vES 

Here S is a finite set of places, consisting of 00 and every place at which V is 
not quasi-split, 11: is not an unramified representation, or I, /, and Yare 
not standard spherical vectors. The local factors Zv (s , I, / ,Y) are defined 
by 

(6.2.4) Zv(s, I, / ,Y) = i ~(iv(hv' 1), s)c f,f' ,v(hv ) dhv 
v 

where Uv is the local unitary group and 

cf,f' ,v(hv) = (Iv, Iv)-l . (1I:v(hv)lv, Iv) 
is the matrix coefficient, normalized to take value 1 at 1. The global period 
(I, /)v is a Petersson inner product: 

(6.2.5) (f, /)v = f I(g)/ (g) dg. 
lZ(A).GU(V ,IQ)\GU(V ,A) 

Finally, the normalizing factor dn(s) is the following product of partial L-
functions: 
(6.2.6) 

0<:,J<n/2 0<J<:,n/2 

where (i (resp. L S (*, e,%)) is the Dedekind zeta function (resp. the Dirich-
let L-function attached to the quadratic character e,%) with the factors at S 
removed. For any place v of E, let dn v(s) be the corresponding product of 
local Euler factors; here we allow v E S .' 

This formulation requires some justification. Both [6] and [26] consider uni-
tary groups rather than unitary similitude groups. The generalization to simili-
tude groups is simple. As in [6, Part A, §1], the zeta integral (6.2.2) breaks up 
as a sum over the finite set 

GP(ij)\GU(n, n)(ij)jGU(V, - V)(ij) 
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of integrals, all of which vanish except that corresponding to the identity coset. 
Let [(Yo) be the integral corresponding to the identity coset: 

[(Yo) = r !TUV(g, g'), s)f(g)/(g')dgdg', 1 Z(A)'GU(V)(i(J!)\GU(V, - V)(A) 
where GU(V)(IQ) is embedded diagonally in GU(V, -V)(A). Then 

[(Yo)= r !TUv[(g', g').(g,,-I. g , 1)], s)f(g)/(g')dgdg'. 1 Z(A)'GU(V)(i(J!)\GU(V, -V)(A) 

Now (g, g') E GU(V, -V)(A) implies that h = g,,-I. g E U(V)(A). Further-
more, iv(g', g') E GP(A) , with AUv(g', g')) = g', vUv(g', g')) = v(g'). 
Thus 

!TUv[(g', g'). (h, 1)], s) = f5p ,AUV(g', g'), s) ·,9TUv (h, 1), s) 

= !TUv(h, 1), s). 
Hence [(Yo) simplifies to 

j !TUv(h, 1), S)[ r f(g'h)/(g')dg'] dh 
U(V ,A) lZ(A)'GU(V ,i(J!)\GU(V ,A) 

= (f, /) . j !TUv(h, 1), s) . II (tv, J;J -I . ( 1tv(hv)fv' J;J dh 
U(V,A) v 

by uniqueness of the local pairings 1tv ® trv -+ C. The basic identity now follows 
from the local computations of Li. 

Let Zf(s, f, /,!T) = TIvES! Zv(s, f, /,!T) be the product of the bad 
nonarchimedean factors. For any 0' E Aut(C) , we define Zf(s, ] , /,(1, !T(1) 
= TIvES! Zv(s, ] , /,(1, !T(1) as follows. There is a a-linear intertwining map 

1tv ® trv -+ 1t~ ® 7r~ which takes the local pairing Bv: 1tv ® trv -+ C to the local 
pairing B:: 1t~ ® 7r~ -+ a(C) = C; this takes Iv ® Iv to (Iv ® Ivt . We define 
the local factor ~(1 by letting Aut(C) act on sections of [s,v by acting on their 
restrictions to a chosen special maximal compact subgroup Kv c GUv . Then 

Zv(s, ] , /,(1, !T(1) = i ~(1 Uv(hv ' 1), S)C(f0!')G ,v(hv) dhv ' 
v 

where 
(h (1 r r (1 -I (1 (1 • (1 h r r (1 h (1 c(f0f')G,v v) = [Bv(Jv®Jv) ] .Bv(1tv ®1tv ( v' I)(J v ®Jv) )=cf.f',v( v) . 

6.2.7. Lemma. Let mo E IQ satisfy mo == nl2 (mod Z) . 
(i) For all 0' E Aut(C), Zf(mO ' f, /, !T)(1 rv Zf(mO' ] , /,(1, !T(1). 
(ii) Furthermore. if 1t f is defined over a field L, 1;) ® Iv belongs to an L-

rational model of 1tv ® trv for all v E Sf' and !TI K" takes values in L. Then 
Z f( mo ' f, / , !T) E L . 
Proof. This is proved in the same way as Lemma 4.9.9 of [5]. We review 
the argument. It is known [32, especially Theorem 2.3] that the local factor 
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Zv(s, f, r,:7) is a rational function of Nv-s • The measure has been nor-
malized to take rational values, and ~p v(g, mo) takes values in ij for mo as 
in the statement of the lemma. It thus follows that Aut(C) acts on Zv through 
its action on the integrand: 
(6.2.7.1) 

Zv(mo' f, /, :7/' = fu G;/'Uv (hv ' l)mO)cf ,f' ,v(hv )" dhv ' (T E Aut(lC). 
v 

Here we understand that the right-hand side is extended to all s by analytic 
continuation and then evaluated at s = mo' Part (i) of the lemma now follows 
from the definitions. 

Now suppose the hypotheses of (ii) are satisfied. We have to show that 

(6.2.7.2) cf,f' ,v(hv)u = cf,f' ,v(hv ) for all (T E Aut(C/L). 

But 1l(hv )fv 1&1 Iv E 1lv 1&1 7rv(L) for all hv E Uv ' and by Schur's lemma there is 
a constant b such that b- I Bv(1lv 1&1 7rv(L)) C L. Thus (6.2.7.2) follows from 
the definition of c f,!' ,v . 

Henceforward, we only consider the cases n ::; 2. When n = 1, V = % , 
and 1l is a Hecke character 17. Then (cf. [7, 1.2]) 

(6.2.8) L(17, s, St) = L,%(~, s), ~ = 17/171 • 

Here ~ should be viewed as the base change from U(%) E to GL( 1),% of the 
restriction of 17 to U(%)E' Note that L,%(~, s) = L,%(~-I , s) = L%(~I , s). 

When n = 2, we may assume V = D, GU(V) = GU,%(D) , for some 
quaternion algebra Dover E which splits over %. Let II = OJ 1&1 1lD be an 
automorphic representation of GU ,%(D) , with OJ a Hecke character of %, 1lD 
an automorphic representation of D X associated to the automorphic represen-
tation 1lof GL(2)E' such that ~Il'~w = 1. 

6.2.9. Lemma. Let 1l,% denote the base change of 1l to %. Then L s (II, s, St) 
= L';'(1l,% 1&1 OJ, s) is the partial Hecke-Jacquet-Langlands L-functionfor GL(2)'}f 
(in the unitary normalization) attached to the twist of 1l/Jr by OJ. 

Proof. This is a simple computation. We consider only places v at which D 
is split. Write GUv = GU(D)(Ev ) ' Uv = U(D)(Ev )' We may identify 

I -I 1 x (6.2.10) GUv = {g E GL(2, ~)I g = v(g)g , v(g) E Ev }, 

and the map ~x x D: -t GUv is given by (k, d) 1--+ (k . 12)d , where 12 is the 
identity matrix. 

Suppose first that v is a place of E that splits as W· Wi in %. Then 
(6.2.10) identifies 

Uv ~ {(g, Ig -I) E GL(2, Ev)2 ~ GL(2, ~1J) x GL(2, ~lI')}' 

Sending (g, t g -I) 1--+ g defines an isomorphism Uv ~ GL(2, Ev)' We use 
this isomorphism to transfer IIu , v to an admissible representation IIGL , 11 



L-FUNCTIONS OF 2 x 2 UNITARY GROUPS 705 

of GL(2, Ev). Then the local Euler factor L(llv' s, St) L(llGL v' s) . 
L(TIGL,v' s), where TIGL,v is the contragredient of llGL,v. But in terms of 
our given map ~x x D: ---+ GUv ' it is easy to see, using the formula ~1l·~w = 1 , 
that 

L(1C.Jt' w ® ww ' s) = L(llGL v' s), , , L(1C.Jt' Wi ® ww /, s) = L(TIGL v' s). , , 

The case of nonsplit v is analogous. 

6.3. The U(D') x U(D) lift. We now return to the situation of §5. Proposi-
tion 5.2.4 and Theorem 4.5 are proved simultaneously, by applying the Rallis 
doubling method. 

Let D and D' be quaternion division algebras over E, with ~(D) c ~(D'). 
Consider the seesaw diagram (3.5.3.1) when V = D', V' = D; this is the case 
discussed in Lemma 3.3. Thus GU .Jt'(D' $ (-D')) ~ GU .Jt'(2, 2) , viewed as the 
similitude group of the hermitian form S2. We have 

GU .Jt'(2, 2) G = G( U .Jt'(D) x U .Jt'(D)) 

(6.3.1) x 
The action r", of R(D, D' $( -D')) on the Schwartz-Bruhat space 5'(D(A)2) 

was described in the proof of Lemma 3.3. Suppose rp E 5'(D(A)2) , and let 
~(g) = r ",(g, a)rp(O) for g E GU .Jt'(2, 2, A) and a E GU .Jt'(D) such that 
v(g) = v' (a) , where v and v' are the respective similitude factors. (Such a 
exists only when the sign of v(g) is positive at every real prime in ~ - ~(D'); 
otherwise no condition is imposed). Let P be the subgroup of GU .Jt'(2, 2) of 
elements of the form 

(~ t(Al!)-,), 

with A E GL(2, %), B hermitian in M(2, %), and t E EX. Then (cf. 
(3.4.1-2)): 
(6.3.2) 

~(p·g)=lIt-2N.Jt'/Edet(A)IIA·~(g), p= (~ t(Al!)-,) EP(A). 

Thus ~ E IO,A' in the notation of (6.1.5), with n = 2. Let ~(g, s) = 02(g)s. 
~(g) for gE GU.Jt'(2, 2, A), in the notation of§6.1. Then ~(g,s) is a sec-
tion, in the sense of §6.1, and we can define the Eisenstein series E(g, s, ~). 
It is holomorphic on the imaginary axis, in particular at s = O. In this case, 
the Weil-Siegel formula in the case of unitary groups would yield the following 
identity: 

6.3.3. For all rp E 5'(D(A)2) , 

()rp(GU.Jt'(D) ---+ GU.Jt'(2, 2); 1) = 2· E(g, O,~), 

where 1 is the constant function. 



706 MICHAEL HARRIS 

In the case of the symplectic group the analogous result is a special case of 
a theorem of Kudla and Rallis [22, 24]. Their methods should carry over with 
little change to the unitary case, and we ask the reader's indulgence in admitting 
6.3.3 until its proof appears. We have used the hypothesis that D be a division 
algebra to guarantee that the integral defining the left-hand side of the formula 
is absolutely convergent (alternatively, that the constant function 1 is a cusp 
form). The theorem should remain true (cf. [24]) if the definition of the theta 
lift is modified, but the more general case will not be necessary. 

6.3.4. Proofs of Theorem 4.5 and Proposition 5.2.4. We apply the seesaw reci-
procity formula 3.8.4 to the diagram (6.3.1) to express BD (Orp (FD' )) as a zeta 
integral (6.2.2), with s = 0. In this case, ~' (A)o = ~' (A) = GU %(D(A)), 
~(A)o = ~(A) = G(U%(D'(A)( U%(-D'(A))). We have F't/' = 1, Fr = 

D' F . Then 
(6.3.5) 

d d 
BD(O rp(F )) = (Orp(Fr), F't/' )'t/' = (0 rp (F't/') , Fr)r = 2(E(g , 0, .s;) ,F )r' 

We have to show that 
D' D' 

(6.3.6) For an appropriate choice of ({J and F ,(E(g, 0, .s;), F )r 
#0; 

(6.3.7) 

There is a constant CI = CI (({Joo' /i., x, D', D) E eX such that, 
for all ({J E 5"(Q) , 

D' D' 
BD(Orp(F )) = 2(E(g, O,.s;), F )r 

D' 
"'ijCI .L(n%0OJ, !).q (n). 

D' . D' 
Now (E(g,O,.s;),F )r = Z(s,f,/,.s;)ls=o' WIth f = OJ ° f(x ), 

/ = OJ- 1 o J(x D'). Thus the basis identity (6.2.3) yields 

(6.3.8) 
D' 

d2(0)(E(g, 0, .s;) , F )r 

D' v D' S [ ] =(f(x ),f(x ))D,·L (n%0OJ,!,St). rrZv(s,f,/,.s;) ; 
vES s=o 

here we have used Lemma 6.2.9. We remark that the notation (., .) D' has been 
defined twice, in §2.5 as an integral over L D , and in (6.2.5), as an integral 
(effectively) over L% D' By (1.2.3) and the normalization of measures in 
the Notation section, these two spaces have the same volume up to rational 
multiples; here the factor (2ni)-Il:(D)1 in (2.5.2) is essential (cf. the discussion 
of rational measures in the introduction to [13]). Thus up to a rational factor 
the two definitions coincide. Now 

S S .3d d2(0) = 'E(2). L (1, e%) = d l • G(e%)· (2nl) = d2 



L-FUNCTIONS OF 2 x 2 UNITARY GROUPS 707 

for some d l E «J( _ Next, with our choice of f(x D') , we have 

(6.3.9) 
D' v D' D' o -::J (f(x ), f(x ))D' "'ij q (n). 

We have chosen w so that L(n % 0 w, !, St) -::J 0; therefore the partial L-
function is also not equal to zero, since (by the classification of unitary rep-
resentations of GL(2) over a local field) the local factors have no poles for 
Re(s) ~ !. 

It remains to be shown that 

(6.3.10) The data f, (,and ~ can be chosen so that Zv(s, f, (,~) 
-::J 0 at s = O. 

This will be proved in greater generality in forthcoming joint work with Kudla, 
so we only sketch an argument that works in the present case. First assume D' 
ramified at v. Then it is easy to see that (6.3.10) is equivalent to 
(6.3.11) 

D 
HomG'(Ev )+ ([n 0 w](2) 0 (8(GU %(Dv) ---> GU(2, 2)v; 1G(E) , q -::J O. 

Indeed, the zeta integral Zv (s , f, ( , ~) defines a pairing in the space in 
(6.3.11), so (6.3.10) implies (6.3.11). On the other hand, G'(Ev ) is compact 
modulo its center, so we can find a subspace Jf" c 9(D;) which transforms 
under G' (Ev)+ as the contragredient to [n D 0w](2) . Taking rp in this subspace, 
the integral Zv (s, f, ( ,~) reduces to an integral of matrix coefficients of 
Jf" against matrix coefficients of nD 0 w, and these coefficients can certainly 
be chosen to make the integral nonzero (for a more general version of this 
argument, cf. [26, Theorem 5.4]). 

Thus we may assume D' split at v . Now, none of the Zv (s , f, ( , ~) has 
a pole at s = 0 [32, §3]. Combining (6.3.5) and (6.3.8), we may thus conclude 
that (6.3.10) is equivalent to the nonvanishing of 81f1(w 0 n D'). Since 
the latter is equivalent to the identity 8( W 0 nD') = W -I 0 frD, it 
follows by adjointness that (6.3.10) is equivalent to the nonvanishing of 
81f1( GU %(D) ---> GU %(D') ; W 0 nD ). But now the family of zeta integrals in 
(6.3.10) (integrals over G') depends only on Dv and D~. Thus it suffices to 
show that, under the hypotheses of Theorem 4.5, there exist quaternion algebras 
9 and 9' over E , such that 

(6.3.12) n9f and n9f' exist, 9 v ~ Dv ' 9~ ~ D~, 9 not globally split; 

(6.3.13) 

Let S(D') be the set of places of E at which D' is ramified, and let 9 and 9' 
be the quaternion algebras obtained from D and D' , respectively, by switching 
the Brauer group invariants at all places in S(D'). Then 9' is globally split 
and 9 is not; this is where we use the hypothesis D ~ D' , in order to be able 
to refer to the simple version 6.3.3 of the Weil-Siegel formula. Now (6.3.12) is 
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certainly satisfied; but then (6.3.13) is the special case of Theorem 4.5 for which 
9' is split, which was proved in §4.5. This completes the proof of (6.3.6), thus 
of Theorem 4.5. 

Applying (6.3.9), we obtain 

D' D' s 1 [ ] d2 ·BD«()",(F »"'ij"q (n)·L (n%®w'2,St)· IIZv(s,f,I,~) . 
vES s=o 

Write this last product as Zoo· Z f. Now Zoo depends only on rp 00' Is.., X, D, 

and D' . Thus, if we define C1 = (d2)-1 • Zoo' we find 
D' D' S 

BD«()",(F » "'ijC1·q (n)·L (n%®w, L St).Zf· 
Then (6.3.7), and hence Proposition 5.2.4, will follow from Lemma 6.2.7(ii), 

once we show that the relevant hypotheses are satisfied. But, on the one hand, 
the nonarchimedean local components of ~ take values in ij since rp E 

.9'(ij); on the other hand, we have chosen F D' to belong to the ij-rational 
D'D' -form [w ® n f x ](2)(ij). This completes the proof. 

6.4. The U( 1) X U(D') lift. We now consider diagram (3.5.3.1) when V = % 
and V' = D'; this is the case discussed in §3.6. Thus GU%(V EEl (-V» ~ 
GU%(s) = GU%(I, 1), viewed as the similitude group of the skew-hermitian 
form g. SI . We have the seesaw diagram 

GU%(s) G(U%(D') x U%(D'» 

(6.4.1) X 
G(U(%) x U(-%» GU%(D') 

At each place v of E there is an identification R(D', s):=R%(VEEl(-V) , V') 
~ U.% (s) )<I GU(D') (semidirect product). Here h E GU(D') acts on U.% (s) , as 

in §3.2, by conjugation by (~V~h)' where v = vD' • The action r", of R(D', s) 
on the Schwartz-Bruhat space .9'(D~) in the Schrodinger model is defined by 
(3.6.3-5). As we saw in §3.6, the action of G(U(D') x U(D'» on .9'(D~) is 
determined by an auxiliary splitting y. Although the exact form of y does not 
concern us, we write 

()~(G(U(%) x U(-%» -> G(U(D') x U(D'»; *) 

to stress the dependence of the theta liftings on these choices, and 
()",(GU(D') -> GU%(s); *) 

for the other lifting. 
Suppose rp E .9'(D~), and let ~(g) = r ",(g, a)rp(O) for g E GU %(s, A) 

with v(g) = a E N%/E(D~X). Let P be the upper-triangular Borel subgroup 
of GU %(s) , and let 

p(a, b, t) = (~ t. (!,)-I ) E P(A), 
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with a E ~x , tEE: ' bE EA , be the typical element. Then 
(6.4.2) 
~(p(a, b, t) . g) = lit-I N %/E(a)IIA • ~(g), x x 

a E ~ , t E EA , bE EA' 

Thus frp E II/2,A' in the notation of (6.1.5), with n = 1. Let ~(g, s) = 
c51(g)s.~(g) for gEGU%(s,A). Then ~(g,s) is a section, in the sense of 
§6.1, and we can define the Eisenstein series E(g, s, ~) . For a general section 
7 the Eisenstein series E(g, s, 7) may have a pole at s = 1-. However, ~ 
is a Weil-Siegel section, and the Weil-Siegel formula in this case asserts: 

6.4.3. For all rp E 5"'(D~), E(g, s,~) is holomorphic at s = 1- ' and 

()rp(GU(D') -> GU%(s); 1) = E(g, 1-'~)' 

Again, the analogous assertion for symplectic groups has been proved by 
Kudla and Rallis. Indeed, the holomorphy at s = 1- is already contained in 
[22]. This is because, by a simple application of the seesaw diagram (3.5.1.3), 
E(g, s, ~) isjust an extension to GU %(s) of a Weil-Siegel Eisenstein series on 
GL(2) , associated to the dual reductive pair (GL(2) , GL(D')). It is then not 
difficult to deduce 6.4.3 from the result in [22] by comparing Fourier expansions 
of the two sides. 
6.4.4. Proof of Proposition 5.3.9. Here we are not concerned with the nonva-
nishing of the theta lift, so the argument is simpler than in §6.3. However, we 
have first to explain the sleight of hand which has replaced the space 5"'(D(A)2) 
of §5 with the space S(D' (A)2) of §3.6 and this section. Recall that in (3.6.1) 
we have rewritten (D Ef) ( - D)) 0% D' as 

(6.4.5) (~Ef) Vi) 0% (D' Ef) (-D')) ~ ~ 0% (D' Ef) (-D')) Ef) V20% (D' Ef) (-D')) 

This has the effect, in Lemma 3.3, of changing the polarization on the big 
symplectic space W". The relation between the two Schrodinger models is 
given by a partial Fourier transform P: 5"'(D(A)2) ~ 5"'(D' (A)2) , cf. [28, 
p. 32]. The integral defining P breaks up as a product of local integrals 
Pv: 5"'(D;) ~ 5"'(D~' 2). Then for all finite v, Pv preserves the space of 
Qab -valued Schwartz-Bruhat functions. Let P 00: 5"'(D(JR)2) ~ 5"'(D' (JR)2) be 
the archimedean constituent of P, and let rp D' = P (rp ). Then 00, ex;) 00 

5"" (Q) := P(5"'(Q)) = Q. rp 00 ,D' 0 5"'(D' (AI )2)(Q) C 5"'(D' (A)2) 

is a :9" (AI )-invariant Q-form of 5"'(D' (A)2). Furthermore, as forms on :9" , 

()rp(171 0172(2)) = ()P(rp)(171 0172(2)), 

~nce the theta lifting never depends on the model. It thus suffices to compute 
BD'(()p(rp)(171 0172(2))). 

Write rp D' = rp I 0 rp 2' with rp . E 5"'(D(JR)) , i = I, 2, relative to 00, 00, 00, 00,1 

the splitting (~Ef) Vi) 0% (D' Ef) (-D')) ~ VI 0% (D' Ef) (-D')) Ef) Vi 0.% (D' Ef) (-D')) 
of (6.4.5). This is possible because rpoo' and hence rpoo,D" was chosen to be 
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of pure U(~ (R)) x U(J2(R))-type. Similarly, write Y' (Q) = ~ (Q) 0 Y;(Q) , 
where Y;(Q) = Q. rp 00, j 0 Y(D' (Ai) )(Q) . 

If tf is any Heeke character of .%, write tf 0 tf- I for the corresponding 
Heeke character of G(U(.%) x U(-.%)) c (.%X)2, and for rp E Y(D'(A)), we 
can define the automorphic form on G(U,%(D') x U,%(D')): 

-I , , -I 
O",(tf 0 tf ) = O",(G(U(.%) x U(-.%)), G(U,%(D) x U,%(D); tf 0 tf ). 

It will be enough to show that, for i = 1 , 2, there exists C2 E (e such that 

(6.4.6) 

with ED' defined as in (S.2.1). 
Now apply seesaw reciprocity for the diagram (6.4.1). In this case, ~W'(A)o 

=~W'(A)=GU,%(D'(A)), ~r(A)o=~r(A)=G(U,%(V;(A)) x U,%(-V;(A))). 
We have F-v' = 1, Fr = tfj 0 tf:1 . Then 6.4.3 yields 

-I 
ED' (O",(tfj 0 tfj )) = (0 ",(Fr ), F-v' }-v' = (0 ",(F-v') , Fr)r 

1 !T -I = (E(g, 2' ",), tfj 0 tfj }r' 
(6.4.7) 

Now (tfj' tf:I}V is the volume of ~x j.%x . E: ' and d l (0) = (;(2). We 
complete the proof by verifying, as in §6.3, that the hypotheses of Lemma 6.2.7 
are satisfied. 

7. SPECIAL VALUES OF L-FUNCTIONS AND COMPLEMENTS 

7.1. Let n be as in Theorem 2.6.1. We begin by returning to formula (S.7.8). 
Thus we suppose D' = D(0), D arbitrary, and nand w chosen to satisfy the 
hypotheses of Theorem 4.S. More precisely, Corollary 4.4.S and Theorem 4.S 
together say that, for each n such that nD' and nD exist, and each collection of 
local characters {Xv} as in Corollary 4.4.S, there exists w satisfying conditions 
(i)-(iii) of Corollary 4.4.S such that the conclusions of Theorem 4.S are valid. 
Then formula (S.7.8) asserts 

(k mot D ~ (7.1.1 ) C 4 _, I:. ( D) , 0) . L ( n,% 0 w, 1) "'ij q ( n) . p.% ( W, 1 (<I> - 'II)) , 

where w is compatible with 1<1>, 'II = {T E <1>1 TIE E I:.(D)} , and 

Lmo\n,% 0 w, s) = L(n,% 0 w, s -!) 
is the motivic normalization of the L-function: 

(7.1.2) L mot (n,% 0 W, s) = L(n 0 n(w,.%), s). 
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In this case we can break down the unknown constant 

C4(k, L.(D) , 0) = CI /C3 = CI /(2ni)2d . C2, 

by (5.7.7) and the preceding arguments. Here C2 = C2 (CfJ oo ' k(11 1), k(112), L.(D')) 
C2 (CfJ oo ' k(l1 l ) , k(112) , 0) is the constant of Proposition 5.3.8, and 

C I = C I (CfJ oo ' k, x, 0, L.(D)) is the constant of Proposition 5.2.4. Now C I = 
(d2)-1 Zoo '""Q G(ez-)-1(2ni)-3d ,Zoo, I by the construction in §6.3, where Zoo, I 
is the product of archimedean local zeta integrals. On the other hand, in the 
notation of (6.4.8), 

d 

C2 = dl (0)-2. (g Z)s, 111' (111 )-1 , Y;) . Zj(S' 112' (112) -I , Y;)) s=t ' 
where the product is taken over the archimedean places and dl (0) = '~(2) '""Q 

(2n i)2d . In other words, letting Zoo, 2 be the product of local zeta integrals, we 
have C2 '""Q (2ni)-4d . Zoo,2' or 

(7.1.3) 
d 

G(ez-)' C4(k, L.(D) , 0) '""Q (2ni)-d . Zoo, I/Zoo ,2 '""Q IT C4,j' 
j=1 

where, if Z. . is the local integral (or product of integrals) in Z " i = 1 , 2, 
} ,lex:> , 1 

j = 1, ... , d, then C4 . = (2ni)-1 . Z liZ 2' 
,J J, J, 

The point of (7.1.3) is that, at least up to algebraic factors (depending on 
the choice of CM point), C4 is a product of the local zeta integrals which 
can be computed already for E = Q. When E = Q, there are essentially 
only two cases: L.(D) = L. and L.(D) = 0. We write C4 (k, L.(D) , 0) 
C4 (k, L.(D)E' 0 E), to stress dependence on E. Then 

(7.1.4) C4(k, L.(D)E' 0 E) "'ij IT C(kj' L.Q , 0 Q ). IT C(kj' 0 Q , 0). 
jEL.(D) jEL.(D)' 

We work out the two factors in turn, for arbitrary E. 
First suppose L.(D) = L Hypothesis (ii) of Corollary 4.4.5 and Corollary 

4.4.1 then imply that kj > k(w)j for all j. Then Theorem 3.5.1 of [9, I] 
asserts: 

mM . d L. L (n% @ w, 1) = L (n @ n ( W , %), 1) "'ij (2 n I) V (n), 

cf. the arguments in §§ 1.8-9. On the other hand, (7.1.1) states 

k mM D L. 
C 4 C, L. E ' 0 E) . L (n% @ w, 1) "'ij q ( n) "'ij v ( n) , 

where vL.(n) is the invariant mentioned in § 1.8; the second relation is [9, I, 
(1.6.5)]. Thus 

(7.1.5) 
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Now suppose 'f.(D) = 0. Hypothesis (ii) of Corollary 4.4.5 and Corollary 
4.4.1 then imply that kj < k( w) j for all j . Then Theorem 3.5.1 of [9, I] asserts 

mot . d l: C7T L (n%®w, 1)=L(n®n(w,.%), 1) ""ij(2m) y (w,..4). 

On the other hand, (7.1.1) states 

C4(!s.., 0 E , 0 E )· Lmot(n % ® w, 1) ""ij P%(w, 1<1» ""ij yl:(w, .%), 

where the second relation is the special case of Lemma 1.9.5 for which I' = 0 , 
I = 'f.. Thus 

. -d (7.1.6) C4 (!s.., 0 E , 0 E ) ""ij (2nl) . 

Now it follows from (7.1.5-6) applied to E = Q and (7.1.4) that 
. -d (7.1. 7) C4 (!s.., 'f.(D)E ' 0 E) ""ij (2n i) for all D. 

Thus (7.1.1) yields 
7.1.8. Proposition. Let w be any motivic Heeke character such that k(w)j > k j 
for j E 'f.(D)', k(w) j < kj for j E 'f.(D). Then under the hypotheses of Theorem 
2.6.1, 

Lmot(n% ® w, 1) = L(n ® n(w,.%), 1) ""ij (2ni)d. qD(n). P%(w, 1(<1> - '1')). 
Proof. The proposition follows from (7.1.1) and (7.1.7) , provided 
L mot(n % ® w, 1) ::j:. 0, but if L mot(n % ® w, 1) = 0 there is nothing to prove. 

We remark that a Gal(Q/Q)-equivariant version of this proposition can be 
proved by analyzing the global zeta integral of §6 on U %(D), along the lines of 
[37, 5]. This will appear in a forthcoming paper. 

When k(w)j ~ 2 for all j, this proposition is included among Shimura's 
results in [42]. However, when k j = 2 for some j E 'f.(D) , it is essential to 
allow k (w) j = 1 in order to prove our main theorem. 

7.2. Proof of Sbimura's Theorem 2.6.3. Note that Shimura's Theorem 2.6.3 
enters into the argument in §5 in its application to D'. When D' = D' (0) 
Theorem 2.6.3 is trivial. Thus formula (7.1.1) does not depend at all on Theo-
rem 2.6.3. We now show how to derive Theorem 2.6.3 from Proposition 7.1.8 
and Lemma 1.9.5. The character in the statement of the theorem will be denoted 
Y!. Let n = n( Y! , .%). Then Proposition 7.1.8 asserts 

(7.2.1) L(n(y!, .%) ® n(w, .%), 1) ""ij (2ni)d . qD (n) . p.%( W, 1(<1> - '1')) . 

We choose w subject to the hypotheses k(w)j > k(Y!)j for j E 'f.(D)' , k(w) j < 
keY!) j for j E 'f.(D) , and L(n(y!,.%) ® n(w, .%), 1) ::j:. 0; this is possible by 
Corollary 4.4.1. Then applying Theorem 3.5.1 of [9, I], as above, we obtain 

(7.2.2) (2ni/ . yl:(D)(Y! ,%) .yl:(D)' (w,.%) ""ij (2ni)d .qD(n).p.%(w, 1(<1>- '1')). 

But Lemma 1.9.5, with I' = 'f.(D) , I = 'f.(D)' , implies that 
l:(D) l:(D)' ~ ~ 

(7.2.3) y (y!,.%) . y (w,.%) ""ij P.5r(Y!' '1') . P5r(w, 1(<1> - '1')). 

Theorem 2.6.3 follows immediately from the last two formulas. 
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7.3. Proof of Shimura's case of Theorem 2.6.1. Let L = I II J and let l = 
D(I) J D( J) ~ D(~) q (n), q = q (n), q = q (n) , where D(L) = M(2, E). We want to 

prove that 

(7.3.1) I J ~ ~ 
q . q "'ij q = v ( n) . 

As above, we derive the relation from Proposition 7.1.8. In the first place, let w' 
(resp. w) be a Hecke character satisfying (5.5.5-6) for D' = D(0) , D = D(I), 
and n (resp. D' = D(0), D = D(J), and ir). Assume both wand w' 
compatible with the CM type <I>. For any I' C L, let <I>(I') = {T E <I> I TIE El'} . 
Then 

(7.3.2) o i- L(n ® n(w' , %), 1) "'ij (2ni)d . / . p,%(w' , l<I>(J)); 

o i- L(ir ® n(w, %), 1) "'ij (2ni)d . q' . p,%(w, l<I>(I)). 

Here we are using the fact that ir = n ®~;1 , so qD(J)(n) = qD(J\ir) by (2.5.4). 
On the other hand, Theorem 3.5.1 of [9, I] asserts 

(7.3.3) I . d I J I 
L(n ® n(w , %), 1) "'ij (2m) . v (n)· v (w , %); 

L(ir ® n(w, %), 1) "'ij (2ni)d . v J (ir) . v J (w, %). 

Comparing (7.3.2) and (7.3.3), we obtain 
I _ I I J I 

q . p,%(w , l<I>(J)) "'ij v (n)· v (w , %); 

q' . p,%(w, l<I>(I)) "'ij v J (ir) . vI (w, %). 
(7.3.4) 

Multiplying the two relations in (7.3.4), we obtain 
(7.3.5) 
/ . q' . p,%(w' , l<I>(J)) . p,%(w, l<I>(I)) "'ij vI (n) . v J (ir) . vJ (w', %) . j (w, %) 

~ J I I 
"'ij V (n)· v (w ,%). v (w, %) 

by Proposition 1.5.6 of [9, I]. 
On the other hand, 1 = ~:rr • ~w = ~ft • ~w, , so ~w· ~w, = 1. It follows easily 

that wand w' satisfy the hypotheses of Lemma 1.8.9, with I' = J. Thus 

(7.3.6) 

Comparing (7.3.6) with (7.3.5), we obtain (7.3.1). As above, we remark that 
this proof does not depend on Shimura's results. 

In exactly the same way, one can reprove Shimura's theorem [42, Theorem 
5.3] expressing the special values of Rankin-Selberg convolutions L(n®n' , s) in 
terms of the qD(n) and qD' (n'), by comparing Proposition 7.1.8 with Theorem 
3.5.1 of [9, I] for nand n' and variable Hecke characters w. We postpone 
this to a forthcoming paper with Garrett, where we will have access to a more 
precise version of Proposition 7.1.8. 
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7.4. We continue to assume n satisfies the hypotheses of Theorem 2.6.1. Let 
% be any eM quadratic extension of E, and consider the standard L-function 
Lmot(n,%, s), normalized motivically. Then 

mot CZ7 (7.4.1) L (n,%,s)=L(nQ9n(I,Jl-),s), 
where 1 is the trivial Hecke character of % and the tensor product L-function 
is given its standard normalization. Of course, n( 1 ,%) is an Eisenstein repre-
sentation, and L mot(n,% , s) = L(n , s - !). L(n Q9 e,% , s - !) (Jacquet-Langlands 
normalization). 

The critical values of the right-hand side of (7.4.1) have been studied by 
Shimura [37]; it suffices to remark that kj > k( 1) j = 1 for all j, by hy-
pothesis. The principal term in the special value is just the quadratic period 
l'(n) = vl:(n). Let qj(n) = qD(j)(n) , with D(j) the quaternion algebra rami-
fied precisely at (Jj and vo' as in the proof of 2.6.6. Applying our factorization 
theorem (2.6.1), Shimura's Theorem 4.2 can be translated as follows: 
7.4.2. Theorem. Let m be an integer such that 

!(2 - r) '5: m '5: !(1 - r) + kj - 1, j = 1, ... , d. 

Set A. = 2m - 1 + r. Then 
d 

L mot(n,%, m) ""ij" (2ni)dJ... /r . G(en . e,%) . II qj (n). 
j=1 

Here G(en·e,%) is a Gauss sum, defined as in [9, I, §3.5]. The power of i and 
the Gauss sum are algebraic numbers, and their inclusion in the statement of the 
theorem is simply an expression of optimism. The identification of the critical 
range for m and the power of (2ni) are derived from Shimura's Theorem 4.2 
as in [9, I, Remark 3.5.10]. 

As a special case, we can consider nD(j) occurring in the representation gen-
erated by invariant differentials on a factor A(n, j) of the Jacobian of the 
Shimura curve ~ attached to the quaternion algebra D(j). Then kj = 2 for 
all j, r = 0 ,and m = 1 is the only critical point. In this case qj (n) is the vol-
ume of the period lattice of A(n, j), up to an algebraic multiple. Denote this 
volume v(A(n, j)). Then for any r E Aut(C) , v(A(n, j)'} ""ij" v(A(n, r(j))) , 
where Aut(C) acts on ~ by permutation, cf. (2.1.1). Let A(n, j),% denote 
the base change of A(n, j) to %. We find 
(7.4.3) 

d 
LmO!(n,%, 1) = L(A(n, j),%, 1) ""ij" (2ni)d . idr . G(e,%)· II v(A(n, j)), 

j=1 

where r runs through a set of coset representations for Aut(C/(Jj(E)) in Aut(C). 
It is easy to verify that G(e,%) ""Q (d,%/dE ) 1/2 • Formula (7.4.3) may thus be 
regarded as the transcendental part of the Birch-Swinnerton-Dyer conjecture for 
A(n, j), viewed as an abelian variety over % . 
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7.S. It remains to explain what our methods provide in the absence of a local 
hypothesis at vo' Then we can only work with quaternion algebras D unrami-
fied outside 00. Suppose D, D' , n, and OJ are taken to satisfy the hypotheses 
of §§S.I-S.6; in particular, I.(D) == I.(D') == d (mod 2). Then the arguments 
up to (S. 7.7) remain valid. The case of d even is covered by the second part of 
Theorem 2.6.S. Thus we assume d odd. In this case there is no formula like 
(S.7.8) for the value L(n,% 0 OJ, !), and we cannot proceed. 

However, Theorem 3.S.1 of [9, I] provides a different formula for 
L(n,% 0 OJ, !) = L(n 0n(OJ, %), 1): 

(7.S.1) L( to. 1) "'_ (2 o)d. 1:(D)-1:(D') ( ). 1:(D)'II1:(D') ( CU) n,% '<Y OJ, 2 IQ! nl v n v OJ,di- . 

Now Theorem 1 of [9, II] provides the relation 

( 2 ( -tTl II (m _ \II)) _ 1:(D)' IIl:(D') ( CU) 7.S. ) p,% OJ, IT I'V T "'IQ! V OJ, <.4 • 

The only proof I know of (7.S.2) uses relations derived in [9, I, §4] from the 
formula of [13] for the central critical value of the triple product L-function. 
Writing 

(7.S.3) 

and continuing as in §S.7, we eventually obtain the period relations of the fol-
lowing proposition, which we state in the most general case. 

7.S.4. Proposition. Suppose n satisfies the hypotheses of Theorem 2.6.S, with 
the exception of the local hypotheses at vo' Let I' c I c I. be subsets such that 
II. - II == II. - I'I == 0 (mod 2). Define D(l/) , D(l) as in 2.6.2(b). Then nD(l) 
and nD(I') exist, and 

D(I)() D(I')() I-I' ( ) q n "'ijq n·v n. 

More generally, let r = [d /2], and choose any partition I. = J1 II· 0 • II Jr II I , 
where all the Jj have cardinality 2 and III = 0 or 1 according as d is even or 
odd. Then 

1: 1: J J D(I) 
V (n) = q (n) "'ij v I (n) . '0, • V '(n) . q (n). 

Proof. The first relation follows from (7.S.3) by the arguments of S.7; the latter 
relation is proved by induction on III. The relation v1:(n) = len) is Proposi-
tion I.S.6 of [9, I]. 

Theorem 1 of [9, II] also includes the relation vJi(n) "'ij qD(Ji)(n) if d is 
even; thus one can always factor q1:(n) as a product of quaternionic Petersson 
norms in the case of even degree. 

ApPENDIX: COMPLEX CONJUGATION OF CM PERIODS 

With notation as in §2.4, we need to prove the formulas 

(A.l) 
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(A.2) 

MICHAEL HARRIS 

For (1 E Gal(ij/E'I') ' [P%(al, 'JI)/P%(w, 'JI)t 

= [P%((wu ), , 'JI)/P%(WU , 'JI)]. 

We observe that, up to periods of the form P%('f/, 'JI) for 'f/ a character of 
finite order, the periods P%(w, 'JI) can be expressed multiplicatively in terms of 
periods of the form P %' (w' , <1>') , where {(%', <I>')} is a set of eM fields with 
corresponding eM types and w' is a motivic Hecke character of %' . Indeed, 
w is motivic, wIHE(IR) == 1 (notation 1.1); thus we can write w = 'f/,wo' where 
'f/ is a character of finite order and Wo is trivial on HE(A). By Proposition 
1.4(c), such a factorization, which is not unique, permits us to write 

P%(w, 'JI) "'E'I"E(wo)E(I1);E'I' P%('f/, 'JI). P%(wo' 'JI). 

A simple descent argument thus reduces (A. 1 ) and (A.2) to the corresponding 
assertions for 'f/ and wo' 

Now Wo factors through the map 1jI: H % ---- T % of § 1.1; by Proposition 
1.4(a) we may replace H% by T%. The canonical local systems of [8], which 
are used to define the rational structures on automorphic vector bundles on 
Sh( T %, IjI a h'l') are obtained in two steps. First, we find a collection of pairs 
{(H %' , h4>')} , where %' is a eM field and <1>' is a eM type, which admits a 
map 

(A.3) 

of Shimura varieties. Next, we descend the canonical local systems already 
constructed on rrSh(H%" h4>') to Sh(T%, ljIoh'l') and prove that the result is 
independent of the choices made in (A.3). Applying Proposition 1.4(a) again, 
we may replace (T %, IjI a h'l') by pairs of the form (H %' , h4>') ; in other words, 
we are reduced to checking (A. 1 ) and (A.2) when 'JI is a eM type. 

But now if 'JI is a eM type, then Sh(H%, h'l') embeds in the Hilbert-
Blumenthal variety L E , which is the Shimura variety attached to RE /QGL(2)£ 
and the d-fold product of (C -1R). Let i: H% ---- R£/QGL(2)£ be the corre-
sponding embedding; up to conjugation, we may assume i(H %) is normalized 
by the element 

(-1 0) 00 = OlE GL(2, E). 

Let f = f(oo) be the corresponding operator on automorphic forms on 
GL(2, E). Note that 1 a f extends to an involution of the field of mero-
morphic automorphic forms. Now for any Hecke character w of % , there 
obviously exists a meromorphic automorphic form F on GL(2, E), rational 
over ij, such that Lw(F) is well defined and not equal to zero. Tracing back 
the proof of Lemma 2.4.5, we see that (A.i) and (A.2) for Sh(H%, h'l') are 
equivalent to Lemma 2.4.5 for the embedding of Sh(H % ,h'l') in L£, with 
f = f(oo)' But this case has been proved by Shimura (cf. [9, I, Lemma 
1.4.6]). 

This completes the argument for wo' Formulas (A. i) and (A.2) for the finite 
character 'f/ follow easily from the reciprocity law for the profinite Shimura 
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variety Sh(H.%, h'l') itself (i.e., no reference to abelian varieties is necessary); 
we omit the elementary proof. A less elementary argument, but one that is 
perhaps more enlightening, goes as follows. Just as above, we can trace back 
the proof of Lemma 2.4.5, but now applied to the structure sheaf & = ft(g,O} 
of Sh(Dx , (S)±)l:(D}), Q = (0, ... , 0) ; we find that formulas (A. 1 ) and (A.2) 
are a consequence of Lemma 2.4.5 for the special case of modular forms of 
weight (Q, 0). But this special case is just Langlands' conjecture on the action 
of complex conjugation on Sh(Dx , (S)±)l:(D}) , stated and proved as Conjecture 
B in [4] by Milne and Shih. 
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