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VECTOR BUNDLES AND SO(3)-INV ARIANTS 
FOR ELLIPTIC SURFACES 

ROBERT FRIEDMAN 

INTRODUCTION 

Beginning with Donaldson's paper on the failure of the h-cobordism theo-
rem in dimension 4 [5], the techniques of gauge theory have proved to be highly 
successful in analyzing the smooth structure of simply connected elliptic sur-
faces. Recall that a relatively minimal simply connected elliptic surface S is 
specified up to deformation type by its geometric genus Pg(S) and by two rela-
tively prime integers m1 , m2 , the multiplicities of its multiple fibers. Here, if 
p g(S) = 0, a surface S such that mj = 1 for at least one i is rational, and thus 
all surfaces S with Pg(S) = 0 and mj = 1 are deformation equivalent and in 
particular diffeomorphic. Moreover, if Pg(S) = 1 and m 1 = m 2 = 1, then S 
is a K3 surface. In all other cases, S is a surface with Kodaira dimension one. 

Our goal in this paper is to prove the following result, which completes the 
smooth classification of elliptic surfaces: 

Theorem. Two possibly blown up simply connected elliptic surfaces are diffeomor-
phic if and only if they are deformation equivalent, More precisely, suppose that 
Sand S' are relatively minimal simply connected elliptic surfaces. Suppose that 
S has multiple fibers ofmultiplicities m 1 and m 2 , with 1 :::; m 1 :::; m 2 , and that 
S' has multiple fibers of multiplicities m~ and m;, with 1 :::; m~ :::; m;. Let S 
be a blowup of S at r points and S' a blowup of S' at r' points. Suppose that 
Sand S' are diffeomorphic. Then r = r' and Pg(S) = Pg(S') , and moreover: 

(i) If Pg(S) > 0, then m 1 = m~ and m 2 = m;. 
(ii) If p g(S) = 0, then S is rational, i.e. m 1 = 1, if and pnly if S' is 

rational if and only if m~ = 1. If Sand S' are not rational, then 
, d ' m 1 = m 1 an m2 = m 2 • 

There is also a routine generalization to the case of a finite cyclic fundamental 
group. The statements in the theorem that r = r' and Pg(S) = Pg(S') are easy 
consequences of the fact that Sand S' are homotopy equivalent, and the 
main point is to determine the multiplicities. Before discussing the proof of the 
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theorem in more detail, we shall review some of the history of the classification 
of simply connected elliptic surfaces: 

Theorem 0.1 [10]. There is a function f(m l , m2) defined on pairs of relatively 
prime positive integers (ml' m2) such that f is symmetric and finite-to-one 
provided that neither m l nor m2 is 1, with the following property: Let Sand 
Sf be two simply connected surfaces with Pg(S) = o. Denote the multiplicities 
of the multiple fibers of S by m l ' m2 and the multiplicities for s' by m~ , m; . 
If S and Sf are diffeomorphic, then f(m l , m2) = f(m;, m;). Moreover, let 
S and Sf be blowups of Sand S' at r points. Then: 

(i) Every diffeomorphism If/: S -+ S' pulls back the cohomology class of an 
exceptional curve on S' to ± the cohomology class of an exceptional 
curve on S. 

(ii) Every diffeomorphism If/: S -+ S' pulls back the cohomology class of a 
general fiber on S' to a rational multiple of the cohomology class of a 
general fiber on S. 

(iii) If S "and S' are diffeomorphic, then f(m l , m2) = f(m;, m;). 0 

The function f(m l , m2) was then determined by S. Bauer [2] (the case 
m l = 2 is also in [10]): 

Theorem 0.2. In the above notation, 
2 2 

f( ) - (ml - 1)(m2 - 1) _ 1 m l , m2 - 3 . 0 

For the case Pg(S) > 0, there is the following result [11]: 

Theorem 0.3. Let S and Sf be two simply connected surfaces with Pg(S) > 
O. Denote the multiplicities of the multiple fibers of S by m l , m2 and the 
multiplicities for s' by m;, m;. If S and Sf are diffeomorphic, then m l m2 = 
m; m;. Moreover, let Sand S' be blowups of S and Sf at r points. Then: 

(i) Every diffeomorphism If/: S -+ S' pulls back the cohomology class of an 
exceptional curve on S' to ± the cohomology class of an exceptional 
curve on S. 

(ii) Except possibly for Pg(S) = 1, every diffeomorphism If/: S -+ S' pulls 
back the cohomology class of a general fiber on S' to a rational multiple 
of the cohomology class of a general fiber on S. 

(iii) If Sand S' are diffeomorphic, then m l m2 = m~ m; " 0 

The crux of the argument involves calculating a coefficient of a suitable Don-
aldson polynomial invariant Ye(S). In fact, it is shown in [11] that Ye(S) can 
be written as a polynomial in the intersection form qs and the primitive class 
KS = K such that the class of a general fiber [f] of S is equal to m l m2K, 
and that, for c sufficiently large, the first nonzero coefficient of this polynomial 
is given as follows: let n = 2c - 2pg(S) - 1 and d = 4c - 3pg(S) - 3" If 
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(S) ",,[dI2l i d-2i h 0 f' d Yc = Ui=O aiqsK , t en a i = or 1 > n an 
d! p (S) 

an=-2n ,(m1m2)g . n. 
The proof of this statement involves showing that the moduli space of stable 
vector bundles V with c1 (V) = 0 and c2(V) = c fibers holomorphically over 
a Zariski open subset of a projective space, and that the fiber consists of m1 m2 
copies of a complex torus. It is natural to wonder if the techniques of [11] can 
be pushed to determine some of the remaining terms. However, it seems to be 
difficult to use the vector bundle methods used in [11] to make the necessary 
calculations, even in" the case of no multiple fibers. Thus, it is natural to look 
for other techniques to complete the COO classification of elliptic surfaces. 

Using a detailed analysis of certain moduli spaces of vector bundles, Morgan 
and O'Grady [21] together with Bauer [3] were able to calculate the coefficient 
an- 1 in case Pg(S) = 1 and c = 3. The calculation is long and involved for 
the following reason: the moduli spaces are nonreduced, not necessarily of the 
correct dimension, and (in the case of trivial determinant) the integer c is not 
in the "stable range". The final answer is that, up to a universal combinatorial 
factor, an- 1 = m) m2(2m;m; - m; - m;). From this and from the knowledge 
of m 1m2 , it is easy to determine the unordered pair {ml' m2}. In addition, 
the calculation shows that the class of a fiber of S is preserved up to rational 
mUltiples in case P g (S) = 1 as well (the possible exception in (ii) of Theorem 
0.3 above), provided that not both of m 1 and m2 are 1. 

Simultaneously with the research of this paper, Morgan and Mrowka [20] 
have independently determined the second coefficient an _ 1 for all S such that 
Pg(S) 2: 1, for the case of the SU(2)-invariant Yc(S). The answer is that, up 
to combinatorial factors, 

an_I = (mlm2lg(S)((m~m~)(pg(S) + 1) - m~ - m~). 
From this, it is again easy to see that the diffeomorphism type of S determines 
the unordered pair {m l , m2} in case Pg(S) 2: 1. The proof of this formula 
uses the knowledge of an_ 1 for the case of Pg(S) = 1, together with the gauge 
theory gluing techniques developed by Mrowka in [22], to determine the co-
efficient an_I for Pg(S) > 1. Since the first draft of this paper was written, 
Kronheimer and Mrowka [17] conjectured a general formula for the SU(2) 
Donaldson polynomial of an elliptic surface with P g > 0 and verified this for-
mula in the case of no multiple fibers. Subsequently Fintushel and Stern verified 
the formula of Kronheimer and Mrowka in general. Their proof, which does 
not use algebraic geometry or the results of [20], [22], gives another proof of 
the main theorem in this paper for the case P g > O. 

In the proof given here of the main theorem, we shall use the following results. 
Aside from standard techniques in the theory of vector bundles, and the gauge 
theory results that are described in the book [11], we use only the results of this 
paper and of [11] to handle the case P g (S) > O. In case P g (S) = 0, we use the 
results in this paper and in [11], as well as the calculation of Bauer described in 
Theorem 0.2 in case m 1 m2 == 0 mod 2. In case m 1 m2 == 1 mod 2, our proof 
does not depend on Bauer's results. 
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Next we outline the strategy of the argument. Following a well-established 
principle [7], [15], we shall work with SO(3)-invariants instead of SU(2)-
invariants since these are often much easier to calculate. Moreover, in case b; = 1 a good choice of an SO(3)-invariant can simplify the problem that the 
invariant depends on the choice of a certain chamber. Thus we must choose a 
class W E H2(S; '1,/2'1,) to be the second Stiefel-Whitney class of a principal 
SO(3)-bundle, although it will usually be more convenient to work with a lift of 
W to Ll E H2(S; '1,) . One possible choice of a lift of W would be the class K, 

the primitive generator of '1,+ . [Jl , or perhaps c1 (S) , or even [Jl. All of these 
classes are rational mUltiples of [Jl, and they do not fundamentally simplify 
the problem. 

Instead we shall consider the case where Ll is transverse to f, more specifi-
cally where Ll· K = 1 . Of course, we shall need to choose Ll to be the class of a 
holomorphic divisor as well in order to be able to apply algebraic geometry. As 
we shall see in Section 1 of Part I, we can always make the necessary choices and 
the final calculation will show that the answer does not depend on the choices 
made. Note that Ll is well defined up to a multiple of K, and that the choices 
Ll and Ll- K correspond to different choices for w 2 == p mod 4. Finally, as we 
shall show in Section 2 of Part I, in case b; (S) = 1 or equivalently p g (S) = 0 , 
there is a special chamber ~(w, p) which is natural in an appropriate sense 
under diffeomorphisms. 

With this choice of Ll, the study of the relevant vector bundles divides into 
two very different cases, depending on whether m 1 m 2 == 0 mod 2 or m 1 m2 == 
1 mod 2. In the first part of this paper we shall collect results which are needed 
for both cases and show how the main theorems follow from the calculations 
in Parts II and III. In Part II, we shall consider the case where Ll· K = 1 and 
m l m 2 == 0 mod 2. In this case, m l , say, is even (here we do not observe the 
convention that m l :::; m2 ). Since Ll· f = m l m2Ll· K, a vector bundle V with 
ci (V) = Ll has even degree on a general fiber f. At first glance, then, it seems 
as if we are again in the situation of [8] and [11] and that there is no new 
information to be gained from the Donaldson polynomial. However, it turns 
out that the asymmetry between m l and m2 appears in the moduli space as 
well. In this case, the moduli space again fibers holomorphically over a Zariski 
open subset of a projective space. But the fibers now consist of just m2 copies 
of a complex torus. We then have, by an analysis that closely parallels [11], the 
following result (Theorem 4.1 of Part II): 
Theorem 0.4. Let wand p be as above, and set 

d = -p - 3(pg(S) + 1) and n = (d - Pg(S))/2. 
Suppose that Yw,p(S) is the Donaldson polynomial for the SO(3)-bundle P 
over S with w 2 (P) = wand PI (P) = p where if Pg(S) = 0 this polynomial 
is associated to the chamber ~(w, p) defined in Definition 2.6 below. Then, 

. h . d' . (S) ",,[d/2l i d-2i h fi assummg t at m l IS even an wrltmg Yw,p = Wi=O aiqsKs ,we ave, or 
all p such that -p ~ 2(4pg(S) + 2), ai = 0 for i> nand 

d! p (S) 
an = -2n ,(m l m 2 ) g m 2• n. 
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In particular, the leading coefficient contains an "extra" factor of m2 • Using 
this and either [11] in case Pg(S) > 0 or [2] in case Pg(S) = 0, we may then 
determine {m" m2}. Note that in case Pg(S) = 0 and one of m" m2 is 
1, then it cannot be m, since m, is even. Thus m2 = 1 and the leading 
coefficient does not determine m, (as well it cannot). 

Finally, in Part III we shall discuss the case where Ll· K = 1 and m, m2 == 
1 mod 2. If m, m 2 == 1 mod 2, then vector bundles V with c, (V) = Ll have 
odd degree when restricted to a general fiber, and the general methods for study-
ing vector bundles on elliptic surfaces described in [8] and [11], Chapter 7, do 
not apply. Thus we must develop new techniques for studying such bundles, 
and this is the subject of Part III. Fortunately, it turns out that this moduli prob-
lem is in many ways much simpler to study than the case of even degree on the 
general fiber. For example, as long as the expected dimension is nonnegative, 
for a suitable choice of ample line bundle the moduli space is always nonempty, 
irreducible, and smooth of the expected dimension. Moreover a Zariski open 
subset of the moduli space is independent of the multiplicities, and from this 
one can show easily that the leading coefficient of the Donaldson polynomial 
for the corresponding SO(3)-bundle is (up to the usual combinatorial factors) 
equal to 1. At first glance, this rather disappointing result suggests that no new 
information can easily be gleaned from the Donaldson polynomial. However, 
this suggestion is misleading: in some sense, the structure of the moduli space 
allows the contribution of the multiple fibers to be localized around the multiple 
fibers, enabling us to calculate the next two coefficients in the Donaldson poly-
nomial. By contrast, in the case of trivial determinant, the moduli space for a 
surface with two multiple fibers of multiplicities m, and m2 looks roughly like 
a branched cover of the corresponding moduli space for a surface without mul-
tiple fibers. A further simplification is that we can work with moduli spaces of 
small dimension, for example dimension two or four. Using the vector bundle 
results, we shall show (Corollary 6.4 and Corollary 9.5 of Part III): 

Theorem 0.5. Let S be a simply connected elliptic surface with two multiple fibers 
of multiplicities m, and m2, with m, m2 == 1 mod 2. Let W E H2(S; Zj2Z) 
satisfy W • K = 1. Suppose that Yw,p(S) is the Donaldson polynomial for the 
SO(3)-bundle P over S with w2(P) = wand P, (P) = p where /f Pg(S) = 0 
this polynomial is associated to the chamber ~(w, p) defined in Definition 2.6 
below. 

(i) Suppose wand p are chosen so that the expected complex dimension 
of the moduli space -p - 3(Pg(S) + 1) is 2. Then for all :E E H2(S; Z), 

(ii) Suppose wand p are chosen so that the expected complex dimension 
of the moduli space -p - 3(pg(S) + 1) is 4. Then for all :E E H2(S; Z), 
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where 
22 22 44 44 CI = (ml m2 )(Pg (S) + 1) - m l - m2 ; C2 = (ml m2 )(Pg (S) + 1) - m l - m2 • 

Here CI is the second coefficient of the degree two polynomial. 

Note that the final answer has the following self-checking features. First, it 
is a polynomial in qs and "s. If Pg(S) = I and m l = m2 = I, so that S 
is a K3 surface, then the term (I:. Ie) does not appear. This is in agreement 
with the general result that Yw;p(S) is a mUltiple of a power of qs alone. If 
Pg(S) = 0 and m l = I, then the answer is independent of m2 , since in this 
case all of the surfaces S for various choices of m2 are diffeomorphic. In fact, 
we shall tum this remark around and use the knowledge of Y w ,p (S) for P g = 0 , 
m l = I and m2 arbitrary, to determine Yw,p(S) in general. 

The techniques used to prove Theorem 0.5 should be capable of further gen-
eralization. For example, these methods should give in principle (that is, up to 
the knowledge of the multiplication table for divisors in Hilbn S ) the full poly-
nomial invariant in case m l and m2 are odd. One might make a conjectural 
formula for Yw (S) in general along the lines suggested by Kronheimer and ,p 
Mrowka in [17]. In our case the formula should conjecturally read as follows: let 
yt(I:) be the Donaldson polynomial Yw,p(S)(I:, ... , I:) for w = .:l mod 2 or 
w = .:l-Ie mod 2 and P chosen so that w 2 == P mod 4 and -P - 3X(&'s) = 2t, 
so that the complex dimension of the moduli space is 2t. It follows from 
Proposition 1.1 below that Yt depends only on t. Then the natural analogue 
of the conjectures in [17] is the conjecture that 

~Yt(I:) (qs) (cosh(mlm2 (1e.I:)))Pg+1 
~ (2t)! = exp "2 cosh(ml (Ie· I:)) cosh(m2(1e. I:))" 
t~O 

It essentially follows from Theorem 0.5 that this formula is correct through the 
first three terms, including the case P g = 0 where the quotient is not given by a 
finite sum of exponentials, and it is likely that a further extension of the methods 
in Part III and the knowledge of the multiplication in Hilbn S can establish the 
general formula. This formula has also apparently been established by Fintushel 
and Stem in case P g > o. Finally we should add that many of the techniques 
used in Part III also have applications to the SU(2) case. 

NOTATION AND CONVENTIONS 

All spaces are over C, all sheaves are coherent sheaves in the classical topol-
ogy unless otherwise specified. We do not distinguish between a vector bundle 
and its locally free sheaf of sections. Given a subvariety Y of a compact com-
plex manifold X, we denote the associated cohomology class by [Y]. 

If V is a rank two vector bundle on a complex manifold or smooth scheme 
X, we shall frequently need to consider the first Pontrjagin class of ad V , 
which is c:(V) - 4c2(V). We will denote this expression by PI (ad V). We 
shall occasionally and incorrectly use the shorthand PI (ad V) , for an arbitrary 
coherent sheaf V, to denote c:(V) - 4c2(V). 
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PART I: PRELIMINARIES 

Let us describe the contents of Part I. In Section 1 we discuss the possible 
choices for w = w2(P) up to diffeomorphisms of S and show that there is 
always a generic elliptic surface for which w is the mod 2 reduction of a holo-
morphic divisor. There is also a discussion of certain elliptic surfaces which 
can be constructed from S. In Section 2 we introduce a class of ample line 
bundles which we shall use to define stability and which are well adapted to the 
geometry of S. Section 3 explains the meaning of stability of a vector bundle 
V with respect to such a line bundle: stability is equivalent to the assumption 
that the restriction of V to almost every fiber is semistable. Finally, in Section 
4, we show how the main results concerning Donaldson polynomials lead to 
COO classification results. 

1. PRELIMINARIES ON ELLIPTIC SURFACES 

Let S be a simply connected elliptic surface with at most two multiple fibers 
of multiplicities m i ::; m2 • Here we shall allow m i or both m i and m2 to 
be one. Let [Jl denote the class in homology of a smooth nonmultiple fiber of 
S. There is a unique homology class KS = K such that [Jl = m i m2 K, and K 

is primitive [11]. Let P be a principal SO(3)-bundle over S with w2(P) = w 
and PI (P) = p. Note that w 2 == p mod 4. We shall be concerned with bundles 
P such that W· K mod 2 = 1. In this section, we shall show that, modulo 
diffeomorphism, the choice of w is not essential. Indeed, we shall prove that, 
given a class w, there is a diffeomorphism If!: S -+ S', where S' is again 
a simply connected elliptic surface with two multiple fibers of multiplicities 
m i and m2 , such that If!*KS' = KS and such that there exists a holomorphic 
divisor Ll with w = 1f!*[Ll] mod 2. Thus we may always assume that w is the 
reduction of a (1, 1) class. We begin with an arithmetic result, which is not in 
fact needed in what follows but which helps to clarify the role of the choice of 
w modulo diffeomorphisms. In the arguments below, we shall sometimes blur 
the distinction between H2(S) and H2(S) using the canonical identification 
between these two groups. 

Proposition 1.1. Let S be a simply connected elliptic surface. 
(i) Suppose that m l m 2 == 1 mod 2, and let a E 7/.,/47/.,. Then the group of 

orientation-preserving diffeomorphisms If!: S -t S such that If!* ([Jl) = 
[Jl acts transitively on the set of w E H2(S; 7/.,/27/.,) such that W· K = 1 
and w 2 == a mod 4. 

(ii) If m i m 2 == 0 mod 2 and a E 7/.,/47/." then there are at most three orbits 
of the set {w E H2(S; 7/.,/27/.,) : w . K = 1 and w 2 == a mod 4} under the 
group of diffeomorphisms of S which fix K. 

Proof. Let L be the image of H2(S - n-I(D)) in H2(S) , where D is a small 
disk in pi which we may assume contains the multiple fibers and no other 
singular fiber. Thus L ~ (K.L) , and in fact L has index m l m2 in (K.L). Let 
rp be an automorphism of the lattice H2(S; 7/.,) fixing K. Thus by restriction 
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rp induces an automorphism of (KJ.). The method of proof of Theorem 6.5 
of Chapter 2 of [11] shows that there is a diffeomorphism f//, automatically 
orientation-preserving, inducing rp provided that rp(L) £; L and that rp has 
real spinor norm one. 

Clearly we may write L = Z[fl EB W ,where W is an even unimodular lattice. 
Moreover (KJ.) = z· K EB W , with the inclusion L £; (KJ.) the natural inclusion 
given by [fl = m 1 m2K. If WJ. denotes the orthogonal complement of W in 
H2(S; Z), then WJ. = span{K, x} for some class x with X· K = 1. Given 
a mod 4, we can always assume after replacing x by X+K that x 2 == a mod 4. 
Now it is easy to describe all automorphisms of H 2(S; Z) fixing K: choosing 
an isometry T of W, rp is given by 

rp(K) = K; 
rp(a) = T(a) + f(a)K, a E W; 
rp(x) = x + CK + p. 

Here f is an arbitrary homomorphism W -+ Z and p is the unique element of 
the unimodular lattice W such that -p. a = f(T(a)) for all a E W. Further-
more C = - p2 /2. It is clear that every choice of T and f (or equivalently P) 
produces an automorphism rp, and that rp(L) = L if and only if m1 m2 divides 
f or equivalently p. If x' is another class such that x' . K == 1 mod 2 and 
(x')2 == x 2 mod 4, we can write x' = nx+bK+ p , where PEW. Since we only 
care about x' mod 2 , we may assume that n = 1 . Note that 2b + p2 == 0 mod 4 
and thus b == P2/2 mod 2. 

First assume that m 1 m2 is odd. Then since p == m1 m2P mod 2, we may 
assume that p is divisible by m 1 m2 • Choosing T = Id and f, C in the 
definition of rp as specified by p gives rp such that rp(x) == x' mod 2. As rp 
is unipotent, it is easy to see that rp has spinor norm one, i.e. that rp is in the 
same connected component of the group of automorphisms of the quadratic 
form of H2(S; JR) as the identity. Thus there is a diffeomorphism If! realizing 
rp. 

Next suppose that 21ml m2 • In fact in this case the class x defined above 
is fixed mod 2 by every isometry rp as above which satisfies rp(L) = L: Since 
m1m21P and C ~ P2/2 mod 2, it follows that rp(x) == x mod 2. Now let x' 
be a class with x' . K == 1 mod 2 and (X')2 == x 2 mod 4. We may assume that 
x' i- x . First consider the case where x' = x + bK + a and b == 0 mod 2. Thus 
we may replace x' by x + a. By assumption a2 == 0 mod 4. We may assume 
that a is primitive (otherwise a == 0 mod 2 or a is congruent to a primitive 
nonzero element mod 2). Replacing a by a + 2P ,where p E W.L, replaces 
a2 by a2 + 4(a· P) + 4p2 . Since a is primitive, it is easy to see that there is a 
choice of P so that (a + 2p)2 = O. Thus we may assume that a is primitive 
and that a2 = O. The group SO(W) is a subgroup of the automorphism group 
of L. Every element of SO(W)* , the set all elements of SO(W) with spinor 
norm one, is realized by a diffeomorphism. Moreover an easy exercise shows 
that SO(W)* acts transitively on the set of primitive a E W with a 2 = O. 
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Thus the set of all possible x + a, with a =1= 0, is contained in a single orbit 
under the diffeomorphism group. 

In case x' = x + K + a with a 2 == 2 mod 4, an argument similar to that 
given above shows that we may assume that a 2 = 2 and that every two classes 
Xl = x+K+a l and x 2 = x+K+a2 with a; = 2 are conjugate under the group 
of diffeomorphisms of S which fix K. Thus there are at most three orbits in 
this case. 0 

The following result is really only needed in the case where m l m2 is even, 
since in case m l m2 is odd we can appeal to (i) of Proposition 1.1 above. 
Proposition 1.2. Let S be a simply connected elliptic surface and w be a class 
in H2(S; 2/22) with W· K = 1. Then after replacing S with a deformation 
equivalent elliptic surface, we may assume that there is a divisor Ll on S with 
Ll == w mod 2 and Ll· K = 1 , and such that all singular fibers of S are irreducible 
rational curves with a singular ordinary double point, i.e. S is nodal. 
Proof. Fix a nodal simply connected elliptic surface with a section B such 
that Pg(B) = Pg(S). Using [11], S is deformation equivalent through ellip-
tic surfaces to a logarithmic transform of B at two smooth fibers, where the 
multiplicities of the logarithmic transforms are m l and m2 • Fix one such 
logarithmic transform So' and let 1fI: S ---> So be a diffeomorphism preserving 
the class of the fiber. Using this diffeomorphism, we shall identify S and So. 
Let Ll be an element in H2(S; 2) whose mod 2 reduction is wand such that 
Ll· K = 1. We shall show that, by further modifying the complex structure on 
S, we may assume that Ll is of type (1, 1). 

Given Ll, we have the image i * ([ Ll D E H2 (S ; &'s), where i * is the map 
induced on sheaf cohomology by the inclusion 2 c &'s . The set of all complex 
structures of an elliptic surface on S for which the associated Jacobian surface 
is B and which are locally isomorphic to S is a principal homogeneous space 
over H\pl;~), where ~ is the sheaf of local holomorphic cross sections 
of B ([11], Chapter 1, Theorem 6.7). Moreover there is a surjective map 
H2(S; &'s) ~ H2(B; &'B) ---> Hl(JP'I;~) ([11], Chapter 1, Lemma 5.11). Thus 
given a cohomology class 11 E H2(S; &'s), we can form the associated surface 
S'7 and consider the element i~([LlD E H2(S'7; &'sq) ~ H2(S; &'s). 

Lemma 1.3. In the above notation, i:([LlD = i*([Ll]) + m l m 211. 
Proof. This presumably could be proved by a rather involved direct calculation. 
For another argument, note that the map H2(S; &'s) ---> H2(S; &'s) defined by 

11 ...... i~([LlD - iJ[LlD - m l m 2 11 
is holomorphic, since it arises from a variation of Hodge structure. The argu-
ment of Lemma 6.13 in Chapter 1 of [11] shows that i:([LlD - i*([LlD - mj m 2 11 
lies in the countable (not necessarily discrete) subgroup HI(JP'I; R l n*2) of 
H2 (S ; &'s) = HI (JP'I ; R In * &'s). This is only possible if the image of the map is 
contained in a single point, and since the image contains the origin the map is 
identically zero. 0 
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Returning to the proof of Proposition 1.2, since H2 (S; &'s) is divisible, there 
is a choice of rJ so that i~ ([~]) = o. For the corresponding complex structure, 
[~] is then a (1, 1) class. 0 

Finally we shall describe a way to associate new elliptic surfaces to S which 
generalizes the construction of the Jacobian surface. Suppose that S is an 
elliptic surface over pi . Let rJ = Spec k be the generic point of pi , where k = 
k(pl) is the function field of the base curve, let ft = Spec k , where k = k(pl) 
is the algebraic closure of k, and let S" and Sf! be the restrictions of S to rJ 
and ft. Thus S" is a curve of genus one over k. 

Given an algebraic elliptic surface with a section 1C: B -> pi , it has an 
associated Weil-Chatelet group WC(B) [4], which classifies all algebraic elliptic 
surfaces S whose Jacobian surface is B. As above we let B" be the elliptic 
curve over k defined by the generic fiber of B. By definition WC(B) is the 
Galois cohomology group HI(G, B,,(k)), where G = Gal(kjk) and B,,(k) is 
the group of. points of the elliptic curve B" defined over k. There is an exact 
sequence 

tEe 

The subgroup ill(B) corresponds to algebraic elliptic surfaces without multiple 
fibers whose Jacobian surface is isomorphic to B , and the quotient describes the 
possible local forms for the multiple fibers. Thus if e; E WC(B) corresponds 
to the surface S, then S has a multiple fiber of multiplicity m at t E pi if 
and only if the projection of e; to HI (1C -I (t) ; Qj7L.) has order m. 

The surface S is specified by an element e; of WC(J(S)), where J(S) is the 
Jacobian surface associated to S. Let us recall the recipe for e; [25]: we have the 
curve S" and its Jacobian J(S,,) defined over k. The curve S" is a principal 
homogeneous space over J(S,,), and thus defines a class e; E WC(J(S)), by 
the following rule: let a be a point of Sf!. Given g E Gal(kjk), the divisor 
g(a) - a has degree zero on Sf! and so defines an element of J(Sf!)' which is 
easily checked to be a l-cocycle. The induced cohomology class is e;. 

For every integer d there is an algebraic elliptic surface Jd (S) , whose re-
striction to the generic fiber rJ is the Picard scheme of divisors of degree d 
on the curve S". Thus JO(S) = J(S) and JI(S) = S. We claim that, if S 
corresponds to the class e; E W C (J (S)) , then Jd (S) corresponds to the class 
de;. Indeed, using the above notation, if a defines a point of Sf!' then da is 
a point of Jd (SfJ). Thus, the corresponding cohomology class is represented 
by d(g(a) - a) and so is equal to de;. In particular, if S has a multiple 
fiber of multiplicity m at t, then Jd (S) has a multiple fiber of multiplicity 
mj gcd(m, d). Of course if mid then the multiplicity is one. Finally note that 
J(S) is the Jacobian surface of Jd (S) for every d and that Pg(Jd (S)) = Pg(S) . 

Ideally we would like there to be a Poincare line bundle f7Jd over S XII'I Jd (S) 
such that the restriction of f7Jd to the slice S XII'I {A.} is the line bundle of degree 
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d on the fiber of S over n{A.) corresponding to A.. In general this is too much 
to ask. However such a bundle exists locally around every smooth nonmultiple 
fiber: if X is the inverse image in S of a small disk D in pi such that all fibers 
on X are smooth and nonmultiple, and Xd is the corresponding preimage in 
Jd (S) , then there is a Poincare line bundle over X x D Xd . There is also an 
analogous statement where we replace a small classical open set in pi with an 
etale open set. The proof for this result is essentially contained in the proof of 
Theorem 1.3 of Chapter 7 in [11]. Another construction is given in Section 7 
of Part III. 

2. SUITABLE LINE BUNDLES 

Suppose that we are given a class W E H2(S; 7l.,/27l.,) with W· K mod 2 = 1 
and an integer P with w 2 == P mod 4. Choose once and for all a complex 
structure on S for which there is a divisor L\ with w = L\ mod 2. Let c be the 
integer (L\2 - p)/4. The principal SO(3)-bundle P over S with w2(P) = w 
and PI (P) = P lifts uniquely to a principal U(2)-bundle P' over S with 
ci (P') = L\ and c2{P') = c. Moreover, by Donaldson's theorem, if g is a 
Hodge metric on S corresponding to the ample line bundle L, we can identify 
the moduli space of gauge equivalence classes of g-anti-self-dual connections 
on P with the moduli space of L-stable rank two vector bundles V over S 
with ci (V) = L\ and c2(V) = c. 

We shall also have to make a choice of the ample line bundle L. If P g (S) > 
0, then the resulting Donaldson polynomial invariant does not depend on the 
choice of L, whereas if P g (S) = 0 , then the invariant depends on the chamber 
containing ci (L) [15], [16]. We then make the following definition [24]: 

Definition 2.1. A wall of type (L\, c) is a class C E H2(S; 7l.,) such that C == 
L\ mod 2 and 

L\2 _ 4c $ C2 < O. 
In particular there are no such walls unless L\2 - 4c < O. Clearly this definition 
depends only on L\ mod 2 = wand P = L\2 - 4c, and we shall also refer to 
walls of type (w, p) . 

Now suppose that Pg(S) = 0, i.e. that b;(S) = 1. Let 
2 2 ns={XEH{S;JR):x >O}. 

Let W' = ns n (C).1. . A chamber of type (L\, c) (or of type (w, p)) for S is 
a connected component of the set 

Os - U{W' : C is a wall of type (L\, c'), c' $ c }. 

For the purposes of algebraic geometry, walls of type (L\, c) arise as follows: 
let L be an ample line bundle and let V be a rank two bundle over S with 
c, (V) = L\ and c2( V) = c which is strictly L-semistable. Let &s(F) be a 
destabilizing sub-line bundle. Thus there is an exact sequence 

0-+ &s(F) -+ V -+ &s(-F +L\) ® I z -+ 0, 
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where I z is the ideal sheaf of a codimension two local complete intersection 
subscheme. Thus 

2 c2(V)=c=-F +F·A+l(Z). 
Since l(Z) is nonnegative, we can rewrite this as 

-F2+F.A ~ c. 
Moreover 

(2F -A/ = _4(_F2 + F ·A) +A2 ~ A2 - 4c, 
so that we can rewrite the last ~ondition by 

A2 - 4c ~ (2F -At 

Using the fact that L· F = (L . A)/2, we have 
L· (2F - A) = 0, 

and so by the Hodge index theorem (2F - A)2 ~ 0, with equality holding if 
and only if 2F - A = 0 (recall that S is simply connected). This case cannot 
arise for us since A· K = 1 and thus A is primitive. In particular, = 2F - A 
is a wall of type (A, c). Of course, it is also the cohomology class of a divisor, 
and thus has type (1, 1). It then follows easily that, if LI and L2 are two 
ample line bundles such that cl(Lt ) and ct(L2) lie in the interior of the same 
chamber of type (A, c) , then a rank two vector bundle V with c t (V) = A and 
c2 (V) = c is Lt-stable if and only if it is L2-stable. 

With this said, we can make the following definition: 

Definition 2.2. Let c be an integer, and set w = A mod 2 and p = A2 -4c. An 
ample line bundle L is (A, c)-suitable or (w, p)-suitable if, for all walls' of 
type (A, c) which are the classes of divisors on S, we have signf·, = signL·,. 

Remark. (1) Suppose that , is a (1, 1) class satisfying ,2 ~ o. It follows 
from the Hodge index theorem that if , . f > 0, then ,. L > 0 as well. Thus 
we can drop the requirement that ,2 < 0 . 

(2) In our case , == A mod 2 and thus ,. K == 1 mod 2. It follows that 
, • K :f:. 0 and thus that, . f :f:. o. Thus the condition,· f :f:. 0 (which was 
included as part of the definition in [11]) is always satisfied in our case. 

(3) In case b; (S) = 1 , L is (A, c)-suitable if and only if the class K lies in 
the closure of the chamber containing ct (L). 

Lemma 2.3. For every c. (A, c)-suitable ample line bundles exist. 
Proof. Let Lo an ample line bundle. For n ~ 0, let Ln = Lo ® &s(nf). It 
follows from the Nakai-Moishezon criterion that Ln is ample as well. We claim 
that if n> -p(Lo · /)/2, then Ln is (A, c)-suitable. 

To see this, let ,= 2F - A be a wall of type (A, c) with 
A2 _ 4c ~ ,2 < o. 

We may assume that a = , . f > 0, and must show that ,. Ln > 0 as well. The 
class aCt (Lo) - (Lo . f)' is perpendicular to f. Since f2 = 0, we may apply 
the Hodge index theorem to conclude: 

2 2 2 2 o ~ aCt (Lo) - (Lo · f)C = a Lo - 2a(Lo· f)(Lo · ') + (Lo · f) , . 
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Using the fact that ,2 ;::: /12 - 4c = p , we find that 

a(L~) ,2 p 
Lo . , ;::: 2(Lo ' f) + 2a (Lo ' f) > 2a (Lo . f). 

Thus 
p pa 

Ln" = (Lo ' ') + n('· f) > 2a (Lo ' f) - 2(Lo ' f) 

=-~(Lo'f)(a-~) ;:::0. 

Thus Ln is (/1, c)-suitable. 0 

In the case where b; (S) = 1 , we have the following interpretation of (/1, c)-
suitability. 

Lemma 2.4. Suppose that Pg(S) = O. If LI and L2 are both (/1, c)-suitable, 
then c1 (L 1) and c1 (L2) lie in the same chamber of type (/1, c). Thus there 
is a unique chamber ~ (w , p) of type (/1, c) which contains the first Chern 
classes of (/1, c)-suitable ample line bundles. Conversely, if L is ample and 
CI(L)E~(W,p), then L is (/1, c)-suitable. 
Proof. Let LI and L2 be (/1, c)-suitable. Since Pg(S) = 0, every cohomology 
class is of type (1, 1). Thus if , is a wall of type (/1, c) , then 

signL I ., = signf·, = signL2 • ,. 

This exactly implies that cl(L1) and cl (L2) are not separated by any wall (,).1. 
Conversely suppose that c1 (L) E ~(w, p), where ~(w, p) is the unique 

chamber containing the first Chern classes of (/1, c)-suitable ample line bundles. 
This means in particular that L·, #- 0 for every' of type (/1, c). The proof 
of Lemma 2.4 shows that c1 (L) + N[.n E ~(w, p) for all sufficiently large N. 
Thus, for all , of type (/1, c) , 

signL·, = signL·, + N signf· ,. 

Since f·' #- 0, sign L . , + N sign f . , = sign f ., for all N » O. Thus 
sign f . , = sign L . , , and L is (/1, c)-suitable. 0 

Lemma 2.5. Suppose that Pg(S) = O. The chamber ~(w, p) is the unique 
chamber of type (w, p) which contains K in its closure. Thus every difJeo-
mvrphism '" of S for which "'*K = ±K satisfies ",*~(w, p) = ±~(",*w, p). 
More generally, if Sand S' are two elliptic surfaces with Pg = 0 and",: S --+ S' 
is a diffeomorphism such that "'*Ks' = ±KS' then ",*~(w, p) = ±~(",*w, p). 
In particular if S is not rational and "': S --+ S' is a difJeomorphism, then 
",*~(w, p) = ±~(",*w, p). 
Proof. Let ~ and ~ be two distinct chambers which contain K in their 
closures. Let , be a wall separating ~ and ~. We may assume that ,. x > 0 
for alI x E ~ and ,·x < 0 for all x E ~. Thus 0:::; "K:::; 0, so that "K = O. 
However this contradicts the fact that ,. K #- O. Thus there is at most one 
chamber containing K in its closure. We have seen in the proof of Lemma 2.3 
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that, for all ample line bundles L and integers N» 0, ci (L)+NK E ~(w, p). 
Thus K + (l/N)cI (L) E ~(w, p). It follows that K indeed lies in the closure 
of ~(w, p), so that ~(w, p) is the unique chamber with this property. 

Thus if 'II is a diffeomorphism of S for which 'II*K = ±K, then ±K lies 
in the closure of 'II*~(w, p). Clearly, if ~ is a chamber of type (w, p), 
then 'II*~ is a chamber of type ('II*w, p). It follows that 'II*~(w, p) = 
±~('II*w, p). The statement about two different surfaces S, S' is proved 
similarly. To see the final statement, we use [to] to see that every diffeomor-
phism 'II: S -+ S' satisfies 'II*,KS' = ±KS provided that S is not rational. 0 

Definition 2.6. The chamber described in Lemma 2.4 will be called the suitable 
chamber of type (~, c) or of type (w, p) or the (~, c)-suitable or (w, p)-
suitable chamber. 

3. THE GEOMETRIC MEANING OF SUITABILITY 

The goal of this section is to describe the meaning of (~, c)-suitability. Given 
the bundle V on S, it defines by restriction a bundle Vlf on each fiber f. 
Our main result says essentially that V is stable for one, or equivalently all, 
(~, c)-suitable line bundles L if and only if Vlf is semistable for almost all 
f. 

It will be more convenient to use the language of schemes to state this result. 
As in Section 2, let k(lPI) denote the function field of lPl and let k(lPI) be the 
algebraic closure of k(lPI). Set " = Spec k(lPI) and fj = Spec k(lPI). Thus " 
is the generic point of lPl . Let Srt = S X 11'1 " be the generic fiber of 7r and let 
Sf! = S XpI fj. Here Srt is a curve of genus one over the field k(lPI) and Sf! 

is the curve over k(lPI) defined by extending scalars. Let Vrt and Vf! be the 
vector bundles over Srt and Sf! respectively obtained by restricting V. We can 
then define stability and semistability for Vf! and Vrt ; for Vrt , a destabilizing 
subbundle must also be defined over k(lPI). Trivially, if V is unstable (resp. rt . 
not stable) then Vf! is unstable (resp. not stable). Thus if Vf! is stable, then ~ 
is stable as well. 

Lemma 3.1. Vrt is semistable if and only if Vf! is semistable. 
Proof. We have seen that, if Vrt is not semistable, then VII is not semistable. 
Conversely suppose that VII is not semistable. Then there is a canonically 
defined maximal destabilizing line subbundle of VII' which thus is fixed by every 

element of Gal(k(lPi)/k(lP i). By standard descent theory this line subbundle 
must then be defined over k(lPi). Thus Vrt is not semistable. 0 

Remark. If V" is strictly semistable, it is typically the case that Vrt is actually 
stable. 

Lemma 3.2. In case ~. K = I, the bundle Vrt is semistable if and only if it is 
stable. 
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Proof. First assume that m I m I == 1 mod 2. In this case V" has odd fiber 

degree, and so there are no strictly semistable bundles over k(pl). Hence, if 
V" is semistable, then by Lemma 3.1 VII is semistable and therefore stable. 
Thus V" is stable by the remarks preceding Lemma 3.1. 

In case m l m l == 0 mod 2, suppose that v" is strictly semistable. Thus there 
is a line bundle on S" of degree m l m2/2. There would thus exist a divisor D 
on S with D· f = m l m2 /2. Since f = m l m2 K , this possibility cannot occur. 
Thus V" is stable. 0 

Here then is the theorem of this section: 

Theorem 3.3. Let V be a rank two vector bundle on S with c i (V) = ~ and 
c2(V) = c and let L be a (~, c)-suitable ample line bundle. Then V is L-stable 
if and only if the restriction v" of V to the generic fiber S" is stable. 

Proof. First suppose that V is L-stable. Let F" be a subbundle of V" of rank 
one. Then there is a divisor F on S such that &s(F) restricts to F'I and an 
inclusion &s(F) -+ V. Hence there is an effective divisor D and an inclusion 
&s(F + D) -+ V such that the cokernel is torsion free. Since F" is a subbundle 
of V"' the divisor D cannot have positive intersection number with f. As D 
is effective it is supported in the fibers of n and so F and F + D have the 
same restriction to the generic fiber. We may thus replace F by F + D. Then 
V/&s(F) is torsion free. Hence there is an exact sequence 

0-+ &s(F) -+ V -+ &s(~ - F) 0 Iz -+ 0, 

where Z is a codimension two sub scheme of S. Thus 

~2 _ 4c ::; (2F - ~t 

Since V is L-stable, L· (2F -~) < O. It follows from Definition 2.2 and (2) of 
the remark following it that f· (2F -~) < 0 as well. Thus degF'I < deg V,,/2, 
which says that V" is stable. 

Conversely suppose that V" is stable. Let &s(F) be a sub-line bundle of V, 
where we may assume that V /&s(F) is torsion free. Reversing the argument 
above shows that f· (2F -~) < 0 and therefore that L· (2F -~) < 0 as well. 
Thus V is L-stable. 0 

Corollary 3.4. Let V be a rank two vector bundle on S with c i (V) = ~ and 
c2(V) = c. Then the following are equivalent: 

(i) There exists a (~, c)-suitable ample line bundle L such that V is L-
staNe. 

(ii) V is L-stable for every (~, c)-suitable ample line bundle L. 
(iii) V" is stable. 
(iv) VII is semistable. 
(v) The restriction Vln -I (t) is semistable for almost all t E pI . 

(vi) There exists atE pi such that n -I (t) is smooth and the restriction 
Vln-I(t) is semistable. 
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Proof. By Lemmas 3.1 and 3.2, (iii) and (iv) are equivalent, and by Theorem 
3.3 (i) ==} (iii) =} (ii). The implication (ii) ==} (i) is trivial. The 
implication (iv) ==} (v) follows from the openness of semistability in the 
Zariski topology in the sense of schemes, and the implication (v) ==} (vi) is 
trivial. To see that (vi) ==} (iv), suppose that ~ is not semistable. Then a 
destabilizing sub-line bundle extends to give a sub-line bundle over the pullback 
of S to some finite base change of pl. Thus Vln-I(t) is unstable for every 
t E pi such that n -I (t) is smooth, and so (vi) ==} (iv). 0 

Remark. In case d· K == 0 mod 2, there can exist strictly semistable bundles 
on S" of degree d· f. There are examples of rank two bundles V on S 
with c1 (V) = d and V" strictly semistable such that V is either stable, strictly 
semistable, or unstable (cf. [10]). 

4. DONALDSON POLYNOMIALS AND THE MAIN THEOREMS 

As above we let S denote a simply connected elliptic surface with Pg(S) ~ 

o . Fix w = d mod 2 and let p be an integer satisfying w 2 == p mod 4 . 
For p (S) > 0, there is the Donaldson polynomial Yw p(S) corresponding g , 
to the SO(3)-bundle P with invariants wand p. Here for simplicity we 
shall always choose the orientation on the moduli space which agrees with the 
natural complex orientation. The polynomial Yw,p(S) is invariant up to sign 
under self-diffeomorphisms IfI of S such that IfI*W = w. If Pg(S) = 0, then 
we have the distinguished chamber '?5'(w, p) which contains K in its closure. 
We shall then use Yw,p(S) to denote the Donaldson polynomial for S with 
respect to the chamber '?5'(w, p), again with the orientation chosen to be the 
complex orientation. Since 1fI*'?5'(W, p) = ±'?5'(IfI*W, p), the invariant Yw,p(S) 
is again natural up to sign under orientation-preserving self-diffeomorphisms 
which fix wand K up to sign (and thus for all orientation-preserving self-
diffeomorphisms which fix W if S is not rational). Of course, there are only 
finitely many choices for w, so that there is a subgroup of finite index in the 
full group of diffeomorphisms fixing K which will also fix w. 
Lemma4.1. Foreverychoiceofw and p, Yw,p(S) lies in lQ[qs' KS]' Moreover, 
if for some choice of wand p, Y w ,p (S) does not lie in IQ[ qs]' then every dif-
feomorphism IfI from S to another simply connected elliptic surface S' satisfies 
IfI*KS' = ±KS' 
Proof. The set of automorphisms of H 2 (S; IE) of the form 1fI*, where IfI is a 
diffeomorphism satisfying 1fI*(K) = K, IfI*W = w, and IfI*Yw,p(S) = Yw,p(S) , 
is a subgroup of finite index in the group of all isometries of H2(S; IE) pre-
serving K, by [10], Part I, Theorem 6, and [11], Chapter 2, Theorem 6.5. Thus 
by [11], Chapter 6, Theorem 2.12, Yw,p(S) E lQ[qs' KS]' Moreover K is the 
unique such class. The last statement of the lemma is then clear. 0 

Next let us discuss the effect of blowing up. Suppose that p: S -+ S is 
the r-fold blowup of S, and let the exceptional classes in H 2(S) be denoted by 
el , ... , e,. Likewise let S' be another simply connected elliptic surface and let 
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p' : [;' -> S' be the r-fold blowup of S' , with exceptional classes e; , ... , e;. If 
"': [; -> [;' is a diffeomorphism, then ",* e; = ±ej for a uniquely determined j, 
by [to], Part I, Theorem 7, and [11], Chapter 6, Corollary 3.8. It follows that, 
·f ' H 2 (S-' /2)· f so ')*' so ,2 , 1 WE; Z Z IS 0 the lorm (p Wo lor some Wo E H (S ; Z/2Z) , 
then there is a Wo E H2(S; Z/2Z) , such that ",*w' = p*wo. Finally, we shall 
need the following extension of [11], Chapter 6, Theorem 3.1: 

Proposition 4.2. Let Wo E H2 (S; Z/2Z) and let p: [; -> S be the r-fold blowup 
of S. If b;(S) = 1, assume moreover that "Ip• wo ,p is defined with respect to 

some chamber g. Let Clf be a chamber of type (wo' p) on H2(S; JR) such 
that g contains p*Clf in its closure. Then 

"Ip• Wo ,pip*H2(S; Z) = "Iwo ,p' 

where if b;CS) = 1, the polynomial "Iwo ,p is defined with respect to the chamber 
Clf. 

Here, in case PgCS) = 0, the chamber Clf does not in general determine a 
unique chamber g on [;. However the conclusion of the proposition implies 
in particular that the value of "I p.wo,p on classes in p* H2(S; Z) is independent 
of the chamber for [; of type (p*wo' p) which contains Clf in its closure. 

This result follows from standard gauge theory techniques [11]. It can also 
be proved in our case via algebraic geometry, using the blowup formulas for 
instance in [10]. Since it does not appear with an explicit proof in the literature, 
we shall outline a proof in the only case that concerns us, where the chamber 
Clf contains the first Chern class of an ample line bundle. We shall just write 
down the argument in the most interesting case, where Pg(S) = o. We shall 
also assume here that the moduli spaces have the expected dimension for all 
choices of p' ;:::: p. The arguments given here can easily be extended to handle 
the case where p « 0, and with a little more effort will also cover the general 
case. 

By induction we may assume that p: [; -> S is the blowup of S at a single 
point p. Let E be the exceptional curve and e be its cohomology class. We 
shall usually identify H2(S) with its image in H2([;) under p* . 'Let g be a 
chamber for [; of type (p*wo' p) containing Clf in its closure and let , be 
a wall for g. Then , = " + ae, where " E H2(S; Z) and a E Z (in fact 
21a since' = A mod 2). After possibly reflecting in e, which is realized by an 
orientation-preserving diffeomorphism re of [;, we may assume that a ;:::: 0: 
Indeed, r; switches the two possible chambers corresponding to ±a, and so, if 
"I, and "12 are the two invariants corresponding to the two choices of chambers, 
then r>, = "12 . Since r; IH2 (S; Z) is the identity, it suffices to prove the result 
for either chamber. So we can assume that a > 0 . 

Since Clf is in the closure of g, if x E Clf, then x·,' = x·, ;:::: o. Conversely, 
if we start with an ample line bundle L on S such that c, (L) E Clf, then for 
all N» 0, N c, (L) - e is the first Chern class of an ample line bundle L N on 
[;. Moreover (Nc, (L) - e) . , ;:::: N(c, (L) . n ;:::: o. It follows from this that 
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c1(LN ) lies in g, and if c1(L) is in the interior of ~ then c1(LN ) is in the 
interior of g . 

Considerranktwovectorbundles Von S with c1(V) = p*/l. and c2(V) = c. 
Set V = (p* V) VV. Then V is a rank two vector bundle on S with c1 (V) = 
/l. and c2 (V) :s; c2 (V), where equality holds if and only if V = p * V. The 
arguments of the proof of Theorem 5.5 in Part II of [10], which essentially just 
depend on the determinant of V being a pullback, show the following. There 
is a constant No, depending only on Land c, such that, for all N ~ No ' if 
V is L N-stable then V is L-semistable, and conversely if V is L-stable then 
V is L N-stable. Moreover the map V I--t P * V defines an open immersion of 
schemes from the moduli space of L-stable rank two vector bundles on S with 
c1 = /l. and c2 = C to the corresponding moduli space for Sand c1 = p*/l.. 

To evaluate the Donaldson polynomial on S on a collection of classes of the 
form p* o!, represent O! by a smoothly embedded Riemann surface C on S 
which does not pass through p, the center of the blowup, and choose a theta 
characteristic on C. This choice leads to a divisor Dc on the moduli space. By 
definition V lies in Dc if and only if the Dirac operator coupled to the ASD 
connection induced on C has a kernel. From this it is clear that V lies in Dc 
if and only if V lies in the corresponding divisor on the moduli space for S 
of bundles with c1 = /l. and c2 = c2(V) :s; c. An easy counting argument then 
shows that, if d is the dimension of the moduli space for S and we choose 
C1 , ••• ,Cd in general position and general theta characteristics on Ci , then 
V lies in the intersection Dc n··· nDc if and only if V = p* V and V lies in 

1 d 
the corresponding intersection for the moduli space of S. As #(Dc n··· nDc ) 

1 d 
calculates the value YP'Wo,p([Cd, ... , [Cd])' it is then clear that 

Yp' w plp*H2(S;Z)=Yw p' 0 
0' 0' 

Assuming Theorems 0.4 and 0.5, we can now prove the main theorem of this 
paper, which we restate as a series of results. 
Theorem 4.3. Suppose that Sand S' are two simply connected elliptic surfaces 
with P g(S) = p g(S') = 1 . Suppose that neither S nor S' is a K3 surface. Let S 
and S' be two blowups of Sand S' , and let Ij/: S ~ S' be a diffeomorphism. 
Identify H2(S; Z) with its image in H2(S; Z) under the natural map, and 
similarly for H2(S'; Z), Then Ij/*KS' = ±KS' 
Proof, Arguing as in Corollary 3.6 of Chapter 6 of [11], we see that it suffices 
to show that some Y w ,p (S) actually involves K s' If m 1 m2 == 1 mod 2, then 
the coefficient of KS2 in Y (S) , for the choice of P given in Theorem 0.5 (i) W,p 

d ' h d' , 1 d I' '2 2 2 22 Th' correspon 109 to t e two- 1menSlOna mo u 1 space, 1S m1 m2 - m1 - m2 • 1S 
number is zero if m1 = m 2 = 1, in which case S is a K3 surface. Otherwise 
2m~ m; - m~ - m; > O. Thus the coefficient of K~ is nonzero. 

If m( m2 == 0 mod2, then the expected dimension of the moduli space is 4c-
!l? - 6 == /l.2 mod 2. Moreover /l.·KS = 1 and Ks = (2m( m2 - m( - m2)K. Since 
exactly one of m1 , m2 is even, /l.. Ks == 1 mod 2. Thus by the Wu formula 
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112 == 1 mod 2, and the dimension of the moduli space is odd. It follows that 
every nonzero invariant must involve "s. Since nonzero invariants exist by 
Theorem 0.4 or more generally by Donaldson's theorem on the nonvanishing 
of the invariants, there are choices of p for which Yw,p(S) actually involves 
"s. 0 

Theorem 4.4. Suppose that Sand S' are two elliptic surfaces with Pg(S) = 
p g (S') ~ 1 with finite cyclic fundamental group and multiple fibers of multiplic-
ities {m" m 2} and {m~ , m;}, respectively, that Sand S' are two blowups of 
Sand S', and that Sand S' are diffeomorphic. Then {m, ' m 2} = {m~, m;}. 
lIence Sand S' are deformation equivalent. 
Proof. As in [11] we can reduce to the simply connected case. Using Theorem 
0.3, we know that m, m2 = m~ m; and that, if IJI: S --+ S' is a diffeomorphism, 
then 1JI*(1I2(S; Z)) = 1I2(S'; Z) under the identification of H2(S; Z) with a 
subspace of H2 (S; Z) and likewise for S'. Fix a class W E H 2(S'; Z) with 
W· "s' = 1. Thus 

Ylflow,p(S)IH2(S; Z) = ±Yw,p(S')IH2(S'; Z) 

under the natural identifications. Moreover lJI*w. "s = W . "s' = 1. Thus the 
Donaldson polynomial invariants for the minimal surfaces Sand S' for the 
values IJI* wand W respectively are equal. If m, m 2 = m~ m; == 1 mod 2 , then 

22 2 2 ,2,2'2,2 (Pg(S) + l)m, m 2 - m, - m 2 = (Pg(S) + l)(m,) (m2) - (m,) - (m2) . 

Thus , , 2 2 , 2 , 2 
m, m 2 = m, m 2 and m, + m 2 = (m,) + (m2) . 

&' 2 , ,2 , , 
It lollows that (m, + m 2) = (m, + m 2) and so m, + m 2 = m, + m 2 . We can 
thus determine the elementary symmetric functions of m, and m2 from the 
diffeomorpQism type, and hence the unordered pair. 

If m,m2 = m~m; == 0 mod 2, then, assuming that 21m" it follows from 
Theorem 0.4 that we can determine m, m 2 and m 2 • Thus, we can determine 
m, as well. 0 

Theorem 4.5. Suppose that Sand S' are two non rational elliptic surfaces with 
finite cyclic fundamental group and with p g (S) = P g (S') = 0 with multiple fibers 
of multiplicities {m" m 2} and {m~ , m;} , respectively, that Sand S' are two 
blowups of Sand S', and that Sand S' are diffeomorphic. Suppose further 
that m, m2 == 0 mod 2. Then m~ m; == 0 mod 2, and {m, ' m 2 } = {m~ , m;} . 
Proof. We may again reduce to the simply connected case. Note that every 

- -, 2 , 2 diffeomorphism IJI from S to S sends the subspace H (S ; Z) to H (S; Z) . 
Choose a class W E H 2(S'; Z/2Z) with W ·"s' = 1 . We must have 1JI*'t!(w, p) 
= ±'t!(IJI*w, p), by Lemma 2.5. As in the preceding argument, we are immedi-
ately reduced to comparing the Donaldson invariants for the surfaces Sand S' . 
Let us first show that m; m; == 0 mod 2. First note that the two-dimensional 
invariant corresponds to -p = 5 > 4 = 2(4pg(S) + 2). Thus we are in the 
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stable range and can apply Theorem 0.4 to conclude that the leading coefficient 
of y w, -s (S) = m2 · Since S is not rational, m2 > 1 . But if m; m; == 1 mod 2 , 
then by (i) of Theorem 0.5 the leading coefficient of Yw _s(S') is 1, a contra-
diction. Hence m;m; == 0 mod 2 and the leading coefficient of Yw,-s(S') is 
just m;. It follows that m2 = m; and, by Bauer's result (Theorem 0.2), that 

2 2 , 2 , 2 , 
(m\ - l)(m2 - 1) = ((m\) - 1)((m2) - 1). Thus m\ = m\ as well. 0 

Theorem 4.6. Suppose that Sand S' are two non rational elliptic sur/aces with 
finite cyclic/undamental group and with Pg(S) = Pg(S') = 0 with multiple fibers 
o/multiplicities {m\, m2} and {m;, m;}, respectively, that Sand S' are two 
blowups 0/ Sand S', and that Sand S' are diffeomorphic. Suppose further 
that m l m2 == 1 mod 2. Then m;m; == 1 mod 2, and {m\, m2} = {m;, m;}. 

Proof. As before we pass to the simply connected case. If m; m; == 0 mod 
2, then by Theorem 4.5 m\ m 2 == 0 mod 2 as well, a contradiction. Thus m; m; == I mod 2. Using (i) and (ii) of Theorem 0.5, we see that the Donaldson 
polynomials determine the quantities 

2 2 2 2 2 2 
A = m\m2 - m\ - m2 + 1 = (m\ - 1)(m2 - 1); 

4 4 4 4 4 4 
B = m\ m2 - m l - m2 + 1 = (m\ - l)(m2 - 1). 

We must show that A and B determine {m\, m 2} provided that both m\ 
and m2 are greater than one. This is just a matter of elementary algebra: let 

2 2 2 2 . 
0"\ = m\ + m2 and 0"2 = m\ m 2 . Then 0"\ and 0"2 are the elementary symmetnc 
functions in m~ and m; and thus determine {m~, m;}. As m l and m2 are 
positive the knowledge of {m~ , m;} determines {m\, m2} . 

To read off 0"1 and 0"2 from A and B, note that if A i= 0 then 

B 2 2 2222 
A = (ml + 1)(m2 + 1) = m l m2 + m\ + m2 + 1. 

Thus 20"2 = BIA + A - 2 and 20"1 = BIA - A provided that A i= O. Now 
A = 0 if m l or m2 is one, and otherwise A ~ 1. Thus, provided neither of 
m l or m2 is one, A and B determine 0"2 and 0"1. 0 

PART II: THE CASE OF EVEN FIBER DEGREE 

In this part, S shall always denote a simply connected elliptic surface over pi 
with multiple fibers of multiplicities 2ml and m 2 , where m2 is odd, and such 
that there exists a divisor ~ on S with ~. / = 2ml m2 , the minimum possible 
value. We shall describe certain moduli spaces of stable vector bundles V over 
S such that c i (V) and ~ have the same restriction to a general fiber. We then 
apply this study toward a partial calculation of the corresponding Donaldson 
polynomial invariants of S . Aside from quoting a few results from Part I, Part 
II can however be read independently. On the other hand, we draw heavily on 
the book [11], and many arguments which are very similar to arguments in [II] 
are sketched or simply omitted. Roughly speaking, the new ingredients in the 
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proof consist of the algebraic geometry of certain elliptic surfaces associated 
to S, which have a single multiple fiber of multiplicity two and are birational 
to double covers of rational ruled surfaces. The vector bundle parts of the 
argument run more or less parallel to the arguments in [11], with a few new 
cases to analyze. 

The outline of Part II is as follows. With notations and assumptions on 
S as above, there is an associated surface jmlm2(S) defined in Section 1 of 
Part I. The surface jmlm2(S) fibers over pi and the fiber over a point t lying 
under a smooth fiber J of S is jm1m2(J) , the set of line bundles of degree 
m I m2 on the fiber J of S . The surface jml m2 (S) has an involution defined by 
A. E jmlm2(J) f-+ &'t(~IJ) ®rl . The quotient of jmlm2(S) by this involution is 
birational to a rational ruled surface IF N ' and we describe the geometry of the 
double cover in detail. In Section 2, we describe the rough classification of stable 
bundles V on S with ci (V) = ~. To each such bundle there is an associated 
bisection e of jmlm2(S) which is invariant under the involution, and so defines 
a section of the quotient ruled surface. In Section 3, we show that for general 
bundles V, V is determined up to finite ambiguity by the section of the ruled 
surface and the choice of a certain line bundle on the associated bisection e of 
jm1m2(S). Thus, a Zariski open subset of the moduli space fibers over an open 
subset of the linear system of all sections on a certain rational ruled surface, 
and the fibers are a number of copies of the Jacobian j(e) of the bisection 

. e of jmlm2(S). It is here that the asymmetry between 2ml and m2 becomes 
apparent: the number of connected components of the fiber is just m2 • The 
reasons for this are explained following Lemma 2.4. Finally, in Section 4 we 
calculate the leading coefficient of a Donaldson polynomial invariant and show 
that it contains an "extra" factor of m2 • This calculation seems to be in general 
agreement with work of Kametani and Sato [13]. 

1. GEOMETRY OF CERTAIN ELLIPTIC SURFACES 

We fix the following notation. Let 7t: S ~ pi be an elliptic surface with 
two multiple fibers F 2m and Fm of multiplicities 2ml and m2 , where 

1 2 
gcd(2ml' m2 ) = 1. We shall further assume that the reductions of the mul-
tiple fibers are smooth and that all other singular fibers are reduced and irre-
ducible with just one ordinary double point. In other words, S is nodal in the 
terminology of [11]. Let KS = K E H2(S; Z) be the unique class such that 
2ml m2 K = [J], where J is a general fiber of 7t. Finally we shall assume that 
there is a 2ml m2-section ~, i.e. a divisor ~, not necessarily effective, with 
~. J = 2m 1m2' or equivalently ~. K = 1 . By [11], there always exist such nodal 
elliptic surfaces. In particular S is algebraic. 

We shall be concerned with the associated elliptic surface jmlm2(S) defined 
in Section 1 of Part I. By the discussion there, jm1mZ (S) has exactly one multiple 
fiber of multiplicity two, above the point of pi corresponding to F2 . We m1 

shall denote this fiber by F2 • Moreover, given the 2ml m2-section ~, there is 
an involution of jmlm2(S) defined on the generic fiber S by A. f-+ &'s (~) ® 

~ ~ 

rl . Since jmlm2(S) is relatively minimal, this involution on the generic fiber 
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extends to an involution on J m l m2(S) , which we shall denote by I. The data of 
J m l m2(S) and the involution I do not depend on d, but only on the restriction 
of d to the generic fiber. A line bundle which has the same restriction as d 
to the generic fiber differs from d by a line bundle which is trivial on the 
generic fiber and thus is a multiple of 1C. Up to twisting by a line bundle 
which is divisible by 2, the only possibilities are then d and d - 1C • Replacing 
d by d - 1C replaces d 2 by d 2 - 2 and thus changes d 2 mod 4. Of course 
d 2 == 1 mod 2 since 

d . K s = 2ml m~ (p g + 1) - 2ml - m2 == 1 mod 2. 

Let us determine the fixed point set of I • 

Lemma 1.1. The fixed point set of I consists of a smooth 4-section together with 
two isolated fixed points on F2 • 

Proof. The fixed point set of an involution on the smooth surface J m l m2(S) 
must consist of a smooth curve together with some isolated fixed points. For a 
smooth nonmultiple fiber f, there are four divisors A. such that 2A. = f. Thus 
there is a component of the fixed point set which is a 4-section of J m l m2(S). 
Every other curve component of the fixed point set has trivial restriction to 
the generic fiber and (since the curve component is smooth) cannot meet the 
4-section. Since all fibers are irreducible, there can be no other component, and 
the remaining fixed points are isolated. 

Let us consider the possibilities for isolated fixed points away from F2 • In 
an analytic neighborhood of a nonmultiple fiber, there is a section of the elliptic 
fibration. Using this section to make the local identification of J m l m2(S) with 
JO(S) , and since the group of local sections is divisible, it is easy to see that, 
after a translation, we can assume that I corresponds to the involution x I-+ -x. 
Direct inspection shows that this involution has no isolated fixed points, even 
at the nodal fibers. To handle the multiple fiber, the explicit description of a 
neighborhood X of a multiple fiber shows that after a base change of order two, 
say X -+ X , we can assume that there is a local section of X . The induced map 
from the central fiber of X to the central fiber of X corresponds to taking the 
quotient by a subgroup of order two. After a translation we can further assume 
that the pulled back involution on X is given by x I-+ -x. Since inverses 
commute with translations by a point of order two, the restriction of I to F2 
again has four fixed points. Two of these lie on the 4-section (recall that a 4-
section can meet F2 in at most two distinct points) and the remaining two are 
isolated. 0 

Thus there are two isolated fixed points of I on F2 • If we blow these up 
and then take the quotient, the result will be a smooth surface IF mapping to 
pI whose fibers are smooth rational curves except over the point corresponding 
to F2 (Figure 1). Over this point, the fiber is a curve ()I + 2e + ()2' where ()I 

and ()2 are the images of the exceptional curves, e is the image of F2 , and we 
have «()i = -2 and e2 = -1, ()I • e = ()2' e = 1 and ()I • ()2 = O. In particular 
we may contract c and then either () I or ()2 to obtain a rational ruled surface 
IF N' We shall fix notation so that ()2 is the curve we contract and the resulting 
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surface is IF N. However, as we shall see, it is important to keep in mind the 
symmetry between ill and il2 . Contracting ill instead corresponds to making 
an elementary modification of IF N and thus replacing it by IF N±l . As we shall 
see, the symmetry between ill and il2 corresponds to the choice of either .1 or 
.1- K. 

The branch divisor B' on the blowup IF of IF N is of the form B + ill + il2 , 
where B is a smooth 4-section which does not meet ill or il2 and hence B· e = 
2. Thus if we use the basis {(J, /, il2 ' e} for Pic(lF), where (J is the negative 
section of IF Nand / is the class of a fiber, viewed as curves on IF, it is easy 
to see that 

B = 4(J + (2k + 1)/ - 4e - 2il2 

for some odd integer k and that 

B + ill + il2 = 4(J + (2k + 2)/ - 6e - 2il2 ' 

which is indeed divisible by 2. Note that we cannot say a priori that B is 
irreducible. However it cannot be a union of a 3-section and a section, since 
there are no sections of J m}m2(S). In particular B· (J 2:: o. Thus if ill is the 
proper transform of the fiber on IF N ' and we assume that the negative section 
(J does not pass through the point of the original fiber that was blown up, so 
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that a· D2 = 0, then 2k + 1 ?: 4N, or equivalently 

k ?: 2N. 

The same conclusion holds by a similar argument if a does pass through the 
point that is blown up. 

It is now easy to reverse this procedure. Begin with IF N and blow up a point 
in a fiber. Then blow up the point of intersection of the exceptional curve with 
the proper transform of the fiber. The result is a nonmiminal ruled surface IF 
with a reducible fiber of the ruling of the form Dl + 2t + D2 , where Dl is the 
proper transform of the fiber, D2 is the proper transform of the first exceptional 
curve, and t is the second exceptional curve. Choose a smooth element B in 
the linear system 14a + (2k + l)f - 4t - 2D21, if any exist, where a is the 
negative section of IF Nand f is a fiber. The double cover of IF branched along 
B + Dl + D2 is then an elliptic surface with a multiple fiber of multiplicity 2, 
bisections corresponding to the pullbacks of sections of IF N ' and an involution 
I. 

Let us calculate Pg(Jm ,m2 (S» = Pg(S) in terms of IF and B. The canonical 
bundle of IF N is given by KF = -2a - (N + 2)f. Thus, recalling that D2 is 

N 
the proper transform of the first exceptional curve and that t is the second, we 
have 

K., = -2a - (N + 2)f + D2 + 2t. 
As for the branch locus B + Dl + D2 , we have 

B + Dl + D2 = 2(2a + (k + l)f - 3t - D2). 

By standard formulas for double covers, 

HO(J m,m2(S); K J m,m2(S) = HO(lF; &',(KF + 2a + (k + l)f - 3t - D2». 
Now, using the calculations above, we have 

KF + 2a + (k + l)f - 3e - D2 = (k - N - l)f - e. 

Recalling that f is linearly equivalent to Dl + 2e + D2 ' it is clear that 

° {k-N-l, h «k-N-l)f-t)= 
0, 

ifk-N?:2, 
otherwise. 

Now if k - N :s 1 , since k ?: 2N we must have N:S 1 . If N = 1 , then k = 2 
and so k - N - 1 = 0 in this case as well. If N = 0 , then k = O. In this case 
B = 4a + f - 4e - 2D2 = 4a + Dl - 2e - D2 , and it is easy to see that the effective 
curve a - D2 - t, which is the proper transform of the unique element of lal 
passing through the point of the fiber which is blown up, satisfies 

(a - D2 - t)· (4a + f - 4t - 2D2) =-1. 

Thus IBI has the fixed component a - D2 - t, which is a section, and this case 
does not arise. So in all cases we have hO«k - N - l)f - t) = k - N - 1. 

Thus we may summarize this discussion as follows: 
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Lemma 1.2. With notation and conventions as above, 

Pg(S) = Pg(jmlm2(S)) = k - N - 1. 0 

In particular, suppose that Pg(S) = O. Since k ~ 2N, and the case k = 
N = 0 has been ruled out above, the only possibilities are N = 0, k = 1 or 
N = 1, k = 2. Thus IF is the blowup of either IF 0 or IF I ' and of course the 
two cases are elementary transformations of each other. Thus we may assume 
that k = 2 and N = 1 in this case. Moreover the negative section of IF I does 
not pass through the exceptional point in the blowup. 

2. CLASSIFICATION OF STABLE BUNDLES 

We let S be a nodal elliptic surface over pi with exactly two multiple fibers 
of multiplicities 2ml and m 2 and let d be a divisor on S with d·f=2m lm2 . 
Fix an integer c. In this section we shall study rank two vector bundles V with 
c1(V) = d and c2(V) = c. We shall also let w = d mod 2 and p = d 2 - 4c. 

First recall the following standard definition from Part I: 

Definition 2.1. An ample line bundle L on S is (d, c)-suitable or (w, p)-
suitableiffor all divisors D on S such that _D2 +D·d :5 c, either f·(2D-d) = 
o or 

signf· (2D - d) = signL· (2D - d). 

The following is Lemma 2.3 of Part I: 

Lemma 2.2. For all pairs (d, c), (d, c)-suitable ample line bundles exist. 0 

With this said, here is the rough classification of rank two vector bundles V 
with c1 (V) = d and c2(V) = c which are stable with respect to a c-suitable 
line bundle L. 

Theorem 2.3. Let L be (d, c)-suitable, and let V be an L-stable rank two 
vector bundle with c 1 (V) = d and c2 (V) = c. Then there exist: 

(i) A smooth irreducible curve C and a birational map C -4 C ~ jmlm2(S), 
where C is a bisection of jmlm2(S) invariant under the involution I; 

(ii) A divisor D on T, the minimal desingularization of the normalization 
of C Xpl S, such that D· f = m 1 m2, where f is a general fiber of 
T -4 C, and moreover D has the same restriction to the generic fiber 
of T as the divisor induced by the section of jmlm2(T) corresponding to 
the map C -4 jmlm2(S); 

(iii) A codimension two local complete intersection Z and an exact sequence 

0-4 &T(D) -4 Y*V -4 &T(Y* d - D) ® l z -40, 

where Y: T -4 S is the natural degree two map. 
Moreover the bisection C and the double cover T are uniquely determined by 
the bundle V, and D is determined by the bundle V and the choice of a map 
C -4 jmlm2(S). Finally, every rank two vector bundle V with c1(V) =.1 and 
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c2( V) = c satisfying (i)-(iii) above is stable with respect to every (Ll, c)-suitable 
ample line bundle L. 
Proof. First suppose that V is L-stable. It follows from Corollary 3.4 of Part I 
that the restriction of V to the geometric generic fiber of 1C is semistable. More 
precisely, let 11 = Speck(pl) and let f1 = Speck(pl), where k(lPI) denotes the 
algebraic closure of k(pl). Let ~ denote the pullback of V to the curve 
St) which is the geometric generic fiber of 1C. Then Vii is semistable. By the 
classification of rank two bundles on an elliptic curve, v" = LI ffi L2 , where 
each L j is a line bundle over Sil of degree ml m2 and LI 0 L2 corresponds 
to the restriction of Ll to Sil. The Galois group Gal(k(pl)jk(pl)) permutes 
the set {LI' L2}. This action cannot be trivial, since otherwise L j would be 
rational over k(pl) and then S would have an ml m2-section. Thus the fixed 
field of the subgroup of Gal(k(pl)jk(lPI)) which operates trivially on {LI' L2} 
defines a degree two extension of k(pl) , corresponding to a morphism C ---> pi . 
Setting T to be the minimal resolution of the normalization of C xII" S, there 
is a section of jm,m2(T) defined by L I , say. The image of this section in 
jm,m2(S) is then the bisection C. By construction C is invariant under the 
involution I. Let v: T ---> S be the natural degree two map. 

The inclusion LI ---> Vii induces a sub-line bundle &T(D) ---> v* V, which 
we may assume to have torsion free cokernel. Since L2 i- LI ' it is clear that 
this sub-line bundle is unique. The quotient is then necessarily of the form 
&T(v*Ll-D)0Iz · 

It remains to prove that every V satisfying the above description is indeed 
L-stable. It follows from (iii) that Vt) is an extension of two line bundles of 
degree ml m2 and is therefore semistable. Again using Corollary 3.4 of Part I, 
V is L-stable. 0 

Next we discuss the meaning of the scheme Z and the bisection C. The 
following is the analogue of Lemma 1.11 in Chapter 7 of [11] and is proved in 
exactly the same way: 

Lemma 2.4. Let f be a smooth fiber of 1C and let g be a component of v -I (f) . 
Then Supp Z n g i- 0 if and only if Vlf is unstable. In particular, if v is not 
branched over f, so that v -I (f) = g U g' , then Supp Z n g i- 0 if and only if 
Supp Z n g' i- 0 . 0 

Next we turn to the section C. Since C is invariant under I, its proper 
transform on the blowup of jm, m2 (S) at the two isolated fixed points of I is 
the pullback of a section A' of IF , which in turn induces a section A of IF N • 

We shall use throughout the notation and conventions of the previous section. 
Notice that the section A' meets the reducible fiber either along "lor "2' the 
two components of multiplicity one. Here A'· "I = 1 and A'· "2 = 0 if A does 
not pass through the point of the corresponding fiber of IF N which was blown 
up, and A'· "2 = 1 and A'·" I = 0 in the remaining case. Since the branch locus 
of the map jm, m2 (S) -> IF consists of B + "I + "2 ' we see that A' always passes 
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through the branch locus over the point corresponding to F2 • Of course, this is 
also clear from the picture on J m l m2(S): since C is a bisection, C· f = 2 and 
therefore C· F2 = 1. It follows that C is smooth at the point of intersection 
with F2 , that the intersection is transverse, and that the natural map· C -t pi 
is always branched at the point corresponding to F2 • A similar statement will 
hold for the map C -t pi . This fact is the fundamental difference between the 
case studied here and the case of trivial determinant studied in [8] and [11]. 

Since A' always meets ill or il2 , it follows that the inverse image of A' in 
the blowup of J m l m2(S) always meets exactly one of the two exceptional curves, 
and in fact meets it transversally at one point. Thus the inverse image of A' is 
the proper transform of C, and therefore 

(C)2 = 2(A')2 + 1. 

Let us consider the section A of IF N in more detail. Either A = a or 
A E 10' + (N + s)fl for a uniquely specified nonnegative integer f. Moreover 
either A does not pass through the point on IF N which is the image of the 
exceptional divisor, in which case A' .il2 = 0, or it does, in which case A' .il2 = 1 . 
The following lemma relates the odd integer fl2 - 4c = P to the invariants of 
V: 

Lemma 2.5. With notation as above, denote by the exceptional point the point 
of IF N which is blown up under the morphism IF -t IF N' Then, if we set p = 
PI (ad V) = fl2 - 4c, 

-p= 

4k - 6N + 1 + 2f(Z) + J, if A = a does not pass through 
the exceptional point; 

4s + 4k - 2N + 1 + 2f(Z) + J, if A E 10' + (N + s)fl does not pass 
through the exceptional point; 

4k-6N-l +2f(Z)+J, if A = a passes through 
the exceptional point; 

4s + 4k - 2N - 1 + 2f(Z) + J, if A E 10' + (N + s)fl passes through 
the exceptional point. 

Here J is a nonnegative integer which is zero if the map C -t pi is not branched 
over any point corresponding to a singular nonmultiple fiber of 7C: S -t pi . 

Proof. Since C:(l/V) = 2c:(V) = U/ and C2(I/V) = 2c2 (V) = 2c, it will 
suffice to work with v· V . Clearly 

.2. c2(v V)=-D +D·vfl+f(Z). 

Thus 
2 • 2 2(4c - fl ) = -(2D - v fl) + 4f(Z). 

Now we can write 
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where both D and v* /1 - D naturally correspond to sections of jm,m2(T). 
In fact, if rp: jm,m2(T) -+ jm,m2(S) is the obvious map, then the bisection C 
satisfies rp*C = C, + C2 ' where C, and C2 are sections of jm,m2(T) cor-
responding to the divisors D and v * /1 - D on T. An argument essentially 
identical to the proofs of Claims 1.17 and 1.18 in Chapter 7 of [11] shows that 
there is a nonnegative integer 0 such that 

* 2 2 -(2D - v /1) = -( C, - C2) + 20. 

Moreover 0 = 0 if the map . C -+ ]p' is not branched over any point corre-
sponding to a singular nonmultiple fiber of 11:: S -+ ]p' . Thus we must calculate 
(C, - C2 )2 • But, using the fact that Cj is a section of jm,m2(T) , we have 

(C/ = -2(1 + Pg(S)) = -2(k - N). 

Moreover C, + C2 = rp*C. Thus 
2 2 2 2 (C, - C2 ) = 2(C,) + 2(C2 ) - (C, + C2 ) 

= -8(k - N) - 2(C)2 

= -8(k - N) - 4(A')2 - 2. 

Clearly we have 
-N, 
N+2s, 

if A = (J does not pass through the exceptional point; 
if A E I(J + (N + s)fl does not pass through 
the exceptional point; 

- N - 1 , if A = (J passes through the exceptional point; 
N + 2s - 1, if A E I(J + (N + s)fl passes through 

the exceptional point. 
Putting these formulas together gives the statement of the lemma. 0 

Using Lemma 2.5, the inequality k 2: 2N and the fact that if N = 0 then 
k 2: 1 , whereas if N = 1 and k = 2 then the section (J does not pass through 
the exceptional point, we can easily deduce the following slight strengthening 
of Bogomolov's inequality in our case: 

Corollary 2.6. We have the following inequality for -p: 

-p 2: 

4p g (S) - 2N + 5 , if A = (J does not pass through 
the exceptional point; 

4pg(S) - 2N + 3, 
4pg(S)+2N+3, 

if A E I(J + (N + s)fl does not pass through 
the exceptional point; 
if A = (J passes through the exceptional point; 
if A E I(J + (N + s)fl passes through 
the exceptional point. 

In all cases -p 2: 2pg(S) + 1, and if Pg(S) = 0, then -p 2: 3. 0 
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3. A ZARISKI OPEN SUBSET OF THE MODULI SPACE 

Our goal in this section is to prove the following theorem: 

Theorem 3.1. Let V be an L-stable rank two bundle on S. Suppose that 
(i) The associated bisection C of ,m l m2 (S) is smooth. or equivalently that 

C = C. and the image of C in IF' is not the proper transform of a ; 
(ii) The map C -+ pI is not branched at any point corresponding to a sin-

gular fiber of 1C. or at the multiple fiber of odd multiplicity m 2 ; 

(iii) The scheme Z on the associated double cover T is empty, and thus 
there is an exact sequence 

0-+ &'T(D) -+ v·V -+ &'T(v·11- D) -+ O. 

Then V = v.&'T(D + F) = v.&'T(v· 11- D). In particular V is uniquely deter-
mined by the associated section A of IF' N and the divisor D on T. Finally V 
is a smooth point of its moduli space, which is of dimension -p - 3X(&'s) at V. 

It is clear that the conditions above are equivalent to assuming that A' meets 
the branch locus B transversally, and that no point of intersection lies over a 
point of pI corresponding to a singular nonmultiple fiber or to the multiple 
fiber of multiplicity m2 , and that Z = 0 . 

The proof of Theorem 3.1 will proceed along lines very similar to the proof 
of Theorem 1.12 in Chapter 7 of [11], and we shall simply sketch some of the 
details. 

Let A be the section of IF' N corresponding to A'. By assumption A f. a . 
Let r be the nonnegative integer such that A E la + (N + r)fl. If the section 
A does not pass through the exceptional point of the blowup, then 

(A') . (B + DI + ( 2 ) = (a + (N + r)f) . (4a + (2k + 2)f - 6c - 2(2 ) = 4r + 2k + 2. 

Of these points, one corresponds to the intersection A' . D I ' and so the branch 
divisor of the map T -+ S is (4r + 2k + l)f , where f is a general fiber of 1C • 

This divisor is even since f is divisible by 2, and we set G = (4r+ 2k + l)f /2. 
Likewise, if A does pass through the exceptional point of the blowup, then 

(A').(B+D I +(2 ) = (a+(N +r)f -D2 -c)·(4a+(2k+2)f -6c-2D.2 ) = 4r+2k. 
In this case we set G = (4r + 2k - l)f /2. Let F be the branch divisor in T, 
so that v*G == F. Thus F = (4r + 2k + l)f or (4r + 2k - l)f. For future 
reference, let us also record the genus of C: 

Lemma 3.2. Let C satisfy (i) and (ii) of Theorem 3.1. Then 

{ 2r + k , if A does not pass through the exceptional point; 
g( C) = 2r + k - 1, if A passes through the exceptional point. 

Proof. The map C -+ pi is branched at A' .(B+D I +(2 ) = 4r+2k+2 points if 
A does not pass through the exceptional point, and 4r + 2k points otherwise. 
The lemma now follows from the Riemann-Hurwitz formula. 0 

Now det v*&'T(D) = v.D - G. Clearly v.D and 11 have the same restriction 
to the generic fiber. Arguing as in Chapter 7, (1.20) of [11], there is an injective 
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map 
v.&T(D + F) -+ V. 

Set W = v.&T(D + F). Our goal will be to show that W = V. Preliminary 
to this goal we shall analyze Wand the map W -+ V. As a divisor class 
det W = v.D - G + 2G = v.D + G. In addition there is an effective divisor 
E such that (det W)-l ® det V = &s(E). Thus det W = Ll- E and E has 
trivial restriction to the generic fiber, so that E is a union of fibers (possibly 
including the reductions of the multiple fibers). Moreover v.D = Ll- G - E. 
Set E' = v· E. We have D + ,. D = v·v.D = v· Ll- F - E' , and therefore 
,. D = v· Ll- D - F - E' . We can thus write 

W = v.&T(D + F) = v.&T(v· Ll- D - E'). 

Using the fact that there is a surjection from v· W to &T(v· Ll- D - E'), we 
conclude that there is an exact sequence 

0-+ &T(D) -+ v·W -+ &T(v· Ll- D - E') -+ O. 

Comparing this sequence to the defining exact sequence for v· V and arguing 
as in (1.24) of Chapter 7 of [11], we may conclude: 

Lemma 3.3. Let Q = VjW. Then v·Q ~ [&Tj&T ( -E')] ® &T(V· Ll- D). 0 

Our goal now is to prove the following: 

Lemma 3.4. In the above notation, E' = O. Thus Q = 0 and V = W = 
v.&T(D + F) where v.D = Ll- G. 

We begin with the following construction. Let e be a component of the 
support of E' , and write E' = ae + E" , where E" is effective and disjoint 
from e and a > O. If e is not the multiple fiber of multiplicity m l on T, 
then either v is unbranched over e or e is a smooth fiber. In either of these 
cases v induces an isomorphism from e to v (e) = f, and we shall identify 
v(e) with e. In the remaining case e = Fm is the multiple fiber of multiplicity , 
m l and v is an etale double cover. There is then the following analogue of 
(1.25) of Chapter 7 of [11]: 

Lemma 3.5. There is a subsheaf Qo of v. Q which is isomorphic to 
(i) &e(-(a-l)e+v·Ll-D), viewed as a sheaf on v(e)=f,ifel-Fm ; , 

(ii) A line bundle on F2m such that , 
v·Q ~& (-(a-l)F +v·Ll-D), o Fm , m, 

in case e = F m . , 
Proof. The argument in case e I- Fm runs as in (1.25) of Chapter 7 of [11]. If , 
e = F ,then v· Q contains the sub sheaf m, 
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which is a line bundle on F m • The vector bundle v. Q~ is a rank two vector 
1 

bundle on F2m with deg(v. Q~) = m l m2 . Consider the rank two vector bundle 
1 

v·v.Q~ on Fm . Its determinant is Q~®z*Q~ = (Q~)®2 (recall that v*/l.-D is 
1 

fixed under the involution) and there is a surjective map v*v*Q~ - Q~. Thus 
there is an exact sequence , '" , , 

0- Qo - v v*Qo - Qo - O. 
It follows that v*v.Q~ is semistable and is either Q~ EB Q~ or the nontrivial 
extension of Q~ by Q~. On the other hand, v*Q~ is either a direct sum of 
line bundles, say Qo EB Q I for two line bundles Qj' or a nontrivial extension 
of a line bundle Qo by Qo . In the first case we must have v * Qj = Q~ and 
in the second v· Qo = Q~. In either case there is a subbundle Qo of v * Q as 
desired. 0 

To prove Lemma 3.4, we shall assume that E' =I 0 and derive a contradiction. 
Again, the argument will be very similar to the argument given in [11). It will 
suffice to show that dim Ext I (Qo' W) :::; 1. We also have that 

I 0 -I Ext (Qo,W)=H(W®&s(e)®Qo ). 

The case where e does not lie over the branch locus of C _ pi follows exactly 
as in [11). The case where e is a smooth fiber in the branch locus also follows 
by these methods provided we can show that RI p.&T(2D-v· /l.) has length one 
at the point of C corresponding to e. This is a local calculation, which we shall 
leave to the reader; it uses the fact that A' meets the branch locus transversally 
and can in fact be deduced from the global argument in [11), proof of Lemma 
1.19 of Chapter 7. 

There remains the new case, where e = F m . In this case, the natural map 
1 

W=v&T(v·/l.-D-E')-V&F (v·/l.-D-aF) 
,* * ml m. 

is surjective, as one can see from applying the surjective map v. to the exact 
sequence 
0- &T(v'"/l.-D-E' -F ) - &T(v·/l.-D-E') - &F (v*/l.-D-aFm) - o. m1 ml I 

It follows that WIF2m = v.&F (v· /l. - D - aFm ) . Thus 
I ml I 

° -I 0 * -I H (W®&S(F2m )®Qo ) =H (v.&F (v /l.-D-aFm )®&s(F2m )®Qo ) 
1 ml I I 

= HO(v. [&F (v·/l. - D - aFm ) ® v*&S(F2m ) ® v*Q~I]) = HO(&F ), 
ml I I ml 

where we have used the fact that v*Qo = &F (v* /l. - D - (a - I)Fm ). Hence 
ml I 

dimExtl(Qo' W)=ho(W®&s(F2m )®Q~I)= 1 
I 

as desired. 0 

We see that we have proved all of Theorem 3.1 except the statement about 
the smoothness of the moduli space, which follows from: 



60 ROBERT FRIEDMAN 

Lemma 3.6. Suppose that V = v*&T(D + F) as above. Then V is good, in the 
terminology of[8]. In other words, H2 (S; ad V) = O. 
Proof. It suffices to show that dim Hom(V , V 0 Ks) = hO(Ks)' Now 

Hom(V, V 0 Ks) = Hom(V, v* (&T(V*!:J.- D) 0 v*Ks)) 

= Hom(II*V, &T(II*!:J.- D) 011*Ks)' 

Using the defining exact sequence for 11* , there is an exact sequence 

0* * * * ° * * 0--+ H (II Ks) --+ Hom(1I V, &T(II !:J.-D)0V Ks) --+ H (&T(v !:J.-2D)0V Ks)' 

Since Ks is a rational multiple of the fiber and II*!:J.- 2D is nontrivial on the 
generic fiber, the term HO(&T(II*!:J.- 2D) 0 11* Ks) is zero. Thus 

dim Hom(V, V 0 Ks) = hO(1I * Ks)' 

U sing the isomorphism Jt1 (II * K s) ~ HO (K s) EB HO (K s ( - G)) , it suffices to show 
that HO(Ks( -G)) = O. Now 

Ks = &s((k - N - 2)f + (2mr - I)F2m + (m2 - I)Fm ). 
I 2 

Also G = (2r + k ± 1/2)f. Thus it suffices to observe that the linear system 

I( -N - 2r - 2 ± 1/2)f + (2mr - I)F2m + (m2 - I)Fm I 
I 2 

is empty. 0 

Next let us describe the subset of the moduli space consisting of bundles 
V which satisfy the hypotheses of Theorem 3.1. We begin by reversing the 
procedure outlined above. Fix the section A' , which is generic in the sense of 
Theorem 3.1: it meets B transversally and no point of intersection corresponds 
to a singular nonmultiple fiber or to the mUltiple fiber of odd multiplicity. The 
section A' determines the bisection C = C , and thus a double cover v: T --+ S 
together with an elliptic fibration p: T --+ C and a divisor Do' well-defined 
on the generic fiber. Moreover by construction v.Do and !:J. have the same 
restriction on the generic fiber, and thus differ by a multiple of K. It is easy to 
see that changing Do by a sum of fiber components on T replaces v.Do by an 
arbitrary even multiple of K. Thus we may assume that we have II*Do = !:J.- G 
or v.Do =!:J.- K - G. It is an exercise in the formulas of the preceding section 
to see that we have 

2 I 2 !:J. == 2(A) + 1 mod 4. 
Additionally 

2(A')2 + 1 == the exceptional point; { 
2N + 1 mod 4 , if A does not pass through 

2N - 1 mod 4, otherwise. 

Thus the symmetry between the possibility that A does or does not pass through 
the exceptional point, which is essentially the choice of blowing IF down to IF N 
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or IF N±I ' reflects the choice of L\ or L\ - K, which in tum reflects L\2 mod 2, 
or equivalently the dimension of the moduli space mod 2. 

Having made one choice for a line bundle Do on the double cover T, where 
Do is specified on the generic fiber of T and satisfies v.Do = L\- G, or v.Do = 
L\ - K - G , the possibilities for D are given by the next lemma. 

Lemma 3.7. Given the double cover T ...... S, the set of all D whose restriction to 
the generic fiber equals Do and which satisfy v.D = L\ - G, or v.D = L\ - K - G 
is a principal homogeneous space over PicT T, which in turn is an extension 
of the Jacobian J (C) by a cyclic group of order m 2 . Moreover this principal 
homogeneous space is nonempty for exactly one of the two choices for v.D above. 
Proof. By the remarks preceding the lemma, there exists a Do with v.Do = 
L\ - G, or v.Do = L\ - K - G, and only one of these possibilities can hold. If 
D has the same restriction to the generic fiber as Do and v.D = v.Do' then 
D - Do has trivial restriction to the generic fiber and v. (D - Do) = O. The first 
condition says that D-Do is of the form p. J..®&r(aFm +bF~ +cF~ ), where 

I 2 2 

F m is the multiple fiber of multiplicity m 1 lying above F2m and F~ , F~ 
I I 2 2 

are the two multiple fibers of multiplicity m2 lying over Fm . We may further 
2 

assume that 0 ~ a < m l and that 0 ~ b < m 2 , 0 ~ c < m2 . Here J.. is a line 
bundle of degree d on C. Thus 

v.(D - Do) = df + 2aF2m + (b + c)Fm . 
I 2 

It is easy to see that this divisor is trivial if and only if d = 0, a = 0, and 
b == -c mod m2 • Thus, there is a natural identification of the set of all D 
(given the fixed divisor Do) with J(C) x Z/m2Z, 0 

We now assume that A is not the negative section of IF N and write A E 
la + (N + r)fl where r ;::: O. The dimension of the linear system A' is then 
equal to n, where 

if A does not pass through the exceptional point; n = {N +2r+ 1, 
N + 2r , otherwise. 

We also let g = g( C) be the genus of the bisection C, as given in Lemma 3.2. 
Note that . 

{ 4r + N + k + 1 , if A does not pass through the exceptional point; 
n+g= 4r + N + k - 1 , otherwise. 
In both cases, comparing this with the formula for -p given in Lemma 2.5 and 
using the fact that 1 + p g(S) = k - N, we see that 

-p - 3X(&s) = g + n. 

Note finally that the moduli space will be nonempty provided that -p ;::: 
4pg(S) + 2N + 3. Since Pg(S) = k - N - 1 ;::: N - 1, the moduli space will be 
nonempty as long as 

-p ;::: 6pg(S) + 5. 
Arguing as in Theorem 1.14 of Chapter 7 of [11], we obtain the following: 
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Theorem 3.8. Let p be an odd negative integer, and choose W E H2(S; Z/2Z) 
such that w = L1 mod 2 or w = L1 - K mod 2, and that w 2 == p mod 4. Let 
L be a (w, p )-suitable ample line bundle on S. Let VJt = VJt( S , L; w , p) 
denote the moduli space of L-stable rank two bundles on S with w2 (V) = w 
and PI (ad V) = p. Then for all p such that -p ~ 6p g(S) + 5, VJt contains a 
nonempty Zariski open subset M corresponding to vector bundles V satisfying 
the hypotheses of Theorem 3.1. The set M is smooth of dimension - p - 3 X (&s) . 
Moreover, there is a holomorphic map from M to a Zariski open subset U ~ pn 
and the fibers are isomorphic to m 2 copies of a complex torus of dimension 
g. 0 

In fact, arguing as in [8], the component M is also Zariski dense. However 
we do not prove this result as we do not need it; the arguments in the proof of 
Theorem 4.3 show that any other components of VJt do not contribute to the 
leading coefficient of the Donaldson polynomial. 

Let us finally consider the case where Pg(S) = 0 and -p = 3, the case of a 
moduli space:; of expected dimension zero. In this case we fix N = 1 and k = 2 , 
and the negative section does not pass through the exceptional point. The Chern 
class calculations of Lemma 2.5 show that we must have .e(Z) = 15 = 0 and A 
must be the negative section a of IF\. Note that a· (B + ill + il2) = 2, and 
the intersection must be transverse since a cannot split into a union of two 
sections in the double cover. Thus C = C -. pi is branched at two points, 
so that C = pi again. Assuming as we may that the multiple fiber of odd 
multiplicity does not correspond to a branch point, we see that the arguments 
of Theorem 3.1 go through to show that there are exactly m2 vector bundles V 
whose associated section is a. (Here, in case the intersection point of a with 
B corresponds to a singular non multiple fiber, we must use the more detailed 
analysis of [8], (5.12) and (5.13), to see that the section a and the line bundle 
on T determine V.) Each of these is a smooth point of the moduli space, by 
a slight modification of the proof of Lemma 3.6 (in this case G = f /2 and 
Ks = &s( - f + (2ml - 1)F2m1 + (m2 - l)Fm))' Summarizing, then: 

Theorem 3.9. In case Pg(S) = 0, the moduli space corresponding to -p = 3 
consists of m 2 reduced points. 0 

4. CALCULATION OF THE LEADING COEFFICIENT 

Fix wand p with w 2 == p mod 4, and let VJt = VJt(S, L; w, p) denote 
the moduli space of L-stable rank two bundles on S with w 2(V) = wand 
PI (ad V) = p. Let d be the (complex) dimension of VJt: 

d = { 4r + N + k + 1, if A does not pass through the exceptional point; 
4r + N + k - 1, otherwise, 

where the section A E la + (N + r)fl. With this notation we see that 2n = 
d - Pg(S) and that g = d - n. Finally let us recall from Lemma 2.4 of Part I 
that in case Pg(S) = 0 there is a unique chamber of type (w, p) which contains 
K in its closure, called the (w, p )-suitable chamber. We can now state the main 
result of Part II: 
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Theorem 4.1. For p g(S) > 0, let Yw ,peS , P) be the Donaldson polynomial corre-
sponding to the SO(3)-bundle P over S with w2(P) = ~ mod 2 and PI (P) = p, 
and P is a choice of orientation agreeing with the usual complex orientation 
for oot. If Pg(S) = 0, let Yw,p(S, P) be the corresponding Donaldson polyno-
mial for metrics whose associated self-dual harmonic 2-form lies in the (w, p)-
suitable chamber. Then, writing Yw ,p(S, P) as a polynomial in KS and qs' 
say Yw,p(S, P) = E~:!o21 aiq~K:-2i, we have, for all p with -p ~ 2(4pg + 2), 
ai = 0 for i > nand 

d! p (S) 
an = -2n I (2ml m 2) g m 2· n. 

We first remark that the assumption that -p ~ 2(4pg +2) implies that oot is 
nonempty and contains a smooth Zariski open subset as described in Theorem 
3.8. Indeed -P is an odd integer greater than 8pg + 4, and so -P ~ 8Pg + 5 ~ 
6p g + 5. Thus we are in the range of Theorem 3.8. 

Let X = X denote the Uhlenbeck compactification associated to oot [6], w,p 
[11]. The orientation of oot induces a fundamental class of X. There is a 
p-map H2(S) -+ H2(oot) , which roughly speaking is given by taking the slant 
product with the class -PI (P)/4, where P is the universal SO(3)-bundle over 
S x oot. If P lifts to a holomorphic bundle rover S x oot, then PI (P) = 
c;(r) - 4c2(r) = PI (ad r). The classes p(a) E H2(oot) extend uniquely 
to classes in H2(X) , which we shall also denote by p(a). The Donaldson 
polynomial is then defined by taking cup products of the pea) and evaluating 
on the fundamental cycle of X. 

Arguing as in [11], it is a combinatorial exercise to deduce Theorem 4.1 from 
the following: 

Theorem 4.2. Let p denote the p-map associated to the Uhlenbeck compactifica-
lion X of oot. Then, using the complex orientation to identify H2d ( X ; Z) ~ Z, 
we have, for all p with -p ~ 2(4pg + 2) and for all l: E H2(S) , 

f m U l: d-m _ { 0, ifm > n, 
f1.() p() - (d - n)!(2ml m 2)d-n m2(l:· Ks)d-n, ifm = n. 

Here the factor (2ml m 2)Pg (S) appearing in Theorem 4.1 arises from the fact 
th"t p(f)n = (2ml m 2t p(K) and that d - 2n = Pg(S). 

In order to prove Theorem 4.2, we shall introduce geometric divisors which 
will represent the cohomology class f1.(f). Fix a smooth fiber f. Then there 
are exactly four line bundles () of degree m l m2 on f such that ()®2 = &f(~) . 
Each line bundle () corresponds to a point of intersection of f with the branch 
divisor B elF. If V is a rank two vector bundle over S with c I (V) = ~, then 
(Vlf) 0 «())-I is a vector bundle over f with trivial determinant. Thus by the 
Riemann-Roch theorem X (I; (V If) 0 «()) -I) = 0 . 

For each integer c, fix a (~, c)-suitable line bundle L. Given an integer 
b ~ c, we define ootb to be the moduli space of L-stable rank two bundles V 
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with ci (V) = L\ and c2 (V) = b. Given f and e as above, define the divisor 
~(f, e) as a set by: 

~(f, e) = { V E W1b : hO(f; (Vlf) ~ (e)-I) =1= O}. 
A calculation with the Grothendieck-Riemann-Roch theorem as in the proof of 
Proposition 1.1 in Chapter 5 of [11] shows that we can use the divisors ~ (f, e) 
to calculate the .u-map. More precisely, since the J; are disjoint, suppose that, 
for all choices of b > 0 the intersection 

~-b(J; , ei)n··· n~_b(J; ,ei ) = 0, 
I I n-b n-h 

that n7=1 ~(J;, ei ) = J is compact and is contained in the Zariski open sub-
set M of W1, and that the ~(J;, e) meet transversally along J. Here by 
Corollary 2.6, W1c- b = 0 if b > (-p - 3)/4 and so it is enough to check the 
above for 0 < b ::; (-p - 3)/4. In particular we must have n > b for all 
b ::; (-p - 3)/4. Then we can define .u([~])IJ and arguments along the lines 
of the proof of Theorem .1.12 in Chapter 5 of [11] show that 

d-n y w.P (S)(1; , ... , fn ' [~], ... , [~]) = (.u([~]) IJ) . 

Thus, Theorem 4.2 is a consequence of the following: 

Theorem 4.3. Suppose that -p ~ 2(4pg + 2). Let 1;, ... ,1; denote distinct 
general fibers of 7C, and for each i choose e i a line bundle on J; with e: = 
&1; (L\). Then: 

(i) For all t ~ nand for all choices of b > 0, the intersection 

~-b(J; , ei ) n··· n~-b(J; ,Oi ) = 0. 
I I t-b t-b 

(ii) If t > n, then n:=1 ~(J; , ei ) = 0, and moreover n7=1 ~(J;, ei ) is 
compact and is contained in the Zariski open subset M of W1. The 
intersection is transverse and is a fiber J of the map M --+ U ~ IPn . 

(iii) If ~ is a smooth curve in S, then the restriction of .u([~]) to each of the 
m 2 connected components of J is equal to (~. f) . [8], where e is the 
theta divisor of the component. 

We begin by determining the set-theoretic intersection of the ~(J;, e). 
Recall that we have associated to V the section A and the scheme Z on the 
double cover T. The following is straightforward: 

Lemma 4.4. Let V E W1. Then V E ~(f, e) if and only if either the section 
A' of IF corresponding to V meets B transversally at the point corresponding 
to e or SuppZ n v-I(f) =1= 0. 0 

For the rest of the argument, we shall not worry about the case where the 
sections pass through the exceptional point, since this can be handled by sym-
metry. Arguing as in [II], Lemma 2.7 of Chapter 7, for a general choice of 
fibers 1;, ... ,1; and line bundles ei on J;, and, for all s ::; r, setting Hi 
to be the hyperplane of sections in 10' + (N + s)fl passing through the point 
corresponding to ei , then HI n ... n H N+2s+ 1 = {A} and the intersection of 
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more than N + 2s + 1 of the Hi is empty. In particular, this means that the 
1; are chosen so that the negative section a does not meet the branch divisor 
at any of the 1;. Thus if V is a bundle whose associated section A is the 
negative section a of IF N and V lies in the intersection n~= I ~ (1;, ° i) , then 
Supp Z meets the preimage in T of 1; for all i. 

A counting argument as in the proof of Proposition 2.9 of Chapter 7 in [11] 
then establishes (i) and (ii) of Theorem 4.3, at least set-theoretically, except 
possibly for those V such that the corresponding section of IF N is the negative 
section. Likewise, arguments identical to the proof of (2.6) in Chapter 7 of [11] 
show that the intersection of the divisor ~ (1;, ° i) with the Zariski open subset 
M is reduced, so that the intersection in (ii) of Theorem 4.3 is transverse. Thus 
the only new case to consider is the possibility that the section associated to V 
is the negative section. We shall briefly outline the argument in this case; it is 
here that we must assume that -p is sufficiently large. In particular, recalling 
that 

d - p -p - 4p - 3 
n=--g= g 

2 2 
and that we may assume that b S (-p - 3)/4, the condition -p ~ 2(4pg + 2) 
insures that 

p+3 p 8pg+3 
n - b > n + -- = -- - ----''-:--- 4 4 4 

8pg+4 8pg+3 
~ 4 4 > o. 

Thus the intersection in (i) of Theorem 4.3 is not over the empty collection 
of divisors ~-b(1;, 0i)' i.e. the intersection is always contained in a divisor 
~-b(1;, 0i)· 

Given t general fibers 1; , ... , 1; , we can assume that they do not correspond 
to intersections of the negative section a with B + () I + ()2. Now let V be a 
bundle whose associated section is a. Suppose further that c2(V) = c - band 
that V lies in the intersection ~-b(1; , 0i )n·· ·n~_b(1; ,Oi ) for t ~ n. 

I I t-b l-b 

We claim that, if 0 S b < (-p - 3)/4, then -p S 4pg + 2N - 2. It clearly 
suffices to assume that t = n. Let v: T -+ S be the double cover corresponding 
to a. Then v is not branched over the 1;. Writing v* V as an extension 

0-+ &T(D) -+ v*V -+ &T(v*!l- D) ® I z -+ 0, 

we have by Lemma 2.5 that -p = ""'PI (ad V)+4b = 4k-6N+ 1 +2£(Z)+<5+4b. 
Moreover SuppZ must meet each of the two components of v- I(1;) for i = 
1, ... , t. Thus £(Z) ~ 2n - 2b. But we also have 

2n = d - Pg = -P - 4pg - 3 
= 4k - 6N + 1 + 2£(Z) + <5 - 4(k - N - 1) - 3 + 4b 
= -2N + 2 + 2£(Z) + <5 + 4b. 

Thus 2n ~ -2N + 2 + 4n - 4b + 0 + 4b and so 2n S 2N - 2. This says that 

-P S 4pg + 2N - 2. 
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On the other hand, 2(4pg + 2) = 4pg + 4(k - N);::: 4pg + 4N > 4pg + 2N - 2. 
Thus with our assumptions on P there can be no bundle V in the intersection 
with an associated section equal to (J. Taking b > 0 establishes (i) in the case 
where the section associated to V is (J. Taking b = 0 shows that no bundle 
with associated section (J lies in the intersection n~=1 ~(j;, ()) if t ;::: n. This 
establishes (i) and (ii). 

Finally, to prove (iii) of Theorem 4.3, we must determine .u([kDIJ, where 
J is a fiber of the map M -+ U. The argument again closely parallels that of 
[11], Chapter 7. A fiber of M -+ U determines and is determined by a generic 
double cover T -+ S. There is a divisor Do on T such that every V in the 
fiber is of the form v.&T(Do + F) ® p. A., for a line bundle A. E Pico C. Fix 
a smooth holomorphic multisection k of n, transverse to the double cover 
T -+ S. Let k' be the inverse image of k under v. There is a commutative 
diagram 

C~lP'I. 

Let .9 be the Poincare bundle over Pi CO C xC. Let E be the divisor on k' 
induced by Do + F. Then there is a universal bundle over Pico C x k of the 
form 

(Id xv). [n;&1;,(E) ® (Id xp·).9]. 

Here n2 : Pico C x k' -+ k' is the second projection. The Chern classes of ~ 
only depend on the numerical equivalence class of E. Moreover, PI (ad ~) = 
PI(ad~0q;A.) for every line bundle A. on k,where q2: Pic°CXk-+k is the 
projection. This has the effect of replacing &1;' (E) by &1;' (E) ® v· A.. Replacing 
k by 2k, replaces deg E by 2 deg E . Thus we can assume that deg E is even, 
and then after twisting by an appropriate A. we can assume that deg E = O. So 
as far as the Chern classes are concerned we may as well assume that E = 0, 
and we need to calculate 

PI (ad(Id xv).(Id xp)*.9). 

Now since cohomology commutes with flat base change, we have 

(Id xv)*(Id xp)*.9 = (Id xn)*(Id xg)..9. 

Thus we need to find 
PI(ad(Id xn)*(Id xg)..9) = (Id xn)·PI(ad(Id xg) • .9). 

Let us first calculate PI(ad(Id xg) • .9). A straightforward calculation using e.g. 
Lemma 2.14 of Chapter 7 of [11] shows the following: 

Lemma 4.5. Let f: X -+ Y be a double cover with X and Y smooth, and let Y 
be the line bundle on Y defining the double cover, so that y®2 = &y(B) , where 
B is the branch locus of f. If D is a divisor on X, then 

2 2 2 PI (ad f.&x{D)) = c i (Y) - (f*D) + 2fJD). 0 
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Applying this in our situation, with X = Pico C x C and 1 = Id x g, we 
see that Y is the pullback of a divisor on C and thus c i (y)2 = O. So we 
are left with calculating (in the sense of cycles) (Id xg).fJiJ and (Id xg).[fJiJ]2 . 
Also, as in the proofs of (2.15) and (2.16) in Chapter 7 of [11], (Id xg).fJiJ = 0 
and [fJiJ]2 = -2,a8] u ,;x, where x is the class of a point in C, 8 is the 
theta divisor on Pic° C, and '1,'2 are the first and second projections on 
Pico C xC. Thus 

2 •• 
2(Id xg).[fJiJ] = 2(Id xg).( -2'1 [8] U '2X) 

= -4p~[8] u p;y, 

where PI' P2 are the first and second projections on Pico C x]pl and y is the 
class ofa point on ]pl. It follows that -PI(ad~)/4=q~8uq;n*y. 

Hence the slant product of -PI (ad ~) /4 with [~] is (deg n) . [8]. Since 
deg n = (~. f) , we have now established (iii) of Theorem 4.3. This concludes 
the proof of Theorem 4.3 and thus of Theorem 4.1. 0 

PART III: THE CASE OF ODD FIBER DEGREE 

In this part, S shall denote a simply connected elliptic surface with at most 
two multiple fibers, of multiplicities m I and m 2 , where one or both of the m i 
are allowed to be 1. We shall study stable rank two vector bundles V on S 
such that det V· 1 is odd, where 1 is a general fiber of S . Thus necessarily the 
multiplicities m l and m2 are odd as well. As we shall see the case of odd fiber 
degree is fundamentally different from the case of even fiber degree and is in 
many ways simpler. Our goal will be to give a description of the moduli space of 
stable rank two bundles with odd fiber degree and then to use this information 
to calculate certain Donaldson polynomials. Before stating the main results of 
Part III, recall that, for an elliptic surface S, Jd (S) denotes the elliptic surface 
whose general fiber is the set of line bundles of degree d on the general fiber 
of S. Let W E Hl(S; Z/2Z) be the mod 2 reduction of a divisor class .1 such 
that Il· f is odd. Given an integer P == III mod 4, define the rational number 
( by the formula 

-P - 3X(&'s) == 2(. 
We note in fact that t is an integer: By the canonical bundle formula for an 
elliptic surface, 

Ks = &'s((pg - 1)1 + (m! - I)FI + (ml - I)Fl ) , 

where Fi are the reductions of the mUltiple fibers. As m! and m2 are odd, 

Ks' Il == Pg - 1 mod 2. 

By the Wu formula, .12 == Pg - 1 mod 2 as well. Hence 

2 4c -.1 - 3X(&'s) = -P - 3X(&'s) == 0 mod 2. 
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Thus -p - 3X(&'s) = 2t is even. It is in fact the expected dimension of the 
moduli space 9Jl1 = 9Jl(~, c) of stable rank two vector bundles V with c, (V) = 
~ and c2 (V) = c, where stability is with respect to a suitable ample line bundle. 
We shall prove the following theorem: 

Theorem. Let 9Jl1 be the moduli space 0/ stable rank two bundles V on S (with 
respect to a suitable ample line bundle) with 

2 det V . / = 2e + 1 and 4c2 (V) - c, (V) - 3X(&'s) = 2t. 

Then/or all t 2': 0, 9Jl1 is smooth and irreducible and is birational to Sym1f+'(S). 

Let us outline the basic ideas behind the proof of this theorem. Standard 
arguments show that, for a suitable choice of an ample line bundle L on S, 
a rank two vector bundle V with c, (V) . / = 2e + 1 is L-stable if and only 
if its restriction to a general fiber / is stable. A pleasant consequence of the 
assumption of odd fiber degree is that there is a unique stable bundle of a given 
determinant of odd degree on each smooth fiber /. Using this, it is easy to show 
that there exists a rank two vector bundle Va whose restriction to every fiber / 
is stable, and that Va is unique up to twisting by a line bundle. The bundle Va is 
the progenitor of all stable bundles on S , in the sense that every stable rank two 
vector bundle is obtained from Va by making elementary modifications along 
fibers. Generically, this involves choosing t smooth fibers 1; and line bundles 
A. i of degree e+ 1 on 1; . These choices define the birational isomorphism from 
the moduli space to Symt f+' (S) . 

For w, p, and t as above, let Yw,p(S) be the corresponding Donaldson 
polynomial, where if p (S) = 0, Yw (S) is the polynomial for the (w, p)-g ,p 
suitable chamber defined in Part I, Definition 2.6. By Proposition 1.1 of Part 
I, Yw,p(S) depends only on p or equivalently t and we will denote it by 
Y1 • It follows from the theorem above that Yt =I- 0 for all t 2': 0, and that 
Yo = 1 . More generally one can show that the "leading coefficient" of Yt in the 
sense of [11], Chapter 7, is always 1, although we shall not do so in this paper. 
Given the above analysis of stable bundles, the main problem in computing the 
remaining terms in the higher Donaldson polynomials Yt is to fit together all 
of the various possible descriptions of stable bundles into a universal family 
whose Chern classes can be calculated. This is easier said than done! Even in 
the case where S has a section, the construction of the universal bundle for 
the four-dimensional moduli space, which just involves well-known techniques 
of extensions and elementary modifications, is already quite involved. We shall 
therefore proceed differently, and try to describe the moduli spaces and Chern 
classes involved up to contributions which only depend on the analytic type of 
a neighborhood of the multiple fibers. But we shall not try to analyze these 
contributions explicitly. Instead we shall repeatedly use the fact that an elliptic 
surface with p g = 0 and just one multiple fiber is a rational surface, and thus 
its Donaldson polynomials are the same as those for an elliptic surface with 
p g = 0 and with a section, or equivalently no multiple fibers. Thus if we 
know these, we can try to interpolate this knowledge into the general case. We 
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shall use this idea twice. The first application will be to calculate the invariant 
Y1 . Here the moduli space is precisely f+l (S) and a lengthy calculation with 
the Grothendieck-Riemann-Roch theorem identifies the divisor corresponding 
to the .u-map up to a rational multiple of the fiber, which depends only on 
the multiplicities. Appealing to the knowledge of the invariant for a rational 
surface enables us to determine this multiple. Of course, it is likely that the 
exact multiple could also be determined by a direct calculation. In order to 
calculate the polynomial Y2' we shall use a variant of this idea. In this case, the 
divisor corresponding to the .u-map is essentially known from the corresponding 
calculation in the case of Y I . However what changes is the moduli space itself: 
the presence of multiple fibers means that the birational map from the moduli 
space to Hilb2 f+l(S) is not a morphism, and the actual moduli space differs 
from Hilb2 f+l(S) in codimension two. Thus while the divisors are known, 
their top self-intersection is not. Again using the rational elliptic surfaces, we are 
able to determine the discrepancy between the self-intersection of the .u-divisors 
in Hilb2 f+l (S) and in the actual moduli space. The methods used here are 
in a certain sense the analogue in algebraic geometry of gluing techniques for 
ASD connections. 

Although the actual arguments are rather involved, the main point to empha-
size here is that the coefficients of the Donaldson polynomial are quite formally 
determined by the knowledge of the polynomial for a rational surface. It is natu-
ral to wonder if the techniques in this paper can be pushed further to determine 
Yt for all t. I believe that this should be possible, although one necessary and 
so far missing ingredient in this approach is the knowledge of the multiplication 
table for divisors in Hilbn f+l (S) . 

Here is a rapid description of the contents of Part III. In Section 1 we describe 
some general results on rank two vector bundles on an elliptic curve. In Section 
2 these results are extended to cover the case of an irreducible nodal curve of 
arithmetic genus one. In Section 3 we give the classification of stable bundles 
on an elliptic surface S and prove the theorem stated above. In Section 4 we 
specialize to the case of a surface with a section. Our purpose here is twofold: 
First, we would like to show how many of the results of the preceding section 
take a very concrete form in this case. Secondly, we shall make a model for a 
piece of the four-dimensional moduli space which we shall need to use later. In 
Section 5 we calculate the two-dimensional invariant Y1 in case S has a section. 
This calculation has already been done by a different method in Section 4 and 
will be redone in full generality. However it seemed worthwhile to do this special 
case in order to make the' general calculation more transparent. The next three 
sections are devoted to calculating Y1 in general. The outline of the argument is 
given in Ser.tion 6. We construct a coherent sheaf which is an approximation to 
the universal bundle over the moduli space, over a branched cover T of S. We 
determine its Chern classes via a lengthy calculation using the Grothendieck-
Riemann-Roch theorem, which is given in Section 7. The necessary correction 
terms are identified via the results in Section 8. In Sections 9 and lOwe deal 
with the invariant Y2' Once again the outline of the calculation is given first 
and the technical details are postponed to Section 10. We conclude with an 
appendix which collects some general results about elementary modifications. 
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PRELIMINARIES FOR PART III 
Let V be a coherent sheaf on a smooth projective scheme. Recall that we 

denote by PI (ad V) the expression c:(V) - 4c2(V). Given a vector bundle V, 
we shall need to know how PI (ad V) changes under elementary modifications. 
Recall that an elementary modification is defined as follows. Let X be a smooth 
scheme and let D be an effective divisor on X, not necessarily smooth, with 
i: D -+ X the inclusion. Let L be a line bundle on D. Then i.L is a coherent 
sheaf on X, which we shall frequently just denote by L. Suppose that Va is a 
rank two vector bundle on X and that Va -+ i.L is a surjective homomorphism. 
Let V be the kernel of the map V -+ i.L. Then V is again a rank two vector 
bundle on X (and in particular it is locally free). We call V an elementary 
modification of Va. The change in PI is given as follows: 

Lemma. Let X be a smooth scheme and let D be an effective divisor on X, 
not necessarily smooth. Let L be a line bundle on D and Va a rank two vector 
bundle, and suppose that there is an exact sequence 

0-+ V -+ Va -+ i.L -+ 0, 

where i: D -+ X is the inclusion. Then 

PI (ad V) - PI (ad Va) = 2cI (Va) . [D] + [D]2 - 4i.cl (L). 
Proof. The proof follows easily from standard formulas for c i (V) and c2(V) , 
cf. [12] or [9]. 0 

Next we will recall some properties of the scheme Hilb2 S , where S is an al-
gebraic surface. In general, we denote by Hilbll S the smooth projective scheme 
parametrizing O-dimensional subschemes of S of length n. There is a univer-
sal codimension two subscheme % c S X Hilbll S. We may describe the case 
n = 2 quite explicitly. Let il be the blowup of S x S along the diagonal Jl)) 
and let Jij) be the exceptional divisor. There is an involution I of il whose 
fixed set is Jij). We claim that the quotient il /1 is naturally Hilb2 S. Indeed, 
if Jij)12 and Jij)13 are the proper transforms in S x il of the subsets 

Jl))lj = {p E S x S x S 1111 (P) = ll j (P)}, 

then ::i = Jij)12 + Jij)13 is a codimension two subscher.le of S x il which is 
easily seen to be a local complete intersection. Thus it defines a flat family 
of subschemes of S and so a morphism ll: il -+ Hilb2 S. It is easy to see 
that the induced morphism il / I -+ Hilb2 S is an isomorphism. The projection 
% -+ Hilb2 S is a double cover which identifies % with iI. 

Given a E H2(S) , we can define the element Da E H2(Hilb2 S) by taking 
the slant product with [%] E ~(S x Hilb2 S). If for example a = le] where 
e is an irreducible curve on S, then D is represented by the effective divisor a 
consisting of pairs {x, y} of points of S such that either x or y lies on e. 
The inverse image ll· D a E H2 (il) is the pullback of the class 1 ® a + a ® 1 E 

H2(S X S). There is also the class in H2(Hilb2 S) represented by the divisor 
E of subschemes of S whose support is a single point. Since II is branched 
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over E, the class [E] is divisible by 2 and 1l"[E] = 2lDl. Using this it is easy 
to check that the map a 1-+ Do; defines an injection H2(S) -t H2(Hilb2 S) and 
that H2(Hilb2 S) = H 2 (S) ED z· [E /2]. The multiplication table in H2(Hilb2 S) 
can be determined from the fact that if is the blowup of S x S along the 
diagonal and that the normal bundle of the diagonal in S x S is the tangent 
bundle of S: we have 

4 22 3 2 2 2 Do;=3(a); Do;.E=O; Do;.E =-8(a); 
342 Do; . E = -8(cl (S) . a); E = 8(c2 (S) - CI (S) ). 

Finally we need to say a few words about calculating Donaldson polynomi-
als. Let M be a closed oriented simply connected 4-manifold with a generic 
Riemannian metric g, and let P be a principal SO(3)-bundle over M with 
invariants w2(P) = wand PI (P) = p. There is a Donaldson polynomial 
Yw (S) defined via the moduli space of g-ASD connections on P, together ,p 
with a choice of orientation for this space. If b; (M) > 1 , then this polynomial 
is independent of g, whereas if b; (M) = 1 then it only depends on a certain 
chamber in the positive cone of H2(M; JR). If M = S is a complex surface, A 
is a holomorphic line bundle such that w = ci (A) mod 2 and g is a Hodge met-
ric corresponding to an ample line bundle L, then there is a diffeomorphism of 
real analytic spaces from the moduli space of g-ASD connections on P to the 
moduli space of L-stable rank two vector bundles V on S with C I (V) = A and 
c2(V) = (A2 - p)/4. We denote this moduli space for the moment by 9')1. We 
shall always choose the orientation of the moduli space of g-ASD connections 
which agrees with the natural complex orientation of !JJ1. 

If !JJ1 is smooth, compact, and of real dimension 2d and there is a universal 
bundle rover S x !JJ1, then the slant product with -PI (ad r)/4 defines 
a homomorphism f.L from H2(S) to H2(!JJ1). In general we can define the 
holomorphic vector bundle ad r even when the universal bundle r does not 
exist. To see this, note that there is always a universal pi -bundle 1l: p(r) -t 

S x !JJ1, and taking 1l.. of the relative tangent bundle gives ad r. Thus given 
a class l: E H 2 (S) , we can evaluate f.L(l:/ on the fundamental class of !JJ1 
and this gives the value I' w . p (l:, ... , l:). For the applications here, since the 
moduli spaces always have the correct dimension and in particular are empty 
if -P - 3X(&'s) < 0, the moduli spaces of complex dimension zero and two 
are compact. For the four-dimensional moduli space, we can calculate I' w • p 

by choosing an appropriate compactification of !JJ1. For the purposes of gauge 
theory, there is the Uhlenbeck compactification. For the purposes of algebraic 
geometry, there is the Gieseker compactification !JJ1. Following O'Grady [23], 
the divisors f.L(l:) extend naturally to divisors v(l:) on !JJ1, which we shall 
continue to denote by f.L(l:). If there is a universal sheaf r on the Gieseker 
compactification, then the f.L-map is again defined by taking the slant product 
with -PI (ad r)/4. In general, for holomorphic curves l: (which would suffice 
for the applications here) we can use determinant line bundles on the moduli 
functor. For a general l: E H2(S) , we can define f.L(l:) for the moduli spaces 
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that arise here (where there are no strictly semistable sheaves) as follows: there 
exists a universal coherent sheaf fC over S xU, where U is the open subset of 
an appropriate Quot scheme corresponding to stable torsion free sheaves with 
the appropriate Chern classes. Thus we can define an element of H2(U) by 
taking the slant product with PI (adfC). As 9Jt is a quotient of U by a free 
action of PGL(N) for some N, H2(9Jt) ~ H 2(U), and this defines .u(~) in 
general. 

d -We can now evaluate .u(~) on the fundamental class of 9Jt. By recent 
results of Li [18] and Morgan [19] the result is again Yw,p. Strictly speaking, 
their results are stated with certain extra assumptions. However, the cases we 
will need here involve the following situation: all moduli spaces are smooth of 
the expected dimension and there are no strictly semistable torsion free sheaves. 
Under these assumptions, the proofs in e.g. [19] go over essentially unchanged. 

1. REVIEW OF RESULTS ON VECTOR BUNDLES OVER ELLIPTIC CURVES 

We recall the following well-known result of Atiyah [1]: 

Theorem 1.1. Let V be a rank two vector bundle over a smooth curve C of 
genus 1. Then exactly one of the following holds: 

(i) V is a direct sum of line bundles; 
(ii) V is of the form fC ® L, where L is a line bundle on C and fC is the 

(unique) extension of &'C by &'C which does not split into the direct sum 
&'C ED &'c; 

(iii) V is of the form g; ® L, where L is a line bundle on C, pEe, and 
g; is the unique nonsplit extension of the form 

0-+ &'c -+ g; -+ &'c(p) -+ O. 0 

We shall not prove Theorem 1.1 but shall instead prove the analogous state-
ment in the slightly more complicated case of a singular curve in Section 2. 

Corollary 1.2. Let V be a stable rank two bundle over a smooth curve C of 
genus 1. Then deg V is odd, say deg V = 2e + 1. Moreover, for every line 
bundle A of degree e + 1 we have dim Hom(V ,A) = 1. HI(Vv 0A) = 0, and 
there is an exact sequence 

O-+.u-+ V-+A-+O, 

where .u is a line bundle of degree e on C, uniquely determined by the isomor-
phism 

.u ® A = det V, 
and the surjection V -+ A is unique mod scalars. 
Proof. Clearly, if V is stable we must be in case (iii) of the theorem. Con-
versely, suppose that V is as in (iii). We shall show that V is stable. It suffices 
to show that g; is stable. Let M be a line bundle on C of degree at least 
detg;/2 = 1/2 such that there is a nonzero map M -+ g; . Clearly deg M ::; 1 
and degM = 1 if and only if M = &'c(p). Since degM ~ 1/2, degM = 1 



VECTOR BUNDLES AND SO(3)-INVARIANTS FOR ELLIPTIC SURFACES 73 

and M = &'c(p). But then ~ is the split extension, contradicting the definition 
of ~ . Thus ~ is stable. 

Now let V be a stable bundle of degree 2e + 1 , so that there exists a line 
bundle L of degree e on C with V = ~ 0 L. Then, if A is a line bundle of 
degree e + 1 , we have an exact sequence 

I -I 0-+ Hom(L0&'c(p), A) -+ Hom(V, A) -+ Hom(L, A) -+ H (A0L 0&'c(-P)). 
If A = L 0 &'c(P) , then by assumption there exists a surjection V -+ A. If qJI 
and qJ2 are two nonzero maps from V to A, then for every p E C there is 
a scalar c such that qJ I - cqJ2 vanishes at p, and thus defines a map V -+ 
A 0 &'d -p). By stability this map must be zero, so that qJI = CqJ2' Thus the 
surjection is unique mod scalars. 

If A f. L 0&'c(P) , then A 0 L -I 0&'c{ -p) is a line bundle of degree zero on 
C which is not trivial. Hence HI (A 0 L -I 0 &'c( -p)) = 0, and Hom{V, A) ~ 
Hom{ L, A). Moreover Hom( L , A) = HO (L -I 0 A) has dimension one since 
deg{L -I 0 A) = 1 . Thus there is a nontrivial map V -+ A, which is unique mod 
scalars. If it is not surjective, there is a factorization V -+ A 0 &'C ( -q) C A, and 
this contradicts the stability of V. Lastly we see that HI (Vv 0A) ~ HI (L -1 0A), 
and this last group is zero since deg{ L -I 0 A) = 1. 0 

We can generalize the last statement of Corollary 1.2 as follows. 

Lemma 1.3. Let C be a smooth curve of genus one. 
(i) Let V be a stable rank two vector bundle over C and suppose that 

deg V = 2e + 1. Let d ~ e + 1, and let A be a line bundle on V 
of degree d. Then dim Hom(V , A) = 2d - 2e - 1, and there exists 
a surjection from V to A. Conversely, with V as above, let A be a 
line bundle such that there exists a nonzero map from V to A. Then 
degA ~ e + 1. 

(ii) Suppose that V = LI EB L2 is a direct sum of line bundles L j with 
deg V = 2e + 1 and deg LI ::; e < deg L2 . Let A be a line bundle on C 
with d = degA > degL2 . Then dim Hom{V ,A) = 2d-2e-l, and there 
exists a surjection from V to A. Conversely, if A is a line bundle and 
there exists a surjection from LI EB L2 to A, then either degA > deg L2 
or A = L2 or A = L I . If A = L 2, then dimHom{V,A) = 2d-2e, 
where d = degL2 = degA. 

Proof. We shall just prove (i), as the proof of (ii) is simpler. Let A be a line 
bundle on C of degree d ~ e + 1. We may assume that degA > e + 1, the 
case degA = e + 1 having been dealt with in Corollary 1.2. There is an exact 
sequence 0 -+ LI -+ V -+ L2 -+ 0, where degL I = e and degL2 = e + I. 
Thus there is an exact sequence 

o -I 0 -I I -I 0-+ H (L2 0A) -+ Hom{V, A) -+ H (LI 0A) -+ H (L2 0A). 

We have deg{L~1 0A) = d - e > 0 and deg(L~1 0A) = d - e - 1 > O. Thus 
HI(L~I 0A) = 0, dim HO{L~I 0A) = d - e, and dim HO{L~I 0A) = d - e - 1 . 
So dim Hom{ V , A) = 2d - 2e - 1 . To see the last statement, let Y be the set of 
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elements rp of Hom(V, 1) such that rp is not smjective. Then Y is the union 
over x E C of the spaces Hom(V, l®&c(-x)) , each of which has dimension 
at most 2d - 2e - 3. So the dimension of Y is at most 2d - 2e - 2. Thus 
Hom(V, 1) - Y is nonempty, and every rp E Hom(V, 1) - Y is a surjection. 
The final statement of (i) is then an immediate consequence of the stability of 
V. 0 

For future use let us also record the following lemmas: 
Lemma 1.4. Let C be a smooth curve of genus one and let e be a line bundle on 
C of degree zero such that e®2 t- O. Let V be a stable rank two vector bundle 
on C. Then Hom(V, V ®e) = O. 
Proof. Since deg V = deg( V ® e) and both are stable, a nonzero map between 
them must be an isomorphism, by standard results on stable bundles. However 
det( V ® e) = det V ® e®2 t- det V, and so the bundles cannot be isomorphic. 
Thus there is no nonzero map from V to V ® e. 0 

Corollary 1.5. Let F c X be a scheme-theoretic multiple fiber of odd multi-
plicity m of an elliptic surfti-ce, and let F be the reduction of F. Let V be 
a rank two vector bundle on F whose restriction V to F is stable. Then 
dime Hom(V, V) = 1 and every nonzero map from V to itself is an isomor-
phism. 
Proof. Let e be the normal bundle of F in X. Thus e has order m. For 
a> 0, let aF denote the subscheme of X defined by the ideal sheaf &x( -aF). 
Thus F = mF and there is in general an exact sequence 

0-+ e-a -+ &(a+I)F -+ &aF -+ O. 
v Tensor the above exact sequence by Hom(V, V) = V ® V and take global 

sections. This gives an exact sequence 

0-+ Hom(V, V®C a ) -+ Hom(VI(a+ I)F, VI(a+ I)F) -+ Hom(VlaF, VlaF). 
For a = 1 we have dime Hom(VIP , VIP) = dime Hom( V, V) = 1. For 
1 Sa S m - 1, e-a is a nontrivial line bundle of odd order. Thus by Lemma 
1.4 Hom(V, V ® C a ) = O. It follows that the map 

Hom(VI(a + l)F, VI(a + I)F) -+ Hom(VlaF, VlaF) 
is an injection, so that by induction dime Hom(VI(a + I)F, VI(a + I)F) S 1. 
On the other hand multiplication by an element of HO(&(a+I)F) = C defines a 
nonzero element of Hom(VI(a + l)F, VI(a + I)F). Thus 

dime Hom(VI(a + I)F , VI(a + 1 )F) = 1 for all a S m - 1, 

and in particular dime Hom(VlmF , VlmF) = 1. 0 

2. THE CASE OF A SINGULAR CURVE 

Our goal in this section will be to show that the statements of the previous 
section hold for rank two vector bundles on singular nodal curves C. Let C 
be an irreducible curve of arithmetic genus one, which has one node p as a 
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singularity. Locally analytically, then, &.C ~ C[[x, y]]/(xy). Let a: C -> C ,p 
be the normalization map, and let PI and P2 be the preimages of the singular 
point on C. We begin by giving a preliminary discussion concerning torsion 
free sheaves on C. 
Definition 2.1. A torsion free rank one sheaf on C is a coherent sheaf which 
has rank one at the generic point of C and has no local sections vanishing on 
an open set. It is well known that every torsion free rank one sheaf on C is 
either a line bundle or of the form a.L, where L is a line bundle on C. For 
example, the maximal ideal sheaf of the singular point P of C is a*L, where 
L = &'t( -PI - P2) , where PI and P2 are the preimages of P in C. Here the 
line bundle L has degree -2 on C. We define the degree of a torsion free 
rank one sheaf F on C by degF = X(F). By the Riemann-Roch theorem on 
C, degF is the usual degree in case F is a line bundle, whereas for F = a.L, 
an easy calculation shows that X(F) = degL + 1. (Note that, in case Pa(C) 
is arbitrary, we would have to correct by a term Pa(C) - 1, which is zero in 
our case, to get the usual answer for a line bundle.) It is easy to' check that, 
if F is a rank one torsion free sheaf on C and L is a line bundle, then 
deg(F 0 L) = degF + degL. 
Lemma 2.2. If FI and F2 are torsion free rank one sheaves on C, then so is 
H om(FI ' F2) , and 

degHom(FI' F2) 

{ deg F2 - deg FI ' if one of the Fi is a line bundle, 
- deg F2 - deg FI + 1 , if neither FI nor F2 is a line bundle. 

Finally if deg F2 > deg FI and neither is a line bundle, then the natural map 
from Hom(FI , F2) 0 &'c p to Hom"" (m, m ) is surjective, where m is the 

, (7c,p P P P 

maximal ideal of &'C . ,p 

Proof. The proof is clear if FI is a line bundle. Thus we may assume that FI 
IS of the form a.L for a line bundle L on C. First assume that F2 is a line 
bundle. An easy calculation shows that 

-I Hom(FI' F2) = a.(L 0 &'t( -PI - P2)) 0 F2· 

This isjust the local calculation Hom&: (a &'c p' &'c ) = mp ' where mp is the 
C,p ., ,p 

maximal ideal of &'C and the isomorphism is canonical. Thus Hom(FI' F2) ,p 
is again a torsion free rank one sheaf and 

degHom(FI , F2) = - degL + 1 - 2 + degF2 = degF2 - degFI. 
Now assu~that FI = a.LI ~~ F2 = a.L2' Again using a local calculation 

H om&:c ,p (a.&'c ,p , a*&'c ,p) = a*&'c ,p , where the isomorphism is also canonical, 

it is easy to check that Hom(a*L I ' a*L2) = a*(L~10L2)' and so Hom(FI , F2) 
is again a torsion free rank one sheaf. Moreover 

degHom(FI , F2) = degL2 - degL I + 1 = degF2 - degFI + 1. 

To see the final statement, again writing FI = a*L I and F2 = a*L2 , we 



76 ROBERT FRIEDMAN 

have Hom(a.LI' a.L2) = a*(L~1 ® L 2). Moreover the global sections of 
L~I ® L2 separate the points PI and P2' It~ then easy to see that the map 
Hom(FI' F2) ® &'.c --+ Hom.., (m, m ) = &'.c p is surjective. 0 ,p C7C ,p P P , 

Lemma 2.3. Let F be a torsion free rank one sheaf on C. If deg F > 0, or 
if degF = 0 and F is not trivial, then hO(F) = degF and hl(F) = O. If 
degF < 0, or if degF = 0 and F =I &'.c' then hO(F) = 0 and hi (F) = degF . 

Proof. If degF ~ 0 and F is not &'.c' then the claim that hO(F) = degF is 
clear if F is a line bundle and follows from hO(a*L) = degL + 1 in case L is 
a line bundle of degree at least -Ion t ~ ]pI • In this case, since by definition 
degF = X(F) = hO(F) , we must have hl(F) = O. The proof of the second 
statement is similar. 0 

Next let us consider extensions of torsion free sheaves. The maximal ideal 
m has the following local resolution, where we set R = &'.c : p ,p 

,,·--+REDR--+REDR--+m --+0, p 

where the maps RED R --+ RED R alternate between (a, P) f-t (xa, yP) and 
(a, P) f-t (ya, xP). A calculation shows that Ext~(mp' mp) has length two. 
More intrinsically it is isomorphic to &'.t( -PI - P2)/&'.t( -2PI - 2P2)' Thus as 
an R-module, 

Ext~(mp , mp) ~ I</iilp , 

where I< is the normalization of Rand iilp = mpl<. We can describe the 1<-

action on Ext~(mp' mp) more invariantly as follows: multiplication by rEI< 

gives an endomorphism mp --+ mp ' and hence an action of I< on Ext~(mp' mp)' 
We leave to the reader the straightforward verification that this action is the 
same as the action on Ext~(mp' mp) implicit in the isomorphism Ext~(mp' mp) 
~ I</iilp given above. There is an induced action of the invertible elements 
1<* on (Ext~(mp' mp) - O)/C* = ]pl. Since R* acts trivially, this induces 
an action of 1<*/ R* ~ C* on (Ext~(mp' mp) - O)/C·. It is easy to see that 
there are three orbits of this action: an open orbit isomorphic to C· and two 
closed orbits which are points in ]pI , corresponding to the case of an element 

I - I e E ExtR(mp ,mp) such that R· e =I ExtR(mp ' mp) . 
Given an element e E Ext~(mp' mp) , denote the corresponding extension of 

mp by mp by Me' Note that two extensions Me' Me' such that e, e' lie in 
the same 1<* -orbit are abstractly isomorphic as R-modules, via a diagram of the 
form 

o ------+ mp ------+ Me ------+ mp ------+ 0, 
where r E 1<* is such that re = e' . 



VECTOR BUNDLES AND SO(3)-INVARIANTS FOR ELLIPTIC SURFACES 77 

Lemma 2.4. Me is locally free if and only if the image of e in 

(Ext~(mp, mp) - 0) jC* 

is not a closed orbit of R. 
Proof. Consider the long exact Ext sequence 

1 1 
HomR(mp' mp) ...... ExtR(mp , mp) ...... ExtR(Me ' mp)' 

1 1 -We see that ExtR(Me , mp) contains as a submodule ExtR(mp' mp)/ R· e. Thus 
if R'e ¥ Ext~(mp' mp)' then Ext~(Me' mp) ¥ 0 and so Me is not locally free. 
Conversely suppose that the image of e does not lie in one of the closed orbits. 
Since every two extensions in the same orbit are abstractly isomorphic, it will 
suffice to exhibit one locally free extension of mp by mp' However we have the 
obvious surjection R EB R ...... mp given above, and its kernel is easily seen to be 
isomorphic to mp again. 0 

We leave as an exercise for the reader the description of the extensions cor-
responding to the closed orbits. 

Let us also note that, using the resolution above, a short computation shows 
that Ext~(mp' R) = O. Thus there is no locally free R-module M which sits 
in an exact sequence 

O ...... R ...... M ...... m ...... 0. p 

Globally, we have the following: 

Lemma 2.5. Let n be a positive integer and let J be a line bundle of degree one 
on C. 

(i) There is a unique rank two vector bundle ~, 15 on C such that det ~, 15 = 
J and such that there is an exact sequence 

o ...... P ...... V ....... P' ...... 0, n,u 

where P and P' are torsion free rank one sheaves of degrees nand 
1 - n respectively, and P and P' are not locally free. 

(ii) Let G be a torsion free rank one subsheaf of ~, 15' Then either deg G :$ 
-n or G is contained in P. 

(iii) The vector bundle ~,t5 is indecomposable for all nand J and ~,t5 ~ 
~, 15' if and only if n = n' and J = J' . 

Proof. To see (i), let P and P' be the unique torsion free rank one sheaves 
of degrees nand 1 - n respectively which are not locally free. Let us evaluate 
Ext l (P' , P). From the local to global Ext spectral sequence, there is an exact 
sequence 

0 ...... HI (Hom(P' ,P)) ...... Ext1(P', P) ...... HO(Ext 1(P', P)) ...... O. 

Now x(Hom(P', P)) = degHom(P', P) = hO(Hom(P', P)), si~ce 

degHom(P', P) = 2n > 0 
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l' 1 , by Lemmas 2.2 and 2.3. So H (Hom(F ,F)) = O. Thus Ext (F ,F) ~ 
HO(Ext1(F', F)). Moreover, the set of all locally free extensions is naturally a 
principal homogeneous space over HO(&tI&~) = R* JR*. On the other hand, 
from the exact sequence 

o -+ &~ -+ &C -+ &cJ&~ -+ 0, 

we have a natural isomorphism pica C ~ HO(&tJ&~) = R* JR* . Let 8: R* JR* 
-+ pica C be the coboundary map; it is an isomorphism. Given e E Ext1 (F' , F) 
~ HO(Ext1(F', F)), let ~ be the extension corresponding to e. A straight-
forward exercise in the definitions shows that, for r E R, 

det v,..e = 8(r) ® det ~. 

From this it is clear that there is a unique extension ~ t5 with determinant 0 . 
Next we prove (ii). Let G be a torsion free rank one subsheaf, possibly a 

line bundle, of Vn t5 such that deg G > -n. We have an exact sequence 

0-+ Hom(G, F) -+ Hom(G, ~,t5) -+ Hom(G, F'). 

Moreover Hom(G, F') = HO(Hom(G, F')). First suppose that either degG > 
1 - n or that G is locally free. The torsion free sheaf H om( G, F') has degree 
either 1 - n - deg G or 2 - n - deg G, depending on whether G is or is not 
locally free. In any case it has degree ~ 0 and is not locally free, so that 
HO(Hom(G, F')) = 0, by Lemmas 2.2 and 2.3. So every such G is contained 
in F. In the remaining case where deg G = 1 - nand G is not locally free, 
then G = F'. Since Hom(F', F') ~ k* , every nonzero homomorphism from 
F' to itself is an isomorphism. Thus the exact sequence defining ~ t5 would 
be split, contrary to assumption. Hence this last case is impossible. ' 

To see (iii), let G be a torsion free rank one subsheaf of degree at least 
1 - n such that ~,oJG is torsion free. Then by (ii) G = F. This clearly 
implies that ~,t5 ~ ~',t5' if and only if n = n' and 0 = 0' and that ~,t5 is 
indecomposable. 0 

Theorem 2.6. Let C be an irreducible curve of arithmetic genus one, which has 
one node as a singularity. Let V be a rank two vector bundle on C and suppose 
that deg det V = 2e + 1. Then V is one of the following: 

(i) A direct sum of line bundles; 
(ii) L®~, where L is a line bundle of degree e, x E C is a smooth point, 

and ~ is the unique nontrivial extension 

0-+ &c -+ ~ -+ &c(x) -+ 0; 

(iii) L ® Vn,o' where L is a line bundle of degree e and Vn,o is the rank 
two vector bundle described in Lemma 2.5. In this case, the subsheaf 
L®F. where F is the subsheafin the definition of ~ o' is the maximal 
destabilizing subsheaf 
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Proof. Clearly we may assume that deg V = 1. By the Riemann-Roch theorem, 
hD(V) =1= O. Thus there is a map &c ---- V. If this map is the inclusion of a 
subbundle, then V is given as an extension 

0---- &c ---- V ---- &dx) ---- 0 

for some smooth point x E C. Either this extension splits, in which case we 
are in case (i), or it does not in which case we are in case (ii). 

Now suppose that the map &c ---- V vanishes at some point. There is a largest 
rank one subsheaf F of V containing the image of &c ' and deg F = n > O. 
The quotient V / F = F' is torsion free. If F is a line bundle, then so is F', 
since locally Ext~(mp' R) = O. In this case (F,)-I 0F has degree 2n - I > 0, 
so that the extension splits and V is the direct sum of F and F'. Hence 
we are in case (i). Otherwise F and F' are not locally free. It follows that 
V = V ~ for a = det V , and we are in case (iii). The last statement in (iii) n,u 
then follows from the last paragraph of the proof of Lemma 2.5. 0 

Finally let us show that a statement analogous to Lemma 1.3 continues to 
hold for the case of a singular curve. 

Lemma 2.7. Let C be an irreducible nodal curve of arithmetic genus one. 
(i) Let V be a stable rank two vector bundle over C and suppose that 

deg V = 2e + 1. Let d ~ e + 1 , and let A. be a torsion free rank one 
sheaf on V of degree d. Then dim Hom( V , A.) = 2d - 2e - I , and there 
exists a surjection from V to A.. Moreover, if A. is a line bundle on C 
such that there exists a nonzero map from V to A., then deg A. ~ e + 1 . 
Finally, if d = e + 1, then HI (Vv 0 A.) = O. 

(ii) Suppose that V = LI EB L2 is a direct sum of line bundles L; with 
deg V = 2e + 1 and deg LI :::; e < deg L2. Let A. be a rank one torsion 
free sheaf on C with d = degA. > degL2 . Then dimHom(V, A.) = 
2d ~ 2e - 1 , and there exists a surjection from V to A.. Moreover, if A. 
is a rank one torsion free sheaf on C such that there exists a surjection 
from V to A., then either d = deg A. > deg L2 or A. = L2 or A. = L I and 
dim Hom(V , A.) = 2d - 2e. 

(iii) Suppose that V = L 0 Vn,J for some n, where L is a line bundle of 
degree e and that L2 is the subsheaf L 0 F of V of degree e + n 
corresponding to the subsheaf F of Vn J in the definition of Vn J and 
that LI is the quotient V / L2. Let A. be a rank one torsion fre~ sheaf 
on C with d = degA. > degL2 = e + n. Then dimHom(V, A.) = 
2d - 2e - 1. Moreover, if there exists a surjection from V to A. then 
either degA. > e + n or A. = LI and dim Hom(V , A.) = 1. 

Proof. The proof of (i) and (ii) follows the same lines as the proof of Lemma 
1.3, with minor modifications, given Lemmas 2.2 and 2.3. Let us prove (iii) 
in the case where A. is not locally free (the proof in the other case is slightly 
simpler). By definition there is an exact sequence 
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where LI and L2 are not locally free and deg L2 = e + n, deg LI = 1 - n + e . 
There is a long exact sequence 

I 0-+ Hom(LI ' ).) -+ Hom(V, ).) -+ Hom(L2' ).) -+ Ext (LI ' ).). 

Moreover, by the long exact sequence for Ext, we have an exact sequence 
I I ° I 0-+ H (Hom(LI' ).)) -+ Ext (L I ,).) -+ H (Ext (LI' ).)). 

Since degHom(L I ,).) = d -e+n+ 1 ~ 0 and Hom(L1 ,).) is not locally free, 
I ° I 2 H (Hom(LI' ).)) = 0 by Lemma 2.3. Moreover H (Ext (LI' ).)) = C . We 

claim that the composite map Hom(L2, ).) -+ Ext l (LI ' ).) -+ HO(Ext l (LI ' ).)) 
is surjective. Since degL2 > deg.u, the map Hom(L2,).) -+ HomR(ffip ' ffip) ~ 
R is onto the quotient R/mp by the last statement in Lemma 2.2. Thus 
the image of the map Hom(L2 ,).) -+ HO(Extl(L1 , ).)) contains the orbit 
R . ~ ~ Ext~(ffip' ffip) , where ~ is the extension class. Since V is locally free, 
this orbit is all of Extk(ffip' ffip) by the proof of Lemma 2.4, and so the map 
Hom(L2,).) -+ HO(Extl(L I , ).)) is onto. It follows that 

dim Hom(V ,).) = Hom(L I ,).) + Hom(L2 ,).) - 2 
= d - (e + n) + 1 + d - (1 - n + e) + 1 - 2 = 2d - 2e - 1. 

Let us finally consider the case when there is a surjection from V to ).. Let 
the degree of ). be d + e. Thus there is a surjection from V • to ). 0 L -I , n,u 
which is of degree d. Let G be the kernel of the map ~,J -+ ). 0 L -I . Then 
deg G = 1 - d. By Lemma 2.5(ii), either 1 - d ~ -n or G ~ F. Thus either 
d > e or ). = LI . In the last case, there is a unique surjection from V to LI 
mod scalars, by the proof of Lemma 2.5(iii). 0 

3. A ZARISKI OPEN SUBSET OF THE MODULI SPACE 

Let 7r: 5 -+ pi be an algebraic elliptic surface of geometric genus P g (5) = 
P g' We shall always assume that the only singular fibers of 7r are either ir-
reducible nodal curves or multiple fibers with smooth reduction. Denote the 
multiple fibers by FI and F2 and suppose that the multiplicity of Fi is mi' 
We shall assume that the multiple fibers lie over points where the j-invariant of 
5 is unramified. We denote by '(5) the associated Jacobian elliptic surface 
or basic elliptic surface. For an integer n, ,n (5) denotes the relative Picard 
scheme of line bundles on the fibers of degree n (see for example Section 1 
in Part I). Hence '(5) = ,0 (5) and 5 = ,I (5). If n is relatively prime 
to m 1m2' then ,n (5) again has two multiple fibers of multiplicities m I and 
m2 • We always have Pg (,n(5)) = Pg . If ~ is a divisor on 5, we let f· ~ 
denote the fiber degree, i.e. the degree of the line bundle ~ on a smooth fiber 
f. Let Picv 5 denote the set of vertical divisor classes, i.e. the set of divisor 
classes spanned by the class of a fiber and the classes of the reductions of the 
multiple fibers. With our assumptions Picv 5 ~ z· K ,where m l m2K = f (see 
also [11], Chapter 2, Corollary 2.9). Clearly Pic v 5 is the kernel of the natural 
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map from Pic S to the group of line bundles on the generic fiber. In general 
let 11 = Spec k(pl) be the generic point of pi and let fl = Spec k(pl) , where 
k(pl) is the algebraic closure of k(pl) _ Let Sy/ be the restriction of S to 11 
and Sfj be the pullback of Sy/ to fl- Define Vy/ to be the restriction of V to 
Sy/ and similarly for Vfj. 

Definition 3.1. An ample line bundle L on S is (~, c)-suitable iffor all divisors 
D on S such that _D2 + D· ~:::; c, either f· (2D -~) = 0 or 

signf· (2D -~) = signL· (2D - ~). 

Given the pair (~, c), we set w = ~ mod 2 E H2(S; Z/2Z) and let p = 
~2 _ 4c. Thus (~, c) and (~', c') correspond to the same values of wand p 
if and only if ~' = ~ + 2F for some divisor class F and c' = c + ~. F + F2 . An 
easy calculation shows that the property of being (~, c)-suitable therefore only 
depends on the pair (w, p) , and we will also say that L is (w, p )-suitable. 

We have the following, which is Lemma 2.3 in Part I: 
Lemma 3.2. For all pairs (~, c), (~, c)-suitable ample line bundles exist. 0 

Definition 3.3. Let ~ be a divisor on Sand c an integer. Fix a (~, c)-suitable 
line bundle L. We denote by 9Jt(~, c) the moduli space of equivalence classes 
of L-stable rank two vector bundles V on S with ci (V) = ~ and c2( V) = c _ 
Here ~ and J'2 are equivalent if there exists a line bundle &'s(D) such that ~ 
is isomorphic to J'2®&'s(D) _ In particular, since det ~ = det J'2, the divisor 2D 
is linearly equivalent to zero, and in fact ~ and J'2 must be isomorphic since 
there is no 2-torsion in Pic S . As the notation suggests and as we shall shortly 
show, the scheme 9Jt(~, c) does not depend on the choice of the (~, c)-suitable 
line bundle L. 

Given a divisor ~ on S and an integer c, we let w = ~ mod 2 and p = 
~ 2 - 4c. The moduli space 9Jt(~, c) only depends on wand p and we shall 
also denote it by 9Jt( w , p) . 

Now fix an odd integer 2e + 1. We shall consider rank two vector bundles 
V such that the line bundle det V has fiber degree 2e + 1. However, it will 
be convenient not to fix the determinant of V. In this section we shall show 
that the moduli space 9Jt( w , p) is smooth and irreducible, and shall describe a 
Zariski open and dense subset of it explicitly. The basic idea is to show first that 
there is a largest integer Po such that 9Jt( w ,po) is nonempty and that there is 
a unique element in 9Jt(w, po)' corresponding to the bundle ~. For all other 
p < Po ' the bundles in 9Jt( w , p) are obtained by elementary modifications of 
~ along fibers. Let us begin by recalling the following result (Corollary 3.4 in 
Part I): 

Theorem 3.4. Let V be a rank two bundle with det V = ~ and c2(V) = c. 
Suppose that det V has fiber degree 2e + 1. Let L be a (~, c)-suitable ample 
line bundle, and suppose that V is L-stable. Then there exists a Zariski open 
subset U of pi such that, if f is a fiber of 1C corresponding to a point of U, 
then f is smooth and Vlf is stable. Conversely, if there exists a smooth fiber 
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f such that Vlf is stable, then V is L-stable for every (~, c)-suitable ample 
line bundle L. 0 

Next we show that there exist bundles satisfying the hypotheses of Theorem 
3.4: 
Lemma 3.5. Let <5 be a line bundle on the generic fiber S T/ of odd degree 2e + 1 . 
Then there exists a rank two vector bundle V such that the restriction of det V 
to ST/ is <5 and such that there exists a smooth fiber f for which the restriction 
Vlf is stable. 
Proof. Let ~o be a line bundle on S restricting to <5 on ST/. Fix a smooth 
fiber f. By Theorem 1.1 there exists a stable bundle E on f with determinant 
equal to ~olf. Let H be a line bundle on S such that deg(Hlf) ;:::: e+ 1. Then 
by Lemma 1.3 there is a surjection from E to Hlf, and thus E is given as an 
extension 

0-+ (H- I ® ~o)lf) -+ E -+ (Hlf) -+ O. 
This extensi9n corresponds to a class in HI (f; (H®-2 ® ~o)lf). We would like 
to lift this exact sequence to an exact sequence on S . Of course, we can replace 
~o by ~o + N f for an integer N and get the same restriction to f. It suffices 
to show that, for some N, the map 

HI(S; H®-2 ®~o ®&s(Nf)) -+ HI(f; (Hlf)®-2 ®~o) 
is surjective. The cokemel of this map is contained in 

H2(S; H- 2 ®~o ®&s«N - l)f)) = HO(S; H2 ® ~~I ®&s«-N + 1)f) ® Ks)*. 

Clearly HO(S; H2 ®~~I ®&s« -N + l)f) ® Ks) = 0 if N» 0, and thus there 
is an extension on S inducing E. 0 

Note. We could also have proved Lemma 3.5 by descent theory. 
Before we state the next lemma, recall that a stable vector bundle V on 

S is good if H2(S; ad V) = O. This means that V is a smooth point of the 
moduli space, which has dimension -PI (ad V)-3X(&s) at V. Thus the content 
of the next lemma is that the moduli space is always smooth of the expected 
dimension. 
Lemma 3.6. Let V be a rank two bundle on S such that the restriction of V to 
the generic fiber is stable. Then V is good. 
Proof. By Serre duality, H2(S; ad V) = 0 if and only if HO(ad V ® Ks) = O. 
A section rp of HO (ad V ® K s) gives a trace free endomorphism of V~ (since 
Ks has trivial restriction to the generic fiber). But Vii is simple, so that rp has 
trivial restriction to the generic fiber. Hence rp = 0 . 0 

Lemma 3.7. Let VI and V; be rank two bundles on S whose restrictions to 
the generic fibers are stable and have the same determinant (as a line bundle on 
ST/). Then there exists a divisor D on S, lying in PicY S, and an inclusion 
~ ® &s(D) <; V;. Moreover for an appropriate choice of D we have an exact 
sequence 
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where Q is supported on fibers or reductions offibers and the map ~ ®&'sCD) ~ 
f2 does not vanish on any fiber. 
Proof· By assumption ~ and f2 have isomorphic restrictions to S'1. An 
isomorphism between these extends to give a map ~ ®&'sCDI ) ~ f2 ®&'SCD2)' 
where D j have trivial restriction to the generic fiber. Twisting gives a map 
rp: ~ ® &'SCD') ~ f2, where D' has trivial restriction to the generic fiber. By 
construction rp is an isomorphism on the generic fiber, so rp is an inclusion. 
The determinant det rp is a nonzero section of det ~-I ® &'sC -2D') ® det f2, 
which restricts trivially to the generic fiber. Thus det ~-I ®&'sC -2D') ®det f2 = 
&'sCLj njFj + nf) , where the Fj are the multiple fibers, f is a general fiber and 
n j , n are ~ O. Here Q has support whose reduction is the sum of the F; for 
which nj -:f. 0 plus some smooth fibers. If rp vanishes identically on a fiber or 
fiber component F, then it factors: 

So after enlarging D' to a new divisor D we can assume that this doesn't 
happen. Thus D is as desired. 0 

Corollary 3.8. Let ~ and V2 be two rank two bundles on S with the folloWing 
property: for every curve F which is a reduced fiber or the reduction of a multiple 
fiber, the restriction of V; to F is stable. Then there exists a divisor D EPic v S 
such that ~ = ~ ® &'sCD) . 
Proof. Find a nonzero map rp: ~ ® &'sCD) ~ ~ which does not vanish on 
F for every F the reduction of a fiber, via Lemma 3.7. For all F, ~ ® 
&'sCD)1P and ~IP are stable bundles of the same degree and rplP is a nonzero 
map between them. Thus rplP is an isomorphism for all F and so rp is an 
isomorphism as well. 0 

Corollary 3.9. Suppose that Va is a rank two vector bundle satisfying the hypothe-
ses ofC3.8): the restriction VIP is stablefor every reduction F ofafiber compo-
nent. Let ~ = det Va and c = c2(Va). Then 9Jt(~, c) consists ofa single reduced 
point corresponding to the bundle Va· Thus necessarily PI (ad Va) = -3x(&,s)· 

Proof. If v' is another such, V' = Va ® &'s(D) , and so V' and Va are equiv-
alent. By Lemma 3.6 Va is good. Thus 9Jt(~, c) is a single reduced point. 
Moreover the dimension of 9Jt(~, c) is -PI Cad Va) - 3X(&'s) = 0, and so 
PI (ad Va) = -3X(&'s)· 0 

Next we establish the existence of such a Vo. Before we do so let us pause 
to record the following lemma. 

Lemma 3.10. Let 
O->VI->~->Q->O 

be an exact sequence of coherent sheaves on S, where ~ and f2 are rank two 
vector bundles and Q = i.M where i: F -> S is the inclusion of a reduced fiber 
or the reduction of a multiple fiber, and M is a torsion free rank one sheaf on 
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F. Then: 
(i) We have the following formula for PI (ad V;): 

PI (ad V;) = PI (ad V;) + 4( degM _ deg(;IF)) 

= PI(ad VI) + 4( degM _ deg(;IF)). 

(ii) Ifwe define Q' by the exact sequence 
v V , o --+ V; --+ V; --+ Q --+ 0 , 

then ~v~~®(det~)-I isatwistof~ andQ'=Extl(Q,&x) is of 
the form i*M', where M' is a torsion free rank one sheaf on F with 
deg M' = - deg M. Finally M is locally free if and only if M' is locally 
free. 

Proof The first equality in (i) follows from the lemma on elementary mod-
ifications stated in the section on preliminaries in the introduction if M is 
locally free, with minor modifications in general. To see the second, since 
det V; = det V; ® &'s(F) and F2 = 0, we have 

deg(V;IF) = deg(det VI IF) = deg(det V; IF) = deg(V;IF)· 

To prove (ii), note that, after trivializing the bundles ~ in a Zariski open 
set U, the map V; --+ V; is given by a 2 x 2 matrix A with coefficients in &'U' 
and so the dual map corresponds to the matrix t A. A local calculation shows 
that Q' = i*M' , where M' is a torsion free rank one sheaf on F, where F 
is locally defined by det A, and that M' is locally free if and only if M is 
locally free. To calculate degM', use the formula in (i) for degM', noting 
that PI (ad ~v) = PI (ad~) and that deg(V;v IF ) = - deg(V; IF). Putting this 
together gives 

4degM' = PI (ad V;) - PI (ad V;) - 2 deg(V; IF) 
= -4degM. 0 

Using the above, we shall show the following: 

Proposition 3.11. Given a line bundle c5 on ST/ of odd degree, there exists a rank 
two bundle va on S such that the restriction of det va to ST/ is c5 and such 
that the restriction VIF is stable for every reduction F of a fiber component. 
The rank two bundle va is unique up to equivalence: if V; is any other bundle 
with this property. then there exists a line bundle &'s(D) such that V; ~ va ® 
&'sCD). Moreover PI (ad va) 2: PI (ad V) for every rank two bundle V such that 
the restriction of det V to ST/ is c5 and such that there exists a smooth fiber f for 
which the restriction Vlf is stable. with equality if and only if V = va ®&'s(D). 
Proof. Begin with V such that det VIST/ = c5 and such that there exists a smooth 
fiber f for which the restriction Vlf is stable. Such V exist by Lemma 3.5. 
If there exists an F such that VIF is not stable, then there is a torsion free 
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quotient Q of VIF such that degQ < (deg(VIF))j2. Define V' by the exact 
sequence 

o ---+ V' ---+ V ---+ Q ---+ 0 , 
where we abusively denote by Q the sheaf i. Q ,where i is the inclusion of F 
in S. Using (i) of Lemma 3.10, 

PI (ad V) = PI (ad V') + 4( deg Q _ deg(~IF)). 

Thus PI (ad V') > PI (ad V). If V' satisfies the conclusions of Proposition 3.11, 
we are done. Otherwise repeat this process. At each stage PI strictly increases. 
But PI is bounded from above, either from Bogomolov's inequality or using 
the fact that the dimension of the moduli space is always -PI - 3X(&'s) 2: 
0, by Lemma 3.6. Hence this process terminates and gives a Va as desired. 
By Corollary 3.8 Va is unique up to twisting by a line bundle, and the final 
statement is clear from the method of proof. 0 

Next we shall interpret the proof of Proposition 3.11 as saying that every 
stable bundle V is obtained from Va by an appropriate sequence of elementary 
modifications. 
Definition 3.12. Let V be a rank two vector bundle on S whose restriction to 
the generic fiber is stable. Let F be a fiber on Sand Q be a torsion free rank 
one sheaf on F, viewed as a sheaf on S. A surjection V ---+ Q is allowable if 

2degQ> deg(VIF). 
Thus if deg(VIF) = 2e + 1, then degQ 2: e + 1. If W is defined as an 
elementary modification 

o ---+ W ---+ V ---+ Q ---+ 0, 
then we shall say that the elementary modification W is allowable if the sur-
jection V ---+ Q is allowable. It then follows from Lemma 3.10 that, if W is 
an allowable elementary modification of V, then PI (ad W) < PI (ad V) . 

Let Q be a rank one torsion free sheaf on a fiber F , viewed also as a sheaf 
on S, and let d = degQ. It is an easy consequence of Lemmas 1.3 and 2.7 
that if V ---+ Q is allowable and deg(Vlf) = 2e + 1, then d > e and either 
dim Hom(V , Q) = 2d - 2e - 1 or dim Hom(V , Q) = 2d - 2e .and Q is a 
uniquely specified rank one torsion free sheaf on F. 

With this said, we have the following: 
Proposition 3.13. Let tJ be a line bundle on SY/ and let V be a stable rank 
two bundle on S such that the restriction of det V to SY/ is tJ. Then there is 
a sequence Vo' ~, ... , ~ = V such that V;+I is an allowable elementary 
modificatioil of V; for i = 1, ... , n - 1. Moreover 2n ::::; PI (ad Va) - PI (ad V). 
Finally if V is obtained from Va from a sequence of allowable elementary mod-
ifications then dim Hom( V, Va) = 1 . 
Proof. The construction given in the proof of Proposition 3.11 is the following: 
Begin with V. If V "# Va, then there is a fiber F , a rank one torsion free sheaf 
Q on F, and an elementary modification 

o ---+ V' ---+ V ---+ Q ---+ 0 , 
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where degQ < deg(VIF)/2. If Vi =1= ~, we repeat the process. So, noting that 
V ~ VV 0det V and using the notation of Lemma 3.1O(ii) it will suffice to show 
that the dual elementary modification 

V I V I o -+ V 0 det V -+ (V) 0 det V -+ Q 0 det V -+ 0 

is allowable, since then we have obtained V as an allowable elementary mod-
ification of (Vi) v 0 det V. But we have deg Q' = - deg Q by Lemma 3.l0(ii), 
and so 

deg( Q' 0 det V) = - deg Q + deg( VIF) 
deg(VIF) 

> 2 . 

Thus the surjection (Vi) v 0 det V -+ Q' 0 det V is allowable. The statement 
about the number of elementary modifications follows since an allowable ele-
mentary modification always decreases PI by a quantity whose absolute value 
is at least 2 .. 

Finally let us show that dim Hom( V, ~) = 1 . Since dim Hom( Vo' ~) = 1 , 
it is enough by induction on the number of elementary modifications to show 
the following: suppose given an exact sequence 

0-+ r-;, -+ V; -+ Q -+ 0, 

where degQ > deg(V;IF)/2. Then Hom(VI' ~) -+ Hom(r-;" ~) is an iso-
morphism. For simplicity we shall just give the argument in case Q is locally 
free on F. In any case Hom(Q, ~) = 0 since Q is a torsion sheaf and the 
cokernel of the map is 

I 0 I 0 v Ext (Q, ~) = H (Ext (Q, Vo)) = H (Q 0 (~IF)) = Hom(Q, ~IF). 

Since ~IF is stable and degQ > deg(V;IF)/2 = deg(VolF)/2, this last group 
is zero. 0 

Putting all this together, we shall describe a Zariski open subset of the moduli 
space. Let us first observe that the moduli space mL(Ll, c) is always good and 
of dimension 

2 4c - Ll - 3X(&'s) = -P - 3X(&'s)· 

As we have seen in the introduction, this dimension is always an even integer 
2t. Now suppose that t5 is a line bundle on the generic fiber Srr of odd degree. 
Then there exists a divisor Ll on S which restricts to t5 and ~ is determined 
up to a multiple of K. Mod 2, the only possibilities are ~ and ~+K. Note that 
(~+K)2 = ~2 +2(~'K) == ~2 +2 mod 4. Thus if we also fix ~2 mod 4, there is a 
unique choice of w = ~ mod 2. Fix an integer t 2: 0 and let -P = 2t+3X(&'s)' 
There is then a unique class w E H2(S; Z/2Z) with w 2 == P mod 4 such that 
w is the mod two reduction of a divisor ~ which restricts to t5 on Srr' Given 
t5 and t, we shall denote the corresponding moduli space by mLt • The following 
theorem is a more precise version of the theorem stated in the Introduction: 
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Theorem 3.14. In the above notation, !mt is nonempty, smooth and irreducible, 
and is birational to Symt f+1 (S). More precisely, there exists a Zariski open and 
dense subset U of!mt which is isomorphic to the open subset of Symt f+1 (S) 
consisting of t line bundles AI' ... ,At of degree e + 1 lying on smooth (and 
reduced) fibers of 1C such that the images 1C(Ai) are distinct points of pi • where 
we continue to denote by 1C the projection from f+1 (S) to pi . 
Proof. Let us describe the set U. Given the line bundle ~ on S", let deg ~ = 
2e + 1. If f is a smooth fiber and A is a line bundle of degree e + 1 on f, 
the restriction ~If sits in an exact sequence 

o --+ f1 --+ ~If --+ A --+ 0, 
where f1 0 A = ~. Once we have fixed A, the surjection ~If --+ A is unique 
mod scalars. 

Now fix t distinct smooth fibers ~, ... ,1; and line bundles Ai of degree 
e + 1 on J;. Let Qi be the sheaf Ai viewed as a sheaf on S and let Q = EB i Qi . 
We shall consider the set of vector bundles V described by an exact sequence 

o --+ V --+ ~ --+ Q --+ O. 
The set of all such vector bundles V is clearly parametrized by the open subset 
U of Symt f+1 (S) consisting of t line bundles AI' ... ,At lying on smooth 
(reduced) fibers of 1C such that the images 1C(A) are distinct points of pi . For 
such a bundle V, we also have 

PI (ad V) = PI (ad~) - 2t. 
We shall first construct a family of bundles parametrized by U (more precisely, 
we shall construct "universal" bundles over the product of S with a finite cover 
of U), thereby giving a morphism from U to !mt which is easily seen to be 
an open immersion. Finally we shall show that U is in fact dense in !mt . 

Step I. Let U be the open subset of Sym t f+1 (S) described above, and let (j 
be defined as follows: 

- { (e+1 )t } U = (AI' ... ' At) E J (S) : {AI' ... , At} E U . 
We shall try to construct a universal bundle rover S x (j as follows. Let 
.z c S x U be defined by 

.z = {(p, {AI' ... , At}) E S xU: for some i, 1C(p) = ~r(A;) }. 
Thus given a point u = {AI' ... , AJ E U, 

t 

(S X {u}) n.z = Ilu; x {u}), 
;=1 

where J; is the fiber corresponding to A;. Clearly .z is a smooth divisor in 
S xU. Analogously, we have the pulled back divisor ::i c S x (j. In fact, ::i 
breaks up into a disjoint union of divisors .::i;, where for example 

2'; = (S XIPI f+I(S)) X f+I(S)t-l, 



88 ROBERT FRIEDMAN 

and the other .:i; are defined by taking the fiber product over pi of S with the 
ith factor of f+1 (S)I . Thus each .:i; fibers over [; and the fiber is an elliptic 
curve. Let Pi:.:i; ---+ S XIPI f+1 (S) be the projection. Over S XIPI f+1 (S) , 
there is a relative Poincare bundle .9'e+I. Actually, .9'e+1 really just exists 
locally around sufficiently small neighborhoods of smooth nonmultiple fibers of 
f+1 (S), or in irreducible etale neighborhoods If/: Vo ---+ f+1 (S) of smooth 
nonmultiple fibers, but we will write out all the arguments as if there were a 
global bundle. We shall return to this point in Section 7. So we should really 
replace [; by [;0 defined by 

~ ~/I UO = {(XI' ... , XI) E U o : (If/(x I ) , ••• , If/(xI )) E U}. 

We can define the divisors .:i; on S x [;0 as well. Thus we have P; .9'e+1 ' which 
is a line bundle on .:i;. By extension, we can view P; .9'e+ I as a coherent sheaf 
on S x [;0. 

Lemma 3.15. For every i, there is a line bundle ..cz; on [;0 with the following 
property: There is a surjection 

t 

n; Vo ---+ EB(P;.9'e+1 ® n;..cz;) , 
i=1 

and the surjection is unique up to multiplying by the pullback of a nowhere van-
ishing function on [;0. 
Proof. We have 

t I 

Hom(n;Vo, EBp;.9'e+l) = HO((n;Vo( ® [EBP;.9'e+I]) 
i=1 i=1 

t 

= HO( [;0; EBRonh ((n; Va) v ® p;.9'e+I)). 
i=1 

By base change and Corollary 1.2, the sheaf RO nh ( (n; Va) v ® P; 9'e+ I) is a 

line bundle on [;0' which we denote by ..cz;-I . Choosing a nowhere vanishing 
section of & (; gives an element of 

o 

Hom(n;Va, p;.9'e+1 ®n;..cz;) =HO([;o; ROn2.((n;Va)V ®p;.9'e+1 ®n;..cz;))) 
° ~ -I ° ~ = H (Uo;..cz; ®..cz;) = H (Uo; &(;). 

o 

Since the .:i; are disjoint, we can make such a choice for each i to obtain the 
desired surjection. 0 

Note. We shall essentially calculate ..cz; in Section 7. 
Making a choice of a surjection from n; Va to EB~=I (P;.9'e+1 ® n;..cz;) gives 

a rank two vector bundle rover S x [;0 defined by the exact sequence 
t 

0---+ r ---+ n; Va ---+ EB(p;.9'e+1 ® n;..cz;) ---+ o. 
i=1 
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Thus there is a morphism (;0 ---- VJ'tt. It is easy to see that this morphism 
descends to a morphism of schemes U ---- VJ'tt whose image is the set of bundles 
described at the beginning of the proof of Theorem 3.14. Clearly the morphism 
U ---- VJ'tt is injective. By Zariski's Main Theorem it is an open immersion. This 
concludes the proof of Step I. 

Step II. Now we must show that the open set U constructed above is Zariski 
dense. To do so, we shall make a standard moduli count which essentially shows 
that the closed subset VJ'tt - U may be parametrized by a scheme of dimension 
strictly smaller than dim VJ'tt = 21 . Consider the set of all allowable elementary 
modifications of a fixed vector bundle V' with deg( V'lE) = 2e + 1 . Thus there 
is a reduced fiber or the reduction of a multiple fiber, say F, and a rank one 
torsion free sheaf Q on F with deg Q = d 2: e + 1. By Lemmas 1.3 and 
2.7, there is a surjection from V'to Q, and the set of all such has dimension 
2d - 2e - 1 or 2d - 2e. Let V be the kernel of such a surjection. By Lemma 
3.10, 

PI (ad V') = PI (ad V) + 4d - 4e - 2. 
Thus the number of moduli of all V is 

-PI (ad V) - 3X(&'s) = -PI (ad V') - 3X(&'s) + 4d - 4e - 2. 

On the other hand, for d and V' fixed, the above construction depends on 
2d - 2e parameters. If F is generic, there is one parameter to choose F. 
Next, either dim Hom( V' , Q) = 2d - 2e - 1 or 2d - 2e , and in this last case 
Q is fixed. Taking the homomorphisms mod scalars, the number of moduli is 
either 2d - 2e - 2 or 2d - 2e - 1 . In the first case the choice of Q is one more 
parameter, but not in the second case. Thus we always get 2d - 2e-1 parameters 
for the choice of the sheaf Q and the surjection V' ---- Q. Adding in the choice 
of F gives 2d - 2e moduli. For the above construction to account for a Zariski 
open subset of the moduli space, we clearly must have V' a general point of 
its moduli space, F a general fiber, and 2d - 2e 2: 4d - 4e - 2. It follows that 
d ~ e + 1 , and hence since d > e that d = e + 1. Arguing by induction, we 
may assume that V is obtained from Va by performing successive elementary 
modifications along distinct fibers Fj which are smooth and nonmultiple and 
with respect to line bundles fl; on F; of degree exactly e + 1 . In this case V 
is in the open set U described above. 0 

Notation 3.16. Given a line bundle J on S" and a nonnegative integer t, we 
let VJ'tt be the moduli space defined prior to (3.14) of equivalence classes of 
stable bundles V with -PI (ad V) = 2t + 3X(&'s) ' such that w2(V) is the mod 
two reduction of a divisor ~ with ~IS" = r5 . Thus VJ'tt depends only on r5 and 
t. Let VJ'tt denote the Gieseker compactification of VJ'tt . 

4. THE CASE WHERE S HAS A SECTION 

In this section, we shall assume that there is a section (J on S, so that 
m l = m 2 = 1. In this case, (J2 = -(1 + Pg(S)). Our goal is to give a very 
explicit description of the set of stable bundles on S such that det V has the 
same restriction to the generic fiber as (J. Thus det V = (J + nJ for some 
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integer n. We begin with a lemma on various cohomology groups which will 
be used often. 
Lemma 4.1. Let S be an elliptic surface with a section (J. Let Pg = Pg(S). 

(i) For all integers a, hO( -(J + af) = 0. 
(ii) For all integers a, 

h I {a, a>O, (-(J + (pg + 1 - a)f) = 
-a + 1, a::; 0. 

(iii) For all integers a, 

2 { a-I h(-(J+(pg+l-a)f)= 0, ' 
a 2: 2, 
a ::; 1. 

Proof. Clearly hO( -(J + af) = ° for all integers a. Likewise 

° R n.&'s( -(J + af) = ° 
for all a. In addition R2n/~s( -(J + af) = ° for all a since n has relative 
dimension one. Thus, from the Leray spectral sequence, we see that 

I ° I H (&'s( -(J + (pg + 1 - a)f» = H (R n.&'s( -(J + (pg + 1 - a)f» , 
2 I I H (&'s( -(J + (pg + 1 - a)f» = H (R n.&'s( -(J + (pg + 1 - a)f»· 

Thus we must determine the sheaf Rln.&'s(-(J + (Pg + 1 - a)f) on pl. Now 
Rln.&'s(-(J + (pg + 1 - a)f) = Rln.&'s(-(J) ® &'pl(Pg + 1 - a). To calculate 
Rln.&'s(-(J) , we use the exact sequence ° --+ &'s( -(J) --+ &'s --+ &'(1 --+ 0. 

Taking the long exact sequence for Rin. gives Rln.&'s( -(J) ~ Rln.&'s' and, 
by e.g. [11], Chapter 1, (3.18), RI n.&'s ~ &'pl (-p g - 1). So 

Rln.&'s( -(J + (pg + 1 - a)f) ~ &'pl (-a), 

and (ii) and (iii) follow from the usual calculations for pl. 0 

Next we shall determe the unique stable vector bundle Va (up to equivalence) 
which satisfies -PI (ad Va) = 3X(&'s) . 

Proposition 4.2. Let S be a nodal elliptic surface with a section (J. 
(i) If Pg(S) is odd, set k = (I + Pg(S»/2. Then there is a unique nonsplit 

extension ° --+ &'s(kf) --+ Vo --+ &'s( (J - kf) --+ 0, 
and det V = (J, -PI (ad Va) = 3X(&'s) ' and the restriction of Vo to every 
fiber is stable. 

(ii) If Pg(S) is even, set k = Pg(S)/2. Then there is a unique nonsplit 
extension 0--+ &'s(kf) --+ Vo --+ &'s«(J-(k+ 1 )f) --+ 0, and det V = (J- f, 
-PI (ad Va) = 3X(&'s) ' and the restriction of Va to every fiber is stable. 
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Proof. We shall just consider the case where P g is odd; the other case is identi-
cal. First note that HI(S; &'s(-a+2kf) = HI(-a+(pg+ l)f) has dimension 
one, by Lemma 4.1(ii). Thus there is a unique nonsplit extension up to isomor-
phism. Clearly det ~ = a and -PI (ad~) = 4k - a 2 = 3(1 + Pg). Finally we 
claim that the restriction of ~ to every fiber is stable. It suffices to show that 
the restriction of ~ to every fiber f is the nontrivial extension of &'f(P) by 
&'f, where P is the point a· f. Thus we must consider the restriction map 

I I H (S;&'s(-a+2kf) ---H (f;&'s(-a+2kf)lf). 

Its kernel is HI(S; &'s(-a + (2k - l)f) = H\S; &'s(-a + pgf). Again by 
Lemma 4.1(ii) this group is zero, so that HI(S; &'s(-a + 2kf) ---
HI(f; &'s(-a + 2kf)If) is an injection and hence an isomorphism since both 
spaces have dimension one. It follows that ~If is stable for every f and is 
thus the unique bundle up to equivalence satisfying the hypotheses of Corollary 
3.8. 0 

The bundle ~ (with a slightly different normalization) has been described 
independently by Kametani and Sato [13]. 

Let us now consider the case where V is a stable bundle with -PI (ad V) -
3X(&'s) = 2t ~ O. 

Proposition 4.3. With S as above, let V be a stable rank two vector bundle over 
S such that det V = a + nf for some n and -PI (ad V) - 3X(&'s) = 2t. 

(i) If Pg is odd and we set k = (1 + Pg)/2, then, after twisting by a line 
bundle of the form &'s(af) , there exist an integer s, 0 ~ s ~ t, and an 
exact sequence 

Here Z is a codimension two local complete intersection subscheme of 
length s. Moreover the inclusion of &'s«k - s)f) into V is canonically 
given by the map n*n* V --- V. If rp: &'s(af) --- V is a sub-line bundle, 
then rp factors through the inclusion &'s«k - s)f) --- V. 

(ii) If P g is even and we set k = P g12, then, after twisting by a line bundle 
of the form &'s(af) , there exist an integer s, 0 ~ s ~ t, and an exact 
sequence 

0--- &'s«k - s)f) --- V --- &'s(a + (-k - 1 + s - t)f) ® Iz --- O. 

Here Z is again a codimension two local complete intersection sub-
scheme of length s. Finally the inclusion of &'s«k - s)f) into V is 
canonically given by the map n*n* V --- V, and every nonzero map 
&'s(af) --- V factors through &'s«k - s)f)· 
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Proof. We shall just write down the argument in case p g is odd. By Proposition 
3.13, possibly after twisting, V is obtained from Vo by a sequence of r S t 
allowable elementary modifications. In particular V may be identified with a 
sub sheaf of Vo, and det V = a - r f. There is the map from &'S (k f) to Vo' and 
clearly the image of the sub sheaf &'s((k - r)f) lies in V. Of course, the map 
&'s((k - r)f) -+ V may vanish along a divisor, but this divisor must necessarily 
be a union of at most r fibers. Thus there is an integer u with 0 SuS rand 
an exact sequence for V of the form 

0-+ &'s((k - r + u)f) -+ V -+ &'s(a + (-k - u)f) ® Iz -+ O. 

Using the condition that -PI (ad V) - 3(pg + 1) = 2t gives 

41(Z) + 4(k - r + u) + (1 + Pg ) - 2r - 3(1 + Pg ) = 2t. 

Solving, we get 
-r+2u+21(Z)=t. 

Let s = £(Z). Twisting the exact sequence by &'s(bf) , where b = u+l(Z) -t, 
gives a new exact sequence (where we rename V by V ® &'s(bf)) 

0-+ &'s((k - s)f) -+ V -+ &'s(a + (-k + s - t)f) ® Iz -+ O. 

Clearly s = I(Z) 2: 0 and since 2s = t + r - 2u with u 2: 0, r S t, we 
have sSt. This gives the desired expression of V as an extension. Since the 
restriction of this extension to the generic fiber is not split, the map 

o I R 1t*(&'s(a + (-k + s - t)f) ® Iz ) -+ R 1t*&'s((k - s)f) 

is injective. Thus 1t* V = 1t*&'s((k-s)f) = &'pl(k-s) and the map 1t*1t* V -+ V 
is just the inclusion &'s((k - s)f) -+ V. Finally if &'s(af) -+ V is nonzero then 
1t*&'s(af) -+ 1t* V = 1t*&'s((k - s)f) is nonzero as well, and the last assertion of 
the proposition is then clear. 0 

There is an analogue of Proposition 4.3 for Gieseker semistable torsion free 
sheaves: 

Proposition 4.3'. With Sand k as above, suppose that V is a rank two torsion 
free sheaf with ci (V) = ~ = a + nf for some nand c2(V) = c such that V is 
Gieseker semistable with respect to a (~, c)-suitable line bundle. Suppose that 
-PI (ad V) - 3X(&'s) = 2t. Then the restriction of V to a general fiber of S 
is stable, and after twisting by &'s(af) for some a there are zero-dimensional 
subschemes ZI and Z2 of S, not necessarily local complete intersections, an 
integer s with 0 S sSt, and an exact sequence 

if P g = 2k - 1 is odd, and 

o -+ &'s (( k - s) f) ® I z -+ V -+ &'s (a + ( - k - 1 + s - t) f) ® I z -+ 0 
I 2 

if Pg = 2k is even. Moreover I(ZI) + I(Z2) = s. 
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Proof. The double dual VVV of V is a semistable rank two vector bundle. 
Thus it is stable and fits into an exact sequence as in (i) or (ii) of Proposition 
4.3. Now (4.3') follows from manipulations along the lines of the proof of 
Proposition 4.3. 0 

Next let us consider when an extension as in Proposition 4.3 can be unstable. 
For simplicity we shall just write out the case where p g is odd. 

Proposition 4.4. Suppose that p g = 2k - 1 is odd and that V is an extension of 
the form 

0-+ &s((k - s)f) -+ V -+ &s(a + (-k +s - t)f) ® Iz -+ 0, 

where £(Z) = s. Let So be the smallest integer such that hO(&s(sof) ® Iz ) =1= o. 
Thus 0 ::::; So ::::; s, and So = 0 if and only if s = o. If V is unstable, then the 
maximal destabilizing subbundle is equal to &s(a - af), where 

t + k - (s - so) ::::; a ::::; t + k. 

Thus if s = So the only possibility is &s(a - (t + k)f). 
Proof. The maximal destabilizing subbundle has a torsion free quotient. 
Clearly, it restricts to a on the generic fiber, and thus must be of the form 
&s(a - af) for some integer a. Using the exact sequence 

0-+ &s(a - af) -+ V -+ &s((a - t)f) ® Izl -+ 0, 

where Z' is a codimension two subscheme, and the fact that 

c2(V)=k-s+s=k 
= a - t + £(Z'), 

we see that a < t + k. On the other hand, there is a nonzero map from 
&s(a - af) to &s(a + (-k + s - t)f) ® Iz and thus a nonzero section of 
&s(( -k + s - t + a)f) ® Iz . Thus 

-k + s - t + a :::: so' 

or in other words a :::: t + k - (s - so). 0 

Corollary 4.5. With assumptions as above, suppose that Z = 0, so that V is 
an extension 

0-+ &s(kf) -+ V -+ &s(a - (k + t)f) -+ o. 
Then V is stable if and only if it is not the split extension. In this case we 
can identify the set of all nonsplit extensions with Symt a , and an extension V 
corresponding to {PI' ... 'Pt} E Symt a has unstable restriction to a fiber J if 
and only if Pi E f for some i. 
Proof. As we are in the case s = 0 of Proposition 4.4, if V is unstable then the 
destabilizing line bundle is &s(a - (k + t)J) , which splits the exact sequence. 
Conversely, if the sequence is not split, then V is stable. 
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The set of nons pi it extensions of &s(a-(k+t)f) by &s(kf) is parametrized 
by PHI (&s(-a + (2k + t)f)). By Lemma 4.1 

HI (&s( -a + (2k + t)f)) ~ HO (R I 7r.&s( -a + (2k + t)f)) = HO (pi; &JPI (t)) . 

Moreover P HO (P I ; &JPI (t)) = Symt a by associating to a section the set of points 
where it vanishes. This says that the extension V restricts to the split extension 
on a fiber f exactly when the corresponding section of &JPI (t) vanishes at the 
point of pi under f. 0 

Next we analyze the generic case where feZ) = t. 
Proposition 4.6. Suppose that p g = 2k - 1 is odd and that V is an extension of 
the form 

0-> &s((k - t)f) -> V -> &s(a - kf) &J Iz -> 0, 
where £ (Z) = t > O. 

(i) A locally free extension V as above exists if and only if Z has the 
Cayiey-Bacharach property with respect to la + (t - 2)fl. 

(ii) Suppose that So = t or t - 1 in the notation of Proposition 4.4, and that 
Supp Z n a = 0. Then dim Extl(&s(a - kf) &J I z , &s((k - t)f)) = 1 . 
A locally free extension exists in this case if So = t . 

(iii) Suppose that Z consists of t points lying in distinct fibers, exactly one 
of which lies on a. Then dim Extl (&s(O' - kf) &JIz' &s((k - t)f)) = 1. 
A locally free extension exists in this case if and only if t = 1 . 

(iv) If So :::; t - 1 ,for example if Z contains two distinct points lying on the 
same fiber, then V is unstable. 

(v) If So = t, then V is stable ifno point of Z lies on a. Likewise if t = 1 
and Z C a, then V is not stable. 

Proof. The long exact sequence for Ext gives 
I I H (-0' + (2k - t)f) -> Ext (&s(O' - kf) &J Iz ' &s((k - t)f))-> 

-> HO(&z) -> H2( -0' + (2k - t)f). 

By Lemma 4.I(ii) 
HI(-a + (2k - t)f) = O. 

The map HO(&z) -> H 2(_a + (2k - t)f) is dual to the map 

HO(&s(a + (t - 2)f)) -> HO(&z) 

defined by restriction. Thus (i) follows by definition. As for (ii), since Supp Z n 
a = 0 and HO(&s(a+(t-2)f)) = HO(&s((t-2)f)) under the natural inclusion, 
clearly HO(&s(a + (t - 2)f) &J Iz ) = HO(&s((t - 2)f) &J Iz ). By assumption 
HO(&s((t - 2)f) &J Iz ) = 0, so that the map HO(&s(a + (t - 2)f)) -> HO(&z) 
is an inclusion. But hO(&s(O' + (t - 2)f)) = t - 1 and hO(&z) = t. Thus the 
cokernel has dimension one. It is clear that if So = t and Z is reduced, then 
it has the Cayley-Bacharach property with respect to la + (t - 2)fl. A more 
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involved argument left to the reader handles the nonreduced case. Thus a locally 
free extension exists. This proves (ii), and the proof of (iii) is similar. 

To see (iv), note that if So :::; t-l , thell there is a section of &'s((t-l)f)0Iz . 
Consider the exact sequence 

o ~ &'s( -a+(2k-l)f) ~ Hom(&'s(a-(k+t-l)f) , V) ~ &'s((t-l)f)0Iz ~ O. 

Since H I (&'s(-a+(2k-l)f)) = 0 by Lemma 4.1, the section of &'s((t-l)f)0Iz 
lifts to define a nonzero homomorphism from &'s(a-(k+t-l)f) to V. Thus 
V is unstable. 

Finally we must prove (v). The bundle V is stable if and only if its restriction 
to a general fiber f is stable. Let f be a fiber not meeting Supp Z . Then there 
is a natural map Extl(&'s(a - kf) 0 Iz ' &'s«k - t)f)) ~ Extl(&'f(P) , &'f) = 

HI (&'f(-P)) . This fits into an exact sequence 

° I H (&'f(-P)) ~ Ext (&'s(a - kf) 01z' &'s«k - t - l)f)) ~ 
I I 

~ Ext (&'s(a - kf) 0Iz' &'s«k - t)f)) ~ H (&'f( -p)). 

Since HO(&'f( -p)) = 0 and 

hi (&'f( -p)) = dim Ext l (&'s(a - kf) 0 Iz ' &'s«k - t)f)) = 1 , 

by (ii) and (iii), it will suffice to show that 

dim Ext l (&'s(a - kf) 0 Iz ' &'s«k - t - l)f)) ~ 1 

if SuppZ n a i= 0. Now since HI(&S( -a + (2k - t - l)f)) = 0 by Lemma 
4.1, Extl(&'s(a - kf) 0 1z ' &'s«k - t - l)f)) is dual to the cokernel of the 
restriction map HO(&'s(a + (t - l)f)) ~ HO(&,z)' Since So = t, by definition 
hO(&'s((t - 1 )f) 0 I z) = O. Thus if Supp Z n a = 0, then HO(&'s(a + (t - 1 )f)) 
and HO(&'s(t-l)f)) have the same image in HO(&,z) and HO(&'s«(t-l)f)) ~ 
HO(&,z) is injective. As both HO(&'s((t - l)f)) and HO(&,z) have dimension 
t , the map between them is an isomorphism and the cokernel is zero. It follows 
that V restricts to a stable bundle on f. Likewise, if 1 = 1 and Z C a , then 
clearly the map HO (&'s (a + (t - 1) f)) ~ HO (&'z) cannot be surjective, and so the 
cokernel is nonzero. Thus V restricts on f to an unstable bundle for almost 
ev~ry fiber f, so that V is unstable. 0 

Let us give another proof for Proposition 4.6(v). Using Proposition 4.4 we 
know that the maximal destabilizing line bundle, if it exists, must necessarily 
be of the form &'s(a - (I + k)f). There is an exact sequence 

o ~ &'s( -a + 2kf) ~ Hom(&'s(a - (t + k)f) , V) ~ &'s(tf) 0 1z ~ 0, 

and V is unstable if and only if the nonzero section of &'s(tf) 01 z lifts to a 
homomorphism from &'s(a-(t+k)f) to V. The nonzero section of &'s(tf)0Iz 
defines an exact sequence 

o ~ &'s -> &'s(tf) 0 1z ~ Q ~ o. 



96 ROBERT FRIEDMAN 

Here if Z consists of points zion distinct fibers 1;, then Q = EB i &'.r, ( - Z i) . 
The coboundary map from HO(&'s(tJ) @ I z ) to HI (&'s(-a + 2kJ)) is given 
by taking the cup product of the nonzero section with the extension class ~ 
in Ext l (&'s(tJ) @ Iz' &'s( -a + 2kJ)) corresponding to V. It is easy to see by 
the naturality of the pairing that this is the same as taking the image of ~ in 
Extl(&,s' &'s(-a + 2kJ)) = HI (&'s(-a + 2kJ)) using the above exact sequence. 
Taking the long exact Ext sequence and using the fact that HO (&'s ( -a+2kJ)) = 
o , there is an exact sequence 

I I 0 ...... Ext (Q, &'s( -a + 2kJ)) ...... Ext (&'s(tJ) @ Iz' &'s( -a + 2kJ)) ...... 
I ...... H (&'s( -a + 2kJ)). 

Since dim Ext l (&'s(tJ)@lz ' &'s( -a + 2kJ)) = 1 , we see that ~ ~ 0 if and only 
if Ext l (Q, &'s( -a+2kJ)) -::j:. O. So we shall show that Ext l (Q, &'s( -a+2kJ)) = 
o if and only if the support of Z does not meet a. 

First consider the case where Z consists of points zi on distinct fibers 1;. 
Then Q = EB i &'.r, ( - Z i) , and standard arguments (cf. [11], Chapter 7, Lemma 

1.27) show that Extl(&'.t;(-zi)' &'s(-a + 2kJ)) = HO(&'.t;(Zi - Pi))' where Pi = 
1; n a . This group is then zero unless Zi = Pi. 

We shall briefly outline the argument in the case where Supp Z is a single 
point Z supported on a fiber J (the proof in the general case is then just a 
matter of notation). In this case Q = (&'s(tJ) @lz}/&'s 9:! Izillf' where Ilf 
is the ideal of the nonreduced subscheme IJ. Moreover the assumption that 
So = I implies that I is the smallest integer s such that X S E I z ' where x is 
a local defining function for the fiber J. Our goal now is again to prove that 
Ext l (Q, &'s( -a + 2kJ)) = O. 

Now the sheaf Q has a filtration by subsheaves whose successive quotients 
are 

Qn = I z n Infllz n l(n+l)f 9:! (Iz n Inf + l(n+')f}ll(n+')f' 
for 0 ~ n ~ I - I. It is easy to see that each such quotient is a torsion free 
rank one &'rmodule contained in Infll(n+')f 9:! &'f. Thus it is a line bundle 
on J of strictly negative degree, necessarily of the form &'f( -an z), unless 
(/Znlnf+/(n+')f)ll(n+')f = Infl l(n+l)f' or in other words I Znlnf+/(n+l)f = I nJ · 
In this case, in the local ring of Z we would have xn = h + g x n+ I , where x is 
a local defining function for J and h E I z. But then h = xn (I - g x) , so that 
xn E I z ' contradicting the fact that Xl is the smallest power of x which lies 
in I z. Hence Qn 9:! &'J( -an z) with an ~ I . 

A standard argument with Chern classes shows that 
I-I I-I 

c2(Q) = I[z] = I>2(Qn) = - L degQn' 
n=O n=O 

where c2 (Q), c2 (Qn) are taken in the sense of sheaves on Sand deg Qn IS III 

the sense of line bundles on J. Thus deg Qn = -1 for all nand Qn = &'J( - z) . 
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It follows that Extl (Qn ' &'s( -a+2nf)) = HO(&'j(z-p)) where P = anf _ This 
group is zero if z =/:- P and is nonzero otherwise. Thus Ext l (Q, &'s( -a+2nf)) = 
o if z=/=p and Extl(Q, &'s(-a+2nf)) =/:-0 if z=p. 

We shall now reverse the above constructions and try to find a universal 
bundle in the case where the dimension of the moduli space is 2 or 4. For 
simplicity we shall just consider the case where P g is odd. 

The two-dimensional invariant. Let !JJ11 denote the moduli space of equivalence 
classes of stable rank two bundles V for which -PI (ad V) - 3X(&'s) = 2. Thus 
!JJ11 is compact. Since P g is odd, we may fix the determinant of V to be 0'- f . 
Our goal is to show the following: 

Theorem 4.7. !JJ11 ~ S. Moreover there is a universal bundle rover S x S, 
and 

PI (ad r)/[:E] = (2(0' . :E) - 2p g(/ . :E))f - 4(/ . :E)a - 4:E. 

Thus, as -4.u(:E) = PI (ad r)/[:E], we have 
2 2 2 .u(:E) = (:E) + (pg - l)(/·:E) . 

Proof. It follows from Propositions 4.3 and 4.6(v) and Corollary 4.5 that if V 
is stable with -PI (ad V) - 3X(&'s) = 2 and c I (V) = 0'- f, then either there is 
an exact sequence 

o ..... &'s (( k - I) f) ..... V ..... &'s (a - k f) ® m q ..... 0 

with mq the maximal ideal of a point q f/. a or there is a nonsplit exact 
sequence 

0 ..... &'s(kf) ..... V ..... &'s(a + (-k - l)f) ..... O. 
In this case the set of all nonsplit extensions is isomorphic to a. Thus the 
moduli space !JJ11 is made up of S - a, together with a copy of a. To glue 
these two pieces, we shall construct a universal bundle over S x S by taking 
extensions and then making an elementary modification. To this end, let Jl} 
be the diagonal in S x S. Consider the extension 7F over S x S defined as 
follows: 

0 ..... n;&'s((k - 1)f) ® n;2' ..... 7F ..... n;&'s(a - kf) ® II) ..... O. 

Here, using the relative Ext sheaves and standard exact sequences we should 
take 

=-1 I. • 
..z = Extn (nl &'s(a - kf) ® II), 1'C I&'s((k - l)f)) 

2 

= n2.(detNI) ® n;&'s(-a + (2k - l)f)) 
= n2.(&'!)(-(Pg - l)f) ® n;&'s(-a + Pgf)) 
= &'s(-a + f). 

With this choice of 2' , we find that 

Extl(n;&'s(a - kf) ® II)' n;&'s((k - l)f) ® 1'C;2') ~ HO(&'I)) 
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and that the unique nontrivial extension is indeed locally free. This defines '7F , 
and an easy computation gives 

c) ('7F) = n; (a - f) + n;c) (2"); 
p)(ad'7F) = 2n;(-a + (2k - l)f) .n;(a - f) - 4[l!}] + ... , 

where the omitted terms do not affect the slant product. 
The restriction W of '7F to the slice S x {q} is the unique nontrivial exten-

sion of &'s(a - kf) ® mq by &'s((k - l)f). By Proposition 4.6(v) W is stable 
if and only if q does not lie on a. To remedy this problem, we shall make an 
elementary modification along S x a. Note that, if W is given as an extension 

0--+ &'s((k - l)f) --+ W --+ &'s(a - kf) ®mq --+ 0, 

where q E a , then the maximal destabilizing sub-line bundle of W must be 
&'s( a + (-k - 1 )f) by Proposition 4.4 and thus there is an exact sequence 

0--+ &'s(a + (-k - l)f) --+ W --+ &'s(kf) --+ O. 

It follows that nhHom(~PI(S x a), n;&'s(kf)) is a line bundle L and the 
natural map 

'7F --+ i*(n;&'s(kf) ®n;L) 
is surjective. Thus we can define r by taking the associated elementary mod-
ification. By construction there is an exact sequence 

0--+ r --+ '7F --+ i*(n;&'s(kf) ®n;L) --+ O. 

Moreover for each q E a there is an exact sequence 

0--+ &'s(kf) --+ rlS x {q} --+ &'s(a + (-k - l)f) -+ O. 

Thus by Corollary 4.5 rls x {q} is stable provided that this extension does 
not split. We state this fact explicitly as a lemma, whose proof will be deferred 
until later: 

Lemma 4.8. In the above notation. the extension for rlS x {q} does not split. 

Assuming the lemma, the restriction of r to each slice is stable and thus r 
defines a morphism from S to the moduli space !m) . It is clear that this mor-
phism is a bijection between two smooth surfaces and is thus an isomorphism. 
Moreover, by the lemma on elementary modifications, 

p) (ad r) = p) (ad W) + 2c) ('7F) . [S x a] + [S x a]2 - 4i.c) (n; &'s(kf) ® n;L). 

Plugging in for c) ('7F) and p) (ad '7F) gives 

p)(adr) = 2n;(-a + (2k - I)f) .n;(a - f) - 4[l!}] 
• .• f · +2n)(a-f)·n2a-4n)(k ).n2a+···, 

where as usual the omitted terms do not affect the slant product. Thus collecting 
terms and taking the slant product gives 
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as claimed in the statement of Theorem 4.7. This concludes the proof of The-
orem 4.7. 0 
ProoJ oj Lemma 4.8. We shall use the criterion (A.4) of the Appendix and the 
discussion following it to see that the extension does not split. Given q E (J, 
let W = WIS x {q}. We need to show: 

(i) Hom(&'s((J + (-k - I)J), &'s(kJ)) = O. 
(ii) The map (coming from the usual long exact sequences) 

ROTC2*(TC~&'S((J - kJ) 0 In 0 TC~&'S(-(J + (k + I)J)) 

= RO TC2* (TC~ &'s(f) 0 In) --> RI TC2*TC; (&'s((k - 1 )J) 0 &'s( -(J + (k + 1 )J)) 

= RITC2*TC~(&'S(-(J + 2kJ)) 
vanishes simply along (J. 

(iii) HI (&'s(f) 0 mq) is independent of q, and is nonzero only if P g = O. 
Moreover H2 (&'s ( -(J + 2kJ)) = O. 

(iv) At each point of (J, the map 

HI (&'s(-(J + 2kJ)) --> HI (&'s(kJ) 0&'s(-(J + (k + I)J)) = HI(-(J + (2k + I)J) 
induced by the map 

HI (&'s( -(J + 2kJ)) ----> HI (W 0 &'s( -(J + (k + I)J)) 
followed by the natural map 

HI(W 0&'s(-(J + (k + I)J)) --> HI (&'s(kJ) 0&'s(-(J + (k + I)J)) 
is injective. 

The statement (i) is clear. To prove the statement (ii), we shall calculate 
RI TC2.(W 0 &'s((J + (-k - I)J)) by an argument similar to the second proof 
of Proposition 4.6(v). By base change ROTC 20 (TC;&'s(f) 0 In) = ~ is a line 
bundle on S. From the definition of Wand 5? the sheaf EX< (TC; &'s(f) 0 
I'll} , TC; &'s( -(J + 2kf)) 05? is the trivial line bundle. A global section induces the 
map ~ --> RITC20TC; &'s((J + 2kf) 05? . The cokernel of this map is a subsheaf 
of RI TC 20 (W 0&'s(-(J + (k + l)f)). To determine where the map vanishes, use 
the exact sequence 

o --> TC;~ --> TC~&'s(f) 0ID --> g --> O. 

Here the map TC;~ --> TC;&'s(J)0In is the natural one and a calculation in local 
coordinates shows that it vanishes simply along D = S Xpl S C S x S . It follows 
that, up to a line bundle pulled back from the second factor g = &'D( -JI))) . Thus 
g is up to sign a Poincare bundle. 

Now Ext2 (&'s(f) 0mq '&'s(-(J+2kJ)) = 0 since H 2(&'s(-(J+(2k-l)J)) = O. 
Thus EXt~2 (TC; &'.,,(f) 0ID' TC; &'s( -(J + 2kf)) = 0 and there is an exact sequence 

I. I • J • At;;> kJ Extrr2 (g, 71: 1&'s(-(J + 2kJ)) ----> Extrr2 (71: I &'S( )0ID' 71: l u s(-(J+2 ))----> 

1 • 2. kf ----> R 71:2 .71: 1 &,s((J + 2kf) --> Ext rr2 (g, 71:1 &'s( -(J + 2 )) --> O. 
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It follows from the naturality of the pairings involved that the image of the map 

Ext~2 (n; &s(/) Q9 lVi}' n; &s( -0" + 2kf» -+ Rlnhn; &s(O" + 2kf) 

is, up to a twist by the line bundle .2' , the image of ~ . 
Note that the restriction of ,9v Q9 n; &s( -0" + 2kf) to n~1 (q) cD, where 

q is any point except the singular point on a singular fiber, is &f(P - q) , where 
f is the fiber containing q and P = f n a. Ignoring the possible double points 
of D, we have by standard arguments 

I •• v • Ext1l (n,&s(/) Q9 II), nl&s( -0" + 2kf» = nh (,9 Q9nl &s( -0" + 2kf» 
2 

2 • • f 1 ,'UJ v. kf) Ext1l2 (n,&s(/)Q9II)' n,&s(-0"+2k » =R n2.(.:r Q9n l&s(-0"+2 ) 

(where ,9v means that the dual is taken as a line bundle on D). Thus 
n2• (,9 v Q9n; &s( -0"+2kf» = 0 and R 1n2• (,9 v Q9n; &s( -0"+2kf) is supported 
on 0". To calculate its length, we have (again ignoring the double points of D 
which will not cause trouble) an exact sequence 

0-+ &D(J[))-n; 0"+n;(2kf» -+ &D(J[))+n;(2kf)) -+ &D(J[))+n;(2kf)) In; O"nD -+ O. 

Now n;O"nD ~ S via n2 and under this isomorphism &D(J[))+n;(2kf))ln;O"n 
D ~ &s(a + 2kf). The map 

ROnh&D(n;(2kf» -+ ROn2.&D(J[)) + n;(2kf) 

is an isomorphism, since the induced map on HO 's for the restriction to each 
fiber of n2 is an isomorphism. Using the exact sequence 

0-+ &D(n;(-O" + 2kf) -+ &D(n;(2kf» -+ &s(2kf) -+ 0, 

it follows that the image of ROnh&D(n;(2kf» = ROn2.&D(J[)) + n;(2kf» in 

° •• f R n2 .&D(J[)) + n l (2kf)ln l 0" n D = &s(O" + 2k ) 
is just the image of &s(2kf) in &s(O" + 2kf). Thus this map vanishes simply 
along 0", and its cokernel, which is 

1 •• 1 v. kf) R nh&D(J[))-nla+nl(2kf))=R n2.(,9 Q9nl&s(-a+2 ), 
is a line bundle on 0". It follows that the map of line bundles 

Ext~ (n; &s(/) Q9 II), n; &s( -a + 2kf» Q9.2' -+ Rlnhn; &s(a + 2kf) Q9.2' 
2 

vanishes simply along 0", so that we are in the situation of (A.4): the co kernel 
contributes torsion of length one. 

To see that the above is exactly the torsion in R 1n2.(WQ9&s(-0"+(k+ l)f) 
follows from (iii), as in the discussion after (A.4). To see (iii), use the exact 
sequence 

0-+ &s(/) Q9 mq -+ &s(f) -+ Cq -+ O. 

The long exact cohomology sequence shows that HI (&s (/) Q9 m q) ~ HI (&s (/» . 
It is easy to see that this last group is zero if P g > 0 and has dimension one if 
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Pg = 0 (and in any case its dimension is obviously independent of q). Finally 
H2 (&'s( -a + 2k f)) = 0 by Lemma 4.1. Thus we have identified the torsion in 
R I1C2.('T" ®&'s(-a + (k + l)f)) , compatibly with base change. 

We finally need to check that the induced map 

is injective. But this map is induced from the composition of the map of sheaves 

&'s(-a + 2kf) ~ W ®&'s(-a + (k + l)f) 

together with the map W ® &'s( -a + (k + 1 )f) ~ &'s( -a + (2k + 1 )f). This 
composition is then a nonzero map from &'s( -a + 2kf) to &'s( -a + (2k + 1 )f) 
and so fits into an exact sequence 

o ~ &'s(-a + 2kf) ~ &'s(-a + (2k + l)f) ~ &'j(-p) ~ o. 
Since HO(&'j(-p)) = 0, the map HI (&'s(-a+2kf)) ~ H I(&'s(-a+(2k+ l)f)) 
is injective. Thus the extension class for rlS x {q} is nonzero, and we are 
done. 0 

The four-dimensional invariant. We again assume that P g is odd and list the 
possible types of extensions for a stable bundle. The generic case (Type 1) is 
where there exists a codimension two subscheme Z with £(Z) = 2 and an 
exact sequence 

(Type 1) 

Other possibilities (Types 2 and 3 respectively) are 

(Type 2) 0 ~ &'s((k - l)f) ~ V ~ &'s(a + (-k - l)f) ®mq ~ 0; 
(Type 3) 0 ~ &'s(kf) ~ V ~ &'s(a + (-k - 2)f) ~ o .. 
Here mq is the maximal ideal of a point q . Finally there is also the case where 
V is not locally free. In this case the double dual of V fits into an extension 

o ~ &'s((k - l)f) ~ VVV ~ &'s(a + (-k - l)f) ~ 0 

which must be nonsplit if V is to be stable, in which case VVV is just a twist of 
Yo. One possibility is that V is given as the unique non-locally free extension 
of &'s( a + (-k - l)f) ® mq by &'s( (k - l)f) as in the second exact sequence 
above. The remaining possibility (Type 4) is that V is given as an extension 

(Type 4) 

For a fixed q, the set of all such extensions is parametrized by a pi , one point 
of which correspond to a V such that Vvv is unstable. 

Our goal here is to give a very brief sketch of the following, where we use the 
notation of the introduction for divisors on Hilb2 S : 
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Theorem 4.9. The moduli space VJ12 of dimension 4 is isomorphic to Hilb2 S, 
and for all }: E H2(S) , 

where, setting (XI = fll (}:) to be the class computed by the fl-map for the two-
dimensional invariant, 

(X2 =}: + (-(a.}:) + (Pg + 1)(f· }:)/2)f + (f. }:)a 
= (XI + ((f. }:)/2)f. 

Thus an easy calculation using the multiplication table for Hilb2 S gives the 
following: 

Corollary 4.10. In the above notation, 

fl(}:)4 = 3(}:2)2 + 6(pg - 1)(}:2)(f. }:)2 + [3(pg + 1)(pg - 1) - 8(pg - 1)](f.}:t 

We shall not give a complete proof of Theorem 4.9 here, but shall outline 
the argument and prove some statements which will be used later. In Sections 
9 and 10, we shall prove a more general statement which will imply Theorem 
4.9. 

We begin as before by analyzing the generic case, Type 1. Let 2 be a 
codimension two subscheme of S with £(2) = 2. Let Da be the effective 
divisor of Hilb2 S which is the closure of the locus of pairs {z I ' z2} where 
ZI Ea. Then arguing as in the proof of Proposition 4.6(i)-(iii), we see that 

if 2 rt Sym2 a C Hilb2 S, 
otherwise. 

In case 2 rt D a ' the unique extension class mod scalars corresponds to a locally 
free extension. If 2 E D a - Sym2 a , then the unique nontrivial extension is 
not locally free. If 2 E Sym2 a , then there exist locally free extensions. 

Next we must analyze when a locally free extension is stable. Let g be the 
irreducible divisor in Hilb2 S corresponding to the divisor S XI!'I S C S x S. 
Equivalently 

g = {2 E Hilb2 S I hO(&s(f) Q9 Iz ) = 1 }. 

The divisor g is smooth, although SXI!'I S is singular at the finitely many pairs 
of points (x, x) , where x is a double point of a singular fiber. One way to see 
this is as follows. The divisor S XI!'I S has ordinary threefold double points at 
the singularities. Moreover it contains the diagonal j[]) c S x S , which is smooth 
and passes through the double points. It is well known (and easy to check) that 
the blowup of a threefold double point (xy - zw) along a subvariety of the 
form (x - Z , Y - w) gives a small resolution of the singUlarity. Thus the proper 
transform of S XI!'I S in the blowup of S x S along j[]) is smooth, and g is 
the quotient of this proper transform by an involution whose fixed point set is 
smooth (it is Jl))). Thus g is smooth. 
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Lemma 4.11. Let V be a vector bundle given by an extension 
o ~ &S( (k - 2)f) ~ V ~ &S( 0" - kf) ® I z ~ 0, 

where £(Z) = 2. Then V is not stable if and only if either Z E Sym2 0" 

or Z E 9. If Z E 9, then the maximal destabilizing sub-line bundle is 
&s( 0" + (-k - 1) f) and there is an exact sequence 

o ~ &s(O" + (-k - l)f) ~ V ~ &s«k - 1)f) ® mq ~ o. 
Here q = Zl + Z2 - p, where f is the unique fiber containing Z = {zl' z2}. 
p = 0" n f, and the addition is with respect to the group law on f (if f is 
singular and Supp Z meets the singular point then q is the singular point as 
well). If Z E Sym2 0" - 9, then the maximal destabilizing sub-line bundle is 
&s(O" - (k + 2)f). 
Proof. If Z tf. Du ' then we have seen in Proposition 4.6(v) that V is unstable 
if and only if Z E 9 , and in this case the destabilizing sub-line bundle must 
be &s(O" + (-k - l)f) by Proposition 4.4. The quotient is torsion free and by 
a Chern class calculation it must be &s«k - 1)f) ® mq for some point q. To 
identify the point q, let us assume for simplicity that Supp Z does not meet 
the singular point of a singular fiber, we can restrict the two exact sequences for 
V to the fiber f containing Z. From these we see that there are surjective 
maps Vlf ~ &f(P - zl - z2) and Vlf ~ &f(-q). Since deg Vlf = 1, it splits 
and the unique summand of negative degree is thus &f(P - Zl - z2) ~ &f( -q). 
It follows that q = ZI + z2 - p. The case where SuppZ contains the singular 
point of a singular fiber is similar. 

If ZED u' then since V is locally free Z E Sym2 0". Arguments as in 
Proposition 4.6 then show that V is unstable. If moreover Z tf. 9, then 
the maximal destabilizing sub-line bundle is &s(O" - (k + 2)f) by Proposition 
4.4. 0 

Our next task will be to construct a universal sheaf rover Hilb2 S - D u. We 
begin by finding a sheaf T as follows: let 2: c S x Hilb2 S be the universal 
subscheme, and consider the relative extension sheaf Ext!2(1I::&S(0" - kf) ® 

Iz ' 1I:~&s«k - 2)f))· Since HI (&s(-O" + (2k - 2)f)) = 0, there is an exact 
sequence 

o ~ Ext! (1I::&s(0"- kf) ® Iz ' 1I::&s«k - 2)f)) ~ 
2 

~ R°1l:h Ext l (1I::&s(0" - kf) ® I z' 1I::&s«k - 2)f)). 

Over the complement of Sym2 0", Ext!2 (1I:~&s(0" - kf) ® I Z' 11:; &s«k - 2)f)) 
is a line bundle on Hilb2 S - Sym2 0" which we denote by 2"-1 and thus there 
is a coherent sheaf T defined by 

o ~ 1I::&s«k - 2)f) ®2" ~ T ~ 1I::&s(0" - kf) ® I z ~ o. 
However, if Z E 9 , then TIS x {Z} is not stable, and if ZED u then TIS x 
{Z} is neither locally free nor stable. We shall first study TIS x (Hilb2 S - D u) , 
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and shall denote this for simplicity again by "'. There is a unique point 
q = ZI + z2 - p such that "'IS x {Z} maps surjectively to &s((k - l)f) 0mq , 
and so we expect to be able to make an elementary transformation along ~ . 
Indeed, since dim Hom(&s(a + (-k - l)f), "'IS x {Z}) = 1 for all Z E fg, 
there are line bundles .2; and ..2; on ~ and an exact sequence 

0-> n;&s(a+(-k-l)f)0n;.2; -> "'ISx9J -> n;&s((k-l)f)0n;..2;0I,..- -> 0, 

where 'Y is the set 

{ (q, Z I ' Z 2) E S X pi ~ I q = Z I + Z 2 - P }. 

It is easy to check from the definition that 'Y is smooth and that the map 
'Y -> ~ is an isomorphism. Thus we may define r by the exact sequence 

0-> r -> '" -> i*n;&s((k - l)f) 0 n;..2; 0 1,..- -> 0, 

where i is the inclusion of S x 9J in S x (Hilb2 S - Da). We then have the 
following: 

Proposition 4.12. The sheaf r is a reflexive sheaf, flat over Hilb2 S - D a. The 
restriction of r to each slice S x {Z} is a stable torsion free sheaf, which is 
locally free if and only if Z ¢. 9J . 
Proof. By (A.2) of the Appendix, r is reflexive and flat over Hilb2 S - Da. 
For each Z E 9J , if Vz is the restriction of r to the slice S x {Z} , there is 
an exact sequence 

0-> &s((k - l)f) 0 mq -> Vz -> &s(a + (-k - l)f) -> 0, 

by (A.2) again. If Z ¢. 9J then Vz = rlS x {Z} is locally free and stable. 
Thus we need only check that the double dual of Vz ' for Z E ~ , is the unique 
non split extension of &s(a + (-k - I)f) by &s«k - I)f), which will imply 
that V;v is up to a twist the stable bundle JIQ. 

To verify that the double dual of Vz is a nonsplit extension amounts to the 
following: the extension class corresponding to Vz lives in 

I I Ext (&s(a + (-k - I)f), &s((k - I)f) 0 mq) = H (&s( -a + 2kf) 0 mq), 

and we must show that its image in HI (&s( -a + 2kf» is nonzero. To do this 
we shall use the result (A.4) of the Appendix. Let M = &s(a - (k + I)f) and 
L = &s((k - I)f). Clearly Hom(M, L) = O. By the definition of '" there is 
an exact sequence 

0-> n;&s( -a + (2k - I)f) 0 n;.£> -> '" 0 n; M- I -> n;&s(f) 0 I z -> O. 

By Lemma 4.1 R l n2*n; &s( -a + (2k - 1 )f) = R2n2*n; &s( -a + (2k - 1 )f) = O. 
Thus 

R I 0'.1'/ *M- I '" RI (* Air (f) I) n2*», 0 n l = nh n l (7s 0 z . 

To analyze R l n2*(n;&s(f) 0Iz ), use the exact sequence 

0-> n;&s(f) 0 I z -> n;&s(f) -> &z 0 n;&s(f) -> O. 
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It is easy to check that R l n2.n;&'s(/) = 0 if Pg > 0, and is a line bundle if Pg = 

O. Clearly R l n2.(&'z®n;&'s(/)) = O. Thus the torsion in R l n2• (n;&'s(/)®I z) 
is the cokernel of the map between two rank two vector bundles on Hilb2 S 

° • .6 f ° (.6 • .6 (f)) R n2.nl D'S( ) ---. R n2• D'z ® nlD's . 

Since 9 is a smooth divisor, by using elementary divisors for the vector bundle 
map we can describe this cokernel by describing what it looks like at the generic 
point. It is a simple exercise in local coordinates to identify the determinant of 
the vector bundle map with a local equation for 9 at the generic point. Thus 
the torsion in R l n2.Y®n; M- I is a line bundle on 9, which is identified with 
the torsion in R l n2• (n;&'s(f) ®Iz ) . Similar statements hold via standard base 
change results if we restrict to a first order neighborhood of 9 , where torsion 
is to be interpreted in the sense of (A.4)(ii) of the appendix. 

Next, let 
Z = {zl' z2} E9 

and let W be the extension corresponding to the restriction of Y to the slice 
S x {Z}; we must identify the corresponding extension class, i.e. the image of 
the one-dimensional vector space HI (&'s(f) ® I z ) in HI(M- I ® L ® mq) and 
its further image in HI (M- I ® L). Using the two exact sequences 

-I -I 0---. &'s ---. W ® M ---. M ® L ® mq ---.0, 

0---. &'s( -(J + (2k - 1 )f) ---. W ® M- I ---. &'s(/) ® I z ---. 0, 
we see that the composite map &'s ---. &'s(/) ® I z is nonzero and gives the 
nontrivial section. Now the quotient of &'s(/) ® I z by &'s is &'f( - Z I - Z2) . 
Thus there is an induced map M- I ®L®mq ---. &'f( -ZI - Z2) which must factor 
through the natural map M- I ® L ® mq = &'s( -(J + 2kf) ® mq ---. &'f( -P - q) . 
(Here as usual P = (J n f·) As the induced map &'f( -P - q) ---. &'f( -ZI - z2) 
is nonzero, it is an isomorphism, and we recover the fact that q = Z I + z2 - P . 
Using the commutativity of 

o ----- &'s(/) ® I z ----- &'s(/) ----- &'z ----- 0 

1 1 II 
o ----- &'f(-zl - z2) ----- &'f ----- &'z ----- 0, 

we also see that the image of HI(&'s(/)®Iz ) in HI(&'f(-ZI-Z2)) is the same 
as the image of HO(&,z) in H\&'f(-zl - z2)). 

There is a commutative diagram 

HI (&'s( -(J + 2kf) ® mq) ----- HI (&'s( -(J + 2kf)) 
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Moreover the map HI (&s(-a + 2kf)) -+ HI(&f(-P)) is an isomorphism. So 
the problem is the following: does the image of FfJ(&z) in HI(&f(--zl - z2)) 
map to zero in HI(&f(-P))? The image of FfJ(&z) in HI(&f(-zl - Z2)) is 
dual to the image of HO(&f) in FfJ(&f(zl + Z2)) , giving a section vanishing 
at ZI and z2. On the other hand the kernel of the map HI (&f(-P - q)) -+ 

HI (&f( -p)) is dual to the image of the map HO(&f(P)) -+ FfJ(&f(P + q)), 
and the corresponding section of &f(P + q) vanishes at P and q. So the only 
way that this can equal the image of FfJ(&z) is for ZI or z2 to equal p, i.e. 
ZED (1. Conversely, if Z f/. D (1' then the image of the extension class in 
HI(M- I ® L) is not zero. Thus the double dual of the restriction of r to 
S x {Z} is a nonsplit extension and so it is stable. 0 

This is as far as we shall go in this section in calculating the four-dimensional 
invariant. But let us sketch here how to obtain the full formula in Theorem 
4.9. We will. prove a more general statement in Section 10, where we will use 
Proposition 4.12. 

First, to deal with the fact that dim Ext l (&s( a - kf) ® I z ' &s{{k - 2)f)) 
jumps along Sym2 a, blow up Sym2 a inside Hilb2 S. Let the exceptional 
divisor be G. After blowing up, we can assume that the extension is not locally 
trivial along G. There is thus a universal extension of torsion free sheaves r/ 
over S x BISym2 (1 Hilb2 S. Now make an elementary modification along ~, 
replacing unstable Type 1 extensions with Z E ~ - Sym2 a with stable Type 4 
extensions. Next make an elementary modification along D (1 , replacing unstable 
Type 1 extensions with ZED (1 with Type 2 extensions; this also fixes some 
of the unstable Type 4 extensions. Finally make an elementary modification 
along G to replace the remaining unstable extensions with Type 3 extensions. 
At this point every member of the family is a stable torsion free sheaf, and 
the induced morphism to VJ12 blows G back down again to Sym2 a. The 
morphism Hilb2 S -+ VJ12 is then an isomorphism. Keeping track of the Chern 
classes gives the formula in Theorem 4.9. 

Finally, we state a general conjecture: 
Conjecture 4.13. If S has a section, then the map of Theorem 3.14 extends to 
an isomorphism Hilb t S -+ VJ1t • 

If the conjecture is true, then the method of test surfaces used in the proof 
of Lemma 9.2 can be used to show that the ,u-map is given by the following 
formula (where we use the notation introduced in the section on preliminaries 
for Part III for divisors in Hilb t S as well): 

where 

,u(~) = D - ((f. ~)/2)E, "', 

at = ~ + ( -(a·~) + (pg - 1 + t)(f· ~))/2)f + (f. ~)O" 
= a l + (t - l)((f. ~)/2)f. 
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5. CALCULATION OF THE INVARIANT FOR DIMENSION TWO 
AND NO MULTIPLE FIBERS 

Our goal in this and the following three sections will be a complete calculation 
of the Donaldson polynomial invariant Yw,p in case -P - 3X(&s) = 2. In 
this case, the moduli space is compact of real dimension four and complex 
dimension two, and may be identified with the algebraic surface f+l (S). We 
shall begin with the case where S has a section (J and e = -2. We have 
already described how to calculate the invariant in this case in the last section. 
However, we shall give another method for doing so here, since it will serve to 
explain the construction in the general case. 

To describe the ,u-map, we begin by describing a universal bundle over S. 
Recall that every bundle V with -PI (ad V) - 3X(&s) = 2 is obtained from the 
fixed bundle Va by a single allowable elementary modification. For convenience 
we will look at the case where e = -2. Thus we shall normalize Va to have 
det Va . f = - 3 and 

2 -PI (ad Va) - P = c1(Va) - 4c2(Va) = 3(1 + Pg(S)). 

As Va is well defined up to twisting, so that we can assume that c1 (Va) = -3(J 
if P g (S) is odd, and c 1 (Vo) = - 3(J + f if P g (S) is even. (Here we could use 
the explicit description of Va from the preceding section, or use the congruence 
P == 1 + Pg mod 4 to see that these choices always give c1 (VO)2 == P mod 4.) We 
shall just consider the argument in case Pg is odd. Setting c = c2(Va) , we have 
4c - (-30/ = 3(1 + Pg ) and thus 

3 
c = -2(1 + Pg ). 

If V is stable, with -PI (ad V) = 3 ( 1 + P g) + 2 , then there is an exact sequence 

O-+V-+Va-+Q-+O, 

where Q is a rank one torsion free sheaf on a fiber f with deg Q = -1 and 
det Va· f = -3, and conversely every such V is stable. We need to parametrize 
such sheaves Q as a family over S x S , where the first factor should be viewed 
as the surface and the second as the moduli space. To do so, let 1fl and 7C2 
be the projections of S x S to the first and second factors, let Jl)) denote the 
diagonal inside S x S and let D = S Xpl S be the fiber product. Thus D is a 
Cartier divisor, which is not however smooth at the images of pairs of double 
points. At such a point D has the local equation xy = zw , and thus D has 
an ordinary double point in dimension three. The diagonal Jl)) is of course 
contained as a hypersurface in D, but this hypersurface fails to be Cartier at 
the singular points of D. Let .9 = loJ In. In local analytic coordinates, .9 
looks like 

(x - Z, Y - w)RJ(xy - zw)R 
near the double point, where R = C{x, y, z, w}. We claim that the sheaf .9 
is flat over S (the second factor). Indeed there is an exact sequence 

0-+ lo/In -+ &n -+ &11) -+ O. 
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Moreover &1Ji is obviously flat over Sand &D is flat over S since D is a local 
complete intersection inside S x S . Thus .9 is flat over S also. Given q E S 
denote .9 In ~' (q) by .9q , where we shall identify .9q with the corresponding 
torsion sheaf on S. If q is not a singular point of a nodal fiber, then .9q = 
&f( -q), where f is the fiber containing q and we have identified &f( -q) 
with its direct image on S under the inclusion. If q is the singular point of a 
singular fiber, then in local analytic coordinates .9q is given by 

(x - z, y - w)R/(xy - zw, z, w)R ~ (x, y)C{x, y}/(xy)C{x, y}. 

Thus globally .9q is the maximal ideal of q, in other words it is the unique 
torsion free rank one sheaf of degree -1 on the singular fiber which is not 
locally free. 

Fix as above Yo to be a stable rank two vector bundle on S of fiber degree 
-3 such that the restriction of Yo to every fiber is stable. Thus as we have seen 
in Corollary 1.2 and Lemma 2.7(i), dim Hom(Yo ,.9q ) = hO(Yov ®.9q ) = 1 and 
h' (Yov ®.9q ) = o. It follows via flat base change as in the proof of Lemma 3.15 
that n2*«n;Yo)v ®.9) is a line bundle on S. We let 2' denote the dual line 
bundle. Thus 

* *G? ° * V *G? Hom(n, Yo, .9 ® n2..z; ) = H (S x S; (nl Yo) ®.9 ® n2..z; ) 

= HO(S; n2*«n;Yo)v ®.9) ®2') 

= HO(S; 2'-' ®2') = HO(S; &s). 

Thus there is a nonzero map n;Yo ---t .9 ® n;2' , essentially unique, and its 
restriction to each fiber n~' (q) is also nonzero. We may then define a universal 
bundle ry' by the exact sequence 

, * * G? o ---t ry ---t n, Yo ---t .9 ® n 2..z; ---t O. 

Lemma 5.1. The sheaf ry' is locally free and its restriction to each slice S x {q} 
is a stable rank two vector bundle ~ with -PI (ad~) - 3X(&s) = 2. The 
resulting morphism S ---t VR, is an isomorphism. 
Proof. There is an exact sequence 

o ---t V ---t v,o ---t.9 ---t O. q q 

Thus ~ is locally free for all q and so is ry'. By construction ~ has sta-
ble restriction to every fiber except the one containing q. Thus ~ is stable. 
The statement about PI (ad~) is clear. Finally, examining the description of 
Proposition 3.13, we see that the map S ---t VR, is a bijection. Since VR, is 
smooth, the map is therefore an isomorphism. 0 

We now tum to calculating the Chern classes of ry'. By the lemma on 
elementary modifications, 

p,(adry') - p,(adn*Yo) = 2cl (Yo)· D + [D]2 - 4i*c, (.9 ® n;2') , 
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where i: D -+ S x S is the inclusion. Here the sheaf .9 ® n;2' fails to be a 
line bundle exactly at the singular points of D, which does not affect the Chern 
classes ci and c2 • Thus we can simply define i .. cI (.9 ® n;2') to be the unique 
extension of the class i .. cI (.9 ® n;2'IDreg)' Next we claim: 

Lemma 5.2. In H2(S x S). we have [D] = I ® 1 + 1 ® I. 
Prool. Let C be a Riemann surface embedded in S, and consider ([C]®[x})U 
[DJ, where x is a point of S. This is the same as #(C x {x})nD) ,where the 
points are counted with signs. Clearly this intersection is the same as #( C n f) . 
A similar argument holds for ([x] ® [C}) n [D]. Thus [D] and I ® 1 + 1 ® / 
define the same element of H2(S x S). 0 

It follows that, up to a term not affecting the slant product, 

Next we must calculate the most interesting term in the expression for PI (ad r') 
above, the term ci (.9 ® n;2') , viewed as a coherent sheaf on D. As far as ci 
is concerned, we can ignore the singularities of D. Thus 

CI (.9 ® n;2'IDreg) = ci (In/IDIDreg) + n;cI (2') 
= -[][})] + n;cI (2'). 

Here [][})] is viewed as a divisor on Dreg' However the unique extension of 
i .. [][})] to an element of H4(S x S) is clearly again [][})], where we now view ][}) 
as a codimension two cycle on S x S. Now let a = ci (2'-1) E H 2(S). Then 

i .. n;c l (2'-I) = i .. ;*(1 ®a) 
= i .. ;*(I) U (1 ® a) = [D] U (1 ® a) 
= I ® a + 1 ® [f. a]. 

Thus up to a term which does not affect the slant product, i .. n;cI (2'-1) = I®a. 
To calculate this term, we shall use the following lemma: . 

Lemma 5.3. a = CI(2'-I) = -30"- ~(Pg + 1)/. 
Prool. We shall apply the Grothendieck-Riemann-Roch theorem to calculate 
the Chern classes of 

We have 

Now H\Vav ® Q) = 0 for all Q a torsion free rank one sheaf on a fiber I, 
so that (n2M(n;Va)v ®.9) = n2 .. «n;Va)v ®.9) =2'-1 and the left-hand side 
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above is just c, (.,2'>-') ToddS. Now we can also multiply by (ToddS)-' to get 

c, (.,2'>-') = n2• [ch((n; fQ) v ~.9') . Todd(S x S)] .(ToddS)-' 

= n2 • [ch((n; fQ) v ~.9') . Todd(S x S) . n; (ToddS) -I] 
= n2 • [ch((n; fQ) v ~.9') . n; ToddS] 

= n2• [ch(n; fQ) v • n; Todd S . ch(.9')] , 

using the multiplicativity of the Todd class. Moreover 
2 

ch(fQV) = 2 - c, (fQ) + c, (fQ) ~ 2c2(fQ = 2 + 3a - 6(1 + Pg)[pt] 

and 
(p - 1) 

ToddS = 1 - g 2 1 + (pg + l)[pt]. 

So • . v • 
n, ch(fQ ) ·n, ToddS = 2 + 3a ~ 1 - (pg - 1)1 ~ 1 + N[pt] ~ 1, 

where 
N = (3a)2 - 2c 2( 1) _ ~( _ 1) = -5pg + 1 

2 + Pg + 2 Pg 2' 
using the fact that c = -~(1 + Pg ). 

Next we compute ch.9' = ch(ID/ID) = chID - chID· Now ID = &'sxs(-D) , 

so that chID = 1-[D]+[D]2/2 - .... As for chID' we have chID = 1-ch&'lJi. 
Applying the Grothendieck-Riemann-Roch formula to the inclusion ): ID> --> 

S x S gives ch&'1Ji = ).((ToddND/ SXS)-')' where ND/SXS is the normal bundle 
of ID> in S x S , and so is equal to the tangent bundle Ts on ID>. Thus 

. ( (p - 1) _I) 
Ch&'D = J. (1 - g 2 1 + (1 + Pg)[ptD 

(p - 1) 
= ).(1 + g 2 1 - (1 + Pg)[ptD 

(p - 1) 
= [ID>] + g 2 )J - (1 + Pg))Jpt]. 

Collecting up the terms through degree 3 (which are the only ones which will 
contribute) gives 

[D]2 Pg-1. 
ch.9' = [D] - -2- - [ID>] - -2-J.1 + .... 

Putting this together, we see that a is the degree one term in 
[D]2 p - 1 

n2• [(2 + 3a ~ 1 - (pg - 1)1 ~ 1 + N[pt] ~ 1) . ([D] - -2- - [ID>] - -T-)*/)]. 

Recalling that D = 1 ~ 1 + 1 ~ 1 and that [Df /2 = 1 ~ I, we must apply n2* 
to 
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The result is then 

-(Pg -1)f - 3f - 30" + (pg - J)f +Nf= -30"+ (N - 3)f, 

as claimed_ 0 

The above lemma thus implies that 

-4i*c I (9' 0 n;2") = 4[j[))] - 12f 00" - 10(pg + l)f 0 f. 

Putting this together gives (neglecting all terms which do not affect the slant 
product) 

PI (adr') = -6(0" 0 f) + (-10Pg - 8)f 0 f - 12f 00" + 4[j[))] + .... 
We may finally summarize our calculations as follows: 

Lemma 5.4. In the above notation, using the bundle r' to identify 9Jl1 with S 
and denoting by /1' the corresponding /1-map, we have 

-4t/(1:) = [-6(0".1:) + (-10pg - 8)(f· 1:)]f - 12(f· 1:)0" + 41:. 

h ' 2 2 f 2 ~ us /1 (1:) = (1:) + (p g - 1) ( . 1:) . 0 

At first glance, this formula looks quite different from the previous formula 

-4/1(1:) = (2(0"·1:) - 2pg (f. 1:))f - 4(f. 1:)0" - 41:. 

However, the surface S (viewed as the moduli space) has an involution /, 
coming from taking x f-> -x on each fiber using 0" as the identity section. 
This involution corresponds to viewing S as the double cover of a rational 
ruled surface as in [11], Chapter 1. Since S has only nodal singular fibers, it 
follows that on H2(S) , / fixes 0" and f and is equal to - Id on the orthogonal 
complement {f, O"} 1.. It is then an easy exercise to see that for a general 1: 
we have 

/* (1:) = -1: + 2 [(0" .1:) + (pg + 1)(f· 1:)]f + 2(f· 1:)0". 

Applying / then exchanges /1(1:) and /1'(1:). Clearly this discrepancy arose 
as follows. In the general scheme for identifying the moduli space implicit in 
Theorems 3.14 and 4.7 we used not 9' but its dual. However it was technically 
slightly simpler not to make this choice in the Riemann-Roch calculation above. 
Thus the identifications of the moduli space differ by /. 

6. THE CASE OF MULTIPLE FIBERS 

Having done the rather tedious calculation in the preceding section in case 
S has a section, we must now move on to deal with the case where S has 
multiple fibers. Fortunately, it will turn out that much of the calculation in this 
case exactly follows the pattern of the previous calculation. Before getting into 
the nitty-gritty, let us fix notation. Let n: S ...... ]pI be a nodal surface with at 
most two multiple fibers of odd multiplicity. Fix a divisor on the generic fiber 
S'" of odd degree 2e + 1. Let Vo be a rank two vector bundle on S with 
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C I (Va) = f:l and c2 (Vo) = c , whose restriction to the reduction of every fiber is 
stable. Thus 4c - f:l2 = 3 (p g + I) and so 

f:l2 + 3(pg + 1) 
2c = 2 

We would like to construct a universal bundle using f+1 (S). Unfortunately, 
this is not in general possible, and we shall instead use a finite cover. Thus 
we fix an elliptic surface T together with a map T ---+ S , such that T has a 
section. We may further assume that T is obtained as follows: choose a smooth 
multi section C of 7C, for example a general hyperplane section of S in some 
projective embedding. For C sufficiently general, we may assume that C meets 
the multiple fibers transversally and that the map C ---+ pI is not branched at 
any points corresponding to singular nonmultiple fibers of 7C. Then set T to 
be the normalization of S Xpl C. It follows that the only singular fibers of T 
lie over singular nonmultiple fibers of S , and that T has a section a. If d is 
the degree of C ---+ pI , then at the point of pI lying under the multiple fiber Fj 

of multiplicity m j , C ---+ pI is branched to order mj at exactly d/mj points. 
Let rp: T ---+ S be the natural map and p: T ---+ C be the elliptic fibration, 

so that we have a commutative diagram 
T~S 

C~pl. 

Now we can state the main result of this section: 
Theorem 6.1. There exists a vector bundle '%1 over S x T with the following 
properties: 

(i) The restriction of '%1 to each slice S x {p} is a stable rank two vector 
bundle V with det V = f:l- f and -PI (ad V) - 3X(&'s) = 2. 

(ii) The morphism T ---+!JJt1 induced by '%1 has degree d. 
(iii) If jl: H2(S) ---+ H2(T) is the map induced by the slant product with the 

class -PI (ad '%1)/4, then, setting t5 = [f:lJ, 
- 4jl(~) 

= [t52 - (1 + Pg) - 4(e + 2)2(1 + Pg) + 2 + c(e, m l ) + c(e, m2)] (/. ~)df 
- 4(e + 2)(rp* t5. a)(/· ~)f - 4(e + 2)(rp*~. a)f + 2d(t5· ~)f 
+ 4(/· ~)rp* t5 - 8(e + 2)(/ . ~)a + 4rp *~, 

where c(e, m) depends only on mj and e and on an analytic neighbor-
hood of the multiple fiber, and not on S or p g , and where c( e, I) = o. 

We shall defer the proof of Theorem 6.1 to the next two sections. The 
constant c(e, m j) in fact might depend a priori on the particular choice of 
the multiple fiber. However, as we shall see from Theorem 6.3, the choice of 
the fiber and of e does not matter. Let us begin with a calculation of J.l(~)2: 
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Lemma 6.2. With notation as in Theorem 6.1. we have 

16ji(.I/ = 16d(r)2 + 16d(pg - 1 - c(e, m l ) - c(e, m 2))(f· r{ 

Thus as ji(r)2 = dJ.l(r)2 , we have 
2 2 2 J.l(r) = (r) + (Pg - 1 - c(e, m l ) - c(e, m 2))(f· r) 

2 2 = (m l m 2) (pg - 1 - c(e, m l ) - c(e, m 2))(K' r) , 

where K is the primitive class such that m l m 2K = f. 
Proof. This is a tedious calculation. 0 

Theorem 6.3. With notation as in the statement of Theorem 6.1, we have 
1 

c(e, m j ) = -I + -2. 
mj 

Proof. By symmetry it suffices to consider i = I. Choose a general nodal 
rational elliptic surface So with a single multiple fiber of multiplicity mi. 
We can assume that an analytic neighborhood of the multiple fiber in So is 
analytically isomorphic to a neighborhood of FI in S, which is possible since 
we assumed that the multiple fibers did not lie over branch points of the j-
function of S. Since m112e+ I, there exists a divisor ~ on So with ~'f = 2e+ 
1 . Thus we may use So to calculate c( e, m I)' Now setting p g = 0 and m2 = 1 
in the formula of Lemma 6.2 gives the coefficient of (K' r)2 in the Donaldson 
polynomial: it is (mi(-I - c(e, m l )). On the other hand, So is orientation-
preserving diffeomorphic to a rational elliptic surface SI with a section, by 
a diffeomorphism 'II which carries K to the class of a fiber. Using Lemma 
2.5 of Part I, this diffeomorphism must then carry a (w, p)-suitable chamber 
for SI to a (V/w, p)-suitable chamber for So. The Donaldson polynomial 
for SI and a (w, p)-suitable chamber is then sent under",· to the ± the 
Donaldson polynomial for So and a (",·w, p)-suitable chamber. Normalizing 
the orientations so that the leading coefficients agree (these are both (r2)), the 
coefficients of (K.r)2 must agree also. We have already calculated the coefficient 
of (K' r)2 for SI (by two different methods): it is -I. Thus 

2 (m l ) (-I-c(e, m l )) =-1. 

Hence c(e, m l ) = -I + I/m~, as claimed. 0 

Thus we get the formula for J.l(r)2 stated in (i) of Theorem 0.5 of the Intro-
duction: 
Corollary 6.4. The two-dimensional Donaldson polynomial is given by the for-
mula 

2 2 2 1 1 2 
J.l(r) = (r) + (m l m 2) (Pg - 1 + 1- -2 + 1 - -2)(K ·r) 

m l m2 
2 [2 2 2] 2 =(r) + (m l m 2)(Pg+l)-m l -m2 (K·r). 0 

For future reference we note the following lemma: 
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Lemma 6.5. If f denotes the general fiber of VRI = J e+1 (S) -. ]pI , then 
,u(:E) . f = 2(f· :E). 

Proof It suffices to calculate ji.(:E). f, where ji. is as defined in Theorem 6.1 (iii) 
and here f denotes a general fiber on T. But using the formula in Theorem 
6.1 (iii) gives 

ji.(:E). f = -(f. :E)(2e + 1) + 2(e + 2)(f·:E) - (f.:E) = 2(f· :E). 0 

7. PROOF OF THEOREM 6.1: A RIEMANN-RoCH CALCULATION 

We return to the notation of the preceding section. Our goal in this sec-
tion will be to approximate the universal bundle by a coherent sheaf which is 
essentially an elementary modification of n; Va, where Va is as described at 
the beginning of the preceding section and ni denotes the i th projection now 
on S x T. We have the map rp: T -. S of elliptic surfaces covering the map 
p: C -.]pl of the base curves. Let r be the graph of rp in S x T and let H be 
the graph ofthe composition IJI: T ~ C ...!!..... T ~ S , where we view (J' tem-
porarily not as a curve in T but rather as a morphism. Let D = S Xpl T c S x T 
and let iJ be the normalization of D. Let i: iJ -. S x T be the natural map. 
The singularities of D are of two types. The first type consists of points (p, q) 
where rp(q) = p and p and q are the singular points on a nodal fiber. At 
such points D has an ordinary double point as in the case where S has a sec-
tion. The second type of singularity is along a multiple fiber Fi . At a point 
of ]pI lying under Fi' the map C -.]pl is branched to order mi. Thus, in 
local analytic coordinates x, y, z ,won S x T the divisor D has the local 
equation xm; = zm; . If R is the local ring of D at such a point and R is its 
normalization, then the inclusion R ~ R is given by 

IC{x, y, z, w}/(xm; - zm j ) '-+ E9C{x, y, w}, 
k 

where the map from R to the eh factor in the direct sum is given by setting 
z = ,k X for ,= e2rc ..r-:T/m j • It follows that i is an immersion of schemes. 

Let Fj = rp -I (Fi) and let Ei be a component of Fi . There is thus an induced 
map Vi: E j -. Fi which is etale of degree mi. We also have maps D -. T and 
iJ -. D. Clearly D and iJ are flat over T (note that iJ is smooth away from 
the images of pairs of double points). The calculations above for Rand R 
show that the scheme-theoretic fiber of D at a point q E Ei is Fi as a multiple 
fiber and that i/g'b restricted to this fiber is Vjg'E . 

Since a section cannot pass through a singular p~int of a fiber, the graph H 
avoids the double point singularities of D. Denote also by H the pullback of 
H to iJ. Then H is a Cartier divisor on iJ. Define a torsion sheaf on S x T , 
supported on D, by the formula 

.9 = i.&'b( -r + (e + 2)H). 

This notation does not define .9 near the double points of D, but as H does 
not pass through the double points and iJ = D in a neighborhood of the double 
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points we can just glue .9 to IrlID at the double points. Equivalently we could 
just take the push-forward of the restriction of i.&jj( -r + (e + 2)H) to Dreg. 
Finally we shall let 1C I and 1C2 denote the first and second projections on S x T. 

Lemma 7.1. The sheaf 1C2.((1C;JO)v ®.9) is a line bundle on T, whose dual is 
denoted £7. Moreover 

I * v R 1C2.((1CI JO) ®.9) = o. 
Proof. Letting h: 1> ---+ T and j: 1> ---+ S x S ~ S be the natural maps, it is 
clear that 

1C2*((1C; JO) v ®.9) = h.((/ JO) v ® &jj( -r + (e + 2)H». 

So we must check that the restriction of (j* JO) v ®&jj( -r +(e+2)H) to each fiber 
of h has hO = 1 and hi = o. The only new case is the case corresponding 
to a multiple fiber. In this case the restriction to the fiber is (vt JO) v ® L, 
where L is a line bundle of degree e + 1 on E j • The degree 'of vt JO is 
mj(deg Vim) = 2e + 1 and vt JO is stable since it is the pullback of the stable 
bundle JOIFj . Thus by Corollary 1.2, ~(Ej; (vt JO) v ® L) has dimension one 
and HI(Ej ; (vtJO)v ®L) = O. 0 

Thus arguing as in the case of a section there is a unique nonzero map (mod 
scalars) 

• /7ZJ *= 1C I JO ---+ .:::r ® 1C2..z; • 

Unfortunately, if there are multiple fibers this map is no longer surjective. We 
shall return to this point in the next section. Our remaining goal in this section 
is to calculate £7: 
Lemma 7.2. With £7- 1 = 1C2.((1C; JO) v ®.9) and tJ = [.1]. we have 

-I [tJ2 1 + P g 2] • • 
CI (£7 ) = 4- -4--(e+2) (1 +Pg ) df -(e+2)(rp tJ·a)f +rp tJ -2(e+2)a. 

Proof. As before we shall apply the Grothendieck-Riemann-Roch theorem to 
find CI (1C h ((1C;JO)v ®.9»: it is the degree one term in 

1C2.(1C; ch JOV .1C; ToddS· ch i.&jj( -r + (e + 2)H». 

We have 
v (tJ2 - 2C) ch JO = 2 - tJ + 2 [pt], 

where tJ = [.1], and 
r 

ToddS = 1 + "2f + (1 + Pg)[pt], 

where 
1 1 -r = (p + 1) - - --. 

g m l m2 
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Thus the product of the first two terms above is 11:; (2 - 15 + r J + M[pt]) , where 

15 2 - 2c r 
M= 2 +2(1 +Pg )-2:(2e+ 1). 

Since we have 
2 152 - 4c 152 3 152 

15 - 2c = 2 + "2 = - 2: (1 + P g) + "2 ' 
we can rewrite this as 

152 5 r 
M = 4' + 4(1 + Pg ) - 2:(2e + 1). 

Next we must calculate ch i.&'f> ( -r + (e+2)H). Again using the Grothendieck-
Riemann-Roch theorem, and setting G = -r + (e + 2)H for notational sim-
plicity, we have, at least in the complement of the double points of D, 

ch i.&'f> (G) = i. [ch&'f>(G). (ToddNi)-I] , 

where Ni is the normal bundle to the immersion i. Now ch &'f> (G) = 1 + G + 
G2/2 + .. , . As for Ni' locally near the multiple fiber Fi' D is the union of 
m i sheets, and so 

N j = &'f>(D - (m l - I)BI - (m2 - I)B2) , 

where B j = Fj X Fi • It follows that 

(ToddNj)-1 = 1 _ D - (ml - I)Bd - (m2 - 1)B2 + ... 

and so 

h'&'-(G)=D G-' (D-(m l -l)B1-(m2 -1)B2) ,(G2) c I. D + I. 2 + I. 2 

_ i. (G. (D - (ml - I~BI - (m2 - 1)B2)) +" .. 

So we must take the degree three term in the product of the above expression 
with 11:; (2 - 15 + r J + M[pt]) and then apply 11:2., First, a calculation along the 
lines of Lemma 5.2 shows that 

[D] = J ® 1 + d(1 ® f), 
where J denotes either the class of a fiber in S or T, depending on the context. 
The degree three term above is then a sum of three terms: TI + T2 + T3 ' where 

TI = M([pt] ® 1) . D, 
T2 = -G· (15 ® 1) + G . (r J ® 1) 

- ~i.(D - (ml - I)BI - (m2 -1)B2)· (-15 ® 1 + rJ® 1), 

T3 = i.(d - G· i* D + (ml - 1)(G· B 1) + (m2 - 1)(G· B2))· 
Let us now apply 1I:h to these terms. First 

1I:2.TI = 1I:2.(Md)[pt] ® J = (Md)J. 
To calculate 11:2• T2 ' first note the following, whose proof is an easy verification: 
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Lemma 7.3. For every a E H2(S) , 

7t2• (1. a ® 1) = (p* a; 

7t2.(H.a®1)=(q/a.a)!- 0 

So the terms involving G in 7t2• T2 give 

- (e + 2)(qJ* J. a)f + qJ* 15 + (e + 2)r(qJ* f· a)f - rqJ* f 
= -(e + 2)(qJ* J. a)f + qJ* 15 + (e + l)rdf, 

where we have used qJ * f = df . 
To handle the terms involving Bj' note that i*[Bj] = mJFj x Pj]. Also 

[FJ = (llm)f and Pj consists of dlmj copies of f (the fiber on T) so that 

- (d) . d [Fj x FJ = -2 f®f; ,*[Bj] = -f®f. 
mj mj 

Also i.D = D2 = 2d(f ® f). Thus 

1. d(l 1) -"2 ,.(D - (m) - l)B) - (m2 - 1)B2) = -2 m + m (f ® f)· 
) 2 

The product of this term with f ® 1 is zero, and we are left with the product 
with -15 ® 1 , which contributes 

d(2e+ 1) (_1 + _1 ) f. 
2 m) m2 

Combining these, we see that 

*. d(2e + 1) ( 1 1 ) 7t2.T2=-(e+2)(qJ J·a)f+qJ J+(e+1)rdf+ 2 -+- f-
m) m2 

We tum now to the term 7t2* T3 • We have G2 = (e + 2)2 H2 - 2(e + 2)H· 1 + r _ 
To calculate 7tz. applied to these terms, we shall use the following lemma: 

Lemma 7.4. (i) 7t2.i.H2 = 7t2.i.r = -d(1 + Pg)f. 
(ii) 7tz.i.H. 1 = a. 

Proof. To see (i), note that we have an exact sequence 

0-+ Nr/v -+ Nr/sxT -+ N j -+ O. 

Also (r)v = ¢.c) (Nr /v) ' where ¢: 1 -+ jj is the inclusion. Now 

c) (Nr/v) = c1 (Nr/sxT) - c1 (Nj ) 

= c1(7t;Tsl1) - (D - (m) - 1)B) - (m2 - 1)B2)1f' 
= qJ·(r f) - «(f ® 1 + d(1 ® f)). 1 - (m 1 - 1)(Bl .1) - (m2 - 1)(B2 ·1)) 

= [-d (Pg + 1 __ 1 __ 1 ) _ (2d _ d(m) - 1) _ d(m2 - 1))]f 
m 1 m2 m 1 m2 

= -d(pg + 1)f. 
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Thus nhi.r = -d(1 + Pg)f. A similar calculation handles n2.i.H2. The 
proof of (ii) is an easy calculation. 0 

Thus 
2 2 n2.G = -d(Pg + 1)«e + 2) + l)f - 2(e + 2)(1. 

The remaining term is -n2• (G· (D - (ml - 1 )BI - (m2 - 1 )B2)). We have seen 
in the course of the proof of Lemma 7.4 that 

n2.r. (D - (ml - I)BI - (m2 - I)B2) 

=n H·(D-(m -1)B -(m _1)B)=(_1 +_1 )df . 2. I I 22m m 
I 2 

Thus 

In all then, 

n2.T3 =d[-(p +1)«e+2)2+ 1)-(e+l)(_1 +_1 )]f- 2(e+2)(1. 
g ml m2 ' 

Combining terms, we have 

-I [02 1 + Pg 2] • • cl (2' ) = T--4--(e+2) (I+Pg) df-(e+2)(rp O'(1)f+rp 0-2(e+2)(1, 

as claimed. This concludes the proof of Lemma 7.2. 0 

8. PROOF OF THEOREM 6.1: CONCLUSION 

We keep the notation of the two previous sections. We begin by constructing a 
"universal bundle" i?" over Sx T. Begin with the morphism n; Va ~ .9'®n;2' 
defined in the previous section, and let i?" be the kernel. By construction i?" 
is locally free away from (FI x £1) II (F2 x £2)' There is an exact sequence: 

o ~ i?" -+ n; Va -+.9' ® n;2' -+ (,fl ED ~2 -+ 0, 

where (,f; is supported on F; x F;. Now ~ is a disjoint union of dim; fibers 
of T. Let (,f = (,fl ED (,f2 and let C denote the total Chern polynomial. Then 

~. • -I c(r) = n I c( Va) . c(.9' ® n22') . c«(,f). 

Thus if we let n; c(Vo)' c(.9' ® n;2')-1 = 1 + XI + x 2 + ... , then 

c2(i?") = x 2 + c2«(,f) ; 
~ 2 ~ 2 ci (r) - 4c2(r) = XI - 4x2 - 4c2«(,f)· 

Now we claim that Theorem 6.1 is a consequence of the following two results: 
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Theorem 8.1. There exist integers q(e, m) such that 

c2((2'j) = dq(e, mj)[Fj x 11-
Here the integer q(e, m) depends only on an analytic neighborhood of Fi and 
e but not on S or Pg(S). 

Theorem 8.2. The coherent sheaf 7/" is locally free. 
Proof that Theorems 8.1 and 8.2 imply Theorem 6.1. Let us consider the restric-
tion of 7/" to a slice S x {q}. In all cases this restriction is a vector bundle V 
whose restriction to every smooth fiber f of S not equal to the fiber containing 
rp(q) is Valf. Thus the restriction of V to such a fiber f is stable, and so V 
is stable by Theorem 3.4. Now if rp(q) does not lie on a multiple fiber, there is 
an exact sequence 

0--. V --. Va --. Q --. 0, 
where Q is the direct image of the line bundle on f corresponding to the 
divisor (e + 2)!fI(q) - rp(q) , which has degree e + I . Thus ci (V) ~,1. - f and 
PI (ad V) = PI (ad Va) - 2. This establishes (i) of Theorem 6.1. Note also that 
the map q I---t (e + 2)!fI(q) - rp(q) defines a rational map from T to f+I(S) 
(which in fact is a morphism) and the map T ---+ 9)11 factors through the map 
T --. f+1 (S), compatibly with the identification of a dense open subset of 
f+\S) with a dense open subset of 9)11 given in Theorem 3.14. 

Next let us calculate the degree of the induced morphism T --. 9)11. Fix a 
general smooth fiber f of S, a line bundle L on f of degree e + 1 and a 
vector bundle V which is uniquely specified by an exact sequence 

0---+ V --. Vo ---+ i.L --. 0, 

where i: f --. S is the inclusion. We shall count the preimage of V in T. If f 
is general, then T ---+ S is unbranched over f and the preimage of f consists 
of d distinct fibers fl ' ... , f d . Moreover rp restricts to an isomorphism from 
J; to f for each i. The image of J; under !fI is a single point Pj E f 
corresponding to the point a n J;. Now clearly there is a unique point qj E J; 
such that 

L = &f((e + 2)p j - rp(q)). 
Thus the preimage of V consists of d distinct points, and so the map T -; 9)11 
has degree d. 

Lastly we must calculate PI (ad 7/"). We begin by calculating n:~ c( Vol . 
c(g"CSI7r;y)-I. Here n:~c(Vo)= 1+n:~J+n:~c[pt]. As for the term c(g"(>9n:;Y) , 
we clearly have ci (g" (>9 n:;Y) = D = (f (>9 1) + d( 1 (>9 f). On the other hand, 
with the notation of Section 7 we may apply the Grothendieck-Riemann-Roch 
theorem to the immersion i: iJ --. S x T to obtain 

ch(g" (>9 n:;Y) = i. [ch&j)((e + 2)H - J)(ToddNjfl . n:; chY)]. 

A calculation similar to those in Section 7 shows that this is equal to 

'[1 ( 2)H r' • D-(m l -l)B1 -(m 2 -I)B2 ] I +e+ -l-n:a- + ... 
• 2 2 ' 
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where a = c, (.:?-') has been calculated in Lemma 7.2, and further manipula-
tion gives 

- 2c2(.9' 0 n;.:?) 

=-2[D]2+2 [(e+2)H-r-n;a.[D]-d (1- ~, + 1- ~J(f0f)]. 

Recalling that n; c( Yo) . c(.9' 0 n;.:?) -, = 1 + x, + x2 + ... , we have 

(1 + x, + x2 + ... )(1 + [D] + c2(.9' 0n;.:?)) = 1 + n;c5 + n;c[pt]. 

Thus x, = n; c5 - [D] and 

* * 2 * 0:> x2 = n, c[pt] - n, c5 • [D] + [D] - c2 (.9' 0 n2..z; ). 

A calculation then shows that 
2 * * 2 * x, - 4X2 = n,p, (ad Yo) + 2n, c5. [D] + [D] - 4(e + 2)[H] + 4[r] + 4n2a. [D] 

+ 4 (1 - _1 + 1 - _1 ) d(f 0 f). 
m, m2 

There are correction terms b(m;) = 1 - 11m; depending on the multiple fibers. 
Now ' 

~ 2 
P, (ad r) = x, - 4x2 - 4c2(e$') 

* * 2 * = n,p,(ad Vo) + 2n,c5· [D] + [D] - 4(e + 2)[H] + 4[r] + 4n2a· [D] 
+ 4(b(m,) - q(e, m,)lm, + b(m2) - q(e, m2)lm2)d(f 0 f), 

where the terms b(m;), q(e, mil depend only on an analytic neighborhood of 
the multiple fiber and are both 0 if m; = 1 . Let 

c(e, m;) = 4(b(m;) - q(e, m;)lm;). 

Taking the slant product of this expression with [L], using the fact that [r]\[L] 
= rp*L and [H]\[L] = (rp*L. a)f, and plugging in the expression for a given 
by Lemma 7.2 gives the final formula in Theorem 6.1 (iii). 0 

Proof of Theorem 8.1. Choose an analytic neighborhood X of F;. We may 
assume that X fibers over the unit disk in C. Then rp -, (X) consists of dim; 
copies of X , which is the normalization of the pullback of X by the map from 
the disk to itself defined by z = w m; . Restrict rp and Yo to this local situation, 
and let D now denote the fiber product inside X x X and jj its normalization. 
We can similarly define the codimension two subsets rand H . Let us examine 
the dependence of the terms Yo and &b«e + 2)H - r) on the various choices. 

First, suppose that Yo and V~ are two different choices of a bundle over 
X whose determinants have fiber degree 2e + 1 and whose restrictions to the 
reduction of every fiber are stable. Then det Yo 0 (det V~)-' has fiber degree 
zero. On the other hand, from the exponential sheaf sequence 

H' (X; &x) --+ Pic X --+ H2(X; Z) 
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and the identification H2(X; Z) ~ H2(Fi; Z) ~ Z, it follows that the group of 
line bundles of fiber degree zero is divisible. Thus there is a line bundle L on 
X such that det V~ = det(Yo ® L). The proof of Corollary 3.8 shows that V~ 
and Yo ® L differ by twisting by a line bundle pulled back from the disk, which 
is necessarily trivial. Thus V~ ~ Yo ® L . 

The remaining choice was the choice of a section ° of X. Given two such 
choices °1 and °2 , we have two divisors HI and H2 on iJ, and two line 
bundles &[)((e + 2)HI - r) and &[)«e + 2)H2 - r) . Their difference is the line 
bundle &[)«e + 2)(HI -H2)). The restriction of &[)«e+2)Hj-r) to each fiber 
f of the map iJ --+ X over q E X is the line bundle &f«e + 2)Pi - q), where 
Pj = OJ nf and we can identify the fiber over q with the fiber on X containing 
q via rp. Let \}I: X --+ X be the inverse of the map given by translation by the 
divisor of fiber degree zero (e + 2)(01 - 02) - c1 (L) , where L is the pullback to 
X of L. Thus \}I-I(q) = q+(e+2)(PI -P2)-A., where qEf and A. is the line 
bundle Llf. Now Id x \}I acts on X x X , preserving the divisor D and acting 
as well on the normalization iJ. Clearly the line bundles &[)«e+2)H2-r)®n; L 
and (Id x\}l)*&[)«e + 2)HI - r) have isomorphic restrictions to each fiber of 
the map iJ --+ X. Thus they differ by the pullback of a line bundle L' on X. 
Thus we have an isomorphism 

(Id x\}l)* (n; YoV ®i.&[)«e+2)HI -r)) ~ (n; Yo) v ®i.&[)«e+2)H2-r)®n; L®n;L' 

and a similar isomorphism when we apply ROnh . Lastly every map n· Vo --+ 

i.&[)«e + 2)HI - r) which corresponds to an everywhere generating section of 
the line bundle n2.Hom(n;Yo, i.&[)«e + 2)HI - r)) under the natural map 

n;nhHom(n; Yo, i.&[)«e + 2)HI - r)) --+ Hom(n; Yo, i.&[)«e + 2)HI - r)) 

is determined up to multiplication by a nowhere vanishing function on X. 
It now follows that, up to twisting by the pullback of the line bundle L' on 
X, we may identify the map n; V~ --+ i.&[)«e + 2)H2 - r), up to a nowhere 
vanishing function on X and up to twisting by the pullback of a line bundle 
on X, with the pullback under (Id x \}I). of the corresponding m~p from n; Yo 
to i.&[)«e + 2)HI - r). In particular the cokemels of these maps, viewed as 
sheaves supported on Fj x E j , have the same length. But the lengths of the 
cokemels are exactly what is needed to calculate C2(~j)' in the notation of the 
beginning of this section. Thus we have established Theorem 8.1. 0 

Remark. We could easily show directly by a slight modification of the proof 
above that the integers q(e, m j) defined above are independent of e. 

Proof of Theorem 8.2. We begin with the following (see also (A.2)(i»: 

Lemma 8.3. The sheaf r is reflexive. 
Proof. Since r is a sub sheaf of the locally free sheaf n; Yo, it is torsion free. 
Thus it will suffice to show that every section r of r defined on an open set 
of the form W - Z , where W is an open subset of S x T and Z is a closed 
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subvariety of W of codimension at least two, extends to a section of rover 
W. Now locally (after possibly shrinking W) r is given by an exact sequence 

- 2 o -+ rl W -+ &'w -+ i .. &'t> I w. 
Now viewing the section "C as a section of &'~ over W - Z , it extends as a 
section of &'~ by Hartogs' theorem. Let i' be the unique extension. Then the 
image of i' in i .. &'t> I W vanishes on D - Z , which is nonempty. Clearly then 
it is zero. Thus the extension i' defines a section of r extending "C, so that 
r is reflexive. 0 

Returning to the proof of Theorem 8.2, let U = 8 x T - (FI x PI) - (F2 x P2). 
By Lemma 8.3, r is a reflexive sheaf which is locally free on U. We claim 
that r is everywhere locally free. The problem is local around each point 
(x, y) of Fi x Pi' Since r is reflexive, it will suffice to show the following: 
each point y of Pi has a neighborhood ,AI' such that rl(8 x,Al') n U has an 
extension to a locally free sheaf over 8 x ,AI' . 

Let To = T - PI - P2. Clearly To is the inverse image of f+1 (8) - FI - F2 
under the natural morphism from T to f+I(8). The restriction of ~ to 
8 x To is a bundle over 8 x To in the sense of schemes since it is the restriction 
of a coherent sheaf over 8 x T. Thus it induces a morphism of schemes from 
To to 0011, If we denote the points of 0011 corresponding to mUltiple fibers 
by FI and F2 again, then it is easy to see that the map of Theorem 3.14 
extends to an embedding f+I(8) - FI - F2 -+ 0011 - (FI U F2). Thus the map 
To -+ 0011 - (FI U F2) is proper. This map extends to a rational map from 
T to 0011, After blowing up T, there is a morphism from the blowup t to 
0011, The image of t- To must clearly lie inside the two elliptic curves in 
0011 corresponding to elementary modifications along FI or F2 • Since there 
are no nonconstant maps from pi to an elliptic curve, every exceptional curve 
on t is mapped to a point, and the map To -+ 0011 extends to a morphism 
q,: T -+ 0011, Clearly the morphism q,: T -+ 0011 identifies 0011 with f+I(8). 

Given y E Pi' choose a neighborhood No of q,(y) in 0011 such that there 
exists a universal bundle over 8xNo' and let ,AI' be the component of q,-I(No) 
containing y. Thus there is a universal vector bundle '1F over 8 x,Al'. By con-
struction '1F18 x (,AI' - Pi) and rl8 x (,AI' - p;) have isomorphic restrictions to 
every slice 8 x {z} . Thus 7[z.,H om('1F , r) is a torsion free rank one sheaf on 
,AI' , which is thus an ideal sheaf on ,AI' if ,AI' is small enough. We may assume 
that 7[z.Hom('1F, r)l,AI' - {y} is just the structure sheaf. Choosing an every-
where generating section of 7[z.,Hom('1F, r)l,AI' - {y} gives a homomorphism 
'1F18 x (./1/" - {y}) -+ rl8 x (,AI' - {y}) . This homomorphism is an isomorphism 
over 8 x (,AI' - Pi) and is nonzero at a general point of S x «,AI' - {y}) n Pi) . 
As both '1F and r are vector bundles away from Fi x (,AI' n Pi) whose re-
strictions to every smooth fiber of 8 in every slice are stable, it follows that 
'1F18 x (,AI' - {y}) -+ rl8 x (,AI' - {y}) is an isomorphism in codimension one. 
Since both sheaves are reflexive, they are isomorphic. Finally '1F and rare 



VECTOR BUNDLES AND SO(3)-INVARIANTS FOR ELLIPTIC SURFACES 123 

two reflexive sheaves which are isomorphic on the complement of the codimen-
sion two set S x {y} C S x ./If , so they are isomorphic. Thus r is locally 
free. D 

9. THE FOUR-DIMENSIONAL INVARIANT 

Our goal in this section will be to calculate the four-dimensional invariant. 
What follows is an outline of the calculation. Let 9Jt2 denote the moduli space 
of Gieseker stable torsion free sheaves on S of dimension four. As we have 
seen, 9Jt2 is smooth and irreducible and birational to Hilb2 f+ I (S). In fact, 
we shall begin by establishing a more precise statement. Let Yi C Hilb2 f+1 (S) 
be the subset of codimension two consisting of sub schemes of f+1 (S) whose 
support has reduction contained in the multiple fiber Fi on f+1 (S). Clearly 
Yi has two components: one component is just Sym2 Fi' the closure of the 
locus of two distinct points lying on Fi' and the other is a pI -bundle over 
Fi corresponding to nonreduced subschemes whose support is a point on Fi . 
There is a similar subscheme Y; of 9Jt2, consisting of torsion free sheaves V 
on S such that either V is not locally free and the unique point where V is 
not locally free lies on Fi or V is a bundle obtained from Vo up to equivalence 
by taking two elementary modifications along line bundles on Fi • We claim: 

Lemma 9.1. The isomorphism defined in Theorem 3.14 from a Zariski open 
subset of Sym2 f+1 (S) to an open subset of 9Jt2 extends to an isomorphism 

'lb2 e+1 (S) -" HI J - YI - Y2 ~ 9Jt2 - Y I - Y2 . 

Let us remark that, in case there are multiple fibers, the birational map above 
does not extend to a morphism. This follows from the identification of the 
function d(e, mi ) below, and can also be seen directly as follows. The moduli 
space 9Jt2 contains the set of nonlocally free sheaves, which is a smooth pl_ 
bundle over S. The corresponding subset of Hilb2 f+1 (S) is the image of 
the blowup of f+I(S) Xpl f+I(S) along the diagonal (which is not a Cartier 
divisor) under the involution. It is easy to see that this image is not normal 
along the image of Fi x Fi if mi > 1 . 

There is an isomorphism H2(Hilb2 f+I(S) - YI - Y2) ~ H2(9Jt2 - Y; - Y;), 
so that by restriction we can view fl.(L) as an element of 

H2(Hilb2 f+I(S) - YI - Y2) ~ H2(Hilb2 f+I(S)). 

Denote this element of H2(Hilb2 f+I(S») by fl.'(L). In fact, It IS easy to 
identify this element: let 0: 1 = fl.1 (L) E f+1 (S) be given by the fl.-map for the 
two-dimensional invariant, and set 

(f. L) 
0:2 = 0: 1 + -2-f. 

Then we have the following formula: 
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Lemma 9.2. 
tJ,' (r.) = D - (f. r.) E. 

"2 2 

Now ai is just the value of the two-dimensional invariant, which we shall 
write as (r.2) + C I (K' r.)2 , where C I = mim;(pg + 1) - mi - m;. Thus 

2 2 a 2 = a I + (f . r.)( a I • f) 
2 2 = a l + 2(f· r.) 
222 2 

= (r. ) + (CI + 2ml m2)(K' r.) , 

where we have used Lemma 6.5 to conclude that a l . f == 2(f· r.). 
Thus a routine calculation with the multiplication table in Hilb2 f+1 (S) 

gives: 

Lemma 9.3. 
p,' (r.)4 = 3(r.2)2 + 6CI (r.2)(K . r.)2 

[ 2 44 34 43] 4 + 3CI -(2(pg+l)+12)mlm2+8(mlm2+mlm2) (K·r.). 0 

Of course, this is a calculation on Hilb2 f+I(S), not on VJ12: To get an 
answer on VJ12 , we shall argue that the above formula must be corrected by 
terms which only depend on the multiplicities of the multiple fibers and not on 
Pg' 
Lemma 9.4. There exist a function d(e, m j ), depending only on e and an an-
alytic neighborhood of the multiple fiber Fj in S, with the following properties: 

(i) d(e,I)=O. 
(ii) tJ,(r.)4 - tJ,' (r.)4 = m:mi(d(e, m l ) + d(e, m2))(K . r.)4. 

We can now complete the proof of (ii) of Theorem 0.5 in the Introduction: 

Corollary 9.5. For all r. E H2 (S; Z), 
22 2 2 2 4 Y2(S)(r., r., r., r.) = 3(r.) + 6CI (r. )(r.. K) + (3CI - 2C2)(r.· K) , 

where 
2 2 2 2 CI = (m l m2)(pg(S) + 1) - m l - m2; 
4 4 4 4 

C2 = (m l m2)(pg(S) + 1) - m l - m2. 

Proof We must calculate Y2(S)(r., r., r., r.) = tJ,(r.)4. By Lemma 9.4, the 
coefficients in tJ,(r.)4 of (r.2)2 and of (r.2)(r.'K)2 agree with the corresponding 
coefficients of tJ,' (r.)4 , and these are calculated in Lemma 9.3. It also follows 
from Lemmas 9.3 and 9.4 that the coefficient of (K' r.)4 in tJ,(r.)4 is given by 

2 44 344344 
3CI -(2(pg+l)+12)mlm2+8(mlm2+mlm2)+mlm2(d(e, ml)+d(e, m2))· 

To calculate d(e, m;), take as before S to be a rational surface with a multiple 
fiber of multiplicity mi' In this case, arguing as in the proof of Theorem 6.3, 
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the coefficient of (K.1:)4 is the same as the coefficient of (K.1:)4 for the rational 
surface with no multiple fibers. To calculate this coefficient, we apply Lemmas 
9.3 and 9.4 with m, = m2 = 1 and P g = 0, to see that ,u(1:)4 = ,u' (1:)4 and 
thus that the coefficient of (K .1:)4 is 3 -14+ 16 = 5. Now taking Pg = 0 and 
m, arbitrary and m') = 1 in the above formulas gives C, = -1 and 

2 4 3 4 4 5 = 3(-1) -14m, + 8(m, + m,) + m,d(e, m,). 
4 3 4 Thus m,d(e, m,) = 2 - 8m, + 6m, ,or 

2 8 
d(e, m,) = 4 - - + 6. 

m, m, 

Plugging this into the expression above for the coefficient for (K· 1:)4 in the 
general case gives 

2 44 4444 3C, - (2(Pg + 1) + 12)m, m2 + 12m, m2 + 2m, + 2m2 
2 4 4 4 4 

= 3C1 - 2«Pg + l)mlm2 - ml - m2)· 

We may write this answer more neatly as 3C~ - 2C2 , where 
2 2 2 2 C1 = m 1m2(Pg + 1) - m l - m2 ; 
4 4 4 4 C2 = m 1m2(Pg + 1) - ml - m2. 0 

10. PROOF OF LEMMAS 9.1, 9.2, AND 9.4 
In this section we shall give a proof of the remaining results from the previous 

section. 

Proof of Lemma 9.1. The lemma asserts the existence of an isomorphism from 
Hilb2 f+I(S) - Y1 - Y2 to 9Jt2 - Y; - Y; extending the isomorphism given in 
Theorem 3.14. The isomorphism of Theorem 3.14 is defined on the open set 
U of Hilb2 f+I(S) consisting of pairs of points {Zl' z2} such that Zl and 
z2 lie in distinct fibers, neither of which is singular or multiple. We must show 
that the map extends over the set of pairs {Zl' z2}' where Zl and z2 lie in 
distinct fibers, one or both of which may be singular or multiple, as well as over 
the set of pairs Z where either Z is nonreduced but the support of Z does 
not lie in a multiple fiber or where Z = {Zl ' z2} with Zl and z2 lying in the 
same nonmultiple fiber. 

Let us first consider the case where zl and z2 lie in distinct fibers. As in 
Section 7, choose an elliptic surface T ~ C with a section such that C is a 
finite cover of pi , generically branched except below the multiple fibers and T 
is the normalization of S Xpl C. Let 'P: T ~ S be the natural map. There 
is also the map 'Pe+l: T ~ f+I(S) defined by ,9J, i.e. if q E T, f is the 
fiber containing q and P = f n a, then 'Pe+l (q) = &'f«e + 2)p - q). We have 
constructed a universal bundle r ~ S x T in Section 7 for the choices of w 
and P corresponding to the two-dimensional invariant. Let (; c TxT be the 
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open set of pairs of points (YI ' Y2) such that qJ(YI ) and qJ(Y2) lie in different 
fibers. Let ~ be the pullback of r to S x () via the natural projection of 
S x () C S x TxT onto the first and second factors. We also have the coherent 
sheaf .9' on S x T defined at the beginning of Section 7. Let .9" be the 
pullback of .9' to S x () defined by the projection of S x TxT to the first 
and third factor. Thus given a point (YI ' Y2) E (), the restriction of ~ to 
the slice through (YI' Y2) is an elementary modification of fO along the fiber 
containing qJ(YI) and the restriction of .9" to the slice through (YI ' Y2) is the 
direct image of a line bundle of degree e + 1 on the fiber through qJ(Y2). Thus, 
leting 112 denote the projection S x () -+ (), 1l2• (~V (81 .9") is a line bundle 
on (), whose inverse we denote by y' . Define ~ as the kernel of the natural 
map ~ -+ .9" (81 y'. The proof of Theorem 8.2 shows that ~ is a vector 
bundle whose restriction to each slice S x {(Y I ,Y2 )} is stable. The induced 

- f 2 e+1 map U -+ DJ12 then descends to a map from the open subset 0 Hilb J (S) 
consisting of points lying in distinct fibers to DJ12 • (In fact, the proof shows that 
this morphism extends to a morphism defined on the complement of the divisor 
E of nonreduced points together with the proper transforms of Sym2 FI and 

2 Sym F2 .) 

Next we must extend the morphism over the points of Hilb2 Je+1 (S) corre-
sponding to points lying in the same nonmultiple fiber and nonreduced points 
whose support does not lie in a multiple fiber. In order to do so, we will need 
the model for elliptic surfaces with a section constructed in Section 4. Let Z 
be a point of Hilb2 f+1 (S) such that Supp Z lies in a single nonmultiple fiber 
f, and let X be a small neighborhood of f mapping properly to a disk in-
side pl. Thus there is a biholomorphic map from X to a neighborhood of 
the corresponding fiber in the Jacobian surface J(S) , and we may further as-
sume that the image of Supp Z does not meet the identity section (J under this 
map. Now the results of Section 4, after tensoring by ~x(e(J), give a rank two 
vector bundle V~ over X whose restriction to every fiber is stable of degree 
2e + 1 and a rank two reflexive sheaf ~ over X x (Hilb2 X - Du )' flat over 
H = Hilb2 X - D u ' whose restriction to each slice is an elementary modification 
of V~ . Let fO denote as usual the bundle on S whose restriction to every fiber 
is stable. Then as in the proof of Theorem 8.1 there is a line bundle L on X 
such that fOlX ~ V~ (81 L . 

The sheaf ~ (811l; L has the following property. Let fB c X x H be the set 
fB = {(x, Zl ' Z2) 11l(x) = 1l(z) for some i }. 

Let p be a point of Hand lU a small neighborhood of p, which we can 
identify with a neighborhood of Z E Hilb2 f+\S). We can assume that lU is 
a polydisk. There is a proper map II: (X x lU) - fB -+ (Do x lU) - fB' induced 
by 1l: X -+ Do ' where Do is the disk which is the base curve of X and 

fB' = {(t, zi ' Z2) I t = 1l(zi) for some i }. 
By construction the restrictions of ~ (81 1l; Land 1l; fO to each fiber of II 
are isomorphic stable bundles on the fiber, which is reduced (possibly nodal). 
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Thus ROll.H om(~ ® 7l'; L, 7l'; Yo) is a line bundle !T on (Do x U) - ~' . 
Both ~ ® 7l'; L and 7l'; Yo extend to coherent sheaves on X x V. Therefore 
ROll.Hom(~ ® 7l';L, 7l';Yo) = !T extends to a coherent sheaf on Do x V, 
which we shall continue to denote by !T. Replacing !T by its double dual if 
necessary, we can assume that it is reflexive, and thus since its rank is one that 
it is a line bundle. Since by assumption every line bundle on Do x V is trivial, 
ROll.H om(~ ® 7l'; L, 7l'; Yo) is a trivial line bundle on (Do x V) - ~' , and 
we can thus choose an everywhere generating section. This section corresponds 
toa homomorphism from ~ ® L to 7l';Yo over (X x V) - ~ which is an 
isomorphism on every fiber. It follows that we can glue ~ ® L to 7l';Yo over 
(XxV)-~. Since {XxV, (SxV)-~} is an open cover of SxV whose 
intersection is (X x V) - ~ , we have constructed a coherent sheaf on S x V, 
flat over V. In this way we have extended the morphism from (; n V over all of 
V. So the morphism U --+ !JJ12 extends over all the points Z E Hilb2 f+l (S) 
such that A ¢. YI U Y2 • Clearly its image is exactly !JJ12 - Y; - Y~. 0 

Proof of Lemma 9.2. We shall show that the divisor /i (1:) which is the natural 
extension of the restriction of J.l(1:) to Hilb2 f+1 (S) - YI - Y2 to a divisor on 
Hilb2 f+I(S) is equal to Da2 - ((f.1:)/2)E. Recall that H2(Hilb2 f+I(S)) ~ 
H 2(f+I(S)) EEl Z . [E/2]. Also, given a point Y E f+l(s), there is an in-
duced morphism r y: Bly f+ I (S) --+ Hilb2 f+ I (S) defined on f+ I (S) - {y} 
by ry(x) = {x, y}. If Ey is the exceptional divisor on Bly f+I(S), then it is 
easy to see that r;Da = 0 for all 0 E H 2(f+I(S)) (where we have identified 
H2(f+ l (s)) and H 2(f+I(S)) and identified H 2(f+I(S)) with a subspace of 
H 2(Bly f+1 (S)) ). Also r;[E] = 2[Ey] , which can easily be checked by going up 
to the double cover of Hilb2 f+1 (S) which is the blowup of f+1 (S) x f+1 (S) 
along the diagonal. Similarly, suppose that 'P: T --+ S is a finite cover as usual 
and consider the morphism 'Pe+l: T --+ f+I(S) defined by g, i.e. if q E T, 
f is the fiber containing q and p = f n (J, then 'PHI (q) = t?f«e + 2)p - q) . 

Suppose that y is a general point of f+1 (S) (and so does not lie on a multiple 
or singular fiber) and let 'P ;;'1 (y) = {y 1 ' ... , Y d}. Then there is an induced 

{ } . 2 e+1 • * map r: T - YI' ... ' Yd --+ HIlb J (S), and clearly we have r Da = 'P o. 
In particular the map r· is injective on the subspace H 2(f+ l (s)), and we can 
determine J.l' (1:) provided that we know r*",' (1:) and ",' (1:) lEy . Note finally 
that the image of rand Ey are contained in Hilb2 f+1 (S) - Y1 - Y2 , so that 
we can calculate the ",-map by finding a universal family of coherent sheaves 
on Sx(T-{YI' ... 'Yd}) andover SXEy . 

To find such a family, begin with the bundle 'F over S x T. We know that 
jl(1:) = 'P;+101 ' where ji is the natural ",-map defined on T and 0 1 = ",(1:) is 
the J.l-map for the two-dimensional invariant. Fix a general fiber f of Sand 
a point Y E f+1 (S) corresponding to a line bundle A. of degree e + 1 on f. 
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Let 1; , ... ,Id be the fibers on T lying above 1 and YI ' ... 'Yd the points of 
T corresponding to A. We shall perform an elementary modification along the 
divisor 1 x T with respect to the line bundle n: A. This will run into trouble 
along Y I ' ... , Y d ' so that we will restrict to S x (T - {y I ' ... , Y d } ). The upshot 
will be a family of stable torsion free sheaves on S x (T - {y I ' ... , Y d}) such 
that the induced morphism T - {y I ' ... , Y d} ---- 9Jt2 is r. 

First let us calculate 

Hom(rlS x (T- {Y I ' ... , Yd})' n;A). 

If ~ is the restriction of r to the slice S x {t}, then ~ is an elementary 
modification of Va either at a fiber different from A or along 1 with respect 
to a line bundle t of degree equal to degA but with i =f. A. It follows 
that the map Hom(Va, A) ---- Hom(~, A) defined by the inclusion ~ c Va is 
a map between two one-dimensional spaces by Lemma 1.3(i), and its kernel 
is HO((i)-1 ®A) = O. Thus Hom(Va, A) s:: Hom(~, A) and the induced map 
ROnhn; (Vav ®A) ---- ROn2• (rlSx (T -{Y I ' ..• , Y d}) v ®n; A) is an isomorphism. 
As ROn2 .n;(Vav ®A) is the trivial line bundle, there is a unique homomorphism 
mod scalars from r IS x (T - {y I ' ... , Y d}) to n; A and its restriction to each 
slice is the corresponding nonzero homomorphism on the slice. Let ~ be the 
kernel, so that there is an exact sequence 

o ---- ~ ---- r IS x (T - {y I ' ... , Y d}) ---- n; A. 

Note that the right arrow fails to be surjective over the slice S x it} only 
if (fI(t) E I, and in this case it vanishes at one point. Thus by (A.5) ~ is 
reflexive and flat over T - {y I ' ... , Y d} , and is a family of torsion free sheaves 
parametrized by T - {y I ' ... , Y d} . The restriction of ~ to a general fiber in 
every slice is stable, and thus ~ is a flat family of stable torsion free sheaves. 
Clearly the corresponding morphism to 9Jt2 is r. 

Next we claim that 

PI(ad~)=PI(adr)-2d(f®/)+'" , 

where the omitted terms do not affect the slant product. Indeed the defining 
map rlS x (T - {Y I , ••• 'Yd}) ---- n;A is surjective in codimension two, so 
that in calculating PI (ad~) we can in fact apply the lemma on elementary 
modifications as if the map were surjective. Now the lemma gives 

PI(ad~) = PI(adr) + 2cl (r). (f ® 1) - 4i.(A ® 1)· (I ® 1). 

Using cl (r) = n; c l (Va) - [(f® 1) +d(1 ®/)] and plugging in gives the claimed 
formula for PI (ad~). Thus 

-(PI (ad ~)\~)/4 = -(PI (ad r)\~)/4 + d(f . 'I.)1/2 

= (fI ;+1 (a l ) + ((f. 'I.)/2) (fI;+1 (f) 

= (fI;+I(a2 ) , 
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and the pullback of 1l'(I.) to T-{YI' ... 'Yd} under T isjust tp;+I(a2 ). It 
follows that Il' (I.) = D + aE for some rational number a. a 2 

To determine the coefficient of E in Il' (I.), fix a general fiber J of S 
and a line bundle A of degree e + 1 on J, which corresponds to a point 
Y E f+'(S). The set of points of Hilb2 f+'(S) whose support is {y} is a 
curve Ey ~ pi . We shall construct a universal sheaf ~ over S x Ey and show 
that -(PI (ad ~)\I.)/4 = (f. I.). 

Begin with V which is obtained from Va by a single elementary modification 
along A. Thus VIJ = A EElIl with degA = e + 1 and degll = e. By Lemma 
1.3(ii) dim Hom(V , A) = 2 and there is a unique nonzero homomorphism 
from V to A which is not surjective, indeed which vanishes exactly at the point 
corresponding to the degree one line bundle A ® Il-I . Identify P(Hom( V , A)) 
with pi (and with Ey). There is a general construction [9] of a universal 
homomorphism <1>: n; V ® n;&1I'1 (-1) ~ n; A. Thus we can define ~ to be its 
kernel: 

o ~ ~ ~ n;V ® n;&pl(-I) ~ n;A. 
By (A.5) in the Appendix, ~ is reflexive and flat over pi, and is a fam-
ily of torsion free sheaves, which are locally free except for the point of pi 
corresponding to the nonsurjective homomorphism. The restriction of ~ to a 
general fiber in every slice is stable, so that the restriction of ~ to each slice is a 
stable torsion free sheaf. The induced map to 9)12 is easily seen to be one-to-one 
with image Ey • We may again calculate PI (ad~) by the lemma on elementary 
modifications, noting that ci (n; V ® n;&pl (-1)) = n;c l (V) + 2n;c l (&11'1(-1)): 

PI(ad~) = n;PI(ad V) + 2(n;c l (V) + 2n;c l (&pl(-I))). (J® 1) - 4i.n;c l (A). 

The only term which matters for the slant product is the term 4n; ci (&11'1 (-1)) . 
(J ® 1). Thus 

Il' (I.) .Ey = -(1/4)4(-I)(J·I.) = (f. I.). 
Bearing in mind that E· Ey = -2, it follows that the coefficient of E in Il' (I.) 
is -(J. I.)/2. So putting this all together gives the final answer for Il' (I.) in 
Lemma 9.2. 0 

ProoJ oj Lemma 9.4. The basic idea of the proof is similar to the idea of the 
proof of Lemma 9.1. Fix an analytic neighborhood X of the multiple fiber Fj 

as usual. Let Xe be the corresponding subset of f+'(S). Then X = Hilb2 Xe 
may be identified with an analytic open subset of Hilb2 f+' (S) which is a 
neighborhood of Yj • Under the birational map Hilb2 f+' (S) ---? 9)12' the 
open set X corresponds birationally to an open set X' which is a neighborhood 
of Y; . Moreover X - Yj ~ X' - Y; . 

Now let So be another nodal elliptic surface containing a multiple fiber of 
multiplicity mj and let Xo be an analytic neighborhood of the multiple fiber. 
Let Llo be a divisor on So of fiber degree 2e + 1 and let V~ be a rank two 
vector bundle whose restriction to every fiber is stable. We suppose that Xo 
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is biholomorphic to X and identify them. We may then define Xo and X~ 
analogously. There are also closed subsets of Xo and Xo corresponding to ~ 
and Y;, which we shall again denote by Yj and Y;. Of course Xo ~ X under 
the identification Xo ~ X . The main claim is then the following: 

Claim 10.1. There is a biholomorphic map X~ ~ X' which is compatible with 
the isomorphisms 

X~ - Y: ~ Xo - :r; ~ X - Yj ~ X' - Y:. 
Proof. For emphasis, we will write 9Jt2 (S) for the moduli space for S, and 
similarly 9Jt2 (So) for the moduli space for So. We shall glue X~ to 9Jt2 (S) - Y; 
along X - :r;, and show that the result maps to 9Jt2 (S) , compatibly with the 
inclusion 9Jt2(S) - Y; ~ 9Jt2(S). This will define a proper morphism from X~ 
to X' of degree one which is an isomorphism in codimension one, and thus is 
an isomorphism by Zariski's Main Theorem. 

We must show that the inclusion 9Jt2 (S)-Y; ~ 9Jt2 (S) extends to a morphism 
from X~ to 9Jt2(S). It suffices to do so locally around each point of X~. Given 
an arbitrary point p E X~ , let lU c X~ be an open neighborhood of p which 
is biholomorphic to a polydisk, so that Pic lU = 0, and such that there exists 
a universal sheaf ~ over So x lU. Denote again the restriction of ~ to 
Xo x lU = X x lU by ~. Letting as usual Yo denote the rank two bundle on 
S whose restriction to every fiber is stable, we have seen that there is a line 
bundle L on X such that V~ ®L ~ Yo. Now view lU - Y; as an open subset of 
X - Yj C Hilb2 X . As in the proof of Lemma 9.1 we have the locus 1$ C X x lU 
which is the closure of the set 

{(x, ZI ' z2) I n(x) = n(zj) for some i }. 

The set 1$ is a closed analytic subset both of X x lU and of S x lU. The two 
sets (S x lU) -1$ and X x lU cover S x lU and their intersection is (X x lU) -1$ . 
We shall show that there is an isomorphism of the restriction of ~ ® n; L to 
(XxlU)-g with n;Yo. 

Let n: (X x lU) - 1$ -+ (Do x lU) - 1$' be the projection, where Do is the 
base of X and, as in the proof of Lemma 9.1, 

1$' = {(t, zl' Z2) I t = n(Zj) for some i }. 

By construction, the restriction of ~ ® n; L to the reduction of every fiber 
of n is stable, and hence isomorphic to the restriction of n; Yo to the fiber. 
Consider ROn.H om(~ ® n; L, n; Vo). By base change and Corollary 1.5 for 
the case of a multiple fiber, this is a line bundle on (Do x lU) - 1$'. On the 
other hand, both ~ ® n; Land n; Vo extend to coherent sheaves on X x lU , so 
that ROn.Hom(~ ® n; L, n; Yo) also extends to a coherent sheaf on Do x lU . 
Arguing as in the proof of Lemma 9.1, 
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is a trivial line bundle and we may choose a section of H om(~ ® n; L, n;~) 
which generates the fiber at every point. This section then defines an isomor-
phism from ~ ® n; L to n; ~ over (X x U) - g. Thus we may define a 
coherent sheaf over S xU, flat over U, which by construction is a family of 
stable torsion free sheaves on S. This sheaf defines a morphism from U to 
9Jl2(S) which is the desired extension. Doing this for a neighborhood of every 
point of X~ defines the extension over all of X~. 0 

We return to the proof of Lemma 9.4. The proof will now follow from 
standard arguments. We have the moduli spaces Hilb2 f+1(S) and 9Jl2(S) 
for S and corresponding moduli spaces Hilb2 f+1(SO) and 9Jl2(So) for So. 
There are also the divisors p'er.) on Hilb2 f+1(S) and p(1:) on 9Jl2(S) , as 
well as the corresponding divisors p~(1:o) and po(1:o) for So. Here 1: E H2(S) 
and 1:0 E H2(So). Fixing a choice of Fj' we have the open sets X = Xo and 
v/!:;:;VI 
A -AO. 

Claim 10.2. 111:· I = 1:0 . I, then 

p' (1:)IH2(X) = p' (1:0 )IH2(X). 

Prool. Clearly X is the quotient of the blowup Bl~ (Xe x Xe) of Xe x Xe 
along the diagonal under the natural involution. Thus H2 (X) injects into 
H2(BI~(Xe x Xe) , and it suffices to prove that the pullbacks of p'(1:) and 
p'(1:0 ) to H2(BI~(Xe x Xe» agree. Now H2(Bl~(Xe x Xe» is generated over 
Q by the class of the exceptional divisor, classes dual to Ln ® pt and pt ® [11 , 
and HI (Xe) ®H1(Xe). If Do. +aE is a divisor in H2(Hilb2 f+ 1(s» , then the 
pullback of Do. + aE to H2(Bl~(Xe x Xe» depends only on 0· I and a. By 
Lemma 9.2, p'(1:) = Do.2 - ((/ .1:)/2)E, where °2 . 1= °1 • 1= 2(/ .1:). A 
similar statement holds for p' (1:0). Thus 

p'(1:)IH2(X) = p/(1:0 )IH2(X). 0 

We have the birational map X ---> X'. After blowing up, we can resolve 
the indeterminacy and make this map a morphism. Let :%: be such a blowup. 
Thus there are morphisms p::%: -- X and p'::%: -- X'. Since X and X' 
are isomorphic in codimension one, p and p' have the same exceptional set, 
which we may assume to be a union of smooth divisors Uj Ej • As we may 
assume that p, say, is given by a series of blowups, the cohomology classes 
of the E j are independent. Moreover we have a splitting H2(:%:) ~ H2(X/) EB 
ffi j Z . [E j ]. Here the map H2(:%:) __ H2(X/) is explicitly given by restriction 
from H2(:%:) to H2(:%: - Uj E) = H2(X' - Y;), together with the isomorphism 
H2(X' - Yj ) ~ H2(X/). We can also glue :%: to 9Jl2 along X', to obtain a 
scheme vR which dominates both !)J12 and Hilb2 f+1 (S). Clearly we again 
have a splitting H2(vR) = H 2(!)J12) EB ffij z· [E j ] , and this splitting is compatible 
with the splitting of H2(:%:) under the restriction maps. Using the commutative 
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diagram 

H2(Hilb2 f+1 (S)) ----+ H2(f.iJt) ===== n2(VJ12) E9 EDi z· [Ei] 

1 1 
2 - 2 I ffi 

----+ H (X) ===== H (X) E9 Wi Z . [Ei ] , 

o ;: 2 ° 2 e+1 2 -we see that given ~ E H (Hllb J (S)), the pullback of e to H (VJ1) can 
be written in the form e' + Ei ai[Ei ] , where e' is the pullback of a class in 

2 - 2 H (VJ12) and the integers ai only depend on elH (X). 
For notational simplicity we shall just write down the argument for Lemma 

9.4 under the assumption that there is only one multiple fiber FI ; the gen-
eral case follows by working with both fibers. In this case, we may identify 

2(H Olb2 e+1 (S)) d 2(-) . 2 - ° H I J an H VJ12 With subspaces of H (VJ1). By constructIOn 
we have Il' (L) = Il(L) + Ei aJEJ ' where the ai only depend on Il' (L)IH2(X) . 
Thus 

Il(L)4 -1l' (L)4 = - t G)Il(L)4-J(2;:aJEi ])J, 
)=1 I 

where the term Ei ai[EJ only depends on Il' (L)IH2(X). Clearly; for j ;::: 1, 
the terms Il' (L)4-J (Ei ai[Ei])J likewise only depend on the restriction of Il' (L) 
to H2 (X). By Claim 10.2, the restriction of Il' (L) to H2 (X) depends only on 
(L. I). Hence Il(L)4 - Il' (L)4 depends only on (I· L), e, and an analytic 
neighborhood X of the multiple fiber and is homogeneous of degree four in L. 
Thus we can write it as d(e, ml)(f .L)4 for some rational number d(e, m 1) 

depending only on the analytic neighborhood X, where d (e, 1) = O. Doing 
this construction for both multiple fibers, we see that 

4 I 4 4 4 4 Il(L) -Il (L) = m l m2(d(e, m l ) + d(e, m2))(K • L) , 

as claimed in Lemma 9.4. 0 

ApPENDIX: ELEMENTARY MODIFICATIONS 

In this appendix, we consider the following problem (and its generalizations): 
let X be a smooth projective scheme or compact complex manifold, let T be 
smooth and let D be a smooth divisor on T. Suppose that Y is a rank two 
vector bundle over X x T , and that L is a line bundle on X. Let i: X x D -
X x T be the inclusion, and suppose that there is a surjection Y - i;lt; L 
defining r as an elementary modification: 

0- r - Y - i.1I:; L - O. 
For t E T, let ~ = YIX x {t} and ~ = rlx x {t}. If 0 is a reference point 
of D, then there are two extensions 

O-M-»'Q-L-O; 

o - L - Yo - M - O. 
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In particular the second exact sequence defines an extension class c; E 
HI (M- I 0 L). We want a formula for c; and in particular we want to know 
some conditions which guarantee that c; =1= 0 . 

Proposition A.I. Let () be the Kodaira-Spencer map for the family 7r of vector 
bundles over X, so that () is a map from the tangent space of T at 0 to 
HI(Hom(Wo' JlQ)). Let a/at be a normal vector to D at O. Then the image 
of ()(a/at) in HI(M- I 0 L) under the natural map HI (Hom(JlQ , Wo)) -
HI (Hom(M ,L)) = HI(M- I 0 L) is independent mod scalars of the choice of 
a / a t and is the extension class corresponding to Va. 
Proof. Since JlQ is given as an extension, there is an open cover {Ui } of X 
and transition functions for JlQ with respect to the cover {UJ of the form 

A - IJ - (k. *) 
i} - 0 J1,i} • 

Letting t be a local equation for D near 0, we can then choose transition func-
tions for 7r of the form Ai} = Ai} + tBi }. With these choices of trivialization, 
a basis of local sections for r on Ui x T is of the form {e l , te2}. Thus the 
transition functions for r are given by 

If Bi} = (~~) , then a calculation shows that the transition functions are equal 
to 

( Ai) t*) + (ta t2b) = (Ai) 0) + tB~ .. o J1,.. c td c J1,.. IJ Y Y 
Here c is a matrix coefficient which naturally corresponds to the image of Bi} 

in Hom(M, L). The proposition is just the intrinsic formulation of this local 
calculation. 0 

Note. The proof shows that, if the extension does split, then we can repeat the 
process, viewing Va again as an extension of L by M. Either this procedure 
will eventually terminate, creating a nonsplit extension at the generic point of 
D , or 7r was globally an extension in a neighborhood of D. 

Let us give another proof for (A. I ) in intrinsic terms which, although less ex-
plicit, will generalize. There are canonical identifications HI (Hom (JlQ, JlQ)) = 
Extl(JlQ, JlQ) and HI (Hom(M , L)) = Ext1(M, L). For simplicity assume 
that dim T = I. Note that if we restrict the defining exact sequence for r to 
X xC, where C is a smooth curve in T transverse to D, then the sequence 
remains exact (since Tor~(R/tR, R/sR) = 0 if t and s are relatively prime 
elements of the regular local ring R). Thus we can always restrict to the case 
where dim T = I. Now SpeclC[t]/(t2) is a subscheme of T, and we can re-
strict 7r to SpeclC[t]/(t2) to get a bundle ~. The bundle ~ is naturally an 
extension 
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and the associated class in Extl (~, ~) is the Kodaira-Spencer class. The 
natural map Extl(~, Wo) -+ Extl(M, L) is defined on the level of extensions 
as follows: given an extension ~ of Wo by ~,let g> be the preimage of M 
in ~, so that there is an exact sequence 

o -+ ~ -+ g> -+ M -+ O. 

Given the map ~ -+ g> , the quotient !T = (g> $ L) / ~, where Wo maps 
diagonally into each summand, surjects onto M by taking the composition of 
the projection to g> with the given map g> -+ M. The kernel is naturally L. 
Thus !T is an extension of M by L, and it is easy to see that !T corresponds to 
the image of the extension class for ~ under the natural map. Finally note that, 
since ~ -+ L is surjective, there is a natural identification of !T = (g>61L)/~ 
with g> / M where we take the image of M under the map M -+ ~ -+ g> . 

On the other hand, restricting the defining exact sequence for 'Y to 
SpecC[t]/(t2) gives a new exact sequence 

o -+ L -+ ~ -+ 'YF -+ L -+ O. 
I: e 

If we set g> to be the image of ~ in ~, then it is clear that g> is the inverse 
image of M c Wo under the natural map. Now there is an isomorphism 
~/ L ~ g> , and it is easy to see that this isomorphism identifies Va with g> / M 
under the natural maps, compatibly with the extensions. Thus the extension 
of M by L defined by Va has an extension class equal to the image of the 
extension class of ~ in Extl(M, L) under the natural map. 

With this said, here is the promised generalization of (A. 1 ): 

Proposition A.2. With notation at the beginning of this section, let 'YF be a rank 
two reflexive sheaf over X x T, flat over T, let D be a reduced divisor on T, 
not necessarily smooth, and let i: D -+ T be the inclusion. Suppose that L is a 
line bundle on X and that :z is a codimension two subscheme of X x D , flat 
over D. Suppose further that 'YF -+ i.1C; L ® 1% is a surjection, and let 'Y be 
its kernel: 

Then: 
(i) 'Y is reflexive and flat over T. 

(ii) For each tED, there are exact sequences 

0-+ M ® Iz , -+ ~ -+ L ® Iz -+ 0, 
o -+ L ® I z -+ V; -+ M ® I z' -+ 0, 

where Z is the subscheme of X defined by :z for the slice X x {t} and 
Z' is a subscheme of X of codimension at least two. 

(iii) If D is smooth, then the extension class corresponding to V; in 
Extl(M ® Iw ' L ® Iz ) is defined by the image of the normal vector 
to D at t under the composition of the Kodaira-Spencer map from the 
tangent space of T at t to Ext 1 (~, ~), followed by the natural map 
Extl(~, ~) -+ Ext\M ® Iz" L ® Iz ). 
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Proof. First note that r is a subsheaf of '7F and is therefore torsion free. 
Given an open set U of X x T and a closed subscheme Y of U of codimension 
at least two, let s be a section of r defined on U - Y. Then s extends to 
a section s of '7F over U since '7F is reflexive. Moreover the image of s in 
~ (U n D; L ® I z) vanishes in codimension one and thus everywhere. Thus s 
defines a section of rover U, and so r is reflexive. That it is flat over T 
follows from the next lemma: 

Lemma A.3. Let R be a ring and t an element of R which is not a zero divisor. 
Let I be an (RjtR)-module which is flat over RjtR. For an R-module N, let 
Nt be the kernel of multiplication by t on N. 

(i) For all R-modules N, Tor:(l, N) = I ® R/tR Nt' and Tor:(l, N) = 0 
for all i> 1. 

(ii) Suppose that there is an exact sequence of R-modules 

o -+ M2 -+ MI -+ I -+ 0, 

where MI is flat over R. Then M2 is flat over R as well. 

Proof. The statement (i) is easy if 1= RjtR, by taking the free resolution 

o -+ R ~ R -+ Rj tR -+ O. 

Thus it holds more generally if I is a free (RjtR)-module. In general, start with 
a free resolution Fe of I. By standard homological algebra (see e.g. [EGA], III, 
6.3.2) there is a spectral sequence with EI term Tor:(Fq, N) which converges 
to Tor:+q(I, N). The only nonzero rows correspond to p = 0, 1 and the 
row for p = 1 is the complex Fe ® R/tR Nt' Since I is flat, this complex 
is exact except in dimension zero and is a resolution of I ® R/tR Nt' Since 
F q ® R N = F q ® R/tR (N ® R Rj tR) , the flatness of lover R/ tR implies that the 
row for p ='0 is exact except in dimension zero. Thus Tor:(l, N) = I®R/tRNt' 

The second statement now follows since. for every R-module N, the long ex-
act sequence for Tor defines an isomorphism, for all i ~ 1 , from Tor:(M2, N) 

R to Tori+I(l, N) = O. 0 

Returning to (A.2), let us prove (ii). There is a surjection ~ -+ L ® I z and 
thr kernel of this surjection is a rank one torsion free sheaf on X, which is thus 
of the fo~ M ® I z' for some subscheme Z' of X of codimension at least 
two. Now there is an exact sequence 

Tor~xxT(i.7C;L®Iz' &xx{t}) -+ V; -+ ~ -+ L®Iz -+ O. 

In the Tori term, the first sheaf is an &xxD-module, flat over D, and the sec-
ond is an &D-module. Using (i) of (A.3) identifies Tor~XXT(i.7C; L®Iz , &xx{t}) 
with L ® I z . Thus we obtain the exact sequence for V;. 

Finally, the identification of the extension class in (iii) is formally identical 
to the second proof of (A. I ) given above and will not be repeated. 0 
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Next we shall give some criteria for when the extension is nonsplit. The 
simplest case is when the Kodaira-Spencer map is an isomorphism at O. In 
this case we can check whether or not the extension is split by looking at the 
map Extl(~, ~) -+ Extl(M ® Izl, L ® Iz ). Thus the problem is essentially 
cohomological. A similar application concerns the case where T is the blowup 
of a universal family along the locus where the sheaves are extensions of L ® I z 
by M ®I z' . In our applications, however, we shall need a more general situation 
and will have to analyze some first order information about the family '7F . For 
simplicity we shall assume that dim T = 1 , with t a coordinate. It is an easy 
consequence of (A.3)(i) that the general case can be reduced to this special case 
by taking a curve in T transverse to D. 

Proposition A.4. In the notation of (A.3), let ~ be the restriction of '7F to 
SpecC[t]/t2 • Suppose that 

(i) Hom(M®Izl,L®Iz ) =0. 
(ii) The map from 

1 1 Ext (M@Iz" ~)/tExt (M ® Izl, ~) 

to Ext l (M ® I z' , ~) induced by multiplication by t has a one-dimen-
sional kernel. 

Then we may identify the kernel with a line in Extl (M ® Izl, Wo)' and if the 
image of this line in Extl (M ® I z' , L ® I z) is C· e then the corresponding 
extension class is e. 
Proof. From the first assumption dim Hom( UQ, UQ) = I. Thus if (J is the 
Kodaira-Spencer class, there is an exact sequence 

1 1 1 
0-+ Ext (M ® Izl, UQ)/C. (J -+ Ext (M ® Izl, ~) -+ Ext (M ® Izl, Wo)' 

Multiplication by t induces the natural map 
1 1 1 Im(Ext (M ® Izl, ~)) ~ Ext (M ® Izl , Wo) -+ Ext (M ® Izl, UQ)/C· (J. 

If this map has a kernel then clearly (J E Im(Ext 1 (M ® I z' , ~)) and the kernel 
is C· (J. The image of the kernel in Extl(M ® Izl, L ® Iz ) is then just the 
image of th~ Kodaira-Spencer class. 0 

Here is the typical way we will apply the above: suppose that '7F is locally 
free and that Z' = 0. Then Extl(M ® Izl, ~) = RI1t2*(~ ® 1t; M- 1). Sup-
pose in addition that '7F is globally an extension: 

o -+ 1t;~ -+ '7F -+ 1t;~ ® Ir -+ 0, 

where 'Y c X x T is flat over T. Thus there is a map 
° (* Of) * -I) 1 * Q7 -I R 1t2* 1t1..z;2 ® Ir ® 1t1 M -+ R 1t2.1t1 (..z;1 ® M ) 

whose cokernel sits inside R I 1t2* ('7F ® 1t; M- 1). A similar statement is true 
when we restrict to SpecC[t]/(t2). Now suppose that 

dimHo(X; ~ ®M- 1 ®Iy) 
t 
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is independent of t. Then the sheaves R°1th (1t;~ CiS) Ir CiS) 1t; M- 1) and 
RI1t2.1t;(~ CiS)M- 1) are locally free and compatible with base change, by [EGA], 
111,7.8.3,7.8.4,7.7.5, so if we know that the map between them has a determi-
nant which vanishes simply along D then the same will be true for the restric-
tions to SpecC[t]/(t2). The image in R I1t2.(YCiS)1t; M- 1) is the direct image of 
aline bundle .% on D. Furthermore suppose that dimHI(X;~CiS)M-lCiS)Iy) 

t 

is independent of t. Then R°1t2• (1t;~CiS)IrCiS)1t; M- 1) is locally free and com-
patible with base change. If it is nonzero suppose further that 

2 • = -I R 1t2.1t1 (..zl CiS) M ) = o. 
Thus the torsion part of R I 1t2.(Y CiS) 1t; M- 1) is just .% and the restriction of 
.% to SpecC[t]/(t2) gives the kernel of multiplication by t as in (ii). We can 
then take the map from the torsion part of R I1t2.(Y CiS) 1t;M-1)o' namely the 
image of HI(~ CiS) M- 1), to HI(L CiS) I z CiS) M- 1) = Extl(M, L CiS) I z ) and this 
image gives the extension class. 

We will also need to consider a slightly different situation. Suppose that Y 
is a rank two vector bundle on X x T, E is a smooth divisor on X and L 
is a line bundle on ExT. Let j: Ex· T -+ X x T be the inclusion and let 
<1>: Y -+ j.L be a morphism. We may think of <I> as a family of morphisms 
parametrized by T. In local coordinates <I> is given by two functions f, g 
on ExT, whose vanishing defines a subscheme Y of ExT. Away from the 
projection 1t2 (Y) of Y to T, <I> defines a family of elementary modifications 
which degenerates over 1t2(Y) at the points of Y. 

Proposition A.S. Let <1>: Y -+ j.L be a morphism as above and suppose that the 
cokernel of <I> is supported on a nonempty codimension two subset Y of ExT, 
necessarily a local complete intersection. Suppose further that, for each t E T, 
thecodimensionofYn(Xx{t}) in Xx{t} isatleasttwoi/Yn(Ex{t}) =10. 
Let or be the kernel of <1>. Then or is a reflexive sheaf, flat over T, and its 
restriction to each slice X x {t} is a torsion free sheaf on x. 
Proof. The proof of (A.2)(i) shows that or is reflexive. As for the rest, the 
problem is local around a point of Y. Let R be the local ring of X x T at 
a point (x, t), R' the local ring of T at t, and S the local ring of X x {t} 
at (x, t). Let u be the local equation for E in X x T. Then locally <I> 
corresponds to a map RED R -+ R/uR, necessarily given by elements!, g E 
R/uR. Lift ! and g to elements f, g E R. Then (u, f, g)R is the ideal of 
Y in R, and Y has codimension three in X x T. Thus u, f, g is a regular 
sequence, any two of the three are relatively prime, and necessarily dim R ~ 3 . 

The kernel M of the map RED R -+ R/uR given by (a, b) 1-+ a/ + bg is 
clearly generated by (-g , f), (u, 0), and (0, u). These three elements define 
a surjection R ED R ED R -+ M. The kernel of this surjection is easily calculated 
to be R· (u, g , -f). Thus there is an exact sequence 

o -+ R -+ R ED R ED R -+ M -+ o. 
This sequence restricts to define 

S -+ SED S ED S -+ M CiS)R S -+ o. 
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Here the image of S in S EB S EB S is equal to S· (u, g, - J) , where we denote 
the images of u, f, g in S by the same letter. By hypothesis, not all of u, 
f, g vanish on X x {t} and so this map is injective. By the local criterion 
of flatness M is flat over R' . Finally we must show that M 0 R S is a torsion 
free S-module. By hypothesis u, g, - f generate the ideal of a subscheme of 
Spec S of codimension at least two and thus u does not divide both f and g 
in S. Given h E S with h =f:. 0 , suppose that hm = 0 for some m E M 0 R S . 
Then there is (a, b, c) E S EB S EB S such that h(a, b, c) = o:(u, g, -f). We 
claim that ula. To see this, let n be the largest integer such that un Ih. Then 
unlhb = o:g and likewise unlo:f. Since at least one of f, g is prime to u, 
unlo:. But then un+llo:u = ha, so that ula. If a = ua', then 0: = ha' and so 
hb = ha' g and b = a' g. Likewise c = a' ( - f) . Thus (a, b, c) = a' (u, g, - J) 
and its image in M 0 R S is zero. It follows that M 0 R S is torsion free. 0 

Let us finally remark that we can calculate the class PI (ad 'r), in the above 
notation, by applying the lemma on elementary modifications given in the in-
troduction, since <l> is sUIjective in codimension two. 
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