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INTERSECTION NUMBERS OF SPECIAL CYCLES 

JURGEN ROHLFS AND JOACHIM SCHWERMER 

INTRODUCTION 

Let G /Q be a connected semisimple algebraic group defined over Q, and 
let a, r be two Q-rational automorphisms of finite order of G which commute 
with each other. We assume that the group G(R) of real points of G is non-
compact. Let i be a torsionfree arithmetic subgroup of G(Q) which is stable 
under the group (a, r) generated by a and r. Then a and r act on the space 
X of maximal compact subgroups of G(R) and on the locally symmetric space 
X/I in a natural way. 

If G(f..l) denotes the reductive algebraic Q-group of fixed points of f..l = a , r 
acting on G, then the corresponding symmetric space X(f..l) is acted upon by 
the arithmetic group 1(f..l) of fixed points of f..l acting on i. These give rise 
to nonempty closed immersed submanifolds C(a) = X(a)/1(a) and C(r) = 
X(r)/1(r) of X/i. They are called special cycles. We assume that X/i, C(a), 
and C ( r) are oriented and that the intersection C (a) n C ( r) is compact. Then, 
if dim C(a) + dim C(r) = dim X, the intersection number 

[C(a)] [C(r)] E Z 

is defined. It is the purpose of this paper to give a quite general analysis of the 
intersections and intersection numbers of these special cycles. As one of the 
results we obtain under some mild restrictions an 'explicit' formula (Theorem 
4.11) for the intersection number of a pair of such cycles. This expression only 
depends on arithmetic data involved in describing the geometry of the connected 
components of the intersection. We make comments on a generalisation of this 
explicit formula in §5. The generalisation requires adelic methods, and the 
results obtained in this paper can be viewed as the necessary work to be done 
at the archimedean place. 

The special cycles considered include the Hirzebruch-Zagier cycles [12], the 
cycles of Kudla-Millson [16], the cycles which occur in recent work of Jacquet 
and Rallis [15] and many others as special cases [18-21, 26, 27]. Our initial 
motivation in 1986 for this study was the desire to understand in a general 

Received by the editors January 23, 1992 and, in revised form, October 9, 1992. 
1991 Mathematics Subject Classification. Primary 11F75; Secondary 55N45. 
Supported by Deutsche Forschungsgemeinschaft. 

755 

© 1993 American Mathematical Society 
0894-0347/93 $1.00 + $.25 per page 



756 JURGEN ROHLFS AND JOACHIM SCHWERMER 

framework the geometric construction of nonvanishing cohomology classes for 
arithmetic groups done by Millson-Raghunathan [21] in specific cases. The 
main focus of our work is to obtain a computable formula for these intersection 
numbers. Of course, this formula implies new nonvanishing results. 

We describe the content of this paper in more detail. 
From the results in [26], the fixed point components of an automorphism Ii 

of finite order on X jr can be parametrized by the first nonabelian cohomol-
ogy set H1((Ii), r) attached to (Ii). Combining these two parametrizations in 
the cases a and r we obtain in § 1 a description of the components of the 
intersection C (a) n C ( r) in terms of the kernel of the natural restriction map 

1 1 1 resa x resT: H. ((a, r), r) ---- H ((a), r) x H ((r), r). 

We note that, even if X(a) and X(r) intersect in exactly one point, the ge-
ometric nature of the fixed point components in C(a) n C(r) may be quite 
complicated, for example, higher-dimensional components may occur. 

In §2 it is shown that the orientability assumptions which are necessary to 
define [C(a)][C(r)] can be satisfied by passing from r to a suitable congru-
ence subgroup. This subgroup may be chosen such that the components of the 
intersection C(a) n C(r) are orientable. Note that the problem of orientability 
of the various fixed point components is a main focus of both [20] and [21], 
where the intersections of cycles defined by involutions are considered. Our 
result is a general solution to this problem replacing the case-by-case discussion 
given in specific cases in [20, 21]. Section 3 contains a proof of the formula 

[C(a)] [C(r)] = e(11(y))[F(y)] 
YEker resu x res, 

where each component F(y) of C(a) n C(r) contributes the Euler number 
of the excess bundle 11(1') over F(y) as one summand. In §4 first we show 
that this Euler number is proportional to a volume of F (I') and we determine 
the proportionality factor. This factor is essentially the Euler number of a ho-
mogeneous bundle determined by 11(1') on the compact dual symmetric space 
associated to F(y). It follows an analysis of the signs of e(11(y))[F(y)] corre-
sponding to elements I' which map to the same class in H I ( (a , r) , G(l~.)). In 
4.5-4.8 we give conditions under which the numbers e(11(y))[F(y)] are all of 
the same sign. This is the case if the actions of G(JR), G(a)(JR), and G(r)(JR) 
on their symmetric space X, X(a), and X(r) are all orientation preserving. 
For short, this is called condition (Or). Finally we obtain as Theorem 4.11: If 
X(a) and X(r) intersect in exactly one point with positive intersection num-
ber and condition (Or) is satisfied then there exists a (a, r)-stable arithmetic 
subgroup r 1 of finite index in r such that 

[C(a, r 1)]· [C(r, r 1)] = X(F(y)) 
YEkerresu x res, 
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where all Euler characteristics X(F(y)) are positive. Of course, then [C(a)] 
and [C(.)] represent nontrivial classes in H*(r, IC). Numerous classes of ex-
amples may be derived, for example, by use of the discussion in 4.8 where quite 
general conditions on G and automorphisms of finite order are given which im-
ply the assertion of (Or). Some of these are discussed in §5. 

Notation. (i) Let a be a group acting on a set M. We write the action of s E 8 
on mEM as ml--+sm=sm=s(m) and put M 9 =M(a)={mEMl sm= 
m for all SEa}. If a = (0',.) is generated by two elements 0' and ., we 
write M(a)=M(a,.) and M((a)) =M(a),M((.)) =M(.). 

(ii) If the group a acts on a group A as group of automorphisms, then 
HI (a, A) denotes the first nonabelian cohomology set of this action. By defi-
nition, it consists of classes of cocycles, where a cocycle y is a map y: 8 --> A 
written s 1--+ ys with the property Ysh = Ys sYh' h, s E 8. Cocycles Y and ~ 
are equivalent if there is an a E A such that ~s = a -I Y s s a for all sEa. If 
A and a act on a set M in a compatible way, i.e., if s(am) = sasm for all 
SEa, a E A, m E M and if Y is a cocycle for HI (8, A) there is a y-twisted 
a-action on M given by m 1--+ ys sm. We denote the fixed points of this action 
by M(y). If a = (0', .) and if y = {Ys}, s E 8, is a cocycle as above, we de-
note by Yq = {yt }, t E (0'), the cocycle for HI((a), A) given by the restriction 
of Y to (0'). We write M(Yq) for the fixed points of the yq-twisted a-action 
on M, similarly for the yr-twisted .-action. We get M(y) = M(Yq) n M(y r ). 

To simplify the notation we put HI ((0', .), A) = HI (0', ., A), H'( (0'), A) = 
HI(a, A), and H I((.), A) = H I(., A). For further details on nonabelian co-
homology we refer to [31, I, §5]. 

(iii) We give the usual meaning to the symbols N, Z, Q, JR, C. If p is a 
prime of Z, we denote the p-adic numbers by Qp • 

(iv) For results and notation concerning algebraic groups we refer to [4]. 

1. INTERSECTIONS OF SPECIAL CYCLES AND NONABELIAN COHOMOLOGY SETS 

In this section, G is a connected reductive algebraic group defined over Q. 

1.1. Let 0',. be two Q-rational automorphisms of G /Q of finite order; we 
assume that 0' and • commute with each other. Choose a maximal compact 
(0', .)-stable subgroup K of G(JR) (cf. [10, 13.5]). Then the group a:= (0', .) 
acts on X = K \ G(JR). Let r be a 8-stable torsionfree arithmetic subgroup of 
G(JR). If Y = (Ys )' s E 8, is a cocycle for 8 in r, we define a new y-twisted 8-
action on G and on r by g 1--+ Ys s gys-I , g E G, s E 8. The operation induced 
on X is then given by x 1--+ S xy;- I , x EX, s E 8. The new operation induced 
on x/r coincides with the previous one. Let r(y) be the set of elements in 
r fixed by the y-twisted a-action, and let X(y) be the fixed point set of the 
y-twisted a-action on X. Then the natural map 'Try : X(y)/f(y) --> x/r is 
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injective and its image 

(1) F(y) = imlly ~ X(y)/r(y) 

lies in the fixed point set Fix(8, X/r). We observe that F(y) only depends 
on the cohomology class in HI(8, r) represented by the cocycle y. Moreover, 
F(y) is nonempty since the action of e on X is via isometries [10, I, 13.5], 
and F(y) is a closed immersed submanifold of x/r. We will now see that all 
fixed points of 8 arise by this construction. Consider a point x E Fix( 8, X /r) 
represented by x E X. Then there exist uniquely determined elements Ys E r 
such that s x = xYs' SEe. One sees that y = (ys) , s E 8, is a COCYcle for 
HI (8, r). For another representative y = x . c, c E r, of x the attached co-
cycle is determined by y; = c-Iys sc, S E 8. Therefore every x E Fix(8, X/r) 
determines uniquely a class in HI (8, r), and the fixed point set is a disjoint 
union of the connected nonempty sets F(y), Y E HI (8, r) 

(2) Fix(8, X/r) = U F(y). 
YEH'(9,r) 

If we consider the finite groups (J1.), J1. = a, r, generated by a and r respec-
tively, these considerations apply as well. Thus we have 

(3) Fix(J1., X/r) = U F(y) 
YEH'(Jl,r) 

as disjoint unions of connected nonempty sets. The connected component cor-
responding to the base point 1 Jl in HI (J1. ,r) will be denoted by C (J1.) = 
C(J1., r). It will be called a special cycle. Note that each of the components 
of Fix(J1., X /r) may be viewed as a special cycle, for example, associated to 
the IQ-rational automorphism obtained by twisting J1. with y. If G(J1.) de-
notes the reductive algebraic IQ-group of fixed points of J1. acting on G then 
X(J1.) := X(IJl) is the symmetric space corresponding to G(J1.) , i.e., the inclu-
sion G(J1.)(lR) -> G(lR) induces an isomorphism 

(4) K(J1.) \ G(J1.)(lR) ~ X(J1.). 

It follows that the natural map 

(5) X(J1.)/r(J1.) ~ C(J1.) 

with r(J1.) := r(1Jl) = {y E rlJ1.(y) = y} provides a diffeomorphism between 
the locally symmetric space X(J1.)/r(J1.) and the closed immersed submanifold 
C(J1.). 

In general, a submanifold C in some arithmetic quotient X /r will be called 
a special cycle if C = C(a) for a suitable IQ-rational automorphism of G/IQ 
of finite order. 
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Now we give a parametrization of the connected components of the intersec-
tion of the two special cycles C (a) and C ( 1'). Recall that given a subgroup :=: 
of 8 there is natural restriction map res: HI(8, r) ---+ HI(:=:, r), [31, I, §5]. 

Proposition 1.2. Let (a, 1') be the group generated by two rational Q-automor-
phisms a, r of G(Q) of finite order which commute with each other. Given a 
(a, 1')-stable arithmetic subgroup r of G(Q) let 

I I I resaxres,:H(a,r,r) ---+ H(a,r)xH(r,r) 

be the map induced by the map which sends a cocycle y = (Ys) , s E (a, r), to 
the pair of cocycles determined by (Ys) , s E (a), and (Yt)' t E (r). Then we 
have: 

(1) If Y E ker(resa x res,) then F(y) c C(a) n C(r) is a connected compo-
nent of the intersection of C(a) and C(r). 

(2) There is a bijection 

ker(resa x res,) ~ 1lo(C(a) n C(r)), 

given by y f-+ (F(y)) , between the kernel of resa x res, and the set of con-
nected components of C(a) n C(r). The point determined by F(y) is denoted 
by (F(y)). 

Remark. By using the inf-res exact sequence (see [31, 1-73/74]) one observes 
that the kernel of resa x res, is in bijection to ker(HI(a, r(r)) ---+ HI(a, r)) 
and ker( H I ( r , r( a)) ---+ HI ( r ,r)) as well. 

Proof Let y = (Ys) , s E 8 = (a, r), be a cocycle representing a class in 
ker(resa x res,). The y-twisted 8-action on X is determined by the Ya-twisted 
a-action and the y,-twisted r-action. Therefore, we have X(y) = X(Ya) n 
X(y,). But the natural maps 

/1=a,1', 

map X(y) to C(/1), whence F(y) c C(a) n C(r). Conversely, if p E C(a) n 
C(r) then p is an element of Fix(8, Xjr) since a and r generate 8. By 
1.1. (2) there is a unique element in HI (8, r) represented by a cocycle y = 
(Ys) , s E 8, such that p E F(y). Since C(/1) corresponds to the base point 111 

in HI(/1, r), /1 = a, r, the fact that p E C(a) n C(r) holds implies that Ya = 

a-I aa, y, = b- I 'b for some a, b E r. Thus, every point p E C(a)nC(r) lies 
in a unique connected component F(y), Y E ker(resa x res,); hence, assertions 
(1) and (2) hold. 0 

1.3. Let V be a COO -manifold, and let M and N be two closed immersed 
submanifolds of V. Then we may view the tangent bundles T M of M and 
TN of N as subbundles of the tangent bundle TV of V. We recall that M 
and N are said to intersect perfectly (or cleanly) if the connected components 
of the intersection M n N are immersed submanifolds of V and if for all such 
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components F of M n N one has T F = T MIF n T NIF. Here the bundles are 
viewed as subbundles of the restriction TfiF of the tangent bundle TV to F. 

Retaining the notation and assumptions of Proposition 1.2 we have 

Lemma 1.4. The special cycles C(a) and C(r) in x/r intersect perfectly. 
Proof Let the point p E C(a) n C(r) be represented by x E X. There is a 
unique element in H'(9, r) represented by a cocycle y = (Ys) , SEe, such 
that p E F(y). Since the assertion as claimed is of local nature, it suffices to 
prove the corresponding statement for the intersection X(y) = X(YI1) n X(YT)' 
But a and r generate e, and thus the claim follows from the fact that the 
exponential map exp : TxX -+ X from the tangent space of X at x to X is 
an equivariant bijection with respect to the y-twisted a-action. D 

Remark.1. (i) Minson and Raghunathan [21] consider the case that a and 
r are involutions, and they assume that X(a) x X(r) ..:::. X holds where the 
map is induced by the obvious inclusions. Then C(a) and C(r) have at least 
one isolated intersection point, where they intersect transversally. Given the 
involution a and a "rational" point x E C(a) represented by x E X(a) one 
can take r = a()x where ()x is the Cartan involution corresponding to x. The 
rationality of x here means that ()x is an automorphism defined over Q of G. 
Instead of ()x one also can use Cartan-like involutions (see [29] for this notion). 

(ii) In this paper we work with automorphisms a and r of finite order 
instead of involutions. This does not cause any essential complications. In 
order to show that this setting is meaningful we give a nonobvious example as 
follows. 

Consider the quadratic form q on JR.8 which is diagonalized with entries 
(1, 1, 1, 1, -1 , -1, -1, -1). The corresponding special orthogonal group G 
over JR. is denoted by SO( 4, 4) (JR.). Let a be the automorphism of G which is 
given by conjugation with the diagonal matrix 1'/ with entries (1 , 1, 1, 1, 1, 1, 
-1, -1). Then G(a)(JR.) = S(O(4, 2) x O(2))(JR.). The group G contains a 
Cartan subgroup T /JR. such that T(JR.) is compact and such that T(JR.) = 
SO(2)(JR.) x SO(2)(JR.) x SO(2)(JR.) x SO(2)(JR.) sitting blockwise on the diago-
nal. There is a diagram automorphism r defined over JR. of order 3 on G(C) 
such that G(r)(JR.) is a split group of type G2 and such that SO(2)(JR.) x 1 x 
1 x 1 x 1 x SO(2)(JR.) is a maximal compact torus of G2 (JR.). Since 1'/ lies in 
this torus, we get ar = ra. Let X, X(a), X(r) be as in 1.1. By inspecting 
[10, Chapter IX, §4, Table II] one sees that dim X(a) = dim X(r) = 8 and 
dim X = 16. Hence the assumptions of 3.4 hold for suitable subgroups r of 
SO(4,4)(JR.). 

2. COVERINGS AND ORIENT ABILITY 

In order to be able to define the intersection number of the special cycles 
C(a) and C(r) as defined in §1 we need that the manifolds x/r, C(a), and 
C( r) are orientable. For the actual determination of the intersection number 
we also need that all the connected components of the intersection C (a) n C( r) 
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are orientable. In this section it is shown that,a given arithmetic group r con-
tains a a-stable normal arithmetic subgroup r' such that the special cycles 
determined by a and 'l" in X /r' and the connected components of their in-
tersection are orientable. 

In this section G denotes an arbitrary linear algebraic group defined over Q. 

2.1. Let r be an arithmetic subgroup of G; for any finite set S of primes of 
Q we embed r diagonally into I1PESG(Qp). We recall that a subgroup r' of 
r is called a congruence subgroup of r if there are such a set S and an open 
compact subgroup U c I1PES G(Qp) such that r' = r n U. Note that then r' 
is not necessarily an arithmetic congruence subgroup of G(Q). 

Proposition 2.2. Let G /Q be a linear algebraic group defined over Q, and let 
r c G(Q) be an arithmetic subgroup. Then there exists a congruence subgroup 
r' of r such that r' is contained in the connected component of the identity 
G(JR)o of the real Lie group G(JR). 
Proof Since the number of connected components of G in the Zariski topology 
is finite, there exists an open compact subgroup Up c G(Qp) , p a prime of Q, 
such that Up C GO(Qp). Then one has r n Up C GO(Q). This reduces us to the 
case where G is connected. 

Let G be connected and denote by H the unipotent radical RuG of G. 
Then D := G/H is a connected and reductive linear group. The group H(JR) 
is connected. Therefore, we have a commutative diagram with exact rows and 
columns 

1 1 1 

! ! ! 
1 ---+ H(JR)o ---+ G(JR)o ---+ D(JR)o ---+ 1 

! ! ! 
---+ H(JR) ---+ G(JR) ---+ D(JR) 

! ! ! 
---+ 1to(G(JR)) ---+ 1to(D(JR)) 

! ! 

where 1to( ) denotes the group of connected components. 
We assume that our claim holds for connected reductive groups and show that 

then the claim holds for G. Indeed, if r is arithmetic in G then the image 
r D of G in D(JR) under the natural projection G ---+ D is arithmetic [1, 
8.9]. By assumption there exists a finite set of primes S and an open compact 
subgroup W of I1pES D(Qp) such that W n r D c D(JR)o. We choose an open 
and compact subgroup V of I1pES G(Qp) which maps into W. Then the above 
diagram shows that r n V c G(JR)o. We have shown that it suffices to prove 
our claim for connected and reductive groups. 
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We assume that G is connected and reductive and that r c G(Q) is arith-
metic. Let GDer be the connected component of the derived group of G. Then 
GDer is semi-simple and there is a simply connected covering group denoted by 
Gsc of GDer and a natural Q-rational map rp: Gsc ---+ G with image GDer and 
finite central kernel. Let Z be the connected component of the center of G. 
Then Z is a torus defined over Q. We define a Q-rational map 

f: Gsc x Z ---+ G 

such that f(g, z) = rp(g)Z2. Then f is a group homomorphism where ker f 
is central and finite. Since G is connected and dim Z + dim Gsc = dim G, we 
see that f is surjective (over Q). We abbreviate /.l = ker(f) , GI := Gsc x Z. 
From the exact sequence . 

1 ---+ /.l (C) ---+ G I (C) ---+ G( C) ---+ 1 

we get the exact sequence 

1 ---+ /.l(lR) ---+ GI(lR) ---+ G(lR) ~ HI(CllR, /.l(C)) 

where 800 is defined as in [31, Chapter 1,5.4]. We have f(GI(lR)) = G(lR)o. 
To see this we use that Z (lR) = IT SO(2) x IT lR* for a suitable number of 
copies of the factors and we use that Gsc(lR) = Gsc(lR)o; see [4, 4.7]. Hence 
f(GI(lR)) is connected. On the other hand, dim f(GI(lR)) = dim G(lR) and 
f(GI(lR)) = G(lR)o follows. In order to prove our claim we therefore have to 
find a congruence subgroup r' of r such that 800 1r' = 1. 

From the exact sequence 

1 ---+ /.l( Q) ---+ G I (Q) ---+ G(ij) ---+ 1 

we get an exact sequence 

1 ---+ .u(Q) ---+ GI(Q) L G(Q) ~ HI(Q/Q, /.l(Q)). 

Using [1,8.9] we see that ff-I(r) is a subgroup of finite index in r. There-
fore, 8(r) is a finite subgroup of HI (Q/Q, /.l(Q)). Thus there is a finite Galois 
extension k c Q c C of Q such that 8(r) c HI(k/Q, .u(k)). Because /.l is 
finite, we may (and will) choose k so that /.l(k) = /.l(k) holds. 

Let S be a finite set of primes such that all primes p ¢ S are unramified in 
k and such that /.l, GI ' G, and f are defined over the ring Zs of S-integral 
integers. Moreover, we choose S so large that the exponent of /.l(Q) is prime 
to all p ¢ S and such that r c G(Zp) for p ¢ S. Let kw be the completion 
of k with respect to a place w of k which extends p ¢ S: We denote by &'W 
the integers in kw and by Pw the maximal ideal in &'w. Then /.l(k) = /.l(kw) = 

/.l(&'w) and reduction mod Pw induces a bijection /.l(&'w) .::. .u(&'w/pw)· To see 
this we choose an algebraic closure IFp of Z/pZ = lFp which contains &'w/Pw. 
Now .u(IFp ) is a product of cyclic groups, all of order prime to p. Therefore, 
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by Hensels Lemma the natural map f.L(&w) -+ f.L(lFp) is bijective with image 
f.L(&w/pw)· 

The embedding k c IQl c C determines an archimedean value 00 of k. We 
get a commutative diagram 

r !!... HI (k/1Ql, f.L(k)) ~ HI (kcxJW. , f.L(koo )) 

1 1 
G(W.) HI (C/'E., f.L(C)) 

If k is totally real then koo = 'E. and 000 Ir = 1, i.e., our claim holds. So let us 
assume that koo = C. We write F 00 for the automorphism of k over IQl which 
induces complex conjugation on C = k . 

00 

If w is a finite place of k extending PitS we write Fw for the correspond-
ing Frobenius automorphism of kw over IQlp . The Frobenius automorphism 
over Z/pZ = lFp is denoted by Fp. Then we get a commutative diagram 

i 

The right vertical arrow is induced by the isomorphism f.L(&w) ..:::-. f.L(&w/pw) 
and gives a bijection onto HI (lFq/lFp ,f.L(lFq)) where we put lFq = &w/pw. By 
the Tchebotarev density theorem [17, VIII, §4, Theorem 10] we can choose w 
extending PitS such that Fw = F exo. According to the above choices then 
HI(Foo' f.L(C)) = HI(Fw' f.L(kw))":::-' HI (lFq/lFp , f.L(lFq)). Ifnow Up c G(Zp) is 
the full congruence subgroup mod p then the commutative diagrams show that 
rn Up = r' has the desired property ooo(r') = 1. 0 

Remark. Let us assume that r has the congruence subgroup property, i.e., for 
every subgroup r' c r of finite index there exists a congruence subgroup r" 
of r such that r" cr'. Then Proposition 2.2 holds trivially. However, if 
H eGis a lQl-rational subgroup then r n H(IQl) does not necessarily have the 
congruence subgroup property. This means that we cannot apply this sort of 
argument simultaneously to G and finitely many subgroups Hi. This case is 
dealt with in the following 

Proposition 2.3. Let G be an algebraic group defined over 1Ql, and let 8 be a 
finite group of lQl-rational automorphisms of G. Assume that r c G(IQl) is a 8-
stable arithmetic subgroup of G. Then there exists a normal 8-stable torsionfree 
arithmetic subgroup r l of r such that for all cocycles y for HI (8, r,) one 
has r l (y) c G(y)('E.t 
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Proof The first nonabelian cohomology set HI (8, r) is finite (cf. [3, 3.8]). 
We choose cocycles yl , ... , l representing the different classes in HI (8, r). 
Using the result Proposition 2.2 we can find a congruence subgroup ro c r 
such that 

(1) i = 1, ... , t, 

holds; we may assume that ro is torsion free [23]. Then we put r l = nsESs(r) 
and, in case r l is not normal in r, we replace r l by n 11rl11-1 , 11 E r /rl . 
Now our claim follows from the following observation: If y and J are two 
cocycles representing different classes in HI (8, r l ) but becoming equivalent 
in HI (8, r) then there is an element a in r, such that Ys = a -I J/ a for 
all s E 8. Then one has isbmorphisms int(a) : r l (y) -::'. r l (J) and int(a) : 
G(y)(ll~l -::'. G(J)(lRt D 

As in § 1 we now consider the group 8 generated by two rational Q-automor-
phisms a, ' of G(Q) of finite order which commute with each other. Given a 
cocycle y = (ys) , s E 8, there are the two cocycles YJ1 for HI (Ji, r), Ji = a, " 
obtained from y by restriction. 

Since the y-twisted 8-action on X is determined by the y (J -twisted a-action 
together with the y 1: -twisted ,-action, we have for the corresponding sets of fixed 
points X(y) = X(Y(J) n X(Yr). Then we obtain the following 

Corollary 2.4. Let r c G(Q) be a 8-stable arithmetic subgroup of G. Then 
there exists a normal 8-stable torsionfree arithmetic subgroup r l of r such 
that for all cocycles Ys for HI (8, r l ) the corresponding groups r l (y) resp. 
r I (y (J) resp. r I (y 1:) act orientation preserving on X (y) resp. X (y (J) resp. X (y r)· 

3. INTERSECTION NUMBERS 

In this section we recall the definition of the intersection number of two 
closed immersed oriented submanifolds in an oriented manifold and prove a 
formula describing the local contributions to the intersection number of special 
cycles in terms of certain Euler numbers. 

3.1. Let N be a closed immersed oriented submanifold of an oriented manifold 
V. We choose a tubular neighborhod U of N in V. If we have v = dim V 
(resp. n = dim N) then there is an isomorphism 

(1) Hv-n(U U - N· 71.) ~ Hv-n(V V - N· 71.) , ,--+ , ,. 

Since the normal bundle of N in V is oriented in a natural way, there is a 
distinguished isomorphism 

(2) .. Hv-n(U (U - N) .71.) -::'. 71. Jx · x' x' 
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where Ux denotes the fibre of the normal bundle in U over x E N. By Theo-
rem 10.4 of [22] there is a unique class w N in Hv-n(U, U - N; Z) such that 
W N is mapped under the composite of maps 

Hv-n(U, U - N; Z) -> Hv-n(Ux ' (U - N)x; Z) i Z 

to the element 1 in Z. 

3.2. Let M, N be two closed immersed oriented submanifolds of an oriented 
manifold V of dim V = v. We assume that the intersection M n N is compact 
and that dim M + dim N = m + n = v holds. Then the intersection number 
of M and N is defined by 

(1 ) 

where the right-hand side denotes the evaluation of the cup product W M U W N 

in H; (V ; Z) on the fundamental class [V] of V. 
Now we assume that the intersection M n N consists of one connected (com-

pact) manifold F, let us say, of dimension I 2: 1. Moreover, we assume that 
M and N intersect perfectly in the sense of 1.3. Let T ~F + T ~F be the 
bundle over F whose fibre over a point x E F consists of the span of the fibres 
TxM and TxN in the fibre Tx V of the tangent bundle of V. Then there are 
exact sequences of bundles 

(2) 

and 

(3) 

Since M and N intersect perfectly, the sequence (3) defines an I-dimensional 
vector bundle 11 over F given as the quotient of the tangent bundle of V by 
the sum of the tangent bundles of M and N restricted to F. The bundle 11 
will be called the excess bundle of the intersection F (for this notion see, e.g., 
[7]). Note that the excess bundle is zero if the intersection is transversal. 

Recall that the manifolds V, M , and N are oriented. Suppose that F is 
orientable, and fix an orientation on F. Then the excess bundle is an oriented 
vector bundle in a natural way. Let e(11) be the corresponding Euler class of 11 
in Hf(F; Z). 

If [F] E Hf(F, Z) denotes the fundamental class of F then evaluation of 
e(11) on [F] gives a well-defined integer 

(4) 

it is called the Euler number of 11. Note that e(11)[F] does not depend on the 
choice of the orientation of F. To have a smooth notation we introduce for 
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F = {X} the notation e(l1)[F] = 1 if TxM + TxN equals Tx V as an oriented 
vectorspace and e(l1)[F] = -1 otherwise. 

For the lack of a suitable reference we sketch the proof of the following 

Proposition 3.3. Let M, N be two closed immersed oriented submaniJolds oj an 
oriented manifold V. Suppose that dim M + dim N = dim V, that M and 
N intersect perJectly, and that the intersection M n N consists oj one connected 
compact orientable manifold F with excess bundle 11. Then one has 

[M] [N] = e(l1)[F]. 

Proof (Sketch) We may replace V (resp. M, N) by the total space of the 
normal bundle vv(F) (resp. vM(F) , vN(F)) of F in V (resp. M, N). We 
have 

vv(F) = vM(F) EB vN(F) EB 11 

as a direct sum. If PM denotes the projection to the last two summands then 
p~(vN(F) EB 11) is the normal bundle of M in V. Let uM and UN denote the 
fundamental cohomology class of vM(F) and vN(F) respectively, and let uF 

be the one of 11. Then P~(UN U uF) is the dual class of the fundamental class 
of M in V, and P~(UM U uF ) is the dual class of the fundamental class of 
N in V where PN is defined in an analogous way as PM. 

We have to evaluate the cup product of these two classes on the fundamental 
class [V]. As above we replace V by the total space of the normal bundle 
vv(F) of F in V. First we evaluate over the fibres of this bundle and then 
over the base space F. The contributions along the suitable fibre with respect 
to U M' UN' and U Fare 1 by definition of these classes. Thus we obtain 

where s denotes the zero section of the bundle 11. By definition of the Euler 
class, the right-hand side is equal to e(l1)[F]. 0 

3.4. Let G be a connected reductive algebraic group defined over Q, and let 
e = (a, r) be the group generated by two rational Q-automorphisms a, r 
of G(Q) of finite order which commute with each other. We consider a 8-
stable torsionfree arithmetic subgroup r of G(Q) chosen in such way that the 
special cycles C (a) , C ( r) and all connected components F (y) , Y E HI (e, r), 
of their intersection are orientable (cf. Corollary 2.4). We fix orientations on 
x/r, C(a), and C(r), and we suppose that the intersection C(a) n C(r) is 
compact and that dim C(a) + dim C(r) = dim x/r holds. Then the following 
proposition is a direct consequence of Propositions 1.2 and 3.3. 

Proposition 3.5. Under the assumptions oj 3.4 and with the notation oj 3.2 the 
intersection number oJthe two special cycles C(a) and C(r) is given by 

[C(a)] [C(r)] = L e(l1(Y)) [F(y)] 
r 
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where the sum ranges over the elements in the kernel of the map 
1 1 1 

resu x rest: H (a, r, r) ---- H (a, r) x H (r, r) , 

and l1(y) denotes the excess bundle of the intersection component F(y). 0 

Remarks. (i) The assumption that C(a, r) n C(r, r) is compact is fulfilled if 
and only if for all y E ker(resu x rest) the group G(y) is Q-anisotropic. This 
follows from the compactness criterion (cf. [1, §8]). 

(ii) We would like to add at this point that in the unpublished paper [20] 
(which we got to know in the fall 1990 at the lAS when the major part of our 
work was already done) Millson observed in a remark [20, p. 44] after dealing 
with the case G2 that the Euler number of the excess bundle might playa role 
in the study of degenerate intersections. For this connection he refers to the 
clean intersection formula of Quillen [25, §3]. A similar phenomenon as in the 
case G2 was observed in [18, Proposition 4.9] in dealing with SL3 • 

4. THE EULER NUMBER OF THE EXCESS BUNDLE 

In this section we investigate the contribution e(l1(y»[F(y)] to the intersec-
tion number [C(a)][C(r)] of two special cycles. In Proposition 4.2 we show 
that the number e(l1(y))[F(y)] is proportional to an invariant volume of F(y) 
and determine the proportionality factor. The main result is Theorem 4.11 
which establishes the positivity of the intersection number under quite general 
assumptions. 

In this section G is a connected reductive algebraic group defined over Q. 

4.1. As in 3.4 we consider a (a, r)-stable torsionfree arithmetic subgroup r 
of G(Q) such that the special cycles C(a) and C(r) and the connected com-
ponents F(y), y E ker(resu x rest)' are orientable. We choose orientations on 
Xjr, C(a), C(r) and use the notation of Proposition 3.5. We denote a repre-
senting cocycle (Ys)' sEe = (a, r), for an element y in ker(resu x rest) by 
the same letter. We choose a point x E X(y) and denote by Kx the maximal 
compact subgroup of G(JR) corresponding to x. Then the y-twisted 8-action 
is defined on Kx and we have 

(1) Kx(Y) \ G(y)(JR) ~ X(y). 

The Cartan decomposition of the Lie algebra 9 of G(JR) corresponding to the 
point x E X (y) is denoted by 

(2) 

We obtain an exact sequence endowed with an Kx(y)-action 

(3) 

where, by definition, l1x denotes the cokernel of the inclusion. Since we have 
Kx(Y)o \ G(y)(JR)o ~ Kx(Y) \ G(y)(JR), the action of the connected component 
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Kx(Y)O of Kx(Y) on Y/x determines a bundle Y/ over X(y) which is the pull 
back of the excess bundle Y/(y) over F(y) under the map X(y) --+ X(y)/r(y). 

Let Gu(y)/JR be the compact real form of G(y). We consider Gu(y)(JR) as 
the maximal compact subgroup of G( 1') (q which is determined by the choice 
of x such that we have an embedding 

(4) 

of X(y) into the compact dual Xu(Y). Now the Kx(Y)o -module Y/x determines 
a bundle on Xu(Y) , to be denoted by Y/u(Y). Clearly, orientations of X(y) 
and of Y/(y) determine orientations on Xu(Y) and on Y/u(Y). We observe that 
the dimension of the fibre of Y/u(Y) is equal to f(y) := dim Xu(Y). Therefore, 
evaluating the Euler class e(y/u(Y)) of Y/u(Y) on the fundamental class [Xu(Y)] 
of Xu(Y) gives a well-defined number e(y/u(y))[Xu(y)]. We observe that this 
number only depends on the class represented by y. 

Let OJ be an invariant positive measure on G(y)(JR). If dk denotes the in-
variant measure on Kx(Y) having mass 1 then OJ and dk determine a measure 
It on X(y). We may view It as a G(y)(JR)-invariant differential form on X(y). 
Using the fact that the tangent spaces in x at X(y) and Xu(Y) coincide we 
extend Itx to a Gu(y)(JR)-invariant measure on Xu(Y). By means of the mea-
sure dk on Kx(Y)o and K)y)o \ Gu(y)(JR)o = Xu(Y) we obtain a well-defined 
measure on Gu(y)(JR). This measure is called the measure corresponding to OJ 

and will be denoted by OJu' 
In this set-up we have the following result. 

Proposition 4.2. Under the assumptions of 4.1 and with the notation explained 
there one has the formula 

e(y/(y))[F(y)] = (_I/(y)/2 e(y/u(Y))[Xu(Y)] [ OJ, 
volw (Gu(y)(JR)o) JG(Y)('ll~l/r(y) 

u 

where f(y) = dim F(y). Moreover, if G(y)(JR)o does not contain a compact 
Cartan subgroup or if f(y) is odd then e(y/(y))[F(y)] = O. 
Proof We choose a G(JR)- and 8-invariant nondegenerate bilinear form on 9 
which induces a Kx-invariant metric ( , ) on Px' x E X. We use this metric 
to split the exact sequence 4.1 (3); i.e., we identify Y/x' x E F(y) with the 
orthogonal complement of p x (I' u) + p x (I' r) in p x' Hence Y/ has the structure of 
a Riemannian vector bundle with corresponding Riemannian connection 6.1'/' 
The associated curvature tensor RI'/ is given by 

RI'/(x, y)z = -ad[x, y]z 

where x, y E px(Y) and z E Y/x' For these facts, see [8, VII, §7, VIII, 8.26.2]. 
We note that RI'/ viewed as tensor on X(y) is G(y) (JR)o-invariant. Hence the 
Euler class of e(y/) viewed as a differentialform is given by a G(y)(JR)o -invariant 
differential form on X(y) of the form aOJ, a E lR.. We have to compute a. 
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For this we use an extension of Hirzebruch's proportionality principle [11] to 
bundles. We fix x E X(y) and consider the embedding X(y) ~ Xu(Y) given by 
the identification Px ..::t ipx. The bundle l1u on X)y) determined by ipx and 
the Kx(Y)o action on ip has as above a Riemannian connection R .. . Using x "u 

the identification Px ..::t ipx one has 

(5) 

As above we have for the Euler class e(l1u) = bOJu where b E lR. The Euler 
class of an odd-dimensional bundle is zero [14, §16, 7.7]. So let us assume that 
f(y) is even. From (5) we deduce that a = (-ll(y)/2. b. But, of course, 

e(l1u)[Xu(Y)] = r bOJu 1 Gu(y)(IR)o 

and the formula given in Proposition 4.2 follows. Now e(l1u(Y))[Xu(Y)] = 0 if 
G(y)(JR)o has no compact Cartan subgroup [8, IX, 9.15]. Therefore, all claims 
have been proved. 0 

Remark. (i) For the Euler number X(F(y)) of F(y) we get in the same way 

X(F(y)) = (-ll(y)/2 X(Xu(Y)) r OJ 
volw (Gu(y)(JR)o) lG(y)(IR)°fr(y) 

u 

(ii) The number le(l1u(y))[Xu(Y)]1 only depends on the image of y in 
I H (a, T, G(JR)). 

4.3. Let y, C; E ker(resO' x resr) be classes which map to the same element in 
HI (a, T, G(JR)). If Ys resp. C;s are cocycles which represent y resp. C; then 
this means that there is agE G(JR) such that Ys = g-lC;s s g, S E (a, T). It 
follows that right translation by g induces an isomorphism 

R(g) : X(C;) ..::t X(y) 

and also an isomorphism 

(1) 

We recall that r has been chosen such that r(a), r(T), and r act orientation 
preserving on their symmetric space X (a) , X ( T), and X and that we have 
chosen orientations on X(a), X(T), and X; (see Corollary 2.4 and 3.4, 4.1). 
We have yO' = a-I 0' a, Yr = b- I rb with a, b E r and a resp. b are unique 
modulo r(a) resp. r(T). We get that right translation with a resp. b induces 
isomorphism 

X(a) ..::t X(YO') resp. X(T) ..::t X(Yr). 
These maps induce an orientation on X(YO') resp. X(Yr) such that the maps 

become orientation preserving. Since r( a) resp. r( T) act orientation preserv-
ing the induced orientations do not depend on the choice of a resp. b. 
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Given cocycles Ys and <!s the equation Ys = g -I <!s s g determines g up to a 
factor a E G(<!s)(JR). 

We now define s(y, <!) as follows: If there is an a E G(<!s)(JR) such that the 
right translation r(a) acts orientation reversing on X(<!u) x X(<!T) x X, we put 
s(y, <!) = O. If all a E G(<!s)(JR) act orientation preserving, we put s(y, <!) = 1 
if r(g) acts orientation preserving and s(y, <!) = -1 otherwise. We note that 
s(y, <!) only depends on the classes y, <! E ker(resu x resT). This follows from 
the fact that r(a), r(.), and r act orientation preserving on X(a), X(r), and 
X. 

Proposition 4.4. If the classes y, <! E ker(resu x resT) map to the same class in 
HI(a, r, G(JR)) then 

e(l1u(Y))[Xu(Y)] = s(y, <!)e(l1u(<!))[Xu(<!)]· 

Proof We choose cocycles y = {YJ resp. <! = {<!J representing y resp. <! and 
write Ys = g-I<!/g, SEe, g E G(JR) , as in 4.3. We fix x E X(<!). Then 
xg E X(y). We have Cartan decompositions 9 = tx EB IJx resp. 9 = txg EB IJXg 
and right translation with g induces an isomorphism 

-I Ad(g ): IJx --+ IJxg . 

Moreover, Ad(g-I) induces an isomorphism 

(1) f(g) : IJx(<!u) EB IJX(<!T) EB IJx '::'IJXg(Yu) EB IJXg(YT) EB IJxg . 

We write 11y resp. 11~ for the pullback of the excess-bundles 11(Y) resp. 11(<!) 
to X(y) resp. X(<!). Let 11x (<!) be the fibre of 11~ over x E X(<!). Then 11~ is 
determined by the K)<!)o action on 11)<!). In the same way 11y is determined 
by the Kxg(Y)o action on 11xg (Y). The definition of these fibres in 4.1 (3) shows 
that Ad(g -I) induces on isomorphism 

F(g) : 11~ --+ 11y 

where F(g) induces the isomorphism X(<!) --+ X(y) of the base spaces given 
by right translation with g. 

Using the exponential map we see that (1) induces the map r(g) : X(<!u) x 
X(<!T) x X --+ X(Yu) x X(YT) x X; see 4.3 (1). Hence r(g) is orientation pre-
serving if and only if f(g) is orientation preserving. The tangent space at x to 
the total space of 11~ is IJx(<!) EB 11x(<!). The orientation of this space is uniquely 
determined by the orientation of IJx(<!u) EB IJX(<!T) and of IJx. Hence F(g) is 
orientation preserving if and only if f(g) is orientation preserving. Now F(g) 
is orientation preserving if the map induced by F(g) on the corresponding 
bundles 11u(<!) and 11u(Y) over Xu(<!) is orientation preserving. Therefore, our 
claim holds provided s(y, <!) =f. o. 
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Suppose that S(y, c;) = O. Then there is an a E G(C;)(JR) and hence an 
a E Kx(C;) acting orientation reversing on the total space of '1)C;). Denote 
by '1)C) the total space of '1u (C;) with the opposite orientation of the fi-
bres. Then a induces an orientation-preserving map '1u(C;) ~ '1u(C). We 
get e('1u(C;))[Xu(C;)] = e('1u(C))[Xu(C;)]. On the other hand, e('1u(C))[Xu(C;)] = 
-e('1u (C;))[Xu (C;)]. Hence this number is zero. Since the same argument applies 
if C; is replaced y, our claim holds. 0 

We will show that s(y, c;) = 1 holds in many cases. For this we use the 
following observation. 

Lemma 4.5. Assume that G(JR) resp. G(O')(JR) resp. G(r)(JR) act orientation 
preserving on X resp. X(O') resp. X(r). If C;, yare as in 4.3, then s(y, c;) = 1. 
Proof. Let gs' s E (0' ,r) be a cocycle for 

ker (HI (0' , r, G(JR)) -> HI(O', G(JR)) x HI(r, G(JR))), 

i.e., gu = a-Iua and gT = b-ITb, a, bE G(JR). Then X(gu) = X(O')a and 
X(gT) = X(r)b carry a well-defined orientation such that right translation with 
a resp. b gives orientation-preserving maps 

It follows that the map reg) of 4.3. (1) always is orientation preserving. 0 

Proposition 4.6. Let K be a connected simply connected compact Lie group. If 
0' is an automorphism offinite order of K, then K(O') is connected. 
Proof. There exists a linear algebraic group Go over JR such that K = Go(JR) 
(see [6, Chapter VI, §9]) and 0' induces an JR-rational automorphism 0' of Go. 
Then K is a compact real form of Go(C) and K is a maximal compact sub-
group of Go(C). The corresponding Cartan decomposition shows that Go(C) 
is connected and simply connected as locally compact topological group. Hence 
Go is (Zariski)-connected and simply connected as an algebraic group. Accord-
ing to [32, Theorem 8.1] Go(O') is a (Zariski)-connected reductive group defined 
over lR. Since Go(O')(JR) = K(O') is compact, the group Go(O')(JR) is connected, 
cf. [1, 11.22]. 0 

Remark. If 0' is an involution the assertion in Proposition 4.6 is proved in [10, 
Chapter VII, 7.2] by an entirely different method. 

Corollary 4.7. Let G be a connected semisimple and simply connected algebraic 
group defined over JR. Assume that 0' is an automorphism of finite order of G 
which is defined over JR. If G(JR) is simply connected as a topological group, 
then G(O')(JR) is connected. 
Proof. We choose a maximal a-stable compact subgroup K of G(JR). The cor-
responding Cartan decomposition shows that K is a deformation retract of 
G(JR) and that K(O') is a deformation retract of G(O')(JR). By Corollary 4.7 in 
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[5] the group G(JR) is connected. Since G(JR) is simply connected by assump-
tion, we see that K is connected and simply connected. By Proposition 4.6 we 
have that K(a) is connected. Hence G(a)(JR) is connected. 0 

4.8. Let G /JR be a connected simply connected semisimple algebraic group 
defined over JR, and let a : G ---+ G be an JR-algebraic automorphism of finite 
order. We now give conditions on G and a such that G(a)(JR) acts orientation 
preserving on X (a). 

(i) Cyclic base change. If Go/k is a semisimple connected and simply 
connected group defined over a number field k and if f / k is a cyclic Galois 
extension with Galois group gal(f/k) = (a) generated by a then a acts on 
G = ReslllQl(Go x k f) and G(a)(JR) = Go(k ® JR) is connected by [4, 4.7]. 

(ii) Hermitian symmetric spaces. It is known that X = K \ G(JR) is hermitian 
symmetric if and only if K has a (central) direct factor SI = SO(2)(JR). Then 
a acts on SI and G(a)(JR) acts analytically on X(a) if and only if a ls' = Id. 
In particular, if a ls' = Id then G(a)(JR) acts orientation preserving on X(a). 

(iii) General case. We write G(JR) = Gc x Gh X Gr where Gc is the product 
of the compact simple factors of G(JR) and Gh is the product of the factors 
which give rise to hermitian symmetric spaces. The rest of the factors makes up 
Gr' Then a = ac x ah x ar and X = Xh X Xr in obvious notation. The group 
Gr(ar) acts orientation preserving on Xr(ar) if the simple factors of Gr are 
not of the following type: SLn(JR), n 2: 3; SOn(q)(JR) where q is a quadratic 
form of index 2: 3; split G2 , F4 , E6 , E7 , E8 ; E6 ,2' E7 , -5' E8 , -24 where the 
second index is the Cartan index. If the factors of G(JR) are not of this type the 
list in [33] shows that G(JR) is simply connected. Hence Corollary 4.7 applies 
and gives our claim. 

Example. Let G(JR) = SLn(JR), and let a be the automorphism given by con-
jugation with the diagonal matrix 1'/ = (-1 , ... , -1, I, ... , 1), where k is 
the number of entries -1 and 1 ~ k ~ n - k < n. If n is odd then the action 
of G(a)(JR) = SO(k, n - k)(JR) on X(a) does not preserve the orientation. 

Next we consider the absolute value of the contribution of F(y) to the in-
tersection number in the general setting of 3.4. 

Proposition 4.9. Assume that the special cycles C( a) and C (r) intersect trans-
versally in at least one point. Then for the absolute value of e(1'/u(Y))[Xu(Y)] we 
have the identity 

le(1'/u(Y)) [Xu(y)]1 = x(Xu(Y)). 
Proof Let x E X represent a point where C(a) and C(r) intersect transver-
sally. We assume that G(y)(JR) contains a compact Cartan subgroup; oth-
erwise, there is nothing to prove since both numbers are zero (see Proposi-
tion 4.2 and [13]). According to the remark following Proposition 1.2 we can 
view the element y E ker(resu x rest) as an element in the kernel of the map 
Hl(a, 1(r)) ---+ Hl(a, r). We have 1(r) c G(r)(JR)o, and there is an isomor-
phism 
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(1) 1 ° ~ 1 ° H (a, G(-r)(JR) ) <- H (a, K(-r) ) 

where K is the maximal compact subgroup corresponding to x. (The argument 
given in [26, 1.4] works in this case as well.) If T c K( -r)o is a maximal a-stable 
torus and if S:= T(a)o then the inclusion S --> K(-r)o induces a surjection 

(2) 1 1 ° H (a, S) --> H (a, K(-r) ). 

We refer to [32, Theorem 7.5] for the existence of T and to [28] for the proof 
of this claim. Of course, e = (a, -r) acts on S. We find that if y is represented 
by the cocycle (Ys), SEe, then there are a cocycle {ts}, SEe, ts E S, and 
an element g E G(JR)o such that 

(3) -I s 
Ys = g ts g, SEe. 

Conjugation with g shows that it is sufficient to understand the number 
le(17u(t))[Xu (t)]1 in obvious notation. 

Let CK(S)o be the connected centralizer of S in K. Then 8 acts on CK(S)o 
and we find a a-stable maximal torus T(] in CK(S)o; see [32, Theorem 7.5]. 
Indeed, T(] is a maximal torus in K. Similarly, we find a -r-stable maximal torus 
TT' By construction we have S = T(](a)o = TT(-r)O. Since ts ESC K, S E 8, 
one has x E X(t). We get an equation of S-modules 

(4) 

Now t(] represents a class in the kernel of the map H1(a, T(]) --> H1(a, K). 
But then t(] bounds in the normalizer NK(T(]) of T(] in K (cf. [28]). Hence we 
have t(] = n- I (] n for some n E NK(T(]) , and n determines an element n =: w 
in (NK(T(])jT(])(]. Therefore, w acts on (T(](a))o = S. We write Wpx(a) for 
the w-twisted S-module px(a); i.e., an element h E S acts on Y E px(a) via 
hY = w(h)Y. Conjugation with n induces an isomorphism of S-modules 

(5) 

Now w permutes the weights of px(a) with respect to S, and hence we obtain 
an isomorphism of S-modules 

(6) 

The same type of argument applies to the action of -r. Byassumption, X (a) and 
X(-r) intersect transversally at x; hence, we get an isomorphism of S-modules 

(7) 

From (7) and (4) we get an isomorphism of S-modules 

(8) 
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The characteristic classes of the bundle t7u(ts) over Xu(ts) are determined by 
the weight structure with respect to S (see [2, §1O]). Therefore, we get 

(9) 

Here we use that the Euler class for the tangent bundle given by Px(t) deter-
mines the Euler characteristic of Xu(t) (cf. [14, §17, 7.2]). Observe that we 
are forced to use absolute values in (9) since we work with orientable bundles 
instead of oriented bundles. By [13], X(Xu(t» is positive. 0 

Remark 4.10. (i) The element g in (3) of the proof of 4.9 may give rise to an 
orientation reversing r(g); see 4.3. Therefore, e(t7u(t»[Xu(t)] is well defined 
only up to sign. If reg) acts orientation preserving the proof of Proposition 
4.9 gives e( t7u(Y))[Xu(Y)] = X(Xu(Y». 

(ii) Let us denote by ¢J( C) a characteristic class of an even-dimensional ori-
ented real vector bundle C over a manifold Y in the ring H' (Y , q, and 
assume that ¢J( C) is invertible in H' (Y ,q and that ¢J( ) is multiplicative 
with respect to the direct sum of bundles; see [14, Chapter 16, §7]. Denote the 
tangent bundle of Y by TY. We assume that r(g), g as in (1), acts orientation 
preserving. Then we have shown in the proof of Proposition 4.9 that without 
any assumptions about transversality one has 

¢J(T Xu IX (t) 
¢J(t7u(t» = ¢J(TX (0) )¢J(TX (.) )¢J(TXu(t»· 

u IXu(t) u IXu(t) 

Now we can formulate our main result. For the convenience of the reader 
we recall the general setting: Let G be a connected reductive algebraic group 
defined over Q, and let 0,. be two rational automorphisms of G(Q) of 
finite order which commute with each other. Let r be a (0, .}-stable tor-
sionfree arithmetic subgroup of G(Q) chosen in such a way that the special 
cycles C(o, r) and C(', r) and all connected components of their intersec-
tion are orientable (cf. §2). We suppose that C(o, r) n C(., r) is compact and 
that dim C(o, r) + dim C(., r) = dim Xjr holds. We say that the condition 
(Or) is satisfied if G(o)(JR) resp. G(.)(JR) resp. G act orientation preserving 
on X(o) resp. X(.) resp. X. In 4.8 conditions on G and automorphisms of 
finite order are discussed which imply the assertion of (Or). 

Theorem 4.11. Let G, 0, • , and r be as above such that condition (Or) holds. 
Assume in addition that G is semisimple and that X(o) and X(.) intersect in 
exactly one point with positive intersection number. Then there exists a (0, .)-
stable normal subgroup rIo/finite index in r such that 

where the sum ranges over the elements y in the kernel 0/ the map resa x 
res, : HI (0, " r l ) --+ HI (0, r l ) x HI (., r l ) and where all Euler characteristics 
X(F(y» o/the corresponding fixed point components are positive. 



INTERSECTION NUMBERS OF SPECIAL CYCLES 775 

Proof Our assumption that (Or) holds shows that Remark 4.1O(i) applies. 
Hence we can use Propositions 3.5 and 4.9. For a discussion of the condition 
(Or) see 4.8. We get 

where the sum ranges over the elements I' in 
I I I kerCH (0', " ro) ~ H (0', ro) x H (" ro»' 

The sign of X(F(y» is (_1/(Y)/2, by the remark following Proposition 4.2 
where fey) = dim F(y). Following the arguments in [29, §2], we may replace 
ro by a (0', .)-stable subgroup r l which is normal in r such that all fixed 
point components with respect to r I have the same dimension modulo 4 and 
such that X(F(y» # O. This implies our claim. 0 

4.12. The assumption in Theorem 4.11 that X (0') and X ( .) intersect in exactly 
one point with positive intersection number is satisfied if and only if the group 
G(O', .)(JR) of fixed points of (0',.) is compact. Note that the positivity of 
the intersection number is always easily achieved by rearranging the orientation 
on X, X(O') , and X(.). We point out that Millson [20] has constructed an 
example of r, 0' , • where r c SL5(JR) such that for all (0', .)-stable arithmetic 
subgroups sign-changes can occur, i.e., s(y,~) = -1 in the notation of 4.3 and 
Proposition 4.4. 

5. REMARKS AND APPLICATIONS 

In this section we discuss some implications of our results for a question 
raised in the work of Millson and Raghunathan and give an application and 
explain how our results fit into an adelic approach to the problem. 

5.1. Nonvanishing results. The main focus of the work of Millson and Raghu-
nathan [20, 21], where in specific cases the intersections of cycles defined by in-
volutions were considered, is the geometric construction of (co ) homology classes 
for arithmetic groups in real Lie groups. They consider an isometry IJI of order 
2 of a semisimple noncompact Lie group G and a IJI-stable discrete subgroup 
r l of G and suppose that the quotient x/rl is compact. Millson-Raghunathan 
conjectured (cf. [19, I, 4; 20]) that there exists a torsionfree subgroup r of fi-
nite index in r l such that the special cycle C(IJI, r) is not a boundary. They 
proved the conjecture in certain cases of uniform arithmetic subgroups of spe-
cific semisimple Lie groups (cf. [21]) by studying the intersection number of 
C(IJI, r) with a complementary special cycle C(()ylJl, r) obtained as described 
in 1.5 (i). Clearly, the formula for the intersection number of a pair of special 
cycles obtained in Theorem 4.11 may be used to prove nonvanishing results of 
this type and to give a partial affirmative answer to this conjecture. 

In this respect we discuss as one example the class of hermitian symmetric 
spaces. 
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5.2. Hermitian symmetric spaces. Let us assume that G, (J, r, r, are as in 
3.4. Moreover, let X be hermitian symmetric as in 4.8 (ii) and suppose that 
(J and r act analytically on X. Then the assumption (Or) in Theorem 4.11 is 
immediately fulfilled; thus, the cycle [C((J, r)] is nontrivial in H*(Xjr, C). 
Recall that this is proved under the assumption that C((J, r) n C(r, r) is com-
pact. If one assumes that X jr is compact, then it is well known that C ((J , r) 
and X jr are in fact projective algebraic varieties. But then the notion of the de-
gree 0 ~ d = d([C((J, rm is defined and d > 0 if dim C((J, r) ~ 1. Clearly 
this also implies the nonvanishing of the class [C((J, r)] in H*(Xjr, C). For 
these algebraic-geometric aspects we refer to [24, 5.35]. 

5.3. An adelic approach. According to Proposition 4.2 the actual computa-
tion of the fixed point contributions to the intersection number in Theorem 
4.11 requires volume computations. In view of the now fully established Weil 
Conjecture on Tamagawa numbers these computations are feasible. They are 
best done in an adelic setting. The arising formulas then should be simpli-
fied in analogy to the stabilisation procedure of the Arthur-Selberg trace for-
mula (see, e.g., [30]). The objects to work with are as follows: Let Kf be an 
open compact (J-stable subgroup of G(Af) where Af C A denotes the finite 
adeles in the ring of adeles A = AQ• Then it is more natural to work with 
C((J, K f ) = G((J)(Q) \ G((J)(A)j(KoKf)((J) instead of C((J, r); it is in gen-
eral nonconnected with an abelian group of components. More generally one 
considers [C ((J , K f' X)] = E X J Ci ] where Xi E C and Ci are the connected 
components of C((J, K f ). In this context the dependence on Kf of the signs 
of 4.3 becomes more transparent and the nonvanishing of intersection num-
bers can often be deduced without the assumption (Or) or the transversality 
condition. 

5.4. A possible generalization. Proposition 3.5 gives an expression for the in-
tersection number [C((J, r)][C(r, r)] as a sum of fixed point contributions if 
C((J, r) n C(r, r) is compact. Even without this assumption a similar formula 
should hold. 

REFERENCES 

1. A. Borel, Introduction aux Groupes Arithmetiques, Hermann, Paris, 1969. 
2. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 

80 (1958), 458-538. 
3. A. Borel and J .-P. Serre, Theoremes de finitude en cohomologie galoisienne, Comment. Math. 

Helv. 39 (1964),111-164. 

4. A. Borel and J. Tits, Groupes reductifs, Inst. Hautes Etudes Sci. Pub!. Math. 27 (1965), 
55-150. 

5. __ , Complements a I'article: 'Groupes reductifs', Inst. Hautes Etudes Sci. Pub!. Math. 
41 (1972), 253-276. 

6. C. Chevalley, Theory of Lie groups, Princeton Univ. Press, Princeton, NJ, 1946. 



INTERSECTION NUMBERS OF SPECIAL CYCLES 777 

7. W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3), vol. 2, Springer, Berlin, 
Heidelberg, and New York, 1984. 

8. W. Greub, S. Halperin, and R. Vanstone, Connections, curvature, and cohomology, 3 vols., 
Pure Appl. Math., vol. 47, Academic Press, New York and London, 1973. 

9. G. Harder, A Gauss-Bonnetformulafor discrete arithmetically defined groups, Ann. Sci. Ecole 
Norm. Sup. (4) 4 (1971), 409-455. 

10. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York and 
London, 1962 

11. F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, Symposium 
Intemacional de Topologia Algebraica (Mexico 1956), La Universidad Nacional Autonoma 
de Mexico, Mexico, 1958, pp. 129-144. 

12. F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and 
modular forms ofNebentypus, Invent. Math. 36 (1976), 57-113. 

13. H. Hopf and H. Samelson, Ein Satz iiber die Wirkungsriiume geschlossener Lie'scher 
Gruppen, Comment. Math. Helv. 13 (1940/41), 240-251. 

14. D. Husemoller, Fibre Bundles, 2nd ed., Graduate Texts in Math., vol. 20, Springer, New 
York, Heidelberg, and Berlin, 1975. 

15. H. Jacquet and S. Rallis, Symplectic periods, J. Reine Angew. Math. 423 (1992), 175-197. 
16. S. Kudla and J. J. Millson, Intersection numbers of cycles on locally symmetric spaces and 

Fourier coefficients of holomorphic modular forms in several complex variables, Inst. Hautes 
Etudes Sci. Publ. Math. 71 (1990), 121-172. 

17. S. Lang, Algebraic number theory, Addison-Wesley, Reading, MA, 1970. 
18. R. Lee and J. Schwermer, Geometry and arithmetic cycles attached to SL3(7I..). I. Topology 

2S (1986),159-174. 
19. J. J. Millson, Cycles and harmonic forms on locally symmetric spaces, Canad. Math. Bull. 28 

(1985),3-38. 
20. __ , Geometric construction of homology for arithmetic groups. II, unpublished 

manuscript, 1981. 
21. J. J. Millson and M. S. Raghunathan, Geometric construction of cohomology for arithmetic 

groups, Geometry and Analysis (Papers dedicated to the memory of Patodi), Indian 
Academy of Sciences, Bangalore, 1980, pp. 103-123. 

22. J. Milnor and J. Stashaff, Characteristic classes, Ann. of Math. Stud., vol. 76, Princeton 
Univ. Press, Princeton, NJ, 1974. 

23. H. Minkowski, Ober den arithmetischen Begriff der Aquivalenz und iiber die endlichen 
Gruppen linearer ganzzahliger Substitutionen, J. Reine Angew. Math. 100 (1887), 449-458. 

24. D. Mumford, Algebraic geometry. I: Complex projective varieties. Grundlehren Math. Wiss., 
vol. 221, Springer, Berlin, Heidelberg, and New York, 1976. 

25. D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, 
Adv. in Math. 7 (1971), 29-56. 

26. J. Rohlfs, Arithmetisch definierte Gruppen mit Galoisoperation, Invent. Math. 48 (1978), 
185-205. 

27. __ , The Lefschetz number of an involution on the space of classes of positive definite 
quadratic forms, Comment. Math. Helv. 6S (1981), 272-296. 

28. __ , Lefschetz numbers for automorphisms of finite order on arithmetic groups, in 
preparation. 

29. J. Rohlfs and B. Speh, Automorphic representations and Lefschetz numbers, Ann. Sci. Ecole 
Norm. Sup. (4) 22 (1989), 473-499. 

30. __ , Lefschetz numbers and twisted stabilized orbital integrals, Math. Ann. (to appear). 
31. J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. vol. 5, Springer, Berlin, Hei-

delberg, and New York, 1965. 



778 JURGEN ROHLFS AND JOACHIM SCHWERMER 

32. R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., vol. 80, 
Amer. Math. Soc., Providence, RI, 1968. 

33. J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in 
Math., vol. 40, Springer, Berlin, Heidelberg, and New York, 1967. 

KATHOLISCHE UNIVERSITAT EICHSTATT, MATHEMATISCH-GEOGRAPHISCHE FAKULTAT, OSTEN-
STRASSE 28, 8078 EICHSTATT, GERMANY 


	0020255
	0020256
	0020257
	0020258
	0020259
	0020260
	0020261
	0020262
	0020263
	0020264
	0020265
	0020266
	0020267
	0020268
	0020269
	0020270
	0020271
	0020272
	0020273
	0020274
	0020275
	0020276
	0020277
	0020278

