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O. INTRODUCTION 

Let M be a closed COO -manifold of dimension n. Both R-torsion and ana-
lytic torsion are smooth invariants of acyclic orthogonal (or unitary) representa-
tions P of the fundamental group 1f l (M). The Reidemeister-Franz torsion (or 
R-torsion) r M(P) of P is defined in terms of the combinatorial structure of M 
given by its smooth triangulations. The analytic torsion T M(P) was introduced 
by Ray and Singer [RS] as an analytic counterpart of R-torsion. In order to de-
fine the analytic torsion one has to choose a Riemannian metric on M. Then 
T M(P) is a certain weighted alternating product of regularized determinants of 
the Laplacians on differential q- forms of M with values in the flat bundle Ep 
defined by p. It was conjectured by Ray and Singer [RS] that T M(P) = r M(P) 
for all acyclic orthogonal (or unitary) representations p. This conjecture was 
proved independently by Cheeger [C] and the author [Mil]. 

The restriction to orthogonal (or unitary) representations is certainly a limi-
tation of the applicability of this result if 1f1 (M) is infinite because an infinite 
discrete group will have, in general, many nonorthogonal finite-dimensional rep-
resentations. It is the purpose of the present paper to remove this limitation. 

We call a representation P : 1fl (M) -+ GL(E) on a finite-dimensional real 
or complex vector space E unimodular if I detp(y)1 = 1 for all y E 1f1 (M). 
Then we define R-torsion and analytic torsion for unimodular representations, 
and the main result is that for odd-dimensional manifolds M the equality of 
the two torsions extends to all unimodular representations. 
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Now we shall explain this in more detail. Let P : 7r] (M) --+ GL(E) be an 
acyclic unimodular representation. Then the definition of R-torsion also makes 
sense for p. Nothing has to be changed. The problem is how to define the 
analytic torsion. If p is an orthogonal (or unitary) representation, then the flat 
bundle E p over M defined by p can be equipped with a natural metric which 
is compatible with the flat connection. Associated to the metrics on E p and M 
is the Laplacian I1q acting on the space Aq(M; Ep) of Ep-valued differential 
q-forms on M. The zeta function of I1q is defined in the usual way by 

(q(s; p) = L ).7s , Re(s) > n12, 
Aj>O 

where the ). j run through the eigenvalues of I1q . It is well known that this 
function has a meromorphic continuation to C which is holomorphic at s = 0 
[Se]. Then the definition of analytic torsion given by Ray and Singer is 

(0.1 ) ( In d ) TM(p) = exp "2 L(-l)qq ds(q(s; p)!s=O . 
q=O 

For acyclic representations, T M(P) is independent of the metric on M. 
For an arbitrary finite-dimensional representation p : 7r] (M) --+ GL(E) , 

there is no metric on E p which is compatible with the flat connection. In order 
to define the analytic torsion in this case we proceed as follows. We pick a 
metric h on Ep. Using the metrics on M and Ep ' we define an inner product 
on A*(M; Ep) which in tum gives rise to the Laplacian I1h . Then we define 
the analytic torsion TM(p; h) by formula (0.1) where (q(s; p) is now the zeta 
function of the q-component of the new Laplacian I1h . 

We note that this approach was used by Schwarz [S] in his treatment of 
abelian Chern-Simons theory and that it is actually the origin for our definition 
of analytic torsion for non orthogonal representations. We also note that a sim-
ilar approach has recently been used by Bar-Natan and Witten [B-NW] to deal 
with the perturbative expansion of nonabelian Chern-Simons gauge theory with 
noncompact gauge group. 

The first important result about analytic torsion in the present context is 
that, for an odd-dimensional manifold M and an acyclic representation p, 
T M(P; h) is independent of the choice of h on E p. Of course, it is also 
independent of the Riemannian metric on M and we denote its common value, 
for any choice of hand g, by T M(P). In general, the variation of T M(P ; h) 
with respect to hand g is given by an explicit formula. If dim M is even, 
the variational formula contains additional terms which are locally computable, 
that is, they are obtained by integrating densities which in any coordinate system 
are given by universal polynomials in the components gij(x) and hij(x) of the 
metrics and a finite number of their partial derivatives. There are examples 
showing that these terms may not vanish even if the representation is acyclic. 

Using the inner product induced on the space of harmonic forms, we can 
also define the R-torsion r M(P; h) for nonacyclic representations p. 

On the first sight, the choice of an arbitrary metric on E p seems to be very ar-
tificial, but it is no more artificial than the arbitrary choice of the Riemannian 
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metric on M. In general, there is no distinguished choice of a Riemannian 
metric on M. Only for special manifolds, like locally symmetric manifolds, 
do there exist distinguished metrics on M which make analytic torsion for 
orthogonal representations accessible to computations. In this case, however, 
there exist also distinguished metrics on Ep for many unimodular representa-
tions which makes analytic torsion for these representations also accessible to 
computations. 

The main result of the present paper is 

Theorem 1. Let M be a closed smooth Riemannian manifold of odd dimen-
sion, and let P : 1C1 (M) - GL(E) be a unimodular representation on a finite-
dimensional real (or complex) vector space. Let E p be the associated flat bundle. 
Then for any choice of a metric on Ep we have TM(p; h) = T M(P; h). 

We remark that, in general, Theorem I does not hold in even dimensions. 
To prove Theorem I we follow essentially Cheeger's proof [C]. First we show 

that log T M(P; h) -log T M(P; h) is independent of the metrics h on Ep and 
g on M. The main idea is then to keep track of 

if one does surgery on an embedded k-sphere in M and finally to reduce 
everything to the case where one is able to show the equality explicitly. Cheeger's 
proof is well suited to work for nonorthogonal representations, because the 
decisive part of the proof consists of local analysis near a given handle of M 
and the handles considered are such that E p restricted to any of them is trivial 
as a flat bundle. Since we are free to choose the metrics hand g according 
to our purpose, we choose hand g to be the standard product metrics near 
the given handle. Then all the local analysis done by Cheeger in [C] extends 
without change to the present situation. 

Now we describe briefly the content of the paper. In § I we review Reide-
meister torsion for unimodular representations and we establish some of its 
properties. In §2 we introduce analytic torsion for finite-dimensional represen-
tations and we prove some of its properties. We also consider analytic torsion 
for manifolds with boundary and prove some results related to the variation 
of analytic torsion and R-torsion in this case. This is needed in §3 where we 
establish the equality of the two torsions for unimodular representations. We 
explain the main steps of the proof and refer to Cheeger's paper [C] for all 
details not discussed in this section. Finally, in §4 we consider two examples 
where nonorthogonal representations occur in nature and the analytic torsion 
as defined in §2 arises naturally in this context. The first example are compact 
locally symmetric manifolds. The results of Borel and Wallach [BW] can be 
used to obtain numerous examples of acyclic unimodular representations. The 
corresponding flat bundles can be equipped with canonical metrics which are 
locally homogeneous so that methods of harmonic analysis can be applied. The 
second example is Chern-Simons gauge theory. Witten [WI] has shown that, 
for a compact gauge group, the analytic torsion of flat connections occurs in the 
perturbative expansion of the path integral defined by the Chern-Simons action. 
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This has been recently extended to noncompact gauge groups by Bar-Natan and 
Witten [B-NW], and we explain how it is related to Theorem 1. 

1. REIDEMEISTER TORSION 

In this section we study Reidemeister torsion for unimodular representations 
and collect some of its basic properties. Most of it is similar to the case of an 
orthogonal representation and we refer to [Mil] for details. 

Given a real vector space E of dimension n, we set 

detE = An(E). 

If E = {O}, then detE = R. Furthermore, if L is a one-dimensional vector 
space, each nonzero element I E L determines a unique element r 1 E L * 
defined by the equation r 1 (I) = 1 and we shall use the notation L -I = L * . 

A volume on E will be a nonzero element OJ E det E. Any volume deter-
mines an isomorphism det E ~ R. Note also that a volume OJ can be written 
as e l /\ ... /\ en for some basis e l , •.• ,en of E. 

Let 

(1.1) 

be a chain complex of finite-dimensional real vector spaces, and let 

Hq(C.) = (keroq)/Im 0q+1 

be the qth homology group of C •. The determinant line of the complex (1.1) 
is the one-dimensional vector space 

(1.2) 
n q 

det(C.) = ®(detCq)(-I) . 
q=O 

We also set 
n q 

detH*(C.) = ®(detHq(C.))(-I) . 
q=O 

Let bq = dimo(Cq) and hq = dim Hq(C.) . For each q, 1 S q S n, we choose 
Oq E Abq(Cq) such that oOq =1= O. Furthermore, let 0 =1= Jlq E detHq(C.) and 
Vq E Ahq(keroq) be such that n(vq) = Jlq where n : keroq ----> Hq(C.) is the 
canonical projection. Let i : keroq ----> Cq be the natural embedding. Then 

( I)q+l 
oOq+1 /\ Oq /\ i(vq) is a nonzero element of det Cq. Set Jl = ®~=o(Jlq) - . 
Then we define the torsion 

T(C.) E (detC.) 0 (detH*(C.))-1 

of the complex (1.1) by 

T(C.) =(0°1/\ i(vo)) 0 (0°2 /\ °1 /\ i(vl))-1 0··· 

o (oOn /\ On_I /\ i(vn_I))(-I)n-l 0 (On /\ i(vn))(-I)n 0 Jl. 
( l.3) 
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It is easy to see that T( C.) is independent of the particular choices of () q , Pq , 

and vq • 

Now assume that we have chosen 0 i= W E det C •. Then W defines an 
isomorphism det C. ~ R and, therefore, also an isomorphism 

detC.0 (detH.(C.))-1 ~ (detH.(C.))-I. 
The image of T(C.) with respect to this isomorphism will be denoted by 

T(C., w) E (detH.(C.»)-I. 

Note that for a 2-term complex C. : 0 ---- Co ~ C1 ---- 0 with Co = C1 = RN 
and Wq E det Cq being the canonical volumes, T(C., w) = detA. 

Definition 1.4. Theelement T(C., w) E (detH.(C.))-1 defined above is called 
the Reidemeister torsion (or R-torsion) of C. with respect to the volume w. 

If C. is acyclic, i.e., H.(C.) = {O}, then (detH.(C.))-1 = Rand T(C., w) 
is a real number. More generally, any choice of a volume P E detH.(C.) 
induces a natural isomorphism (detH.(C.)r 1 ~ R by sending A.p- 1 to A. E 
R.Thus T(C., w) can be identified with a real number T(C., w, p) E Rand 
we set 
(1.5) r(C., w, p) = IT(C., w, p)l. 

Next we discuss some of the properties satisfied by R-torsion. 
Let C. and C~ be two chain complexes with volumes w E det C. ' w' E 

det C~, P E detH.(C.), and p' E detH·(C~). Let C. 0 C~ denote the tensor 
product complex with its standard differential, i.e., 

(C. 0 <)q = EB (C, 0 C;). 

Then we have a natural isomorphism 

det(C. 0 C~) ~ (detC.tX(C~) 0 (detC~)®X(C.). 

Let W0W' denote the element of det(C.0C~) which corresponds to w®X(C~)0 
(w')®X(c.) under this isomorphism. The Kunneth formula induces another nat-
ural isomorphism 

detH (C 0 C') ~ detH (C )®X(C~) 0 detH (C')®x(c.). *.. *. * • 
We let p 0p' denote the element of detH.(C. 0 C~) which corresponds to 
p®X(C~) 0 (p')®x(c.) under this isomorphism. 

Proposition 1.6. The following equality holds: 
, " x(c/) , , , x(C) r(C.0C.,W0w,p0p)=r(C.,w,p) • r(C.,w ,p) • 

where X(E.) denotes the Euler characteristic of the complex E •. 
Proof. We introduce inner products on C.' C~, H.(C.), and H.(C~) induc-
ing the corresponding volumes. These inner products define inner products on 
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C. ® C~ and H* (C. ® C~) in the canonical way. It is easy to see that the induced 
I I I ') volumes are OJ ® OJ E det(C. ® C.) and 11 ® 11 E detH*(C. ® C •. Now we 

can proceed as in Proposition 1.16 in [C]. Q.E.D. 

Let 
• a* * 

C* . 0 C* an C* n-I 01 C* 0 +-- +-- +---- •.• +-- +--• • n n-I 0 

be the dual complex to (1.1). Note that there are natural isomorphisms 

detC; ~ (detCq)-1 and detHq(C:) ~ (detHq(C.))-I. 

Hence, we get a natural isomorphism 

( ( ) -1) ( • ( * )_1)(-1)" (1.7) detC. ® detH.(C.) ® detC. ® detH.(C.) ~ R. 

Proposition 1.S. With respect to the isomorphism (1.7), we have 

T(C.) ® T(C:)(-I)" = ±1. 

The proof is straightforward and follows by an easy generalization of the 
argument used on p. 141 of [Mi2] to prove equality (3). 

Let OJ E det C. and 11 E det H. (C.) be volumes. Denote by OJ· E det C: ~ 
(detC.)-1 and 11· E detH*(C:) ~ (detH*(C.))* the dual volumes determined 
by OJ and 11, respectively. 

Corollary 1.9. We have the equality 
• * .(-1)" r( C. ' OJ, 11) r( C. ,OJ ,11 ) = 1. 

The R-torsion arises in the following context. Let K be a finite cell complex 
and K the universal covering space of K with the fundamental group 7r 1 = 

7r1 (K) acting as deck transformations on K. We think of K as being embedded 
as a fundamental domain in K, so that K is the union of the translates of K 
under 7r1. Let Cq(K) be the real chain group generated by the q-cells of K. 
Then Cq(K) is a module over the real group algebra R(7r I ). The q-cells of K 
form a preferred base for Cq(K) as R(7r I )-module. Let p: 7r1 -> GL(E) be a 
representation of 7r 1 on a real vector space E of dimension N. It defines a 
flat bundle Ep over K and we define the chain group Cq(K; E) of chains with 
values in the local system Ep by Cq(K; E) = Cq(K) (j!)R(1t I ) E. The boundary 
operator 8q : Cq(K) -> Cq_1 (K) induces 8q : Cq(K; E) -> Cq_1 (K; E) and we 
get a real chain complex 

a an-I °1 C.(K; E) : 0 -> Cn(K; E) ~ Cn _ 1 (K; E) ----t ... ----t Co(K; E) -> 0; 

its homology will be denoted by H.(K; E). Similarly, we have the cochain 
complex with coefficients in E p : 

• 0 151 1 152 15 n C (K; E) : 0 -> C (K; E) ----t C (K; E) ----t ... ~ C (K; E) -> 0 
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where Cq(K; E) = HomR(lr l ) (CiK) , E) and r5 = a*. Note that 

Cq(K;E)~Cq(K) ® E. 
R(lr l ) 

We shall denote the cohomology of this complex by H* (K; E) . 
Now assume that a volume 0 E detE is given. Let eJ, j = I, ... , rq , be 

the oriented q-cells of K considered as a preferred base of the R(n,)-module 
Cq(K) , and let x,, ... ,xN be a base of E such that 0 = ±x, 1\ ... 1\ x N . 

Then (eJ ® x k ) is a preferred base of Cq(K; E) and it defines a volume Wq E 
det Cq(K; E) . 

At this point, the volumes depend on several choices, namely, 
(a) the choice of the embedding of K in the covering space K; 
(b) the orientation and ordering of the cells of K, 
(c) the choice of the base x, ' ... , xN of E. 

To deal with (a), we make the following 

Definition 1.10. A representation p : n, (K) ---> GL(E) is called unimodular if 
Idetp(y)1 = 1 for all YEn,(K). 

If we assume that p is unimodular, then a different choice of the embedding 
of K into K corresponds to a change of base in Cq(K; E) by a matrix whose 
determinant is of absolute value one; therefore, the volume W q changes at 
most by sign. Similarly, (b) and (c) cause only a change of sign. Set W = 
lOIn ( )(-,)q 
IC>'q=O Wq . 

Remark. The volume W depends, of course, on the choice of the volume 0 on 
E. We indicate this by w( 0) . If we replace 0 by ),,0, ).. E R, then 

n q 

w(AO) = II )..(-') rqw(O) = )..x(K)W(O) 
q=O 

where X(K) is the Euler characteristic of K. Thus, if K is a triangulation 
of a closed oriented manifold of odd dimension, then W is independent of 
the choice of a volume on E. If X(K) i= 0, we fix a volume on E and set 
w=w(O). 

Then we define the R-torsion 'K(P) by 

'K(P) = [,(C.(K; E), w)] E (detH*(K; E)r'/{±l} 

and this definition does not depend on the choices that we made to define the 
volume element W for C.(K; E). Let J1 E detH*(K; E) be a volume. Then 
we have a natural isomorphism 

(detH*(K; E))-'/{±l} ~ R+, 

and 'K (p) can be identified with a positive real number which we denote by 
, K (p ; J1). An important fact is that 'K (p; J1) is invariant under subdivision. 
The proof is similar to the corresponding proof for orthogonal representations 
in [Mi 1]. Thus 'K (p) is a combinatorial invariant. 
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Let M be a compact smooth manifold, and let P : 1t1 (M) -+ GL(E) be a 
unimodular representation. The manifold M has a distinguished class of trian-
gulations, the so-called smooth triangulations. Any two of these have a common 
subdivision (cf. [Mu]). Thus, for any choice of a volume f..l E detH*(M), we 
get an invariant 'C M(P; f..l) E R+. 
Definition 1.11. The positive real number 'C M(P; f..l) is called the Reidemeister 
torsion (or R-torsion) of the manifold M with respect to P and f..l. 

Recall that a representation P : 1t1 (M) -+ GL(E) is called acyclic if 
H*(M; Ep) = O. 

If P is acyclic, the R-torsion 'C M(P) is a positive real number which is an 
invariant of the manifold M and the representation p. 

As above, the R-torsion 'C M(P; f..l) has several important properties. Here we 
recall two of them which we need in §3 to prove the equality of analytic torsion 
and R-torsion. 

Let M be a closed orientable manifold of dimension n, and let p: 1t I (M) -+ 

GL(E) be a unimodular representation with associated flat bundle Ep' Let p* 
be the contragredient representation. Then p* is also unimodular and the 
associated flat bundle is the dual vector bundle E; of E p' For each q, the 
Poincare duality isomorphism induces an isomorphism 

Aq : detHq(M; E*) ":::'-"(detHn_q(M; E))-I. 

The following result is a slight extension of Milnor's duality theorem [Mi2]. 
Proposition 1.12. Assume that. for each q. we have chosen volumes f..lq E 

detHq(M; E) and f..l; E detHq(M; E*) satisfying Aq(f..l;) = (f..ln-q)-I. Then 
we have 

* * (_I)n 
'C M(P ; f..l) 'C M(P ; f..l ) = 1. 

Let M I , M2 be two compact smooth manifolds, and let Pi 
1t1 (Mj) -+ GL(Ej), i = 1, 2, be unimodular representations with associated 
flat bundles Ep,' Ep2 ' Note that 1t 1(MI x M 2) = 1t 1(MI ) x 1t 1(M2) and the 
representation PI 0 P2 : 1t1 (MI x M 2) -+ GL(EI 0 E2) is unimodular. De-
note by Pj : MI x M2 -+ M j , i = 1, 2, the canonical projection. Then the 
flat bundle over MI x M2 defined by PI 0 P2 equals P~ Ep, 0 p;Ep2 ' Let 
f..lj E detH*(Mj ; E j ), i = 1,2, be volumes. By the Kunneth formula we obtain 
an isomorphism 

detH*(MI x M 2; EI 0 E2) 
= detH (M . E )X(M2 ;E2) 0 detH (M . E )x(M, ;E,) 

* I' I * 2' 2 . 

Let f..l10f..l2 be the element of detH*(MI x M 2; EI 0E2) which corresponds to 
f..li(M2 ; E2) 0 f..l~(M, ; E,) under this isomorphism. As a consequence of Proposition 
1.6 we get 
Proposition 1.13. With the notation above. we have the equality 

( . ) _ (. )X(M2 ; E2 ) (. )x(M, ; E,) 
'C M xU PI 0 P2' f..ll 0 f..l2 - 'C M PI' f..ll . 'C M P2, f..l2 . , 2 , 2 
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The volumes Il that we are considering arise in the following way. We choose 
metrics on M and on the flat bundle E p defined by p. If {) M =I- 0 we also 
impose boundary conditions for the Laplacian on forms. Then the space of har-
monic forms has an inner product and, via the De Rham isomorphism combined 
with Poincare duality, we get inner products in H* (M; E) or H* (M , {) M; E) , 
depending on the boundary conditions. These inner products define volumes. 
In particular, for this choice of volumes the condition of Proposition 1.12 is 
satisfied. 

Remark. We may also work with complex coefficients and define the R-torsion 
in this case. As above, a representation p : 1t, (M) -. GL(E) on a complex 
finite-dimensional vector space E is called unimodular if I detp(y)1 = 1 for 
all y E 1t, (M). For a unimodular representation p the R-torsion T: M(P; Il) is 
defined in the same way as in the real case. 

Let i : GL(N, C) -. GL(2N, R) be the standard embedding which sends 
g = A + HB, A, B E Mat(N, R) to (; ~B) E GL(2N, R). If Idet(g)1 = 1 
then I det(i(g))1 = 1. Hence, if p : 1t, (M) -. GL(N, C) is unimodular, then 
i 0 P : 1t, (M) -. GL(2N, R) is also unimodular and we are back to our previous 
framework. 

2. ANALYTIC TORSION FOR UNIMODULAR REPRESENT A TIONS 

In this section we define the analytic torsion and prove some of its proper-
ties. Let (M, g) be a compact Riemannian manifold of dimension n. For 
simplicity we assume that M is orientable. Let p: 1t, (M) -. GL(E) be a rep-
resentation of the fundamental group of M on a real vector space of dimension 
N. The representation p defines a flat vector bundle Ep over M. We choose 
a metric h on E p. It induces a R-linear isomorphism # : E p ~ E; where 
E; is the dual vector bundle. Let AP (E) be the space of COO p-forms on 
M with values in E p , i.e., the space of smooth sections of the vector bundle 
AP (T* M) ® E p • Then # extends to an isomorphism 

#: AP(E) ~AP(E*) 

for each p. Furthermore, the Riemannian metric on M defines a linear map-
ping 

* : AP (E) ----. A n-p (E) 

for each p (cf. [MM, §2]) which satisfies ** = (-1 )p(n-p ) on AP (E) , and it is 
easy to see that * and # commute. The usual exterior product of differential 
forms combined with the evaluation map tr : E p ®E; -. R induces the following 
exterior product for vector-valued forms 

/\: AP(E) ® Aq(E*) ----. AP+q(M) 

where A*(M) is the space of smooth differential forms on M (cf. [MM, §2]). 
Then an inner product on AP (E) is defined by 

,{ , 
(w, w ) = } M W /\ * 0 #w . 
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Let L 2 AP (E) denote the completion of AP (E) with respect to the norm defined 
by this inner product. Since E p is flat, we have the De Rham complex 

AO(E)~A\E)~ ... ~An(E) . 
The formal adjoint of dp on AP (E) is given by 

~ (l)np +n+1 #-1 d # 
up = - * 0 P 0 *. 

Remark. We may, of course, combine * and # into a single operator *. The 
advantage of this notation is that the dependence on the Riemannian metric on 
M and on the Euclidean metric on E p is separated by * and #. 

Now we define the Laplacian on p-forms as usual by 
t:.p = Jpdp + dp_IJp_ l . 

Note that t:.p does not depend on the choice of an orientation on M, and 
therefore we can define t:.p also if M is not orientable. One has to use the 
formalism of densities (see [C, §3] for details). 

Now assume that {) M = 0. Then the Laplacian is a symmetric, positive 
semidefinite, elliptic operator with pure point spectrum 

o ::; Ao ::; AI ::; ... ---+ 00 • 

Let KP(E) denote the kernel of t:.p. This is the space of Ep-valued harmonic 
p-forms on M, and the De Rham map induces an isomorphism 
(2.1) KP(E) ~HP(M; E) 

where H P (M; E) is the cohomology of M with coefficients in the flat bundle 
E p. Let Pq denote the orthogonal projection of L 2 A q (E) onto the subspace 
Kq(E). The zeta function associated to the Laplacian t:.q on Aq(E) is defined 
by 

1 foo s-I (-tl'1 ) d ","",-s 
'q(s;p)=r(s) io t Tre q-Pq t=~A.j' 

o A.>O 
Re(s) > n12. 

} 

It is proved in [Se] that 'q(s; p) extends to a meromorphic function of SEC 
which is holomorphic at S = O. As in the case of an orthogonal representation, 
we define the analytic torsion T M(P; h) by 

( In d ) TM(p; h) = exp 2" L (-l)qq ds'q(s; p)ls=o . 
q=O 

(2.2) 

Note that T M(P; h) also depends on the Riemannian metric g , but we do not 
indicate this dependence explicitly. 

First we establish a formula for the variation of the analytic torsion with re-
spect to the Riemannian and Euclidean structure. To obtain such a formula we 
may proceed essentially the same way as in [RS, Theorems 2.1 and 7.3]. Con-
sider one-parameter families hu' gv of metrics on Ep and M, respectively. 
Let t:.q(u, v) be the Laplacian with respect to (hu' gv). Set 

(2.3) -I· -I 
0: = # # and P = * *' , 
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where 
#=d#/du and *"=d*/dv. 

We regard 0 and P as differential operators of order zero. Then it follows 
from Lemma 1.7.7 in [G] that, for t -+ 0, there exist asymptotic expansions of 
the form 

00 

(2.4) T ( -tAq(U,v)) '" ( ) t-n/2+k r oe '" ~Cq,k U, V , 
k=O 

00 

(2.5) Tr(pe -tAq(U,v)) '" L dq ,k(u, v) t-n/2+k. 
k=O 

Theorem 2.6. Let M be a closed oriented manifold of dimension n, and let P 
be a representation of 1t1 (M) on E. Let hu and gv be one-parameter fami-
lies of metrics on E p and M, respectively. Let Pq (u, v) denote the harmonic 
projection with respect to (hu' gv)' Furthermore, let cq(u, v) and dq(u, v) de-
note the constant terms of the asymptotic expansions (2.4) and (2.5), respectively. 
Then 

a 1 n 1 n 
au log TM(p; u, v) = "2 L (-1)q Tr(oUPq(U, v)) -"2 L(-1)q Cq(U, V), 

q=O q=O 
a 1 n 1 n 
av log TM(p; u, v) ="2 L (-1)q Tr(PVPq(u, v)) -"2 L(-1)q dq(u, v). 

q=O q=O 
If n is odd, the local terms cq and dq vanish and, by (2.1), we get 

Corollary 2.7. Assume that dimM is odd and p: 1t 1(M) -+ GL(E) is acyclic. 
Then T M(P; h) has the same value for any choice of a Riemannian metric on 
M and a metric h on Ep' 

Thus, for an odd-dimensional manifold M and an acyclic representation p, 
T M(P; h) is an invariant T M(P) of the manifold M and of the representation 
p. This justifies the following 
Definition 2.S. Let M be an odd-dimensional closed manifold and P an acyclic 
representation of 1t1 (M). Then the analytic torsion T M(P) of P is the common 
value of T M(P; h) for any choice of a metric h on E p • 

Thus for closed manifolds of odd dimension our definition of analytic torsion 
works well. The situation is different if the dimension of M is even. For 
orthogonal (or unitary) representations the individual local terms do not vanish 
in general, but their alternating sum does. This can be seen as follows. Assume 
that E is equipped with an inner product and P : 1t1 (M) -+ GL(E) preserves 
the inner product, that is, P is orthogonal. Then * commutes with ~. Hence 

-tA -I -I -tA e n-q* = * e q 

Multiplying by *" and taking the trace gives 

( -I -tA) (-tA -I) ( -I -tA) (-I -tA) Tr * *"e n-q = Tr e n-q * *" = Tr * e q *" = Tr *" * e q. 
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Now observe that **-1 = _ * -I *. Then 

Tr(* -I*e -tLln _ q ) = _ Tr(* -I*e -tLlq ), 

which implies dq, nl2 = -dn_ q, n12· Therefore, E:=o( -1)q dq, nl2 = O. 
This is false, however, if the metric on E p is not compatible with the flat 

connection. As an example consider a closed surface ~ of genus g ~ 2 and 
choose on ~ the metric of constant curvature -1. Let E p be any flat orthog-
onal bundle over ~. We denote by (.,.) the canonical metric on Ep which 
is compatible with the flat connection. Let f E COO (~) and u E R. Then we 
define a new metric hu by 

hu(v,w)=eu!(Z)(v,w)z for V,WEEp,z' ZE~. 

If we use the canonical metric to identify E p and E;, then # u : E p ---- E p is 
given by 

#uv = eU!(z)v, v E Ep,z' Z E ~. 

Hence au = #-1# = f· Id. Let K (z, z' , t) be the heat kernel on E -valued q,u p 
q-forms of ~ where Ep is equipped with hu. Then 

tr(au(z)Kq,u(z, z, t)) = f(z)tr(Kq,u(z, z, t)). 

Let m be the rank of Ep and Kq(z, z' , t) the heat kernel for the Laplacian on 
q-forms. Then, for u = 0, tr K o(z, z, t) = m tr K (z, z, t). Furthermore, q, q 
the first three coefficients of the asymptotic expansion of tr Kq (z , z , t) are well 
known (cf. [G, p. 330]). Since, by assumption, the curvature of ~ is == -1, it 
follows that 

coCO) - c1 (0) + c2(0) = -;: ~ fez) dz. 

This shows that in the even-dimensional case the local contribution to the vari-
ational formula for T M(P; h) is nonzero in general. (See [B-Z] for further 
results about this problem.) 

The analytic torsion for orthogonal representations satisfies a number of func-
torial properties (cf. [RS, §2]) which reflect known properties of the R-torsion. 
They continue to hold, with some modifications, for arbitrary finite-dimensional 
representations. 

Let Ep be a flat bundle over M defined by the representation p: 7r1 (M) ----
GL(E). We denote by p* the contragredient representation. The associated 
flat bundle is the dual bundle E; of E p. Any metric h on E p induces a metric 
on E; which we denote by h * . 

Proposition 2.9. Suppose that M is a closed orientable manifold of dimension 
n. Let p be a finite-dimensional real representation of 7r1 (M) and Ep the 
associated flat vector bundle. For any choice of a metric h on E p' we have 
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Proof. We may essentially proceed as in the proof of Theorem 2.3 in [RS). 
Let IIp (resp. IIp.) denote the Laplacian on Ep-valued (resp. E;-valued) 
differential forms of M. The zeta functions Cq(s; p) and Cq(s; p*) of the 
operators IIp q and 11. ,respectively, are defined as above. By (2.2), it , p ,q 
suffices to show that 

n 
(2.10) L)-I)qq(Cq(s; p) + (-I)n Cq (s; p*)) == a. 

q=O 

Let A> a be an eigenvalue of IIp,q' and let ~(A; p) c Aq(E) be the corre-
sponding eigenspace. We introduce the following subspaces 

g-; (A; p) = {ifJ E ~(A; p) I difJ = a} and g-;' (A; p) = {ifJ E ~(A; p) I JifJ = a}. 
As in [RS, pp. 154-155], it follows that 

~(A; p) = g-; (A; p) EE7 g-;' (A; p) 

and rl/2d defines an isometry of g-;' (A; p) onto g-;+I (A; p), with inverse 
r l / 2J. Let m~(A; p) and m~(A; p) be the dimension of the spaces g-;(A; p) 
and g-;' (A; p) , respectively. Then the multiplicity of A is 

mq(A; p) = m~(A; p) + m~(A; p) = m~(A; p) + m~+I(A; p), 

and we obtain 
(2.11 ) 

n n n-I 

~)-I)qqCq(s; p) = I:(-I)qI:m~(A; p)rs = - I:(-I)qI:m~(A; p)rs 
q=O q=1 hO q=O '->0 

and similarly for p*. Let d, J denote the differential and the codifferential 
with respect to E p and d', J' the corresponding operators with respect to 
Ep. = E;. Then *0#: Aq(E) ____ An-q(E*) satisfies *o#dJ = J'd'*o#. 

Hence, * 0 # defines an isometry of g-;(A; p) onto g-:~q(A; p*) showing that 
m~(A; p) = m~_q(A; p*). Combined with (2.11), we obtain (2.10). Q.E.D. 

Since (H*(M; E))* ~ H*(M; E*), the representation p is acyclic iff the 
contragredient representation p* : 111 (M) ---- GL(E*) is acyclic and we get 
Corollary 2.12. Let M be a closed orientable manifold of even dimension, and 
let p: 111 (M) ---- GL(E) be an acylic representation. Then 

TM(p) TM(P*) = 1. 

Assume that E is equipped with an inner product so that E ~ E* . Then p 
is orthogonal iff p * = p. Hence, for orthogonal representations, Corollary 2.12 
implies T M(P) = 1, which agrees with Theorem 2.3 in [RS]. 

Next consider two closed oriented Riemannian manifolds Mi' i = 1, 2, and 
let EPi be a flat bundle over Mi defined by a representation Pi: 111 (M) ----
GL(E.). We choose a metric h. on E . Furthermore, let 

I I Pi 
i = 1,2, 
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be the canonical projection. The flat bundle p ~ (E PI) 0 p; (E P2) over MI x M2 is 
associated to the representation PI 0 P2' and we denote by hi x h2 the product 
metric on this bundle. We also assume that MI x M2 is equipped with the 
product metric. 

Proposition 2.13. With the notation above we have the equality 

log T M xM (PI 0 P2 ; hi x h2) 
I 2 

= X(M2 ; E2) log T M (PI; hi) + X(MI ; E I) log T M (P2; h2), 
I 2 

where X(Mi ; E i ) denotes the Euler characteristic. 

This is proved by an easy generalization of the proof of Theorem 2.5 of [RS]. 
Now assume that the representation P : 111 (M) ~ GL(E) is unimodular. 

Then the Reidemeister torsio~ r M(P) is defined to be an element of the one-
dimensional vector space (detH*(M; E))-I . In order to get a real number we 
have to choose a volume f.i E det H* (M; E). In the present context we choose 
f.i as follows. Let h be a metric on E p' Then the inner product on A * (E) 
induces an inner product on the space of Ep-valued harmonic forms 7I'*(E) 
and we use the De Rham isomorphism (2.1) combined with Poincare duality 
to introduce an inner product in H*(M; E). The inner product in Hq(M; E) 
defines a volume f.iq which, up to sign, is uniquely determined by the metric h 
on Ep' 

Definition2.14. Let f.ih = ®:=o(f.iq)<-l)q E detH*(M; E) be the volume defined 
by the metric h on E. Then we set 

rM(p; h) = rM(p; f.ih) 

where the latter is the R-torsion of M with respect to P and f.ih (cf. §1). 

Again the R-torsion depends not only on h, but also on g, unless p is 
acyclic. The computation of the variational formula for the R-torsion is similar 
to the orthogonal case and is an easy extension of the proof of Theorem 7.6 in 
[RS]. The result is 

Theorem 2.15. Let M be a closed oriented manifold and p: 111 (M) ~ GL(E) 
a unimodular representation. Let hu and gv be one-parameter families of met-
rics on Ep and M, respectively. Denote by r M(P; u, v) the R-torsion and by 
Pq(u, v) the harmonic projection with respect to (hu' gv)' Then 

a 1 n 
au log rM(p; u, v) ="2 L (-I)q Tr(aUPq(u, v)), 

q=O 
a 1 n 

av log rM(p; U, v) ="2 L (-I)q Tr(PVPq(u, v)), 
q=O 

where au and Pv are defined by (2.3). 

If we combine Theorems 2.6 and 2.15, we get 
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Corollary 2.16. Let M be a closed oriented manifold, and let P : 1l"1 (M) ---+ 

GL(E) be a unimodular representation. If dim M is odd, then 
10gTM(p; h) -IOgTM(p; h) 

has the same value for any choice of a metric h on E p and a Riemannian metric 
on M. If dim M is even, then the variation of log T M(P; h) -log T M(P; h) can 
be computed as follows. Let hu and gv be one-parameter families of metrics 
on E p and M, respectively. Let the notation be the same as in Theorem 2.12. 
Then 

8 ( ) 1 ~ q+l 8u 10gTM(p;u,v)-logTM(p;U,v) =2"L..-(-1) cq(u,v), 
q=O 

8 ( ) 1 ~ q+l 8v 10gTM(p;u,v)-logTM(p;U,v) =2"L..-(-I) dq(u,v). 
q=O 

The example discussed above shows that for even-dimensional manifolds the 
variation of log T M(P ; h) - log T M(P; h) may not be zero. 

As in the case of orthogonal representations Corollary 2.16 is the key result 
to prove the equality of TM(p; h) and T M(P; h) for closed manifolds of odd 
dimension. For this purpose it is essential to have the proper generalization of 
Corollary 2.16 to the case 8M =1= (2). To define the analytic torsion in this case 
we have to introduce boundary conditions for !:J.q . Let i : 8 M ---+ M be the 
inclusion, and let i* : A*(E) ---+ A*(EI8M) be the induced map on Ep-valued 
differential forms. A differential form w E A * (E) is said to satisfy absolute 
boundary conditions if 

t(*w) = 0 and i*(*dw) = 0, 
and if w satisfies absolute boundary conditions then *w is said to satisfy 
relative boundary conditions. 

Let Dom(!:J.a) (resp. Dom(!:J.r)) be the subspace of A*(E) consisting of all 
those forms which satisfy absolute (resp. relative) boundary conditions on 8M. 
If w, () satisfy either boundary conditions, then 

(dw, ()) = (w, J()) 

and the restriction of the Laplacian to the corresponding domains defines sym-
metric positive semidefinite, operators 

!:J.a : Dom(!:J.a) ~ A * (E) and !:J.r : Dom(!:J.r) ~ A * (E) 

The corresponding selfadjoint extensions on L 2 A * (E) have pure point spectrum 
O~A.a,O~A.a.l ~ ... and O~A.r,o~A.r,1 ~ ... ,respectively. Let ~*(E) and 
;P;* (E) denote the spaces of harmonic forms for absolute and relative boundary 
conditions, respectively. Then the De Rham map induces isomorphisms 
(2.17) ~*(E)~H*(M; E) and ;P;*(E)~H*(M, 8M; E). 

The analytic torsion T~(p; h) (resp. T~(p; h) ) for absolute (resp. relative) 
boundary conditions is defined by formula (2.2) with !:J.q replaced by !:J. a,q 
(resp. !:J.r,q)' 
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In order to compute the variation of the analytic torsion we may essentially 
proceed as in the case of a closed manifold. There are, however, additional 
complications due to the nonempty boundary. 

First we have to study the variation of the trace of the heat operator. We fix 
absolute boundary conditions. The case of relative boundary conditions follows 
similarly. Let hu be a one-parameter family of metrics on E p ' and let da,q(U) 
denote the Laplacian and Pa,/u) the harmonic projection with respect to hu 
and the choice of absolute boundary conditions. Let Kq(t; u) denote the kernel 
of e-tAaju) , and let Kq = K~ + K; + K;' denote the Hodge decomposition of 
Kq into its exact, coexact, and harmonic components. To compute the variation 
of Tr(e-tAa,q(U)) we simply follow the proof of Theorem 3.10 in [C] and we 
note that Duhamel's principle (3.9) which is used in the course of the proof 
remains valid in our case. As ·above, let a = #-1 #.. Then 

:uTr(e-tAajU)) = t :t{Tr(aK~+I(t; u») -Tr(aK;(t; u») 

+ Tr(aK~(t; u») - Tr(aK:_I (t; u») }. 
(2.18) 

Applying (2.18), it follows that 

~ ~ (-I)qq Tr(e-tAa,q(U) - P (u») au ~ a,q 
q=O 

= t :t t (-l)q Tr(a(e-tAa,q(U) - Pa,q(u»)). 
q=O 

The asymptotic expansion of Tr(ae-tAa,q(U)) now contains additional terms 
coming from the boundary 

(Xl (Xl 

(2.19) T ( -tAa,q(U)) ~ a ( ) t-n/2+k ~ ba ( ) t-n/2+k/2 
r ae '" ~ C q , k U + ~ q, k U • 

k=O k=O 
Now we can proceed in exactly the same way as in the closed case, and we get 

(2.20) a a 1 ~ q{ ( ) a } au 10gTM(p; hu) = '2 ~ (-1) Tr aPa,q(u) - bq,n(u) 
q=O 

if dim M is odd. 
A similar relation holds for the variation with respect to the Riemannian 

metric. Then a has to be replaced by p = *~I*v and the coefficients 
ba (u) by ba (v) occurring in the corresponding asymptotic expansion of q,n q,n 
Tr(pe-tAa,q(U)) . 

To define the R-torsion 'l'~(p; h) we employ the De Rham isomorphism to 
introduce a volume element for H* (M; E) . The computation of the variation 
of log 'l'~(p; h) remains the same 

a I n 
(2.21) au log'l'~(p; hJ = '2 L (-I)q Tr(aPa,q(u») . 

q=O 
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Putting (2.20) and (2.21) together we obtain 

Theorem 2.22. Let M be a closed manifold of odd dimension and Epa flat 
vector bundle over M. Impose absolute boundary conditions. Let hu and gv 
be one-parameter families of metrics on E p and M, respectively. Denote by 
T~(p; u, v) the analytic torsion and by r~(p; u, v) the R-torsion with respect 
to (hu' gv)' Then 

8 (a a) 1 ~ q+' a 8u 10gTM(p;u,v)-10grM(p;u,v) =2~(-1) bq,n(u,v), 
q=O 

8 (a a) 1 ~ q+' ~ a 8v 10gTM(p;u,v)-10grM(p;u,v) =2~(-1) bq,n(u,v) 
q=O 

where the coefficients b;, nand b;, n are determined by the asymptotic expansion 
(2.19) and its counterpart for the variation with respect to gv' A similar result 
holds for relative boundary conditions. 

An immediate consequence of Theorem 2.22 is 

Corollary 2.23. Let the assumption and notation be the same as in Theorem 2.22. 
Then for any values (u2' v2) and (u, ,v,) of the parameters the difference 

(logT~(p; u2' v2)-logr~(p; u2' v2))-(logT~(p; u,' v,)-logr~(p; u,' v,)) 
depends only on the germs of hu ,hu ' gv ,gv restricted to 8 M and is com-

2 I 2 I 
pletely independent of the geometry and topology of int(M). The same holds for 
relative boundary conditions. 
Proof. Set 

f(u, v) = 10gT~(p; u, v) -logr~(p; u, v). 
Then, by Theorem 2.22, 

f(u 2 , v2) - f(u, ' v,) 
rU2 8 rV2 8 = lu 8u f (u, v2 ) du + lv 8v f(u, ' v) dv 

I I 

= ~ t, (-l)q+, {1~2 b:,n(u, v2) du + 1~2 b:,n(u" v) dV}. 

By the construction of the asymptotic expansion (2.19) and its analogue for 
Tr(pe-tda,q(V)) the coefficients b;,n and b:,n depend only on the germs of 
hu ' hu ' g ,gv restricted to 8M. Q.E.D. 

2 I V 2 I 

3. THE EQUALITY OF ANALYTIC TORSION AND R-TORSION 

Let M be a closed oriented Riemannian manifold of odd dimension, and 
let P : 7r, (M) --+ GL(E) be a unimodular representation with associated flat 
bundle E p' Let h be an Euclidean metric on E p' To establish the equality 
of the analytic torsion T M(P; h) and the R-torsion r M(P; h) we shall follow 
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Cheeger's proof for the case of orthogonal representations [C]. As explained in 
the introduction, this proof is well suited for this purpose because the relevant 
analysis is done locally near a given handle and this can easily be adapted to 
the case of unimodular representations. 

We recall the basic steps in Cheeger's proof and indicate how they have 
to be modified (if at all). By Corollary 2.16, 10gTM(p; h) -logrM(p; h) is 
independent of the choice of h and of the metric on M. Set 

(3.1 ) 

Furthermore, both T M(P; h) and r M(P; h) are independent of the choice of 
orientation. 

Let Mo and MI be two closed smooth manifolds of odd dimension n, 
and assume that MI is obtained from Mo by surgery on some embedded k-
sphere Sk c Mo (see below for the precise definition of this statement). Let 
Eo be a flat bundle over Mo defined by a unimodular representation Po of 
111 (Mo) , and assume that Eo extends over the trace of the surgery to a flat 
bundle EI over MI defined by a unimodular representation PI of 111 (MI )· 
By an argument similar to the one used in the introduction of [C], it suffices 
to show that eM (Po) = 0 implies eM (PI) = 0 for all such pairs (Mo' po), 

o 1 
(MI' PI). A slight complication arises because this can be proved directly only 
for 0 < k < n - 1 . 

Now recall that surgery on an embedded k-sphere Sk c Mo means the 
following: 

(a) The tubular neighborhood N(Sk) is a product 

N(Sk) = Sk x Dn- k. 

(b) There is an embedded ( n - k - 1 )-sphere Sn-k-I C MI whose tubular 
neighborhood is also a product 

N(Sn-k-l) = Sn-k-I x Dk+l. 

(c) There is a manifold M with boundary 8M = Sk x Sn-k-I such that 
k ~ n-k-I ~ 

Mo = N(S ) U_M and MI = N(S ) U_M 
8M 8M 

where the union means that the common boundaries of M, N(Sk) , and 
N(Sn-k-l) are identified with the obvious identification and the manifolds are 
given the standard differentiable structures. 

The fact that Eo extends over the trace of the surgery to give E I is equivalent 
to the existence of a flat unimodular bundle if over M which extends as a 
flat unimodular bundle over Mo = N(Sk) U M and MI = N(Sn-k-l) U M. 
Recall that a flat bundle over a contractible space is trivial as a flat bundle. 
Since Sk x {p} c 8M bounds Dk+1 x {p}, it follows that EoISk, Sk C M o' 
and therefore EoIN(Sk) is trivial as a flat bundle. Similarly, EIIN(Sn-k-l) is 
trivial as a flat bundle. This is the important fact which allows us to extend 
Cheeger's analysis. 
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We shall employ the following notation. If X is a Riemannian manifold and 
Y c X a submanifold then we shall denote by Nu(Y) the tubular neighborhood 
of Y in X consisting of all normal vectors to Y of length :::; u . 

Now we introduce metrics on Mo and MI such that the tubular neighbor-
hoods NI (Sk) and NI (Sn-k-I) are isometrically the product of the unit spheres 
Sk, Sn-k-I and the unit balls D n- k , Dk+1 equipped with the standard flat met-
rics. Furthermore,since EoINI(Sk) and EIINI(Sn-k-l) aretrivial,wemayfix 
trivializations 

k k N n-k-I n-k-I N (3.2) EoINI(S) ~ NI(S ) x Rand EIINI(S ) ~ NI(S ) x R 

and choose metrics ho' hi on Eo, EI in such a way that they coincide on 
EolNI (Sk) and EIINI (Sn-k-I) with the product metrics given by the trivial-
izations (3.2). Set 

M _ { Mo - Nu(Sk) if 0 < u :::; 1/3, 
u - MI _ NI_U(Sn-k-l) if 2/3:::; u < 1; 

E = {EoiMu if 0 < u :::; 1/3, 
u EIIMu if 2/3:::; u < 1. 

~ ~ 

We may think of Mu (resp. Eu) as being M (resp. E) equipped with the 
metric gu (resp. hu)' For 1/3:::; u :::; 2/3 let gu (resp. hu) be any smooth 
family of metrics connecting these two families but subject to the condition 
that, near 8M = Sk x Sn-k-I, gu (resp. hu) is fixed independent of Mo ' 
MI' As above, we denote by Mu (resp. Eu )' 0 < u < 1, the manifold M 
(resp. the flat bundle E) equipped with gu (resp. hu)' 

The structure of the proof of the equality of the two torsions is now the 
same as in [C]. Let p: 7r1 (M) -+ GL(E) be the unimodular representation that 
defines E and set 

{ log T M(P ; hu) - log T M(P; hu) if 0 < u < 1, 
eu = 10gTM(Pi; hi) -IOgTM(Pi; hi) ifu = i E {O, I}. 

I I 

Then 

el - eo = (e l - el _u) + (e l _u - eu) + (eu - eo) = Au + Bu + Cu' 

Let M~, M; , E~ , E~ be a similar set of data where M: is again obtained from 
M~ by surgery on a k-sphere Sk (with the same k). Then 

, , , , , 
el - eo = Au + Bu + Cu 

with the obvious notation. By Corollary 2.23, we have Bu = B~ and the core 
of the proof is 

d ' , , 'b I Theorem 3.3. Let Mo, MI ' Eo, EI an Mo, MI ' Eo, EI e quatrup es as 
above. Then, if 0 < k :::; n - 1, limu-+o(Au - A~) = 0 and, if 0 :::; k < 
n - 1, limu-+o(Cu - C~) = O. 
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By symmetry, it suffices to consider Cu' To prove the Theorem for Cu ' we 
first consider 

(3.4) (log T M (p; hu) -log T M (po; ho)) - (log T M' (p' ; h:) -log T M' (p~; h~)) 
u 0 u 0 

and investigate its behaviour as U --+ O. Let dq(U) be the Laplacian on Eu-
valued q- forms of M u ' 1 > U > 0, satisfying absolute boundary conditions. 
Let Cq(s; u) be the zeta function associated to dq(U). Then 

1 n 8 
10gTMu(p; hu) = 2" L(-I)qq 8s Cq (s; u)ls=o 

q=O 

and we have to study the behaviour of %s Cq(s; u)ls=o as u --+ O. 
Recall that there exists an asymptotic expansion 

m 2m 
(3.5) Tr(e -tL\<U)) = L aq ,j(u) t-n/2+j + L bq ,j(U) t-n/2+j/2 + O(t-n/2+m+I/2) 

j=O j=O 

as t --+ O. The coefficients a .(u) are locally computable in the sense that q,j 
they are obtained by integrating local densities which in any coordinate system 
depend in a universal fashion on the coefficients gijX) and hi,j(x) of the 
metrics and a finite number of their partial derivatives. In the same sense, the 
coefficients b .(u) are locally computable in terms of the extrinsic geometry q,j 
of the boundary, e.g., its induced metric and second fundamental form (cf. [G] 
for details). Set 

C . u = q,j { 
b .(u) if j = 21 + 1, 

q,j( ) aq,j/2(u) + bq,j(u) if j = 2/. 

Furthermore, let m > nl2 and denote by J.lu(t) the difference of Tr(e- t.1q(U)) 

and its asymptotic expansion up to order m. Denote by Pq (u) the harmonic 
projection. Then, using the definition of Cq(s; u) in terms of the heat kernel, 
we get 

(3.6) 

8 100 -I -/.1 (u) 11 -I -8 C (s; u)1 =0 = t (Tr(e q ) - Pq(u)) dt + t J.lu(t) dt 
S q s 1 0 

~ Cq,j(u) ( . q . ) + ~ -n12 + jl2 + cq,n(u) - dlmH (Mu' Eu) Y 
j# 

where y = -r' (1) is Euler's constant. Now we have to investigate the behaviour 
of the individual terms as u --+ O. Let d q be the Laplacian on Eo-valued q-
forms on Mo. Then we have a corresponding asymptotic expansion as t --+ 0 
of the form 

m 
Tr(e- t.1q) rv ~ a . t-n/2+j + O(t-n/2+m+I). 

~ q,j 
j=O 

The nature of the coefficients a .(u) and a . implies immediately that q,j q,j 
lim aq .(u) = aq j.' u->o,j , q=o, ... , m. 



ANALYTIC TORSION AND R-TORSION FOR UNIMODULAR REPRESENTATIONS 741 

Furthermore, by assumption, the boundary terms occurring in (3.5) are the same 
for both Mu and M~. Hence the contribution to (3.4) made by the coefficients 
of the asymptotic expansion (3.5) and its analogues for M~, M o ' and M~ will 
cancel out in the limit. 

Next consider dim Hq(Mu ; Eu). Recall that Mu c Mo and Eu = EoiMu. 
Hence there is the long exact cohomology sequence 

(3.7) 
... --+ yQ(Mo' Mu; Eo) LHq(Mo ; Eo) 

and, by excision, 

Hq(Mo ' Mu; Eo) ~ Hq(N(Sk) , 8N(Sk); EoIN(Sk)). 

Using (3.2), we obtain 

( ) r..4 ( • rv q k k)) N 3.8 n M o ' M u ' Eo) = H (N(S ), 8N(S ® R . 

Since M; is obtained from M~ by surgery on an embedded k-sphere Sk c Mo 
with the same k, (3.8) also holds for (M~, M~). Let kq = dim(ker lq). Then, 
by the exactness of (3.7), we get 
(3.9) 

dim Hq(Mu ; Eu) = dim Hq(Mo ; Eo) - kq + dim Hq+\Mo ' Mu; Eo) - kq+l · 

Let k; have the same meaning with respect to (M~, M~). Then the contribu-
tion to (3.4) of the last term in (3.6) and its analogues for M~, M o ' M~ is 

n 
(3.10) Y L(-l)qq((kq + kq+l) - (k~ + k~+I))· 

q=O 

This term will be further discussed below. 
The essential part is to study the behaviour, as u --+ 0 , of the first integral on 

the right-hand side of (3.6). For this purpose we need two estimates describing 
the behaviour of the heat kernel as u --+ o. Let Ku(x, y, t) and Ko(x, y, t) 
d h k f -t6. (u) -tl1 . enote t e ernel 0 e q and e q , respectively. 

Theorem 3.11. Let k < n - 1. Given T, m, Uo > 0, there exists Cm(T, uo) 
such that, for t ~ T and x, y E Mu c M u' 

o 

IIKo(x, y, t) - Ku(x, y, t)11 ~ Cm(T, uo) tm { un~k-2 
Ilogul' 

ifn - k > 2, 

ifn - k = 2. 

This theorem states that away from Sk C M o ' the heat kernel of (Mu' Eu) 
converges uniformly to that of (Mo' Eo) as u --+ o. 

The next result describes the behaviour of the heat kernel near Sk. For 
u < uO' let Aun- k denote the annulus obtained by removing the (n - k )-ball , uo 
Dun- k of radius u from the ( n - k )-ball Dn- k of radius uo. Let K 1 (t) be Uo u, 
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the heat kernel on q-forms of Sk x A:~t with coefficients in the trivial flat RN_ 
bundle satisfying absolute boundary conditions. Introduce polar coordinates on 
An- k d' Sk n-k () h Sk Sn-k-I d u I an wnte z E x Au I as z = x, r were x E x an 
r E' (u, 1). Fix Uo < 1 . ' 

Theorem 3.12. Let k < n -1. Given T, m, there exists a constant Cm(T) such 
that 

(1) For r l , r2 < uO' XI' x2 E Sk x Sn-k-I, 

II K u, I ((XI' r l ), (x2 , r2), t) - Ku((XI ' r l ), (x2, r2), t)1I 

{ 

(1 n-k-2 -(n-k-I)) (1 n-k-2 -(n-k-I)) + u r l + u r2 

<C(n~ ifn-k>~ 

- m ( 1 + II~~IUI) (1 + I ~IUI) , if n - k = 2. 
(2) 

I f {tr(Ku I((X, r), (x, r), t)) -tr(Ku((x, r), (x, r), t))}1 
lskxAn-k ' 

u. Uo 

{ 
(U~-k-I + un- k- 3 ) (uo - u), ifn - k > 2, 

::; Cm(T)tm ( ) log(uo/u) 
Uo Uo - U + 2 ' if n - k = 2. 

log u 
The proof of Theorem 3.11 and Theorem 3.12, which, for orthogonal flat 

bundles, is given in §7 of [C], depends on two kinds of results. First of all, some 
standard estimates for the heat kernel are used (cf. [C, §5]). These estimates are 
derived from Duhamel's principle together with the Sobolev inequality. Both 
Duhamel's principle and the Sobolev inequality do not require any special as-
sumption on the bundle Ep ' and therefore the estimates obtained by Cheeger 
in §5 of [C] are also valid in our setting. The other part that is important for 
the proof of Theorems 3.11 and 3.12 is the local analysis near Sk. One has 
to construct a parametrix for ~q(u) satisfying absolute boundary conditions 
which allows us to study its behaviour as u -+ O. The parametrix is obtained 
by patching an interior parametrix and a parametrix near the boundary. The 
interior parametrix is obtained by general constructions which again do not 
require special assumptions. To construct the parametrix near the boundary it 
suffices to construct the Green's operator for ~ on RN -valued differential forms 
on Sk x A:-t satisfying absolute boundary conditions. By our assumption, the 

. 'Sk An- k d metncs on x u, I an 

E I(Sk x An- k) ~ Sk x An- k x RN u u, I u, I 

are the standard product metrics. Therefore, all the local analysis done by 
Cheeger in [C, §§6, 7] can be applied to our case without any change. This 
suffices to prove Theorems 3.11 and 3.12. We just follow the proof of these 
theorems in [C, §7] line by line. 
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In order to estimate Tr( e -tAq(u)) for large t one has to study the small eigen-
values, that is, those eigenvalues of ~q(u) which converge to zero as u --> O. 
Set 

r(q) = dim.if-(n-k-I)(Sk). 
The behaviour of the small eigenvalues is described by 
Proposition 3.13. There exists A > 0 with the following property. For all 0 < 
e < A, there exists t5 > 0 such that, for u < t5, ~q (u) has exactly 

dim Hq(Mo ; Eo) + N· r(q) 
eigenvalues < A and all of them are < e . 

The proof is exactly the same as the proof of Proposition 7.19 in [C]. 
Let 0 < Ai(u) :::; A~(U) :::; ... :::; A;(q)(U) < A be the nonzero eigenvalues 

described by Proposition 3.13 . By Proposition 3.13, we have 

dimHq(Mu; Eu) +s(q) = dimHq(Mo; Eo) + dim H q+1 (Mo , Mu; Eo)' 
Comparing this with (3.9), we get 
(3.14) kq + kq+1 = s(q). 

Now let ~~(u) denote the restriction of ~q(u) to the orthogonal complement in 
L 2 A q (Eu) of the sum of the eigenspaces corresponding to the small eigenvalues 
< A described by Proposition 3.13. Note that A -s = rts) Iooo ts- I e -At d t . Taking 
the derivative at s = 0 gives 

[00 -I -At t -I -At 11 t e dt= -logA- 10 t (e -1)dt-y 

where y = -r'(I). Then the first integral on the right-hand side of (3.6) equals 
s(q) [00 , [I s(q) q 

-L)OgA~(U)+ 11 t-ITr(e-tAq(U))dt_ 10 t-I(Le-Aj(U)I_s(q))dt-s(q)y. 
j=1 I 0 j=1 

By (3.14), the contribution of the last term to (3.4) cancels (3.10). Furthermore, 
by Proposition 3.13, the second integral tends to zero as u --> 0, and for any 
given e > 0 there exists T' such that, for T > T', u < t5 , 

Fix uo' T > O. Then 
(3.15) 

[00 -I -lA' (u) iT t Tr(e q ) dt < e. 

[T t-ITr(e -IA~(U)) dt = [T t- I [ trK: (x, x, t) dx dt 
11 11 1Muo 

+ [T t-I [ trK: (x, x, t) dx dt 11 l sk xA n - k 
u. Uo 

s(q) T q 

- L! t- I e -Aj(U)1 dt - log T dim H q (Mu; Eu)' 
j=1 I 
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By Proposition 3.13, the last two terms tend to 

-log T (s(q) + dim Jtl (Mu ; Eu») 
as u - 0, and, by Proposition 3.13, this equals 

-log T (dim Hq(Mo ; Eo) + N· r(q»). 

The same holds if we replace Mu by M~ so that the combined contribution 
to (3.3) of the last two terms in (3.15) and the analogous terms with respect to 
M~ will cancel out in the limit u - 0 . 

Finally, one uses Theorems 3.11 and 3.12 to tread the remaining integrals. 
Let Ku, I (t) denote the kernel obtained by projecting the heat kernel Ku, I (t) 
defined above onto the orthogonal complement of the harmonic forms. Then 
the final result can be stated as 
(3.16) 

lim lim I ('Xl t-ITr(e-tAq(U) -pq(u»)dt- [00 t-ITr(e- tAq -pq)dt 
uo""o u-+O 11 1 I 

00 seq) I 
- [ t- I [ Tr(Ku I (x, x, t») dx dt + l)Og(Ajq(U» = o. 11 lskxAn-k' . U,.o j=1 

Next we have to investigate the integrals f~ t- I Ilu(t) dt and fOI t- I Ilo(t) dt . 
Recall that llu(X, t), llo(X, t), and Ilu I (x, t) are the differences between 
trK: (x, x, t), trKg (x, x, t), and trK:, I (x , x, t), respectively, and their 
asymptotic expansion up to order m > n12. Then the argument which led 
to (3.16) can also be used to prove 

lim lim Itt-I Ilu(t) dt - t t- I [ llo(X, t) dx dt 
Uo""Ou-+O 10 10 lMo 

- [I t- I [ Ilu I (x, t) dx dtl = o. 10 lskxAn-k ' 
u, "0 

(3.17) 

. "" 1,q( ) 1,q) 1 b h Now consIder Mo' Mu' Eo, Eu. Let 0 < 1\.1 u ::; ... ::; I\.s(q)(u < I\. e t e 
nonzero eigenvalues described by Proposition 3.13 with respect to M~, E: . 
Subtracting the corresponding versions of (3.16) and (3.17) for M~, M~, E~, E: 
from (3.16) and (3.17), respectively, and using (3.6) we can summarize our re-
sults by 

(3.18) 
n seq) 

+ l)-I)qq 2)Og(A~(u)/A~q(u»)} = o. 
q=O j=1 

It remains to investigate the corresponding expression for the R-torsion. First 
we consider 

log T M (p; h ) - log T M (po; ho)· • u 0 
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Let Ko be a smooth triangulation of Mo and K' c Ko a subcomplex which 
induces a triangulation of the submanifold MeMo. Recall that Mu denotes 
the manifold M equipped with the metric gu. Furthermore, E = EolM and 
Eu is the flat bundle E equipped with the metric hu. Then we get a short 
exact sequence 

(3.19) 

of chain complexes. Each of these chain complexes has a distinguished volume 
determined by preferred bases and the metrics ho' go' hu ,gu determine vol-
umes Jlo E detH*(Mo; Eo), Jlu E detH*(Mu ; Eu). Since Mo - M ~ N(Sk) , 
EoIN(Sk) ~ N(Sk) x RN , and the metrics are the standard product metrics, the 
torsion of the relative chain complex equals r N(Sk) (I)N where 1 stands for the 
trivial one-dimensional representation. Moreover, it is easy to verify that the 
torsion of each complex 

0-+ Cq(K' ; E) --t Cq(Ko; Eo) --t Cq(Ko' K'; Eo) -+ 0 

equals 1. By Theorem 3.2 in [Mil], it follows that 

log r Mo (po; ho) = log r Mu (p, hu) + N . log r N(Sk) (1) + log r(~ ; Jlu) 

where ~ denotes the long exact homology sequence of (3.19) regarded as 
an acyclic chain complex of length 3n equipped with the volumes Jlu ' Jlo. 
Subtracting the corresponding equation for M~, M~ , E~ , E~ , we get 

lim {(log r M (p ; hu) - log r M (po; ho)) u-+o u 0 

(3.20) ( I h' I h') - log r M' (p; u) - log r M' (po; 0) 
u 0 

+ (log r(~ ; Jlu) - log r(~' ; Jl~)) } = O. 

Now one has to study the behaviour of log r(~ ; Jlu) and log r(~' ; Jl~) as 
u -+ O. This is completely analogous to [C] and we leave it to the reader (cf. 
[C, p. 316]). As result we obtain that, in the limit u -+ 0, log r(~; Jlu ) -

logr(~/; Jl~) cancels the contribution of the small eigenvalues in (3.18). This 
completes the proof of Theorem 3.3. 

Now we can proceed exactly in the same way as in [C]. Write dk = e, - eo 
where ei = log T M (Pi; hi) - log r M (Pi; h) and M, is obtained from Mo by 
surgery on an embedded k-sphere. I 

Proposition 3.21. We have dk = 0 for 1 S k S n - 2. Moreover, do is well 
defined. 

We just follow the proofs of Proposition 8.20 and 8.21 of [C] line by line to 
obtain the proof of Proposition 3.21. 

We can now prove Theorem 1 of the introduction. To prove this theorem we 
proceed in exactly the same way as on p. 318 of [C], using Propositions 1.12, 
1.13,2.9, 2.13. 
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Remark. Everything that has been said in the previous sections works also for 
finite-dimensional complex representations of 1C, (M). 

4. SOME EXAMPLES 

In this section we shall discuss two examples where nonorthogonal or nonuni-
tary representations of the fundamental group arise naturally and the torsion is 
of relevance in this context 
4.1. Locally symmetric manifolds. Let G be a connected semisimple Lie group 
with finite center. We also assume that G has no compact factors. Let K be 
a maximal compact subgroup of G. The Lie algebras of G and K will be 
denoted by g and t, respectively. Let g = t EB P be the Cartan decomposition 
of g with respect to t, and let () be the Cartan involution of (g, t). The 
quotient space X = G / K is then a symmetric Riemannian manifold and G is 
the identity component of the group of orientation preserving isometries of X. 
We shall denote by Xo E X the coset eK of the identity e E G. 

Let reG be a discrete, torsionfree, co-compact subgroup of G. Then M = 
r\X is a compact locally symmetric manifold covered by X with 1C, (M) = r. 

Let p : G ---. GL(E) be a representation of G on a finite-dimensional 
complex vector space E. If we restrict p to r, we obtain a representation 
Pr : r ---. GL(E) with associated flat vector bundle Ep over r\x. Since E 
is a r-module, the group cohomology H*(r; E) is defined and we have the 
equality 

H*(r\X; Ep) = H*(r; E). 
There is a different way to describe the bundle Ep. Let PK : K ---. GL(E) be 
the restriction of P to K, and consider the fibration 
(4.1 ) 
which is principal with structure group K . Then P K defines the induced bundle 
E p over r\X whose global COO -sections are the COO -functions f: r\ G -- E 
which satisfy 

f(gk) = p(k)-' (j(g») for all g E G, k E K. 

Lemma 4.2. The bundles E p and E p are naturally isomorphic. If J: r\ G ---. E 
is a section of Ep ' set f(x) = f(gxo) = p(g)J(g) where x = gxo. Then 
f : X ---. E defines a section of E p and J 1-+ f establishes an isomorphism of 
the corresponding spaces of COO -sections. 

For the proof see Proposition 3.1 in [MM]. 
Now observe that the flat bundles E p defined by a representation p : 

G ---. GL(E) fit into the setting of the previous sections. Namely, we have 
Lemma 4.3. Any finite-dimensional representation p : G ---. GL(E) satisfies 
det peg) = 1 for all g E G. 
Proof. Let N = dime E . Then G acts on AN E via the character X = det 0 p . 
Since G is semisimple, we have Dg = g and, therefore, d X = o. But G is 
connected, which implies X == 1. Q.E.D. 
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Thus each of the flat bundles Ep constructed above is unimodular. Next we 
equip Ep with a canonical metric. Following Matsushima and Murakami in 
[MM], we call a hermitian inner product (u, v) on E admissible if 

(a) (p(Y)u, v) = -(u, p(Y)v) for all Y E e, u, vEE; 
(b) (p(Y)u, v) = (u, p(Y)v) for all Y E lJ, u, vEE. 

The existence of an admissible inner product on any G-module E is proved 
in [MM, Lemma 3.1]. Condition (a) means that (', .) is invariant under p(K) , 
and therefore it defines a hermitian metric on Ep' This is the canonical metric 
on E p defined by the admissible inner product on E. 

This choice of an inner product on E p allows us to use harmonic analysis to 
study the Laplacian L\ on E p -valued differential forms on r\x. The tangent 
space to X at Xo can be identified with lJ and the tangent bundle of r\X is 
the bundle induced from (4.1) by the adjoint representation adp : K --+ GL(lJ). 
Therefore, we have a natural identification 

A q (r\X , E) = {qJ : r\ G --+ A q lJ * ® E I qJ is COO and 

qJ(gk) = (Aqad;(k -I) ® p(k -1))(qJ(g)) , g E G, k E K}. 

Concerning the cohomology H* (r; E) there exist plenty of results, in particu-
lar, vanishing theorems (cf. [BW, Chapter VII]) telling us which representations 
are acyclic. We mention one of them. Let ~ + c e be a maximal abelian subal-
gebra of t. Let ~ be the centralizer of ~ + in g. Then ~ is a Cartan subalgebra 
of g. Let <I> be a root system of (gc' ~d, and let <l>k be a root system of 
(ec ' ~~). Fix a set <1>; of positive roots for <l>k' and let <1>+ be a system of 
positive roots for <I> compatible with <1>; (see [BW, p. 65]). This means, in 
particular, that ()u E <1>+ whenever u E <1>+ • As usually set 

2~= L u. 
aE<l>+ 

Theorem 4.4 (Borel-Wallach). Let E be an irreducible finite-dimensional G-
module with highest weight A - ~. If () A =f. A then H* (r; E) = 0 . 

For the proof see Theorem 6.7 of Chapter VII in [BW]. 
Let ~~ = {H E ~c I ()H = -H}. Then ~~ = (~~r ED (~~r. Moreover, 

assume that rk G > rk K. Then dim ~~ ;:::: 1 and the highest weight of a 
generic representation satisfies ()A =f. A. Note that the condition rk G > rkK is 
satisfied whenever dim G j K is odd, which is the case we are mainly interested 
in. Thus, for compact locally symmetric manifolds r\X of odd dimension, 
Theorem 4.4 produces a large class of acyclic unimodular representations of r. 

As an example we shall discuss three-dimensional hyperbolic manifolds. In 
this case we have G = SL(2, C) and K = SU(2) , and H3 = SL(2, C)jSU(2) 
is the three-dimensional hyperbolic space. Let r c SL(2, C) be as above, that 
is, a discrete, torsionfree, co-compact subgroup. Since SL(2, C) is simple, r 
is an irreducible discrete subgroup. 

To describe the irreducible finite-dimensional representations of SL(2, C), 
we have to consider sl (2 ,C) as Lie algebra over R which we denote by 
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s( (2, qR. It is well known that 

S[(2,qR~so(3,1) and su(2)~so(3,R) 

where so (3, 1) is the Lie algebra of SO(3, 1) c GL( 4, R). Furthermore, there 
exists an isomorphism 

(4.5) 

such that 

rp: so (3,1) 0C ~ so (4, q ~ s[(2, q x s[(2, q 
R 

rp(so(3,1))={(X,X)IXES[(2,q}. 
Next recall that the irreducible finite-dimensional representations of the com-

plex Lie algebra s[ (2, q are parametrized by pEN. Given pEN, let 
~ be the corresponding irreducible s[ (2, q-module. Then WI = C2 and 
PI : s[ (2, q ---+ g[ (C2) is the standard representation. Furthermore, for each 
pEN, ~ is the pth symmetric power of the module WI = C2 • 

Let E be a finite-dimensional complex vector space. Then the complex 
conjugate E of E is defined to be the dual vector space of the vector space of all 
antilinear forms on E. Every x E E determines a unique element x E E. In 
particular, we can consider the complex conjugate W q of the s[ (2, q-module 
Wq • Then s[ (2, q acts on W q by 

and we get an antiholomorphic representation 

Pq : s[(2, q ----+ g[(Wq ). 

Given (p, q) E N 2 , set Pp,q = Pp 0 Pq . Then 

Pp,q: s[(2, q ----+ g[(~ 0 W q) 

is an irreducible representation of s[ (2, qR. Since SL(2, q is simply con-
nected, Pp,q can be lifted to SL(2, q. Hence, for each (p, q) E N 2 , we get 
an irreducible representation 

Pp,q : SL(2, q ----+ GL(~ 0 Wq); 

any irreducible representation of the real Lie group SL(2, q is obtained in 
this way. This is a special case of a more general result (cf. [Wa, Theorem 
3.1.1.1]). With respect to this parametrization, the Cartan involution acts by 
8(p, q) = (q, p). Employing Theorem 4.4, we obtain 

Lemma 4.6. Let r be a discrete, torsionfree, co-compact subgroup of SL(2, q. 
For (p, q) E N 2 , let Ep,q be the irreducible SL(2, q-module described above. 
Then 

H*(r\H3, Ep,q) = 0 if p =1= q. 

We note that the complexification of the standard representation of so (3, 1) 
on R4 is equivalent to the s[ (2, q-module E I , I . Thus we can restate Lemma 
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4.6 as follows. If a given irreducible sl (2, C)-module E A with heighest weight 
A has nontrivial cohomology, then A is a multiple of the heighest weight of 
the standard representation of so (3, I). This agrees with Theorem I in [R]. 

For all these acyclic representations p, the analytic torsion T M(P) and the 
R-torsion r M(P) are defined and independent of any choice of metrics. This is 
of interest in connection with the results of Moscovici and Stanton [MS]. 

4.2. Chern-Simons gauge theory. Chern-Simons gauge theory is a three-dimen-
sional gauge field theory with pure Chern-Simons action. The connection with 
analytic torsion was first noticed by Schwarz [S] in the case of an abelian gauge 
group. For nonabelian gauge groups the link to analytic torsion was established 
by Witten [WI] via the perturbative expansion of the corresponding functional 
integral. For a compact gauge group, the torsion invariants occurring in the 
perturbative expansion are associated to unitary representations of the funda-
mental group of the underlying 3-manifold. However, if we allow noncompact 
semisimple gauge groups, then one has to deal with the analytic torsion attached 
to unimodular representations. 

Now we shall describe this in more detail. Let M be a compact oriented 
three-dimensional manifold without boundary and G a Lie group. We start 
with the case where G is compact, and for simplicity we take G to be SU(N). 
Consider the space .91 of all G-connections on the trivial G-bundle over M. 
In fact, every principal G-bundle over M is trivial. The space .91 may be 
identified with the space A1(M, g) of differential I-forms on M with values 
in the Lie algebra g of G. For a given connection A E .91 , the Chern-Simons 
action is defined to be 

(4.7) J(A) = 4111: 1M Tr(A 1\ dA + iA 1\ A 1\ A) 

where Tr is the trace of su(N) in the standard representation. This is a real-
valued nonlinear functional on .91. The gauge group :Y = Map(M, G) acts 
on .91 by the usual prescription Ag = g -I Ag + g -I dg, g E G, A E .91 . 
The Chern-Simons functional J is not invariant under the action of :Y, but 
it satisfies J(Ag) = J(A) + 211: m for some m E Z depending on g E :Y. Let 
kEN. Then eikl(A) is a :Y -invariant function on .91 and Witten's invariant 
of M is defined as the path integral 

(4.8) ZM(k) = I eikl(A) g A 

where the integration is over all gauge equivalence classes of connections. This, 
however, has to be considered as a formal expression because no measure g A 
has yet been constructed. Part of this theory can be made rigorous, and Witten 
gave an explicit recipe for computing ZM(k). Moreover, using the theory of 
quantum groups, Reshetikhin and Turaev [RT] introduced invariants ZM(q) 
of a 3-manifold M depending on a root of unity q = e21ti /r , and they suggest 
that ZM(e21ti/(k+2)) coincides with ZM(k) after normalization. 

Instead of the full path integral (4.8) one can also study the perturbative 
formulation, i.e., one perturbs about the critical points A(O) of the action (4.7). 
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In the present context this method is again not based on solid ground, but it 
gives very interesting results. The Euler-Lagrange equation for (4.7) is 

dA+A AA = 0, 
which shows that the critical points of (4.7) are precisely the connections with 
vanishing curvature, that is, the flat connections on the bundle P = M x G . A 
flat connection A is determined up to gauge equivalence by a representation 
(4.9) a: 111 (M) -+ G 
up to conjugacy. Hence the space of gauge equivalence classes of flat con-
nections on P can be identified with Hom(1l1 (M), G)jG where G acts on 
Hom(1l1 (M), G) by conjugation. Assume that the topology of M is such that 
there exists only a finite number of gauge equivalence classes of flat connec-
tions on P, say AI' ... ,Am and let a l , ... , am denote the corresponding 
homomorphisms (4.9). 

Let A be a flat connection, and for simplicity assume that A is irreducible. 
To work out the leading perturbative approximation to the contribution of the 
critical point A to the path integral ZM(k) , gauge fixing is needed. This is 
achieved by picking a Riemannian metric g on M. Let a: 111 (M) -+ G be the 
holonomy representation of A and Ad: G -+ GL(g) the adjoint representation. 
Then Ad 0 a is a representation 
(4.10) 
and we denote the associated flat bundle by go:. Since g is compact, the Killing 
form is negative definite on g. Therefore, the negative of the Killing form 
defines a G-invariant inner product on g, and with respect to this choice of 
an inner product the representation (4.10) is orthogonal. Finally, we note that 
the De Rham complex A * (M; go:) is equivalent to the complex of g-valued 
differential forms 

° did 2 d 3 0-+ A (M; g) -4A (M; g) -4A (M; g) -4A (M; g) -+ 0 

where Aq(M; g) = Aq(M) ® g and dA is the covariant derivative with respect 
to the connection A. Since A is flat, we have d~ = o. By assumption, 
A is irreducible and isolated modulo gauge equivalence. Therefore, we have 
HO(M; go:) = HI(M; go:) = 0 and Poincare duality implies H*(M; go:) = 0, 
so that Po: is acyclic. 

To describe the final result we need some more notation. Let c2 (G) be the 
value of the Casimir operator of G in the adjoint representation, normalized so 
that c2 (SU(N)) = 2N. Furthermore, let /(g) be the Chern-Simons invariant 
of the Levi-Civita connection of g with respect to a given trivialization of the 
tangent bundle of M, and let 1J(g) be the 1J-invariant of the metric g. 

Assume now that the representatives AI' ... ,Am of the gauge equivalence 
classes of flat connections are all irreducible. Then Witten's formula for the 
stationary phase approximation (or one loop approximation) of the path integral 
(4.8) is 

(4.11 ) 
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where Z (G) is the center of G, d is the dimension of G, and T M(P 0.) is the 
J 

analytic torsion of the flat connection P . In fact, formula (2.23) in [WI] has o.j 
to be slightly corrected (cf. [FG, (1.32)]). 

Freed and Gompf [FG] have done explicit computations in a number of 
cases supporting the believe that (4.11) gives the correct asymptotic behaviour 
of Witten's invariant. 

Since each Po.. is acyclic, T M(P 0..) is independent of the choice of the metric 
J J 

g on M and, by [C, Mii], it coincides with the R-torsion 1:M(Po.)' Further-
J 

more, by the Atiyah-Patodi-Singer theorem, ~ t7 (g) + 2!1t I (g) is also independent 
of the metric. It depends only on the trivialization of the tangent bundle. As 
we know, the R-torsion 1: M(Po.) can be computed from a triangulation K of 

J 

M in a pure combinatorial way. This suggests that one may be able to develop 
a rigorous treatment of the path integral (4.8) on the combinatorial level and 
derive the asymptotic behaviour (4.11) in this way. 

There exist also conjectures how (4.11) has to be modified if we give up the 
assumption that the gauge equivalence classes of flat connections are isolated 
and irreducible (cf., [FG, (1.36)]). 

So far we considered the case of a compact gauge group. Witten has also 
started to investigate Chern-Simons theory with noncompact gauge group [W3]. 
This is of great interest, for example, in the application to 3-dimensional gravity. 
More precisely, (2 + 1 )-dimensional gravity is related to Chern-Simons gauge 
theory with gauge group SL(2, C), ISO(2, 1), or SL(2, R) x SL(2, R) depend-
ing on whether the cosmological constant is positive, zero, or negative [W2]. For 
a general noncompact Lie group G, the quantization of Chern-Simons gauge 
theory w ith gauge group G is not yet understood. For SL(2, R), however, 
the quantization is well understood [K]. One can also study the perturbative 
expansion of the corresponding path integral [B-NW]. 

The perturbative treatment of Chern-Simons gauge theory with noncompact 
gauge group requires again gauge fixing. Since the Killing form is indefinite, 
there exists no obvious gauge fixing as in the compact case and different ap-
proaches are possible [B-NW]. For a semisimple Lie group G, the most natural 
gauge fixing seems to be the unitary gauge fixing described in [B-NW, §4]. Let 
A be a flat connection on the trivial G-bundle over M with holonomy rep-
resentation a : 1C 1 (M) --t G. As above, let go. be the flat bundle defined by 
Po. = Ad 0 a. Then the unitary gauge fixing amounts to the choice of a Rie-
mannian metric g on M and a Hermitian metric h on go.' We observe that 
Po. : 1C 1 (M) --t GL(g) is unimodular. In fact, since g is semisimple, the Killing 
form is nondegenerate. Hence, for each g E G, Ad(g) preserves a nondegen-
erate symmetric bilinear form on g which implies that IdetAd(g)1 = 1. This 
is precisely the setting of §2. 

Under the same assumption as above, one gets a formula for the one loop ap-
proximation of the path integral which is similar to (4.11). The analytic torsion 
T M(P 0.) is now defined by (2.2). For the discussion of the phase factor see §4 of 

J 

[B-NW]. By assumption, each representation Po. j is acyclic, and, therefore, by 
Corollary 2.7, TM(po ) is independent of the choice of the metric on M and 

J 
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go<, Moreover, by Theorem 1, T M(Po<) equals the R-torsion T M(Po<) which has 
J J 

again a pure combinatorial describtion. This suggests that Chern-Simons gauge 
theory with a noncom pact but semisimple gauge group should also be accessible 
to a combinatorial treatment. 
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