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POSITIVE LINE BUNDLES ON ARITHMETIC VARIETIES 

SHOUWU ZHANG 

INTRODUCTION 

For an arithmetic variety and a positive hermitian line bundle, in this paper, 
we compute the leading term of the Hilbert function of the line bundle, show the 
ampleness of the line bundle, and estimate the height of the variety in terms of 
the density of small points. In more details, our results are explained as follows. 
Leading term of the Hilbert function. For an arithmetic variety X which we 
refer to as a projective and flat integral scheme over spec Z , and for a relatively 
positive hermitian line bundle L, the Hilbert function Xsup(f(L®n». of positive 
integers is defined to count the volume of the lattice f(L ®n) of integral sections 
in the space f(L:n) of real sections with supremum norm. We want to prove 
that the leading term of this Hilbert function as n ~ 00 is given in terms of the 
height of X in as § 1. This is known as a theorem of Gillet and Soule [GS2] if X 
has a regular generic fiber. Beside this known result, our proof uses Hironaka's 
theorem on resolutions of singularities and Minkowski's theorem on successive 
minima. By Hironaka's theorem, we may construct 

(1) two sequences of hermitian line bundles {L~} and {L~} on a fixed 
generic resolution X of X, such that they are numerically close to the sequence 
{L®n}; 

(2) some sequences of embeddings with small norms 

f(L:) c f(L ®n) C r(L~). 
By Minkowski's theorem, we may obtain a lower (resp. upper) bound for 

the Hilbert function of L by corresponding functions induced by {L~} (resp. 
{L~}). Applying the known results on X we obtain the required estimate for 
{L®n} . 

Arithmetic ampleness. For an arithmetic variety X and a numerically positive 
hermitian line bundle L, we prove that the group f(L ®n) has a basis consisting 
of small sections when n is sufficiently large in §4. We use a similar idea as 
in the context of algebraic geometry [Ha]. By our estimate of the leading term 
of the Hilbert function and by some lattice arguments, we reduce the proof to 
proving that, for any subvariety Yc of Xc' the map 

f(L~n) ~ f(L~nly. ) 
c 
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is "surjective" in the metric sense: given finitely many fixed sections II' ... ,Ik' 
any section I~l .. . I;k (a i ~ 0) of L ®(ol + ... ) I y with a I + ... + an sufficiently 
large can be lifted to a section on X with a small supremum norm. We prove 
this in two steps. The first step (§2) is devoted to proving the assertion for 
compact complex manifolds using Hormander's L 2 -estimate. The second step 
(§3) is devoted to proving the assertion for singular varieties, where we introduce 
the ampleness of the metric and work on nonarchimedean metrics at the same 
time. 

Density of small points. We have two results under this title. The first result 
is an estimate of the height of an arithmetic variety in terms of the density 
of small points (§5). This gives a more precise version of Kleiman's theorem 
on ampleness of a line bundle in terms of intersection numbers with curves, 
in the context of algebraic geometry. The proof of our result is similar to that 
of Kleiman's theorem [Ha]. One typical consequence is as follows: for an 
arithmetic variety X and a semipositive hermitian line bundle L, the height 
of X is 0 if and only if, on any nonempty Zariski open subset U, the height 
function on U(Q) has the infimum o. 

The second result (§6) is as follows: a subvariety X of a multiplicative group G: is of the form xH, where x is a torsion point and H is a subgroup, if 
and only if small points of X(iQ) are dense with respect to the usual height 
function hmax • For proof, we embed G: to (pI t as usual. Then hmax is 
equivalent to a height function hoo induced by a hermitian line bundle 000 (1) = 
(O( 1), II . 11 00 ), Approximating II· 1100 by smooth metrics, we are reduced to 
proving that the height of the Zariski closure of X with respect 000 ( 1) is 
positive, if X cannot be written in the form xH. We prove this by induction 
on dim X , by representing C I ( 000 ( 1)) by certain canonical sections and by the 
Ihara-Serre-Tate theorem [Lan]. 

For an arithmetic surface, the arithmetic ampleness of a positive hermitian 
line bundle was conjectured by L. Szpiro and was proved in [Zl]. For an arith-
metic surface without bad reduction, Szpiro [Sz] obtained a relation between the 
positivity of the relative dualizing sheaf and the discreteness of algebraic points 
with respect to Neron-Tate height. Such a result has been generalized to the 
general case, by arithmetic ampleness, and by an admissible pairing on a curve; 
see [Z2]. We expect to obtain some results in higher dimensional varieties by 
using the results in this paper. 

I learned subjects from L. Szpiro and G. Faltings and I am very grateful to 
them for encouragement during the preparation of this paper and for the time 
they spent in teaching me. I would like to thank X. Dai, P. Deligne, G. Tian, 
and S. Yeung for helpful conversations, and the referee for pointing out several 
inaccuracies in the original manuscript. The research has been supported by 
NSF grant DMS-9100383. I would like to thank lAS for its hospitality. 

1. HEIGHTS OF ARITHMETIC VARIETIES 

( 1.1 ) Let X be a complex variety of dimension d, and let L = (L, II . II) be 
a hermitian line bundle on X. We say that the metric on L is smooth if, for 
any (analytic) morphism J from the disc ][}d = {z E Cd : Izl < I} to X, the 
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pull-back metric on ;(L) is smooth. For example, if X is a subvariety of a 
complex manifold and L is the restriction of a smoothly metrized hermitian 
line on the manifold, then the metric on L is smooth. In this section we always 
assume that all hermitian line bundles we deal with have smooth metrics. 

For a hermitian line bundle L on X, we say that L is semipositive if for 
any morphism f : HJ)d --+ X the curvature form c~ (; (L)) is semipositive, 
where c~(;(L)) is a (1,1)-form on HJ)d defined to be ~110gll/ll, where I is an 
invertible section of ; (L) on HJ)d • 

(1.2) By an arithmetic variety X of dimension d , we mean an integral scheme 
of dimension d such that the structure morphism 7t : X --+ spec Z is projective 
and flat. A hermitian line bundle L = (L, II . II) on X is defined to be a 
line bundle L on X with a hermitian metric II· II on Lc = L ®z C, the 
pull-back of L on Xc = X ®specz specC, such that II· II is invariant under 
the complex conjugation of Xc. We say that L is relatively semipositive if 
(1) L is relatively semipositive: for any closed curve C on any fiber of X 
over specZ, the degree deg(Lld of L on C is nonnegative; and (2) II· II is 
semipositive: for any finite morphism f: HJ)d --+ X , the curvature form c~ (; L) 
is semipositive pointwise. 

Let X be an arithmetic variety, let L be a hermitian line bundle on X, and 
let f: X --+ X be a generic resolution of singularities of X. This means that 
f is a birational morphism from an arithmetic variety X with regular generic 
fiber over specZ. By the Hironaka theorem [Hi], such a resolution always 
exists. Then ;(L) is a hermitian line bundle (with smooth metric) on X, and 
the number c, (f* L)d = c, (f* L/ is defined as in [GS1], [F2]. One can prove 
that this number does not depend on the choice of f. In fact if 1; : Xj --+ X 
( i = 1 , 2 ) are two resolutions, then we can find a third resolution 

g : X --+ X, x X X2• 

Using the projection formula, one can prove that both c, (/;* L)d coincide with 
c, (; L)d , where f is the canonical morphism from X to X. We call this 
number the height of X with respect to L, and denote it by c, (L)d . 

(1.3) The main aim of this section is to compute the leading terms of "Hilbert 
functions". We fix the following notation. Let V be a real vector space with 
a norm II· II , and let r be a lattice of V. Then there is a unique invariant 
measure on V such that the volume of the unit ball {v E V : IIv II :s; I} is 1. 
We define that 

XII.II(r) = -logvol(V/r). 
Let X be an arithmetic variety, let L be a hermitian line bundle, and let 1I·lIsup 
denote the supremum norm on r(XR' L lR ) : 

II/lIsup = sup 11/1I(x). 
xEX(C) 

Theorem (1.4). Let X be an arithmetic variety of dimension d, and let Land 
N be two hermitian line bundle on X such that LQ is ample and L is relatively 
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semi positive. Then as n -+ 00, we have 
d 

-®n n L d d Xsup(r(X, L ® N)) = d! cl ( ) + o(n ). 

We start from the following result of Gillet and Soule: 
Lemma (l.S). The assertion (1.4) is true if the following conditions are verified: 

(1) X has a regular generic fiber; 
(2) L is relatively ample; 
(3) c~ (L) is positive pointwise. 

Proof. Assume conditions are verified. Let g be a Kahler metric on Xc with 
Kahlerform c~ (L). Let r(XR' ~)L2 denote the space r(XR' Lx) with the L2_ 
norm induced by g on Xc' By an arithmetic Riemann-Roch theorem proved 
by Gillet and Soule and by an estimate of Bismut and Vasserot on analytic 
torsions, we have that 

d 
L®n n L d d-l XL2(r(X, ®N))= d!c l ( ) +O(n logn). 

The assertion of the theorem follows from this estimate and the following in-
equality of Gromov: there is a constant c> 0 such that c- l ll / ll L2 ~ 1I/IIsup ~ 
cndll/llL2 for all I in r(Xc' L~n ® N). See [GS2], [F2], and [BV] for details. 

Lemma (1.6). Let J; : Xl -+ X and 1; : X2 -+ X be two projective morphisms 
of arithmetic varieties. Let Ll ' L2 ' M be hermitian line bundles on XI ' X2 ' X 
respectively, with LIQ and L2Q ample. There is a constant c such that the 
following condition is verified. For any n l ~ 0, n2 ~ 0 there is a set of linear 
independent elements of maximal rank of r(J;*L~n. ® 1;*L~n2 ® M) such that 
each element has norm ~ cmax(n. ,n2) . 
Proof. We consider the special case that M = Ox only; the general case follows 
from the same approach. Since the algebra 

r(L *)Q = E9 r(J;*L~~' ® 1;*L~~2) 

is finitely generated over Q, there are finitely many elements Sl' ... ,sk of 
r(L *) of multidegree (dl , e l ), ... , (dk , ek ) which generate r(L *)Q' Replac-
ing them by some integral multiple, we may assume that all of them are integral. 
Now for any n l > 0, n2 > 0, the group r(J;*L~n. ® 1;*L~n2) contains the fol-
lowing set of elements of maximal rank: 

M = {I = I1so.; : a· > 0, "" a.d. = nl, "" a·e· = n2}' n. ,n2 a I I - W I I W I I 

iii 

Let c = max·lls·1I . For each I E Mn n ,we have 
I I sup 0.., 2 

This proves the lemma. 
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Lemma (1.7). Let V be a real vector space of dimension d with a norm 11·11, 
and let r be a lattice in V. For each 1 ::; i ::; d , let Air) denote the smallest 
number A such that there exist i-independent elements of r with norm ::; A. 
Let V' be a subspace of V of dimension d', and let r' be a lattice in V' which 
is contained in r. Then 

XII.II(r) - XII.II(r') ~ -log(d!) - (d - d')log(!Ad(r)). 
Proof. By Minkowski's theorem we have the following estimate: 

2d d 
d! vol(r) ::; Al (r) ... Ad(r) ::; 2 vol(r). 

Since Ai(r) ::; Ai(r') for 1 ::; i ::; d', it follows that 

d' vol(r) ::; 2~ Al (r) ... Ad(r) 

d' r' r' d d' ::; 2~ Al ( ) ... Ad' ( )Ad(r)-

d d' 
::; d! vol(r') ( Ad;r)) -

The lemma follows by taking -log on both sides. 

( 1.8) Proof of (1.4). For simplicity of notation, we just consider the case that 
N = Ox; the general case follows from the the same approach. First of all we 
have the following setting: 

(A) Let f: X ~ X be a generic resolution of singularities of X, and let M 
be a hermitian line bundle on X such that M is very ample and the curvature 
c~ (M) is positive pointwise. Let Sl be a nonzero section of M, and let c i 
denote its norm. 

(B) Choo'se n l sufficiently large such that 

r(f*L~1 ®M~I) = r(L~nl ®f*(M~)))::j:. O. 

Since for any line bundle B on X one has r(BQ) = r(B) ®z Q, it follows that 
there is a nonzero section S2 of the hermitian line bundle f* L n l ® x;r I . !--et 
c2 denote the norm of S2. 

(C) For any x E X(q and any function a on f-I(x) , let 11011 denote 
sUPYErl(x) lol(y). Then f.(Ox) becomes a metrized sheaf on X. Let F de-
note the coherent sheaf Hom(f. (Ox), Ox), For a sufficiently large positive 
number n2 , there is a nonzero section S3 of FQ ® L~n2 . Replacing S3 by ms3 , 

where m is a positive integer, we may assume that S3 is an integral section. 
Let c3 denote the norm of S3' 

(D) Let c4 be the constants defined in (1.6) for (L, M) . 
Let n3 > n) + n2 and n4 be any two positive integers, and let i be a nonneg-

ative integer between 0 and n3 - 1. We want to estimate Xsup(r(L ®n3n.+i)) . 
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The multiplication by S~4 gives a map 

a: ~ = r(L®n3n4+i) -+ li2 = r(T L®n3n4+i ® Mn4) 

with norm bounded by C~4, where ~ is considered a subspace of r(j L®n3n4+i). 
The multiplication by S;4 gives a map 

r(f* L®(n3-n1-n2 )n4+i ® M®n4) -+ r(f L®(n3-n2 )n4+i) 

with norm bounded by C;4 . The multiplication by S;4 gives a map 

ru* L®(n3-n2)n4+i) = r(L®(n3-n2)n4+i ® f.(Ox)) -+ r(L®n3n4+i) 

with norm bounded by C;4. The composition of these two morphisms gives a 
map 

p: JJ = r(f L®(n3-n1-n2)n4+i ® M®n4) -+ ~ = r(L®n3n4+i) 

with norm bounded by C;4 C;4 . 
Applying (1.7) to (r, 1") = (li2, a(~)) and (r, 1") = (~ , P(JJ)) , we ob-

tain that 
Xsup(~) ::::; Xsup(a(~)) + n4 dimQ(~Q) 10gcI 

(1.8.1) ::::; Xsup(V2) + 10gdimQ(li2Q)! + n4 dimQ(~Q) logcl 

+ n3(n4 + 1) dimQ coker(a)Q log ~ , 
and 

Xsup(~) ~ Xsup(P(JJ)) -logdimQ(~Q)! - n3n4 dimQ coker(p) log ~ 
(1.8.2) ~ Xsup(JJ) - n4 dimQ(~Q) log(c2c3) -logdimQ(~Q)! 

- n3 (n4 + 1) dimQ coker(p) log ~. 
By Lemma (1.5), we have the following estimate: 

.d 
( _ n4 (f-* ®n3 - )d d) Xsup li2) - d! CI L ® M + 0n3 (n4 

(n3 n4 + i)d L d d-I d d 
d! CI() + O(n3 n4) + On3(n4) ' 

( 1.8.3) 

where O(x) denotes a quantity such that O(x)x- I is bounded independently 
on n3 , n4 , and on (x) denotes a quantity such that, for any fixed n3 , the 

3 

number on (x)x- I tends to 0 as x tends to infinity. Similarly we have 
3 

(n3 n4 + i)d L d d-I d d (1.8.4) Xsup (V3)= d! cI() +O(n3 n4)+on3(n4)· 

Furthermore, by the Riemann-Roch theorem for algebraic varieties, we have 
for i = 1 , 2, 3 that 

( 1.8.5) 



POSITIVE LINE BUNDLES ON ARITHMETIC VARIETIES 193 

Bringing (1.8.3)-(1.8.5) to (1.8.1) and (1.8.2), we obtain that 

-n3n4+i (n3n4 + i)d L d d d-l d 
Xsup(r(L ))= d! cl () +O(n4 n3 )+on/n4 )· 

For any E > 0, we may choose n3 such that O(n~n~-l) is bounded by ~n~n~ . 
Then for n4 sufficiently large, 0n3 (n~) is also bounded by ~n~ n~ . This proves 
that, for sufficiently large n, 

I ®n nd - dl d Xsup(r(L )) - d! c l (L) :::; En . 

The theorem follows. 

Applying the Minkowski theorem we obtain the following result for small 
sections: 

Corollary (1.9). Let X be an arithmetic variety, and let L be a hermitian line 
bundle on X . Assume that LQ is ample and L is relatively semipositive. Then 
for any E > 0 and any n sufficiently large, there is a nonzero section I of L ®n 
such that 

1I/11sup = sup 11111 (x) < exp (nE - nC I (L):_l) . 
xEX(C) dC l (LQ) 

(1.10) As in [GS], we may generalize (1.4) to compute the leading term of 
Xsup(r(F (8) SnE)) , where E and F are two hermitian vector bundles on X 
with EQ ample and E is relatively semipositive. We omit details here. 

2. LIFTING SECTIONS WITH SMALL NORMS ON COMPLEX MANIFOLDS 

(2.1) Let X be a compact complex manifold of dimension d, and let L be 
a hermitian line bundle with positive curvature form c; (L); then Kodaira's 
theorem asserts that L is ample. In particular, for any subvariety Y of X and 
for n sufficiently large, the map 

r(X, L ®n) --+ r(Y , L ®n) 

is surjective. In this section we want to prove a "metrized version" of this fact. 

Theorem (2.2). Let X, Y, L be assumed as in (2.1), let I; , ... ,I; be sections 
of LI y, and let E be a positive number. Then for any s-tuple of nonnegative 
integers a = (ai' ... ,as) with lal = Lai sufficiently large, there is a section 
I of L ®Iol such that 

and 
II /l1 x ,sup :::; e101f II 1I(lli,sup' 

(2.3) Our proof is based on a method used by Tian [T] in the proof of the 
density of Fubini-Study metrics, namely Hormander's L 2 -estimate. We need 
some notation. Let X be a compact complex manifold with a Kahler metric g, 
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and let L be a hermitian line bundle on X. We denote by ( , ) the induced 
hermitian products on coo(.Q~) and on Coo(L®.Q~),andby 11·11, (, )L2, 
and lI'II L 2 the corresponding norm, L2-product, and L2-norm (with respect to 
the volume form dx on X induced by g) respectively. Locally near a point 
p of X, we may find coordinates z 1 ' . .. , z d such that 

g (a~/ a~j) = iJi,j + O(z\ 

If I is a nonzero section of L we define an endomorphism N(L) of .Q~1 by 
the matrix (-a za; z log 11/11). For a function IjI on X, let N ( IjI) denote the 

I } 

endomorphism N ( O( IjI)) = (- a ~2a"'Z. ) ,where O( IjI) is the trivial line bundle 0 
I } 

with metric 1·lexp(-IjI). 
Lemma (2.4). Let Tx be the holomorphic tangent bundle on X with the hermi-
tian metric induced by g. Let c be a positive number such that N(L®det T~'o) ~ 
c; this mean~ that for any po;nt x of X and any element a in .Q~,lx' the fol-
lowing inequality is verified: 

(N(L ® det Tx)a, a) ~ c(a, a). 
00 1 0 -Then for any wEe (L ® .Q x' ) such that a W = 0, there is an element u in 

Coo(L) such that au = w and lIull~2 ~ illwll~2. 
Proof. By the Bochner-Kodaira formula, for any a in Coo(L ®.Q~ 1) one has 
the following estimate: 

(2.4.1 ) 
see [BY] for details. 

Let v be any element in Coo(L®Q~' 1). Write v = v 1 +v2 such that aV1 = 0 
and such that v2 is orthogonal to ker(a). It follows that a·v2 = 0, where a· 
is the adjoint of a with respect to II· IIL2 . Applying (2.4.1) we obtain that 

2 2 I(V,W) L21 =1(VI ,W}L21 
2 2 1 2 

~ IIVIIIL211wIIL2 ~ -llwIIL2(L\avl ' VI) c 
1 2 -. 2 I 2 -. 2 = -lIwlI L2l1a vdlL2 = -llw ll L 2l1a v1l L2. c c 

Applying the Hahn-Banach theorem to the linear functional on the im (a·) In 

L2(L) : 
a·v -+ (v, W)L2, 

we obtain an element u E L2(L) with lIull~2 ~ ~lIwll~2 , such that 
(a·v, U}L2 = (v, W)L2 

for any v. This implies that au = w. Since L\au = a*w is smooth, it follows 
that u is a smooth section of L. This completes the proof of the lemma. 

We have the following formal generalization: 



POSITIVE LINE BUNDLES ON ARITHMETIC VARIETIES 195 

Lemma (2.5). Let (X, g) be a compact Kahler manifold, let L be a hermitian 
line bundle, let J.l be a measure on X, and let c be a constant. Assume that the 
following conditions are verified: there is a decreasing sequence {fllj} of smooth 
functions on X such that e -'II, dx converges to J.l, and for each i, 

1 - 10 2N(fII) + N(L) + N(det Tx· ) 2: c. 

Then for any a-closed form w in COO (L ® n~ I) with Ilw II L 2(Jl) < 00, there is 
a u in Coo(L) such that au = wand Ilulli2(Jl) ::::; illwlli2(Jl)' where 1I·IIL 2(Jl) 
is the L 2 norm with respect to the measure J.l. 
Proof. For any smooth function fII on X, let L(fII) denote the line bundle L 
with hermitian metric 11·11'11 = 11·IILe-'II. Applying (2.4) to L(-!fII) , we obtain 
a sequence {uJ of elements in Coo(L) such that aU j = W and lIujll~, ::::; 
illwll~,. Write u j = u1 + v j ' where Vj is in r(L). We claim that {vJ is a 
bounded subset of r( L). Actually for any fIIj , let II· 11'11, denote the L 2 - norm 
with respect to measure e-'II'dx; then 

12 2 212 2 
cIIWIIL2(Jl) 2: Ilujll'll, 2: lIujll'll) 2: 211Vjll'lll -llulll'll). 

Our claim follows. Since r(L) is of finite dimension, replacing {vJ by a 
subsequence we may assume that Vj converges to an element v in r(L). Let 
u denote u1 + V; then au = w. Since for any j 2: i we have 

2 2 1 2 lIujll'll, ::::; Ilujll'llj ::::; cllwIlL2(Jl) ' 

it follows that 
2 1 2 Ilull'll, ::::; cllwIIL2(Jl)" 

This implies that II ulli2(Jl) ::::; i IIw II~ 2(Jl)" The proof of the lemma is complete. 

Lemma (2.6). Let L be a hermitian line bundle on a compact complex manifold 
such that c~ (L) is positive. Let Y be a reduced subvariety of X, let V be 
a neighborhood of Y in X, and let E be a positive number. Then for any n 
sufficiently large, and any section Iv of L 0n on V, there is a section I of L 0n 

such that lly = lvly and IIIllsup::::; enflllvilsup. 
Proof. Let g be the metric on X induced by the Kahler form c; (L). Let 
f : X --> X be the blow-up of X at Y, and let E denote the exceptional 
divisor. For sufficiently large m, the bundle I y ® L 0m is generated by global 
sections V = r( I y ® L 0m) , where I y is the ideal sheaf of Y. Let i denote 
the canonical morphism from X to X x P( V). Then i* ( O( 1 )) = f* L 0m ( - E) . 
Choose a basis for V. This gives a Fubini-Study metric on O( 1) with positive 
curvature form. Choose a metric II· liE on O(E) such that II· II~ II . liE on 
j* L 0m (-E) agrees with the pull-back of the Fubini-Study metric. This shows 
that (O( -E), II . liE) has curvature no less than -me; (L). Let p denote the 
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function lilliE' where 1 is the canonical section of O(E). Then p is a distance 
function of Y. On X-Y we have N(-logp) = N(O(E) , II·IIE). SO N(logp) 
is bounded below by -mN(L) on X. 

One can find a decreasing sequence of smooth functions {lfIi} which con-
verges to logp, such that the set {N(lfIi)} is uniformly bounded below in i 
and on X. Actually, let f be any smooth function such that (i) /' (x) 2:: 0 
for all x; (ii) f(x) = x for x > 0 and f(x) = -0.5 for x < -1. Then the 
sequence {Ifli = f(log P + i) - i} will satisfy our requirements. In fact (1) since 
f is constant for x < -1 it follows that lfIi is defined over whole X; (2) since 
/ ~ 1, it follows that the sequence {IfIJ is decreasing; (3) since f(x) = x for 
all x> 0, it follows that lfIi is convergent to logp; (4) since 0 ~ / ~ 1 and 
/' 2:: 0 , it follows that 

N(lfIk) = (a~::~j) = /'(logp + k) (a ~o:p a !~p) + /(logp + i)N(logp) 

2:: - mN(L). 

Let c1 be a constant such that N(L) > c1 pointwise, and let d denote the 
dimension of X . It follows that for sufficiently large n, the following inequality 
holds uniformly in i and on X: 

(2.6.1) (d + !)N(lfIi) + nN(L) + N(det T~'O) 2:: ci . 

Let n be any positive number such that (2.6.1) holds, and let lu be a section 
of L ®n on V. Let () be a smooth function on X which is 0 out of V and 
which is 1 on a neighborhood V' of Y. Let w denote 8«()lu ). Applying 
(2.5) we obtain a smooth section I' (which may not be holomorphic) such that 
81' = wand 
(2.6.2) 

f IIi' 112 p -(2d+l) dx ~! f IIw 112 P -(2d+l) dx 
lx c1 lx 

2 
=! f 118()112 II/u 112 p -(2d+l) dx ~ IIlulisup f 118()1I2 p -(2d+I) dx 

ci lx c1 lu-u' 
2 = C2 II/u II sup , 

wherec2 is a positive constant. 
Let I = ()lu - I'. Since 81 = 0, it follows that 1 is holomorphic. Since 

J 11/'112 p-(2d+l)dx is finite, it follows that l'I y = 0, i.e., lly = luly. To com-
plete the proof of the lemma, we need to estimate IIlllsup. We estimate IIlllL2 
first. By (2.6.2), one has 

2 2, 2 
IIlIIL2 ~ 211()lu11L2 + 211/11L2 

(2.6.3) ~ 211()II~uplllull~up + 2I1plI~:p+' ! 1Ii'1I2 p -(2d+l)dx ~ c311/ull~up' 
where c3 is a positive constant. 
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The lemma follows from (2.6.3) and the following inequality of Gromov: 
2 2d 2 II I II sup ::; c4n 1I/11L2, 

where c4 is a positive constant. See [GS2] for the proof of this inequality. 

(2.7) Proof of (2.2). Let no be a positive integer such that all sections of 
L ®n on Y can be extended to sections on X. Without loss of generality we 
may assume that all Ii are nonzero. For each s-tuple P = (PI' ... ,Ps ) of 
nonnegative integers with no ::; IPI < 2no' let Ip be a fixed section of L®n 

such that I ply = I1i I/i • Let U be a neighborhood of Y in X such that 

IIlplulisup ::; e! II II/:illsup' 
Now any section I1/;a i with lal ~ 2no can be written as a product 

I1 j(I1k I~Yjk) with no ::; IYjl < 2no' where Yj = (Yjl ' ... ) are s-tuples of non-
negative integers. Applying (2.6) to the section I1j Iy lu when lal is sufficiently 

} 

large, we obtain a section I of L ® 10.1 on X such that II y = I1 r i and 

¥ II/lIsup ::; e II Iy.lu . } 
J sup 

This completes the proof of the theorem. 

::; e lalf II III; 1I;~p' 
i 

3. AMPLE LINE BUNDLES WITH SEMIAMPLE METRICS 

(3.1) Let K be an algebraically closednormed field as in the appendix. Let 
X be a projective variety on spec K , and let L be a line bundle on X with a 
continuous and bounded metric as defined in (a.2). Assume that L is ample; 
then for sufficiently large n the morphism 

<Pn : r(L ®n) -+ L ®n 

is surjective, where r(L ®n) is considered as a free vector bundle on X. The 
supremum norm on r( L ®n) induces a quotient norm on L ®n , whose n-th root 
gives a norm 1I-lIn,r on L. . 

The metrized line bundle (L, II ,11) is said to be a semiample metrized line 
bundle, if lim sup" converges to 1 uniformly on X _ Equivalently, for any 
€ > 0, there is a positive integer n, such that for any point x E X(K) , there 
is a nonzero section I of L®n with 1I/llsup::; enfll/ll(x). 

(3.2) We fix the following assumptions and notation: 
- Let Ko be lR., C, or a complete discrete valuation field, and let K denote 

an algebraic closure of Ko' and let Ks denote the separable closure of Ko in 
K. 

- Let Xo be a projective variety defined over Ko ' and let Yo be a subvariety 
of Xo' Denote by X the variety Xo x SpecKo specK, and denote by Y the 
subvariety Yo x SpecKo specK of X. 
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- Let L be an ample line bundle on Xo with a Gal(Ks/ Ko) invariant and 
semiample metric over X(K). 

- Let M be a coherent sheaf on Xo such that Mly: is also torsion free. 
o 

Fix bounded Gal(Ks/ Ko) invariant metrics on M and My: as in (a.3). 
o 

Theorem (3.3). Let € be a positive number. Let I~, ... ,I; be s sections of 
Lly: and m a section of Mly:· Then for any s-tuple 0 = (01 , ... ,os) of 

o 0 

nonnegative integers with 101 = ~ OJ sufficiently large, there is a section I of 
L ®Ial ® M on Xo such that 

and 
II /l1 sup ,x ::; e 1a1f IImllsup, y II 1I(1I;~p, y' 

j 

Proof. We denote by P(L, M) the assertion of the theorem, and denote by 
peL) the following assertion: Under the assumption of the theorem for any 
€ > 0 there is a positive integer n and sections II' ... ,Is of L ®n such that 
Ijly = I;n and II/illsup::; enfll/;lI;up' We have the following principles: 

(A) Let Ln = (L, II· lin) be a sequence of metrized line bundles such that 
metrics are invariant under Gal(K/ Ko)' If " converges uniformly to 1 on 
X(K) and P(Ln, M) holds for all n, then P(L, M) holds. This is easy to 
check by definition. 

(B) Let N be any positive number. If P(L®N, M) holds for all M, then 
pel, M) holds for all M. In fact, for a fixed M, P(L®N, L®i ® M) (i = 
0, ... ,N - 1) together imply peL, M). 

(C) pel) implies P(L, M). For any € > 0, by P(L) , we can find a 
positive integer n and sections II' ... ,Is of L®n such that Ijly = I;n and 
Il/jllsup ::; e ~ 1I/;II;up' For sufficiently large no' and for any (s+ 1 )-tuple of integers 
(P, j) = (PI' ... , Ps ' j) with 0 ::; Pj < nand 1 ::; j ::; s, there are sections 
mp . of L ®(non+IPIl ®M on X such that mp ·I y = ml,nno TI t P; • Let c denote 

,J ,J J I 

the constant 
I limp )Isup 

maxog I IP 

P,j IImllsupllljll=~ TI II/ills~p 
Then any section m TIi I;a; with 101 sufficiently large can be written as 
(ml;nnO TI;l/) TI;l;y;n with Pi < n for all i. Let I = mp,j TIl;;. Then 
Ily=mTI/;a; and 

c+!l? II I a· II I II sup ::; e Ilmllsup IIlills~p' 

The assertion follows for 101 > 2c/€ . 
(D) Let i: X ----> X' be an embedding from X to another projective variety 

X' over spec K , and let L' be a semiample metrized line bundle on X'. If 
i* L' = L, then pel') implies P(L). This is clear by definition. 
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Fix Land M as in the theorem. Since L is semiample metrized, apply-
ing (A) to {Ln r = (L, 1I'lIn r)}' it suffices to prove P(Ln r> M) for all n. 
Applying (B) f~r N = n and ~etrized line bundles Ln,r> ~e need only prove 
P(L:} , M) for all n. Applying (C) it suffices to prove all P(L:n). Each L:,nr 
has the property that the quotient metric by the map 

r(L!i!Jn ) --+ L!il;1n n,r n,r 

coincides with the metric lI'II~,r' So we are reduced to proving P(L) provided 
that L is very ample and that the metric on L is induced by the quotient metric 
via map Q x : V = r( L) --+ L. Let i: X --+ JP( V) denote the embedding of X 
to the projective space associated to V induced by the morphism V --+ L. The 
canonical bundle O( 1) has a quotient metric induced by the surjective mor-
phism V --+ O( 1). It is easy to see that i* (O( 1)) is isometric to L. Applying 
(D) we are reduced to proving the following lemma. 

Lemma (3.4). Let Va be a finite-dimensional vector space over Ko with a K 
norm as in (a. 1). On the projective space JP( Va), let O( 1) denote the line bundle 
0(1) with the quotient metric 11'11 0 (1) via the map V --+ 0(1), where V is 
considered as a free vector bundle on JP( V). Then the assertion P( O( 1)) is true. 
Proof. We consider archimedean K first. By principle (A), and by approxi-
mating 11·11 by norms 1I'lIn on V such that II· lin is smooth on V - {O} and 
invariant under complex conjugation if Ko = lR, we may assume that II· II is 
smooth on V - {O}. It follows that the induced metric on 0(1) is smooth. 
We claim that c~ (O( 1)) is semipositive pointwise. If it is not true, then there 
is a point p and a holomorphic vector v at p such that c; ( O( 1 )) (iv /\ v) < 0 . 
In other words, there is an analytic morphism f: Jl)) --+ JP( V) and an invertible 
section 10 of L = ](0(1)) such that logilioll = alzl 2 + 0(z3), where a is 
a positive number. Now any section of L on Jl)) with norm 1 at 0 can be 
written as I = flo with a holomorphic function f which has norm 1 at O. 
We have the estimate 

[I 27ri() t 27ri() 1 2 10 log 11/1I(pe )dO = 10 log Il/oll(pe )dO ~ "2ap , 

for p > 0 sufficiently small. It follows that 1I/IIsup > 11111(0). This contradicts 
the fact from the construction of II . 11 0 (1) that there is a nonzero section s 
in r(0(1)) = V such that IIsll attains its maximal value at p. This proves 
that c~ (O( I)) is semipositive. Let II· II' be any metric on O( 1) with positive 
curvature form. For example, fixing any basis of Vo over Ko' the induced 
Fubini-Studyon 0(1) has positive curvature. Now 11'11 0 (1) is approximated by 

II . lin = II . 11~(1111 . lid. By principle (A), assertions P( O( I), II . lin) all together 
imply P( O( I)). But (O( 1 ), II . II n) has positive curvature, so the assertion 
P(O(I), II· lin) follows from Theorem (2.2) if Ko = C. If Ko = lR and I is the 
section of a power of L chosen as in Theorem (2.2) on Xc' then t(l + al) is 
a section defined on lR, which has the same image in Y as I, and whose norm 
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is not bigger than that of I ,where (J denotes the complex conjugation on Xc. 
This proves P( D( 1)) in the archimedean case. 

It remains to consider the case that K is nonarchimedean. Let RK denote 
the valuation ring of K . Let V denote the set {v E V , II v II :::; I} . Then V is 
a module over R K of rank d = dim V , and II· II is induced by this module. 
Notice that V may not be finitely generated. Let <l> denote the set of all finitely 
generated sub modules of V of rank d which are stable under Gal(Kj Ko). For 
each W in <l>, let II· II W denote the norm on V induced by W: 

IIvllw = inf {Ial- I : av E W}. 
aEK' 

Since UWE<IlW = V and V is finite dimensional, one may find a sequence Wn 
in <l> such that 11·11 W converges uniformly to 11·11; the induced metric on O( 1) 
by 11·11 W therefore c~nverges uniformly to the induced metric by 11·11 . Applying 

n 

principle (A), we may assume that V is finitely generated. It follows that there 
is a finite extension E of Ko which is stable under Gal(Ksl Ko) and a finitely 
generated (so free) RE-module WE such that WE ®R RK is isomorphic to V. _ E 

Let P denote P( WE). Then one can show that the metric 11·11 o( I) is induced by 
model (p, 0(1)), where 0(1) denotes the line bundle 0.0(1). Now P(D(I)) 
follows easily: Let Y be any subvariety of P = P( V) defined over Ko. Let i' 
denote the Zariski closure of Y in Jli>. Then for sufficiently large n, the map 

reJli>, O(n)) -t rei', O(n)) 

is surjective. This just means that, in the map 

r(p, D(n)) -t rey, D(n)) , 

the induced quotient norm agrees with the original norm on the target. Now for 
any section l' of 0(1) in Y defined over K o' we may find a section II in O(n) 
defined over E such that II has the image l'n on Y and 1111 II sup X = 1I1'1I=up y. 
Let I denote the following section of O(nde): 

II (J/~ , 

aEGal(E/Ko) 

where d = [E : KoJ and e is the inseparable index of Ko in E. Then I 

is defined on Ko which has image l'dne in Y, and II/l1supx = 1I1'1I~u';: y. The 
assertion P( O( 1)) holds. This completes the proof of the lemma. 

Theorem (3.5). Let X be a projective variety defined over K, and let L be a 
metrized line bundle on X. Assume that the following conditions are verified. 

(1) If K is archimedean, there is an embedding i from X to a compact 
complex manifold, and a hermitian line bundle M on Y with M ample and c; (M) semipositive, such that i* M is isometric to L. 

(2) If K is nonarchimedean, some positive power of L is induced by a model 
(X, L) such that L is ample and L is semipositive on the special fiber of X. 

Then L is semiample metrized. 
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Proof. We consider the case that K is archimedean first. Since the ampleness 
for 111 already implies the ampleness for L. We may assume that X = Y and 
111 = L; i.e., X is smooth and c~ (L) is semipositive. Since L is ample, there 
is a hermitian metric II· II' on L with positive curvature form, for example 
the pullback of some Fubini-Study metric of O( 1) bundle from some IPn by 
an embedding by some power of L. Let Ln denote (L, II· lin ) ,where II· lin = 

II·III-~ II·II'~ and 11·11 is the metric on L. Then Ln has positive curvature 
and II· lin converges uniformly to II· II . Since ampleness for all Ln will imply 
the ampleness for L, we may assume that L has positive curvature. Let f be 
any positive number and p be any point of X. Applying Theorem (2.2), there 
is a positive integer np and a nonzero section Ip of the hermitian line bundle 

L®np such that IIlpllsup :5 e~lIlpll(p). Let Up be a neighborhood of p in X 
such that for any q in Up we have IIlpllsup:5 enpfil/pll(q). Since X is compact, 
we can find p . . . p such that U . . . U cover X Let n = n ... n 

1 ' 's PI ' 'P, • PI P, • 
Then for any point p in X, we can find a nonzero section I· of L ®n whose 
supremum norm is bounded by efn times the norm of I at p. It follows that 
the quotient norm induced by the map r(L®n) -+ L is bounded by e fn times 
the norm on L ®n . This shows that L is semiample metrized. 

It remains to consider the case that K is nonarchimedean. Replacing L by 
some positive power we may assume that it is induced by a model (X, L). 
Since X is projective, there is an ample line bundle Sf on X. For any fixed 
positive integer n l , the bundle L ®nl ® M is positive on the special fiber. By 
the Nakai-Moishezon theorem L ®nl ® M is ample on the special fiber, so on 
X. Let no be a positive integer such that L®nlno ® M®no is very ample. Let 
Y be the metrized line bundle on X induced by the model (X, Sf). Since 
over X the morphism 

r(L®nonl ® M®nO) -+ L®nonl ® M®no 

is surjective, the quotient metric of the map 
r(L®nonl ® y®nO) -+ L®nonl ® 1I1®no 

coincides with the original metric on the target bundle. In particular, for any 
point p of X, there is a section I; such that 11/;lIsup = 11/;II(p). 

Since L is ample, there is a positive integer n2 such that L n2 ® M®-I is 
very ample. Let SI' ... ,sm be elements of r(L®n2 ® Sf®-I) such that they 
form a basis for r(L®n2 ® M®-I). Write dives;) = H; + Y;, where H; are 
horizontal and Y; are vertical. Then njlHjl = (2). Let c1 be a number such 
that c1 Xk - Y; (1 :5 i :5 s) are all effective, where Xk denotes the special fiber 
of X. Then we have 

i~fmFlisill(p) ~ exp(-c l )· 

Let c2 denote the number logmaxj IIsjllsup. Now for any point p on X, there 
is an io such that the nonzero section I = I' S/~O of L ®(n l +n2 )nO has the property p p 0 
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that 
IIlplisup ::; eno(C2+clllllpll(p). 

For any E > 0, fix n2 , c1 ' c2 as above. Let N = (nl + n2 )nO • Then for n l , no 
sufficiently large, the quotient metric of the map 

r(L®N) ---t L®N 

is bounded by efN times the original metric on L®N. This proves that L is 
semiample metrized. 

We conclude the section by asking the following question: 

(3.6) Question. Let X be a projective complex variety, and let L be a hermi-
tian line bundle on X with smooth metric. Assume that L is ample and c~ (L) 
is semipositive. Is L semi ample metrized? 

4. AN ARITHMETIC NAKAI-MOISHEZON THEOREM 

(4.1) Let S = {oo, 2, . .. , } be the set of all places of lQ. For each pES, 
let I· Ip denote the valuation on lQ such that Iplp = p -I if p i= 00 and I· 100 
is the ordinary absolute valuation. Let lQp denote the completion of lQ under 
I . Ip , and let Qp be a fixed algebraic closure of lQp . 

Let X be an irreducible variety defined over lQ. By an adelic metrized 
line bundle L we mean a line bundle L on X and a collection of metrics 
11·11 = {11'lIp' pES}, where each 1I·llp is a (Weil) metric on Lp = L&JQQp which 
is invariant under the Galois group Gal(Qp/lQp)' and such that the following 
conditions are verified. There is a Zariski open subset U = spec Z[ ~] of spec Z , 
a projective model X on U, and a line bundle L on X extending L, such 
that, on each p E U , the metric II· lip is induced by the model 

(Xp ' Lp) = (X Xu specZp ' L &JZ[~l Zp). 

We say a metrized line bundle L = (L, II . II) is semiample metrized, if, for 
each PES, the metrized line bundle (Lp ' 11'llp) on Xp is semiample metrized. 
The main result of this section is the following theorem: 

Theorem (4.2). Let X be an irreducible variety defined over lQ, and let L, AI 
be two ade/ic metrized line bundles on X, such that L is semiample metrized. 
Assume that, for each irreducible subvariety Y of X , there exist a positive integer 
n and a nontrivial strictly effective section I of L ®n on Y. This means that 
1I/IIp ::; 1 for p i= 00 and 11/1100 < 1. Let t(X, L ®n &J M) denote the subgroup 
of r(X , L ®n &J M) consisting of sections I with IIlllp < 1 for all p i= 00. Then 
for n suffiCiently large, there is a basis of t(X , L ®n &J M) consisting of strictly 
effective sections. 

(4.3) Let V be a lQ vector space. By a global norm 11·11 we mean a collection 
{II, lip} of norms on the collection {~ = V &JQ lQp : pES} respectively. We 
always assume that 
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(1) II· lip is nonarchimedean if p =f. 00 (i.e., IIx + Yllp ~ max(lIxllp' IIYllp) 
for all x, Y in ~); 

(2) there is a nonzero integer n and a free module v" over Z[*] extending 
V such that II· lip is induced by v" for all p coprime with n. 

In this way v = {x E V, IIxlip ~ 1 for all p =f. oo} 

is a lattice of Voo' Usually for pin, II· lip does not coincide with metric II'II~ 
induced by module V ®z Zp , but we have the following estimate: 

II . lip ~ II 'II~ ~ pll . lip. 
Let /leV) (resp. A(V» denote the smallest number r such that the ball B(r) 
of radius r contains a basis (resp. of a subset of full rank) of V. Then one 
has the following estimate: 

(4.3.1) A(V) ~ /leV) ~ dimQ VA(V). 

See 1.7 of [ZI] for a proof. 
With notation as in (4.2), let r(L) denote the Q-vector space r(L) with 

global norm 11·11 = {II, lip} ,where II· lip is the supremum norm of L ®Q Qp on 
X(Qp)' Theorem (4.2) just claims that /l(r(L~!m·®Sf)) < 1 for n »0. Since 
L is ample, this is equivalent to /l(r(L'iM ® Sf» < e-nf for some to > 0, to 
A(r(L®n ® Sf» < e-nf , and finally to A(r(L®n ® Sf» < 1. 

Lemma (4.4). Let V be a Q vector space with a global norm II· II , and let 

o = Yo c V; c ... C v,,+1 = V 

be a filtration for V. Assume that, for each i, ~ has a global norm. It induces 
a quotient norm on ~/~_I' Notice that the norm on v" + I and the norm on V 
may not be same. Let f be the smallest positive integer such that 

( 1 ) for all p coprime with f the modules 

~,p = {x E ~®Qp: IIxlip ~ I} 

induce the Qp norms on ~ for all i; 
(2) ~,p c ~+I,P for all i. 

- 2 Let Pi,p denote the norm of the map ~,p-+ ~,and Pi denote PooTIp1fP Pi,P' 
Then 

i<n 
Proof. We prove the following two special cases first. 

Case 1. Assume that f = 1 and for each i the norm II· 1100 on ~ is 
induced from V. In this case we have that p( ~) = 1 . By induction on n, we 
need only prove the following inequality: A( V) ~ A( V / V; ) + dimQ V; A( V;). Let 
dimQ V; = dl and dimQ V = dl + d2 • Choose I;, I;, ... ,1~2 in V such that 
their images m l , m2 , ..• ,md form a set of maximal rank for V /~ , and 

2 
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maxi Ilmilioo = A(V/V;). Choose 11 ,/2 , ... ,Id in c; such that they form a 
1 

subset of maximal rank for t; and maxi Il/illoo = A(t;). Choose I;' , I;, ... , 1;2 
in Vu~ such that, for each i, I;' has image mi and III;' 1100=11 mi 11 00 . Since 
I;' - ( are in V;a' we have real numbers a ij , 1 ::; i ::; d2 and 1 ::; j ::; d l ' such 
that 

II , "'\" 
Ii -Ii = ~aijlF 

j 

Set Id1+i = ( + I:)aij]lj E V for 1 ::::; i ::; d2 • Then {II' 12 , ... ,ld1 +d) is 
a subset of full rank in V and 

00 j 

This implies that A( V) ::; A( V / V;) + dimQ V; A( V;). 
Case 2. Assume that n = O. Let {Ii} be a set of maximal rank in t; 

with oo-norm bounded by A( V;), and let {mJ be its image in V. Then, 
for each i, IImjllp ::; 1 if (p, f) = 1, and Ilmilip ::; Pip otherwise. Let nip 
denote [I~!:;p] + 1 , and let m; denote m i TIp1j pn iP • The subset {m) in V 
is contained in V with maximal rank, and the oo-norms of its elements are 
bounded by Poo TIpljPPipA(V;). 

Now we want to prove the lemma for the general case. Let V' denote the 
Ql-vector space V whose nonarchimedean norms are induced by V. Let ~' 
denote ~ with the norm induced by the subspace norm of V' . Then by Case 
1 we have that 

A(V) = A(V') ::; A(V:+I/V:) + L A(~~I/~') dimQ(~+I/~)· 
i<n 

We need only prove that 

A(~~I/~') ::; A(~+d~)Pi+l· 

By Case 2 we need only prove that for each i the norm of the map a i : ~ -+ ~' 
is bounded by TIpljPPip. Let ~" be the space with subspace global norm 
induced by V. Then a i is the composition of the canonical maps Pi : ~ -+ ~" 
and Yi : ~" -+ ~' . The assertion follows, since for each p, the Qlp-norm of Yi 
is bounded by p. 

(4.5) Proof of (4.2). By (4.3.1) we need only prove that A(nL0n 0 M)) < 1 
for any sufficiently large n. We use induction on d = dim X . If d = 0, then 
X = spec K is the spectrum of. a number field and L, M are vector spaces of 
K of dimension 1. By the assumption there is a nontrivial strictly effective 
section I of some positive power L 0no. Let 11 ' . .. ,Is be a basis of L, where 
L is considered as a vector space of dimension s = [K : Ql] over Ql with a 
global norm. Let m be a nonzero element in M. For n sufficiently large, the 
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set {rljm: i = 1, ... ,s} generates r(L®(non+l) 18) M) and consists of strictly 
effective sections. 

Now we may assume that d > 0 and the theorem is true for all subvarieties 
of lower dimensions. Let P(L, M) denote the assertion of the theorem. It 
is easy to see that, for any N > 0, the assertions p(L®N, L®j 18) M), i = 
0, 1 , ... ,N - 1 , together imply P(L, M). So in the proof of P(L, M) , we 
may replace L by any fixed positive power. 

Replacing L by a positive power, we may assume that L has a nontrivial 
strictly effective section I . Let I denote the ideal sheaf I = L -II = O( - div I) . 
We claim there is sequence of ideals 

10 = I C II C ... C 1m = Ox' 
and integral subvarities D I , .•. ,Dm such that 1;/ Ij_1 are pushforwards of 
torsion free sheaves Gj on Dj . If Ij_1 is constructed and 0x/Ij_1 ¥ 0, we 
construct I j and D j as follows. Since X is Noetherian, there is a nonzero 
subsheaf F of Ox /Ij_1 such that all subsheaves of F have same support. Let 
D j denote the support of F. Let n be the maximal positive integer such that 
G. = IDn F is nonzero. Then G. is a torsion free sheaf on D.. The preimage 

I i I I 

I j in Ox of Gj is constructed as required. Since Ox is Noetherian, the chain 
10 C II C ... will stop in finitely many steps. The claim is proved. 

Let U be a Zariski open subset of spec Z such that all metrics of L, M on 
U are induced by a model (X, L, M) , the section I is regular on X , and the 
sequence of I j 's is extended to a sequence 

~ ~-I ~ ~ 

10 = L C II C ... c 1m = Ox 

with Gj = i;/ i j _ 1 supported on integral subvarieties Dj • Replacing U by a 
smaller open subset, we may assume that L is ample on X. For each p not 
in U, put Galois invariant bounded metrics on I j and on Gj • 

For each N = nm + r with 1 :$ r :$ m, define DN = Dr' Let LN denote 
the metrized sheaf L ®n 18) M 18) Ir , let L N denote the corresponding sheaf on 
X, and let VN denote the Q-vector space r(LN) with global norms. Consider 
the filtration of v"m = r(X, L ®n 18) M) : 

o = Va c V; c ... C v"m' 
By Lemma (4.4), and Lemmas (4.6) and (4.7) which we will prove later, 

A.(v"m):$ L: e(N-nm)c.+c2-Nc3+C4 dimQ(VN/VN_ I ) 

N"5.nm 
< -cSn+c6 d' (V:) _e ImQ N' 

where CI-C4 are positive numbers defined in the following lemmas, and c5 ' c6 
are some positive numbers independent of n. By the Riemann-Roch theorem, 
dimQ(VN) is bounded by a power of n, it follows that 

A.(r(L®n 18) M)) < 1 

for sufficiently large n. This will complete the proof of the theorem. 
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Lemma (4.6). Let PN denote the norm of the map VN --+ Vnm for N ~ nm 
defined in Lemma (4.4). There are two positive numbers c1 ' c2 independent of 
N such that 

PN ~ eC1 (N-nm)+c2 • 

Proof. Write N = mk + r with 0 ~ k < nand 1 ~ r ~ m. Then the map 
VN --+ ~m is given by the multiplication of 

t' = In - k I 
N " 

where I, is the injection Ii --+ OX' which has finite norm by (a.4). Let U' 
denote S - U - {oo}; then 

for p E U; 
for p E U'; 

for p = 00. 

It follows that PN ~ 11/1I;::k TIpEU' 1I/,IIp ~ e(N-nm)C1+c2 for some positive con-
stants c1 ' c2 independent of N, n. 

Lemma (4.7). There are two positive numbers c3 ' c4 such that, for any N, the 
following estimate holds: 

A(VN/VN_1) ~ e-C3N+C4. 
Proof. Since L is ample and (4.2) holds for subvarieties D1 ,··· ,Dm , by 
induction, we can find a positive integer no such that the following conditions 
are verified. 

(1) The algebra 
A = ffil~i~m ffin~O reDi ' L ®nOn) 

is generated by the group 

Al = ffil~i~mreDi' L®nO). 

(2) A(AI) < 1. Choose a finite subset {/J of Al of maximal rank such that 
each element belongs to a single component and is strictly effective. 

Since M = ffil<i<m EBN>I reDi, L N) is a finitely generated A module, there 
is positive constant-n l such that this module is generated by 

®N 
Mo = EBI<i<m EBI<N<n m reD;, L ) 

- - - - I 

over A. Choose a finite subset {mil of maximal rank in Mo such that each 
element belongs to a single component and IIm;lIp :::; 1 for all p =I- 00. 

For N sufficiently large, from the exact sequence 

we obtain an isomorphism 
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We identify these two spaces via 0 and let II· II = {II . lip} (resp. II· IIr 
= {II . IIrp}) denote the global norm induced from the image (resp. the do-
main) of o. Notice that the subset 

SN = {/ja = mj II I~; E r(DN' LN): OJ = 0,1, ... } 
j 

generates r(DN' LN)' To estimate A(VN/VN_1) we need to estimate 1I'lIr of 
elements in S N • 

Case 1: p E V . For any N sufficiently large one has the exact sequence 
0----. r(X, iN_I) ----. r(X, iN) ----. r(DN' iN) ----. o. 

It follows that, for any p E V ,any Ija in S N has II· IIrp bounded by 1. 
Case 2: p E V' = S - V - {oo}. Let € be any positive number. Write 

N = (kno +s)m + r with 0 :s s :s n1 • Applying Theorem (3.3) to ample bundle 
L®no , one obtains elements I;a 's in r(LN ®Q Qp) = VN ®Q Qp such that their 
images in r(DN x specQp' LN ® Qp) are lja 's and 

II/;all :s pkf Ilm)1 II II/jlla; :s pkf. 
j 

It follows that II/jallrp:S pkf. 
Case 3: p = 00. Let c be a positive number such that all Ij have 1I·IL:>o less 

than e-c. Then by the same argument we obtain that IIljaliroo :s ekf-c. 

Let tja denote (TIpEU,p[kfJ+l)lja' Then {tja } also generates r(DN' LN) 
and 

{
I, 

IItjalirp = k(f-C) TI [kfJ+l 
. e PEU' p , 

p;;j:.oo; 

p = 00. 

It follows that, for sufficiently large N, 

A( v: / v: ) < e -kc+kc' f N N-l - , 
where c' is a positive number independent of €, k. Choosing a sufficiently 
small € we may find positive constants c3 and c4 such that, for all N ~ 0, 

A(VN/VN_,) :s e-NC3+C4. 

The proof of the lemma is complete. 
C6rollary (4.8). Let X be an arithmetic variety with regular generic fiber and let 
L. M be two hermitian line bundles on X. Assume that the following conditions 
are verified: 

(1) LQ is ample and L is relatively semipositive. 
(2) For any irreducible horizontal subvariety Y (i.e., Y is flat over spec Z), 

the height c1 (LI y)dim Y of Y is positive. 
Thenfor n sufficiently large, there exists a basis of r(X , L ®n ®M) consisting 

of strictly effective sections. 
Proof. By (3.5), the globally metrized line bundle (LQ , {II, lip} ) on XQ induced 
by L is semi ample metrized. By (1.9), for any Y, some positive power of Lly 
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will have a nontrivial strictly effective section. The assertion of lemma follows 
from (4.2). 

5. ALGEBRAIC POINTS WITH SMALL HEIGHTS 

(5.1) Let X be an arithmetic variety of dimension d. Let L be a hermitian 
line bundle on X. We say L is relatively semiample if L is relatively semi-
positive and the metric of L is semiample. By (3.5), L is relatively semiample 
if and only if the induced adelic metric of L is semiample metrized. Modulo 
a positive answer to question (3.6), L is relatively semiample if and only it is 
relatively semipositive. 

For any x E X(IQ) , let Dx denote the Zariski closure of x in X; then the 
height hL(x) is defined to be deg(LID)/ deg(Dx). Assume that LQ is ample. 
For each subset U of XQ ' let eL (U) denote the number infxEu hL (x). For 
each 1 ~ i ~ d , let 

ei(L) = liminf{eL(X - Y) : Y c XQ closed of codimension n. 
It is clear that e l (L) ;::: e2(L) ;::: ... ;::: ed(L). The main result of this section is 
the following theorem: 

Theorem (5.2). Let X be an arithmetic variety of dimension d, and let L be 
a hermitian line bundle such that LQ is ample and L is relatively semiample 
with smooth metric. Then 

- d 
d L CI (L) - -el( );::: d-I ;::: el(L) + ... +ed(L). 

ci (LQ) 

Lemma (5.3). Let X be an arithmetic variety of dimension d, and let Nt 
be a hermitian line bundle on X such that MQ is ample and Nt is relative 
semipositive. Assume that r(M) has nontrivial elements Sl' ... ,sd such that 
nil div(Si)1 = 0 and IIsili < 1. Then we have the following assertions. 

(1) cl(Nt)d > o. 
(2) For each 1 ~ i ~ d, there is an effective cycle Zi of codimension i 

such that for any relatively semi positive hermitian line bundle L, the following 
inequality holds: 

(3) For any finitely many irreducible subvarieties ~, ... , Vm of XQ ' there 
is a section I of a positive power M@P, such that 11/11 < 1 and Ilv i- 0 for all 
• r 
I . 

Proof. For each 1 ~ i ~ d, we claim that c i (Nt)i can be represented by a 
"strictly effective" arithmetic cycle (Zi' g;) ; this means that Zi is an effective 
algebraic cycle on X, and 
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where i;k > 0 are functions on X and Zik are effective cycles on Xc of 
codimension k. We prove this claim by induction on i. If i = 1 then c i (M) 
is represented by (divsI' -logllslll). Now assume that i> 1 and cl(M)i-1 
is represented by (Zi_I' gi-I) as required. Assume Zi_1 = I: Cj with Cj 

irreducible. Since sections SI' ... ,sn do not have base point, for each Cj 

there is a section s~ in {sJ such that s~lc =I 0; then ci (M)i is represented by 
) 

( L div(s;I c,l , gi_'C; (M) - ~log lis; 11oc, ) . 

This proves our claim. It follows that 

ci (M)d = deg(Zd' gd) ~ f fdoc~ (M/- I > 0 

and 

It remains to prove (3). Replacing {V;, ~, ... , Vm } by the subset of max-
imal elements, we may assume that ~ ct. Jj for i =I j. For each i there is a 
section s; in {SI' ... ,sn} such that s;l~ =I o. Since MQ is ample, there are 
m sections t l , ... ,tm of some positive power M®Po such that tilv = 0 for 

} 

i =I j and tilv =I o. It follows that, for sufficiently large p, the section 
I 

will satisfy our requirement. 

Lemma (5.4). Let (X, L) be assumed as in (5.2). Assume in addition that 
ed(L) ~ 0; i.e., hL(x) ~ 0 for any x E X(Q). Then ci (L)d ~ o. 
Proof. Our argument is adapted from [Ha], Chapter I, §6. By induction on 
d = dim X ,we may assume that cl(Lly)dimY ~ 0 for any subvariety Y of X 
with dim Y < d. Let M be a very ample line bundle, and let SI' s'2' ... ,Sk be 
a basis for reM). We define the t-scaled Fubini-Study metric 11·11 as follows. 
For any point x of Xc and any local section S of M with sex) =I 0, then 

IIsll(x) = ~ (~Itl') -I 
It is easy to see that M = (M, II ·11) is semiample metrized and IIsillsup:::; t. 

For any subvariety Y of X which is flat over spec IE and is of dimension 
s, let m Yi = cI(Lly)S-icl(Mly/ for 0:::; i :::; s. By (5.3) and assumptions, 
mys > 0, and m Yi ~ 0 if S < d or i> O. We need to show that mxo ~ O. 
Let Py(t) denote the polynomial 

(ci (Lly) + tCI (Mly))S = myO + smYl t + ... + m y/. 
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We claim that if t > 0 and PxCt) > 0, then PxCt) 2': td m Xd . By this claim PxCt) 
does not have positive root. It follows that mxo = px(O) 2': O. By continuity we 
need only prove our claim for t = ~ , a rational number with positive integers 
a, b, such that PxCt) > O. 

Let L' denote the line bundle L ®a @ M®b. Then L' has positive height 
for any irreducible subvariety Y which is flat over spec Z. In fact, if Y = 
X, then cl(L')d = adpx(~) > 0, and if S = dim Y < d, then cl(L'ly)s 2': 
bScl(Mly)S > O. By (1.9) and (4.2) for n» 0, t(X, LQ/®n) = r(X, L'®n) 

will have a basis SI' ... ,sk such that IIsili < 1 for all i. Since L' is ample, 
for n » 0, nil div sil = 0. By (5.3) and the assumptions on L, we have that 
ci (L )cI (L')d-I 2': O. It follows that 

Px (~) = a-d(acl(L) + bCI (M))cI (L' /- I 

-d - L' d-I (b)d - d 2': ba ci (M)cI () 2': a CI (M) . 

This proves our claim, and therefore the lemma. 

(5.6) Proof of (5.2). Fix a hermitian line bundle N = (N, 11·11) such that N 
is ample and II· II is semiample. Since numerically kc I (L ®n @ N) -+ C I (L) as 
n -+ 00, and every term in (5.2) depends continuously on c i (L), it is suffices to 
prove (5.2) for bundle L®n @N for all n > O. In other words we may assume 
that L is ample in the following proof. 

The first inequality of (5.2) follows from (1.9) as following. Let E be any 
positive number, and let L' denote the hermitian line bundle 

L (_ cl(L)d +E) 
dCI (LQ)d-1 ' 

where L(a) = (L, 1I·IILe-a) for a constant a. It is easy to see that cl(L')d > O. 
By (1.9), there is a nontrivial section S of a positive power L'®n with lis II < 1 . 
It follows that L'®n has nonegative height at each point out of Y = div(s), 
and so does L' . Therefore 

- . f h . f h cl(L)d cl(L)d 
el (L)2': 10 L(x)= 10 L'(X) + d I- E 2':dC

I
(L

Q
)d-I- E. 

x f/. Y(Q) x f/. Y(Q) dc) (LQ) -

Since E is arbitrary, this shows the required inequality. 
We use induction on d = dim X to prove the second inequality of (5.2). If 

d = 0 it is trivial. We assume that d > 0, and the inequality is true for any 
subvariety Y of dimension < d . Let E be any positive number. Consider the 
line bundle M = L(-ed(L) + E). Since L(-ed(L)) has nonnegative height at 
any point of X, it has nonnegative height at each irreducible subvariety of X 
by (5.4). It follows that M has positive height at each subvariety of X. By 
(4.2) some positive power M®n will have a basis s) , ... ,Sk such that IIs;1I < 1 
for all i. Since L is ample, it follows that nl div s;1 = 0 for n » o. 
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For each I, by definition, there is a subvariety Zi (may not be irreducible) 
of XQ of codimension i such that 

ei(L) ~ inf hL(x) + E. 
x ~ Zj(tQ!) 

By (5.3) we may find a section I of a power };f®m such that I is not zero at 
each generic point of each Zi' Let Y = div(l). It follows that 

- d-I - 1 - d-I 1 - d-I c1 (L) ci (M) = -ci (L) (Y, -log Ill) 2: -c i (Lly) . m m 
Since mCI (LQ)d-1 = ci (LQIYQ)d-2 , it follows that 

By induction, 

we have that 

- d - d-I 
cl(L) >cl(Ll y ) -E+e(L). 

ci (LQ)d-1 - c1 (LQlyQ )d-2 d 

e.(Ll y ) 2: inf hL(x) 2: e(L) - E, 
I X ~ Zjny I 

- d cl(L) _ _ 
--''-'--' .... d--=-I 2: e l (L) + ... + ed(L) - dE. 
ci (LQ) 

Since E is arbitrary, we obtain the required inequality. 

Corollary (5.7). Let X be an arithmetic variety of dimension d, and let L be 
a hermitian. line bundle such that LQ is ample and L is relatively semiample 
with smooth metric. Then we have the following assertions: 

(1) Assume that L has nonnegative height at each point of X(Q). The fol-
lowing conditions are equivalent: 

(i) Some positive power of L has a nontrivial strictly effective section. 
(ii) There is a nonempty Zariski open subset U of X such the height func-

tion hr has a positive lower bound on U. 
(iii) The height of X with respect to L is positive. 
(2) The following conditions are equivalent: 
(iv) For sufficiently large n, the group r(L ®n) has a basis consisting of 

strictly effective sections. 
(v) Some positive power of L has a set of sections which has no base point 

and whose elements are strictly effective. 
(vi) The height function hL has positive lower bound on X. 

Proof. (i) ....... (ii): If a positive power L®n has a nontrivial strictly effective 
section I, then hL(x) 2: -~logll/ll when l(x)::j:. O. 
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(ii) ---+ (iii): (ii) implies that el (L) > O. By (5.2), we have ci (L)d > 0, smce 
by assumption ed(L) 2: O. 

(iii) ---+ (i): By (1.9). 
(iv) ---+ (v): Trivial. 
(v) ---+ (vi): Ifa positive L~m has sections {II' '" ,Ik } such that ndiv I; = 0 

and 11/;11 < 1, then ed(L) 2: - max; log 11/;11 > O. 
(vi) ---+ (iv): Assume (vi). For any subvariety Y of X which is flat over 

specZ, applying (5.2) to Y we obtain that cl(Lly)dimY > O. The assertion 
follows from (4.2). 

(5.8) Remark. It is a interesting question to understand the relations between 
numbers el (L), e2(L), ... ,ed(L). In the next section we will characterize 
torsion subvarieties of a multiplicative group using these numbers with respect 
to some canonical hermitian line bundles. 

6. POSITIVITY OF NAIVE HEIGHTS 

(6.1) Let us recall the definition of a canonical height function on IPn (Q) . 
For each place p of Q, let I· Ip denote the valuation on Q such that Iplp = 

p-I if p is finite, and let 1·1= denote the usual absolute value on Q. Let 
Qp denote the completion of Q with respect to I· Ip , and let Qp denote an 
algebraic closure of Qp ' The height function hmax is defined as follows. For 
a point x = (xo' XI ' ... ,xn) in IPn(Q) , let K denote the Galois closure of 
Q(xo' ... ,xn ); then we define 

I 
hmax(x) = [K : Q] L L logmrx lax;lp. 

p u: K-+Qp 

Consider G: as the open subset {XOXI •• ,xn =1= O} of IPn. It is easy to see that 
hmax(x) 2: 0 for any X E G:(Q) , and hmax(x) = 0 if and only if x is a torsion 
point of G:(Q). The main result of this section is the following theorem: 

Theorem (6.2). Let X be an irreducible subvariety of G: over Q. Thefollowing 
two statements are equivalent: 

(I) For a,ny nonempty open subset U, we have 
eu = inf hmax(x) = O. 

xEU 

(2) X is a torsion subvariety of G:. This means that X can be written as 
X· H in G:, where x is a torsion point, and H is a subgroup. 
(6.3) Remarks. (1) The assertion of the above theorem does not change if 
we replace hmax by a height function h on G:(Q) = Q*n with property that 
there are two positive constants c1 and c2 such that for any x in Gm(Q) , 
clhmax(x) ~ h(x) ~ c2hmax(x). 

(2) Let X be a subvariety of G: defined over Q. We say a torsion subvariety 
W of X is maximal if it is not contained in any larger torsion subvariety of X. 
Then (6.2) implies the following two assertions: (i) X has only finitely many 
maximal torsion subvarieties J.J';, ... , Wk ; (ii) The height function hmax has a 
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positive lower bound on X - U ~. The assertion (i) is a theorem of Ihara, Serre, 
and Tate (see §8.6 of [Lan] ) when dim X = 1, and is a theorem of Laurent [Lau] 
and Samak [Sa] if dim X > 1. The assertion (ii) is an analogue of Lehmer's 
conjecture which claims that hmax(x) is bounded below by c/[Q(x) : Q] for 
any nontorsion point x in Q* , where c is a positive constant. 

(6.4) We will prove (6.2) using intersection theory. Fix a free group V = 
Zu + Zv of rank 2. Let !pI denote the projective space associated to V; then 
u, v can be considered as homogeneous coordinates of !pI , and V can be 
considered as space of sections of O( 1). We define a hermitian metric II· 1100 
as follows. For any point x in !pI (C) and any local section s of O( 1) near x 
such that s(x) =1= 0, 

IIslloo = 1/ max (I ~~? 1 ' 1 ~~j I) . 
Let 000 (1) denote the hermitian line bundle (O( 1 ), II . 1100). For a positive 
integer n, let !p n denote the scheme (!pI)n, and also let 000 (1) denote the 
hermitian line bundle (~\1t;Ooo(I), where 1t i is the i-th projection from !Pn to 
!pl. Let hoo denote the height function induced by 000 (1) on !Pn(Q). Consider 
G: as the open subscheme of the generic fiber of !p n defined as the complement 
of {U 1V 1U2V 2 ·•· unvn = O}, where ui = uo1t i and Vi = v o1t i • Then over G:(Q) 
we have hmax $ hoo $ nhmax• 

We want to define heights for arithmetic subvarieties of !p n with respect to °00 (1). Notice that, on !P1(C) , the metric 11.11 00 is not smooth, but it is the 
limit of {II '111 , 1= 1, 2, ... } , where for each I 2:: 1, II· III is defined as 

( I I) -III 
IIsII/(x) = 1;1 (x) + I¥I (x) 

Let 01(1) denote the corresponding hermitian line bundle. We define heights 
with respectto 000 ( 1) as limits of heights with respect to 0l( 1) by the following 
lemma. 

The curvature c~ ( 01 (1)) as a measure is given locally as 

Btl 1 Btl I dtd(/) 
-. log lis III = --1-' 10g(1 + Izl) = 12' 
1tl 1tl (1 +p) 

where z = v/u = pe271it • It follows that for any continuous function j, 

f jc~(OI(I)) = roo [rl j(/lle271it )dt] dp 2. 1010 (l+p) 

Let T denote the unit circle {(u,v):lu/vl= I}; then lim/_ooc~(OI(I))=t5T. 
Let 01(1) also denote the hermitian line bundle Li 1t*OI(I) on !Pn . Then 
0{(1) has positive curvature. It follows that 0{(1) is semiample metrized. The 
following lemma gives some justifications for working on line bundles with limit 
metrics. 
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Lemma (6.5). Let X be an arithmetic variety of dimension d. Let L be an am-
ple line bundle and LI ' ... ,Ld be line bundles which have nonnegative degrees 
on any curves in any fibers. 

(1) On each Lj' let 1I'lI j and II'II~ be two semipositive smooth metrics, and let 
gi = log *It, Li = (Lj' II . IIJ, L~ = (Li' II . II~)· Then for any nonzero rational 
section s of Ld , one has 

I ( logllsll~c~(L~) ... c~(L~_I)- ( logllslldc~(LI)···c~(Ld_I)1 
JX(C) JX(C) 

d 

~ L IIgillsupcI (LI,Q)'" ci (Lj_I,Q)cI (Li+I,Q)'" ci (Ld ,Q) 
i=1 

d-I 
+ L II gi IlsupcI (LI,Q)'" ci (Lj_I,Q)cI (Lj+I,Q)'" ci (Ld_I,Q)1 div(s)IQ, 

i=1 

where if div~s) = L niZj with Zi integral, then I div(s)I = L InjlZj . 
(2) On each Li' let 11'll j be a continuous metric and {II, II in ' n = 1 , 2, ... } 

be a sequence of smooth and semipositive metrics such that log 1:1'}:lj~ converges 
uniformly to O. Let Lin = (Li' II '1I in ), Li = (Lj' II . II;) ; then 

lim c i (Lin) ... c i (Ldn ) 
n--+oo 

exists and depends only on L I , ... , Ld . We let ci (LI ) ... ci (Ld) denote this 
limit. 

(3) Let II· II be a continuous metric on L which is the limit of smooth and 
semiample metrics. Let L = (L, 11·11); then 

- d - cl(L) _ _ 
del (L) ;::: d-I ;::: el (L) + ... + ed(L). 

c i (LQ) 
Proof. For (1), one has 

( logllsll~c~(L~) ... c~(L~_I)- ( logllslldc~(LI)···c~(Ld_l) 
JX(C) j X(C) 

= ( (logllsll~-logllslld)c~(L~) ... c~(L~_I) 
JX(C) 

d-I 
+ L ( logllslldc;(LI)···c;(Li_I)(c;(L)-cI(LJ)c;(L;+I)···c;(L~-I) 

i=1 J X(C) 

= { gdc; (L~) ... c; (L~_I) 
lx(C) 

d-I! / _ / _ 88 / _/ / _/ + L log Iis li dcl (L I)··· ci (L j_1 )-. gici (L i+I)··· CI (Ld_I), 
i=1 X(C) 7Cl 

where 8, 8 are in the distribution sense. Let Z = dives) ; then 
88 / -
-. log Ilslid = CI (Ld) - t5z , 
7Cl 
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and 

1 ' , 80" " log IIslldc, (LI )··· ci (Lj _ I)-. gjC I (Lj+I )··· ci (Ld_l ) 
X(Cl III 

1 80 , L ' L ' L' , L' = gj-.logllslldCI( I)"'CI ( j_I)CI ( j+I)"'CI ( d-I) 
X(Cl III 

l ' , , " " = gj(CI (Ld ) - 0Z)CI (LI ) .. · CI (Lj _ , )CI (Lj+l ) ... CI (Ld_ I )· 
X(Cl 

Since c~ (Lj ) and c~ (L~) are all semipositive, the inequality of (I) follows by 
replacing gj by IIgjllsup and -oz by 0lzl' 

For (2), let s be a nonzero rational section of L d , and let div s = E njZj; 
then 

ci (Lin)'" CI (Ldn ) = CI (Lin)'" CI (Ld_1 ,n)(L njZj , -log IIsll dn ) 

= '" njcI (L,nlz)'" CI (Ld_1 nlz) - r log IIslldnc~ (Lin)'" e~ (Ld_1 n)' ~ I ' I iX(Cl ' 

The assertion follows from (I) and induction on dim X . 
For (3), let {II .11 1, I = 1,2, ... } be a sequence of smooth and semiample 

metrics on L which is convergent uniformly to 11·11. Let LI = (L, 11'11/); by 
(5.2), 

d - cl(LI)d L -
e l (LI) ~ d-I ~ el ( I) + ... + ed(LI)· ci (LIQ ) 

Since log» -+ 0 as I -+ 00 uniformly, it follows ej(L1) -+ ej(L) and 
cl(L1/ -+ cl(L)d. Letting 1-+00 in the above inequalities, we obtain the 
inequality for L. 

Lemma (6.6). Let X be an irreducible arithmetic hypersurface of lP'n (n ~ 2) 
which is defined by a polynomial F(xl , ... , xn) = Eaj ... j x:· .. . x~· on An 

I ' '" 
with property that if aj ... i =f. 0 then i2 ~ i l · Assume that cl(Ooo(I)lx)n = o. 

I ' 'n 

Then for any torsion point T in Q* we have c i (0 (I) Ix t- I = 0, where X 
00 • T 

is an arithmetic subvariety of X defined by the following polynomial over Z: 

",(XI) = II (u l - a(T)v l )· 
(1 : Q(T}-+Q 

Proof. First of all we have that cl(Ooo(I))2 = 0 on lP'1. This follows from 
(6.5), (3). It follows that, for any subvariety Y of lP'n of dimension d, 

c i (Ooo(1)ly)d = L d!c , (ll;. 0oo(1)ly)'" c i «d 0oo(1)l y)' 
i. <i2 <"'<id 

Let Pj denote the restriction of ll; on X and let d = [IQ( T) : IQ). By 
assumption F is not contained in closed fibers of ll l , so '" is not a zero 
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section of p~(O(d)). Representing dCI(p~O,(l)) by (Xr' -log 11'1111/) , we have 

0= dCI (p~ 000 ( 1))·" cI (p~Ooo( 1)) 

= lim (Xr , -logll'llII,)cI(p;O,(I))",cI(p~O,(l)) 
'-+00 

= ( 1 1),CI(Ooo(I)lx/- I - lim r logll'llIlA2".c5'n' 
n - . , '-+00 JX(CJ 

where c5/i = p; c~ ( 0, ( 1 )). To prove that p; I ( r) has height 0, it suffices to prove 
that 

(6.6.1 ) A,x = Ix log II 'llIIA2 ... c5'n has limit 0 as / --+ 00 • 

We want to use induction on n to prove (6.6.1). It is trivial for F = cX2 
for some constant c. So we assume that x2 f F. Now F can be written as 
x2FI +F2 with FI a polynomial of (Xl' ... ,xn) and F2 a nonzero polynomial 
of (xJ ' ••• ,xn ). It follows that v2 does not vanish on any component of any 
fiber p;l(a) for aEC. Since 

8a 
c512 = 1ii log II v211, + c5p;'(O) , 

8a 
dc5'1 = -. log II ifill, +c5x ' 7t l , 

we obtain that 

A/x = r log II ifill, 8~ log IIV211AJ ... c5/n + r log IIIfIIIAJ ... c5'n 
J X(CJ 7t l Jp;' (O)(CJ 

= r logIlV211/~logllIflIlAJ".c5/n+AIP-'(O) J X(CJ ttl ' 2 

= d r log IIV211AAJ ". c5'n - r log IIv211AJ ... c5'n + A/ p-'(o), 
J X(CJ J X,(CJ • 2 

We claim that 

(6.6.2) cl(Ooo(I)1 _'(O))n-l = 0 and lim r logllv211AAJ" ·c5/n = O. 
,P2 '-+00 J X(CJ 

Representing cl (P;O,(I)) by (p;I(O) , -logllv211,), we obtain that 

0= cI (p~ °00 (1)) ... cI (p~Ooo(I)) 

= lim (p;l (0), -log IIv211,)cI (P: 0,( 1 ))cl (p; 0,( 1 )') " . cI (p~ 0,( 1)) 
'-+00 

= ( 1 1),cl (Ooo(1)lp -'(o))n-1 - lim r logllv2l1AAJ" .c5/n • n - . 2 '-+00 JX(CJ 

The assertion (6.6.2) follows, since one can show that cl (000(l)lp2-'(o))n-1 is 
nonnegative by (6.5), (3), and that IIv211/ S 1 by definition. 

Since p;l (0) is defined by the equation F2 = 0, one has that p;l (0) C 

7t;1(0):::::: lPn_1 satisfies the condition of the lemma. The assertion (6.6.1) for 
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n = 2 follows by applying (6.6.2) and the fact p-I(O) = 0 to the displayed 
formula for A/x' For n > 2, by induction one has that lim/-+oo A/p;I(O) = O. 
Combining with (6.6.2), one has 

(6.6.3) lim A/x = - lim ( log Ilv21IA3'" J/n • 
/-+00 /-+00 1 X,(C) 

For any x E C let Jj(x) = Jp;-I(X) log IIv2I1A3'" J/n • Then Jj(x) is a nonpositive 
pointwise continuous function on C. By (6.5), (1), as I ---+ 00 , this Jj converges 
uniformly. Let foo denote the limit; then foo must be a nonpositive pointwise 
continuous function. From (6.6.2) one has 

0= lim { log IIv21IAA3'" J/n = lim { Jjc~ (Op)) = ( fooJr-
/-+00 1 X(C) /-+00 lc lc 

It follows that foo(x) = 0 for x E T. By (6.6.3), liml-+oo A/x = O. This proves 
(6.6.1) and therefore completes the proof of the lemma. 

(6.7) Proof of (6.2). (2) ---+ (1) is trivial, since the set of torsion points is Zariski 
dense in a torsion subvariety. 

First of all we reduce the proof of (1) ---+ (2) to the case that X is a hyper-
surface of G~. Assume (6.2) is true for all hypersurfaces of all multiplica-
tive groups. Let X be a subvariety of G~ which satisfies (1) of (6.2) and 
d = dim X < n - 1. There is a projection 1[ from G~ to a factor G~+I of 
the product of d + 1 components of G~ such that 1[X is a hypersurface of 
G~+I. It is easy to verify that 1[X also satisfies (1) of (6.2). By assumption 
1[X can be written as xH, where x is a torsion point of G~+I and H is 
a subgroup of G~+I. Replacing X by X-I X (the assertions are invariant), 
we may assume that x = 1 , i.e., 1[X is a subgroup. There is an isomorphism 
p: 1[-1 (1[X) ---+ G::;I of groups induced by a change of coordinates in G~. One 
can prove that hmax and p* hmax are in the same equivalent class, as defined in 
(6.3). This shows that pX satisfies (2) and therefore is a torsion subvariety by 
induction on n, so is X. 

Now let X be a hypersurface of G~ which satisfies (1) of (6.2). We want 
to prove the assertion (2) for X using induction on n. If n = 1 this is trivial, 
since X must be a torsion point. We assume that n ;:: 2. Let X be defined by 
the equation F = 0 where 

F= 

is an irreducible polynomial. Let x; be the highest power of x2 dividing 
F(O, x2' ... ,xn ). Changing coordinates XI ---+ XIX;+I, X is defined by the 
equation 

-k k+1 x2 F(XIX2 ,x2' ... ,xn ) = O. 

It is not difficult to prove that X:;k F(XIX;+I , x2' ... ,xn ) is an irreducible 
polynomial. So by changing coordinates we may assume that a· . i= 0 'I' ... ,In 
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implies that i2 ~ i l . We claim that for any torsion point • in Gm(Q) the 
preimage 7r:~I(.) n X is a torsion subvariety. 

Consider G~ to be an open subscheme that is the complement of 
{UIV I ... unvn = A}, and let X denote the Zariski closure of X in Pn . By 
(6.5) we have that c1 (Ooo(I)lx)n = o. By Lemma (6.6), for any torsion point 
• E Gm(Q) , the arithmetic subvariety XT has height o. The geometric generic 
fiber of XT over Q can be written as a union of p~I(.) = {.} X Y and its 
conjugates in Q, where Y is a hypersurface Y in G~-I. By (6.5), p;I(.) 
satisfies condition (I); so does Y, since • is a torsion point. By induction, Y 
is a torsion subvariety in G~-I , so is p~I(.) in G~. This proves our claim. 

Write 

m 
where m = (m2' ... , mn ), y = (X2' ... ,xn ), am(xl ) are polynomials of XI' 
and ym = X;Z2 ... x;;'. Then by our claim if XI = • is a root of unity, then every 
irreducible component of the variety XT in G~-I defined by FT = F(., y) is 
torsion. Since torsion points in Gm are Zariski dense, there are infinitely many 
• such that X T is irreducible and nonempty. In this case there are m l (.) and 
m 2(.) such that 

( ) ( ) m.(T) ( ) m2(T) 
FT y = am.(T) • y +am2(T) • y , 

where a ()(.) and a ()(.) are not zero and their ratio is a root of unity. m. T m2 T 
Since there are only finitely many such pairs (m I (.), m2 ( .)), one can find a 
pair (ml' m2) such that ml (.) = m l and m2(.) = m2 are true for infinitely 
many roots. of unity. Let </J(x) = :m2~;~ as a rational map from Gm to Gm , m. 
and let r denote the graph of </J in G~. Then r has infinitely many torsion 
points. By a theorem of Ihara, Serre, and Tate, r must be a torsion subvariety 
of G~. It follows that </J(x) = axn , where a is a root of unity and n is an 
integer. Without loss of generality, we may assume that n ~ 0; otherwise we 
interchange ml and m2 • 

Let F(xl , y) = ym. + ax~ym2 and let X denote the torsion subvariety of 
G~ defined by F. Then X n X has dimension ~ n - 1. It follows that X 
is an irreducible component of X. SO X is a torsion subvariety of G~. This 
completes the proof of the theorem. 

ApPENDIX: COHERENT SHEAVES WITH BOUNDED METRICS 

(a. I) Let K be an algebraically closed valuation field. We assume that either 
K is the archimedean field C, or a nonarchimedean field which is an algebraic 
extension of a complete discrete valuation sub field Ko' with an algebraically 
closed residue field k . The valuation on K is chosen such that each uniformizer 
of Ko has valuation e -I . 

Let V be a finite-dimensional vector space over K . A function 11·11 : V - IR 
is called a K norm if the following conditions are verified: 
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(1) Ilkxll = Iklllxll ; 
(2) Ilxll ~ 0, and Ilxll = 0 iff x = 0; 
(3) if K is archimedean, then IIx + yll S IIxll + lIyll , and if K is nonar-

chimedean, then Ilx + yll S max(llxll, Ilyll)· 
Let X be a projective scheme on spec K , and let F be a coherent sheaf on 

X. By a K -metric II· II on F we mean a collection of K -norms on each fiber 
F(x), x E X(K) . 

Two metrics II· II and II· II' are said to be in the same bounded class if the 
number 

sup I log IIIII -log 11/11'1 
XEX(K), fEF(x)-{O} 

is finite. 
(a.2) Let L be a line bundle on X. Sometimes, we need to consider the 
"good" metrics. If K = C, this means that the metrics are continuous on 
X(K) . If K is nonarchimedean, this means that the metrics are "algebraic" as 
described as follows. 

Let E be a finite extension of Ko in K, and let RE denote the valuation 
ring of E. Let X be a projective variety on spec R E with an isomorphism 
a : X ---> XK = X xspecRE specK. Let I be a line bundle I on X with an 
a-isomorphism ¢: L ---> IK = I OR K. Then we can define a metric II . ilL on 

E 

L as follows. Via a and ¢ we may identify X and L with X K and I K . Let 
x: specK ---> X be any algebraic point, and let E' denote the field E(x); then 
x can be factored through aRE morphism x : spec R E' ---> X. One has that 
x*(L) :::: x*(I) OR K. For any IE x*(L) , we define 

E' 

IIfllL = inf{lal : I E ax*(L)}. 
aEK 

We say that the metrized line bundle L = (L, II· ilL) is algebraic and is induced 
by the model (X, I). 

Notice that any two "good" metrics on L are in the same bounded class. 
So this bounded class depends only on L. We call any metric in this class a 
bounded metric. For any bounded metric II· II , each section I of L on X has 
a finite supremum norm 1111lsup = SUPXEX(K) 11111 (x) . If K is nonarchimedean 
and 11·11 is induced by a model (X, I), then 11'llsup is induced by RE module 
r(I) as follows. For IE r(L), 

1Iliisup = inf{lal : I E ar(I) OR Rd· 
aEK E 

(a.3) For any coherent sheaf F, let ¢F : PF ---> X denote projective scheme 
projx(symF) over X associated to F and let LF denote the 0(1) bundle on 
P F • Let 11-11 be a bounded metric on L F • It induces a metric ¢ h 11·11 on F as 
follows: for any x E X(K) and any IE F(x) which we consider as a section 
of LF on ¢-I(X), 

¢hll/ll = sup 11/(p)ll. 
PEr'(X) 

Notice that the bounded class of ¢F*" . II does not depend on the choice of 
bounded metric II· II ; we call any metric in this class a bounded metric of F . 
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Theorem (a.4). Let F = (F, 11·11) and G = (G, II· II) be two coherent sheaves 
with bounded metrics and let h : F ----> G be a morphism. The the norm 

Ilhll = sup IIh(f)11 
sup xEX(K) .JEF(x)-{O} Ilfll 

is finite. 
Proof. Since the assertion does not depend on the choice of the bounded met-
rics, we may assume that the metrics on F, G are induced from bounded 
metrized line bundles LF = (LF' II . II), LG = (LG' II· II)· On PG we have a 
composite morphism 

h' * -I * -I : ¢GF I8i LG ----> ¢GG I8i LG ----> Op . 
G 

It is easy to see that IIh'lIsup = IIhllsllP' Replacing X, F, G by PG , ¢~F, 0PG 

we may assume that G = Ox' Let I denote the image of h; then h is 
decomposed into hi : F ----> I and h2 : I ----> Ox' Put a bounded metric on I. 
We need only prove that both hi and h2 have finite norms. 

Replacing h : F ----> G by hi: F ----> I in the above paragraph, we may assume 
that I = Ox' This defines a morphism j : X ----> PF and an isomorphism 
h3 : j* LF ----> Ox such that hi is the composition of h3 and the canonical 
morphism h4 : F ----> j* LF . Now IIh411 :::; 1 by definition, and IIh311 is bounded 
since h3 is an isomorphism of line bundles with bounded metrics. So hi has 
finite norm. 

For h2' let IjI : B ----> X denote the blow up of X with respect to I; then 
lOB is an invertible ideal sheaf. The morphism 1jI*(h2) is decomposed into 
h5 : 1jI* I ----> lOB and h6 : lOB ----> 0B' Put a bounded metric on lOB' Now 
h5 is surjective, and it has finite norm by the above paragraph. h6 has finite 
norm since it is a morphism of two line bundles. This completes the proof of 
the theorem. 
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