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NEW EXTREMAL PROBLEMS 
FOR THE RIEMANNIAN RECOGNITION PROGRAM 

VIA ALEXANDROV GEOMETRY 

KARSTEN GROVE AND STEEN MARKVORSEN 

In its most general form, the recognition problem in riemannian geometry 
asks for the identification of an unknown riemannian manifold via measure-
ments of metric invariants on the manifold. Optimally one wants to recognize 
a manifold having made as few measurements as possible. Many results in 
riemannian geometry, including pinching theorems, can be viewed this way. 
Here we are only interested in measurements that assign real numbers to each 
(complete) riemannian manifold. Typical examples of such invariants are di-
ameter, volume, curvature bounds, etc. When viewing one or several invariants, 
I = (II ' . .. ,II)' of this type as a map on a suitable class, L , of riemannian 
manifolds, the following problems pose themselves: 

(1) The range problem, i.e., what is I(L) c ]R/? 

(2) Slicing problems, i.e., what can be said about r\Q) , n c ]R/? 
(3) Extremal problems, i.e., recognize or describe the structure of manifolds 

AI in L with I(M) close to the boundary of I(L) when nonempty. 
In order to attack extremal problems, one first needs to solve the range prob-

lem. This is not the case for slicing problems, where typical answers are pro-
vided by finiteness theorems. These, on the other hand, can be interpreted as a 
first step in the full recognition process. To proceed in this process it is neces-
sary to make more measurements, i.e., to start the program over again for the 
smaller class consisting only of finitely many "types" (cf. also the discussion in 
[G]). 

In this paper we point out several interesting invariants and initiate the study 
of their importance for the recognition program by establishing ·a number of 
specific range and extremality properties. 

For q ~ 2, we define the qth packing radius, packqX, of a compact metric 
space X as the largest r > 0 for which X contains q disjoint open r-balls, 
i.e., 

(1) 
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where the maximum is taken over all configurations of q points in X. Clearly 

(2) !diamX =pack X>··· > pack X>··· 2 2 - - q-

and limq.-oo packqX = O. Any configuration of points in X which realizes 
packqX is called a q-packer. 

For each q ;::: 2, we define the q-extent, xtqX, of a compact metric space 
X to be the maximal average distance between the points in q-tuples of X, 
i.e., 

(3) xt X = max xt (Xl' ... ,xq), 
q x1,,,xq q 

where xtq : X q --+ lR. is the q-extent Junction 

(4) xtq(xl , ... ,Xq) = (~) -1 ~ dist(xi , X) 
1<] 

for any q-tuple (Xl' ... ,Xq) E x q . Now clearly 

(5) diamX = xt X> xt X>··· > xt X> ... 2 - 3 - - q -

and we refer to the limit 

(6) xtX = lim xtqX 
q.-oo 

as the extent of X. Any configuration of q points in X which realizes xtqX 
is called a q-extender. 

The extents are instrumental in estimating the number of isolated fixed points 
for isometric group actions in the presence of a lower curvature bound. If, for 
example, G acts on a positively curved n-manifold M with (q + 1) isolated 
fixed points PO' . .. ,p q , then an angle counting and comparison argument in 
MIG yields 

q (sn-l) 1 '" Pj 7T, --1 L-xtq -G > -3' 
q + i=O 

This shows in particular that any isometric circle action on a positively curved 
4-manifold can have at most three isolated fixed points (see [HK]). 

Our aim here, however, is to investigate the role of the invariants xtq and 
packq in the recognition program. In particular, by (2) and (5) they give rise 
to natural filtrations of any class J!e of metric spaces, J!e :.J F}(J!e) :.J ... :.J 
FJ(J!e) :.J ... , where, e.g., FJ(J!e) = {X E J!e I xtqX ;::: d}. If, for example, 
~ is the class of closed riemannian manifolds M with sectional curvature, 
secM;::: 1 and d = ~ , the work in [GG] can be used to describe this filtration 
explicitly, and gives among other things a characterization of projective spaces. 

When J!e is the class of all length spaces (metric spaces in which distances 
are measured by the infimum of lengths of curves), the range problem for xtq 
as well as for packq has a trivial and therefore not so interesting solution (cf. 
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Examples 1.6). This remains true even for the subclass vi( of all closed rie-
mannian manifolds. Here, however, having maximal q-extent (or q-packing 
radius), i.e., xtqM = diamM (2 packqM = diamM) for large q, is only 
possible if minsecM is very negative or if dimM is large. For these reasons 
we focus our attention on the class ~(n) of closed riemannian n-manifolds 
M with secM ~ k and more generally on the class ~(n) of all compact 
Alexandrov spaces X with dimX ::; nand curvX ~ k. (We use the termi-
nology Alexandrov space for any complete finite Hausdorff dimensional length 

. space with curvature bounded below in local distance comparison sense.) The 
importance of such spaces is in part based on the fact that any space Y in the 
Gromov-Hausdorff closure of ~(n) is an Alexandrov space with dimY ::; n 
and curvY ~ k (cf. [GP3]). This combined with convergence techniques ini-
tiated in [Gl] and developed in [Ptl], [GPW], [YJ, and most recently in [P] 
allows one to attack extremal problems in vl(k(n) by first solving corresponding 
extremal/rigidity problems in ~(n). 

The most important new technical tool used in the proofs of our main results 
is a rigidity version of Toponogov's distance comparison theorem for Alexan-
drov spaces (cf. Theorem 2.4 and the Appendix). 

The following analogue of Toponogov's maximal diameter theorem provides 
a solution to the range and extremal problems for each individual xtq on st; : 
Theorem A. Let X be an n-dimensional, n ~ 2, Alexandrov space with curvX 
~ 1. Then 

xtqX ::; xtqS~ 
for all q ~ 2. Moreover, equality holds for some q if and only if d iamX = 1t , 
i.e., X is isometric to the spherical suspension LI E of an (n - 1 )-dimensional 
Alexandrov space E with curv E ~ 1 . 

We also point out the remarkable fact that in contrast to packqS~ (cf. [GW]) , 
xtqS~ is independent of n (cf. Theorem 1.8). 

When xtq is restricted to st; as in Theorem A above, it is easy to see that 
it cannot be maximal, i.e., xtq = diamX , unless diamX::; 1. In the extreme 
case where d iamX = 1 and q = n + 1 , we have as our first main result the 
following rigidity theorem (cf. Theorem 2.13). 
Theorem B. Let X be an n-dimensional Alexandrov space with curv X ~ 1. 
Then xtn+IX = diamX = 1 if and only if X is isometric to S~ / H, where H 
is a finite abelian group of isometric involutions in O( n + 1) acting without fixed 
points on S~. 

It turns out that only a few spaces among X = S~ / H are (generalized) man-
ifolds. In fact such an X is either isometric to RPln or homeomorphic to Sn 
(cf. Theorem 2.14 and Remark 2.15). This yields the following generalization 
of the main theorems in [GP2] and rOSY]: 

Corollary C. Fix an integer n ~ 2. There is an e = e(n) > 0 such that any 
closed riemannian n-manifold M with secM ~ 1 and xtn+1 M ~ 1 - e is 
homeomorphic to Sn or diffeomorphic to Rpn. If xtn+1M = diamM = l' 
then M is isometric to RPln = S~ /Z2 . 
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Since M is homeomorphic to Sn if secM ~ 1 and d iamM > ~ , we can 
assume that d iamM ~ ~ in the above theorem. For such manifolds we know 
from the discussion above that M is in fact Gromov-Hausdorff close to either 
RP; or to some singular space homeomorphic to Sn provided xtn+! M ~ ~ -e. 
The conclusion then follows from [V], [GP1], [H], and the generalized Poincare 
conjecture (cf. also [GPW] or [P]). We also point out that Theorem Band 
Corollary C hold as well with xtn+! replaced by 2packn+! . 

Yet another type of interesting extremal problem is obtained by relaxing the 
lower curvature bound to the general bound curvX ~ k. In this generality we 
cannot use k as a normalizing invariant as in the previous theorems. Instead 
we normalize all spaces to have fixed radius, radX = n, where by definition 
radX = minp maxq dist(p, q), and consequently k ~ 1. 

Now, if we let DZ(n) denote the closed disk of radius n in the simply 
connected n-dimensional space form, sZ of constant curvature k ~ 1, then 
distance comparison arguments yield 

(7) xtqX ~xtqDZ(n), q ~ 2, 

and 

(8) q ~ 2, 

for every compact n-dimensional Alexandrov space with curvX ~ k and radX 
~ n (cf. (3.1)). Although these inequalities are trivially optimal for Alexandrov 
spaces, they are not optimal for riemannian manifolds. 

For k < ! ' let d~ denote the maximal regular n-simplex inscribed in DZ (n) . 
Note that for each n ~ 2, the inradius rn(k) of d~ defines a strictly increasing 
continuous function rn : (-00, !) --+ (0, n). In particular, there is exactly one 
value kn E (-00, !) such that rn(kn) = ~. A calculation gives 

( 2arctan J 1-2/n)2 . 1 (9) 0 = k < k < ... < k = < ... < hm k =-2 3 n n n ..... oo n 4 . 

We are now ready to state our second main result, which in the riemannian 
category addresses all three problems of the recognition program for the (n + 1 )-
packing radius. 

Theorem D. Let X be an n-dimensional Alexandrov space with curv X ~ k, 
radX = n, and packn+!X = packn+!DZ(n). If in addition X is a closed 
manifold (or Poincare duality space), then k = 1 or k ~ kn · Moreover, if 
k = 1, then X is isometric to S~, and if k = kn it is isometric to the double 
Dd~ = dZ Ud~ /(ad~ '" adZ) of d~ . 

n n n n n n 

This result combined with the stability theorems in [GPW] , n =I- 3, or [P] 
gives the following corollary for riemannian manifolds. 

Corollary E. For any integer n ~ 2 and real number k ~ 1, let .f4(n, n) 
be the class of closed riemannian n-manifolds M satisfying secM ~ k and 
radM = n. Then 
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(1) For every e > 0 there are at most finitely many homeomorphism types 
among ME Lk(n, n) with 

(2) The inequality 

n-l 
packn+1M ~ packn+1Dk (n) + e. 

packn+1M 5:. packn+1DZ(n), ME...f4(n, n) 
is optimal if and only if k E (-00, kn] U {I}. 

(3) There is an e = e(n), such that any ME...f4 (n, n) for which 
n 

is homeomorphic to Sn . 

Our main results deal mostly with extremal problems for q-extents, or q-
packing radii, when q 5:. dimM + 1. The possible distribution of points that 
realize the q-extents for q large seems to be a fascinating problem, supported 
in part by examples. In spaces that are fairly symmetric it appears that there 
are many such solutions as q ---> 00 (cf. S~ in §1). Indeed, it seems that these 
distributions, i.e., the extenders, will pick up asymmetries of a space. Thus, 
although by definition the q-extents of a space like its q-packing radii might 
be viewed upon as size invariants, they should probably be thought of as global 
shape invariants, much in the same way that curvatures are thought of as local 
shape invariants. This is supported also by the surprising fact (l.12) that the 
limit of q-extents as q ---> 00 is related to the excess as defined in [GP41 (cf. 
also [AG]). However, we leave it for the future to see the possible germination 
of these ideas. 

The paper is divided into three sections and one appendix: 
§ 1. The family of q-extents and examples. 
§2. Positively curved spaces with large extents. 
§3. Alexandrov manifolds with bounded radius and large packing radii. 
Appendix. Rigidity from distance comparison in Alexandrov spaces. 
The above results were announced in [GM] except that Theorem D and its 

corollary were stated incorrectly with xtn+l instead of packn+1. The error 
was caused by an incorrect computation of the kn 's in (9). The packing radius 
results in [GM] will appear as part of [GW]. 

It is our pleasure to thank S. Ferry for suggestions that led to the proof of 
Lemma 3.5 given here, and I. Madsen for explaining the topological significance 
of Grothendieck groups of positively curved spaces (cf. 2.16 and 2.17). Finally, 
we thank G. Perelman and the referee for constructive criticism of the first 
version of the manuscript, which prompted a significant expansion of §2 and 
an overall improvement of the exposition. 

l. THE FAMILY OF q-EXTENTS AND EXAMPLES 

Before computing xtqX in a few examples, we derive some useful inequali-
ties. First, by repeating each point of a q-extender p times we get 

p2. xtX .(q) p(q 1) 
(1 1) t X> q 2 = - xt X. . x pq - (pn pq - 1 q 
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As immediate consequences we have 

(1.2) 

(1.3) 

and in particular 

( 1.4) ~diamx ~ xtX < diamX. 

In analogy to (1.2) we have 

(1.5) X p+ld· X 
xt2p+1 ~ 2p + 1 lam . 

The following examples show that all of these inequalities are optimal. 

Examples 1.6. (i) Let X = Sl be the unit circle in R? with its usual rieman-
nian distance. Suppose (XI' ... ,Xq) is a q-extender in Sl . If (XI' ... ,Xq) 
contains a pair of antipodal points, an easy calculation shows that the remain-
ing set then necessarily is a (q - 2)-extender. Moreover, this extender together 
with any other pair of antipodal points is also a q-extender for Sl . Therefore, 
assume (Y I ' •.. ,Yn) is an n-extender in Sl which does not contain any pair 
of antipodal points. By a straightforward variation argument the line through 
any Yj and the origin separates (Y I ' ... ,Yn ) - Yj into sets of equal cardinal-
ity. Furthermore, the set obtained by moving only one of the Yj's in its arc 
determined by the antipodal image of (Y I ' ... ,Yn ) remains a q-extender (see 
Figure 1.7). 

Ys 
FIGURE 1.7 
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We conclude that any 2 p-extender consists of pairs of antipodal points. Thus 
I p 

xt2P (S ) = 2p _ 1 n. 

Similarly, any (2 p + 1 )-extender consists of pairs of antipodal points together 
with a configuration of points satisfying the separation condition alluded to 
above. Thus 

and in particular 
I n 1. I 

xt(S ) = 2" = "2 dzamS . 

(ii) Let X = [0, n] with dist(OI' O2 ) = 101 - 021. It follows immediately 
from the SI-discussion above that 

I xtq[O, n] = xtqS, all q. 

In addition the possible extenders consist of an equal number of points at the 
endpoints of [0, n] and possibly one point anywhere on [0, n]. 

(iii) Let X = Vk (0) be the one point union of k intervals [0, 0] identified 
at 0, and equipped with the induced length metric. Arguing as in (i) and (ii) 
above we conclude that any q-extender, q = pk + n, 0::; n < k, for Vk(O) has 
its points evenly distributed among the k endpoints of Vk (0) . Therefore 

xt V, (0) = q(q - p) - n(p + 1) diamV,. 
q k q(q _ 1) k 

In particular Vk has maximal k-extent, and 

k-I 
xtVk = -k-diamVk' 

(iv) Let X = RPln be the real projective n-space with metric of constant 
curvature 1. Obviously xtn+1 Rpn = 1 = diamRpn, i.e., Rpn has maximal 
(n + I)-extent. Thus xtRpn ::::: n~l diamRpn . 

Note that (i) and (ii) above provide examples where all extents are minimal, 
whereas (iii) and (iv) are examples exhibiting maximal extents. 

Our description of the q-extenders of SI in Example 1.6 (i) can be lifted 
to the higher dimensional unit spheres S~ , n ::::: 2. For n = 2 the result below 
was obtained previously by F. Nielsen in [N]. We shall follow the same method 
of proof and make use of a fundamental observation due to 1. Fary [F]. 

Theorem 1.8. For all integers n ::::: 1 and q ::::: 2 we have: 
(i) xtq(S~) = xtq(S:) = n/ (2 - L ~ rl) . 
(ii) Those points of a q-extender which do not appear in antipodal pairs will 

all lie on a great circle in such a way that they realize an SI -extender on that 
circle. In particular, if q is even, every q-extender consists of pairs of antipodal 
points. 
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Proof. For 1 ~ I ~ nand q ~ 2, let Q(l) be a collection of q points in 
S~ C ]R/+I (some of the points in Q(l) may coincide, in which case we count 
multiplicities). We denote by Q(I) the union of Q(l) and its antipodal set, 

I Al I A Al 
-Q(l) in SI ' and set SI = SI - Q(l). Now, for each x E SI define 

I I-I (1.9) 'Px : S - {x, -x} ---+ SI 

to be the map ffJ x = r x 0 n x ' where n x is the restriction to S~ of the orthogonal 
projection in ]R/+I onto the tangent space TxS~ = ]RI , and rx : TxS~ - {O} ---+ 

S~-I is the radial projection of TxS~ - {O} onto the unit sphere in TxS~. 
A result of Fary enables us to compare the average distance of Q(I) in S~ , 

i.e., xtqQ(I), with the corresponding average distances xtq'Px(Q(I», x E S~ , 
in S~-I. Precisely, if for any unit sphere we use d to denote the spherical 
distance, then following [F] we have for any CI , C2 E Q(I) 

(1.10) 

where WI = voIS~. Indeed, replacing CI , C2 by any PI' P2 E S~ , we claim 
that the same formula holds when the integral is taken over S~ - {PI' P2}' To 
see this observe that the integral is a function f of ° = d (PI' P2) E [0, n] 
only, and that f(O) = 0, fen) = n, and f(O) = f(OI) + f(02) whenever ° = 

01+02,OjE[0,n] (pickpoES~ so that 01 = d(pl' po) and °2 = d(po,P2»' 
By continuity, f(O) = ° for all ° E [0, n], and in particular (1.10) follows. 

Now starting with a collection Q(n) of q points in S~ , we can express in-
dividual distances by iterated applications of (1.10): Let Tn_ 2 = T~ ... T~TIS~ 
be the (n - 2)-iterated unit vertical tangent-bundle of S~ , i.e., as a bundle, 
Tn_ 2 is a 2-sphere bundle over a 3-sphere bundle over ... an (n - I)-sphere 
bundle over S~ , and measure theoretically, 

n n-I 2 Tn_ 2 = SI X SI X .•• X SI' 

As before, to Q(n) there corresponds a measure zero subset Qn-2 C Tn_2 ' 
and 

t = T - QA(n) n-2 n-2 n-2 

I l' A An I A so lor each ~ E Tn_ 2 we get a map ffJx : SI ---+ SI by repeating the construc-
tion from (1.9). Thus, (1.10) yields -

d(Cp C) = vol~ !t d(ffJ~(Cj)' 'P~(C))d~ 
n-2 T'_2 

for any Ci' Cj E Q(n) . 
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In particular, if Q(n) is a q-extender for S~ , then 

xtq(S~) = (~) -12:d('i' ') 
1<] 

= ((~)VOI(Tn_2)) -I h 2: d(qJ~('i)' qJ~('))d~ 
Tn _ 2 1<] 

~ ( (~)VOI(Tn_2)) -I h
n

_
2 
(~)xtq(S:)d~ 

I 
= xtq(SI)· 

Since, however, obviously xtq(S~) ~ xtq(S:) , we conclude that xtq(S~) = 

xtq(S:) and the above inequality is an equality. 
The discussion above also allows us to characterize q-extenders Q(n) in S~ . 

First observe that if for ~ E Tn_2 we let ~o' ~I ' .•. '~n-2 = ~, ~n-i E Tn_i , 
denote the corresponding iterated projections of ~ E Tn _ 2 -> Tn_ 3 -> ... -> 

TIS~ -> To = s~ , then by the equality above, qJx (Q(n)) = Q(i - 1) c S;-I is 
-n-J 

a q-extender in S;-I for all ~ E Tn _ 2 and all i = 2, . .. , n . 
Assume by induction that the statement in (ii) holds in all dimensions 2, ... , 

n -1 and let Q(n) be a q-extender in S~ . Pick ~ E Tn- 2 and consider the cor-
responding q-extender qJx (Q(n)) = Q(n - 1) C S~-I . If A(n - 1) c Q(n - 1) 

-0 
is the subset where all antipodal pairs have been removed, then A( n - 1) is con-
tained in a great circle S: c S~. By definition of qJx : S~ -> S~-I it follows 

-0 

that A(n) c S~ C S~-I and hence A(n) c S: by [N]. 
Since we have all the necessary ingredients, and Nielsen's proof was presented 

in Danish, we give it here for completeness. As above consider a A-extender 
A(2) c S~ which does not contain any pair of antipodal points. It follows from 
the separation property of the A-extenders qJx(A(2)) c S: (cf. Example 1.6 (i)) 
that every 2-plane in 1R? J S~ through the center of S~ and one 9f the points 
in A(2) must separate the rest of A(2) into sets of equal cardinality. In effect, 
any such plane which contains two points from A(2) must at least contain one 
more (third) point from A(2), and hence all of A(2) is in fact contained in 
one 2-plane by the Sylvester-Gallai theorem [C, p.65]. 0 

In contrast to our discussion of sphere-extenders, our present understanding 
of disk-extenders in general is far from complete. For example we know that 
extn+1 DZ(n) is realized by the vertices of a maximal regular inscribed n-simplex 
tlZ in DZ(n) only when k ~ 116 , and that this cannot be true for k arbitrarily 
close to -! by Theorem 1.8. 

Our main concern in §2 will be spaces with large extents. First, however, we 
discuss the other extreme, i.e., what is the significance of having small extents? 
For this purpose fix two points XI' x2 E X with dist(x l , x2) = diamX. Let 
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Xo E X be a maximum point for the excess function (cf. [AG]) , 
ex x (x) = dist(x i ' x) + dist(x, x 2 ) - dist(x i ' x 2 ), 

, 2 

and set a = dist(x i ' xo)' P = dist(xo' x2). By placing p points at XI' P 
points at x2 ' and one point at xo' we derive 

xt2p+I X ~ (pa + PP + /diamX)/Cp; 1) 
(1.11) = p(eX ,x2(xO) + (p + l)diamX)/ CP; 1) 

>p+1 d . 1 
- 2p + 1 zamX + 2p + 1 excX , 

where the excess of X, excX, is defined as in [GP4] by 
excX = min maxey y (x). 

y, 'Y2 X '2 

From (1.5) and (Lll) we conclude that if xtqX is minimal for some odd 
q, then excX = O. The same conclusion does not hold for even q. To see this 
let X be the graph obtained from V3(0) in 1.6 (iii) by shortening one of the 
edges to less than one third of its original length. The 4-extent of this space is 
minimal although its excess is nonzero. 

Now suppose xtX is almost minimal, i.e., xtX ::; !diamX + e, for some 
small e > O. Then by (1.11) and (1.3) we get 

excX::; (2p + 1) [2P2; 1 (~diamX + e) - ~: \ diamx] 

=4~diamX+(2p+2+2~)e, all p. 

An analysis of the right-hand side of this inequality leads to the estimate 

e xcX ::; IOv d iamX Vi 
for e ::; 0.5diamX . In particular, 
Proposition 1.12. Let X be a compact metric space. For any e > 0 there is a 
J > 0 such that excX < e· diamX if xtX ::; (! + J)diamX. 

The converse of 1.12 does not hold as the following example shows. 

Example 1.13. Fix 0 E (in, !n] and let qO) be the region in S~ bounded 
by two geodesics co' c i : [0, n] -> S~ making an angle 0 at coCO) = c i (0). Let 
X be the inner metric space obtained by identifying the co's in three copies of 
qO). In other words, X is the spherical suspension of V3(0) from 1.6 (iii), 
or equivalently the warped product X = V3(O) xsin [0, n]. Note that J!}(O) 
is totally geodesic in X. Now clearly xt3X ~ xt3 V3(O) = 20 and by (1.3) 
xtX ~ 10> 1 = !diamX. However, excX = O. 

2. POSITIVELY CURVED SPACES WITH LARGE EXTENTS 

All metric spaces (X, d ist) considered from now on are assumed to be 
Alexandrov spaces. 
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Before turning our attention to positively curved spaces we recall some basic 
general facts and notions: 

First, if c1 : [0, 'I] ---+ X and c2 : [0, 12 ] ---+ X are segments with cI (0) 
= c2(0) = Po EX, the triple (po' CI ' C2) or simply (CI ' c2) is referred to 
as a hinge at Po' Let iik(t I , t2) be the angle at Po E Si in the comparison 
triangle (po' c i (t 1), C2(t2)) in Si, i.e., dist(po ' cj(t j)) = tj' i = 1,2, and 
dist(c i (tI)' C2(t2)) = dist(c I (tl)' C2(t2))· From curvX ~ k it follows that 

(2.1) iik(t l , t2) is nonincreasing in tl and t2. 

This allows one to define the angle between c I and c2 by (cf. also [R]) 

(2.2) <l:(cI , c2) = limiik(tl ' t2), t1 , t2 ---+ O. 

Now fix p EX. A germ of segments emanating from p is called a geodesic 
direction at p . The angle between segments emanating from p defines a metric 
on the set Gp of geodesic directions at p. The metric completion Sp = Gp 
of Gp is called the space oj directions at p. If dim X = n, then Sp is an 
( n - 1 )-dimensional Alexandrov space with curvature ~ 1 (see [BGP] or [PI]). 
Similarly, the infinite euclidean cone on Sp is called the tangent space at p, and 
will be denoted by TpX. The metric on TpX = Sp x [0, oo)/Sp x {O} = CoSp 
is determined by the condition that the cone on any segment of length e in Sp 
is isometric to the planar euclidean cone of an arc of length e in the unit circle 
SI c lR? = S5. With this metric, TpX is an n-dimensional Alexandrov space 
with curvTpX ~ 0 ([PI], [BGP]). Moreover, when given the induced length 
metric, the set of points of distance 1 from the vertex p = Sp x {O} E TpX 
is isometric to Sp' It is also worth pointing out that TpX is isometric to the 
Gromov-Hausdorff limit of the pointed spaces (AX, p) , A ---+ 00 (cf. [BGP]). 

We say that a point p E X is euclidean if TpX is isometric to ]Rn = S; 
(equivalently, Sp is isometric to S~-I). The following result about euclidean 
points is very useful. 

Theorem 2.3 ([BGP], [PI]). The set oj euclidean points in an Alexandrov space 
is a dense GJ , i.e., a countable intersection oj open dense subsets. 

As for riemannian manifolds with a lower bound on sectional curvature, the 
following global comparison theorem provides the single most important tool. 

Theorem 2.4. Let X be an n-dimensional Alexandrov space, n ~ 2, with curv X 
> k. Then 
- (i) For any triple (po' PI' P2) in X (with 3xt3(po' PI' P2) < 2rc/Vk iJ k > 0) 
there is a unique (up to isometry) triple (po' PI' P2) in Si with dist(Pj' p) = 
dist(P j , P). Moreover, Jor any segment Co Jrom PI to P2 and 0 :::; t :::; 
dist(PI ' P2) 

(*) dist(po, co(t)) 2: dist(Po , co(t)) , 

where Co is the unique segment Jrom PI to P2 . Equivalently, the global version 
oj (2.1) reads 
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(i') For any hinge (po' ci ' c2) in X with 0 < <l:(cl , c2) < 7C (and length 
(ci ) < ~, i = 1 , 2, if k > 0) we have 

(*') dist(c i (II)' c2(12)) ::; dist(ci (II)' c2(12))' 

where (Po' ci ' ( 2) is the corresponding hinge in SZ, i.e., <l:(cl , ( 2) = <l:(ci ' c2)· 

(ii) If equality holds in (*) for some 0 < to < dist(PI' P2) and ct is a 
o 

segment from Po to co(to)' then ct (s), 0 < s ::; d ist(po' Co (to)) , is joined to 
o 

PI and P2 by unique segments. Moreover, these segments together with their 
limit segments from Po to PI and P2 form a surface isometric to the triangular 
surface in SZ with vertices Po' PI ' P2 and whose interior is totally geodesic in 
X. 

(ii') If equality holds in (*'), then (cl , c2) spans a surface isometric to the 
triangular surface in SZ spanned by (cl , c2), and with totally geodesic interior. 
In fact, any such surface is determined uniquely by a segment in X between 
interior points of ci and c2 . 

Part (i) of this theorem was proved in [BGP] and in [PI]. The rigidity parts 
(ii), (ii') will be proved in the Appendix. There are other equivalent versions of 
(i) and (i') in Theorem 2.4 like, e.g., the angle version customary to riemannian 
geometry. Since the main topic in this section is positively curved spaces, we 
point out some simple special consequences for this class. 

Remark 2.5. Suppose X is an n-dimensional Alexandrov space with curvX 2:: 
1. Then d iamX ::; 7C and xt3X ::; 2f . Moreover, any geodesic triangle in X 
with perimeter 27C is degenerate, i.e., it is either a biangle or a closed geodesic in 
which antipodal points have distance 7C (cf. [BGP]). If dist(p, q) = diamX = 
7C, then excX = O. In fact any x E X - {p, q} lies on a unique segment 
from p to q. Moreover, E = {x E Xldist(p, x) = dist(q, x) = H is a 
totally geodesic (n - 1 )-dimensional Alexandrov space with curv E 2:: 1, and 
X is isometric to the spherical suspension r.IE of E (cf. [GP4], [BGP], or 
2.4 (i) and (ii)). The metric on r.IE is determined by the requirement that 
the suspension of a segment of length () in E is isometric to the region in S~ 
bounded by a biangle of angle (). Similarly half of r.1 E , the spherical cone on 
E, is denoted by CIE, i.e., CIE UE CIE = r.1E. These are both special cases 
of the spherical join construction in Example 2.16. 

It is convenient to adopt the following terminology and conventions from 
[GP3,5] to the setting of Alexandrov spaces. For p E X and a geodesic direction 
v E Gp C Sp, let Cv : [0, tv] -+ X be the unique maximal segment representing 
v (geodesics cannot bifurcate in an Alexandrov space). The function v -+ tv 
is upper semicontinuous and we define the segment domain seg( p ) for p to be 
the closure in TpX of the subset {(v, t)IO::; t::; tv}' Note that if u E Sp - Gp , 
then tu = 0 and exp p : se g(p) -+ X given by (t, v) -+ Cv (t) is a well-defined 
continuous and surjective map. 

To give a better description of the metric behavior of exp p : se g(P) -+ X 
we change the metric on TpX (or the ball D(p, ~) C TpX if k > 0). By a 
unique radial change, all euclidean sectors are replaced by constant curvature 
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k sectors making the same angle at p. For k :s 0 we denote TpX with this 
new metric as CkSp . If k > 0, all points at distance :Ik from p E TpX 
are identified and the resulting metric space LkSp is isometric to },cLI Sp (cf. 
2.5). In any case we can view se g(p) as a subspace of CkSp' k :s 0, or of 
LkSp' k > 0 (cf. 2.5). When given the induced metric we have 

(2.6) expp : seg(p) --+ X is distance nonincreasing. 

In fact, this statement is easily seen to be equivalent to the hinge version (i') 
of Theorem 2.4. Because of (2.3), we need to use (2.6) mostly for euclidean 
points p EX. In this case, TpX has simply been replaced by sZ ::> se g(P) . 

It should be clear from the discussion above that positively curved Alexan-
drov spaces playa particularly significant role: They are exactly the spaces that 
can occur as spaces of directions in Alexandrov spaces. 

In the remaining part of this section, we discuss the extremal problems for 
q-extents on Alexandrov spaces X with curvX ~ 1. This can be interpreted in 
two ways related to either (7) (as in 2.7 below), or to (5) (as in 2.9-2.14 below): 

In the first case we have the following general result, which implies Theorem 
A of the introduction. 

Theorem 2.7. Let X be an n-dimensional, n ~ 2, Alexandrov space with curvX 
~ 1. Then 

xtqX :s xtqS~ 
for all q ~ 2. Moreover, equality holds for some q if and only if d iamX = n . 
Proof. The inequality is an immediate consequence of 2.3 and (2.6) (cf. 2.5). 
Now suppose xtqX = xtqS~ for some q, and let (XI' ... ,Xq) be a q-extender 
in X. Choose a euclidean point p E X (cf. 2.3) and let (XI'··· ,Xq) be a 
q-tuple in se g(P) C S~ with exp pXi = Xi' i = 1, . .. ,q. By assumption and 
(2.6) 

xtq(S~) = xtq(X) = xtq(x1 ' ..• ,Xq) :s xtq(x l ' ••• ,Xq) :s xtq(S~). 
Thus (XI' ... ,Xq) is a q-extender in S~ and dist(xi , x) = dis.t(xi , x) for 
all i, j . From the description of all possible q-extenders in S~ given in Theo-
rem 1.8, either dist(xi' x) = n for some pair, or dist(x;> Xj) +dist(xj , Xk) + 
dist(xk , x) = 2n for some triple in (XI' ... ,xq). Since the same conclusion 
holds for the corresponding points in X, 2.5 completes the proof. 0 

We mention that in analogy to the diameter sphere theorem [GS], it follows 
from Perelman'S work [P] that if diamX ~ xtqX > j, then X is homeomor-
phic to a spherical suspension LI E . 

Note that if in the second case where xtqX is maximal, i.e., xtqX = diamX , 
so is XtqlX, q' :s q. It is therefore immediate from 2.4 (i) that if diamX > j, 
then no xtqX is maximal, q ~ 3. With this in mind we now focus our attention 
on Alexandrov spaces X with curvX ~ 1 and diamX = j: 
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Problem 2.8. Describe all n-dimensional Alexandrov spaces X with curvX ?: 
1 and d iamX = ~ . 

When restricted to riemannian manifolds an essentially complete metric clas-
sification was given in [GG]. The general problem seems very hard (cf. [GP6]). 
Here we will give a complete metric classification under the additional assump-
. X 7C 110n xtn+1 = 2 . 

We begin with the following simple illustration of how to apply the rigidity 
parts of the comparison Theorem 2.4. 

Lemma 2.9. Let X be an Alexandrov space with curvX?: 1 and diamX = ~. 
Then xtq+IX = ~, q ?: 1, if and only if the right angled spherical q-simplex 
/).q = CI/).q-I = ... = Ci(point) c Sf is isometrically embedded in x, with 
totally geodesic interior. 
Proof. Pick a (q + 1)-extender (XO' ... ,Xq) for X. By assumption dist(xi,x) 
= 1 for all i =f. j. We construct the desired simplex in q steps. First join Xo 
and XI by a segment, /).1 = [0, 1] = CI(point). Note that all points of /).1 

are at distance 1 from each of x 2 ' ... ,Xq by 2.4(i) and diamX = l' Now 
join, say, the midpoint mOl of /).1 to x 2 by a segment, and use it to sweep 
out a /).2 via 2.4(ii). Again all points of /).2 are at distance 1 from each of 
x 3 ' ... ,Xq' Now join x3 to, e.g., the barycenter m Ol2 of /).2 and sweep out 
triangular surfaces along all segments in /).2 through m012 using 2.4 (ii). The 
resulting cone on /).2 is in fact isometric to /).3. To see this from 2.4 (ii), it is 
important to observe that any segment from an interior point of the segment 
from x3 to m 012 to any point of /).2 is unique. Continuing this process q 
times completes the construction. That the interior of /). q is totally geodesic 
follows from the fact that /). q is isometrically embedded, and that geodesics in 
X cannot bifurcate. 0 

Next we give an inductive method for generating examples of n-dimensional 
Alexandrov spaces X with curvX ?: I and diamX = xtn+IX = 1 : 
Example 2.10. Suppose Y is an (n - I)-dimensional Alexandrov space with 
curv Y ?: I and i : Y --> Y an isometric involution. Then Y = Y / i is an 
(n - I)-dimensional Alexandrov space with curv Y ?: 1 and (Y, i) is referred 
to as a "2-fold" of Y. The spherical suspension X = LI Y is an n-dimensional 
Alexandrov space with curvX ?: I and I = -Li : X --> X, (y, ~ + 8) --> 

(i (y), ~ - 8) , y E Y , 8 E [0, ~], is an isometric involution. Thus also 

X = X/I = (LY / - Li) = CI (Y --> Y) 
(n) 

= the spherical mapping cone on Y --> Y = Y / i 
is an n-dimensional Alexandrov space with curvX?: I . Moreover, if xtn Y = 
diamY = I, then xtn+IX = diamX = ~. 

To start the procedure, recall that by convention a 1-dimensional Alexandrov 
space X has curv X ?: 1 if and only if d iamX ::; 7r , i.e., X is an interval of 
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length ~ n or a circle of length ~ 2n . In particular 

1 (a) .6.1 = [0, I] = C I (point) = the spherical cone on a point, 

(1) X= (b) D.6.I=[-~ ~]/(-~"'~)=thedoubleof.6.1 
2' 2 2 2 

= RPI
I = Sl I( -x'" x) = the real projective line 

is the complete list of I-dimensional spaces with diamX = xt2X = I and 
curvX ~ 1. 

In order to apply the above method to construct 2-dimensional examples, we 
list all the possible I-dimensional "2-folds" ( Y, i) of the spaces in (1): 

(a) = (ii) ([-I' IL -id), 1 (i) (.6.1, id), 

( i ) (Y, i) = (iii) (D.6. I , -id), 

~ {(i) (RPII , id), 
(b) = 

(ii) (S:' -id). 
This yields the following 2-dimensional examples: 

X= 

.6.2 = the right angled spherical 2-simplex 

=CI (.6. I ), (a, i), 

C I (D.6. I ) = CI(Rp l ), (a, ii), (6, i) 

D.6.2 = the double spherical 2-simplex 

= .6.2 U .6.2 I ( a .6.2 '" a.6. 2), (a, iii), 

Rp2 = S~ I( -x '" x) = the real projective plane, (6, ii). 

Our next result shows in particular that any n-dimensional Alexandrov space 
X with curvX 2: 1 and xtn+IX = diamX = I is generated by the method 
described in 2.10. 

Lemma 2.11. Assume X is an n-dimensional Alexandrov space with n ~ 2, 
curvX 2: 1, and diamX = xtn+IX = I. Let (xo' ... , x n) be an (n + 1)-
extender in X and Ao = {xJdist(x, xo) = I}. Then Ao is an (n - 1)-
dimensional Alexandrov space with curvAo 2: 1 and xtnAo = diamAo = I. 
Moreover, SXo is a 2-fold of Ao and X is isometric to CI (Sxo -+ Ao)· 
Proof. By distance comparison (cf. 2.4) Ao is convex in X and, obviously, 
curvAo 2: 1 and diamAo = xtnAo = I. Moreover, we claim that dimAo = 
n - 1. In fact Ao ::J .6.n - 1 by 2.9, and a space of directions argument shows 
that Ao cannot have dimension n (cf., e.g., 2.3 and 2.4). Using 2.4 (ii') and 
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2.4(ii) (as in 2.9), we see that each segment from Xo to Y E Ao' together with 
each Lln- I C Ao containing y, determines a unique spherical n-simplex Lln . 
Moreover, a simple space of directions argument shows that there can be at most 
two such Lln 's with common Lln- I • We claim that X is the union of all these 
n-simplices, and thus in particular that any x E X - (Ao U xo) lies on a unique 
segment from Xo to Ao: If not, let y be a point in the union of simplices 
closest to x. Now using that d iamX = ~ it is not difficult to see that any 
segment from x to y will be perpendicular to all segments emanating from 
y in one of these simplices. Since this set of directions at y has nonempty 
interior we get a contradiction. ' 

All of this shows in particular that S = Gx ' and there is a well-defined 
Xo 0 

map E : Sx --+ Ao' given by E(v) = cv(~)' v E Sx . Moreover, E is at most 
o 0 

2-1 and the restriction of E to the set of directions Lln- I C S corresponding 
Xo 

to a Lln C X is an isometry. If E is 1-1, then X = CIAo. If E is not 1-1, then 
i : Sx --+ Sx ' defined by i(v) = v if E(v) = E('O) and v I- v and i(v) = v if 

o 0 

E-I(E(v)) = {v}, is an isometric involution. It follows that (S ,i) is a 442-
Xo 

fold"of Ao and X=CISx/«v, ~)",(i(v), ~)) is isometric to the quotient of 
o 

the spherical suspension 1: I S x by the isometric involution I : 1: I S --+ 1:I S 
o ,~ ~ 

given by I(v, ~ + 0) = (i(v) , ~ - 0),0 E [0, ~]. This completes the proof of 
2.11. 0 

To obtain a classification of all Alexandrov spaces X with curv X ~ 1 and 
xtdimX+IX = diamX = ~ via 2.10 and 2.11, we need an inductive procedure 
to construct all possible 2-folds. 

Lemma 2.12. Let X be an n-dimensional Alexandrov space with curvX ~ 1 and 
xtn+IX = diamX = ~. If (X, I) is a nontrivial 2-fold of X, there is an (n - 1)-
dimensional Alexandrov space Y with xtn Y = diamY = ~ and a 2-fold CiT, i) 
of Y such that 

or 
(i) X = 1:Y and I = -1:i 

(ii) X = 1:Y / - 1:i and I is induced from 1:j, where j : Y --+ Y is an 
isometric involution commuting with i and inducing a 2-fold on Y, i.e., 
xtnY/(i,j)=~. 

Proof. Fix an (n + 1 )-extender (xo' ... ,xn) in X and consider the quotient 
map 7t: X --+ X . 

(i) If, say, 7t -I (xo) consists of two points, it is easy to see that they are at 
distance 7t apart, and that X = 1:Ao' where Ao = 7t- I(Ao) and 1= -1:i, 
where i = IIAo . 

(ii) Now suppose 7t- I (x) consists of only one point for i = 0, ... , n. As 
above, Ao = 7t -I (Ao) is convex and an easy induction argument shows that 
xtn+IX = diamX = ~ (cf. proof of 2.11). Set Y = Sxo ' where X'o = 7t- I(xO)· 
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Then by 2.11, X = 'I.Y / - 'I.i, for some isometric involution i : Sx -+ Sx 
o 0 

and Ao = S - / i = Y. Clearly I induces an isometric involution j : Sx- -+ Sx-
~ 0 0 

which commutes with i and whose induced map on Ao = Sx/i is IIAo' In 
particular, I: 'I.Y / - 'I.i -+ 'I.Y / - 'I.i is induced from 'I.j: 'I.Y -+ 'I.Y. 0 

Starting with the complete classification of our spaces and their 2-folds in 
dimension 1 (Example 2.10), and using 2.12 and 2.11, we obtain a complete 
classification in all dimensions. Again using 2.11 and 2.12 and an easy induc-
tion argument it is in fact not difficult to give the following more satisfactory 
description. 

Theorem 2.13. Let G = (Z2t+1 be the group generated by all reflections in 
coordinate hyperplanes in ]Rn+l. Then X is an n-dimensional Alexandrov space 
with curvX 2:: 1 and xtn+IX = diamX = ~ if and only if it is isometric to 
S~ /H, where H eGis a subgroup acting without fixed points. Moreover, for 
any 2-fold (X, I) of X, there is a subgroup H' cHand an hE H such that 
H = H' Ef) (h) , X = S~ / H' , and I is induced by h. 

To prove Corollary C from the introduction we need the following observa-
tion. 
Theorem 2.14. If an n-dimensional Alexandrov space X with curvX 2:: 1 and 
xtn+IX = diamX = ~ is a (generalized) manifold, it is either isometric to RP; 
or homeomorphic to Sn . 
Proof. First we use the description X = CI(Y -+ Y) from 2.11. By Van 
Kampen's theorem n l (X) = n l (Y)/N(imnl (Y)). An easy induction argument 
then gives that n I (X) #- {l} if and only if X is isometric to RP; (the only 
nontrivial 2-fold of RP; is S~). 

Assume from now on that X #- RP; , i.e., in particular n I (X) = {l}. The 
Mayer-Vietoris sequence applied to X = CY u Y yields 

0-+ Hn(X) -+ Hn_ 1 (Y) -+ Hn_1 (Y) -+ Hn_ 1 (X) -+ Hn_2(Y) -+ ... 

... -+ H2(X) -+ HI (Y) -+ HI (Y) -+ O. 

Now suppose X is a generalized manifold. Then in particular H* (Y) = 
H)Sn-I) , and consequently Hq(Y) ~ Hq(X) for q :::; n - 2 and, by Poincare 
duality, Hn_ 1 (X) = {O}. If we use homology with Z2-coefficients, we deduce 
moreover that Hn(X) -+ Hn_I(Y) is an isomorphism and hence Hn_I(Y) = 
{O}. From [GP6], therefore, we know that aY #- 0, which since curvY 2:: 
1 > 0 implies that Y is contractible. In fact by the soul theorem of [P 1], Y 
is homeomorphic to the cone of the space of directions, Spo' where Po E Y is 
the unique point at maximal distance from a Y. All in all we conclude that 
H)X) = H)Sn) , which for n #- 3 suffices by the solution of the generalized 
Poincare conjecture. For n = 3 a direct argument based on 2.10, 2.11, and 
2.12 can be given. Alternatively we can use the description X = S~ / H from 
2.12: 
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First note that H acts freely on S~ if and only if H = Z2 and X = RPln • 

Now suppose X =/:. RP; is a generalized manifold, and let p E S~ with 
non-trivial isotropy group Hp C H. If [P] E X denotes the orbit of p, then 
clearly Y = S[p] = r} (Sri-I I Hp) = S~-l * (S~-l-I I Hp), where 1= dimFixHp 
and S~-t-I is the normal sphere at p to fix Hp. Since by assumption HJY) = 

H*(Sn-I), we see that HJSrt-IIHp) = H*(S~-t-l). By induction we may 
assume that S~-l-I I Hp is homeomorphic to Sn-l-I , and hence Y is home-
omorphic to Sn-I. By the same argument, any space of directions of Y is 
homeomorphic to Sn-2. Now since Y-Fix i is dense in Y, an easy convexity 
argument in Y shows that 7C (Fix i) = a Y =/:. 0, where 7C : Y -+ Y = Y I i is 
the quotient map. It follows that (Y, i) is the double of Y and in particular 
Spo = Spo for some Po E Y-Fix i. We conclude that Y is homeomorphic to 
D n- I and X is homeomorphic to I.Y I - I.i '" S~ I I '" Sn, where I is the 
isometric inyolution with Fix I = S~-2. 0 

Remark 2.15. In the above proof it actually follows that either E = Srl - I I Hp 
is the double of E = Eli", D n- l - I and therefore l = 0, or ilE = id and 
then l = 1 (n ~ 3). This observation allows us to sharpen the conclusion of 
2.13. In fact by induction it can be seen that if X 1= RP; is an n-dimensional 
Alexandrov space with curvX ~ 1 and xtn+IX = diamX = ~, then X is 
a generalized manifold if and only if it is isometric to a space of the form 
D(ll.nl) * D(ll.n2) * ... * D(6.nr ) where n l + ... + nr + (r - 1) = n (cf. 2.16 and 
2.17 below). 

We conclude this section by pointing out that the spaces in Theorem 2.13 
generate an interesting group. This is related to the following construction of 
positively curved spaces. 
Example 2.16 (The spherical join construction). Let X and Y be Alexandrov 
spaces. The product X x Y admits a natural Alexandrov structure. Moreover, if 
p EX, q E Y, then S(p,q) = Sp*Sq = Sp x CSqUCSp xSq , the topological join 
of Sp and Sq. In particular we see that if X and Yare Alexandrov spaces with 
curv X ~ I and curv Y ~ 1, then X * Y has a natural Alexandrov structure 
with curvX * Y ~ 1 (X * Y = S(p,q)(CoX x CoY)). Since diamX * Y ~ ~, 
the subclass of spaces X with curvX ~ 1 and diamX ~ ~ is especially 
interesting. Another much smaller class is provided by the class of Alexandrov 
spaces X with curvX ~ 1 and diamX = xtdimX+IX = ~. It is not difficult 
to check (using a more detailed description of the metric as in [GP6]) that this 
class is closed under the spherical join operation. This leads to the following 
Problem 2.17. Under suitable equivalence between spaces, determine the 
Grothendieck group corresponding to the abelian semigroup (~, *) where ~ 
consists of n-dimensional spaces X with curvX ~ 1 and xtn+IX = diamX = 
~,n=O,I,2,···. 

For other classes of positively curved spaces that are closed under spherical 
join see [GP 6]. 



NEW EXTREMAL PROBLEMS FOR THE RIEMANNIAN RECOGNITION PROGRAM 19 

3. ALEXANDROV MANIFOLDS WITH BOUNDED RADIUS 
AND LARGE PACKING RADII 

Let X be a compact Alexandrov space. It is immediate from (2.6) that 
packqX ::; packqse g(P) for any p E X and integer q ~ 2. If in particular 
dimX = n, curvX ~ k, and radX::; R, then 

(3.1 ) 

where we have used 2.3 as well. 
Noting that packqDZ(R) is obviously increasing in n, we see from (3.1) that 

if X is an Alexandrov space with curvX ~ k and radX ::; R, then dimX > n 
if packqX > packqDZ(R) for some q. If in particular we consider the class 
of all closed riemannian n-manifolds M with secM ~ k, radM ::; R, and 
packqM ~ packqDZ- 1 (R) +e for some fixed q and e > 0, then any Alexandrov 
limit space X has curvX ~ k, radX ::; R, packqX ~ packqDZ- 1 (R) + e, 
and dimX = n, by [GP3] and the above. Thus no collapse can occur in this 
class. Consequently there is a v = v(e, n, k, R, q) > a such that all of these 
manifolds have volM ~ v. From [GPW] (if n =f:. 3) and [P] in general it 
follows that this class contains at most finitely many topological types. The first 
statement in Corollary E of the introduction is a special case. 

Since DZ(R) is in itself an Alexandrov space (unless k> a and R> 2:!k ), 
the above inequality is obviously optimal for Alexandrov spaces in general. Our 
main purpose in this section is to investigate the optimality question for (3.1) 
when X in addition is assumed to be a (generalized) manifold. 

Let us first consider n-dimensional Alexandrov spaces X with curv X ~ 
k , k < I /4, and radius normalized by rad X = n. In view of (3.1) the follow-
ing problem is of obvious interest. 

Problem 3.2. Determine pack DZ(n) and the corresponding packers, for all . q 
q , n , and k < ~ . For q large this is equivalent to the classical packing problem. 

The solution to this problem for q ::; n + 1 provides the starting point for 
our discussion: A q-packer in DZ (n), k < ~ and q ::; n + I, consists of 
the vertices in the unique (up to isometry) regularly inscribed (q - 1 )-simplex 
lik-I in Dr l C DZ. To see this first note that any q-packer in DZ(n) must 
be contained in 8Drl(n) , and then use the characterization of q-packers in 
Si-2 described in Proposition 2.4 of [GW] (cf. also [GM]). We begin with an 
analogue of 2.8. 

Lemma 3.3. Let X be an n-dimensional Alexandrov space with curv X ~ k , k < 
~, radX = n, and packn+IX = packn+IDZ(n). Then X contains an isometric 
copy of liZ with totally geodesic interior. Moreover, if m is the barycenter of 
liZ eX, then X = D(m, n). 
Proof. Let m E X be the center of a ball with radius nand D( m, n) = X . 
Choose an (n + I)-packer (xo' ... ,xn ) for X and let (xo' ... ,xn ) be points 
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in seg(m) such that exp mXj = x j ' i = 0, ... , n. We denote directions cor-
responding to (xo'··· ,xn) by vo'··· ,vn E Gm C Sm. Now pick a eu-
clidean point U E Sm (cf. 2.3), and let vo'··· ,vn E seg(u) C S~-I be 
points such that eXPuvj = vi' i = 0,··· ,n. By (2.6) <l:(vj,v) ::::: <l:(vi' Vj) 
for all i, j. In S; viewed as CkS~-1 (or LkS~-1 if k > 0) consider the 
points x j ' at distance dist(m, Xj) from the cone (or vertex) point of S; in 
direction 1\, i = 0, ... ,n. Then x o' ... ,xn E DZ(n) and dist(x j , x) ::::: 
dist(x j , x) for all i, j by 2.4 (ii) since <l:(v j , v) ::::: <l:(Vj' v j ). By assump-
tion this means that (xo' ... ,xn ) is an (n + I)-packer in DZ(n) and more-
over dist(x j , Xj) = distex j , Xj) and hence <l:(Vj' v) = <l:(v j , v) for all 
i, j. From the description of (n + I)-packers of DZ(n) we conclude that 
dist(m, Xj) = n, i = 0, ... , n, and that all angles <l:(Vj' v) are equal to 
the spherical distance between the vertices of the maximal regularly inscribed 
n-simplex in D~(1). In particular, we have packn+ISm = packn+IS~-1 . This 
on the other hand, by the characterization of S~-I given in [GW, Theorem B], 
implies that Sm is isometric to S~-I ,i.e., m is a euclidean point of X. 

We conclude from the above that seg(m) C DZ(n) , that dist(x j , x) = 
dist(x j , x) for all i, j, and that xo' ... ,xn are the vertices in the maximal 
regular n-simplex tlZ inscribed in DZ(n). It also follows that the xj's are 
unique, i.e., there are unique segments cj = Cv from m to x j ' i = 0, . .. , n . 
The corresponding segments in S; will be den~ted by cj ' cj = exp m 0 cj . Since 
<l:(cj , c) = <l:(cj , c) and dist(x j , x) = dist(x j , x), it follows by 2.4 (iii) 
that cj and cj ' i =I- j, span a triangular surface isometric to the 2-simplex in 
D~(n) C S; with vertices m, xj ' and xj ' and with totally geodesic interior. 
In fact, because exp m : seg(m) --+ X is distance nonincreasing and 2.4 (i), we 
may assume that each of these simplices are isometric images under exp m of 
the corresponding simplices in DZ (n). When n = 2, the union of the three 
2-simplices just described is the desired 2-simplex tl~. If n ::::: 2, consider the 
configuration of 2-simplices spanned by (co' cl ' c2 ). Fix a point x on the 
segment joining Xo and XI (see Figure 3.4). Distance comparison based on 
this segment and x2 (cf. 2.4 (i/)) implies that dist(x2 , x) is not smaller than 
the corresponding distance in si c sZ . Since eXPm is distance nonincreasing, 
the opposite inequality holds as well (cf. 2.4 (i/)): Arguing as before, we see 
that exp m provides an isometry between the simplex spanned by m, X, and 
x2 and a simplex spanned by Cx and c2 with totally geodesic interior in X. 
Varying x along the segment from Xo to XI produces an isometric image under 
exp m of the 3-simplex in DZ (n) with vertices m, xO' XI ' and x2 ' and with 
totally geodesic interior. This process continues, until in finitely many steps it 
is established that (xo' ... ,xn ) are the vertices of a simplex tlZ c X which 
is isometric under exp m to the simplex = tlZ with vertices (xo,··· ,xn ) in 
DZ (n). By construction, m is the barycenter of tlZ and D( m, n) = X. 0 
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I \ 

x 

FIGURE 3.4 

In general the conclusion of Lemma 3.3 is the best we can hope for. In-
deed X = D.Z is an n-dimensional Alexandrov space with curvX ~ k, k :::; 
i, radX = 7l, and packn+IX = packn+IDZ(71). Note also that for q :::; nand 
packq+IX = packq+IDZ(71) one concludes (with the same proof, cf. [GW]) that 
X contains a q-simplex D.k . 

If in addition X is a closed manifold (or a Poincare duality space), however, 
we have the following crucial fact. 
Lemma 3.5. Let X be an Alexandrov space as in 3.3 and assume in addition that 
X is a closed n-manifold. Then 

(i) there is a point mo EX - D.Z which is equidistant to all vertices of D.Z . 
Moreover 

(ii) the distance from the barycenter m in D.Z to 8D.Z is :::; ~ . 
Proof. Let xO' • •• ,xn E D.Z c X be the vertices of D.Z and consider the map 
F : X -+ lR.n+1 defined by 

F(xl ~ (Po dist(xi ' xl r I (d ist(xo, x), ... ,d ist(x. ,xl) 

for all x EX. Clearly F maps into the standard n-simplex 

D.n = {(uo,··· ,un)lui ~ 0, LUi = I} 

spanned by the canonical basis for lR.n+1 • Since D.Z is isometrically embedded 
by 3.3, we know the restriction of F to D.Z explicitly. In fact, F : D.Z -+ 

F(D.Z) c D.n is obviously a homeomorphism, and more importantly so is F : 
8D.Z -+ F(8D.Z). In particular, the restriction of F to 8D.Z :::= Sn-I has degree 
1 mod 2. It follows that any v E H = {u E lR.n+ II L uj = I} in the bounded 
component of H -F(8D.Z) is in the image F(X -D.Z). Otherwise, F restricted 
to X - intD.Z would be homotopic to a map G: X - intD.Z -+ F(8D.Z) :::= Sn-I 
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with G = F on 8(X -inttl.Z) = 8tl.Z :::::: Sn-l, and therefore deg (FI8tl.Z) = ° in 
contradiction with the above. This clearly applies to v = (n~l ' ... , n~l) E H 
and thus yields a point mo EX - tl.Z as claimed in (i). 

To prove point (ii) first observe that by (3.1) dist(mo' x) ~ dist(m, Xi) = n 
for i = 0, . .. , n. From this and simple distance comparison in X it also 
follows that dist(mo' 8tl.Z) ~ dist(m, 8tl.Z) = dist(m, mi), i = 0, ... ,n, 
where mi is the barycenter of the ith face of tl.Z . On the other hand, since any 
x E X has distance at most n from m, another distance comparison argument 
gives that (cf. Figure 3.6) 

max dist(x, 8tl.~) ::; max dist(x ,8tl.~) = n - dist(m, 8tl.~), 
xEX -t.Z XEDZ(7r)-t.Z 

tl.~ c seg(m) C D~(n). 

FIGURE 3.6 

By combining these inequalities we get especially 

dist(m, 8tl.~) ::; n - dist(m, 8tl.~), 

i.e., the inradius of tl.Z, rn(k) = dist(m, 8tl.Z) ::; 1. 0 

As mentioned in the introduction rn : (-00,1/4) .-., (0, n) is a strictly 
increasing, continuous, and surjective function. For each n ~ 2 let kn E 
(-00,1/4) be the unique number such that rn(kn) = 1. Note also that the 
double of tl.Z, Dtl.Z, has radius n if and only if k ::; kn . In other words 
packn+1X ::; packn+1DZ(n) is optimal also for n-dimensional closed Alexan-
drov manifolds X with curvX ~ k and radX = n whenever k ::; kn . For 
t > k > kn' however, there is an E = E(k, n) > ° such that packn+1X ::; 
packn+1DZ(n)-E for any such X. Otherwise,let {Xn} be a sequence of closed 
Alexandrov n-manifolds with curvXn ~ k, radXn = n, and packn+lXn .-., 
packn+1DZ(n). By the compactness theorem in [BGP] we may assume that 
{Xn} converges to an Alexandrov space X with curvX ~ k, radX = n, and 
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packn+1X = packn+1DZ(n). Clearly dimX = n by 3.3 and hence X must be 
homeomorphic to Xi' i large, according to the stability theorem in [PI]. In 
particular X is a closed manifold in contradiction with 3.5 since k > kn • This 
proves Theorem D and Corollary E part (2) when k < !. (Note that DdZ can 
be approximated by the boundaries of smooth convex "tubular" neighborhoods 
f An. Sn+l) o Uk In k • 

We now turn to our main result in this section. 

Theorem 3.7. Let X be an n-dimensional Alexandrov space with curvX 2': 
kn' radX = n, and packn+1 X = packn+1 DZ. (n). If in addition X is a closed 
manifold (or Poincare duality space), it is isometric to the double DdZ of dZ . . . 
Proof. Let m E dZ and mo E X - dZ be as in 3.3 and 3.5. From the proof 
of 3.5 part (ii) we have • 

dist(m, adZ ) ~ dist(mo' adZ) ~ n - dist(m, adZ ). . . . 
But from the definition of kn we have dist(m, adZ) = n - dist(m, adZ), 

and hence dist(mo' adZ) = dist(m, adZ) = ~. By distance comparis"on 
therefore dist(mo, x) i n for some vert~x xj • However, dist(mo, Xj) 2': 
dist(m, x) = n for all i as observed in the proof of 3.5 (ii). Thus dist(mo' xo) 
=:;: ••• = dist(mo, xn) = n by 3.5(i). We can now repeat the argument in 3.3 
whereby deducing that X contains another copy of dZ ,with the same vertices 
but with center mo. Moreover, using D(m, n) = X "it is easy to see that m 
and mo are joined by (n + I) segments of length n, the first, resp. last, half of 
which are contained in the" m "-simplex, resp." mo "-simplex. Consequently, 
X = DdZ as claimed. 0 

• 
This result combined with the stability theorems in [GPW], n =F 3, or [P] 

completes the proof of part (3) and all of Corollary E in the introduction when 
k <!. 

To complete the proof of Theorem D and Corollary E we now consider n-
dimensional Alexandrov spaces X with curvX 2': k, k E [i, 1], and radX = 
n. 

Now for k 2': !, packn+1DZ(n) = packn+1DZ(n/2..Jk) = pack'l+IS;-1 is 
realized by the vertices of the maximal regular euclidean n-simplex inscribed 
in D;(1/..Jk) (cf. [GW, 2.4]). By Theorem B in [GW], any n-dimensional 
Alexandrov space X with curvX 2': k 2': i and packn+1X = packn+1S;-1 is 
isometric to either D;CTr/2..Jk) or to S; , neither one of which is a manifold 
with diameter n, except for S~ . This proves Theorem D and Corollary E when 
k2':!. 
Remark 3.8. The arguments in this section apply as well to n-dimensional 
Alexandrov spaces X with curvX 2': k, radX = n, and xtn+lX = xtn+1DZ(n) 
as long as x t n+ 1 DZ (n) is realized by the vertices of dZ c D; (n) . Although this 
is the case for k ~ /6 we note, however, that already k3 = ~ . 
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ApPENDIX. RIGIDITY FROM DISTANCE COMPARISON 
IN ALEXANDROV SPACES 

The purpose here is to prove the rigidity versions (ii) and (ii') of the global 
distance comparison Theorem 2.4. The hinge version (ii') is a well-known and 
powerful tool in riemannian geometry, where its proof is based on the proof 
of the corresponding version (ii) (cf., e.g., [eEl or [G]). Our proof here follows 
directly from (i') , which, on the other hand, only uses the statement (i) (for X 
and its spaces of directions), not its proof. 

Proof of 2.4 (i'). Given a triple (xO' Xl ,x2) in X and a segment Co from Xl 

to x2 as in 2.4 (i), assume as in 2.4 (i') that 

for some to E (0, dist(x l , X2 )) , and let ct be a segment from Xo to Co (to) 
o 

in X. Fix an arbitrary s E (0, dist(xo' co(to))) and consider segments from 
ct (s) to Xl and to x 2 (as in Figure A.1). 

o 
Observe first that the angles at co(to) are equal to their comparison angles, 

because they cannot be smaller (2.4(ii)), and their sum is 7r. As a consequence 
(2.4 (i),(ii)), all segments from ct (s) to Xl and x2 have lengths as in the 

o 
comparison space S~. Applying the argument for the angles at Co (to) from 
before to ct (s), we see that all angles at ct (s) involving XI (resp. x2 ) are 

o 0 
as in the comparison space. A combination of standard angle comparison and 
the triangle inequality then shows that the angle of ct (s) between the segments 

o 
to XI and x2 is also as in the comparison space, i.e., it is the sum of two 
hinge angles. This proves that the segments to XI and x2 are unique: Indeed, 
the existence of more than one segment to one of the points Xi would cause 
bifurcation of geodesics in the space of directions Sc (s)' This, however, is 

'0 
impossible since S () is itself an Alexandrov space. 

c'o s 

FIGURE A.1 
x o 
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FIGURE A.2 

We now claim that the unique family of segments to XI and x2 along the 
interior points of ct ' together with their limit segments at xo' constitute the 

o 
desired surface. 

First consider the part swept out from XI' We claim that the angles at XI 
between any two segments to ct is as in the comparison triangle (see Figure 

o 
A.2). 

Pick any interior point Cs (t) on the segment from XI to ct (SI) and join 
I 0 

it to ct (S2) by a segment (see Figure A.2). By 2.4(i) and (ii) this segment as 
o 

well has length equal to that of the corresponding segment in S~. Moreover, 
arguing as before the angles at Cs (t) are the same as in the model. A simple 

I 
limit argument then shows that the angle at XI between the unique segments 
from XI to ct (SI) and to ct (s2) is as in the model surface. It is now evident 

o 0 
from 2.4 (i) and (ii) that this half of the surface is isometrically embedded in 
X . Moreover, since geodesics cannot bifurcate in X we see that the interior of 
this triangular surface is totally geodesic, in fact any two points of it are joined 
by a unique segment in X and this segment lies in the surface. For the same 
reasons we know that the other half of the surface, i.e., the one containing x2 ' 
is isometrically embedded in X with totally geodesic interior. 

Finally, we need to see that the two triangular surfaces together form the de-
sired surface. Fix two interior points CO(tI) and CO(t2) on either half of co' and 
join them to Xo by segments in the surfaces just constructed (s~e Figure A.3). 
By the triangle inequality, the angle between these segments does not exceed 
the corresponding angle in the model surface. However, by angle comparison, 
it cannot be smaller. It is now clear, again using 2.4(i) and (ii), that the dis-
tance between any pair of points on the segments considered is as in the model. 
Moreover, between any two interior points of the union of the two triangular 
surfaces there is a unique segment in X, and this segment lies in the union of 
these surfaces. This completes the proof. 0 

We now proceed to consider the hinge version of 2.4. 
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FIGURE A.3 
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Proof of 2.4 (ii'). Given a hinge (xo' c1 ,c2 ) and a segment c between an in-
terior point of c1 and an interior point of c2 (see Figure A.4), then, by as-
sumption and 2.4 (i) and (i') , the length of C is equal to the length of the 
corresponding segment in the comparison hinge in S;. Observe that for the 
same reason the distance from x2 to the endpoint of c on c2 equals the cor-
responding distance in S;. 

Now consider the surface generated by C and c1 as in 2.4 (i'). Let c be 
the edge in this triangular surface opposite xo. Applying 2.4 (i') to c and c2 
yields the desired surface. It is easy to check that the half of this triangular 
surface which contains Xo coincides with the surface generated by C and c1 • 

This, therefore, completes the proof. 0 
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