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IMMANANT INEQUALITIES AND O-WEIGHT SPACES 

BERTRAM KOSTANT 

1. INTRODUCTION 

Let n EN, and let A = (aij) be an n x n complex matrix. Let Sn be 
the group of permutations of .AI = {I , ... , n}, and let 9'n be the set of all 
partitions of n . As one knows, to each A. E 9'n we may associate an irreducible 
complex representation vA : Sn -+ Aut YA such that, using standard notation, 
/ is the character of vA' Generalizing the determinant and permanent of A 
one defines the immanants of A by putting, for any A. E 9'n ' 

ImmA(A) = L /(a)a ICTI ••• anCTn • 
CTES. 

According to [GJ), although utilized much earlier by Schur, the term Immanant 
was introduced by Littlewood. In fact, in [Li), Littlewood uses immanants 
to define Schur functions. Indeed given any g E Gl(m, C) Littlewood (see 
(6.2;7) in [Li)) constructs a matrix Z(g) E M(n, C), using power sums of the 
eigenvalues of g, such that, for any A. E 9'n' 

(1) 

where vA x 7tA occurs as an irreducible component of the reduction of ®nCm 
under the natural action of Sn x Gl(m, C). 

A recent paper by Haiman [H] dealt with immanant inequality results and 
conjectures. Cited in particular were a result of Schur and conjectures and 
results of Stembridge. For any A. E 9'n ' let f;. = dim vA.' Conside~ the validity 
of the statement: For any A. E 9'n 

(2) ImmA. (A) ~ f;. 
for a matrix A E Sl(n, C) (to which one is readily reduced). Two of the results 
stated in [H] for Sl(n, C) are as follows (see [Sc] and [St)): 

Theorem 1 (Schur). One has (2) if A is positive definite. 

A matrix A is called totally positive if all square minors are non-negative. 
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Theorem 2 (Stembridge). One has (2) if A is totally positive. 

In this paper spotlighting an interpretation of immanants based on O-weight 
spaces, we give as an application a generalization, for all representations of 
SL(n, C), of Theorems 1 and 2. In the case of Schur's theorem the general-
ization is straightforward. For the case of Stembridge'S theorem we rely on a 
result of A. Whitney on the structure of totally positive matrices and a very 
deep result of George Lusztig on the coefficient non-negativity for the action of 
certain semigroups with respect to the canonical basis (see Theorem 22.1.7 in 
[Lu]). 

The notation underlying the statement (2) deals with arbitrary n, mEN. 
Now assume that m = n. Furthermore regard 7rA as a representation of 
S/(n, C). Thus, as one knows, ®nCn is a multiplicity free (Sn x Sl(n, C))-
module and its complete reduction into irreducible components can be written 
as 

(3) 

where 7r A : S / (n , C) ---; Aut V;. is an irreducible representation of S / (n, C) . 
Let H be the Cartan subgroup of all diagonal matrices in S/(n, C) so that 
V;.H is the O-weight space for the representation 7r A. Let PA : V;. ---; V;.H be 
that projection operator on the O-weight space which commutes the action of 
7rA(H) . 

We first establish Theorem 3 below-a O-weight interpretation of immanants, 
for matrices A E S/(n, C) . Ifwe extend the action of 7rA to be a multiplication 
preserving map of M (n , C) , then our proof of Theorem 3 in fact establishes the 
same characterization of immanants for any n x n matrix. The first statement 
of Theorem 3 is known. The second statement, although easy to prove (e.g., it 
is deducible from §II.2 in [B]), appears to be new. 

Theorem 3. Let A. E gn. Then 

(4) 

Now let A E SJ(n, C). Then 

(5) 

Remark. If we extend 7rA to all of M(n, C), then, as established in [Li], (1) 
is valid for any g E M(n, C) and hence the extended Theorem 3 yields the 
following somewhat startling trace equality for 7rA : 

(6) 

The representations {7rA} , A. E gn' appearing in Theorem 3 are of course 
only a finite subset of the set of all the irreducible representations of SJ(n, C) . 
Actually this finite set can be characterized by the condition, satisfied for exam-
ple by the adjoint representation, that twice a root is not a weight. 
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By scaling, Theorem 1 follows immediately from the more restricted state-
ment where A is assumed to lie in SJ(n, q. The same is true of Theorem 
2 by virtue of the non-singular approximation result-Theorem 1 in [W]-for 
totally positive matrices. In view of Theorem 3 the following result is then a 
generalization of Theorems 1 and 2. 

Theorem 4. Let n : SJ(n, q -+ Aut V be any finite (hoJomorphic) dimensional 
representation of Sl(n, q, and let P: V -+ V H be the n(H)-projection on the 
O-weight space V H . Then 

(7) tr Pn(A)P ;::: dim V H 

whenever A E Sl(n, q is either positive definite or totally positive. 

We wish to thank R. Stanley and A. Zelevinsky for informative conversations. 

2. THE O-WEIGHT SPACE IN 0 nen 

We retain the notation of the Introduction. The natural representation of 
Sn x Sl(n, q on 0 nen will be denoted by p. Explicitly if Vi E en, i = 
1 , ... , n, A E S I (n , q , and rES n ' then 

P(A)(VI 0 -··0 vn) = AVI 0· _. 0 Avn, 
p(r)(vi 0· _. 0 vn ) = vr-I I 0··· 0 vr-I n. 

Let ei E en, i = 1, ... , n, be the standard basis so that any pure monomial 
tensor product of the ei in 0 nen is a weight vector with respect to p(H). 
It is immediate then that for pISI(n, q the O-weight space (0nen)H is n! 
dimensional and is given by 

Now if A = {aij} E Sl(n, q, then 
n 

Aer-I j = Lair-Ijei · 
i=t 

Thus 
p(A)(er-l t 0---0er-l n)= "'"' a. -It---a. -I e· 0·--0e .. ~ 'If 'n T n 'I In 

(il •. _- • i.)EA'· 

Now let Q : (0nen) -+ (0nen)H be the projection operator which commutes 
with the action of H. Then clearly 

(8) 

Qp(A)(er-l) 0· -- 0 er-I n) = L aa-I)r- I ) . - -aa-Inr-Inea- I) 0··· 0 ea-I n ; 
aES. 

Qp(A)p(r)z = L a(a, r)p(a)z. 
aES. 
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On the other hand if Wn denotes the Weyl group of S/(n, q with respect to 
H, then p induces a representation y of Wn on the O-weight space (®nCn)H. 
Since elements of Wn may be represented, modulo H, by permutation matrices 
with signs-so as to have determinant I-we may clearly identify Wn with Sn 
in such a fashion that for a, r E Sn one has 

(9) -I y(a)p(r)z = sg(a)p(r)p(a )z. 

The group algebra qSn] is an (Sn x Sn)-module with respect to left and right 
multiplication so that if g E qSn] and (r, a) E Sn x Sn' then (r, cr) . g = 
r g a-I. On the other hand (®nCn)H is an (Sn x Sn)-module, where (r, a) 
operates by sg(a)p(r)y(a). It is clear then that there is a unique Sn x Sn 
isomorphism 

(10) 

such that y(z) = f, where f is the identity element of Sn' Now recalling 
the complete reduction (3) of p, let YA : Wn -+ Aut V;.H be the O-weight space 
representation of the Weyl group corresponding to 7lA. By (10) and the Peter-
Weyl theorem one has an identification 

(11) 

where Z; is the dual space to ZA' and an equivalence (since VA is self-contra-
gredient) 

YA := VA ® sg. 
With the identification (11) we may write 

n n H * (12) (®C) =EBAE9'ZA®ZA' • 
In particular recalling that f;.. = dimZA so that f;.. = /(f) one has 

( 13) 

establishing (4). 

3. PROOF OF (5) IN THEOREM 3 

One knows that for the extension of any representation V of Sn to the group 
algebra qSn] the image under V of the element FA E qSn] given by 

FA = ~ L/(r)r n. 
rES. 

is the projection operator on the VA primary component of v. But then, if 
{vJ, i = 1, ... , f;.., is a basis of ZA and {uJ is the dual basis of Z; = V;.H, 
one has, by the Peter-Weyl theorem, that 

J; I;. 
(14) -4 Lx\r)p(r)z= LVj®Uj . n. 

rES. j=1 
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Then upon applying Qp(A) to the left side of (14) it follows from (8) that 

J;. f 
(15) LVj ® P).n).(A)u j = -4 L L a(a, 'l")x\r)p(a)z. n. 

j=1 uES. rES. 

Now using the natural *-operation in the group algebra qSn] one defines a 
Hilbert space structure on (®ncnt by putting, for x, y E (®nCn)H , 

{x, y} = tr L,,(x)L(,,(y». 

recalling (10), where if FE qSn] , then LF is the operator of left translation 
in qSn] by F. One notes then that 

{p(a)z, p('l")z} = n!Ju r' 

and if the Vj are chosen to be an orthonormal basis of Z). with respect to an 
Sn -invariant Hilbert space structure in Z)., then 

{Vj ® Uk' Vj ® U,} = h.. Jjik'· 

But now the inner product of the right side of (14) with the left side of (15) is 
the same as the inner product of the right side of (15) with z. Thus 

(16) h.. tr P).n).(A) = h.. L a(E, 'l")/('l"). 
rES. 

Division by h.. yields (5). Q.E.D. 

4. PROOF OF THEOREM 4 WHEN A IS POSITIVE DEFINITE 

Let (u, v) be a Hilbert space structure on V which is invariant under 
n(SU(n)). Let A E S/(n, C) be positive definite, and let {wJ be an or-
thonormal basis of VH . To prove Theorem 4 in this case it suffices to show 
that for all 

( 17) (n(A) wj ' w) ~ 1 . 

But since A is positive definite, as one knows, we may write A ;= U* D* DU , 
where U is upper triangular and unipotent, D E H, and the superscript * 
denotes Hermitian adjoint. But clearly n(U)wj - Wj E Ker P. Since n(D)WH 

is i;he identity, one also has n(DU)wj - Wj E Ker P . But then 

(n(A) w j ' w) = (n(DU)wj' n(DU)wj) 
~ (wj , w j ) = 1. Q.E.D. 

5. PROOF OF THEOREM 4 WHEN A IS TOTALLY POSITIVE 

Assume A is totally positive. Let a;, i = 1, ... , n - 1 , be simple positive 
roots relative to (H, S/(n, C)) such that one can choose the matrix unit e;;+1 
to be a corresponding root vector e . Let {x.} be the corresponding canonical 

0; ] 

basis of V (see fLu]). In particular the {Xj} are a weight basis. If g E 
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S/(n, C), let J1.(g) be the matrix of neg) with respect to the basis {xj }. To 
prove the theorem it suffices to show that 

H 
(18) J1.(A)jj ~ 1 whenever Xj E V . 

But now by Theorem 2 in [W] or as more clearly stated in [Lo], we can write 
A = U_DU+, where U+ is a product of elements of the form exptea with , 
t > 0, U _ is a product of elements of the form exp te -a. with t > 0, and 
D E H has positive diagonal entries. Since elements of'the form U+ are 
clearly stable under conjugation by elements of the form D, we can assume 
that A = U _ U+D. But then if Xj E VH one has 

(19) n(A)xj = n(U_)n(U+)xj . 

But now by Theorem 22.1.7 in [Lu] all the entries of J1.(exp tea) and J1.(exp te_a) 
are non-negative for any 0'.; and t > o. Thus all the entries of J1.(U_) an'd 
J1.(U+) are non-negative. On the other hand since U_ and U+ are respectively 
lower and upper trianglar unipotent, one has that 

J1.(U_)jj = J1.(U+)jj = 1 
for any j . But now the product of two matrices each with non-negative entries 
and each having diagonal entries ~ 1 still has these same two properties. But 
then (18) follows from (19). Q.E.D. 
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