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NONRATIONAL HYPERSURFACES 

JANOS KOLLAR 

Let Xd C ]p'n+i be a smooth hypersurface. If d ~ n + 2 then Xd contains 
very few rational curves. If d:::; n + 1 then Xd is covered by rational curves, 
in fact any two points can be connected by a rational curve in Xd • The best 
known algebraic variety with lots of rational curves is ]p'n, and early on the 
question was raised if these hypersurfaces are birational to ]p'n or not. 

It is easy to see that Xd is rational if d = 2 (project Xd from any of its 
points). It is less clear, but has been know for a hundred years, that any smooth 
cubic in ]p'3 is rational. 

1. Definition. Let X be a variety of dimension n. We say that X is ratio-
nal (resp. unirational) if there is a map ]p'n ---+ X which is birational (resp. 
dominant). 

We say that X is ruled (resp. uniruled) if there is a variety Y of dimension 
n - 1 and a map Y x ]p'i ---+ X which is birational (resp. dominant). 

In positive characteristics we say that X is separably unirational (resp. sep-
arably uniruled) if the above map is also separable. 

The rationality question for threefolds of degrees 3 and 4 in ]p'4 has been open 
for a long time. In the early seventies two different methods were discovered. 
Together they settled the question completely. 

Iskovskikh and Manin [5] developed the Nother-Fano method which enabled 
them to prove that any birational self-map of any smooth quartic is an isomor-
phism. This in particular implies that they are not rational. The same method 
shows that they are not birational to conic bundles or to a family of Del Pezzo 
surfaces. This approach was further developped and applied to many other 
threefolds by Iskovskikh and his students (see, e.g., [4, to, 11]). This method 
in principle works in any dimension, but the technical difficulties seem rather 
serious and have been overcome in a few cases only. Pukhlikov [9] proves that 
an)' birational self-map of a smooth quintic in ]p'5 is an isomorphism. 

Clemens and Griffiths [3] introduced the method of studying the intermedi-
ate Jacobian and used it to show that smooth cubic threefolds are not rational. 
This method has been very successful in dimension three (see, e.g., [2]). Un-
fortunately it does not work in higher dimensions, at least not in the usual 
formulation. 
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Artin and Mumford [1] observed that the torsion subgroup of H 3(X, Z) is a 
birational invariant and used this to find examples of nonrational but unirational 
varieties in any dimension. 

The aim of this article is to develop a rather simple method which provides 
many examples of Fano varieties which are not rational. The method in fact 
shows that they are not even ruled, which is a considerably stronger result in 
higher dimensions. Applied to hypersurfaces, it gives the following: 

2. Theorem. Let Xd C pn+1 be a very general hypersurface over C of degree 

2 
d"2 3(n + 3). 

Assume in addition that nand d are both even. Then Xd is not ruled. 

2.1. Remark. The assumptions that nand d are both even are only for con-
venience of proof. The result holds without them (see (4.1)). 

3. Comments. (3.1) Here "very general" means that the result holds for hy-
persurfaces corresponding t(\ a point in the complement of countably many 
closed subvarieties in the space of all hypersurfaces. The proof does not give 
any method of determining these closed subvarieties. However, it is possible to 
write down examples of hypersurfaces defined over Q which are shown to be 
nonruled by a slight variation of the method. 

It is quite likely that any smooth hypersurface whose degree satisfies the above 
condition is nonruled. 

(3.2) The result is of interest only if d :S n + 1 , since a smooth hypersurface 
of degree at least n + 2 is not even uniruled. 

(3.3) It is not clear what one should expect about the rationality question of 
hypersurfaces. Any quadric is rational. If a cubic X3 E p2n+1 contains two 
skew linear spaces of dimension n then it is rational. (There are such smooth 
cubics.) It is not known what happens with the general cubic in p5. I do not 
know any results for higher degrees. 

The method can be refined in several ways to give more precise information. 
Here I would like to concentrate on the main idea and leave the proofs of 
the following assertions for a later occasion. (rx ' denotes the smallest integer 
"2 x.) 

4. Theorem. Let Xd C pn+l be a very general hypersurface over c. 
(4.1) If 

then Xd is not ruled. 
(4.2) If 

d "2 3r (n + 3)/4' 
then Xd is not birational to a conic bundle. 

(4.3) Assume that d = n + 1. Let Y be a variety of dimension n - I and 
¢: Y x pi --..; Xd a dominant map. Then deg¢ is divisible by every prime less 
than .;n. 
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The method of proof is by degeneration. Instead of finding directly a smooth 
hypersurface which is not ruled, I find a variety which is not ruled and which can 
be obtained as a limit of a family of hypersurfaces. The examples are ramified 
covers of hypersurfaces over a field of positive characteristic. The required 
degeneration is given by the following: 

5. Construction (Mori [8, 4.3]). Let S be a scheme, t E &s. Let f, g E 
&s[xo, ... , xn] be homogeneous polynomials of degrees cd and d respectively 
such that gC - f is not identically zero mod s for any point s E S. The scheme 

Z = (yC - f = ty - g = 0) c P s(xo ' ... , xn ' y) 
defines a family of weighted complete intersections over S. If s E Sand 
t(s) =I 0 then the fiber of Z ---+ S over s is isomorphic to the hypersurface 

(g(s)c - t(s)' f(s) = 0) c Ps(xo ' ... , xn). 

If t(s) = 0 then the fiber of Z ---+ S over s is isomorphic to a degree c cover 
of the hypersurface (g(s) = 0) ramified along (/(s) = 0) (cf. Con~truction 8). 

The degeneration method works thanks to the following result of Matsusaka 
[7, Appendix 1.1]. See [6, IV. 1.8.4] for a detailed proof and for further results. 

6. Theorem [7]. Let f : X ---+ S be a flat proper morphism with irreducible 
and reduced geometric fibers. Then there are countably many closed subvarieties 
Sj C S such that for any closed point s E S the fiber }I(S) is ruled over the 
algebraic closure of the residue field k(s) iff s E USj • 0 

Going to positive characteristics seems an essential feature of the proof. It 
is expected that the tangent bundle of any hypersurface is stable (even more, 
they are expected to have a Kahler-Einstein metric). In positive characteristics 
stability can fail in a rather strong way. Sufficiently strong instability implies 
that the variety is not ruled and not even separably uniruled: 

7. Lemma .. Let X be a smooth proper variety and M a line bundle on X such 
that global sections of M m define a birational map for some m > o. Assume 
that there is an injection M ---+ t\iQ~ for some i > o. 

Then X is not ruled. Moreover, if Y is any variety of dimension n - 1 and 
¢ : Y x pi ---+ X a dominant map then ¢ is not separable. 
Proof. By shrinking Y we may assume that ¢ is a morphism. We have a 
natural map 

TYXpl ---+ ¢*Tx' 

which is generically an isomorphism if ¢ is separable. Let ¢y : pi ---+ X denote 
the restriction of ¢ to {y} X pi . For general y we obtain an injection 

n-I * 
&pl X &1'1 (2) <--+ ¢yTX' 

which is generically an isomorphism. Taking the dual and wedge product we 
obtain an injection 

* j * I i (m>n-I m> 2)) ¢yM <--+ t\ ¢yQX <--+ t\ (71'1 X (71'1 (- • 



244 JANos KOLLAR 

By assumption 4>;M has positive degree, which is a contradiction. 0 

7.1. Remark. By the Bogomolov-Sommese vanishing theorem the assump-
tions of Lemma 7 can be satisfied in characteristic zero only if i = dim X . 
In this case X is of general type and not even uniruled. 

It is time to get down to the construction of the examples. 
8. Construction. Let X be a scheme and L a line bundle on X . Let 1C : U --. 
Z denote the total space of L, i.e., 1C*&U = I:m>oL-m . Let S E Jfl(X, Lk) 
for some fixed k. -

1C*(1C* L) = I:m>-1 L -m , hence 1C* L has a canonical section corresponding 
to 1 E Jfl(X, L O- ~ &x)' Denote this section by h. Since 1C*(1C* Lk) = 
I:m>-k L -m , both y1 and s can be viewed as sections of 1C* L k. Let Y := 
(y1 =- s) cUbe the zero set. The restriction of 1C to Y is also denoted by 1C. 
Y is called the covering of X obtained by taking the eh root of s. It is also 
denoted by X[~]. 

Choose local coordinates Xi at a point X EX. On U we can use y := h 
and the Xi as local coordinates. Locally Y is given by the equation l -
S(X1 ' ... , xn) = O. 

The following properties are immediate from the definition: 
9. Lemma. Notation as above. 

(9.1) There is an exact sequence 0 --'1C*Q~ --. n~ --.1C*L- 1 --. O. 
(9.2) &u( - Y) ~ 1C* L -k . 

(9.3) There is an exact sequence 1C* L -k ~ n~ --. Q~ --. O. In the above 

local coordinates the image of dy is given by 

( as as k-1) 
- aX1 dX1 ' ... , - aXn dXn ' ky dy. 0 

The map dy in (9.3) becomes very special if the characteristic p of the base 
field divides k. In this case kl-1dy = 0 and so imdy c 1C*Q~. Thus we 
obtain the exact sequence 

, [ * -k dy *n1 ] n 1 * -1 0 (9.4) 0 --. coker 1C L --+ 1C U x --. u y --. 1C L --. . 

10. Idea of the proof of Theorem 2. Choose X to be a Fano variety and L 
ample. Construct Y as above. Then Ky = 1C*(Kx + (k -1)L); thus Y is Fano 
if K x + (k - I)L is negative. In (9.4) Q~ is expressed as an extension and the 
corresponding first Chern classes are 

1C*(Kx + kL) and 1C*(-L). 

In some cases one can choose X and L such that Kx + (k - I)L is negative 
(so Y is Fano), but Kx + kL is positive; thus Q~ is very unstable. 

Unfortunately the constructed cyclic cover Y is almost never smooth. We 
need to understand the singularities of Y and to see how the sequence (9.4) 
can be lifted to a smooth model of Y. 
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The precise technical result is the following: 

11. Theorem. Let X be a smooth projective variety over a field of char p and 
L a line bundle on X. Assume that: 

(11.1) For every closed point x E X the restriction map 

HO(X, L P ) ~ (&'x/m!) ® L P 

is surjective, where mx is the ideal sheaf of x EX. (In characteristic 2 assume 
in addition that dim X is even.) 

(11.2) LP ® Kx is ample. 
Then for general s E ~(X, LP ) the corresponding p-fold cover Y = X[¢S] 

is not separably uniruled. 

11.3. Remarks. The condition (11.1) and the general choice of s are used to 
guarantee that Y has "simple" singularities. There are many other singularities 
where the lifting in §22 is still possible. This is useful if one wants to get nice 
concrete examples of nonruled hypersurfaces. 

The assumption about even dimensionality in char 2 is again not necessary. 
A more careful analysis of the generic critical points can be done easily. 

12. Proof of Theorem 2. Pick a prime p. By Construction 5 there is a family 
of degree pd hypersurfaces degenerating to a general p-fold cover of a degree 
d hypersurface in characteristic p ramified along a divisor of degree pd . Con-
dition (11.1) is always satisfied, and (11.2) becomes pd + d - n - 2 > O. Taking 
p = 2 gives Theorem 2. 0 

The proof of Theorem 11 is done in several steps. 
In order to understand the first term in (9.4) better, we need a simple obser-

vation. 

13. Definition-Lemma. Let X be a smooth variety over a field of charp and 
L a line bundle on X. If plk then there is a natural differential 

(13.1 ) 

constructed as follows. Let r be a local generator of L, s = frk a local section 
of L k , and the Xj local coordinates. Set 

'""" a f k d(s):= LJ a r dx j • 
Xj 

This is independent of the choices made and thus defines d. 

Comparing the definitions of dy in (9.4) and of d in (13.1) we obtain at 
once: 

14. Lemma. Notation as above. 
(14.1) For a fixed s E ~(X, Lk) we can view d(s) as a sheaf homomor-

phism d(s): &'X ~ Lk ® Q~. Tensoring with L-k we obtain 

d -k 1 s:L -Qx-
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(14.2) d y = -1C* ds; thus there is an exact sequence 
* [ -k ds 1 ] 1 *-1 0-+ 1C coker L ---+ nx -+ ny -+ 1C L -+ O. 

Instead of trying to deal with the coherent sheaf coker [L -k ~ n i] , it is 
easier to deal with a line bundle: 
15. Definition. Notation as above. Assume in addition that ds is nonzero in 
codimension one. Let Q(L, s) denote the double dual of the determinant of 
coker [L -k ~ ni] . 

Q(L, s) is a line bundle on X and c1 (Q(L, s)) = K x+kL. By construction 
there are natural maps 

(15.1 ) n-l 1 
q:/\ nx-+Q(L,s), 

and 

(15.2) 

Let r: y' -+ Y be a resolution of singularities. We would like to prove that 
(15.2) lifts to an injection 

( 15.3) * * n-l I r 1C Q(L, s) -+ /\ nyl. 
This question is local above the singular points of Y and will be settled by 
an explicit computation once the singular points of Y and the behaviour of 
Q(L, s) near them are sufficiently well understood. 

16. Lemma. Notation as above. Write s = f l and let 

dx /\ ... /\ dX. /\ ... /\ dx n.- I I n 
·'i·- aflaxi 

(rti is undefined if aflaxi is identically zero). 
Then q(rti) = ±q(rt) and they give local generators of Q(L, s). 

Proof. By definition the image of ds is generated by L-JaflaxJdxi. This 
implies ~hat q(rti) = ±q(rt) and that rti is a local generator of Q(L, s) at 
x E X if a flaxi is nonzero at x. Thus q(rti) is a local generator outside a 
codimension two set, hence everywhere. 0 

In order to understand the singularities of Y, we need the following: 
17. Definition-Lemma. Let X be a smooth variety over a field of char p and 
L a line bundle on X. Let k be an integer divisible by p. 

(17.1) We say that a local section s of L k has a critical point at x E X if 
d(s) E l(Lk Q<:i n.i) vanishes at x. 

( 17.2) Pick local coordinates Xi near x and a local generator r of L at x. 
Write s = fl. The matrix 
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is called the Hessian of s with respect to the coordinates Xj and the generator 
'f. The rank of H(s) at a point x E X is independent of the choices of Xj and 
'f. 

(17.3) The critical point of s at x is called nondegenerate if rankH(s)(x) = 
dimX. 
17.4. Remark. If char = 2 and dimX is odd then every critical point is de-
generate since every quadratic form in an odd number of variables is degenerate 
in char 2. In the other cases it is dim X + 1 condition for a section to have a 
degenerate critical point at a given x EX. 

By a simple dimension count we obtain: 
18. Proposition (algebraic Morse lemma). Let X be a smooth variety over a 
field of char p and L a line bundle on X. Let k be an integer divisible by 
p and W c H O (X , L k) a finite dimensional sub vectors pace. Assume that for 
every closed point x E X the restriction map 

3 k W -+ (&x/mJ ® L 
is surjective, where mx is the ideal sheaf of x EX. In characteristic 2 assume 
in addition that dim X is even. 

Then a general section fEW has only nondegenerate critical points. 0 

19. Definition. For simplicity of notation we denote the higher order terms 
in an expression by h. o. t. Thus the expression f(x, y) = 1; + h. o. tx(x, y) 
means that 1; is a degree two homogeneous polynomial and in h. o. tx(x, y) 
the degree of every monomial is at least 3 in x (e.g., X 2y 5 is not allowed in 
h. o. tx(x, y) of this example). 

20. The singularities of Y = X[ 15]. Using the above notation assume for 
simplicity that k = p. The local equation of Y has the form 

(20.1) yP - f(x l ' ••• , x n ) = O. 
We write f = fo + 1; + 1; + h. o. t(x) where J; is homogeneous of degree i. 
Replacing y by y - if/o the equation becomes 

(20.2) yP = 1; + 1; + h. o. t(x). 
If 1; =f. 0 then Y is smooth at the origin. Thus the singular points of Y 
correspond to the critical points of s and they have local equations 

(20.3) yP = 1; + h. o. t(x). 

21. Resolution of the singularities of Y. Let W be an n + 1 dimensional 
variety with a local coordinate system y, Xl ' ... , xn ' I think of y as being 
distinguished, the x coordinates are changeable. Consider a hypersurface sin-
gularity given by a local equation 

k (21.1) Y=(y =1;(x)+h.o.tx (x,y)) 
where 1; is a nondegenerate quadric in the x variables. Y has an isolated 
singularity at the origin. Blow up the origin to obtain b : Bo W -+ Wand let 
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b : BOY -+ Y denote the blow up of Y. BoY still has at most one singular 
point corresponding to the line XI = ... = xn = o. Use the substitutions 

(21.2) y := y and Xi := x)y 

to obtain new local coordinates on Bo W. The equation of Bo Y in this coor-
dinate system is 

k-2 
Y = .t;(x) + h. o. tx(x, y). 

The exceptional divisor of b : Bo Y -+ Y is locally given by y = o. After finitely 
many such steps the singularity of Y is resolved. 

22. Lifting of tli • Choosing the x-coordinates on W suitably we may assume 
that 

(22.1 ) 

With this choice of coordinates let 

(22.2) 
dX I /\ .•• /\ dXn _ 1 

tin = Xn_ 1 + h. o. t(x) . 

For inductive purposes it is convenient to introduce the following: 

22.3. Definition. We say that a (meromorphic) differential form on W is of 
type eta (with respect to a choice of a local coordinate system) if it can be written 
as a linear combination (with regular coefficients) of the differential forms 

dx /\ ... /\ dx I n-\ and 

22.4. Lemma. Notation as above. Assume that n > 3. Let w be an (n - 1)-
form of type eta on W. Then b * w is also of type eta on Bo W (with respect to 
the new coordinate system (21.2)). 
Proof. Computing in the first case we obtain that 

dx /\ ... /\ dx d(yx l ) /\ ... /\ d(yxn_ l ) b* I n-I = 
x n _ 1 + h.o. tx(x, y) yx +y2 h 0 t (x y) n-I .. x ' 

n-2 dX I /\ ... /\ dxn_ , ~ n-3 dX I /\ ... /\ dXi /\ ... /\ dXn _ 1 /\ dy 
=y + L.,.±Y . x n _ 1 + h. o. tx(x, y) i x n _ 1 + h. o. tx(x, y) 

The computation in the other cases is analogous. 0 

23. Proof of Theorem 11. Choose a general s E H O (X, LP). By Proposition 
18 s has only nondegenerate critical points, hence the corresponding cover 
Y = X[ -&Is] has only singular points as described in §2I. These can be resolved 
by the process explained there. Let r: y' -+ Y be the resulting resolution of 
singularities. 

As in Definition 15 we need to show that 
* ( n-I I) ** 7t Q(L, s) -+ /\ Q y * * n- I r. 1 lifts to an injection r 7t Q( L , s) -+ /\ U y'. 
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Choose local coordinates as in (22.1) and let 17n be as in (22.2). By Lemma 16 
q(17n ) is a local generator of Q(L, s). q(17n ) lifts to a meromorphic differential 
form on y' and we only need to show that it does not have a pole along any 
of the exceptional divisors of r. 

This can be checked one blow up at a time. The exceptional divisor of one 
blow up is given by y = 0, and by Lemma 22.4 b * 17 n is generically regular 
along (y = 0), hence so is q(17n ). Thus we obtain an injection r*n*Q(L, s) -+ 

!\n-ln~, . Set M = r*n*Q(L, s). 
c1(M) = r*n*(Kx+pL) , hence by (11.2) a suitable power of M determines 

a linear system whose image is Y. Thus Lemma 7 implies Theorem 11. 0 
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