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ON THE LOCUS OF HODGE CLASSES 

EDUARDO CATTANI, PIERRE DELIGNE, AND AROLDO KAPLAN 

1. INTRODUCTION 

Let S be a complex algebraic variety and {XS}SES a family of nonsingular 
projective varieties parametrized by S: the Xs are the fibers of f: X -- S , 
with X projective and smooth over S. Fix S E S, an integer p, and a class 
h E H 2P (Xs ' Z) of Hodge type (p, p). Let U be an open, simply connected 
neighborhood of s. The H 2p (Xt ' Z) , t E S, form a local system on S, 
necessarily trivial on U, so that for t E U they can all be identified with 
H 2P (Xs ' Z). The Hodge filtration g; of H 2P (Xt , q, t E U, can be viewed 
as a variable filtration on the fixed complex vector space H 2p (Xs ' q. It varies 
holomorphically with t. It follows that the locus T c U where h remains of 
type (p, p) , i.e., in ,grP , is a complex analytic subspace of U. 

It follows from the (rational) Hodge conjecture that the germ of T at s is 
algebraic, meaning that its irreducible components are irreducible components 
of germs at s of algebraic subvarieties of S. Sketch of proof: let TO be an 
irreducible component of T containing s and assume that for all t in yO 
some nonzero multiple of h is the class of an algebraic cycle in X t . A Baire 
category argument shows that for suitable M, N, the set of t E TO for which 
h = -k class of (Zt+ - Zt-) , with Zt± effective algebraic cycles of degree ~ M 
on X t , is dense in some non empty open subset of TO. One then uses that the 
Chow varieties of effective cycles of degree ~ M on the X t form an algebraic 
variety over S, or simply that they form a limited family. 

In Corollary 1.2 below, we prove unconditionally that the germ of T at s, 
as above, is indeed algebraic. Our main result, Theorem 1.1, is slightly more 
precise and gives as corollary a positive answer to a question of A. Weil [7]: 
"... whether imposing a certain Hodge class upon a generic member of [such 
family] amounts to an algebraic condition upon the parameters." 

The Hodge conjecture would. also imply that if f: X -- S can be defined 
over an algebraically closed subfield of C, then so can the germ of T at s. 
About this, we are not able to say anything. 

The proof will be in the setting of variations of Hodge structures, of which 
the local system of the H 2P (Xt , Z) modulo torsion is an example. For the 
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definition and basic properties of variations of Hodge structures on a complex 
variety S, we refer the reader to [2], [5], and [6]. 

Our notations are spelled out in 2.1. Note that in the Hodge decomposition, 
we do not assume p, q ~ O. If H is a Hodge structure of even weight 2p, 
shifting the Hodge filtration, i.e., replacing H by the Tate twist H(p) , one 
obtains a Hodge structure of weight O. Classes of type (p, p) become of type 
(0, 0). This allows us to restrict our attention to variations of weight 0 and 
classes of type (0,0). For simplicity, we will assume the parameter space S 
to be nonsingular. 

Let S be a nonsingular complex algebraic variety and r a variation of 
Hodge structures of weight 0 on S with polarization form Q. If ~ is the 
Weil operator: multiplication by t-q on rP,q , the hermitian form h(u, v) = 
Q(~u, v) is positive definite and makes the Hodge decomposition orthogonal. 
For u a real element of type (0, 0), h(u, u) = Q(u, u). Fix an integer K 
and let S(K) be the space of pairs (s, u) with s E S, u E ~ integral of type 
(0, 0), and Q(u, u) ::; K. It projects to S and arguments as above show that, 

-locally on S, S(K) is a finite disjoint sum of closed analytic subspaces. Our 
main result is: 

Theorem 1.1. S(K) is an algebraic variety, finite over S. 

Corollary 1.2. Fix s E Sand u E ~ integral of type (0, 0). The germ of 
analytic subvariety of S where u remains of type (0, 0) is algebraic. 
Proof. The required algebraic subvarieties of S are images in S of irreducible 
components of S(K) , for K = Q(u, u). 

Corollary 1.3. Let u be a section of the local system ~ on a universal covering 
of S. The set of points in S where some determination of u is of type (0, 0) 
is an algebraic subvariety of S . 
Proof. Such a set is a union of images of connected components of S(K) , for 
K = Q(u, u). 

Corollary 1.4. Let r be a polarizable variation of Hodge structures on S, fix 
s E S, and let VQ C (~)Q be a rational subspace. The locus where some flat 
translate of VQ is a Hodge substructure is an algebraic subvariety of s. 
Proof. Let T be the locus in question, assumed nonempty, and suppose first 
that VQ is of dimension one. Then r is of even weight 2p so that, replacing 
it by r(p) , we may and shall assume it to be of weight O. Let e be a generator 
of V Q n ~. Then V Q is a Hodge substructure if and only if e is of type (0, 0) , 
and one applies 1.3. 

Consider now the general case: V Q of dimension n. A Hodge structure on 
a rational vector space HQ gives rise to an action of the real algebraic group C* 
on HR = HQ <Z> 1R, with z E C* acting as multiplication by z -p z -q on H P , q • 

A subspace VQ C HQ is a sub-Hodge structure -i.e., Vre = VQ <Z> C is the sum 
of its intersections with the H P , q - if and only if VR is stable under C* . 
This amounts to An VIR cAn HR being stable under C* , i.e., to An VQ being 



ON THE LOCUS OF HODGE CLASSES 485 

a Hodge substructure of 1\ n HQ , and reduces us to the one-dimensional case, 
proving 1.4. 

Let D* = D - {O} be the open punctured disk. Theorem 1.1 will be derived 
from the following local result. 

Theorem 1.5. Let 'Y be a polarized variation of Hodge structures of weight 0 
on S = D*r x Dm, with unipotent monodromy. Define S(K) as in 1.1. Then, 
there is a neighborhood U of 0 in Dr+m such that, above U, S(K) is a finite 
disjoint sum of traces on S n U of closed analytic subspaces of U . 
Proof of 1.5 => 1.1. To prove 1.1 one is free to replace S of 1.1 by a finite 
etale covering S' ---+ S. We may and shall assume that the monodromy mod k 
of 'Y is trivial, for some k 2: 3. 

Let S be a smooth compactification of S, with S - S a divisor with nor-
mal crossings. The assumption on the monodromy ensures that the local mon-
odromy of 'Y at infinity is unipotent: in a neighborhood of any point in S - S , 
one is in the situation considered in 1.5. One concludes that S(K) can be ex-
tended to a space S(K) over S, which locally over S is a finite disjoint sum of 
closed analytic subspaces. By GAGA, S(K) , finite over S, is algebraic, and 1.1 
follows. 

The rest of the paper is devoted to proving 1.5. To simplify notations, we 
will assume m = O. The general case is recovered by considering the partition 
of S, according to which of zr+!' ... , zr+m vanish. 

We thank J. Carlson, H. Clemens, R. Donagi, V. Navarro Aznar, and J. Steen-
brink for many useful conversations. 

2. NOTATIONS. SCHEMA OF PROOF 

2.1. Let 'Y be a polarized variation of Hodge structures of weight w on a 
complex manifold S, with polarization form Q. We write ~ for the under-
lying local system of free Z-modules, ~ for the corresponding holomorphic 
vector bundle, identified with its sheaf of sections &s Q9 ~, and 'Y for the 
underlying complex vector bundle, identified with its sheaf of COO sections. 
The Hodge decomposition is a decomposition of the complex vector bundle 

'Y = EB 'Yp,q, 
p+q=w 

and the corresponding Hodge filtration 

g-P = EB'Ya,b 

a~p 

is holomorphic. We still write g-P for the corresponding filtration of ~. The 
Griffiths transversality axiom then reads 

\1g-P c nl Q9g-p-l. 

The Weil operator ~ is the endomorphism of 'Y acting on 'Yp,q as mul-
tiplication by l-q. The polarization form Q is best viewed as a morphism 
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of Hodge structure r Q9 r --> Z( -w). It is an integral bilinear form on ~, 
( -1 ) W -symmetric, and the form on r 

h(u, v) = Q(,~u, v) 

is hermitian symmetric, positive definite, and makes the Hodge decomposition 
orthogonal. This Hodge metric is, generally, not flat. 

2.2. We will need Schmid's theory of nilpotent orbits giving the asymptotic 
behavior of variations of Hodge structures [6]. We begin with a coordinate-
free description. The coordinate-bound translation given in 2.3 suffices for our 
needs. 

Let S be the complement in a smooth variety S of smooth divisors E j 

meeting transversally. Assume that the monodromy of r around the E j is 
unipotent. Let ~- be the canonical extension [4] of the holomorphic vector 
bundle ~ to S. It is characterized by the property that, in any local basis of 
~- , the connection matrix (an end~morphism-valued I-form) has logarithmic 
poles with nilpotent residues along the E j • The first result is that 

(2.2.1) The Hodge filtration 7 of ~ extends to a filtration of ~- by locally 
direct factors. 

Let E be the intersection of the Ej' L j the restriction to E of the normal 
line bundle of Ej' and L; the complement in L j of the zero section. The 
product L of the L j is the normal bundle of E, and the product L * c L of 
the L; is obtained by removing from the normal bundle L the normal bundles 
of E in the E j • 

The nilpotent orbit ~n (or: deformation to the normal cone) approximating 
r around E lives on L * . It is obtained as follows: 

(a) As a filtered holomorphic vector bundle, it is the pull back of the restric-
tion of (~- ,7) to E. 

(b) The connection V un on ~n is described as follows. Locally, let Zj = 0 
be an equation for E j • It defines a trivialization of L j and we write again Zj 

for the corresponding function on L. In a local basis of ~- , the connection 
V is d + r, with r = ro + I>·5, ro and v. holomorphic. The local basis 

I Zj I 

of ~- gives one on E , which pulls back to ~n; in this basis, 

(c) It remains to define the integral lattice. Locally, let ¢ be an isomorphism 
from a neighborhood of the zero section of L (identified with E) to a neigh-
borhood of E in S. Assume it is the identity on E and that, on E, d¢ 
induces the identity on the normal bundle of E. Assume further that ¢ maps 
L* into S. Then, the pull back by ¢ of the local system r" of horizontal 
sections of r is canonically isomorphic to ~: . One defines (~n)z to be the 
pull back of ~. 

The results are that 
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(2.2.2) On the trace on L * of a neighborhood U of E, with U depending 
only on the rank of r, ~n is a variation of Hodge structures, polarized by a 
polarization form of r . 
(2.2.3) For ¢ as in (c), defined on U, ~n and ¢*r areclose: on any compact 
K c U, the distance at z E K n L * between the Hodge filtrations, measured with 
an invariant metric on the relevant period mapping domain, i.e., using the Hodge 
metrics, is 

c :::; C1 d(z, E) Ilogd(z, E)I 0 

with Co depending only on the rank, and C1 only on the rank, on K, and on 
the chosen distance d. 

2.3. We now translate in coordinates. Let DeC be the open unit disk and 
D* = D - {O}. Take S = D*' c D'. Assume that the monodromy of r is 
unipotent. Let Mi be the monodromy around z i = 0 and 

Ni = -logMi· 

Using the coordinate zi' one can view ~n as living on C*' :::> S. The 
underlying local system is the unique local system extending ~ on S. We 
continue to denote it by ~. Let Vz be its fiber at 1. 

The Poincare upper half-plane % is the universal covering of D* , with 
covering map z f'--* s = e2niz . Similarly, %' is the universal covering of 
S = D*', and (C', 0) that of (C*', 1). For z E C', we write s for the 
corresponding point in C*' . 

When pulled back to %' , the variation can be described as a variable Hodge 
filtration <1>( z) on the fixed vector space V = Vz Q9 C , with 

<I>(z + e) = exp(N)<I>(z) 

for ej the /h coordinate vector in C'. We also view <I> as a holomorphic map 
<1>: %' -+:;g (Vz' Q) with values in the appropriate period mapping domain. 

Statement (2.2.1) translates as 

(2.3.1 ) 

(s = e2niz ) for some holomorphic map 'I' from D' to the flag manifold of V . 
The nilpotent orbit ~n is given by 

<l>un(z) = exp(L: zjN) '1'(0). 

Statements (2.2.2) and (2.2.3) translate as the existence of constants Co' C2 ' 
C3 , depending only on the rank of r , with the following properties. Let Xi 
and Yi be the real and imaginary parts of zi' Then, as soon as inf(y) ::::: C2 , 

(2.3.2) <l>un(z) defines a Hodge structure on V. 

(2.3.3) The distance between <I>(z) and <l>un(z) , measured as in (2.2.3), is 

< C -2n inf(y) . f( )Co _ 3 e In Yj . 
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Fix I c {1 , ... , r} , with complement J . Let E be the intersection in DT 
of the divisors Zi = 0, for i E I. It is identified with DJ. Let q] be the 
projection D*T -t D*J . The nilpotent orbit ~n,l along E is then given by 

<l>un,l(z) = exp(L zjN) ,¥(q](s)). 

Freezing the Zj (j E J) and applying (2.3.2), (2.3.3), one sees that <l>un,l(z) 
gives a Hodge structure on V as soon as infiE](yJ 2: C2 , and that the proximity 
of <l>un,l(z) to <I>(z) is controlled by infiE](Yi) as in (2.3.3). 

2.4. Any nilpotent endomorphism N of V, Nk+1 = 0, has an associated 
filtration W(N). This is an increasing filtration 

{O} = W_ k_1 (N) c ... c Wk(N) = V 

characterized by the properties that 

N~ c ~-2 
and that Nt induces an isomorphism' 

~...l w ~ G W 
N : Grt -t r -t. 

With the notations of 2.3, it is shown in [1] that all elements N in the cone 

C = {LAjNj , Aj > O} 

define the same filtration W ( C). As C contains endomorphisms defined over 
Q, the filtration W:= W (C) is defined over Q. 

Let us call the "limiting Hodge filtration" any filtration of the form <I> un (z) 
(z E CT ). It is a consequence of the SL(2)-orbit theorem [6] that, for any 
limiting Hodge filtration F, F and W[-w] define a mixed Hodge structure. 
Here w is the weight of rand W[-w]t = ~-w . The mixed Hodge structure 
(W[-w], F) is polarized, in the sense of [1], by the polarization form of r 
and any N in C. 

Theorem 1.5 will be deduced from the following result, where we use the 
notations of 2.3, 2.4. 
Theorem 2.5. Assume r of weight O. Given K, there is a constant Al (de-
pending on K and r) such that 

(i) There are only finitely many v E Vz such that: Q(v, v) ::; K and 
v E <l>°(z) at some point Z with 0::; Xi::; 1 and inf(Yi) 2: Al . 

(ii) Any such v is in Wo' as well as in Fvo for some limiting Hodgefiltration 
Fv' 

Remark 2.6. If v is, at z, in <1>0, it defines a morphism of Hodge structures 
from the unit Hodge structure Z(O) to r at z. By (ii), if Q(v, v) ::; K and 
inf(Yi) 2: AI' it will also define a morphism of mixed Hodge structures from 
Z(O) to ~n at some point z'. In 2.13, we will deduce from 2.5 that z' can 
be chosen such that 

Iz' - zi < A2 e -21tinf(Yj) 

with A2 depending only on r. 
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2.7. As a preparation to deducing 1.5 from 2.5, we now fix v E Vz which, for 
some zO' is in Wa n <I>~n(zo)' and investigate the locus where v E <l>°(z). We 
make the change of variables Z 1-+ Z - zO' S 1-+ s/so' to simplify notations 
by assuming Z 0 = O. This is at the cost of having <1>( z) defined, in the new 
coordinates, only for Yi ~ -'S(zOi) . 

Let F be the filtration <I> un (0). Let Vp , q be the bigrading of V associated 
to the mixed Hodge structure (W, F) (cf. [3,2.13]). It splits the filtrations W 
and F: ~ (resp. F P ) is the sum of the Va,b for a + b ::; '- (resp. a ~ p). 
The assumptions on v imply that v E V O, ° . 

The Lie algebra g= g!(V) of GL(V) inherits from V a mixed Hodge 
structure whose associated bigrading is 

l,q = {X E 9 I XVr,s C VP+r,q+s}. 

We will mainly use the corresponding p-grading, for which vP (resp. ') is 
the sum of the Vp , b (resp. " b ). 

The isotropy subalgebra of 9 at F is FO(g) = EBp~o gP. It admits as sup-
plement the nilpotent subalgebra b = EBp<o'. The map X 1-+ exp(X) F 
identifies a neighborhood of 0 in b with a neighborhood of F in the flag 
space. As ,¥(O) = F, we can, for Yi large enough, rewrite (2.3.1) as 

(2.7.1) <I>(z) = expeL ZjN) exp(res)) F 

(s = e21tiz ) with r holomorphic at s = 0, b-valued, and such that reO) = O. 
The N j are morphisms of mixed Hodge structures V -+ V ( 1) , hence they 

lie in 9 -I , -I C 9 -I C b. As v is in VO, the equation 

(2.7.2) v E <l>°(z) = expeL ZjN) exp(res)) FO 

or, equivalently, 

(exp(L ZjN) exp(res)))-I (v) E FO = EB vP 

p~O 

holds if and only if v is fixed by expeL zjNj) exp(res)). Let rp(s) be the 
component of res) in ,. Taking the component in V-I of the equation 
expeL: zjN) exp(res))(v) = v, we obtain 

(2.7.3) (L zjNj + r _I (s))(v) = O. 

We now use the transversality axiom to prove: 

Lemma 2.8. If at one point of the analytic space ~ where (2.7.3) holds one has 
v E <l>°(z), the same is true on the whole connected component of ~ containing 
that point. 
Proof. Equation (2.7.3) is equivalent to 

(exp(L zjN) exp(res)))-I(v) E FO EfJ EB VP, 
p'S.-2 
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i.e., to 

p5,-2 

so that 2.8 is a particular case of 

Lemma 2.9. Let %' be a variation of Hodge structures on a complex manifold 
M. Let 'fI be a supplement to grp-l . For v a horizontal section of %', let L 
be the locus where v E grP + 'fl. Then, if at one point of L one has v E grP , 
then the same holds in the whole connected component of L containing that 
point. 
Proof. By assumption, %' = grp-l EEl 'fl. The connection V' of %' induces a 
connection V' 'fI on 'fI, not necessarily integrable: 

V' 'fI(~) = projection of V'(~). 

Let f; be the projection of v to 'fl. Because V' grP C n 1 ® grp-l on L, f; is 
a horizontal section of 'fl. The lemma follows. 

2.10. By 2.8, the locus where v E <l>°(z) is a union of connected components 
of the locus L where (2.7.3) holds. Each Njv is in VIQ' Writing (2.7.3) in a 
basis of VIQ' we obtain a system of equations 

(2.10.1) Lvt)Zj+y{Q:)(s)=O (a=l, ... ,dimVIQ) 

with v; rational, y{Q:) (s), s = e27Ciz , holomorphic at 0, and y{Q:) (0) = O. 

Lemma 2.11. Near 0 in D' there is a closed analytic subspace Ll such that, 
if LO is a connected component of L (equation (2.7.3)), its image in D*' is a 
connected component LlO of Ll n D*' . Further, the image of 7rl (Llo) in 7rl (D*') 
fixes v. 
Proof. If we clear denominators and exponentiate, equations (2.10.1) give 

Q:( )II n{Q:,i) - 1 a s Si -

with aQ:(s) holomorphic at 0, aQ:(O) = 1, and n(a, i) E Z. That aQ:(O) = 1 
springs from the normalization Zo = O. As equations for Ll, we take 

aQ:(s) II S7{Q:,i) - II s;n{Q:,i) = O. 

n{Q:, i);:::O n{Q:, i)<0 

An element m of 7r 1(D*') = z' is in the image of 7r 1(Llo) if and only if 
LO contains, together with any point z, the point Z + m. Subtracting the 
corresponding equations (2.10.1), we obtain 

Lv;mj = 0, 

i.e., 
LmiNiv = O. 

Since m acts on V as exp(L: miNi) , the lemma follows. 
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2.12. Proofof2.5 '* 1.5. As explained after 1.5, it suffices in 1.5 to consider 
the case m = 0: S = D*r. By 2.5, 2.8, 2.11, there are, in a neighborhood 
of 0 E Dr , finitely many closed analytic subspaces Y such that all connected 
components of S(K) are obtained by taking a connected component of Y n D*r 
and a section of Vz on it. 

2.13. Proof of 2.6. Expressed in D*r, 2.6 claims that, for s close enough to 
0, if v E (~)s is of type (0,0) and satisfies Q(v, v) :::; K, then at a nearby 
point s' , 

(2.13.1) 

the same v is of type (0, 0) for ~n. "Same" means: horizontal translate by 
a path remaining in the neighborhood (2.13.1) of s. 

As the strip 0:::; x :::; 1 covers D* , working on Jrr we may assume that v 
is as in 2.5. By 2.5 (i), we may treat those v one at a time. We make the same 
change of variable Z 1-+ Z - Zo as in 2.7. The equation (2.7.3) gives, for a fixed 
norm on V, 

This implies that 
I " N I < A -2n inf(y) 
~ Zj jV _ 4 e . 

L <NjV = 0, with 

I '- I < A -2ninf(Yj). Zj Zj _ se . 

take z' - Z to be the image of - L: zjNjv by a fixed linear section of Cr -+ V; 

Z 1-+ L: zjNjv. The condition L: z~Njv = 0 is equivalent to v E ct>~n(z') . 

Remark 2.14. The following example shows that the constant Al in 2.5 does 
depend on r. Consider the case of a variation r on D* that extends to a 
variation on D. The nilpotent orbit ~n is then the constant variation with 
value ~. Fix a variation 'YF on a bigger disk and v E ~ of type (0, 0) 
at 0 and nowhere else. Translating 'YF by any small f, we obtain r on D 
and v E ~ of bounded norm and type (0,0) at f, but not at 0, and hence 
nowhere for ~n. 

Theorem 2.5 is really a statement about what happens when there is a se-
quence of points l' E D*r tending to 0 in Dr and of va E ~a integral of 
type (0,0) and of bounded norm. 
2.15. Heuristics for 2.5. Our method of proof forces us to prove a result more 
general than 2.5, where the assumption v E ct>°(z) is replaced by the assumption 
that v is close to ct>°(z). 

In any hermitian space, given 0:, a quantity Y, a nonzero vector v, and a 
subspace F, we will write 

v "'y F 
if the sine of the angle between v and F is bounded by exp( -0: Y), i.e., if 
v + WE F with 

IWI :::; exp(-o:Y) Ivl· 
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For Z = (zl ' ... , zr)' with imaginary part Y, we will write "'z for "'sup(y;l. 

We will denote by IIvllcl>(z) (or, simply, by IIvll if no ambiguity is possible) the 
Hodge norm of v E V at the point <1>( z) . 

Theorem 2.16. Assume 'F of weight o. Given K and a > 0, there is a constant 
A I (depending on K, a, and 'F ) such that 

(i) There are only finitely many elements v E Vz such that, at some point Z 

with 0 ::::; Xj ::::; I and inf(Yj) ~ AI' IIvll~(z) ::::; K and, relative to the Hodge 
metric at <1>( z) , 

(2.16.1) ° V "'z <1> (z) 

(ii) Any such v is in Wo. 
(iii) If a fixed v satisfies (i) at a sequence of points z with 0::::; Xj ::::; 1 and 

inf(YJ -+ 00, then v is in FO for some limiting Hodge filtration F. 

2.17. Remarks. (i) The proof could be strengthened to show that if 'F de-
pends continuously on a parameter T varying in a compact space, the constant 
AI can be taken independent of T. 

(ii) In (2.16.1), we use the Hodge metric at <1>(z). We could as well have used 
a fixed metric. Indeed, the ratio between a fixed metric and the Hodge metric 
is bounded by a power of sup(Y j ) (see (3.8 (i))) so that for any a' < a and for 
inf(YJ large enough, v "'z <1>°(z) for a and one metric implies v "'z <1>°(z) 
for a' and the other metric. 

(iii) The condition v "'z <1>°(z) implies that the ratio Q(v, v)/llvll~(z) is 
close to one. Instead of the condition IIvll~(z) ::::; K, we could as well have 
required Q(v, v) ::::; K. 

2.18. To prove 2.16, one would like to be able to replace <1> by <1> un . For inf(y j) 
large, <1>(z) and <1>un(z) are close -roughly at a distance exp(-2ninf(yJ). 
The case of a variation extending across Dr shows that one cannot hope for any-
thing better. On the other hand, expeL zjNJ is of size sUP(Y/, k bounded 
by the rank of 'F. If the Y j are of wildly different magnitudes, the product 

exp( -2n inf(Yj)) . sUP(Yj)k 

need not be small. This leads to difficulties which may be circumvented as 
follows. 

Fix I c [1, r], with complement J. Assume that z is such that the Yj 
(i E I) are of comparable size, and much bigger than the Yj (j E J). Let WI 
be the filtration attached, as in (2.4), to the elements of the cone 

d = {L AjNi , Ai > o} . 
iEf 

If we freeze the variables z j (j E J) and consider the asymptotic nilpotent 
orbit of the resulting variations on D*f, we obtain <1> fez) which is close to un, 
<1>(z) , with a proximity controlled by infiEf(yi). These nilpotent orbits, for 
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variable z· (j E J) , fit into a period map cI> I. For z as above, a small angle J un, 
between v and cI>°(z) , as in (2.16.1), implies a similarly small angle v and 
cI>:!njz) , as infiE1(yi ) '" SUPiE[l ,rj(Y) by assumption. 

The first step will be to show that v is in We: . This cannot be viewed as a 
consequence of the variant 2.17 (i) of 2.16 (ii) with parameters, for variations 
on D*I, as the required set D*J of parameters is noncompact. We have to 
rely on the SL(2/-orbit theorem [3], which controls cI>(z) in the whole of 
regions of the form Y1 2:: aY2' Y2 2:: aY3' ... , Yn-l 2:: ayr . Next, one shows 
that (L,iE1yiN)(v) is small, and this allows one to find z* , with the same Yj 
(j E J) and with Y; comparable to SUPjEJ(Y) such that v is close to CP~n,I 
at z* , with a proximity controlled by infiEI(Y) '" SUPiE[l ,rj(Yi ). Iterating this 
process, one eventually finds z** , with all Y;* comparable to inf(y), such that 
v is close to cI>~n(z**) (in the sense of (2.16.1), possibly for a new a). The 
next step gives v E ffQ and v close to cI>~n(z***), with z*** bounded and a 
proximity controlled by inf(y). From this 2.16 follows. 
2.19. To ease the handling of quantifiers and estimates, but at the cost of effec-
tivity, we will prove 2.16 by contradiction. If (i) fails, we can find sequences 
u(n), zen) with the (u(n) , zen)) as in 2.16 (i), the u(n) all distinct, and 
infi(YJn)) ~ 00. If (ii) fails, we can find sequences as above with each u(n) 
not in ffQ. If (i) and (ii) hold but (iii) fails, we can find similar sequences with 
u(n) constant and u(n) not in FO for any limiting Hodge filtration F. In each 
case, a subsequence of the offending sequence is again offending. To prove 2.16 
by contradiction, it hence suffices to show that given a sequence (u(n), zen)) 
with u(n) E Vz ' Ilu(n)II~(z(n)):::; K, and u(n) "'z cI>°(z(n)) in the Hodge norm 
at z(n), 0:::; xi(n) :::; 1, inf(YJn)) ~ 00, it has a subsequence for which u(n) 
is constant, in ffQ, and in FO for some limiting Hodge filtration F . 

3. PRELIMINARIES 

In 3.2, we comment on what it means and what it takes for a mixed Hodge 
structure to be close to another. We then recall results of the SL(2/ -theory of 
[3] in a form suitable for our purposes. 
3.1. Let V be a complex vector space. Fix subspaces A, B of V . If subspaces 
A', B' are close to A, B in their respective grassmannians, then 
(3.1.1) dim A' n B' :::; dim A n B 
(upper semicontinuity of the map (A, B) 1-+ dim A n B). Further, on the space 
of pairs of subspaces A, B with An B of fixed dimension, the map (A, B) 1-+ 

A n B is continuous. 
Indeed, let A' , B' be close to A, B. Some g E GL(V) , close to the identity, 

maps A' to A: we may and shall assume that A' = A. Fix a supplement C1 
of A n B in A and a supplement C2 of A + B in V: for C = C1 EB C2 ' we 
have V = B EB C and A = (A n B) EB (A n C). Being close to B, B' is the graph 
of a map h': B ~ C with B' 1-+ h' continuous. An element u + h' (u) of B' is 
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in A if and only if both u E Band b' (u) E C are. This requires u E A n B 
and the assertion follows. If dim A n B' = dim A n B , then An B' is the graph 
of the restriction of b' to A n B , continuous in B' . 

Now let A, B be finite decreasing filtrations of V. We consider filtrations 
A', B' with dim AP n Bq = dim A'P n B ,q for all p, q, and show that for such 
filtrations, if A', B' are close to A, B in the respective flag manifolds, then 
(A' ,B') is the image of (A, B) by some g E GL(V) close to the identity. 
Arguing as before, we may and shall assume A = A' . 

Fix a bigrading C splitting the bifiltration (A, B): AP (resp. Bq ) is the 
sum of the CiJ for i 2: p (resp j 2: q). Fix a basis ~q of the Cpq . As we 
assumed that dim AP n Bq = dim A'P n B,q, AP n B'q is close to AP n Bq and 
we can find e,pq in AP n B,q close to epq . The endomorphism g: ePq t--+ e,pq a Q Q: 0: 

is close to the identity, hence in GL(V) , and maps AP n B q into, hence onto, 
AP n B ,q . It carries (A, B) to (A', B') . 

We now apply this to mixed Hodge structures. 

Proposition 3.2. Let (W, F) be a mixed Hodge structure on a real vector space 
V . If a filtration F' of VIC is close to F and such that (W, F') is also a mixed 
Hodge structure, then there is an automorphism g of VIC' close to the identity, 
respecting Wand carrying F to F'. 
Proof. By (3.1.1), we may assume that for all w, p, one has 

(3.2.1 ) 

and it suffices to prove equality. 
We proceed by induction on w. If equality in (3.2.1) holds for w - 1 , from 

dim Gr: (Fp) = dim Ww n F P - dim Ww_ 1 n F P 

we obtain 

(3.2.2) 

and, because of the inductive hypothesis, equality holds if and only if it holds 
in (3.2.1). Taking the sum of (3.2.2) for indices (w, p) and (w, w - p - 1), 
we obtain 

dim Gr: (F'P ) + dim Gr: (F,W-P-l) ::; dim Gr: (FP) + dim Gr: (FW- P- 1). 

Both sides equal dim Gr::: (V), implying equality in (3.2.2). 

3.3. Let 'F be a polarized variation of Hodge structures on D*' , with unipotent 
monodromy, corresponding to a period mapping <I> on Jif" , with values in the 
filtrations of VIC' 

Fix 01 , ••• ,Od in ]R', with 0 ::; 0: ::; ... ::; 01 and all 01 > O. We want 
to control <1>( z) when z tends to infinity in the following way: the real part x 
is bounded, the imaginary part can be written as 

(3.3.1) 
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with b bounded, and where, for 
(3.3.2) ti = 1:Jri+ 1 (1 ~ i < d), td = 1:d ' 

one has ti --+ 00 . 

For this, we approximate <1> by the nilpotent orbit <1>un and apply [3, 4.20] 
to the nilpotent orbit 

<1>*(U I , ... , ud) = <l>un(L u/)j). 

Define Tj = ()j N = I:i (){ Ni . Adding I to u j transforms <1>* by exp(T). 
The Tj are not, in general, rational. In the context of [3], where real variations 
are considered, this does not matter. 

3.4. The SL(2, lR)d -theory of [3] approximates period mappings, in suitable 
sectors, by simpler ones which we begin by describing. 

On D* , the family of elliptic curves C* / qZ gives rise, by taking HI , to a 
variation of Hodge structures <y of rank 2 and type {(O, 1), (I , On. In a 
suitable basis of Vz ' the corresponding period mapping 

<1>: Jf' --+ {lines in 1R2 1:9 C } 
assigns to Z E Jf' the line spanned by (!), with 

<1>(z + 1) = (~ ~) <1>(z). 

On D*d , one can then consider real variations which are direct sum of vari-
ations of the following kind: 

d 
®pr;Symnj(<y) 1:9 H 

I 

for H a fixed Hodge structure. These are the simpler variations announced. 
Here is an alternative description of them. 

The Hodge structure <1>( i) on 1R2 induces a Hodge structure of weight 0 on 
.5[(2, 1R) c End(1R2). Let P j be the representation of .5[(2, lR)d on 1R2 via its 
j-th factor. If A is a real Hodge structure, whose underlying real vector space 
is a representation of .5[(2, lR)d , and if the representation map 

p: .5[(2, lR)d --+ End(A) 
is a morphism of Hodge structures, where each .5[(2, 1R) factor is given the 
Hodge structure induced by <1>( i) , then (A, p) is isomorphic to a sum of tensor 
products ® Symnj(p) 1:9 H 

where 1R2 -the representation space of Pj - is given the Hodge structure <1>(i) 
and where H is a Hodge structure with trivial action. Indeed, the isomorphism 
of representations of .5[(2, lR)d : 

E9® Symnj(p) 1:9 Homsr(® Symnj(p) , A) --+ A 

is compatible with Hodge structures. 
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In view of our later applications, we write Tj for the image under the rep-
resentation p of the element 

(~ ~) 
in the j-th factor of 5[(2, Rl. For F the Hodge filtration of A, the variations 
we are considering correspond to period maps of the form 

(3.4.1) <I>(z) = eXP(L zjT)F. 

Denoting by Yj the image of the element (~~I) in the j-th factor of 
5[(2, lR/ , one has for z purely imaginary 

(3.4.2) <I>(iy) = exp(- Llog(Y)Yj/2)1'# 
where 
(3.4.3) 1'# := <I>(i) := <I>(i , ... , i). 

3.5. Given a nilpotent orbit <I> on ;rd and an ordering of the variables, the 
SL(2, lR)d -orbit theorem provides a period mapping <l>SL of the type 3.4 which 
approximates it. Let Tj be the monodromies for <1>: 

<I>(z + ej ) = Tj<l>(z) , 
define C(j) to be the cone 

j 

{LAiTi ' Ai> A}, 
i=1 

and W j := W(C(j)) as in (2.4). Define tj = Yj/Yj+ 1 for j < d, and td = Yd. 
One has [3]: 
(3.5.1) For x bounded and t --; 00, the invariant distance between <I>(z) and 
<I> SL (z) tends to zero. 

(3.5.2) The Yj define a Zd grading of V, with Yj acting as multiplication by 
i I-j on V , I- = (I-I ' .•. ,I-d). One has 

W~ = E9 Vi. 
ll+···+lj~w 

(3.5.3) The construction is compatible with tensor products. In particular, 
5[(2, lR)d respects the polarization form. 

One should beware that <I> and <l>SL do not have the same transformation 
law for zi t-+ Zi + 1: <I> is transformed by exp(T), while <l>SL is transformed 
by exp(Ti ). The two are related as follows: Ti is the degree zero component, 
for the Yj , j < i , of Ti . In particular, 

(3.5.4) TI = T1 • 

In addition, (3.5.2) says that the monodromy weight filtration W j is also the 
monodromy weight filtration for E{ Ai Ti when all Ai > O. 
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3.6. We now apply this to a period mapping cI> on ;r' , to approximate cI>(z) 
where z is as in 3.3. With the notations of 3.3, the distance between the 
following pairs of Hodge structures tends to zero, when t ---+ 00 : 

(a) cI>(z) and cI>un(z): by (2.3.3), 
(b) cI>un(z) and cI>*(ir): one has cI>*(ir) = cI>un(iErjOj ); the hyperbolic 

distance between z and i E r j oj is in O( 1/ inf(y i)) and one uses the 
distance decreasing property of period maps, 

(c) cI>*(ir) and its SL(2, lRl-orbit approximation cI>SL : by (3.5.1). 
One concludes that the invariant distance betwen cI>(z) and cI>SL(ir) tends to 
zero. 

With the notations of 3.5, we set, as in (3.4.3), FU = cI>SL(i) and define 

(3.6.1 ) 

It acts by multiplication by I1 r~j/2 on Vi (notation of (3.5.2)). It respects the 
polarization form, hence induces an isometry of the period mapping domain. 
Because of (3.4.2), 

and, consequently, 

(3.6.2) e( r )cI>( z) ---+ F tt 

for z, r as in 3.3, ti ---+ 00 • 

3.7. Let IU) c [1, r] be the set of i for which of =1= o. It is increasing with 
j. Let C U) be the cone 

CU) := { L AiNi' Ai > o} 
iEI(j) 

and Wi be the corresponding filtration W(CU)). Those filtrations W j coin-
cide with those of 3.5, for cI>*(u) and the monodromies Tj = oj N. 

Some of the above results can be expressed just in terms of the W j . 

(3.7.1) There is a tld -grading A, splitting all the W j : W~ is the sum of Al 
with '\ + ... + Pi ~ w. A may be chosen rational and compatible with the 
polarization form. 

Indeed, (3.5.2) gives one such grading. The statement (3.7.1) is equivalent to 
the statement that the W~ generate a distributive lattice of subspaces. As the 
filtrations Wi are rational, there exists a rational 7ld-grading A as in (3.7.1). 
The grading (3.5.2) is in addition compatible with the polarization form: Vi 
orthogonal to V m for , + m =1= 0 . 

If A, B are two tld -gradings as in (3.7.1), Al and Bl are both canonically 
isomorphic to an iterated grading of V by the Gr:::J 

, Wj = 'I + ... + Pj • Order 
J 
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is irrelevant, because the W ~ generate a distributive lattice. If g is the direct 
sum of the resulting isomorphisms Ai ~ Bl , one has 

(3.7.2) (g - 1)(Ai ) c E9Am with m f- f, ml + ... + mj :s; fl + ... + f j . 

If we transport the grading A by the polarization form, viewed as an isomor-
phism from V to V*, and dualize, we get another grading A' , equal to A if 
and only if A is compatible with the polarization. We have A' = gA where g 
obeys (3.7.2). The grading gl/2 A is then compatible with the polarization. This 
shows the existence of rational gradings of the W j , as in (3.7.1), compatible 
with the polarization form. 

Fix any grading A as in (3.7.1) and define e A (r) to be the multiplication by 
I1 rj /2 on Ai . If Ai = gVi ,with g as above, eA(r) = ge(r)g -I . 

Proposition 3.8. Notations being as above, 
(i) eA(r)<I>(z) tends to gF"; 

(ii) eA(r) [Hodge metric at <I>(z)] tends to the transform by g of the Hodge 
metric at F". 

Proof. For A the decomposition by the Vi, g is the identity, (i) is (3.6.2), 
and (ii) follows as e( r) respects the polarization form. In general, 

-I -I-I eA(r) = ge(r)g = g(e(r)g e(r) )e(r) 

and, because of (3.7.2), e(r)g-Ie(r)-I tends to the identity. The proposition 
follows. 

(3.9) Remarks. (i) Fix a metric lal on each Ai . By 3.8 (ii), the Hodge metric 
at <1>( z) is comparable to the orthogonal direct sum of those metrics, multiplied 
by i /2 : 

(3.9.1) 2 ~ i i 2 
lIall<l>(z) rv L r la I , 

i.e., the ratios of both members of (3.9.1) are bounded. 
(ii) Suppose v E V is in W~. Let VI be its image in Gr:::' . The Hodge 

filtration <l>un(z) induces a Hodge filtration on Gr:::'. We want to compare 
the Hodge norm of v and VI at z. Decompose V as in (3.7.1); the Ai 

with fl = w then project to a similar decomposition B of Gr:::' . Numbering: 
Bi = 0 if f I f- 0 , 

BO,i2 ,··· ,id = Aw ,i2 ,··· ,id • 

w' Applying (3.9.1) both to V and Grw ,we obtain 

I 2 -w 2 IIv II :s; cr I Ilv II 
for an appropriate constant c. 
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Proposition 3.10. Let A be a real Hodge structure of weight 0 and a represen-
tation of 5[(2, JR). One assumes that 

p: 5[(2, JR) -+ End(A) 
is a morphism of Hodge structures, with 5[(2, JR) being given the Hodge structure 
of 3.4. Let W be the monodromy weight filtration for p (? g). Then 

AR n Wo npo c A~[(2,R) 
Proof. A can be decomposed as a direct sum 

(3.10.1) ffiSymn (JR2)0Hn , 
n 

where JR2 is the standard representation of 5[(2, JR) , with the Hodge structure 
of 3.4, and where Hn is a Hodge structure of weight -n. For e, f the 
standard basis of JR2, Symn(JR2) is the space of homogeneous polynomials of 
degree n in e, f, P(e, f) is in Wo if it is divisible by f m , m = [en + 1)/2], 
and in pP if divisible by (e + i ft . 

We mayand shall assume A reduced to one of the summands (3.7.1). Take 
x real in Wo n pO. Choose a basis ho; of He' compatible with the Hodge 
decomposition. Write x = l:xo; 0 ho;' If ho; is of type (-p, -q), Xo; must be 
of type (p, q), i.e., a multiple of (e + if)p(e - if)q . It can be in Wo only for 
n = O. 
Corollary 3.11. Let A be a real Hodge structure ofweight 0 and a representation 
of 51(2, JR)d. One assumes that 

p: 5(2, JR)d -+ End(A) 
is a morphism of Hodge structures, with 5(2, JR) being given the Hodge structure 
of 3.4. Let W} be the monodromy weight filtration for p ( Ll) ( ? g) ) , where Ll} 

is the diagonal embedding of 51(2, JR) in the first j factors of 51(2, JR)d. Then, 
the intersection 

A nnW} npo 
R ° } 

is contained in the 5(2, JR)d -invariants. 
Proof. We proceed by induction on d. By 3.10, the intersection is contained 
in the invariants of the first factor 51(2, JR). This space A' is a sub-Hodge 
structure of A acted on by 51(2, JR)d-1 , and 3.11 follows from the induction 
assumption applied to A' . 

4. PROOF OF THEOREM 2.16 

4.1. In this section we prove 2.16, and hence 2.5, reasoning by contradiction as 
explained in 2.19. We fix a sequence (z(n), u(n)) with the following properties: 
0::; xj(n) ::; 1, infjYj(n) -+ 00, u(n) E Vz , the Hodge norm lIu(n)1I of u(n) 
at zen) is bounded, and, for some fixed a> 0, u(n) "'z(n) <t>o(z(n)) (notation 
of2.15). 
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We have to show that for a suitable subsequence, 

(4.1.1) u(n) is constant, and 

(4.1.2) its constant value is in UO as well as in pO for some limiting Hodge 
filtration P. 

Taking a subsequence, we may and shall assume that for suitable 0 1 , ••• , Od 
in lR' , one has 

( 4.1.3) 

with tj(n) := Tj(n)/T j+1 (n) -+ 00, td(n) = Td(n) -+ 00, and b(n) bounded. 
Then, in addition to (4.1.1) and (4.1.2), we will show that, with v := u(n) and 
Tj := E OJN j , 

(4.1.4) 

The proof is by induction on d 2': 1 . 

4.2. If oj is a linear combination of the preceding oj (this includes the case 
j = 1, 0 I = 0), (4.1.3) can be replaced by a similar expansion with oj omit-
ted. This lowers d and the claims (4.1.1), (4.1.2), (4.1.4) are unaffected: by 
induction, we may and shall assume that the oj are linearly independent. 

We assumed that infjYj(n) tends to 00. This means that for each i, one of 
OJ ' ... , 01, is nonzero and that the first to be nonzero is positive. 

The 0 's are not uniquely determined by y(n) -only the flag (0 1) 

C (0 1 , ( 2) C ... is. Adding to 02 , ••• , Od a large enough multiple of 01 , 

then to 03 , ••• , Od a large enough multiple of 02 , etc., we may and shall 
assume that 0 I :::; 02 :::; ... :::; Od . 

For simplicity of notation, we will reorder the coordinates Z j so that the 
i for which the i-th coordinate of oj is not zero form an initial segment 
1 :::; i :::; aU). We let W j be the monodromy weight filtration W(CU)) , for 
the cone 

a(j) 

CU) = {L: AjNj : Aj > O}. 
I 

Let $' := $ un, [I ,a( I)] be the nilpotent orbit in the Z j' i:::; a( 1 ) , approximat-
ing $. By 2.3, and the fact that infj~a(I)(Yj(n)) is comparable to sup(yj(n)), we 
still have u(n) bounded in the $'-Hodge norm at z(n), and ""z(n) $/O(z(n)). 
The monodromies, as well as the limiting Hodge filtrations, being the same for 
$ and $', we may replace $ by $': we may and shall assume that $ is 
a nilpotent orbit in zl' ... , za(I). It follows that (WI, $) is a mixed Hodge 
structure. 

I 

For each w, Gr:: is a variation of Hodge structures of weight w. It is 
independent of z\' ... , za(I): if a(l) = r, it is a constant Hodge structure. 
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If a(l) < r, it corresponds to a period map cl>1 defined on %[a(I)+I,r1. Let 
z(n)1 be the projection of zen) on %[a(I)+I,r1. The projection of ()I being 
zero, (4.1.3) projects to 

(4.2.1) 1 -2 -d -yen) = T2(n)() + ... + Td(n)() + ben) 

with - denoting projection. This is an expansion like (4.1.3), but with d - 1 
() 'So This is one of two mechanisms by which induction will proceed. 

We polarize Gr::1 (V) using any rational element N in C(l): it polarizes 
the mixed Hodge structure, inducing a polarization of the grading. 

Our first task is to prove: 

Proposition 4.3. For n large enough, u(n) is in WOI. 

We say that u E V is in the position l = (ll ' ... ,ld) relative to the filtra-
tions Wi if, for A a tld -grading splitting the Wi , l is the largest multi-index, 
in the lexicographic order, for which the l-component of u does not vanish. 
By (3.7.2), this does nor depend on the choice of A. 

If u is in position (ll' ... , ld)' then it is in ~I, with a nonzero image u l 
1 

in Grt (V), and u l is in the position (l2' ... ,ld) relative to the filtrations 
1 

induced by W2[ld, ... , Wd[liL where W[mlw = Wm+w . 
Those induced filtrations are also the monodromy weight filtrations for the 

action of any N E C(j) on Grt (V): this expresses the fact that Wi is the 
1 

relative monodromy weight filtration of Wi and any N E C(j) ([1,(3.3)]). 
Taking a subsequence, we may and shall assume that all u(n) are in the 

position (ll' ... , ld)' for a suitable (ll' ... , ld)' 

Lemma 4.4. For each j, one has II + ... + li 2: O. 
Proof. We will prove by induction on d the following more general statement: 
one takes cI> to be a variation of weight w 2: 0; z, u, () ,T are as before 
(except that the () are not assumed linearly independent); the u(n) are in 
position (ll' ... ,ld) relative to the Wi; one assumes u(n).....,z cl>0 and 

Ilu(n)ll::; c T1(n)-W/2. 

One claims 
w+l +···+l.>O 1 }- for each j. 

If ()i is a linear combination of previous (), we have Wi = Wi-I (resp. 
Wi trivial if j = 1, ()I = 0) and li = O. Reasoning as in 4.2, we may, using 
the induction hypothesis, assume that the () are linearly independent. 

As in 4.2, we may and shall assume that cI> is a nilpotent orbit in the variables 
L m b h . d . qy[a(I)+I,rJ d' z I ' ••. , Z a( I)' et "" 1 e t e peno mappmg on ,n correspon mg to 

Grt (V) (weight w +ll) and let u(n)1 be the image of u(n) in this grading. 
1 
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Lemma 4.5. Assumptions and notations being as above, we have 
(i) w +ll ~ 0, 

(ii) \\u(n)11I2:::; crl(n)-W-l1 (Hodge norm), 
(iii) u(n)1 "'z <I>~(z(n)I). 

Proof. Let us transform u(n) "'z <l>°(z(n» by e(r(n» (notations of 3.6). In 
the Hodge norm for e(r(n»<I>(z(n» , we continue to have 

o e(r(n»u(n) "'z e(r(n»<I> (z(n». 

The subspace on the right tends to F'r.0 . Any limiting value of the ray spanned 
by the real vector e(r(n»u(n) is hence in 

WI F O pO 
W+ll nun u' 

As (Wl[w], Fu) is a mixed Hodge structure, this intersection can be nonzero 
only for w + II ~ O. This proves (i). 

Comparing the asymptotics of the Hodge norm for V and for Grtl , one 
finds (cf. 3.9) that for any v E ~I , with image VI in the grading, one has at 
z(n) 

proving (ii). 
For (iii), we will consider angles in a fixed metric. As explained in 2.17(ii), 

we still have u( n) '" z <1>0 , and it suffices to prove u( n) I '" z <I>~ , in this new 
sense. 

Fix Zo with big enough imaginary part so that (WI, <l>un(zO» is a mixed 
Hodge structure. As exp(-z(n)N) is bounded by some sup(y(n)/, we have 

o exp(-(z(n) - zo)N)u(n) "'z exp(-(z(n) - zo)N)<I> (z(n». 

The filtration exp(-(z(n) - zo)N)<I>(z(n» tends to <l>un(zO)' Together with 
WI , both filtrations define a mixed Hodge structure. It follows that some com-
plex endomorphism Yn tending to 1 respects WI, transforms the latter into 
the former, and satisfies 

-I 0 
v(n):= Yn exp(-(z(n) - zo)N)u(n) "'z <l>un(zO)' 

As v(n) E ~I , one also has 
1 

(4.5.1) 

The projection v(n)1 of v(n) in Grlwl is the transform of a nonzero ele-
1 

ment of Grt (Vz) by y;1 exp( -(z(n) - zo)N). Hence, its size is at least like 

csup(y(nU- k , while that of v(n) is at most like csup(y(n)/ . It follows that 
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the exponential closeness (4.5.1) continues to hold mod UjI_I: 
I 

I 0 WI 
v(n) "'z <l>un(zO) in Gri (V). 

I 

Applying exp((z(n) - zO)N)Yn' we get 4.5(iii). 

Proof of 4.4. If a(l) = r, one has Wj = Wi for all j, £j = 0 for j ~ 2, 
and 4.4 follows from 4.5(i). If a(l) < r, we apply the induction hypothesis to 
fl>1' of weight w + £1 ~ 0 (cf. 4.5(i)), to u(n)1 and to z(n)l, which has an 
expansion like (4.1.3), with d - 1 () 'so By 4.5(ii), (iii), the required estimates 
hold. 
Proof of 4.3. Fix a rational decomposition V = EBzd Ai as in (3.7.1). The 
projection of Vz in Ai is a lattice. By (3.9.1), it follows that if u(n) has a 
nonzero projection in Aa , then 

Ilv(n)11 2 » 'I(ntl ···'d(n)ad. 
Take a = (£1' ... , £d)· By definition, the projection of v(n) is nonzero. One 
has 

( )il ( )id _ ('I(n))i l ('2(n))il+i2 ( )il+o+ld , n ... , n - -- -- ... , n . 
I d '2(n) '3(n) d 

As Ilv(n)11 is bounded, we conclude that 
£1 = £2 = ... = £d = O. 

In particular, £1 = 0, proving 4.3. 

4.6. We now apply the induction hypothesis to Gr::' (V), corresponding to a 
period mapping <1>1' and to the projection u(n)1 of u(n) in Gr::' (V) . 

If a( 1) = r, the Hodge structure Gr::' (V) is constant. By 4.5(ii), or directly 
by 3.9(ii), u(n)1 is bounded. Being in a lattice, it can take only a finite number 
of values. We may and shall assume it is constant and define u l := u(n)1 . As 

I 0 I 0 
U '" z fl> I ' one has u E fl> I • 

If a( 1) < r, the induction hypothesis applies by (4.2.1) and 4.5. Again, we 
find that u(n)1 may and shall be assumed to have a constant value u l . By 
(4.1.4), u l is killed by Tj (j ~ 2) and in particular sits in the W~ (j ~ 2) . 

It is also in F O for some limiting Hodge filtration F (all this in Gr::' (V) ). 
TI maps WOI to W~2' inducing a morphism of Hodge structures 

(4.6.1) 

We next prove 

Proposition 4.7. u l is in the kernel of the morphism (4.6.1). 
Proof. If we transform the assumption 

o u(n) "'z fl> 
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by e(r(n» (notations of (3.6.1», we obtain 
o e(r(n»u(n) "'z e(r(n»<I> (z(n» 

where angles are now taken in the Hodge metric for e(r(n»<I>(z(n». The 
Hodge norm of e(r(n»u(n) in this metric -equal to that of u(n) in the Hodge 
metric for <I>(z(n»- is bounded by assumption. The e(r(n»<I>(z(n» tend to 
the Hodge filtration F~ (cf. 3.6). The Hodge metric for e(r(n»<I>(z(n» tends 
to that for F~. It follows that e(r(n»u(n) remains bounded and, taking a 
subsequence, we may and shall assume that it has a limit uo' We have 

o 
Uo E ru . 

Consider the decomposition V = ffiZd Va: e(r) acts on Va as multiplica-
tion by r al2 . 

By 3.10, Uo is in the sum of the Vi with i l = 0 and is in the kernel of TI . 
The components u(n)(i) of u(n), for i l = 0, depend only on ul : they are 

independent of n. That u l is killed by the Tj (j 2: 2) implies it is in the wd 
and that, for i l = 0, u(n)(l) can be nonzero only for i2 + ... + i j ~ O. The 
O-component u(n)(O) coincides with uo ' killed by TI = TI (3.5.4). 

The Vi with i l = -2 project to a decomposition of Gr~; (V). Applying 
TI to the u(n)(i) for i l = 0, we find that TI u l has a nonzero component in 

i V (il = -2) only when (i2 , ... , i d) =I- (0, ... ,0), i2 + ... +ij ~ O. 
The e(r(n»<I>(z(n» belong to a compact family of Hodge filtrations F, for 

which (WI, F) is mixed Hodge. By 3.2, e(r(n»u(n) is a sum X + E, X in 
e(r(n»<I>°, IIEII ~ exp(-o:suPiYi(n». By compacity, or 3.2, X can be taken in 

I W n F . Apply T I ; by (3.5.4), 
-I -I e(r(n»Tlu(n) = rl(n) TI(e(r(n»u(n» = rl(n) (TIX + TIE) 

and we find that Tlu l is the sum of an element in <I>-I(z(n» plus an expo-
nentially small term. Passing to the limit, we obtain 

I -I 
Tlu EF~ , 

where F~ is the filtration in Gr~;\V) induced by ru. Ifwegoto Gr~I(V)(_l), 
to have a Hodge structure of weight zero, this reads 

I 0 Tlu E ru(-l) . 

The action of the individual factors of SL(2, lR)d of index =I- 1, and the 
filtration F~(-l) on Gr~; (V)(-l), are of the type considered in 3.11. By 3.11, 
Tlu l is in V-2,0, ... ,o, hence it is zero as the (-2,0, ... , 0) component has 
been shown to vanish. This proves 4.7. 
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Proposition 4.8. TI u(n) is exponentially small: of Hodge norm 

< exp( -p sup(Yi(n))) 

for suitable p > 0 . 
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Proof. By 4.7, TI u(n) is in W~3' It is also the sum of X in <I>-I(z(n)) and 
of an exponentially small f. The same holds after applying e(T(n)). We gain 
that the e(T(n))<I>(z(n)) belong to a compact family of filtrations P, for which 

Wi np-I np-I = 0 
-3 .' 

so that e( T( n)) TI u( n) must be exponentially small. Hence so is TI u( n) . 

4.9. We now complete the proof of 2.16. With angles measured using a fixed 
metric, we have 

° u(n) "'z <I> (z(n)). 
Applying exp( - iT I (n) TI ) , of polynomial size in sup i (y i (n)) : 

exp(-iTI(n)TI)u(n) "'z <l>°(z(n) - iTI(n)Ol) 

and, by 4.8, 
u(n) "'z <l>°(z(n) - iT I (n)(1\ 

If d = 1, we choose the expansion (4.1.3) (subtracting a constant to TI(n)) 
so that Yin) - TI (n)OJ 2: A > O. As u(n) is close to <1>0 at z(n) and at 
z(n) - iT I (n)(11 , its Hodge norm at both places is close to Q(u(n), u(n))I/2 
and hence is bounded. Moreover, z(n) - iTI(n)01 remains bounded and the 
corresponding Hodge filtrations remain in a compact set. Being bounded and 
integral, u(n) can take only finitely many values. Taking a subsequence for 
which z(n) - iTI(n)01 tends to a limit, we find that u is in the corresponding 
<1>0. It is in Wo by 4.3. This proves (4.1.2), while (4.1.4) results from 4.7. 

Assume now d> 1. The imaginary part of z(n) - iTI(n)01 IS 

2 d 
T2(n)O +"'+Td(n)O +b(n), 

an expansion as in (4.1.3), but with only d - 1 (1 'so Applying the induction 
assumption, we see that, on a subsequence, u(n) satisfies (4.1.1) and (4.1.2) 
and is killed by the Tj (j > 1). Being constant, it is also killed by TI (cf. 
4.8). This finishes the proof. 
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ABSTRACT. Let S be a nonsingular complex algebraic variety and r a polar-
ized variation of Hodge structure of weight 2p with polarization form Q. 
Given an integer K, let S(K) be the space of pairs (s, u) with s E S, 
u E r. integral of type (p, p) , and Q(u, u) ~ K. We show in Theorem 
1.1 that S(K) is an algebraic variety, finite over S. When r is the local 
system H 2p (Xs ' Z)/torsion associated with a family of nonsingular projective 
varieties parametrized by S, the result implies that the locus where a given 
integral class of type (p, p) remains of type (p, p) is algebraic. 
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