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INTRODUCTION 

The main purpose of this article is to announce and provide supporting evi-
dence for two conjectures about the characters of the Hecke algebra Hn(q) of 
type An_I' evaluated at elements of its Kazhdan-Lusztig basis. In addition, we 
prove a conjectured immanant inequality for Jacobi-Trudi matrices (definitions 
below) and show how our conjectures would imply stronger inequalities of a 
similar kind. 

The immanant inequalities belong to the combinatorial theory of symmet-
ric functions and consequently have gained considerable attention in algebraic 
combinatorics since their introduction by Goulden and Jackson [9]; see [10, 29, 
30]. The Hecke algebra conjectures presented here are, however, independent 
of the application which led to their discovery, and because of their striking 
and unexpected nature, they should be of interest to a broader audience. In 
particular, they appear to reflect aspects of the geometry of the flag variety 
that cannot yet be understood using available geometric machinery. It has also 
been discovered that Hecke algebras of type An_ 1 arise naturally in the study 
of knots [7, 14], quantum groups [13], and Von Neumann algebras [15, 34]. 
Their character theory, in particular, plays an important role, via the Ocneanu 
trace and the commutant relationship between Hn (q) and the quantum group 
UGLn(q). Thus there are important reasons to seek a better understanding of 
the characters. 

The first of our conjectures asserts that certain virtual characters, i.e., inte-
grallinear combinations of irreducible characters, take values on the Kazhdan-
Lusztig basis which are polynomials in q with nonnegative, symmetric, and 
unimodal integer coefficients. A corresponding assertion for the irreducible char-
acters follows from the theory of intersection homology and perverse sheaves 
for Schubert varieties [3, 27], together with the fact that the Kazhdan-Lusztig 
cell representations [17] are irreducible for type An_I' This fact is a weaker 
statement than our conjecture, however, since the irreducible characters are 
nonnegative combinations of the virtual characters we consider. In fact, the 

Received by the editors March 5, 1992. 
1991 Mathematics Subject Classification. Primary 14M15; Secondary 05E05. 
Research supported in part by N.S.F. grants DMS-8717795 and DMS-91 19355. 

569 

©1993 American Mathematical Society 
0894·0347/93 $1.00 + $.25 per page 



570 MARKHAIMAN 

conjecture for these virtual characters is best possible: any virtual character for 
which the assertion holds must be a nonnegative combination of these. 

The second conjecture asserts that, for purposes of character evaluation, most 
Kazhdan-Lusztig basis elements are reducible to sums of certain of the simplest 
possible ones. To be precise, we pick out certain permutations, called codom-
inant, whose corresponding Schubert varieties are smooth and very simple to 
describe. Consequently, the corresponding Kazhdan-Lusztig basis elements also 
have an extremely simple description. The conjecture then states that for each 
Kazhdan-Lusztig basis element C~ there is a sum C~ + ... + C~ of basis 

1 k 

elements with Wi codominant, such that 

for every Hecke algebra character X • In particular, the second conjecture would 
reduce the first conjecture to its special case for codominant elements, thus 
eliminating Kazhdan-Lusztig polynomials from the problem. 

We will make clear in our later discussion why there are good reasons to 
expect deep connections between these conjectures and the geometry of the flag 
variety. Unfortunately, even the powerful machinery of perverse sheaves and 
intersection homology appears, at least for the moment, to provide inadequate 
information for a solution of the conjectures. 

We are able to prove various special cases of the conjectures. Several authors 
[19,24, 33] have considered the problem of evaluating characters of Hn(q) at 
elements of its natural basis, a problem which is the q-analog of determining 
the character table of the symmetric group Sn' We have made use of these 
results in order to prove a special case of our first conjecture in §4. It is con-
ceivable that a similar approach could be used to resolve the first conjecture 
for codominant elements. To do so, one would have to prove a q-analog of 
Proposition 5.1, without the restriction assumed there on the codominant per-
mutation W f' The problem of evaluating characters at arbitrary elements of 
the Kazhdan-Lusztig basis is in general much more difficult since little explicit 
information is known about the Kazhdan-Lusztig polynomials, which appear as 
the coefficients expressing this basis in terms of the natural one. 

In addition to the two aforementioned conjectures, this paper contains some 
theorems, whose relevance we now explain, along with the overall organization 
of the paper. 

The present investigation originated with the author's discovery that 
Kazhdan-Lusztig theory for the Hecke algebra Hn(q) is the natural setting for 
the immanant inequalities conjectured by Goulden and Jackson [9] and ex-
tended by Stembridge, Stanley, and Greene [10, 29, 30]. It turns out that all 
these immanant inequalities would follow from our first Hecke algebra conjec-
ture, combined with a theorem proved here (Theorem 1.5) relating a generating 
function for immanants to the Kazhdan-Lusztig basis for Hn(q). Even with-
out the Hecke algebra conjecture, Theorem 1.5 implies an immanant inequality 
stronger than the one proved by Greene. 
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Since many readers will not be familiar with the subject of immanant in-
equalities (or even the word 'immanant'), we give a brief historical review of 
the topic in § 1 and explain how our results and conjectures apply. As the main 
theorem of the section, Theorem 1.5, has a rather technical proof, using the 
Kazhdan-Lusztig conjecture on composition series of Verma modules, we defer 
its proof to the end of the paper, in §7. 

We then turn to the presentation of our two central conjectures and. some 
general remarks about them, followed by sections dealing with computational 
and special case evidence for the conjectures with q general, with q = 1 , and 
with q = 0, respectively. If desired, the paper may be read beginning with §2, 
except for the definition (1.2) of monomial characters, since the Hecke algebra 
conjectures and related results do not depend on the application to immanants. 

We have included an appendix covering definitions and results from 
Kazhdan-Lusztig theory, most of which are standard by now, but which may 
not be familiar to all readers, especially from the combinatorial audience. Oth-
erwise unexplained notation and facts stated without citation refer either to the 
appendix, or, where symmetric functions and Young tableaux are concerned, to 
the book of Macdonald [23]. 

1. IMMANANTS 

We begin with the definition of immanants and a review of conjectured in-
equalities involving them. A much more complete survey may be found in [30]. 

Let X be an irreducible character of Sn' or more generally any class func-
tion, and let A be an n x n matrix. Littlewood's immanants [22] are matrix 
functionals generalizing the determinant and the permanent, defined by 

(1.1 ) Immx(A) = L x(w)a l ,w(I)··· an,w(n)" 
wESn 

When X = X;. is the irreducible character indexed by the partition A. of n, 
we abbreviate Immxl. (A) to Imm;.(A). In particular, the determinant and the 
permanent are the immanants Imm(ln)(A) and Imm(n)(A) corresponding to 
the sign character and the trivial character, respectively. 

The rule of thumb for immanant inequalities is that if a matrix has nonneg-
ative minors in some suitable sense, then its irreducible immanants, or certain 
linear combinations of them, ought to be nonnegative. 

The oldest branch of the subject, going back to Schur, involves immanants of 
positive definite Hermitian matrices, typified by the 'Schur dominance theorem' 
and 'Lieb permanental dominance conjecture', which state the following. 

Theorem 1.1 (Schur [25]). If A is positive definite, then Imm;.(A) - f;. det(A) 2: 
o for all A.. 

Conjecture 1.1 (Lieb [21]). If A is positive definite, then f;. per(A) - Imm;.(A) 
2: o. 
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In each of these statements f;. = X;. (1) is the degree of the irreducible char-
acter X;.. 

The more recent branches concern immanants of totally positive matrices ( A 
is totally positive if every minor of A is nonnegative) and Jacobi- Trudi matrices 
(defined below). In their strongest forms the conjectured inequalities concern 
monomial immanants, which we now define. 

From the theory of symmetric functions, the irreducible characters of Sn 
are given by X;.(w) = (s;., PT(W)) ' where s;. denotes a Schur function, PT(W) is 
the power-sum symmetric function indexed by the partition r( w) correspond-
ing to the decomposition of w into cycles, and (s;., S,) = (m;., hi) = 0;.",. 
Here h", and m;. denote the complete and the monomial symmetric functions, 
respectively. 

Thus we have a natural linear correspondence mapping the Schur functions 
of degree n to the irreducible characters of Sn. Under this correspondence the 
monomial symmetric function m;. is carried to a 'monomial' virtual character 
t/>;. given by 

(1.2) 

The corresponding monomial immanants are the immanants Imm",. (A). Since 
the Schur functions are nonnegative linear combi~ations of monomial symmet-
ric functions, nonnegativity statements for monomial immanants are in general 
stronger than their counterparts for irreducible immanants. 

For totally positive matrices we have the following analogs of Schur dom-
inance and permanental dominance. Actually, Conjecture 1.2 is a stronger 
statement which implies both permanental dominance and Theorem 1.2. No 
correspondingly strong statement holds for positive definite matrices. 

Theorem 1.2 (Stembridge [32]). If A is totally positive, then Imm;.(A) 
f;. det(A) 2: 0 for all A. 

Conjecture 1.2 (Stembridge [32]). If A is totally positive, then Imm",. (A) 2: 0 
for all A. 

Our main concern will be the third and most combinatorial branch of the 
subject, namely, immanant inequalities for Jacobi-Trudi matrices. Let hn de-
note the complete homogeneous symmetric function of degree n in countably 
many variables X = (x[, x 2 , ••• ). By convention, hn = 0 for n < 0 and 
ho = 1 . Let Il and v be partitions with n parts, written in descending order 
as (Il[ 2: 112 2: ... 2: Iln ). We allow 0 as a part. Jacobi-Trudi matrices are of 
the form 

( 1.3) H",/v (X) = [h",_v (X)] n [. 
I J 1,]= 

The classical Jacobi-Trudi matrix would be H",+o/v+o in this notation, where 
o = (n - 1, ... , 1, 0). The Jacobi-Trudi identity expresses the (skew) Schur 
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functions in terms of homogeneous symmetric functions as 

(1.4) 

We have altered the notation in order to include the possibility that Hp./ll may 
have repeated rows or columns, which is a relevant case for immanants other 
than the determinant. 

Since the minors of a Jacobi-Trudi matrix are skew Schur functions, they are 
'nonnegative' in the sense either of being nonnegative linear combinations of 
monomial symmetric functions or of Schur functions. 

In their survey of applications of immanants to matrices having combina-
torial significance, Goulden and Jackson [9] conjectured the following result, 
which has since been proved by Greene. 

Theorem 1.3 (Greene [10]). The irreducible immanants Imm;.(Hp./II) of Jacobi-
Trudi matrices are nonnegative linear combinations of monomial symmetric 
functions for all A.. 

This theorem can be strengthened in either or both of two ways: we can 
ask for nonnegativity in terms of Schur functions rather than monomials, or 
we can pass to monomial immanants. The three conjectures so obtained are 
due to Stembridge [30]. Our main application of Kazhdan-Lusztig theory to 
immanants is the proof of one, of these conjectures. Thus we state the first 
conjecture as a theorem and the other two as conjectures, as follows. Note that 
Conjecture 1.4 implies both of the others. 

Theorem 1.4. If Hp./ll is a Jacobi-Trudi matrix, then Imm;.(Hp./II) - f;. det(Hp./II) 
is a nonnegative linear combination of Schur functions. 

Conjecture 1.3 (Stembridge [30]). The monomial immanants Imm"" (Hp./) of 
Jacobi-Trudi matrices are non-negative linear combinations of monomial sym-
metric functions for all A.. 

Conjecture 1.4 (Stembridge [30]). The monomial immanants Imm"" (Hp./II) of 
Jacobi- Trudi matrices are nonnegative linear combinations of Schur functions 
for all A.. 

To conclude this section, we shall explain how Theorem 1.4 can be proven 
using Kazhdan-Lusztig theory and how Conjectures 1.2-1.4 would follow from 
the conjecture on Hecke algebra characters developed in the next section. 

It is convenient to introduce the following formal sum, which serves as a kind 
of generating function for the immanants of Hp./ll' Let 

( 1.5) Ip./ll = L TWhp._W(II)(X), 
wESn 

This is an element of Hn(l) ® A(X), the group algebra of Sn with coefficients 
extended to the ring of symmetric functions A(X). Extending Sn characters 
X in the obvious way to A( X)-linear functionals on Hn ( 1) ® A( X), we may 
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express the immanants of Jacobi-Trudi matrices as 

(1.6) 

With this notation, Theorem 1.4 is an immediate consequence of the follow-
ing two statements. 

Theorem 1.5. IfJ./v is a nonnegative linear combination of the basis elements 
C~(1)s,,(X) for Hn(l) ® A(X) , where {C~(q)} is the Kazhdan-Lusztig basis 
of the Heeke algebra Hn(q). 

Lemma 1.1. Let X;. be an irreducible character of Hn(q) , of degree f;., and 
let C~ be a Kazhdan-Lusztig basis element. Put X = X;. - f;.X(ln). Then 
X(l(W)/2C~) is a polynomial with nonnegative integer coefficients. In fact, these 
coefficients are unimodal and symmetric about l(w)/2. 

Theorem 1.5 is proven in §7; the coefficients which appear have an explicit 
interpretation as multiplicities of irreducible composition factors in a certain 
infinite-dimensional tensor product of s[n modules. 

Let us now prove Lemma 1.1. 

Proof First of all, the character X(1n) , which is the sign representation of 
Hn(q) , vanishes on C~ unless w = 1, because the Kazhdan-Lusztig polyno-
mials Pv w obey Pv w = Psv w for any simple reflection s such that sw < s . 
Since C;' = Tl = 1, 'we have' X;.(C;) = f;. and X(1n)(C;) = 1. Thus X(C~) is 
zero if w = 1 and we may replace X with X;. otherwise. 

Recall that the irreducible Hn (q) module V;. can be constructed as a cell 
representation: a quotient E;.IF;. of submodules F;. ~ E;. ~ Hn(q) , where 
each of E;. and F;. is the linear span of a subset of the Kazhdan-Lusztig ba-
sis {C~}. Thus V;. has a Kazhdan-Lusztig basis given by those elements C~ 
which are in E;. but not F;., and a E Hn(q) acts by a matrix whose (u, v) 
entry is the coefficient of C~ in aC~. In particular, when a = qf(W)/2C~ the 
diagonal entries (whose sum is the trace X;.(l(W)/2C~)) are the structure coeffi-
cients qf(w)/2 J,u (q), which are polynomials with the required nonnegativity, w,u 
symmetry, and unimodality properties. 0 

In the same way that Theorem 1.4 follows from Theorem 1.5 and Lemma 
1.1, it is clear that Conjecture 1.4 (and the weaker Conjecture 1.3) would follow 
from Theorem 1.5 and a stronger version of Lemma 1.1 in which monomial 
characters replace the characters X. Such a strengthening of Lemma 1. 1 is 
precisely our first Hecke algebra conjecture, Conjecture 2.1. 

In fact, not only the conjectures on Jacobi-Trudi matrices but also Conjec-
ture 1.2 on totally positive matrices would follow from Conjecture 2. I-see the 
remarks at the end of the next section. 
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2. A FIRST CONJECTURE 

Since the irreducible characters of Hn(q) correspond to those of CSn = 
Hn (1) , the same is true of virtual characters. In particular, the monomial char-
acters cp). of Sn defined by (1.2) have unique analogs for Hn(q) , specializing 
to (1.2) for q = 1 . Our first conjecture, which is natural to make in view of the 
proof of Theorem 1.4 via Theorem 1.5 and Lemma 1.1, concerns evaluations 
of these monomial characters. 

Conjecture 2.1. For every monomial character cp). of Hn(q) and every Kazhdan-
Lusztig basis element C~, CP).(l(W)/2C~) is a polynomial with nonnegative in-
teger coefficients. Moreover, these coefficients are unimodal and symmetric about 
l(W)/2. 

Note that the symmetry of the coefficients about l(w)/2 holds for every 
virtual character. This follows from Lemma 1.1, or, to give a more elementary 
reason, from the invariance of C~ under the Hecke algebra involution defined 
in (8.5). 

We shall discuss four broad aspects of Conjecture 2.1 here. More detailed 
information can be found with the supporting evidence in §§4-6. 

Geometry. By definition, the homogeneous symmetric function hn is the 
sum E1).I=n m). of all monomials. Hence the sum E1).I=n cp). is the character 
corresponding to hn = sen) , i.e., the 'trivial' character X(n)(Tw) = qW . Applying 
this to C~ we obtain 

(2.1 ) L cp).(qi(W)/2C~) = L Pv,w(q)qv. 
1).I=n v~w 

The expression on the right is the Poincare series for the global intersection 
homology of the Schubert variety r w associated to w. 

The intersection homology decomposition theorem of [3] gives, for a projec-
tive algebraic map f: Y --+ X of complex projective varieties, a natural direct 
sum decomposition of the intersection homology of Y. The Poincare series 
of the summands have the symmetry and unimodality properties we want for 
CP).(l(W)/2C~). It is to be expected that (2.1) reflects some such decomposition, 
where Y is either the Schubert variety r w or some related variety. 

Best possible statement. Conjectures 1.2 and 1.4 are best possible, in that by 
appropriate choices of totally positive matrix A or lacobi-Trudi matrix Hp./v' 
one can see that any immanant with the required non negativity property must 
be a nonnegative linear combination of monomial immanants. It follows that 
any virtual character with the properties asserted for irreducible characters in 
Lemma 1.1 and for monomial characters in Conjecture 2.1 is necessarily a 
nonnegative linear combination of monomial characters. This can also be seen 
from the evaluation of CP).(l(W)/2C~) given by Proposition 4.1 for w the longest 
element of a parabolic subgroup of Sn' 
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Total positivity. Stembridge [32] proves Theorem 1.2 by associating to a 
matrix A an element [A] of the group algebra eSn , in a manner analogous 
to the definition (1.5) of Ip./v. The main part of his proof is a demonstration 
that, for totally positive A, [A] is a nonnegative linear combination of certain 
group algebra elements on which the irreducible characters take nonnegative 
values. In fact, if we let E H denote the sum of all elements in a subgroup 
H ~ Sn ' his proof shows that [A] is a sum of products of elements of the form 
E WJ for various parabolic subgroups WJ . It follows that [A] is a nonnegative 
linear combination of Kazhdan-Lusztig basis elements C~(1), and therefore 
Conjecture 2.1 implies Conjecture 1.2. 

Other Coxeter groups. There is probably an analog of Conjecture 2.1 for other 
Coxeter groups or at least Weyl groups. At present, however, it is not apparent 
what the analog of a monomial character should be. Nor do we even know that 
the analog of Lemma 1.1 for irreducible characters holds, since in general the 
cell representations are reducible. 

3. A SECOND CONJECTURE 

Whereas Conjecture 2.1 appears natural in view of the proof of Theorem 
1.4, our second conjecture arose completely unexpectedly from examining data 
computed to verify Conjecture 2.1. The conjecture applies to all characters 
and could in principle have been discovered independently of any computation 
of monomial characters. It is a bit of good fortune, however, that because 
Conjecture 2.1 is best possible, tables of monomial characters are full of zeroes 
and small, highly recognizable polynomials, making linear relationships stand 
out. This, together with the fact that the codominant permutations defined 
below seem to play a special role in immanant inequalities, is what made it 
possible to detect the second conjecture by 'inspection'. 

To state the conjecture, we must define a certain class of permutations which 
we call codominant because they are of the form Wo v , where v is one of Las-
coux's dominant vexillary permutations [20] and Wo is the longest permutation 
in Sn. 

Definition. Let f(l) :::; f(2) :::; ... :::; f(n) be a non decreasing sequence of 
integers with f( n) = nand f( i) ~ i for all i. Let W f be the lexicographically 
greatest permutation satisfying W f( i) :::; f( i) for all i. Such a permutation W f 
is called codominant. 

Proposition 3.1. Let W f be codominant. Then W f determines f by the rule 
f(i) = max{wf(j) I j :::; i}. We have {v I v(i) :::; f(i) Vi} = {v I v :::; wf}, 
where :::; is Bruhat order. The permutations v :::; W f may be described as those 
whose permutation matrices are zero in a pattern of entries forming a Ferrers 
diagram in the lower-left corner of the matrix. With respect to a fixed base flag 
o C FI C F2 C ... c Fn = en in the flag variety 9;;, the Schubert variety rill 

f 
consists of all flags 0 C GI C G2 C ... C Gn = en satisfying Gi ~ Ff(i) for all i. 
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This variety is smooth. In particular, Pv w = 1 for all v :s w f ' or equivalently 
, I 

(3.1) 

Proof. Clearly W f( 1) , W f(2), ... can be obtained writing down in tum for each 
i the greatest number between 1 and f( i) which has not yet been used. In 
particular, for i such that f(i - 1) < f(i) (and for i = 1) we have W f(i) = 
f(i). The rule for recovering f follows immediately. 

Suppose v(i) :s f(i) for all i, suppose v(j) > v(k) for some j < k, and 
let v' = v • (j k). Then clearly v' (i) :s f( i) for all i. This shows that the 
set {v I v(i) :s f(i) 'Vi} is closed going downward in Bruhat order and hence 
contains {v I v :s wf }. 

Again suppose v(i) :s f(i) for all i, and suppose v =I- W f" Let j be the least 
index for which v(j) =I- wf(j). Let k = V-I(Wf(j)) , so v(k) = wf(j). Since 
v (i) = W f(i) =I- W f(j) for i < j , we have k > j . Since W f is lexicographically 
greater than v, v(j) < wf(j) = v(k). Hence v' = v • (j k) > v in Bruhat 
order. Again we have v' (i) :s f(i) for all i. We may repeatedly replace v by 
v' until we reach W f' showing v :s W f and proving {v I v(i) :s f(i) 'Vi} = {v I 
v:swf }· 

The permutation matrix description merely restates the condition v (i) :s f( i) 
for all i. 

The description of r w is a direct translation of the condition v (i) :s f( i) 
I 

for all i into Schubert conditions on the flag. Consider the variety I""" of partial 
flags 0 C GI C G2 C ... C Gk with dim (G) = i satisfying Gj ~ Ff(j) for all 
i. We see that 1"""+1 is a bundle over r k with fiber IPf(k+I)-k-I(C). Hence 
each I""" is smooth, including r" = r . The remaining statements follow WI 
immediately. 0 

We remark that W is codominant if and only if there are no i < j < k 
with w(j) < w(k) < w(i). The number of these in Sn is well known to be the 
Catalan number en = n!1 e:) . 

Now we may state our conjecture. 

Conjecture 3.1. Write a rv b if a, b E Hn(q) are such that x(a) = x(b) for 
every Hecke algebra character x. Then for every W E Sn there exist codominant 
permutations WI' ... , wk such that e~ rv e~ + ... + e~ . The number k of 

I k 

these is given by PI, w (1), and more precisely, 

(3.2) 
k 

P () _ ~ (l(w)-l(w j ))/2 
I,w q -~q . 

j=1 
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Proof of(3.2), assuming what goes before. Consider the character X correspond-
ing to the action of Hn(q) on the complex vector space with basis consisting 
of the points of the finite 'flag variety' over GLn (q) , for q a prime power. We 
have X(TI) = [n]q! = 1(1 + q) ... (1 + q + ... + qn-I) and X(Tv ) = 0 for v =I- 1. 
Hence a,..., b implies that a and b contain TI with the same coefficient. Ap-
plying this to l(W)/2C' ,..., 'E.q(l(W)-l(W j ))/2l(w j )/2C' ,using P = 1, yields 

W I Wi 1,w; 
(3.2). 0 

We have several remarks to make about Conjecture 3.1. 
Reduction. If Conjecture 3.1 holds, it clearly reduces Conjecture 2.1 to the 

case that W is codominant. 
Geometry. Like Conjecture 2.1, Conjecture 3.1 seems to suggest some sort 

of direct sum decomposition of perverse sheaf theoretic objects. However, the 
picture is much murkier. For Conjecture 2.1, one can envision the kind of set-
up that might account for the character values, even if it is hard to guess exactly 
what varieties and maps are involved. It is not at all evident how to account 
for the decomposition given by Conjecture 3.1. Even how to give a geometric 
interpretation to the relation ,..., is far from clear. Our feeling is that Conjecture 
3.1 reflects deeper phenomena than Conjecture 2.1. 

In particular, there are many smooth Schubert varieties corresponding to 
noncodominant permutations. Yet the conjecture suggests that each such va-
riety should be 'equivalent' in some undetermined character theoretic sense 
to a codominant one. In particular, its cohomology ring must have the same 
Poincare series as that of a codominant one. It seems to the author rather 
amazing that anything like this should be so. 

Combinatorics ofKazhdan-Lusztig polynomials. Any rule for explicitly listing 
the codominant permutations WI' ... , wk provided by the conjecture affords a 
combinatorial interpretation of the coefficients of PI W for all w. Instances of 
the conjecture may be computed to seek clues to such a rule. Unfortunately the 
resulting information is incomplete, since the expressions C~ ,..., C~ + ... + C~ 

I k 
are in general not unique. 

Since PI w(O) = 1, the conjectured expansion C~ ,..., C~ + ... + C~ must 
, I k 

have a unique 'leading term', which we may take to be C~ , with [(WI) = 
I 

[( w). It seems likely that any rule for the expansion will obey certain additional 
conditions (which still do not determine it uniquely): (1) if W is codominant, 
then WI = w; (2) more generally, if W ::; w' with w' codominant, then 
WI ::; w' ; and (3) Wi::; WI for all i. 

One might expect the leading WI to depend on W in a Bruhat-order-preserv-
ing fashion, but that is incompatible with (1). Consider W = 3412 in S4' For 
this W, WI must be 3241 or 2431. But 3214 and 1432 are codominants 
less than wand neither candidate for WI is greater than both of these. 

More immanant conjectures. Stanley and Stembridge [29] offered conjec-
tures which reduce Conjecture 1.4 to special cases associated with codominant 
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permutations. Restated in the language used here, their [29, Conjecture 5.1] 
becomes: 
Conjecture 3.2 [29]. Define E;/II E Hn(l) by expanding IJ.l/II with respect to 
Schur functions: 

(3.3) IJ.l/II = L E:/llsK(X). 
IKI=IJ.lI-IIII 

Then there exist codominant permutations WI' .•. ,wk such that E;/II '" 
C' (1)+ ... +C' (1). 

WI W k 

A futher conjecture in the same paper [29, Conjecture 5.4] refines the above 
statement with some conditions relating the terms in the expansion C~ (1) + 

I 

... + C~ (1) to Young tableaux. 
k 

Conjecture 3.2 would follow from Conjecture 3.1, since by Theorem 1.5, 
E;/II is a nonnegative linear combination of Kazhdan-Lusztig basis elements. 
One of the conditions which the more refined conjecture [29, Conjecture 5.4] 
imposes on the terms is that each Wi:::; W f ' where W f is the largest codominant 
avoiding the pattern of zeros in the Jacobi-Trudi matrix HJ.l/II. This would 
follow from the conditions proposed above on the rule for the expansion C~ '" 
C~ + ... + C~ . We do not see how to account for the other conditions in their 

I k 
conjecture. 

4. THE GENERIC CASE 

In this section we discuss special cases of the conjectures which hold when 
q is regarded as an indeterminate. 

Both Conjectures 2.1 and 3.1 have been verified by computer for n :::; 7 . Ta-
ble 1 on the following page gives the monomial character values ¢A(ql(W)/2C~) 
and expansions C~ '" C~ + C~ with Wi codominant for W E S4. Note 

I 2 
that a '" b is equivalent to ¢ A (a) = ¢ A (b) for all A.. Thus equivalences 
such as C: 243 '" C: 324 '" C~134 (showing that the expansion by codominants 
is nonunique) can be read off at once from the table. 

In the following proposition we collect those evaluations ¢A(l(W)/2C~) which 
can be obtained readily from well-known properties of cell representations and 
Heeke algebra characters. 

Proposition 4.1. (1) Let WJ = SA x··· x SA be a parabolic subgroup of W = 
I k 

Sn. Let W J E WJ be its longest element. Then 
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(2) Let W be an arbitrary element of WJ = S). x··· x S). , and write it as 
I k 

W=W IW 2"'Wk with WiES).. Then 
I 

(4.2) 
k 

1>,J/(W)/2C~) = L II 1>,P)(qi(W;l/2C~)-
p(l)u .. . up(k)~p i=1 

IJl(i)I=).j 

(3) Let A. be the shape of the tableaux P(w), Q(w) associated with W by the 
Schensted correspondence, and A.' the conjugate partition. Then 1>Jl(l(W)/2C~) = 

o unless f.l ~ A.' in dominance order. 

Proof We begin with (2). Formula (4.2) follows from the fact that l(W)/2C~ = 
l(WI)/2C~ .. ·l(Wk)/2C~ ,together with the rule for restriction of Hn(q) char-

I k 
acters to H). (q) ® ... ® H). (q) (the branching coefficients do not involve q and 

I k 
so are the same as for Sn characters). 

Given (2), (1) reduces to the case WJ = Sn' wJ = WOo The single ele-
ment Cw' spans a two-sided ideal in H (q), the Kazhdan-Lusztig cell affording o n 
the 'trivial' one-dimensional representation J(n) in which Tw maps to l(w) 

Hence C~o acts as 0 in every cell representation except J(n)' where it acts as 

EWES l(W) = [n]q!' This is (4.1) for WJ = Sn' 
For" (3), recall that the Kazhdan-Lusztig cells for Sn are given by the Schen-

sted correspondence, so that C~ belongs to the two-sided cell indexed by the 
partition A.' . Since the ordering < LR among two-sided cells is opposite to dom-
inance order among partitions, the two-sided ideal HC~H in H = Hn(q) is 
spanned by elements C~ belonging to cells indexed by f.l ~ A.'. In particular, 
C~ acts as 0 in the cell representation ~ unless f.l ~ A.' . Since the monomial 
characters and the irreducible characters are dominance-lower-triangular with 
respect to one another, this implies (3). 0 

Next we shall prove Conjecture 2.1 in the case W = Sl .. 'sk' where Sl' ••• , 

sk are distinct simple reflections (i.e., adjacent transpostions in Sn)' By (4.2) 
we may assume that Sl' ••• ,Sk are all the simple reflections. 

Proposition 4.2. Let 

(4.3) If/(a) = L 1>).(a)h).(X) = L x).(a)s).(X) 
1).I=n 1).I=n 

for any a E Hn(q). Let wn be a Coxeter element of Sn' that is, the product of 
all n - 1 simple reflections, in any order. Then If/(q(n-I)/2C~) depends only 

" on n, and we have the generating function 

(4.4) 1 + '" «(n-I)/2C') = En>o hn(X) . 
~ If/ q w" n-2 h n:2:1 "1-qL..,.n:2:2(I+q+"'+q ) n(X) 



582 MARK HAIMAN 

Proof Write Wn as SI ... sn_I' The elements v ~ wn in Bruhat order corre-
spond to subsets 1= {il < ... < i j } ~ {1, ... , n - 1}, with v = \ .. 'Sjj' For 
all such v, Pv w = 1 , or 

, n 

(4.5) (n-I)/2 C' = "" T . q w ~ s ···s 
n I II lj 

This follows by induction from the formula (8.8) for C:C~. 
Ram [24] has evaluated IfI(Tv) for Tv of the form appearing in (4.5), ob-

taining 

(4.6) 
n 

(T ) - q h «1 - -I)X) IfI s· ···s - ( l)l(fJ.) fJ. q . 
'I 'j q-

Here J1 = UI , j2 - jl ' '" , n - jk) is the composition of n determined by 
{j I < ... < j k} = {1 , . .. , n - 1} \I ; equivalently it describes the cycle structure 
of the permutation S,' ••• s. . The expression h « 1 - q -I )X) on the right-hand 

I I j fJ. 
side means n;:/ hfJ.Yl - q-I)X), where hm«(1 - q-I)X) is the symmetric 
polynomial, homogeneous of degree m in X, defined by 

(4.7) "" -I II 1 - q-I Xj 
~ hm «(1- q )X) = 1 _ x. . 
m:;:::O j I 

Combining (4.5) and (4.6) leads to the generating function 

1 + L lfI(q(n-I)/2C~ ) 
n n:;:::1 

(4.8) 

1 - q~1 Lk:;:::1 qkhk«1 - q-I)X) 

1 
1 - q~1 (H(qX)/ H(X) - 1) 

H(X) 
H(X) - q~1 (H(qX) - H(X)) , 

where H(X) = Lmhm(X) = nj (1-xj )-I. The final formula in (4.8) is just 
another way of writing (4.4), so the proof is complete. D 

Proposition 4.2 establishes Conjecture 2.1 for W = w n . To see this, rewrite 
(4.4) as 

L n>I(1 + q + ... + qn-l)hn(X) 
1 + 2 I' 

1 - L n:;:::2(q + q + ... + qn- )hn(X) 
(4.9) 

In this form it is easy to see that the coefficient of h;. is a polynomial in q with 
nonnegative coefficients, unimodal and symmetric about qU;'I-I)/2. 

The generating function (4.4) is an interesting one which has arisen in other 
contexts [5, 28, 31]. Specifically, as explained in [28], associated with the Cox-
eter complex of Sn is a smooth toric variety whose homology groups carry an 
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Sn action. Let P).(q) be the polynomial whose coefficients are the multiplicities 
of V;. in these homology groups. Then ~). P).(q)s). turns out to be given by 
(4.4). In other words, 

(4.10) P ( ) _ (l(wn )/2c,) ). q - X). q Wn • 

No direct explanation of (4.10) seems to be known, nor whether the corre-
sponding result holds for every Coxeter group. It is known that ~). f;. P). (q) = 
~WEW qID(w)I for every Coxeter group W, where ID(w)1 is the number of de-
scents of w , i.e., the number of simple reflections s such that sw < w. This 
follows from the fact that there is a W -equivariant isomorphism between the 
homology of the toric variety and a suitable quotient of the Stanley-Reisner ring 
of the Coxeter complex. It is not hard to show that (4.10) agrees with this. 

We close this section with a conjectured exact value for certain c/J).(w). 
Conjecture 4.1. Let wI be codominant (f as in Proposition 3.1). Then 

(4.11) 
A,. (I(W )/2 , f f f 'f'(n) q f Cw) = [n]q[ (1) - l]q[ (2) - 2]q ... [ (n - 1) - (n - l)]q' 

h k k-J were [ ]q = 1 + q + ... + q . 

This conjecture agrees with Propositions 4.1 and 4.2 in the cases where they 
overlap. Its q = 1 specialization will be proven in the next section. 

5. THE CASE q = 1 

The case of Conjecture 2.1 for q = 1 and w = wI codominant is equivalent 
to a special case of Conjecture 1.4. To see this, choose 11 and v such that the 
o entries of Hp./v form the forbidden pattern describing permutations v ~ wI 
(such 11 and v can always be found). Then the term Tvhp._v(v) in (2.1) is 
nonzero exactly for v ~ wI' and the coefficient of S(N) in I p./v is C~ f (1) , 
where N = 1111-lvl. Hence Conjecture 1.4 implies Conjecture 2.1. 

Stanley and Stembridge [29] proved Conjecture 1.4 in two cases. First, 
they proved it when I1/V is a 'rim hook', corresponding to the n-cycle WI = 
(1 2 ... n). Their result in this case is equivalent to the q = 1 specialization 
of Proposition 4.2. 

Second, they proved the part we need concerning the coefficient of S(N) in 
the case that the forbidden pattern is not too big, which leads to the following 
corollary. 

Proposition 5.1 [29]. Let wI be codominant, let k be the least value for which 
f(k)=n, and assume f(I)2:k-l. Then c/J).(C~ (1)) 2:0 for all A.. 0 

f 

Conjecture 4.1 can also be proven for q = 1 , as follows. 

Proposition 5.2. Let wI be codominant. Then 

(5.1) c/J(n)(C~f(l)) = n(f(l) - 1)··· (f(n - 1) - (n - 1)). 
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Proof Let V be the pattern avoided by ones in permutation matrices cor-
responding to v ~ W f . This pattern V consists of the last n - f(i) en-
tries in column i for each i. On Sn' the monomial character ¢>(n)(w) is 
n if w is an n-cyc1e and 0 otherwise. What (5.1) asserts, therefore, is 
that the number of n-cyc1es whose permutation matrix avoids V is given by 
(/(1) - 1)(/(2) - 2)··· (f(n - 1) - (n - 1)). 

Let r k be the number of ways to place k mutually nonattacking rooks on a 
chessboard of shape V, that is, the number of subsets of V in which no two 
elements share a row or a column. Consider a fixed such 'rook placement'. Per-
mutations in Sn whose matrix is 1 at the positions of all the rooks correspond 
in a fairly obvious bijective way to permutations in Sn_k' with n-cyc1es corre-
sponding to (n - k)-cyc1es. It follows by the sieve principle that the number of 
n-cyc1es avoiding V is Lk(-I)krk (n - k - I)!. 

By the sieve principle we also find that the total number of permutations 
avoiding V is Lk ( _1)k r k (n - k)!. Thus the number of n-cyc1es avoiding 
V is the same as the number of all permutations avoiding a pattern of the 
same shape as V in an (n - 1) x (n - 1) matrix, which is easily seen to be 
(f(l) - 1)(f(2) - 2)··· (f(n - 1) - (n - 1)). 0 

6. THE CASE q = 0 

In this section we calculate ¢>;.(qi(W)/2C~) for all A and w, with q = O. The 
calculation confirms Conjectures 2.1, 3.1, and 4.1 for the specialization q = 0 . 

The Kazhdan-Lusztig basis elements C~ are not well defined for q = 0, but 
l(W)/2C~ is well defined and equal to 

(6.1) 

since Pv w(O) = 1 for all v ~ w. 
The irreducible and monomial 'characters' are not properly named for q = 0 , 

since Hn(O) is not a semisimple algebra. Nevertheless they are well defined by 
specialization from Hn(q) , and in particular they may be computed from the 
W -graph form of the cell representations by setting q = 0 . 

Proposition 6.1. The monomial characters ¢;. of Hn(O) take the values 

(6.2) WJ(W) ~S;., 
otherwise. 

Here J (w) is the set of simple reflections appearing in a reduced expression for 
w, WJ(W) is the corresponding parabolic subgroup of Sn (the smallest parabolic 
subgroup containing w), and WJ(w) ~ S;. means WJ(W) is a subgroup of the 
form S;. x··· x S;. with the factors in any order. 

I k 

Remark. Conjecture 2.1 requires that ¢;.(C~) = 1 for one A and ¢>;.(Cl~J) = 0 
for all others, since by (2.1) the sum over all A is 1. Conjecture 4.1, taken 
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together with Proposition 4.1, requires that for codominant w, the A. with 
c/>,1.(C~) = 1 is the one given by Proposition 6.1. This is compatible with Con-
jecture 3.1 and indicates that the leading codominant w I in the expansion of 
C~ should have J(w l ) = J(w). 

We need a simple lemma for the proof of Proposition 6.1. 

Lemma 6.1. Let I be a set of simple reflections such that I n J (w) i= 0. Then 

(6.3) L (_I)l(v) = o. 
v<w 
VEW[ 

Proof Since w cannot be 1, the left descent set D(w) is nonempty. Let 
t E D( w). If tEl, then v ~ w ¢} tv ~ wand v E ~ ¢} tv E ~. This 
implies (6.3). 

If t ¢ I, we proceed by induction on £(w). We have £(tw) < £(w) and 
J(w) ~ J(tw) u {t}, which implies J(tw) n I i= 0. By induction, the sum of 
(_I)t(v) over ~ n {v I v ~ tw} is zero. But ~ n {v I v ~ tw} = ~ n {v I 
v ~ w}, for if we fix a reduced expression tU for w then either set consists 
of all v having reduced expressions which use only simple reflections in I and 
are subwords of U. 0 

Proof of Proposition 6.1. By Mobius inversion on the Bruhat order, 

(6.4) Tw = L(-I/(VW)C~. 
v~w 

Hence the proposition is equivalent to 

(6.5) 

or 

(6.6) 

c/>,1.(Tw) = L (_I)t(vw) 
v<w 

WJ(~'?!.SI 

~ (-1 )1(VW) = ~ (-1 )1(VW) K 
~ ~ ,1.,p(V) , 

where p.(v) is the type of the parabolic subgroup WJ(V) , and s,1. = Lp K,1.,pmp . 
The 'Kostka number' K,1.,p(V) = (s,1.' hp(V)) has a combinatorial description: 

it is the number of standard Young tableaux T of shape A. whose descent set 
D(T) is disjoint from J(v). Hence the last expression in (6.6) is equal to 

(6.7) 

L L (_I)t(vW) = (_I/(w)I{T E SYT(A.) I D(T);2 J(w)}1 
TESYT(,1.) V~W 

VEWS\D(T) 

i(w) 
= (-1) K,1.t , p(w) 

by Lemma 6.1 and the fact that the inner sum has only the term v = 1 for 
D(T) ;2 J(w). SYT(A.) stands for the set of standard Young tableaux of 
shape A.. 
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Now we prove XA(Tw) = (-1)l(W)KA',/l(w) for q = O. Recall that the cell 
representation V;. can be regarded as spanned by the vertices of a W -graph 
GA. These vertices are indexed by tableaux T E SYT(A), and each is marked 
with the descent set D(T). The edges are labelled with certain integers ji(S, T) 
which are irrelevant for us. 

The element ~ E Hn(q) acts on V;. as follows. If S E D(T) , then Ts(T) = 
- T + ql/2 LSiD(S) ji(S , T)S. If s ff. D(T) ,then Ts(T) = qT. Thus, for q = 0, 
the matrix of Tw is diagonal, with (T, T) entry (-1 )l(W) if W E WD(T) and 
zero otherwise. It is obvious that the trace of this matrix is given by (6.7). 0 

7. PROOF OF THE MAIN THEOREM OF SECTION 1 

In this section we prove Theorem 1.5, using a generalization of the Steinberg 
tensor product theorem to infinite-dimensional irreducible highest weight mod-
ules over a simple complex Lie algebra (Proposition 7.2). The derivation of this 
generalized Steinberg theorem is parallel to the usual derivation in the finite-
dimensional case (see, e.g., [11]), with the role of the Weyl character formula 
played by the Kazhdan-Lusztig conjecture. 

We require the following notation. Let 9 be a finite-dimensional simple 
complex Lie algebra with Weyl group W (for our application, 9 = 5[n and 
W = Sn). As usual, 6 denotes one-half the sum of the positive roots. Let 
MA denote the Verma module with highest weight A, LA the corresponding 
irreducible module (infinite-dimensional for nondominant A). 

Because we must consider tensor products of infinite-dimensional modules, 
we shall work with a class of g-modules somewhat larger than the commonly 
used Bernstein-Gel' fand-Gel' fand category &'. Thus we define the class ~ to 
contain a g-module V if: 

(1) V is a direct sum V = EBA V;. of weight spaces belonging to integral 
weights A. 

(2) For every integer N, EB(A,J)2':N V;. is finite dimensional. 
The class ~ contains the Verma modules MA and the irreducible modules 

LA. The formal character of V E ~ we define by ch(V) = LA dim(V;.)xA , 
where the symbols xA denote formal exponentials, multiplying by the rule 
x A x/l = xA+/l . 

Lemma 7.1. Let W ~ V be a submodule of V E ~. Then Wand VjW 
belong to ~, and we have ch( V) = ch( W) + ch( V j W). If in addition U E ~ , 
then U ® V E ~, and we have ch(U ® V) = ch(U)ch(V). 
Proof For the first part, everything is clear, provided we know that W is the 
direct sum of its weight spaces. But every element a E W belongs to V, and 
hence a E V;. EB··· EB V;. for a finite set of weights {Ai}. This space is a finite-

I k 
dimensional module for the Cartan subalgebra ~ ~ 9 , and so is its intersection 
with W. Since every such module is a direct sum of weight spaces, each weight 
space component of a is again in W, so W = EB A Ui . 
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For the second part, if we let {aa:} and {bp} be bases of weight vectors for 
V and V respectively, then {aa: ® b p} is a basis of weight vectors for V ® V . 
The properties asserted for V ® V follow easily. 0 

Modules in rtf (even in &') are not necessarily direct sums of irreducibles, 
but for formal computations with multiplicities it suffices to use the weaker 
notion of 'composition series' defined as follows. 

Definition. A composition series of a module V E rtf is a finite or infinite 
sequence 

(7.1 ) 

of submodules W; ~ V, with Uj W; = V and W;+I/W; an irreducible highest 
weight module LA for each i. 

I 

Note that the weight spaces (W;)). form a filtration of the finite-dimensional 
space V;., so only a finite number of the quotients (W;+I))'/(W;))' are nonzero 
for any given A.. Thus ~:och(W;+I/W;) is well defined and equal to ch(V). 

Lemma 7.2. Every V E rtf has a composition series. The number m).(V) of 
indices i for which W;/W;+I ~ L). is finite and uniquely determined by the 
equation 

(7.2) L m).(V)ch(L).) = ch(V). 
). 

In particular, m). (V) does not depend on the choice of composition series. 
Proof. Obviously we may assume V =f. 0 . 

Let A. be a weight for which V;. =f. 0 and (A., J) is maximal. Such a weight 
clearly exists for V E rtf. Choose a nonzero a E V;. , and let ~ be the sub-
module generated by a. Since a is a highest weight vector, ~ is a quotient 
of the Verma module M). and therefore has a finite composition series 

o = Vo ~ VI ~ ... ~ Vj = ~. 

If we have constructed a partial composition series 

O=»O~WI~···~Wk=f.V 

for V, we may apply the above construction to a maximal weight vector a in 
V / Wk to obtain an extension 

o = Wo ~ W; ~ ... ~ Wk ~ ... ~ W[ = Wk + ~. 
Repeating the process, we either reach W[ = V at some stage, or we produce 

an infinite sequence 
O=WO~WI~···· 

At each stage, we reduce the dimension of a nonzero weight space (V / W[)). for 
which (A., J) is maximal. By condition (2) in the definition of rtf, we must 



588 MARKHAIMAN 

eventually exhaust every weight space, i.e., (V/U/);, = 0 for sufficiently large 
I . Hence our sequence is a composition series. 

As for the multiplicities, clearly L;, cannot occur as a quotient W;+dW; 
more than dim(~) times, so m;, (V) is finite. Equation (7.2) is thus well defined 
and valid. The formal characters ch(L;,) are linearly independent, since each 
has a distinct leading term x;'. Therefore, (7.2) determines the multiplicities 
m;,(V). 0 

Remark. The rest of our work in this section consists entirely of computations 
upon formal power series f(x) = :E;, c;,x;' with integer coefficients obeying 

(2') For every integer N, there are only finitely many weights A with 
(A, <5) ~ Nand c;, f. O. 

Formal series obeying (2') form a ring, and they have unique expansions f(x) = 
:E;, d;,ch(M;,) = :E;, e;,ch(L;,) , where the coefficients d;, and e;, obey the same 
restriction (2') as c;'. The formal series f(x) is actually the formal character of 
some module in C(? if and only if the coefficients e;, are nonnegative. Our need 
for the underlying representation theory is confined to a single consequence of 
it: the product of two series which are actually characters is again a character. 

We now proceed to the derivation of the generalized Steinberg tensor product 
theorem from the Kazhdan-Lusztig conjecture. 

It will be convenient to define some notation in connection with the action 
of W on weights. If A is a weight and w is an element of W, define W· A = 
W(A + <5) - <5. If A + <5 is dominant, then W;, = {w I W • A = A} denotes the 
stabilizer of A + <5 , a parabolic subgroup of W. Each coset w W;, contains a 
unique longest element; let D;' denote the set of these. 

Definition. The expression w . A is in standard form if: (I) A + <5 is dominant, 
and (2) WED;'. 

Every weight has a unique expression in standard form. 
The formal characters of Verma modules are given by 

the product taken over all positive roots a. 
By Harish-Chandra's theorem, Mv.;, has a finite composition series whose 

composition factors are of the form Lw .;,. Their multiplicities are given by the 
Kazhdan-Lusztig conjecture: 

Proposition 7.1 ([2, 6, 12]). For A + <5 dominant and integral we have 

(7.4) ch(Mv.;,) = L Pv,w(1)ch(Lw.J 
wED' 
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or equivalently 

L (-1)l(VW)Qv,w(1)ch(Mw.,t) = {~h(Lv.,t)' 
wEW ' 

(7.5) 
,t v ED , 
,t v f1-D , 
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where Pv wand Qv w = Pw w w v are Kazhdan-Lusztig polynomials for W. 
, , 0 ' 0 

The proofs in [2] and [6] treat the case A. = O. The reduction of the general 
case to this one had already been found in [12]. The equivalence of (7.4) with 
(7.5) is a consequence of the fact that [Pv w] and [(-1/(VW)Qv w] are inverse 
I WI x I WI matrices. ' , 

Proposition 7.2 (Generalized Steinberg theorem). Let s . a, t· p, and u· y be 
integral weights expressed in standard form. Then the multiplicity of Lu.y as a 
composition factor of LN , 0 Lt.p is given by 

(7.6) L (_1)l(StvW) Pr,u(1)Qs,v(1)Qt,w(1)p(v . a + w . p - r· y), 
rEDY 

v,WEW 
where p(A.) is the partition jimction, defined by 

(7.7) 1 ~ -,t 
~(x) = '7' p(A.)x . 

Proof If f is a formal character, let (ch(L,t))f denote the coefficient of ch(LJ 
in the expansion of f by irreducible characters, and let (ch(M,t))f denote the 
coefficient of ch(M,t) in its expansion by Verma module characters. By (7.4) 
we have, for u· y standard, 

(7.8) (ch(Lu))f = L Pr,u(1)(ch(Mr))f. 
rEDY 

We are to show that (ch(Lu))ch(Ls-<Jch(Lt.p) is equal to (7.6). By (7.5), 

(7.9) 
~ i(stvw) ch(Ls-t,)ch(Lt.p) = ~ (-1) Qs,v(1)Qt,w(1)ch(Mv.,Jch(Mw.p)' 

v,wEW 

Note that (ch(Mr))ch(Mv.,,)ch(Mw.p) = (xr·y)(xv.,,+w. p /~(x)), by (7.3). Ap-
plying this to (7.8) with f given by (7.9) yields 

(7.10) 
(ch(Lu.y))ch(Ls.,,)ch(Lt.p) 

= L (-1 )i(StvW) Pr, u( 1 )Qs, v (1 )Qt, w(l )(xr.y) (xv,,,+w,P / ~(x)) 
rEDY 

v,WEW 

= L (_1)i(stvw) Pr,u(1)Qs,v(1)Qt,w(1)p(v, a + W· P - r· y). 0 
rEDY 

V,wEW 
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Observe that (7.6) reduces to zero when S ¢ DO. or t ¢ DP . This is clear 
from the proof, since (7.9) reduces to zero in these cases, by (7.5). 

Finally, we apply this to immanants. 

ProofofTheorem 1.5. The coefficient of C;(1)s,,(X) in lll/Y is given by 

(7.11 ) t," _ ""' (_I)£(tW)Q (I)K mll/y - ~ t,w ",Il-W(Y) ' 
WESn 

where the Kostka number K" A is by definition the coefficient of SIC In hA • It 
is well known that ' 

(7.12) ""' i(v) K",A= ~(-1) lJ(voK-A), 
VESn 

where K is a partition, regarded as a dominant weight for sIn' and A is any 
sequence (AI' ... ,An) E Zn with 1,1.1 = IKI. Indeed, (7.12) is equivalent to the 
fact that ch(L,,) is the Schur function SIC for K dominant. 

Combining (7.11) and (7.12) we obtain 

(7.13) m:i:= L (-I)£(tvW)Qt,w(l)lJ(voK+w o(v-J)-(,u-J)). 
v ,wESn 

By Proposition 7.2, this is a nonnegative integer, since it is (7.6) with a = K, 

S = 1, P = v - J, t = t, Y = ,u - J , and U E DY representing the coset 1 W Y • 

Note that a + J, P + J , and y + J are dominant as required, since they are 
partitions, and U 0 Y and s· K are in standard form. For t ¢ DP , top is not 
standard, but then, as we observed above, (7.6) reduces to zero. 0 

It is instructive to examine the case t = 1. Extracting the coefficient of 
C; (1 )s,,(X) in lll/Y amounts to finding the coefficient of s,,(X) in det(HIl /) = 
det(Hy+J/p+J) = Sy/p(X). The equality of this with (SY' s"sp) is the defining 
identity for skew Schur functions. But, of course, (SY' s"sp) is the multiplicity 
of Ly in L" ® Lp , since ch(LA) = SA for dominant A. Thus the symmetric 
functions (C~(I))IY+J/p+J appear as rather natural generalizations of the skew 
Schur function Sy/p. 

It may also be worth noting that the coefficient of SIC in (C~(1))IY+J/p+J is 
the multiplicity of Ly in L" ® Lw.p for wop standard and zero otherwise. 
Since L" is finite dimensional, this particular tensor product does belong to the 
category &' , not just to '?? 

ApPENDIX: HEeKE ALGEBRA AND KAZHDAN-LUSZTIG POLYNOMIALS 

Here we state the definitions and theorems we use from Kazhdan-Lusztig 
theory. Since this paper is meant for a varied audience, this material has been 
included for completeness, despite the risk that it may be unnecessary to spe-
cialists and incomprehensible to everyone else. Standard references are [4] and 
[17]. 
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The symmetric group Sn is an example of a Coxeter group, with its distin-
guished generating set of simple reflections S consisting of the adjacent trans-
positions (i i + 1). A minimum-length expression for w E Sn as a product of 
simple reflections is called a reduced expression; its length l (w) is the number 
of inversions in w. The sign of w is (-1 /(w) . 

The Bruhat order is a partial order on Sn with the defining property that 
v ::; w if for some, or equivalently for every, reduced expression Sl ..• Sf for 
w, there is a subword s. . .. s· which is a reduced expression for v. The 

II Ik 

Bruhat order is the transitive closure of the relation v -< w if v = w . (i j) for 
some i < j such that w(i) > w(j) . 

For each s E S , either sw > w or sw < w in Bruhat order. Those s with 
sw < ware the (left) descents of w. The descent set is denoted D(w). There 
is a reduced expression for w beginning with s if and only if s E D( w) . 

A subgroup WJ ~ Sn generated by a subset J ~ S is called parabolic. 
If (il i l + 1), (i2 i2 + 1), ... ,Uk ik + 1) are the simple reflections not in 
J, with i l < ... < ik , then WJ has the form S).. x··· x S).. ,where A = 

I k+1 

U I ' i2 - iI' ... , n - i k). Each coset w WJ contains a unique longest and 
Bruhat greatest element, which can be obtained by sorting each of the suc-
cessive segments of length AI' A2 , ••• ,Ak+1 in the sequence w(I), ... ,w(n) 
into decreasing order. The longest element of Sn is denoted wo. 

A presentation of Sn is given by the generators S and relations 

(S.Ia) 2 
S = 1, 

rs=sr ifli-jl>I, 
rsr = srs if Ii - jl = 1, (S.Ib) 

where r = (i i + 1) and s = (j j + 1). The Hecke algebra Hn(q) associated to 
Sn is the algebra with unit over qq-I/2, ql/2] generated by elements Ts for 
s E S , subject to the relations 

(S.2a) 

(S.2b) TrTs = ~Tr 
TrTsTr = TsTrTs 

if Ii - jl > 1, 
if Ii - jl = 1. 

For w E Sn' we define 

(S.3) T = T ···T , w Sl Sf 

where SI ... Sf is a reduced expression for w. This is well defined because all 
reduced expressions for ware connected by relations of the form (S.Ib). The 
elements Tw form a basis for the Hecke algebra and we have 

(S.4) T T = {Tsw' 
s w (q-I)Tw+qTsw' 

sw>w, 
sw <w. 
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In view of (8.1), the specialization Hn(l) is the group algebra CSn , with 
{Tw} as the natural basis. For q an indeterminate, Hn(q) is a semisimple 
algebra. Specializing them at q = 1 sets up a natural correspondence between 
its irreducible representations and those of Sn. 

There is a C-linear involution of Hn (q) defined by 

(8.5) 
_ -I 
q=q 

The Kazhdan-Lusztig basis {c~} of Hn (q) is uniquely defined by the condi-
tions: 
(8.6) 

c~ = c~, l(W)/2C~ = Ev$.w Pv,w(q)Tv ' 
Pv,w(q) E Z[q], Pw w(q) = 1, deg(Pv,w) < (l(w) - l(v))/2 for v =I- w. 

The Pv w(q) are Kazhdan-Lusztig polynomials. They have constant term 
Pv , w (0) '= 1 for all v ::::; w . The inverse of (8.6) is 

(8.7) T = "'(_l)l(vw)Q () i(v)/2C' w ~ v,w q q v' 
v$.w 

where Qv,w = Pwow,wov· 
The basis C~ satisfies the two equivalent formulas 

(8.8) 

(8.9) 

{ , , 
C' C' _ Csw + Esv<v p(v, w)Cv ' 

s w - (-1/2 + 1/2)C' q q w' 

{ 
, 1/2" - , 

T c' = -Cw + q ~sv<v p(v, w)Cv ' 
s w C' q w' 

sw>w, 

sw <w; 

sw>w, 

sw <w, 

where p(v, w) is the coefficient of q(i(W)-i(V)-I)/2 in Pv w(q) if l(w) - l(v) 
is odd, zero otherwise, and ii(v, w) is p(v, w) or p(~, v), accordingly as 
v < w or w < v. 

A reflexive and transitive relation ::::; is called a preorder. To a preorder 
corresponds an equivalence relation defined by x ~ y if x ::::; y ::::; x. The 
preorder induces a partial order on ~-equivalence classes. 

Preorders ::::;L and ::::;R are defined on Sn as follows: ::::;L (resp. ::::;R) is the 
weakest relation such that for all w the linear span of {C~ I v ::::;L w} (resp. 
{C~ I v ::::;R w}) is a left (resp. right) ideal in Hn (q). The transitive closure 
of ::::;L U::::;R is denoted ::::;LR; thus {C~ I v ::::;LR w} spans a two-sided ideal in 
Hn(q) . 

The equivalence classes of ~L' ~R' and ~LR are the left, right, and two-
sided cells, respectively. Regarding the span qq-I/2, ql/2]{C~ I V ~L w} as a 
quotient qq-I/2, ql/2]{C~ I v ::::;L W}/qq-I/2, ql/2]{C~ I V <L w} makes it a 
left Hn(q)-module, called a cell representation. 
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Let (P(W), Q(w)) be the pair of standard Young tableaux (of shape A(W)) 
corresponding to W under the Schensted correspondence. Then v ::::::L W if and 
only if Q(v) = Q(w), V ::::::R W if and only if P(v) = P(w), and v ::::::LR W 

if and only if A( v) = A( w). It is convenient to index cells by the transposed 
tableaux P(v)', Q(v)' of shape A'. With this indexing the left cells indexed 
by tableaux of shape A afford the irreducible representation V;., according to 
the usual indexing for Sn modules. 

The ordering <LR on two-sided cells corresponds to the opposite of the dom-
inance order on their indexing partitions. No direct statement of this fact seems 
to appear in the literature, but it can be deduced without much difficulty from 
the results of [1] and [16] on primitive ideals in U (g[n) . 

Using (8.9), the action of Ts in a cell representation can be described by a 
W-graph. The vertices correspond to basis elements C~ for v in a left cell, 
hence to the tableaux P(v)' of a fixed shape. Vertices v, ware connected 
by an edge labelled ji(v, w) = ji(S, T), which depends only on the tableaux 
S = P(v)', T = P(w)'. Since D(v) is the complement of the descent set 
D(P(v)'), we have for s E D(T), Ts(T) = -T + ql/2 Lsfl;D(S) ji(S, T)S, and 
for s (j. D(T), Ts(T) = qT. 

The elements C~ are closely connected with the geometry of the flag variety. 
Let V be an n-dimensional complex vector space. The flag variety ~ consists 
of all flags 0 C FI C ... C Fn_1 C Fn = V of subspaces with dim(FJ = i. 
Fix a flag FO and let B be its stabilizer in GLn , i.e., the Borel subgroup of all 
upper triangular matrices. Each flag F = g FO corresponds to a coset g B of 
B. We have the Bruhat decomposition 

(8.10) 

(Regard w as a permutation matrix.) This induces a decomposition of the 
flag variety into Schubert cells Yw = {gFO I gB ~ BwB} with dimension 
dim(yw) = C(w). Their closures r w = Yw are the Schubert varieties. We have 
r v ~ r w if and only if v :S w in Bruhat order. 

The flags FEr w can be described by Schubert conditions with respect to 
the base flag FO . Namely, FEr w if and only if for all i, j, dim(Fi n FjO) 2: 
Iw({l, ... ,i})n{l, ... ,j}l. 

Let I H; (r w) be the local intersection homology of r w at a point of r v . 

This is nonzero in even (real) dimensions only and satisfies (by [18]) 

(8.11 ) 

In particular, the Kazhdan-Lusztig polynomials have nonnegative coefficients. 
Moreover, they are equal to 1 for all v :S w if r w is smooth. 

Consider a variety r consisting of pairs (FI, F2) such that FI E r u ' U,v 

and, with respect to FI as a base flag, F2 E rv' Projecting ru v on F2 
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induces a decomposition of the intersection homology of r u v described by 
certain polynomials with nonnegative, symmetric, and unimodal coefficients [3]. 
By [27], these polynomials are the structure coefficients q(t(U)+£(V)-£(W))/2.t:: v(q) 
defined by , 

(8.12) 

When q is a power of a prime we may consider the finite 'flag variety' over 
a field JF(q). If we form a complex vector space by taking this finite set of 
flags as a basis, then the Hecke algebra Hn(q) (specialized to this integer q) 
acts on it as the algebra of all operators commuting with the action of GLn(q). 
The operator Tw E Hn(q) maps a flag F to the sum of all flags F' in the 
Schubert cell )'w-1, constructed with respect to F as base flag. The trace of 
this action is therefore X(Tw ) = 0 for w # 1, X(T1) = 19;;(q)1 = [n]q! = 

(1)( 1 + q) ... (1 + q + ... + qn-I). This character (really a different character 
for each q) is the one used in the proof following Conjecture 3.1. 
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