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HILBERT TRANSFORMS AND MAXIMAL FUNCTIONS 
ASSOCIATED TO FLAT CURVES ON THE HEISENBERG GROUP 

ANTHONY CARBERY, STEPHEN WAINGER, AND JAMES WRIGHT 

INTRODUCTION 

Suppose for each x in lRn y(x, t) is a smooth curve in lRn with y(x, 0) = 
x. For f E C;'(lRn), we define the Hilbert transform and maximal function 
associated to y(x, t) as 

and 

respectively. 

Hf(x) = p.v. rl f(y(x, t»fit 
1-1 

L f(x) = sup * f; If(y(x, t»ldt, 
O<h:9 

We are interested in L P estimates for H f and L f. If y(x, t) satisfies an 
appropriate curvature condition then 

(1) I<p<oo, 

and 

(2) I<p$oo. 

See [CI] and [CNSW]. 
We are interested in obtaining estimates (1) and (2) above for curves y(x, t) 

for which the curvature condition fails. There are a number of papers dealing 
with this question if y(x, t) is of the form 

(3) y(x, t) = x + r(t) 
where r(t) is a fixed curve. See [CVWWA] or [CZ], for example. 

In this paper we shall consider certain curves y(x, t) which are not of the 
form (3). In fact these curves will be curves on the Heisenberg group, that is 
we take a fixed curve r(t) in lR3 , and for x in lR3 we set 

y(x, t) = x . r- I (t) 
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where r-l(t) = -r(t) , and 

(Xl' X2 ' X3)· (Y l ' Y2' Y3) = (Xl + Y I ' X2 + Y2' X3 + Y3 + !(XIY2 - Y I X2»· 
Then 

and 

I I I 
Hf(x) = p.v. f(x· r- (x»~ 

-I 

vi f(x) = sup * foh If(x· r-I(t»ldt 
O<h~1 

where the multiplication is the Heisenberg group multiplication described above. 
We shall take r(t) to be of the special form 

r(t) = (t, y(t), ty(t» , for t > O. 

This allows one to write r( t) as 

(4) 

where v = (1, 1, 1) and 

(5) 

r(t) = c5(t)v for t> 0 

c5(t) = diag(t, y(t), ty(t» 

are not only linear transformations on 1R3 , but are also automorphisms of the 
Heisenberg group. It turns out that the appropriate curvature condition alluded 
to above will be satisfied exactly when y" (t) does not vanish to infinite order 
at t = o. So we shall be interested in the case y(j\O) = 0 for all j. 

Our results are expressed in terms of the functional 

(6) 1( ) = ty" (t) 
II. t y' (t) . 

Note that A(t) transforms well under scaling. That is if Ya,b(t) = ay(bt) , 

ty; b(t) 
Aa bet) = I' ) = A(bt) . 

, Ya,b(t 

Main Theorem. Suppose for t > 0 

r(t) = (t, y(t), ty(t» 

with yeO) = Y/(O) = 0, where y(t) is a convex curve in C3([O, 1]). Assume A(t) 
is decreasing and positive on (0, 1]. 

Furthermore assume 

(7) 

Then 
(8) 

and if r(t) is extended for negative t to be an odd curve, 

(9) IIHfllLP ~ C(p)lIfIILP, 1 < p < 00. 
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Remarks. The hypothesis of the main theorem seems rather technical, however 
it is straightforward to verify the hypothesis in examples such as 

y(t) = exp ( - t), or y(t) = exp ( - exp ( t )) , etc .... 

We will actually prove the theorem for curves r(t) = (t, y(t) , ty(t)) in a 
slightly more general setting. That is we will take the group law in R? to be 

(Xl' x 2' x 3)· (Yl' Y2' Y3) = (Xl + Yl' x2 + Y2' X3 + Y3 + P(X1Y2 - Y1X2)) 

where X = (xl' x 2' x 3), Y = (Yl' Y2' Y3) E]R3 and P E]Rl with P ¥: -1 , and 
consider y(x, t) = x·r- l (t) with the above multiplication. However for general 
P , we need to assume in addition that A(t) tends to infinity as t tends to o. It 
will be evident that our proof does not directly apply to the case P = -1 . Note 
that for P = 0, we are in the setting of (3), y(x, t) = x - r(t) ; the Euclidean 
translation invariant case. One reason for studying these more general curves is 
that results for these curves easily imply results in ]R2 . More specifically when 
P = 1, we can use the diffeomorphism qJ(x, y, z) = (x, y, z + xy) on ]R3 to 
obtain LP estimates for the Hilbert transform and maximal function associated 
to the curves 

y((x, y, z), t) = (x - t, Y - y(t), Z - 2xy(t)). 

This in tum implies that the estimates (1) and (2) hold for the plane curves 

y(x, y, t) = (x - t, Y - xy(t)) 

when y(t) satisfies the hypothesis of the main theorem. 
Since our basic operators do not commute with translations, the use of the 

Fourier transform does not seem to be a viable tool as in [CVWWA] or [CZ]. 
Instead we use ideas developed in [NSW], [C2], [RS] and [CVWWW]. Also we 
need to make use of a generalization of the space of homogeneous type as in 
[CW], developed in [CVWW). 

1. IDEA OF THE PROOF 

We will only give the proof of the estimate for the maximal function. The 
proof of the estimate for the Hilbert transform is similar. See [CVWWW] , 
where the necessary modifications in the argument are explainen. We set 

2-k+1 

MkJ(x) = 2k h-k J(x· r-l(t))dt. 

Let 
M J(x) = sup IMkJ(x)l. 

k>O 

It is not hard to see that .L J(x) ::::; eM J(x) for J ~ 0, and hence it suffices 
to show 

1 <p::::;oo. 
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Let Ak denote £5(2-k) , and fk(x) = f(Akx). Then 

Mkf(x) = 2k h:~k+I f(x . r- I (t))dt 

= i 2 f(x· r- I (2-kt))dt 

= i 2 f(Ak(A;I X .A;l r -I(2-kt)))dt 

-I = fk * df1.k(Ak x). 
Here, for a test function g, 

df1.k(g) = i 2 g(A;lqrkt))dt 

= i 2 g(rk(t))dt 

where 
r (t) = A-1q2-kt) = (t, y(rkt) , ty(rkt)) 

k k y(rk) y(rk) 

= (t, Yk(t) , tYk(t))· 
Also for a Radon measure df1., 

f * df1.(x) = J f(x· Y -1)df1.(Y). 

(More generally if d f1. and d v are two Radon measures, 

dv * df1.(f) = J J f(z· y)dv(z)df1.(Y)·) 

Let df1.~ be the measure defined on test functions g by 

df1.Z(g) = i 2 g(r;\t))dt. 

The operation f -4 f * d f1.~ is the adjoint of f -4 f * d f1.k . 
The essence of the proof of the main theorem is to show that 

df1.k * df1.Z * df1.k * df1.Z 

has an L 1 density Pk with a certain amount of L 1 smoothness. Note that 

M;MkM;Mkf(x) = h * df1.k * df1.Z * df1.k * df1.Z(A;I X ). 

In fact we shall show that df1.k * df1.~ * df1.k * df1.~ has a density Pk and that 

(1.1) Pk = Pk ,I + Pk, 2 ' 

where for some E > 0 

(1.2) J \Pk, 1 (x· y) - Pk ,I (x)\dx ::; Chf 
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whenever lIy II < h , and 

( 1.3) ! Ipk,2(Y ·x) - Pk,2(x)ldx ~ Ch t 

whenever lIyll < h. Once we prove (1.2) and (1.3) we can follow the general 
ideas of [C2] or [RS] to complete the proof of the main theorem. 

Now if f is a test function, 

As in [C2] and [RS], we will divide the region of integration into a number of 
parts. In each part we will fix one variable and make a change of variables in the 
other three. Suppose for example we are in a region where we fix t. Consider 
the mapping 

-I -I rpt(s, u, w) = rk(s) . r k (t). rk(u) . r k (w) 

which maps lle into the Heisenberg group, and make the change of variables 

(1.4) x = rpt(s, u, w) 

in the integral. The new difficulty that arises is that we have no uniform control 
over the size of the derivatives of rpt' So for example it becomes difficult to 
estimate the size of sets on which the transformation (1.4) is one to one. Also 
formally, one finds that the density p(x) is 1/IJ" (rp;1 (x))1 where J" denotes 
the Jacobian of rpt' Thus to estimate the smoothness of p(x) , one would like 
to have estimates on the derivatives of rp t which are not available. 

Our basic idea is to divide the cube 
4 Q = {(s, t, u, w) E 1R 11 ~ s, t, u, w ~ 2} 

into two parts. One part will have small area. On this part we will largely 
follow the argument of [RS] and use the fact that the area of this part is small 
to overcome the lack of uniformity in the control of the size of the derivatives 
of rpt' On the other part we make a suitable approximation to the Jacobian 
of rpt' J", so that we may directly calculate that the argument of [CVWWW] 
applies. 

2. THE MAIN ESTIMATE-SOME PRELIMINARY SPLITTING 

We shall assume A(t) tends to infinity as t tends to O. If A(t) stays bounded 
the proof is much easier for certain p, including p = 1/2. A monotonicity 
argument is needed which is not valid for general p. Furthermore since we 
are only concerned with what happens for t small, we shall assume A(t) is 
arbitrarily large. We proceed to the proof of (1.1), (1.2) and (1.3) above. 
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For a test function f 

Here 

and 

dPk * dPZ * dPk * dPZ(f) 

= ~ f(rk(s). r;'(t). rk(u)· r;'(w»dsdtdudw 

= 1 f(rp(s, t, u, w»dsdtdudw 
Q1 

+ 1 f(rp(s,t,u,w»dsdtdudw 
Q2 

= 8, (I) + 8 2(1). 

4 Q = ({s, t, u, w) E JR. 11 ~ s, t, u, w ~ 2}, 
Q, = ({s, t, u, w) E Q I max{s, t, u, w} = max{s, tn, 
Q2 = ({s, t, u, w) E Q I max{s, t, u, w} = max{u, wn, 

-, -, rp(s, t, u, w) = rk(s) . r k (t). rk(u) . rk(w) . 

We shall show that 8, has a density Pk , satisfying (1.2). Note that 

and so 

8 2(1) = 1 f(rp-'(s, t, u, w»dsdtdudw 
Q1 

8 2(1) = ! f(X-')Pk,,(x)dx 

= ! f(X)Pk,,(X-')dx. 

Thus Pk 2(X) = Pk J (x-') and so (1.3) follows from (1.2). Therefore we shall 
only pro~e (1.2). ' 

We now divide Q, into four parts, Q, = R, U R2 U R3 U R4 ' 

and 

R, = {(s, t, u, w) E Q, I max{s, t} = s, u < w}, 
R2 = {(s, t, u, w) E QJ I max{s, t} = s, w < u}, 
R3 = ({s, t, u, w) E Q, I max{s, t} = t, u < w}, 

R4 = ({s, t, u, w) E QJ I max{s, t} = t, w < u}. 

We will discuss in detail the contribution to 8 J from integrating over R, . 
The contributions from R 2 , R3 and R4 are treated similarly. Roughly the dif-
ference is that in treating R, and R2 we fix t, 1 ~ t ~ 2, and make a change 
of variables x = rpt(s, u, w) = rp(s, t, u, w) from JR.3 to JR.3. In R3 and R4 
we fix s and consider the change of variables x = rp/t, u, w) = rp(s, t, u, w). 
In R J and R2 we make different approximations to the Jacobian of rpt. Simi-
larly we use different approximations to the Jacobian of rps in R3 and R 4 . It 
will be clear what modifications to make in the Jacobians. 
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We must now analyze 

where 

Let 

f !(rp(s, t, u, w»dsdtdudw 
iR1 

= f2 {f !(rpt(s, u, W))dSdUdW} dt i l iRet) 

3 R(t) = {(s, u, w) E lR / (s, t, u, w) E R1}. 

at(/) = f !(rpt(S' u, w))dsdudw. 
iR{t) 

147 

Clearly it suffices to show that a' has an L 1 density Pt such that 1.2) holds 
uniformly in t. 

3. THE BALLS 

We begin by dividing R(t) into three regions. We set 
(3.1) Pt(s,u,w)=s-w+P(w-s+2t-2u). 

The significance of Pt is the set where our approximation to J". vanishes is 
precisely when Pt = o. We should remark here that in the region where the 
variable t is the largest (and thus we fix s) and w < u , the above polynomial 
is 

Ps(t, u, w) = t - u + p(t - u) 
which vanishes identically when p = -1 . Therefore our approximation to J"s 
will not hold in this region and so a different argument is needed in this case. 

Now let C be a large constant to be determined later. Set 

1 { logA(2-k u) 
Ok = (s, u, w) E R(t) / w - u > C k ' - A(2- u) 

and /Pt(s, u, w)/ ~ C 1 k }, 
A(r s) 

(3.2) 

(3.3) 2 { 10gA(rku) 
Ok = (s, u, w) E R(t) / w - u ~ C k ' 

A(r u) 

and Jtp'<s, u, w) ¥- 0 } , 

and 

(3.4) 3 { 10gA(rku) 
Ok = (s, u, w) E R(t) / w - u > C k 

A(r u) 

/P,(s, u, w)/ ~ C k and Jtp (s, u, w) ¥- o}. 
A(r s) • 
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Let X denote the hypersurface 

w _ u = ClogA(2-ku) , 
A(Tku) 

and Y denote the hypersurface 
1 

IPt(s, u, w)1 = C k 
A(T s) 

Once we show the measure of the zero set of ''P, is zero, we shall have an 
essential decomposition of R(t), 

123 R(t) = Q k U Q k U Q k . 

Our first type of ball is derived from a Whitney decomposition of Ok. As in 
Stein, [S], we find cubes Q£ n such that 

(3.5) 

(3.6) 

for a suitable to > 0, 

(3.7) 2-£-1 S; dist(center of Q£ n' boundary of Ok) S; 2- l . 

(3.8) 

There is a constant C so that no point is in 
more than C of the Q;n' Here Q;n is the 
cube with the same center as Qln and having a 
side length twice as large. 

Since Ok is bounded by a finite number of smooth hypersurfaces, it is clear 
that 

(3.9) for a given '- , the number of cubes Qln is at most C2u . 
2 2 Our second type of ball will be contained in Ok' For p = (s, u, w) E Ok 

and t > 0 small, set 

(3.10) 

(3.11 ) 

and 

(3.12) 
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where 
il(P) = (s - t)(w - u) dist(p, X) dist(p, Y). 

We then form balls 
D(po) = {(s, u, w) I So - r 1 (po) :::; s :::; So + r 1 (Po) , 

(3.13) wo - r2(po) :::; w :::; wo + r2(Po) , 
uo - r3(po) :::; u :::; uo + r3(Po)} , 

and the corresponding doubles 

D*(po) = {(s, u, w) I So - 2r1 (po) :::; s :::; So + 2r1 (po), 
(3.14) wo - 2r2(po) :::; w :::; wo + 2r2(Po) , 

Uo - 2r3(po) :::; u :::; Uo + 2r3(PO)}. 

We define a third type of ball for n!. For PEn! ' we set 

_ IJ9',(P)1 
(3.15) r1 (p) = f "( ) I ( ) il(p), 

Yk S Yk W 

_ I J9'/p) I 
(3.16) r2(P) = f "( ) I ( ) il(p) , 

Yk W Yk S 

and 

(3.17) 

3 If Po = (so' uO' wo) E nk ' set 

G(po) = {(s, U, w) I So - '1 (Po) :::; s :::; So + '1 (po), 
(3.18) Wo - '2(PO) :::; w :::; Wo + '2 (Po) , 

Uo - '3(PO) :::; U :::; Uo + '3(PO)} 
and the corresponding doubles 

G* (Po) = {(s, U, w) I So - 2'1 (po) :::; s :::; So + 2'1 (Po) , 
(3.19) Wo - 2'2(PO) :::; w :::; Wo + 2'2(PQ)' 

Uo - 2'3(PO) :::; U :::; Uo + 2'3 (po)} . 

If Po = (so' uO' Wo) E Qln C nk ' let 

(3.20) B(po) = Q;n· 
2 If Po E nk ' let 

(3.21) 

and finally if Po E n! ' let 

(3.22) 

149 

So {B(po)} covers all of R(t) except perhaps for a set of measure zero. We 
shall prove that we can find a good partition of unity of R(t) subordinate to a 
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subcollection of the balls {B(P)} , and that 'Pt is one to one on each ball B(P). 
Note that if 'Pt is one to one on B(P) and", is supported in B(P), 

f ",(s, u, w)/('Pt(s, u, w))dsdudw 

= f "'('P;I (x)) IJ(II,('P~I(X))I I(x)dx. 

Thus we will have a contribution of 
-I 1 

K(x) = "'('Pt (x)) IJ(II,('P;I(X))I 

to the density Pt. In order to prove (1.2) we will have to estimate LjK(x) , 
where LI = f)~J - pX2 f)~3 ' L2 = f)~2 + pXI f)~3 and L3 = f)~3 are left invariant 
vector fields on the Heisenberg group. By left invariance we see that 

j = 1,2,3. 

Since we know explicitly what K(x) is in the (s, u, w) coordinates, it will 
facilitate matters to express the above differential operators in the (s, u, w) 
coordinates. To do this let (so' uO' wo) E B(P) be a point in the support of '" 
and consider the mapping 

I -I 
(s, u, w) = 'Pt (so' uO' wo)· 'Pt(s, u, w) 

which maps diffeomorphically a neighborhood of (so' uO' wo) onto a neigh-
borhood of the identity of the Heisenberg group. Therefore the differential of 
I-I, d (I-I) , maps the tangent space at the identity of the Heisenberg group 
to the tangent space at (so' uO' wo) of 1R3 • We are interested in the image of 
the tangent vectors f)~j Iy=o' j = 1,2, 3, under the mapping d(jl). By the 

chain rule we can express d (j I) (f)~j I y=o) as 

(3.23) 

where (I-I)' denotes the Jacobian matrix of I-I, el = (1,0,0), e2 = 
(0, 1,0) and e3 = (0, 0, 1). Note that 

d(l)(so' uO' wo) = dLx-J 0 d('Pt)(so' uO' wo) 

where Lx-J is the operation of left multiplication by X-I = 'P;I (so' uO' wo) 
on the Heisenberg group. Therefore the Jacobian matrix for I at (so' uO' wo) 
is 
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Here (Xl' X 2 ' X 3) are the coordinates for the point X = IJ't(So' UO' wo ). Finally 
we see that (r1)' = :9'-1 and so (3.23) may be expressed as 
(3.24) 

d(f-I) (8~j Iy=o) = (:9'-l)*(SO' uO' wo) (:S' :u' 8~) l(so,uo,Wo)' e). 

Let us write 
:9'-1 * 1 1 

( ) = det:9' (gi) = J . (gi) 
'P, 

where gij is the (i, j) cofactor of the matrix :9' . Thus we will need estimates 
on ~~ and the corresponding derivatives. In order to obtain these estimates 
we first need a few lemmas. 

4. SOME LEMMAS 

In this section we derive some consequences of the hypothesis on A. 

Lemma 4.1. Let Co and ° be positive. If 1 $ W $ 2 and 

O C 10gA(rku) 
$w-u$ 0 k ' 

A(r u) 

then 
A(2-ku) $ eucOA(rkW). 

Remark. Recall that we are assuming that A is arbitrarily large and therefore 
we may assume that k is arbitrarily large in what follows. 
Proof. 

From (7) , 

I rkri(2-kr) 1$ ° A(2-kr) 
A(rk r) logA(2-k r) 

for k large enough and r $ 2. Thus since u ~ ! for k large, 

log A(rkU) $ 20 (W A(2-kr) dr 
A(2-kw) lu logA(2-kr) 

A(2-k u) 
$20 k (w-u)$2Coo. 

10gA(r u) 

The lemma follows by exponentiating the last inequality. 

Lemma 4.2. Let 1 < W < 2 and assume W - u > C log;.(rku) Then for k 
- - , - 0 ;'(2 k u) 

large enough 
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Proof. Since )'~ is increasing and A. is decreasing, we may assume w - u = 
C logA(2-k u) • Then 

o A(2 ku) 

)'~(w) l w -k dr 1 -k log -,-( - = .1.(2 r)- ~ -2.1.(2 w)(w - u) 
)'k u) u r 

1 -k CO-k 
~ 4.1.(2 u)(w - u) = 4 log .1.(2 u) 

by Lemma 4.1 if k is large enough. The result follows now by exponentiating. 
Lemma 4.3. Suppose 1 ~ w ~ 2. Then 

Proof. 

But 

which implies 

So 

)'~(w) > ~A.(2-kw). 
)'k(w) - 2 

)'k(W) -lw )'~(r) d , - , r. 
)',,(w) 0 )'k(w) 

)'~(w) [W -k da 1 -k 
log -,-( ) = .1.(2 a)- ~ -2.1.(2 w)(w - r), 

)'k r r a 

)'~ (r) _ !A(2- k w)(w-r) --<e 2 
)'~(w) -

which proves the lemma. 
Lemma 4.4. There are positive constants C1 and C2 so that if 1 ~ t ~ 2 and 

t t 
t- k <r, s<t+ k' 

A.(r t) - - .1.(2- t) 

then 

( 4.1) 

(4.2) 

(4.3) 
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and 

(4.4) 

Proof. To prove (4.1) note that it suffices to prove 

A (t - ;.tt)) 
---;'--7-" < C 
A(t+ ;.(t)) -

for t small. First by (7), 

A(t) jt+lfu ;.'(a) log = - --da 
A (t + _I ) 1 A(a) ;'(/) 

j t+lfu A(a) 
<f5 -da 
- 1 a 

where f5 > 0 is small if t is small. Since ¥ is decreasing, we may estimate 
the last integral by I and so 

A(t) < et5 
A (t + ;.tt)) -

if t is small. Therefore it suffices to prove 

A (t - ;.(t)) 
A(t) ~ C. 

Set s = A(t) and s' = A (t - ;.(t)) = A (rl(s) (1 - t)). We will show that 
s' ~ 2s which in tum implies (4.1). The estimate s' ~ 2s will follow from the 
estimate rl(2s) ~ rl(s') or 

rl(2s) ~ ;.-I(S) (1 - t) . 
But from (7), 

A-I(S) l2s 1 1 log = - da 
;.-1 (2s) S A'(;.-I(a)) ;.-1 (a) 

Il2s 1 1 ~"J s a2 da = Us 
where f5 > 0 is small if t is small (hence s is large). Exponentiating this 
inequality gives us 

~-1(2s) < e- 2h < 1 __ 1_ < l-! 
;.-I(S) - - 4f5s - s 

if f5 < ! and s is large enough. This establishes (4.1). 
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If r>s, 

10 y'(rkr) = f' rkuyl/(rku) du 
g y'(2-ks) is y'(rku) u 

f' ( -k ) du ( ) -k = is A 2 u U ::; 2 r - s A(2 s) 

< SA(rkS) < C 
- A(rkt)-

by (4.1) which implies (4.3). Next (4.4) follows from (4.1), (4.3) and the defi-
nition of A. Finally to prove (4.2) for r > s write 

y(2-kr) - y(2-ks) = l' 2-ky'(2-ku)du::; 2-ky'(2-kr)(r - s). 

Dividing by y(rks) yields 

y(2-k r) 1 C y'(2-k r) 
"-'-----;-k"":'" < + k' 
y(r s) - y'(2- s) 

Then (4.2) follows from (4.3). 

Lemma 4.5. If 1 ::; u < s ::; 2, 

y~(s) - y~(u) ~ fY~(S)(s - u) 

for some positive f . 

Proof. We may assume y~(u) ~ ty~(s). Then 
, , (S 1/ 

Yk(s) - Yk(u) = iu Yk(r)dr 

~ t ius y~(r)A(2-kr)dr ~ fY~(U)(S - u) 

since we are assuming that A. is bounded below. The proof is now complete 
since y~(u) ~ ty~(s) . 

5. SOME ESTIMATES FOR THE JACOBIAN OF fP l ' 

AND APPLICATIONS TO r 1 , r2 , r3 , '1' '2' AND '3 

If a = (ai' a2 , a3 ) and b = (b l , b2 , b3) are two vectors in ]R3, then we 
define [a, b] as the vector 

[a, b] = (0, 0, a l b2 - bl a2 ). 

With this notation 
fPt(s, U, w) = rk(s) - rk(t) + rk(u) - rk(w) 

(5.1) + P[rk(s) , -rk(t) + rk(u) - rk(w)] 
+ p[-rk(t) , rk(u) - rk(w)] + P[rk(u) , -rk(w)]. 
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Recall from the end of Section 3 that J (s, U, w) = det ~ (s, U, w) where 
flit 

~(S, U, w) = (b ~ ~) 91;(S, u, w). 
pX2 -pxl 1 

Here x = (Xl' X2' X3) = 91 t (S, U, w). A calculation shows 

(5.2) 

and 

(5.3) 

where 

(5.4) 

(5.5) 
and 

(5.6) 

~(S, U, w) = 

A = (SYk(S))' - P(SY~(s) - Yk(s)) + 2P( -Yk(t) + Yk(u) - Yk(w)) 

- 2P( -t + U - w)Y~(s), 
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Using the formulas (5.3), (5.4), (5.5) and (5.6), a computation gives the 
following lemma. 

Lemma 5.1. For (s, U, w) E R(t), 

(5.7) IJfllt(s, U, w)l:S Cy~(s)Y~(w), 

(5.8) 

(5.9) 

and 

(5.10) 

We now turn our attention to estimating Jfllt from below. 



156 ANTHONY CARBERY, STEPHEN WAINGER, AND JAMES WRIGHT 

Lemma 5.2. For 1 ~ U < W ~ 2, there are three functions Sl (u, w), S2(U, w) 
and S3(U, w) such that for (s, U, w) E R(t). 

IJ9I/ (s, u, w)1 ~ €y~(s)y~(w)(w - u)ls - sills - s211s - s31 

for some € > O. 
Proof. For a fixed (u, w), u < w , consider 

f(s) = J9I/ (s, u, w). 

Expanding (4.3) on the first column, we see that 

f(s) = a(u, w) + b(u, w)y~(s) + (y~(w) - y~(u))«P - l)sy~(s) - (P + l)Yk(s)). 
Consider the case P =f. 1 . Then 

(5.11 ) 

Since 

res) " s ( )' [( )'] y;(s) = (Yk(W) - Yk(u)) (P - 1) - 2 A(rkS) . 

2-ksi(rks) 
A2(rks) 

is arbitrarily small by (7) and the assumption that A is large, we see that 
r(s)/y;(s) is monotone and thus res) has at most one zero, Sl '= SI(U, w), 
and f(s) has at most two zeros, S2 = S2(U, w) and S3 = S3(U, w). We will 
assume that r has one zero and I has two zeros with S2 < Sl < S3' otherwise 
the proof is easier. From (5.11), we have 

I ' '" I (s)1 ~ f(Yk(w) - Yt(U))Yk (s)ls - sll 
for some € > O. Suppose Sl ~ S ~ S3' Then 

I/(s)1 = I[S3 I (r)dsl 

, ,!.S3 " 
~ f(Yk(w) - Yk(u)) s Yk(r)(r - sl)dr 

~ f(Y~(W) - y~(u))(Y~(S3) - y~(s))(s - Sl) 
and so the conclusion follows from Lemma 4.5. Next suppose S3 ~ s. Then as 
before 

If(s)1 ~ f(Y~(W) - y~(u)) r Y~ (r)(r - sl)dr iS3 
I 'Is" ~ f(Yk(w) - Yk(U)) Yk(r)(r - sl)dr 

¥ 
~ ~(y~(w) - y~(u)) (y~(s) - Y~ (~ )) (s - Sl) 

and so the conclusion follows from Lemma 4.5. The case s ~ Sl is treated 
similarly. When P = 1, one can consider 

( ~(S))' = b(u, w) (A(rkS))' 
Yk(s) s 
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Then one can estimate the coefficient b(u, w) from below and proceed as 
above. This concludes the proof of the lemma. 

Now by Fubini's theorem we have 

Lemma 5.3. The zero set of J" has measure zero. 

We now obtain another estimate for J" from below on Ok. 
1 Lemma 5.4. For (s, u, w) E Ok' 

IJ" (s, u, w)1 ~ !y~(s)y~(w)IPt(s, u, w)l. 

Proof. Expanding (5.3), we see that for (s, u, w) E nk, 
J,,(s, u, w) = -y~(s)y~(w)Pt(s, U, w) 

+&'(y~(s)(y~(u) + Yk(w)) + )lk(S)Y~(w)) 

I I (Y~(S)y~(W)) = -Yk(s)Yk(W)Pt(s, u, w) + &' k . 
l(r s) 

(5.12) 

The last equality follows from Lemmas 4.2 and 4.3. Since IPt(s, u, w)1 ~ 
C A(2~k s) for (s, u, w) E nk ' the desired estimate follows if C is chosen large 
enough. 

One consequence of the lemmas in Sections 4 and 5 are certain estimates for 
the functions rl , r2 , r3 , i\, '2 and '3· 
Lemma 5.5. Let 0 > O. Then if f in the definition of rl , r2, r3, etc. is 
sufficiently small, and p = (s, u, w) E R(t), 

(5.13) rl(p)='I(P)~o(s-t) \ ' 
l(r s) 

(5.14) r2(P) = r3(P) = '2(P) ~ o(w - u) \ ' 
l(2- w) 

andfor p E oi, 
(5.15) 

Proof. The inequalities follow easily from (5.12). In particular for p E ni, 
we have IFt(s, u, w)1 ~ C/l(rks) and so (5.12) shows IJ,,(p)1 ~ C')'1~~')'i~~) 
which implies (5.15). 

Lemma 5.6. There are positive constants C1 and C2 such that if p = (s, u, w) E 

O! and q E D*(p) , 
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Proof. 

IJ't (q) - J't (P)I = 1101 v J't (Tq + (1 - T)p)· (q - p)dTI 

::s; Crl(P) IoII:sJ't('rq + (1 - T)p)1 dT 

+ Cr2(P) 101 I a~ J't (Tq + (1 - T)p)1 dT 

+ Cr3(P) IoII:uJ't(Tq + (1 - T)p)1 dT. 

Using Lemmas 5.1, 5.5 and 4.4, we see that 

for € > 0 small. Similar remarks apply to the other partial derivatives of J't 
and we conclude that 

IJ't (q) - J't (P)I ::s; !IJ't (P)I 

which implies the desired result by taking CI =! and C2 = ! . 
Lemma 5.7. There are positive constants CI and C2 such that if p E ni and 
qEG*(P). 

Proof. The proof is similar to the proof of Lemma 5.6. We should note that 
for p = (s, u, w) E ni, 

and so by Lemma 4.2, 
y~(u) ::s; Cy~(w). 

Therefore from Lemmas 5.1, 5.5 and 4.4, 

'3(P) l:uJ't(q)\ ::s; C'3(P)Y~(s)y~(w) 
::s; €IJ't (p)1 

for € > 0 small and for any q E G* (p). The rest of the argument is the same 
as in Lemma 5.6. 
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Consequently, from the proofs of Lemmas 5.6 and 5.7 we have the following 
estimates. For p E ni and q E D* (P) , 

(5.16) l:sJ,,(q)lr1(P) ~ C1J,,(q)l, 

(5.17) 18~ J,,(q) I r2(P) ~ C1J" (q)l, 

(5.18) l:uJ,,(q)1 r3(P) ~ C1J,,(q)l. 

Also for p E ni and q E G*(p), 

(5.19) l:sJ,,(q)li\(P) ~ C1J,,(q)l, 

(5.20) 18~ J" (q)1 '2(P) ~ C1J" (q)l, 

(5.21) l:uJ,,(q)1 '3(P) ~ C1J" (q)l· 

Lemma S.S. There are positive constants C1 and C2 such that if p E ni and 
q E D*(p) , 

Also if p E ni and q E G*(p) , we have 

'j(q) 
C1 ~ ,.(p) ~ C2 , 

J 

j = 1,2,3. 

j = 1,2,3. 

Proof· Let p = (s, u, w) and q = (SI' u1 ' WI)' Since r1 (P) ~ J(s - t) by 
(5.13), it is clear that C1 (s - t) ~ (SI - t) ~ C2(s - t) for some positive constants 
C1 and C2 • Similar remarks apply to W - u, dist(p, X) and dist(p, Y) and 
therefore we can find constants C1 and C2 such that 

A(q) 
C1 ~ A(P) ~ C2 

for q E D* (P) if p E ni and q E G* (p) if p E ni. Furthermore by Lemmas 
5.5 and 4.4 we have similar estimates for the functions Y~ and y~. Now 
applying Lemmas 5.6 and 5.7 completes the proof of Lemma 5.8. 

To end this section we will collect some of the estimates proved so far and 
put them in a form which will be useful in proving the estimate (1.2). Recall 
that to prove (1.2) we need to have estimates on d::J. = ~ where gjj is the 

" (i, j) cofactor of the matrix Jl introduced at the end of Section 3. 
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(5.23) 

(5.24) 

and 

(5.25) IgJ3(p) 8: (de!~ ) (p)1 S; C22l. 

For P E D* (Po) c nz, 
(5.26) 1~(p)1 < C 1 

det~ - r3(p)A.(rkw) ' 

(5.27) Igll (P) :s (de!~ ) (p)1 S; C r l ~) I d!~~ (p)1 ' 
(5 28) I~( )1 < C 1 · det~ P - r l (p)A.(rks) , 

(5.29) Ig12(P) :u (de!~ ) (p)1 S; C r3~) Id!~~(p)1 ' 
(5 30) I~( )1 < C_1_ 1 

· det~P - rl(P)A.(rks) , 

and 

(5.31) IgI3(P) 8: (de!~ ) (p)1 S; C r2~p) I d!~~(p)l· 
And for p E G* (Po) c ni, 

I gll)1 1 (5.32) det~(P S; C '3(P) , 

(5.33) IgII(p):s (de!~) (p)1 S; C'I~P) Id!~~(p)I, 
I gl2 I 1 (5.34) det~(P) S; C 'I(P) , 

(5.35) IgI2(P) :u (de!~ ) (p)1 S; c '3~) I d!~~(p)1 ' 
(5 36) I~( )1 < C_1_ 1 · det~ P - '3(P) A(rkW) , 

and 

(5.37) IgI3(P) 8: (de!~ ) (p)1 S; c '2~P) I d!~~ (p)l· 
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Proof. Using (5.3) we may write 

and 

gll(p) = CY~(tIJ) -Dy~(u), 

gI2(P) = DY~(s) - Ay~(w), 

gl3(p) = Ay~(u) - Cy~(s) 
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where A, C and D are written out in (5.5), (5.6) and (5.7). For p = 
(s, u, w) E R(t) , we easily see that 

(5.38) Ig1j(p)1 ::; Cy~(s)y~(w), j = 1,2, 3. 

However by examining gI3(P) , we actually have the estimate 

Ig13 (p)1 ::; Cy~(s)(y~(u) + Yk(w)). 

Therefore if p E Ok U O~ , 
(5.39) Ig (p)l::; CY~(s)y~(w) . 

13 A(rkW) 
1 3 In fact for p = (s, u, w) E Ok U Ok ' 

C IOgA(rku) 
w -u > 

- A(rkU) 

and so Lemmas 4.2 and 4.3 imply (5.39). 
Now using the estimate from below on detg'(p) = Jrp,(p) for p E Ok 

obtained in Lemma 5.4, together with (5.38), gives us (5.22). In fact for 
p = (s, u, w) E Qtn' JP/s, U, w)1 ;::: Ert for some E > O. With these ob-
servations, (5.23), (5.24) and (5.25) follow from a straightforward calculation, 
using (5.38), (5.39) and Lemma 5.1. Also from (5.38), the estimates contained 
in (5.26), (5.28), (5.30), (5.32) and (5.34) follow directly from the definitions 
of rl , r2 , r3 , etc. Estimate (5.36) follows in a similar fashion from (5.39). Fi-
nally (5.27), (5.29), (5.31), (5.33) and (5.35) are consequences of the estimates 
(5.16)-(5.21). This completes the proof. 

6. THE ONE TO ONE PROPERTY OF 'PI 

In this section we prove that 'PI is one to one on each ball E(p). 
Lemma 6.1. Let A, B, C and X be vectors in ]R3. Then 

det(A, B, [X, Cl) = det([A, B], X, C) 

and 
det([A, X], B, C) + det(A, [B, X], C) + det(A, B, [C, Xl) = o. 

Proof. The proof can be established by direct computation. 

Lemma 6.2. 'PI is one to one on each B(p). 
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Proof· We shall show that qJt(SI' UI ' WI) I- qJt(S2' U2 , w2) for any two distinct 
points (SI' u l ' WI) and (s2' u2 ' w2) in B(P). We will further assume SI I- Sv 
u l I- u2 and WI I- w2 • If two of the coordinates of the distinct points are the 
same, the proof follows trivially from the convexity of 'l'(t). Now 

(6.1) 

where 

(6.2) 

(6.3) 

and 

(6.4) 

qJt(SI' ul ' WI) - qJt(s2' u2 ' w2) 

= qJt(SI' uI ' WI) - qJt(S2' uI ' WI) 
+ qJt(S2' uI ' WI) - qJt(S2' u2 ' WI) 
+ qJt(S2' u2 ' WI) - qJt(s2' u2 ' w2) 

=I+II+III 

1= rk(sl) - rk (s2) 

+ P[rk(SI) - r k(s2) ' -rk(t) + rk(u l ) - rk(wI)]' 

rl = rk(u l) - rk (u2 ) 

+ P[rk(u I ) - r k(u2) , -rk(s2) + rk(t) - rk(wI)]' 

III = rk (w2 ) - rk(wl) 
+ P[rk(w2) - rk(w l ), -rk(s2) + rk(t) - r k(u2)]· 

It suffices to prove I , I j and I I I are linearly independent, and hence it suffices 
to show that det(/, II, III)I-O. Let a(si' S2' ui' u2' wi' w~=det(/, II, III). 
Then a(s, S, u l ' u2 ' WI' w2) = 0 and so we may write either 

a(sl' S2' ul ' u2 ' WI' w2) 

[
S2 aa 

= - -a (s, S2' ul ' u2 ' wI ' w2)ds 
SI SI 

(6.5) 

or 

a(sl' S2; u l ' u2 ' WI ' w2) 

(6.6) 
[

S2 aa 
= -a (SI' S, u I ' u2 ' WI' w 2)ds. 

SI S2 

Furthermore, a(sl' S2' U, U, WI' w2) = 0 so 
aa -a (s, s2' U, U, WI ' w2 ) = 0 

SI 
and aa -a (SI' S, U, U, WI' w2 ) = O. 

S2 

Thus we may use the reasoning establishing (6.5) and (6.6) to write a as a 
double integral involving 
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After one more iteration we find 

a(si ' S2' UI ' U2' WI' W2) 

/.S21"21W2 03 a = ± dsdudw, 
SI "I WI oSaoubowe 

(6.7) 

where each of a, band c can be chosen to be either 1 or 2. Thus it suffices to 
show that for some choice of (a, b, c) 

0 3 
o 0 0 det(I , II , II I) '" 0 Sa Ub We 

in B(P). 
The computation of 8s 8~3 8w det(I, II, I II) is quite tedious, but can be 

abc 
somewhat simplified using Lemma 6.1. In order to express the result we use the 
notation that if a = 2, a' = 1 and if a = 1, a' = 2 , and similarly with band 
c. Then we find 

0 3 
± det(I, II, III) 

oSaoubowe 
(6.8) = J"'t (Sa' Ub ' we) 

+ P det([rk(sa) - rk(Sa') ' ~(sa)]' r'k(ub) , -r'k(We)) 
+ P det(r'k(sa) , ~(ub)' [r'k(We) , rk(we) - rk(we,)D· 

More explicitly, 

0 3 
± det(I, III, III) 

oSaouboWe 
(6.9) = J"'t (Sa' Ub ' wJ 

+ P(y~(sa)(sa - sa') - (Yk(Sa) - Yk(Sa' )))(y~(ub) - y~(we)) 
+ P(y~(we)(we - we') - (Yk(We) - Yk(We' )))(y~(sa) - Y~(Ub))· 

Choose a and c so that sa' < Sa and we' < we' i.e., if SI < S2 choose a = 2, 
and if S2 < Sl choose a = 1. Then if P E Q;n en!, 
(6.10) 

1
03det(I, II, III) 1 = IJ ( )1 E 

!'l !'l !'l "'t Sa' Ub ' We + , uSauUbuWe 
where 

(6.11) 

Recall that for any point p = (s, U, w) E Q;n' 
-l 

IPI(s, u, w)1 ~ €2 for some € > o. 
Therefore according to Lemma 5.4, 

-l' , 
IJ",,<sa' ub' we)1 ~ €2 Yk(sa)Yk(we)· 
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Now if we choose to in the definition of Qln sufficiently small, (6.10) and 
(6.11) imply det(I, II, II I) =1= 0 on Q;n' 

Next suppose p = (s, u, w) E n~. Then we obtain from (6.9), 

(6.12) 183det(1,II,III)I=IJ ( )1 E 
8 8 8 'P, sa' ub ' We + Sa ub We 

where 
( 6.13) 

By Lemma 5.8, 

lEI ~ Cy~(sa)y~(wJ(rl (sa' ub ' we) + r2(sa' ub ' wJ). 
Hence from the definitions of r l and r2 , (3.10) and (3.11), we see that 

3 
(6.14) 8 det(1, II, III) =1= 0 

8sa8ub8we 
on B(p) if to in (3.10) and (3.11) is chosen sufficiently small. The same rea-
soning gives (6.14) on B(P) where p E ni. This completes the proof that 'PI 
is one to one on each ball B (P) . 

7. A PARTITION OF UNITY 

We wish to find a sequence of points PI' P2' P3' '" in R(t), balls B(PI)' 
B(P2)' ... , and corresponding functions "'I' "'2' .,. which form a suitable 
partition of unity. 
Lemma 7.1. There exists a sequence o/points {Pj} in R(t) such that except/or 
a set o/measure zero (the zero set 0/ J'P,)' 

(7.1) R(t) = UB(P). 

(7.2) 
There is a constant C so that no point x is in more than C 0/ 
the balls B(Pj)' 

Moreover there exists nonnegative COO functions "'j such that 
(7.3) support 0/ "'j c B(P). 
(7.4) L "'j == 1, except on a set o/measure zero. 
(7.5) 1/ Pj E Q;n c n~, 

2 (7.6) 1/ Pj E nk , 

-' <C--11
8 "'"11 1 8s LOO - rl(p)' 

and 
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(7.7) If Pj E n!, 
_1 <c--

" 
a",>" 1 aw L oo - '2(P)' 

and 
_1 < c-_--. 

" 
a",>" 1 au L oo - r3(Pj ) 

Lemma 7.1 follows from the next lemma. 

Lemma 7.2. There exists a sequence of points Pj in n! such that UD(p) = n! 
and every point is in at most C of the D· (P j). Also there is a sequence of points 
Pj in n! such that UG(pj) = n! and no point is in more than C of the G*(Pj). 

Let us note that an analogous statement for the Ql. n is well known. The 
proof of Lemma 7.2 follows the lines of a similar argument due to Sogge and 
Stein [SS]. 

2 For 11 > 0 and Po = (so' uo' W o) E nk ' set 

D*(po) = {(s, u, w) Iso - 11rl (Po) < s < So + 11rl (Po), 

and for Po E n! ' let 

Wo - 11'2(PO) < w < Wo + 11r2(PO)' 
Uo - 11r3(PO) < u < Uo + 11r3(PO)}' 

G*(po) = {(s, u, w) Iso - 11'1 (po) < s < So + 11'1 (Po), 
Wo - 11'2(PO) < W < Wo + 11'2(PO)' 

Uo - 11'3(PO) < u < Uo + 11'3(PO)}· 
Lemma 7.2 follows from the following covering lemma. 

Lemma 7.3. . If 11 > 0 is sufficiently small, there exists a sequence {p j} in n! 
such that the D * (P j) are disjoint. UD(p j) covers n! and no point is in more 
than C of the D*(p). Similarly there exists a sequence {Pj} in n! such that 
the G.(P) are disjoint. UG(p) covers n! and no point is in more than C of 
the G*(P). 
Proof. We shall just consider the first statement of the lemma. The second 
statement is proved in a similar fashion. We will use Lemma 5.8 which asserts 
that if ql and q2 are in D*(p) for some PEn!, then r)ql) and r)q2) are 
comparble for j = 1 , 2, and 3. Taking this into account, we may use a Vitali 
type procedure to select balls, D * (P j)' according to the size of the measure 
of the D*(Pj)' and find a sequence of points {Pj} such that the D*(p) are 
disjoint and UD(Pj) covers n!. We claim that any point P is in at most C 
of the D*(P). Suppose P is in N of the D*(pj ). Then by Lemma 5.8, we 
have N disjoint rectangular parallelepipeds with volume ~ 11rl (p)r2 (p)r3 (p) 
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contained in a fixed rectangle of volume at most Cr1 (p)r2 (p)r3 (P) . Clearly this 
puts a bound on N. 

8. THE PROOF OF (1.2)-THE CONTRIBUTION FROM Qi 
As was pointed out in Section 1, we must show 

r !(rpt(s, u, w))dsdudw = r !(x)pt(x)dx l R(t) la2 

where for some € > 0 and constant C, 

(8.1) 

if lIyll < h. We shall show for (J = 1,2, 3, 

r !(rpt(s, u, w))dsdudw = r !(x)p~ (x)dx In: la2 

where each p~ satisfies (8.1). In this section we consider the case (J = 1 . 
Recall from Section 7 that we have functions 'fIi n such that supp('fIi n) C 

Q;, n' E 'fit, n = 1 on Qi, and ' , 

(8.2) 

Then 

where 

r !(rpr(s, u, w))dsdudw ln1 
k 

= L! 'fIl,n(s, u, w)!(rpt(s, u, w))dsdudw 
i,n 

= L! Pi ,n(x)!(x)dx, 
l,n 

'fIl n(rp;l(x)) 
Pi ,n(X) = IJ~t (rp;I(x))1 . 

Here we have used Lemma 6.2 to justify the above change of variables. Thus 

P: = LPi,n· 
l,n 

To show (8.1), it suffices to show 

(8.3) 

and 

(8.4) ! Ipl ,n(x. y) - Pl ,n(x)ldx $ Cllyll· 
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In fact if (8.3) and (8.4) are both valid, then 

/ Ip:(x, y) - p:(x)ldx:::; L / IPl,n(X' y) - PI,n(x)ldx 
t,n 

:::; C L L min(2- 31 , lIyll) 

:::; C [ L 2-1 + lIyll L 2U ] 
2-31~IIYII 2-3l~IIYII 

= Cllylll/3 
which gives (8.1) for a = 1. 

The proof of (8.3) is trivial as the left-hand side is at most 

2/ IP1,n(x)ldx = 2/ "'t,n(S' u, w)dsdudw 

< 21Q* I < C2-3t • - in-
We tum to the proof of (8.4). By writing 

101 d 
Pi n(x, y) - Pi n(x) = -d PI n(x, ty)dt, 

, , 0 t ' 
and using the chain rule, we find that 

/ IPi ,n(x, y) - Pt,n(x)ldx 

:::; Iyd 11 / la:~;n (x· ty) - px/:~~n (x· ty)1 dxdt 

+ ly2 1 11/ I a:~~n (x· ty) + pX1 a:~~n (x· ty)1 dxdt 

+ ly31 11/ I a:~~n (x· ty)1 dxdt. 

Replacing X· ty by x in the inner integrals, we find that 
3 

/ IPt,n(x, y) - Pt,n(x)ldx :::; Cllyll L / ILj(Pi,n)(x)ldx 
J=I 

where 

and 

167 
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are the left invariant vector fields discussed in Section 3. Of the three terms, the 
one corresponding to LI is the most difficult. To some extent this can be seen 
because the coordinate x2 is unbounded in the support of Pi, n • Therefore we 
will restrict our attention to LI and in fact we will show 

(8.5) 

To prove (8.5) we will first make the change of variables x = rpt(s, u, w). To 
do this, let us define 

'fit n (s, u, w) 
K(s, u, w) = 1/ ( )1' 'P, s, U, W 

Note that Pi n(x) = K(rp;I(X)). Formula (3.24) shows us how LI transforms 
under the change of variables x = rp t (s, u, w) and so we find 

f ILl (Pi, n)(x)ldx 

= f I det~(s, u, w)II((~-I(V7 K(s, u, w), el)ldsdudw. 

Recall that J'P
I 
(s, u, w) = det~(s, u, w). By computing the first component 

of (~-I)*V K(s, u, w), we see that 

f ILl (Pi ,n)(x)ldx':s f Igll (s, u, w) ~~ I dsdudw 

+ f Ig I2(S, u, w) ~~ I dsdudw 

+ f Ig13(S, u, w) ~~ I dsdudw 

=1+//+//1. 

Using (8.2), (5.22) and (5.23), we have 

1:S C [2l io; .. ld!~~(p)ldP 
+ io: .. lgII(p):s (de!~) (P)ldP] 

< C [iiIQ* 1+ 2u1 y;(s) , (W)] 
- l n '( )2 Yk , Q; .• Yk s 
:s C[2-l + 1] :s c. 

The estimate for the second integral follows by integrating in s first and noting 
that every w value is smaller than any s value in Q;, n • 
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To estimate II, we may use (8.2), (5.22) and (5.24) to see that 

II $ C [2t £;,.ld!~~(p)ldP 

+ £;,.lg I2(P) :u (de!~ ) (p)1 dp 1 
$ c22tlQ;,nl $ C2-i . 

The estimate for III is the same as for II. We simply use (5.25) instead of 
(5.24). This completes the proof of (8.5) and so we have shown that P: satisfies 
(8.1). 

9. THE PROOF OF (1.2)-:-THE CONTRIBUTION FROM n~ 

Let {"'t} denote the functions from Lemma 7.1 which are supported in the 
rectangular parallelepipeds D*(Pt), Pi E n~. Then 

102 !('P/(s, u, w»dsdudw = ! !(x)p;(x)dx, 
k 

where 

(9.1) 

We have to show 

(9.2) 

for h < lIyll. 
We let 

and we shall show 

(9.3) ! Ipt(x· y) - pt(x)ldx $ C'I (Pt )'2(Pt )'3(Pt ), 

(9.4) ! Ipt(x· y) - pt(x)ldx $ C '2~t) lIyll, 
l(2 St) 

where Pt = (St' ut ' wt ), and "'t is supported in D*(pt ). 
The proof of (9.3) is immediate since 

ID*(Pt)1 $ C'I (Pt )'2(Pt )'3(Pt)· 
We turn to the proof of (9.4). As before let 

"'t(s, u, w) 
K(s, u, w) = IJ ( )I" 

'P, S, U, W 
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Then as in the proof of (8.4), we see that the left-hand side of (9.4) is dominated 
by lIyll (l + II + II I) plus simpler integrals, where 

and 

1= flgl1(S,U'W)~~ldSdUdW' 

II = f I gI2(S, u, w) ~~ I dsdudw, 

III = fl gI3(S, u, w):~ldSdUdW. 
Hence to show (9.4), it suffices to show 

(9.5) I +II + III < C '2(Pt) 
- A(Tkst ) 

Inequality (9.5) will follow from Lemma 5.9. First of all from (7.6), (5.27), 
(5.29), (5.31) and Lemma 5.8, we have 

and 

III~C (pI ) r Idg1~(p)ldp. 
'3 l JD*(Pt) et.y 

Now using (5.26), (5.28), (5.30) and Lemma 5.8, we see that the above integrals 
are each bounded by r2~') and this gives (9.5). In the above analysis we used 

),(2 St) 

the fact that the function A(2-k .) does not change much in D· (Pe). This 
follows from Lemmas 4.4 and 5.5. This completes the proof of (9.4). 

Inequalities (9.3) and (9.4) together imply for 0 ~ ~ ~ 1 , 
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Therefore 

! Ip;(x . y) - p;(x)ldx 

~ Cllyll6 ( A(2-k u)6 [ Y~(S)y~(w) ]16 1 dsdudw 
lni IJ", (s, u, w)1 I~(s, u, w)I16 

< Cllyll6 (I 1 [ y~(s)y~(w) ]16 dsdudw. 
- lni (w - u)6 I~(s, u, w)I 16 IJ", (s, u, w)1 

We used here the fact that for p = (s, u, w) E nz ' 
> C logA(2-ku) C 1 

w-u > 
- A(2-k u) - A(2-k u) 

if k is large enough. Now we do the s integration first and use Lemma 52 to 
estimate J", from below and we obtain 

! Ip;(x . y) - p;(x)ldx 

~ ClIYIl6! ( 1 56 dudw ~ Cllyll6 
lnz(w-u) 

if ~ is sufficiently small. This concludes the proof of (9.2). 

10. THE PROOF OF (1.2)-THE CONTRIBUTION FROM n~ 

Let {'Ill} denote the functions from Lemma 7.1 which are supported in the 
rectangular parallelepipeds G*(Pl) , Pt E n~. Then we have 

103 !(rpt(s, u, w))dsdudw = ! !(x)p:(x)dx 
k 

where 

(10.1 ) 

We must show 

(10.2) 

for lIyll < h. 
We let 

We wish to show 

(10.3) ! Ipt(x· y) - pt(x)ldx ~ C'I (Pt)'2(Pt)'3(Pt) ' 
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and 

( 10.4) 

Again (10.3) is trivial. Furthermore, in analogy with Sections 8 and 9, the 
main work in proving (10.4) is the estimate 
(10.5) I + II + III ~ C'2(Pi)' 
where 

and 

III= r Ig13(P)~KldP. 
lG°(pt) uW 

As in Section 9, we can use (7.7), (5.33), (5.35), (5.37) and Lemma 5.8 to show 

I<C_1_ r I gll(P) IdP - 'I (Pi) lG°(pt) det~(p) , 

II~C,(pl) r Idg:~(p)ldp, 
2 i lG°(pt) e 

and 

III~C_(p1) r Idgl~(p)ldp. 
'3 i lG°(pt) et,y 

Finally using (5.32), (5.34), (5.36) and Lemma 5.8 gives us (10.5). This com-
pletes the proof of (10.4). 

We now complete the proof of (10.2) in analogy with Section 9. From (10.3) 
and (10.4), we see that for every 0 < 0 ~ 1, 

1 1-6 6 
Ipl(x. y) - Pl(x)ldx ~ ClG.(Pt)1 ('2(Pl)lIyll) 

G°(pt) 

~ CllYll6 1 [,(p )1, (p ) r dp 
Go(pt) 1 l 3 l 

I
, , 120 

< CII 1161 A(2-k )6 Yk(S)Yk(W) d - y S J (P),1.(P) p. 
Go(pt) 'P, 
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since for p = (s, u, w) E ni, IPt(s, u, w)1 2: C ).()kS). Doing the s integral 
first and using Lemma 5.2 to estimate ''P, from below now gives us (10.2) if 
we choose ~ above to be sufficiently small. This completes the proof of (1.2) 
and (1.3). 

11. THE L P BOUNDEDNESS OF L f 
Let dVk be the measure which acts on a test function by 

2- k+1 

dvk(!) = 2k ~-k f(r(t))dt. 

With the notation introduced in Section 1 we see that dVk is simply the measure 
such that Mkf(x) = f *dvk(x). Also in Section 1 we saw that the L P estimates 
for L f follow from 

(11.1) IIMfIlLP:::; CpllfllLP' 1 <p:::; 00, 

where Mf(x) = sup IMkf(x)l. 
k>O 

We will prove (11.1) by following the bootstrap argument in [NSWl]. That 
is, we shall prove the following three lemmas. 

Lemma 11.1. M is bounded on L2(JR.3). 
Lemma 11.2. Suppose that for some Po < 2, 

( ~ If • • dv.l' ) 1/2 

LPo 

<C 
- Po 

then 
Po <p:::; 2. 

Lemma 11.3. Suppose that for some Po:::; 2, 

11M fllLPo :::; Cpo II fll LPO ; 

then 

for all p with t :::; ! (k + 1) . 

<C - p 

The proof of Lemma 11.3 is given in [NSWl], and so we concentrate on the 
proofs of Lemmas 11.1 and 11.2. We begin by recalling some known results. 
Let 

( 11.2) (
t 0 0) 

~(t) = 0 y(t) 0 
o 0 ty(t) 

The convexity of y implies 

( 11.3) 
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if s < t. We also put Ak = d(rk) and note that 
-I 

(11.4) IIAk Ak+lll ~ 1/2. 

Let '" E C;'(lR3) with fa] '" = 1 and ",(x) = ",(-x). Set 

1 -1 1 -I 
'I'k(x) = d A ",(Ak+1x) - -d A ",(Ak x). 

et k+1 et k 
Then we have the following Littlewood-Paley inequality, 

(11.5) (~II * '1'.1')'/2 '" Cpll/llI!' 1 < p < 00. 

LP 
See [CVWW]. 

Now let 'P be a second C;' function on lR3 with 'P ~ 0, f 'P = 1, and 
'P(x) = 'P( -x). Set 

1 -I 
'Pk(X) = -d A 'P(Ak x), et k 

and N f(x) = sup If * 'Pk(x)l. Then according to [CVWW], 
k 

( 11.6) 1 <p ~ 00. 

Furthermore the argument in [NSW] proving Lemma 11.3 shows 

(11. 7) 

1 < p ~ 2. In view of (11.6), (11.1) will follow from the inequality 

Now 

and so 

Iisup If * (dvk - 'Pk)111 ~ CpllfiILP' 
k>O LP 

f * (dvk - 'Pk)(X) = Lf * 'I'k+l * (dvk - 'Pk)(x) , 
l 

(11.8) sup If * (dvk - 'Pk)(x)1 ~ L (L If * 'I'k+l * (dvk _ 'Pk )12) 1/2 
bO I k?O 

Set 

G1f(x) = (L If * 'I'k+l * (dvk _ 'Pk)(X)12) 1/2 
k?O 

We shall show that for some € > 0, 

( 11.9) 
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This will then prove Lemma 11.1. Then under the hypothesis of Lemma 
11.2, using (11.7), we see 

IIGl/Ii LPO :::; Cpo (2: II * '¥k+l1 2) 
k~O L~ 

Now using (11.5), we obtain 

IIGl/IIL~ :::; CpoII/IIL~· 

Interpolating with (11.9), we find 

(11.10) IIGl/llLP :::; crt(P)llIII/IILP' Po <P:::; 2, 
for some €(p) > o. Summing on l then completes the proof of Lemma 11.2. 

Thus matters are reduced to proving (11.9). Let rk(t) denote the standard 
Rademacher functions, and set 

Tl,tl(X) = 2: rk(t)1 * '¥k+l * (dvk - 9'k)(x). 
k 

A standard argument shows that (11.9) will follow from 

(11.11) IITl ,tl llL2 :::; C2-tliIIl/IlL2. 

Let 
s!/(x) = 1* '¥k+i * (dvk - 9'k)(X). 

We will show 
(11.12) 

2 for some € > 0 and 0 > o. Here II . II denotes the operator norm on L . A 
similar but somewhat more complicated argument shows 
(11.13) 11(s!)*S~II:::; C2-tliI2-JIJ-kl. 

Then (11.12) and (11.13) imply (11.11) by the Cotlar-Stein lemma. 
Note that 

s!(sJ)* I = 1* (dv; - 9') * '¥j+l * '¥k+l * (dvk - 9'k)' 

where d v; is the measure defined by 
2-J+1 

dv]*(g) = 2j f. g(r- 1(t))dt. 12-1 

Since the total mass of dVk and 9'k is bounded, we have 
1 1 * -flJ-kl 

IISk(Sj) II:::; ClI'¥j+l * '¥k+lIILI :::; C2 . 
To verify the last inequality, we may assume j :::; k and note that since '¥j+l 
has mean value zero, 

f -1 -1 -(k-j) 
1I'¥j+l * '¥k+lIlLI :::; C 1R31'¥j+l(x)IIAk+lxldx:::; ClIAk+lAj+lll :::; C2 

by (11.3). 
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Therefore it remains to show 

(11.14) 

We shall first prove (11.14) when i ::; O. Note that 
l IISkll ::; CII\}'k+l * (dllk - qJk)IIL,· 

As before since dllk - qJk has mean value zero, we have 

II\}'k+l * (dllk - qJk)IIL, 

::; C [L3IA;~lXldllk(X) + L3IA;:lXlqJk(X)dX] 
2-k +1 

::; cl h-k IA;:lr(t)ldt + CIIA;:lAkll 

= C /1 IA;~lAk_Irk_1 (t)ldt + ClIA;~lAkll 
1/2 
-I l 

::; CIIAk+lAkll ::; C2 . 

Here we used the fact that the normalized curve r k _ 1 (t) is bounded for t ::; 
t::; 1. This proves (11.14) for i < O. 

We now suppose i > O. Write 
l 

Skf = f * \}'k+l * dllk - f * \}'k+l * qJk 
l l 

=Rkf - Qkf. 
We shall show 

l -fl 
IIRkfllL2 ::; C2 IIfIlL2. 

The estimate for Q! is easier. Since 

l * If * (Rk) Rk (x) = f * \}'k+l * dllk * dllk * \}'k+l(X) , 
l * l * II(Rk) RJIIL2 ::; Cllf * \}'k+l * dllk * dllk II L 2. 

Let Rf(x) = f * \}'k+l * dllk * dll;(x). 

IIR* RfllL2 = IIf * \}'k+l * dllk * dll; * dllk * dll; * \}'k+l IlL2 

::; ClI\}'k+l * dllk * dll; * dllk * dll; * \}'k+lIlL, llfIlL2. 
Therefore since 

IIR~II = II(R~)*R~III/2::; IIRIII/2::; IIR*RIII/4, 
it suffices to show 

lI\}'k+l * dllk * dll; * dllk * dll; * \}'k+lIIL1 ::; C2-fl 

for some € > O. We know from Section 1 that 

\}'k+l * dllk * dll; * dllk * dll;(x) 
* * -I = \}'k+l ,k * dJ1.k * dJ1.k * dJ1.k * dJ1.k(Ak x) 
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where \}'k+l ,k(x) = \}'k+e(Akx) and dJ1k is the normalized measure along the 
curve r(t). Similarly we have 

dVk * dv; * dVk * dv; * \}'k+e(x) 

= dJ1k * dJ1Z * dJ1k * dJ1Z * \}' k+i ,k(A~1 x). 

Also from Sections 3 to 10, we know that 

where 

if ilyll < h, and 

! IPk,2(y, x) - Pk,2(X)ldx:S Cht 

if Ilyll < h. Therefore we may write 

where 

and 

Thus it suffices to show 

(11.15) 

and 

(11.16) 

We will prove (11.16). The proof of (11.15) is similar. 

B = ! \}'k+i(Ak(A~1 X· Y -1))Pk ,2(y)dy 

= ! \}'k+e(x, (Aky)-I)Pk ,2(y)dy 

1 ! -I-I = detA. \}'k+l(y)Pk,2(Ak y. Ak x)dy 
K I! -I -I -I = detAk [Pk,2(Ak y. Ak x) - Pk,2(Ak x)]\}'k+l(y)dy 
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since '¥ k+i has mean value zero. Therefore 

1 1 [I -1 -1 -I d] d IIBIILI ~ detAk l'¥k+l(y)1 IPk,2(Ak y. Ak x) - Pk,2(Ak x)1 x Y 

= II'¥k+l(Y)1 [/IPk,2(A;ly ·x) - Pk,2(X)ldX] dy 

~ C II'¥k+I(Y)IIIA;lyll f dy 

~ C 111f/(Y)IIIA;1 Ak +l +1YI( dy 

+ C 111f/(Y)IIIA;IAk+iYllfdy 

~ C2-fi . 

The last inequality follows from (11.3) and this completes the proof of (11.16), 
finishing the proof of the L P boundedness of L f . 

NOTE ADDED IN PROOF 

L 2 estimates for related, but different, singular Radon transforms were re-
cently obtained by A. Seeger using completely different methods. His article is 
entitled L 2 -estimates for a class of singular oscillatory integrals, and appears in 
Math. Res. Lett. 1(1994),65-73. 
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