
JOURNAL OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 8, Number 2, April 1995 

FLAT VECTOR BUNDLES, DIRECT IMAGES 
AND HIGHER REAL ANALYTIC TORSION 

JEAN-MICHEL BISMUT AND JOHN LOTT 

CONTENTS 

I. Flat superconnections, Hermitian metrics and their associated closed forms 
(a) The superconnection formalism 
(b) Flat superconnections 
(c) The transpose of a superconnection 
(d) The adjoint of a superconnection 
(e) Associated odd closed forms 
(f) A transgression formula 
(g) Chern-type classes of flat vector bundles 

II. Flat superconnections of total degree 1, Hermitian metrics and torsion 
forms 
(a) Superconnections of total degree 1 on a Z-graded vector bundle 
(b) Superconnections of total degree 1 and Hermitian metrics 
(c) The rescaling of the metric 
(d) The t ---> +00 limit of f(A', h~) 
(e) The form Sf(A', hE) 
(f) Flat complexes of vector bundles and their torsion forms 
(g) Duality 

III. "Riemann-Roch-Grothendieck" for flat vector bundles and higher analytic 
torsion forms 
(a) Smooth fiber bundles 
(b) A flat superconnection of total degree 1 
( c ) Vertical metrics on fiber bundles 
(d) The adjoint superconnection and the Levi-Civita superconnection 
(e) A Lichnerowicz-type formula 
(f) The flat connection on the cohomology bundle of the fibers 
(g) The Chern character superconnection forms 
(h) A "Riemann-Roch-Grothendieck" theorem for flat vector bundles 

Received by the editors April 7, 1993. 
1991 Mathematics Subject Classification. Primary 58G 10, 5SG II. 
Key words and phrases. Index theory and related fixed point theorems, heat and other parabolic 

equation methods. 

291 

© 1995 American Matbematical Society 
0894-0347/95 $1.00 + S.25 per page 



292 JEAN-MICHEL BISMUT AND JOHN LOTI 

(i) A transgression formula 
U) Higher analytic torsion forms 
(k) Relationship to the Ray-Singer torsion and the anomaly formula of 

Bismut-Zhang 

IV. Compact structure groups 
(a) Equivariant flat vector bundles 
(b) Equivariant computational methods 
(c) Analytic torsion form of a fiber bundle with compact structure group 
(d) Circle bundles 

Appendix I 
(a) An axiomatic characterization of the torsion forms in the acyclic case 
(b) Analytic torsion forms of double complexes 

Appendix II. Reidemeister torsion and higher Reidemeister torsion 

References 

The purpose of this paper is to extend the Ray-Singer analytic torsion [RS 1] 
from an invariant of a smooth manifold to an invariant of a smooth parame-
trized family of manifolds. In addition, we prove a COO -analog of the Riemann-
Roch-Grothendieck theorem for holomorphic submersions. We show that the 
"higher" analytic torsion enters in a differential· form version of this theorem. 

Let us first give some of the history of the problem. In the 1930's, Rei-
demeister and Franz defined a certain invariant of simplicial complexes [Fr, 
Re]. Let (K, F) be a pair consisting of a finite simplicial complex K and a 
flat unitary complex vector bundle F on K such that the twisted cohomology 
H* (K ; F) vanishes. To this data they assigned a real number, now called the 
Reidemeister torsion. It turns out that the Reidemeister torsion is a topological 
invariant of K. For a survey article on this invariant, see [M]. The original 
interest of the Reidemeister torsion was that, unlike other more standard topo-
logical invariants, it can distinguish lens spaces which are homotopy-equivalent 
but not homeomorphic. More generally, the spherical space forms of a given 
dimension are classified up to isometry by their fundamental groups, along with 
their Reidemeister torsions. 

Ray and Singer asked whether, as for many other real topological invariants, 
there is an analytic version of the Reidemeister torsion which is defined when 
M is a closed smooth Riemannian manifold. If F is a flat unitary complex 
vector bundle on M, they defined a real number in terms of the spectrum of 
the Laplacian acting on F -valued differential forms on M. They showed that 
if H* (M; F) = 0 then this number, the analytic torsion, is independent of 
the choice of Riemannian metric on M, and conjectured that it equals the 
Reidemeister torsion [RS1]. This conjecture was shown to be true indepen-
dently by Cheeger [C] and Muller [Mul]. One can extend the equality between 
Reidemeister and Ray-Singer torsions to the case of nonunitary F [Mu2, BZ]. 

The Reidemeister and Ray-Singer torsions have remained somewhat isolated 
objects, in that it has not been clear how they fit into the more general framework 
of topology and analysis. On the algebraic topology side, it is well known that 
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there is a relationship between the Reidemeister torsion and the first algebraic 
K-group of fields. Soon after the work of Ray and Singer, Wagoner suggested 
that to extend this relationship, instead of a single manifold one may wish 
to consider a smooth parametrized family of manifolds. That is, one wishes to 
define an invariant of a smooth fiber bundle. He conjectured, for reasons coming 
from concordance theory, that the Reidemeister and Ray-Singer torsions can be 
extended to invariants of a fiber bundle, and that these invariants are related to 
the higher algebraic K-theory groups [W]. 

The program of defining a higher Reidemeister torsion has been recently 
carried out by Igusa and Klein [I, K]. Their work is based on Waldhausen's 
algebraic K-theory of spaces and parametrized Morse theory. We summarize 
their results in Appendix II. However, their constructions are rather involved, 
and to date the most complicated example for which the higher Reidemeister 
torsion has been computed is that of a general circle bundle over S2 . 

Ray and Singer also considered a holomorphic version of their invariant, de-
fined for Hermitian holomorphic vector bundles on compact complex manifolds 
[RS2]. Important progress has been made in understanding a families version of 
this holomorphic analytic torsion. Bismut, Gillet, and Soule defined a holomor-
phic torsion form on the base of a Kahler fibration. This holomorphic torsion 
form enters into a differential form version of the Riemann-Roch-Grothendieck 
theorem for holomorphic submersions [BGSI, 2, 3]. The degree-O component 
of the holomorphic torsion form is given by the holomorphic analytic torsion 
of the fibers, considered as a function on the base. 

In this paper we solve Wagoner's problem of constructing a "higher" analytic 
torsion in the smooth setting. We define the analytic torsion form of a Coo _ 

fiber bundle with closed Riemannian fibers. It is a differential form on the base 
of the fiber bundle whose degree-O component is given by the analytic torsion 
of the fibers, considered as a function on the base. We show that there is 
a COO -version of the Riemann-Roch-Grothendieck theorem, which relates the 
characteristic classes of a flat complex vector bundle, on the total space of a fiber 
bundle, to those of its "direct image" on the base. The analytic torsion form 
enters into a differential form version of this theorem. In addition, we show 
that under appropriate acyclicity conditions, the analytic torsion form gives a 
smooth topological invariant of the fiber bundle. 

Let us state some of our results in detail. We first describe certain charac-
teristic classes of flat bundles. Let B be a smooth manifold, let F be a flat 
complex vector bundle on B and let hF be a Hermitian metric on F. With 
respect to a local covariantly-constant basis of F, hF is locally a Hermitian 
matrix-valued function on B. Put 

(0.1 ) 

a globally-defined End(F)-valued I-form on B. 
If k is a positive odd integer, define a k-form on B by 

(0.2) 

Then ck(F, hF) is closed and its de Rham cohomology class ck(F) is indepen-
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dent of hF . The class ck(F) was previously defined by Kamber and Tondeur 
[KT, D], and one can think of ck(F, hF) as a Chern-Weil-type description of 
this class. 

Now let Z ....... M ~ B be a smooth fiber bundle with base B and connected 
closed fibers Z b = n -I (b). Let F be a flat complex vector bundle on M. 
Let HP(Z; Flz ) denote the flat complex vector bundle on B whose fiber over 
bE B is isomorphic to the cohomology group HP(Zb' Fiz ). Let TZ be the 

b 
vertical tangent bundle of the fiber bundle and let o(TZ) be its orientation 
bundle, a flat real line bundle on M. Let e(TZ) E Jtiim(Z)(M; o(TZ)) be the 
Euler class of TZ . 

Theorem 0.1. For any positive odd integer k, 

dim(Z) 

(0.3) I: (-llck(HP(Z;Fl z )) = 1 e(TZ)·ck(F) inHk(B;R). 
p=o Z 

One sees that Theorem 0.1 is an analog of the Riemann-Roch-Grothendieck 
theorem for holomorphic submersions, in which a holomorphic submersion be-
comes a smooth fiber bundle, a-flat (i.e., holomorphic) bundles become d-flat 
bundles, the direct image of F becomes L;~(Z)(-l)PHP(Z; Fl z )' 
the Chern character becomes the ck classes and the Todd class becomes the 
Euler class. A corollary of Theorem 0.1 is that if Z is odd-dimensional, then 
L:~(Z)(-l)PCk(HP(Z; Flz )) vanishes. In the case k = 1, this vanishing can 
also be seen directly from the existence of a flat unitary metric, the Ray-Singer 
metric, on the determinant line bundle over B. 

We do not know of a purely topological proof of Theorem 0.1. Our proof 
is analytic in nature, and gives a differential form version of (0.3). Equip the 
fiber bundle with a horizontal distribution TH M and a vertical Riemannian 
metric gTZ , and the flat vector bundle F with a Hermitian metric hF . The 
vector bundles HP(Z; Flz ) then acquire Hermitian metrics hHP(Z ;Flz) from 
the Hodge isomorphism. We construct a (k - I)-form g;_I(THM, gTZ, hF) 
on B such that 

Theorem 0.2. For any positive odd integer k, 

H TZ F r TZ F d(g;_I(T M, g ,h)) = }z e(TZ, V ) ·ck(F, h ) 

dim(Z) - I: (-l)Pck(HP(Z;Flz),hHP(Z;Flz)). 
p=o 

The O-form ~(TH M, gTZ ,hF) is simply the function which to b E B 
assigns half of the Ray-Singer analytic torsion of the fiber Zb over b, computed 
using the flat vector bundle Flz . If Z is odd-dimensional and k = I, then 

b 
Theorem 0.2 is equivalent to the topological invariance of the Ray-Singer metric 
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on the determinant line of Z. For k > 1, the forms .9k"-1 (TH M, gTZ , hF) 
can be called "higher" analytic torsion forms on B. 

Theorem 0.2 implies that if Z is odd-dimensional and H P (Z ; F Iz) vanishes 
for all p, then .9k"-1 (TH M, gTZ ,hF) is closed. We show that its de Rham 
cohomology class .9k"-1 (M, F) is independent of the choices of TH M, gTZ 

and hF • Thus .9k"-1 (M, F) E H k - 1 (B; JR) is a smooth invariant of the pair 
(M, F). In the case k = 1, if F is unimodular then Ya(M, F) is represented 
by the locally constant function on B which to a point b E B assigns half of 
the Reidemeister torsion of the pair (Zb' Flz ). 

b 
The paper is organized as follows. The first two sections are concerned 

with finite-dimensional vector bundles, and the last two sections deal with the 
infinite-dimensional bundles which arise from fibrations. We treat the finite-
dimensional case because the formalism is more easily seen in that case, which 
is free of analytic technicalities, and because the results are of independent 
interest in the finite-dimensional case. 

Section 1 deals with flat superconnections. That is, we have a Z2-graded 
vector bundle E on a manifold B and a superconnection A' on E whose 
square vanishes. Given two flat superconnections A' and A" and a holomor-
phic function f: <c --+ <C, we define an associated closed form on B. If we 
are given a single flat superconnection A' on E and a Hermitian metric hE 
on E, we show how to construct an adjoint flat superconnection A'* on E, 
which we then use to define a closed form f(A' , hE) on B. In the special case 
when A' is an ordinary flat connection, f(A ' , hE) essentially reduces to the 
above-mentioned forms ck(E ,hE). 

In Section 2 we specialize to the case when E is Z-graded and the flat su-
perconnection A' has total degree 1. We can then think of E as a family of 
cochain complexes parametrized by B , with some additional structure provided 
by the higher order terms of A'. We introduce a rescaling h; of the metric 
and examine how the forms f(A' , h;) depend on the scaling parameter t. A 
torsion form Tf(A' , hE) enters into this scaling-dependence. In the special case 
when B is a point, Tf(A' , hE) is proportionate to the torsion of the cochain 
complex above B. 

Section 3 gives the extension of the results of Sections 1 and 2 to the case of a 
fiber bundle Z --+ M ~ B with connected closed fibers Zb = n-1(b) and a flat 
(possibly nonunitary) complex vector bundle F on M. Choose a horizontal 
distribution TH M on M. The main idea is that the elements of n(M; F) , 
the space of F -valued differential forms on M, can be considered to be forms 
on B with value in a certain infinite-dimensional vector bundle, W, which is 
such that the fiber of W over b E B is isomorphic to n(Zb; Flz ). The 

b 

differential dM on n(M; F) then becomes a flat superconnection A' on W. 
Upon choosing a vertical Riemannian metric on M and a Hermitian metric on 
F , we obtain a Hermitian metric on Wand an adjoint superconnection A'* 
on W. Remarkably, -!(A'* + A') is essentially a Levi-Civita superconnection 
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in the sense of Bismut [B]. This fact allows us to use local heat kernel analysis 
to extend the formalism of Sections 1 and 2 to our infinite-dimensional setting. 
We construct the higher analytic torsion form !T(TH M, gTZ , hF) and prove 
Theorems 0.1 and 0.2. We also describe how !T depends on its arguments. 

Section 4 deals with the case when the fiber bundle is associated to a principal 
bundle with compact structure group G. We use equivariant methods to show 
that the analytic torsion form !T is a linear sum of characteristic classes of 
the principal bundle, with coefficients that depend on the fiber of the associated 
bundle and the G-action thereon. We compute !T when M is a circle bundle 
and F is a complex line bundle, and find that !T is a polynomial in the first 
Chern class of the circle bundle, with coefficients that are given by polylogarithm 
functions of the holonomy of Fl z . 

Appendix I coritains an axiomatic characterization of the torsion form 
Tf(A' , hE) in the finite-dimensional acyclic case. We also discuss the torsion 
forms of double complexes. This appendix is a supplement to Section 2. In 
Appendix II we give a summary of the theory of Reidemeister and higher Rei-
demeister torsions. 

We remark that in view of known relationships between polylogarithms and 
the algebraic K-theory of fields [L], the appearance of polylogarithms in the 
computation of !T for circle bundles gives evidence that !T is in fact related 
to Borel regulators in algebraic K-theory, as predicted in [W]. In the case B = 
S2 , our higher analytic torsion agrees with the higher Reidemeister torsion of 
Igusa-Klein. This raises the possibility of an extension of the Cheeger-Miiller 
result which would equate the higher Reidemeister torsion with its analytic 
counterpart. More generally, our work indicates a relationship between analysis 
on manifolds and algebraic, as opposed to topological, K-theory. 

Let us finally remark that one may well ask if it is possible to see the real 
analytic torsion form of a fiber bundle by endowing B with a Riemannian 
metric and taking the adiabatic limit of the ordinary analytic torsion T(M) of 
M, in analogy with what was done by Bismut and Cheeger for the eta form 
[BC], and by Berthomieu and Bismut for the holomorphic torsion form [BerB]. 
The answer seems to be negative. In the adiabatic limit, the relevant term in 
T(M) is IB T(Zb) . X(b), where T(Zb) is the ordinary analytic torsion of the 
fiber Zb and X(b) is the Gauss-Bonnet-Chem density of B [DM, F]. In effect, 
the top-dimensionality of X(b) blocks out the terms in the analytic torsion form 
!T of positive degree. This does not mean that there is no higher real analytic 
torsion, but rather that it cannot be seen by adiabatic limits. 

We are grateful to John Klein and Christophe Soule for helpful discussions, 
and to Mel Rothenberg for first telling us of some of the questions that are 
addressed in this paper. The first author thanks the Institut Universitaire de 
France for its support. The second author thanks the Humboldt Foundation 
and the NSF for financial support, and the IHES and the Max-Planck-Institut-
Bonn for their hospitality while part of this work was performed. The results 
in this paper were announced in [BLo]. 

Note. W. Dwyer and B. Williams inform us that they have found a purely topo-
logical proof of Theorem 0.1. 
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In this section we construct a closed form J(A' , hE) which is associated to a 
Z2-graded complex vector bundle E, a flat superconnection A' on E, a metric 
hE on E and a holomorphic function J: C -+ C. We show that the de Rham 
cohomology class of J(A', hE) is independent of the choice of hE. We also 
give the corresponding transgression formula. 

The section is organized as follows. In (a) we establish our conventions 
and briefly recall the superconnection formalism. In (b) we construct a closed 
form based on a pair of flat superconnections. We introduce the transpose and 
adjoint of a superconnection in (c) and (d). In (e) we construct the closed 
form J(A' , hE). In (f) we establish a transgression formula. Finally, in (g) we 
describe certain characteristic classes of flat vector bundles. 
(a) The superconnection formalism. For background information on supercon-
nections we refer to [B], [BGV] and [Q I]. Let us just establish some conventions. 
We use the normalizations of [Sp] for differential forms. Except where other-
wise indicated, we will take all vector spaces in this paper to be over C. Let 
B be a smooth manifold, let A(T* B) denote its complexified exterior bundle 
and let Q(B) denote the space of smooth sections of A(T* B). The symbol o will denote tensoring over COO(B). Let E = E+ EEl E_ be a Z2-graded 
finite-dimensional vector bundle on B. We let COO (B ; E) denote the smooth 
sections of E, and Q( B ; E) denote the smooth sections of A( T* B) 0 E . 

Let r be the involution of E defining the Z2-grading, so that rlE = ±I. 
± 

Then End(E) is a Z2-graded bundle of algebras over B , whose even (resp. odd) 
elements commute (resp. anticommute) with r. Given a E COO(B; End(E)), 
we define its supertrace Trs[a] E COO(B) by 

Trs[a] = Tr[ra]. 
Given WE Q(B) and A E COO(B; End(E)), put 
(1.1) Trs[w· a] = wTrs[a]. 
Then Trs extends to a linear map from Q(B; End(E)) to Q(B). 

Given a, a' E Q(B; End(E)) , we define their supercommutator [a, a'] E 
Q(B; End(E)) to be 

[ '] , ( I )(dego)(dego') , a, a = aa - - a a. 
A basic fact is that Trs vanishes on supercommutators [QI]. 

Let \1E = \1E+ EEl \1E- be a connection on E which preserves the splitting 
E = E+ EEl E_. Let S be an odd element of Q(B; End(E)). By definition, 
\1E + S gives a superconnection A on E. That is, there is a C-linear map 

A: Coo(B; E) -+ Q(B; E) 

which is odd with respect to the total Z2-gradings and satisfies the Leibniz 
rule. We can extend A to an odd C-linear endomorphism of Q(B; E). By 
definition, the curvature of A is A2 , an even COO (B)-linear endomorphism of 
Q(B; E) which is given by multiplication by an even element of Q(B; End(E)). 
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We can expand A as 

( 1.2) A = LAj' 
j~O 

where Aj is of partial degree j with respect to the Z-grading on A(T* B). 
Note that Ao is an odd element of COO(B; End(E)) and AI is a connection 
on E. 

(b) Flat superconnections. 
Definition 1.1. A superconnection A on E is flat if its curvature vanishes, i.e., 
if A2 = O. 

If A is a flat superconnection written in the form (1.2), then 
2 

Ao =0, 

( 1.3) 

[Ao ' AI] = 0, 
2 

[Ao ' A 2] + AI = 0, 

Let A' and A" be two flat superconnections on E, so that 

( 1.4) 

Put 
( 1.5) A = !(A" +A'), x = !(A" - A'). 

Then A is a superconnection on E and X is an odd element of nCB ; End(E)) . 
Proposition 1.2. The following identities hold: 

x 2 =_A2 , [A,X]=O, 

[A' , X2] = 0, [A" , X2] = 0, [A, X2] = O. 
(1.6) 

Proof. From (1.4) and (1.5),wehavethat A 2 =i[A",A']=-X2 and [A,X] 
= O. Then [A', A2] = [A" , A2] = 0, and (1.6) follows. 0 

Let f: C -> C be a holomorphic function. Put 
(1. 7) 0: = Trs[f(X)] E nCB). 
Proposition 1.3. The form 0: is closed. Moreover, its even part is 

(1.8) o:even = (rk(E+) - rk(E_))f(O). 

Proof. As [A, X] = 0, it follows that 
(1.9) [A, f(X)] = O. 
As Trs vanishes on supercommutators, 
(1.10) do: = Trs[A, f(X)] = O. 
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Thus a is closed. Put 
g(a) = t(f(a) + f( -a)). 

Then there is a holomorphic function h: C --+ C such that g(a) = h(a2 ). As 
X is odd, 

(1.11) 

Now 

(1.12) a 2 2, 2 1 ,2 
at Trs[h(tX )] = TrJX h (tX )] = 2: TrJX, Xh (tX )] = o. 

It follows that 
2 (1.13) Trs[h(X )] = Trs[h(O)] = (rk(E+) - rk(E:-))h(O). 

Then (1.8) follows from (1.11) and (1.13). 0 

Remark 1.4. By Proposition 1.3, if we want to construct interesting closed forms 
a , then we may restrict ourselves to the case when f is an odd function. 

(c) The transpose of a superconnection. Let E* be the antidual bundle to E. 
That is, E* is the bundle of antilinear functionals on E. It inherits a Z2-
grading from that of E. Let 

( , ): Coo(B; E*) x Coo(B; E) --+ Coo(B) 

denote the pairing induced from the duality between E* and E; it is linear in 
the first factor and antilinear in the second factor. 

Let -;* denote the even antilinear map from Q(B; End(E)) to Q(B; End(E*)) 
which is defined by the following three relations: 

1. For a, a' E Q(B; End(E)) , 

2. For WE Ql(B), 

-,* ,*-* aa = a a . 

-* -W =-w. 
3. For a E COO(B; End(E)) , we have that 71* E Coo(B; End(E*)) is the 

conjugate transpose of a in the ordinary sense, i.e., 

(71* s' , s) = (s' , as) 

for all s' E COO(B; E*) and s E Coo(B; E). 
Given a superconnection A on E, write A as V E + S , where V E = V E+ EB 

V E - is a connection on E and S is an odd element of Q(B; End(E)). Let 
V E• be the connection on E* induced from V E • 

Definition 1.5. A* is the superconnection on E* given by 
-* "E*-* (1.14) A = V +S. 

One can easily check that A* is independent of the decomposition of A as 
V E + S. If A is flat, then A* is flat. 
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(d) The adjoint of a superconnection. By definition, a Hermitian metric hE on 
the Z2-graded bundle E is a Hermitian metric on E such that E+ and E_ 
are orthogonal. The metric hE induces an even COO(B)-linear isomorphism 

~E -* (1.15) h : Q(B; E) ~ Q(B; E ). 

Definition 1.6. The adjoint A* of a superconnection A is the superconnection 
on E given by 

( 1.16) 

If A is flat, then A* is flat. 

(e) Associated odd closed forms. Let i l/2 be a square root of i. In what follows, 
the choice of square root will be irrelevant. 

We assume that the Z2-graded vector bundle E has a flat superconnection 
A' and a Hermitian metric hE . We now apply the formalism of Section 1 (b), 
taking A" to be the adjoint superconnection A'* . That is, we have 

(1.17) A = !(A'* + A'), X = !(A'* - A'). 
Let qJ: Q(B) ~ Q(B) be the linear map such that for all homogeneous W E 
Q(B) , 

( 1.18) (2 ' )-(deg ro)/2 qJw = In w. 
In what follows, we will say that a holomorphic function f: C ~ C is real 

if for all a E C, we have f(71) = f(a). We will say that a differential form is 
real if it can be written with real coefficients. 
Definition 1.7. Let f: C ~ C be a holomorphic real odd function. Put 

(1.19) f(A', hE) = (2in)1/2qJTrs[f(X)] E Q(B). 

Theorem I.S. (i) The form f(A', hE) is real, odd and closed. 
(ii) Let hE· be the induced metric on E*. Then f(A', hE) = - f(A'* , hE·). 
(iii) If there is an even isomorphism between the triplets (E, A' , hE) and 

(E*, A'*, hE·), then f(A', hE) = O. 
(iv) Suppose that the triplet (E, A' , hE) is the complexijication of a real triplet 

(ER , A~, hE). Then if k == 3 (mod4) , the degree- k component of f(A', hE) 
vanishes. 
Proof. (i) By Proposition 1.3, f(A', hE) is odd and closed. Now 

X* = -X, 
and so 

f(X)* = f(X*) = f( -X) = - f(X). 
It is now easy to check that (1.19) implies that f(A', hE) is real. 

(ii) Using an obvious notation, one can check that 

X(A'*, hE·) = _hE X(A', hE) (hE)-1 , 

from which the claim follows. 
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(iii) This follows from statement (ii). 
(iv) It is enough to show that Trs[Xk] = 0 if k = 3 (mod 4) . In general, we 

have 
Trs[Xk] = (-1 /(k+I)/2Trs[(Xkn 

= (-1 )k(k+I)/2Trsl (X*)k] = (-1 )k(k-I)/2Trs [Xk]. 

In our case, Trs[Xk] is real and the claim follows. 0 

(f) A transgression formula. Let IE lR parametrize a smooth I-parameter fam-
ily of Hermitian metrics hf on E. For each I E lR, form Xl as in (1.17). 

There is an operator (hf) -I ~ E COO (B; End(E)) , where we use an obvious 
notation. 

Theorem 1.9. The form qJ Trs[1(hf)-' ~ r (Xl)] on B is even and real. More-
over, 

(1.20) 

Proof. Let vi( be the space of Hermitian metrics on E. Let n: B x vi( -> B 
be projection onto the first factor. Then n* E is a Z2-graded vector bundle on 
B x vi( and n* A' is a flat superconnection on n* E. Moreover, n* E has a 
canonical metric h1t ' E which restricts to hE on B x {hE} . 

Let X total be the odd element of nCB x vI(; End(n* E)) which is associated 
to the triple (n*E,n*A' ,h1t ' E ) by (1.17). Let dL Crespo dB) denote exterior 
differentiation in the vi( (resp. B) direction on B x vi( . Put 

(1.21 ) 

Let xpartial be the map which takes hE E vi( to X hE E n(B; End(E)). We 
can think of xpartial as an element of Coo(vI() ® n(B; End(E)) , which in turn 
embeds in nCB x vI(; End(n* E)). One can check that 

( 1.22) x total = xpartial + 10. 

By (1.19), 

(1.23) f(n*A', h1t' E ) = (2in)I/2qJTrs[f(Xtotal)]. 

From (1.22) and (1.23), 

(1.24) 

Taking the Taylor expansion of the right-hand side of (1.24) in the variable 0, 
we obtain 

( 1.25) 
f( n * A' , h1t ' E) = (2in) 1/2 qJ Trs[f(XPartial)] 

+ (2in) 1/2 qJ Trs[ 10 f' (Xpartial)] + P , 
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where P is a form on B x vi( whose partial degree in the Grassmann variables 
of A(T* vI() is ~ 2. By Theorem 1.8, the form f(n* A' , hX ' E) is real, odd and 
closed. It follows that 
(1.26) 0 = dAY ((2in) 1/2 qJ Trs[f(XPartiai)]) + dB ((2in) 1/2 qJ Trs[! 0 f' (Xpartiai)]). 

The smooth I-parameter family hf of metrics on E is equivalent to a 
smooth curve c(/) in vi( . Let idc/dl denote interior multiplication with the tan-

gent vector of c. Then the part of idc/dlf(n* A' , hX ' E) which is of partial degree 

zero in the Grassmann variables of A(T*vI() , namely qJ Trs[!(hf)-I ~ f (Xl)]' 
is an even real form on B. Applying idc/dl to (1.26), we have 

0= :If(A', hf) + idC/dldB ((2in)I/2qJTrs [40f'(Xpartial)]) 

(1.27) = :If(A', hf) - dB idc/dl ((2in)I/2qJ Trs [4 01' (Xpartiai)]) 

{) 'E B ( [ 1 E -I {) hf, 1 ) = {)If(A ,hi) - d qJTrs "2(hl ) ar f (Xl) . 0 

Definition 1.10. Let QB be the vector space of real even forms on B . Let QB, 0 
be the vector space of real exact even forms on B. 

Theorem 1.11. The following identity holds: 

r I [ 1 E -I {) hf, 1 'E 'E (1.28) d 10 qJ Trs "2(hl ) ar f (Xl) dl = f(A , hi ) - f(A , ho )' 

In particular, the de Rham cohomology class of f(A', hE) is independent of 
E fl I E -I &hE , • B B 0 h . Moreover, the class of the form Jo qJTrsh(hl ) 7Jf-f (Xl)]dl In Q /Q ' 

depends only on the metrics h; and h; . 
Proof. Equation (1.28) follows from integrating (1.20) with respect to I. We 
now use the notation of the proof of Theorem 1.9. Let c: [0, 1] -t vi( be a 
path in vi( . From (1.25), we have 

! *' x' E rl [1 E -I {)hf, 1 c f(n A , h ) = 10 qJ Trs "2(hl ) ar f (Xl) dl. 

As the form f(n* A' , hX * E) is closed, the last statement of Theorem 1.11 follows 
from Stokes' Theorem. 0 

Definition 1.12. Let j(A', h; , h;) E QB /QB,O be the class of 

r I [ 1 E -I {) hf, 1 10 qJ Trs "2(hl ) ar f (Xl) dl. 

Equation (1.28) states that 
- , E E ,E , hE (1.29) df(A , ho ' hi ) = f(A , hi ) - f(A, 0)' 
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I - lEE If A is an ordinary flat connection, then the class f(A , ho ' h}) is the 
analog for us of the Bott-Chern class [BoC]. 

In what follows, we will let f(A ' ) denote the de Rham cohomology class of 
f(A' , hE) . 

(g) Chern-type classes of flat vector bundles. With the notation of Section 1 (e), 
suppose that A' is an ordinary flat connection V E = V E+ EI7 V E- on the Z2-
graded vector bundle E. Then 

(1.30) X = !((VE)* _ V E) 

can be written as X = !w(E, hE), with 

(1.31) w(E, hE) = (h E)-} (VE hE) E n}(B; End(E)). 

Equations (0.1) and (1.31) are clearly equivalent. The unitary connection 

(1.32) A = !((VE)* + V E) 
on E is given by 

(1.33) 

For k a positive odd integer, take f(a) = ak . We write 

(1.34) ck(E, hE) = f(VE , hE) = (2in)-(k-})/2 2-k TrJwk(E, hE)], 

a closed k-form on B. Let ck(E) denote the de Rham cohomology class of 
ck(E, hE); by Theorem 1.11, it is independent of hE. If the flat vector bundle 
E admits a covariantly-constant Hermitian metric, then ck(E) = O. 

Proposition 1.13. If E} and E2 are Z2-graded flat complex vector bundles on 
B, then 

( 1.35) 

and 

( 1.36) 

If E is a Z2-graded flat complex vector bundle, then 

(1.37) ck(E*) = -ck(E). 
Proof. Equation (1.35) is evident. If hEl and hE2 are Hermitian metrics on 
E} and E2 respectively, we have 

(1.38) w(E} 0 E2, hEl®E2) = (IE 0 W(E2' hE2)) + (w(E} , hEl) 0 IE)' 
1 2 

Then 
( 1.39) 

k 

TrJwk(E} 0 E2, hEl®E2)] = L ~) Trs[wP(E} , hEl )]. Trs[wk- P(E2, hE2 )]. 
p=o 
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By Proposition 1.3, the terms in the sum of (1.39) vanish if p is not equal 
to 0 or k, from which (1.36) follows. Equation (1.37) follows from Theorem 
1.8(ii). 0 

We wish to give a more intrinsic description of the classes ck(E). For sim-
plicity, we assume that E _ = O. In the case k = 1, ci (E) E HI (B ; JR) is the 
cohomology class such that if y is a smooth closed curve in Band [y] is its 
homology class, then 

( 1.40) CI (E)([y]) = lnldet Pyl , 

where Py is the holonomy of E around y, computed at an arbitrary point of 
y. 

More generally, put N = rk(E), G = GL(N, C) and K = U(N). Denote 
the Lie algebras of G and K by y = gl(N, C) and K = u(N), respectively. 
The symmetric space G / K is isomorphic to the space of Hermitian metrics 
on eN. Suppose that B is connected, let * be a basepoint in B and let 
p: n I (B , *) ---+ G be the holonomy representation of E at *. Letting jj denote 

~ N ~ 

the universal cover of B, we can write E = B xp e . Put H = B xp (G/K), 
a fiber bundle over B with fibers diffeomorphic to G / K. Then Hermitian 
metrics on E are equivalent to smooth sections of H. 

The quotient space y IK is isomorphic to the space of Hermitian N x N 
matrices, and carries an adjoint representation of K. Define a k-form <I> on 
y/K by sending Hermitian N x N matrices M I , ... , Mk to 

( 1 '" sign(a) (1.41) <l>MI,···,Mk)= k! L..,;(-1) Tr[Ma(I)···Ma(k)]· 
aESk 

Then <I> is K-invariant and extends to a closed G-invariant k-form on G/K, 
which we also denote by <1>. Let n2 : jj x (G / K) ---+ G / K be projection onto 
the second factor. Then n;(<I» is a closed form on iJ x (G/K). As <I> is 
G-invariant, n;(<I» is n l (B)-invariant, and so pulls back from a closed form 
a on H. If hE is a Hermitian metric on E and s: B ---+ H is the associated 
section, it follows tautologically that 

(1.42) ck(E, hE) = (2in)-(k-I)/22-ks*(a). 

As G / K is contractible, the fiber bundle H is topologically trivial and there is 
an isomorphism j: H* (H; C) ---+ H* (B ; C). Letting [a] E Hk (H; C) denote 
the de Rham cohomology class of a, we have 

( 1.43) 

Equation (1.43) shows that the classes ck(E) are the same as those defined 
by Kamber and Tondeur [KT] and further studied by Dupont [D] (see [D, §4]). 
Let GL(N, C)O denote GL(N, C) with the discrete topology. The flat bundle 
E is classified by a homotopy class of maps v from B to the classifying space 
BGL(N, C)O and ck(E) = v*(ck N) for some ck N E Hk(BGL(N, C)o; JR) , , 
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[D]. Now the cohomology group H*(BGL(N, C)o; JR) is isomorphic to the 
(discrete) group cohomology H*(GL(N, C); JR). We can also consider the con-
tinuous group cohomology H;(GL(N, C); JR), meaning the cohomology of the 
complex of Eilenberg-Mac Lane cochains on GL(N, C) which are continuous 
in their arguments. By forgetting that the cochains are continuous, there is a 
map JiN: H;(GL(N, C); JR) --+ H*(BGL(N, C)o; JR). It follows from [D] that 
ck N = JiN(Ck N) for some Ck N E H;(GL(N, C); JR). For example, C1 N is 
gi~en by the homomorphism g' --+ lnldet(g) I from G L( N ,C) to (JR, +) .' 

Furthermore, one can check that with respect to the embedding eN: 

GL(N, C) --+ GL(N + 1, C), one has Ck,N = (Hk(eN))(Ck,N+I)' The inverse 
limit ~ H;(GL(N, C); JR) is an exterior algebra with generators in every odd 
degree [Bo, p. 265]. Thus the classes ck(E) can be considered to be the inde-
composable stable characteristic classes, which can be described by continuous 
group cochains, of flat complex vector bundles. 

A related characteristic class of the flat bundle (E, V E ) is its Cheeger-Chern-
Simons secondary class, which lies in ~d(B; CIT.) [CS]. The imaginary part 
of the Cheeger-Chern-Simons class lies in ~d(B; JR), and can be explicitly 
constructed as follows. Let t E [0, 1] parametrize a smooth I-parameter family 
of connections {V t} tE[O, I] such that V 0 is compatible with hE ,and VI = VE . 
Put 

(1.44) 

Then 

As Vo is hE-compatible, Tr[e-V'~/2i1t] is a real form, and so the form 
Im(CCS({Vt}tE[O,I])) is closed. One can check that the de Rham cohomology 
class of Im(CCS( {Vt}tE[O, I])) is independent of hE and the specific choice of 
{Vt}tE[O,I] , and so defines an invariant Im(CCS(E)) E ifdd(B; JR) of the flat 
bundle E. This is the desired construction. 

Proposition 1.14. The Cheeger-Chern-Simons secondary class and the ck(E) 
classes are related by 

1 00 22j j! 
Im(CCS(E)) = -2 L (2' l),C2j+1 (E). 

1C j=O J + . 
( 1.46) 

Proof. Take Vt = A - tX. Using the fact that VE is flat, one computes that 

( 1.47) 
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Then 

( 1.48) 

The proposlt10n follows from taking the imaginary parts of both sides of 
(1.48). 0 

Remark 1.15. Equation (1.46) is equivalent to an equality in the group 
JIldd(BGL(N, ((:)6; JR) relating the classes {Ck,N} and the imaginary part of 
the Chem-Cheeger-Simons secondary class. 

II. FLAT SUPERCONNECTIONS OF TOTAL DEGREE 1, HERMITIAN METRICS 
AND TORSION FORMS 

In this section we construct the closed form J(A' , hE) associated to a Z-
graded complex vector bundle E which is equipped with a Hermitian metric 
hE and a flat superconnection A' of total degree 1. We also introduce a 1-
parameter family of metrics {h;lt>o on E. We calculate the t ...... +00 limit 
of J(A' , h;). Using the transgression formula of Section 1(f), we construct a 

I hE form S f(A, ) such that 

IE IE. IE 
dSf(A ,h ) = J(A ,h ) - hm J(A , h( ). 

(-++00 

In the special case when (E, v) is a flat complex of complex vector bundles 
equipped with a Hermitian metric hE, we construct a torsion form Tf(A' , hE) 
such that 

. f I hE I hE) Fmally, we compute the dependence 0 Sf(A, ) and Tf(A , on the 
metric hE. 

The section is organized as follows. In (a) we introduce superconnections of 
total degree 1 on a Z-graded vector bundle E. Given a flat superconnection 
A' of total degree 1, in (b) we describe the associated cochain map v on E, 
and the flat vector bundle H(E, v) on B which is the cohomology of (E, v). 
In (c) we establish a transgression formula for the closed form J(A' , h;). In 
(d) we calculate the t ...... +00 limit of J(A' , h;). In (e) we construct the form 
Sf(A' , hE) and in (f) we construct the torsion form Tf(A' , hE). We discuss a 
finite-dimensional version of Hodge duality in (g), and give a nontrivial example 
of the formalism of this section. 

In the entire section we use the assumptions and notation of Section 1. 
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(a) Superconnections of total degree 1 on a Z-graded vector bundle. Let B be a 
smooth manifold. Let E = E97=0 Ei be a IE-graded complex vector bundle on 
B. Put 

Then E = E+ E9 E_ is a 1E2-graded vector bundle, to which we may apply the 
formalism of Section 1. 

Let A' be a superconnection on E = E+ E9 E_ . As in (1.2), we write A in 
the form 

(2.1 ) 

where A~ is of partial degree j in the Grassmann variables A( T* B) . 

Definition 2.1. We say that A' is of total degree 1 (resp. -1) if 
- A~ is a connection on E which preserves the IE-grading. 
-For j E N - {l}, A~ is an element of n/(B; Hom(E-, E-+ I - i )) (resp. 

Oi (B; Hom(E- , E-- I +i ))) . 

In what follows we will assume that A' is a flat superconnection of total 
degree 1. Put 

(2.2) I 
v =Ao' r7E - A' v - I' 

Clearly v E OO(B; Hom(E- ,E-+ I )) and \7E is a connection on E which 
preserves the IE-grading. 

Proposition 2.2. We have 

(2.3) E [\7 ,v] = 0, E 2 I (\7 ) + [v, A2 ] = o. 
Proof. These are just the first three identities in (1.3). 0 

As v 2 = 0, we have a cochain complex of vector bundles 

(2.4) Ov Iv v n (E, v): 0 -+ E -+ E -+ ... -+ E -+ O. 

Definition 2.3. For bE B, let H(E, v)b = E97=0 Hi(E, v)b be the cohomology 
of the complex (E, V)b . 

From Proposition 2.2, v is covariantly constant with respect to the connec-
tion \7E . It follows that there is a IE-graded complex vector bundle H(E, v) 
on B whose fiber over bE B is H(E, V)b • There is also a natural connection 
on H(E, v) which can be described as follows. Let 'If: Ker(v) -+ H(E, v) be 
the quotient map. For 0::; i::; n, let s be a smooth section of Hi(E, v). Then 
there is a smooth section e of Ei n Ker( v) such that 'If (e) = s. Given a vector 
field U on B, we have that v(\7~e) = \7~v(e) = 0, and so \7~e E Ker(v) . 
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Definition 2.4. Put 
(2.5) 
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'r'7H(E ,v) _ ('r'7E) 
v U S - If! v Ue . 

Equation (2.5) makes sense, as if e E Im(v) then yr~e E Im(v). Thus 
yrH(E ,v) is a connection on H(e, v) which preserves the !f.-grading. 

Proposition 2.S. The connection yrH(E, v) is flat. 
Proof. From (2.3), if sand e are as above, then 

(2.6) (yrH(E,V»)2S = If!((yrE)~e) = -If!([v, A;]e) = O. 0 

(b) Supereonneetions oftotal degree 1 and Hermitian metries. We make the same 
assumptions as in Section 2(a). By definition, a Hermitian metric on the !f.-
graded vector bundle E = EB7=0 Ei is a Hermitian metric on E such that the 
Ei 's are mutually orthogonal. 

Let hE be a Hermitian metric on E. Let v* E nO(B; Hom(E· ,E·-I)) be 
the adjoint of v with respect to hE . Put 
(2.7) V=v*-v. 

As V2 = -(v*v + v*v), it follows from finite dimensional Hodge theory that 
for any b E B there is an isomorphism 
(2.8) H(E, V)b ~ Ker(Vz,). 
Thus there is a smooth !f.-graded subbundle Ker( V) of E whose fiber over 
b E B is Ker( Vz,). Moreover, 
(2.9) H(E, v) ~ Ker(V). 

Being a subbundle of E, Ker( V) inherits a Hermitian metric from the Her-
mitian metric hE on E. Let hH(E, v) denote the Hermitian metric on H(E, v) 
obtained via the isomorphism (2.9). Let pKer(V) be the orthogonal projection 
of E onto Ker( V) ; it clearly preserves the !f.-grading. 

Put 

(2.10) 
w(E, hE) = (hE)-I(yrEhE) , 

w(H(E, v), hH(E,v») = (hH(E,V»)-I(yrH(E'V)hH(E,v»). 

These are I-forms on B with value in the selfadjoint endomorphisms that 
preserve the If.-gradings. 

Let (yrE)* (resp. (yrH(E,V)n be the connection on E (resp. H(E, v)) 
which is the adjoint of yrE (resp. yrH(E, v») with respect to hE (resp. hH(E, v») . 
These connections still preserve the !f.-gradings. Then 

(yrE)* = yrE + w(E, hE), 
(2.11 ) 

(yrH(E ,v»)* = yrH(E, v) + w(H(E, v) , hH(E ,v»). 

Now pKer(V)yrE and pKer(V)(yrE)* give connections on Ker(V). Using the 
isomorphism (2.9), they can be considered to be connections on H(E, v). Sim-
ilarly, the I-form pKer(V)w(E, hE)pKer(V) can be considered to be an element 
of nl(B; End(H(E, v))). 
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Proposition 2.6. The following identities hold: 
VH(E, v) = pKer(V)VE , 

(2.12) (VH(E,v))* = pKer(V) (VE)* , 

w(H(E, v), hH(E,v)) = pKer(V)w(E, hE)pKer(V). 

Proof. Let e be a smooth section of Ker( v). As before, for a vector field U 
on B, V~e E Ker(v). By Hodge theory, pKer(V)(V~e) - v~e E Im(v) , and so 

(2.13) 'II(V~e) = 'II(pKer(V)V~e). 

Equations (2.5) and (2.13) give the first identity in (2.12). 
Let e and e' be smooth sections of E and let U be a vector field on B. 

Then 
(2.14) 

If in addition e and e' lie in Ker(V) , then (2.14) gives 
I Ker(V) E I Ker(V) E I 

U(e, e )hE = (P Vue, e )hE + (e, P Vue )hE 
(2.15) 

+ (pKer(V) (w(E , hE)(U))pKer(V)e, e\E. 

From (2.15) and the first identity in (2.12), we obtain the third identity in 
(2.12). The second identity in (2.12) now follows from (2.11). 0 

Let A" = A'* be the adjoint of A' with respect to hE. Then A" is a flat 
superconnection of total degree -1. From (2.1), 

(2.16) A" = LA;, A; = A~*. 

From (2.2), 

(2.17) 

j~O 

(c) The rescaling of the metric. We make the same assumptions and use the 
same notations as in Section 2(b). 

Let N E End(E) be the number operator of E, i.e., N acts on Ei by 
multiplication by i. Extend N to an element of COO(B; End(E)). 

Definition 2.7. For t > 0, put 

(2.18) 
n . 

h~ = ED t i hE' . 
i=O 

Then h~ is a metric on E and hE = hf . 
Let A:' be the adjoint of A' with respect to h~ . Clearly A" = A~ . We have 

(2.19) A;' = t-NA"tN. 

Using (2.16) and the fact that A" is of total degree -1, we get 

(2.20) A" = '"' I-jAil 
t ~t J' 

j~O 
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We now use the formalism of Section l(e). Put 

(2.21) 

Let f: C ....... C be a ho10morphic real odd function. Following Definition 
1.7, for t> 0 we put 

(2.22) 

Definition 2.S. Put 

(2.23) " ,E [N'] f (A , ht ) = rp Trs 2 f (XI) E n(B). 

Theorem 2.9. The form f"(A', h~) is real and even. Moreover, 

(2.24) ~f(A' hE) = !d'f"(A' hE). at 'I t ' I 

Proof. We have 

(2.25) 

The theorem follows from Theorem 1.9 and (2.25). 0 

Although A' and A;' are both flat superconnections on E, they occur in a 
somewhat asymmetric way. It is possible to make the equations more symmetric 
by conjugating both A' and A;' by t N / 2 • 

Definition 2.10. For t > 0, let e; be the flat superconnection on E of total 
degree 1 given by 

(2.26) e' = tN / 2 A' t-N / 2 
t ' 

and let e;' be the flat superconnection on E of total degree -1 given by 

(2.27) e;' = tN / 2 A;' t- N / 2 = t-N / 2 A" tN / 2 • 

The superconnections e;' and e; are adjoint with respect to hE . 
Using (2.1), (2.16), (2.26) and (2.27), we get 

(2.28) 

e' = ,,/I-j)/2A, 
t ~ J' 

j?O 

e ll = " (l-j)/2A" 
I ~t J. 

j?O 

We again use the formalism of Section l(e). Put 

(2.29) 

From (2.21), (2.26) and (2.27), we have 

(2.30) e = t N / 2 A t- N / 2 
It' 
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Theorem 2.11. For all t > 0, 
,E 'E f(A , ht ) = f(Ct ' h ), 

j"(A', h~) = j(C;, hE). 
(2.31 ) 

In particular, 

(2.32) %tf(C;, hE) = +dj(C;, hE). 

Proof. Equation (2.31) follows from (2.30). Then (2.32) is equivalent to 
(2.24). 0 

Remark 2.12. There is a simple direct proof of (2.32). By (2.26) and (2.27), 
we have 

(2.33) 

and so 

(2.34) 

From (1.6), 

(2.35) 

(2.36) 

8, [, N] 
8 t Ct = - Ct ' 2t ' !!.-c" = [CII N] 8 t t t ' 2t ' 

(d) The t ---- +00 limit of f(A', h~). Suppose that there is a c> 0 such that 
for any kEN, there exists a Ck > 0 such that 

(2.37) k sup (1 + laD If(a)l::; Ck • 
aEC 

I Real::;c 

As f is holomorphic, the derivatives of f satisfy bounds similar to (2.37). 
An example of such an f is 

f(a) = a exp(a\ 

Let (Wt)tER:U{+oo} be smooth forms on B. We will write 

(2.38) 
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if for any compact set K c B and any kEN, there is a Ck K > 0 such that 
the sup of the norms of w t - Woo and its derivatives of orde; ~ k on K can 

c be bounded above by JtK 
Let d(H(E, v)) be the locally constant integer-valued function on B: 

n 
(2.39) d(H(E, v)) = 'l)-l)iirk(Hi(E, v)). 

i=O 

Since VH(E,v) is a flat connection on H(E, v) preserving the Z-grading, 
VH(E, v) is an example of a flat superconnection of total degree 1. Of course, 

n . . 
(2.40) f(VH(E,v) , hH(E,v)) = 2:)-l/f(VH'(E,V) , hH'(E,V)). 

Using (2.11) and (2.40), we have 
(2.41 ) 

i=O 

f(VH(E ,v) , hH(E ,v)) = t( _1)i(2in)I/2tp Tr [f (~ (Hi(E, v), hHi(E ,V))) ] . 
1=0 

Theorem 2.13. As t -+ +00, 

f(A', h;) = f(VH(E,v) , hH(E,v)) + &' (~) , 

/'(A', h;) = d(H(E, v))f'JO) + &' (~). 
(2.42) 

Proof. Throughout this proof, C will denote a generic positive constant. By 
(2.2), (2.11), (2.17) and (2.28), we have 

(2.43) D =! (vtV+W(E hE)+",,/I-J)/2(AII _A')) 
t 2 'w J J . 

J?2 

Put 
..ji 

Ft =Dt - TV' 
Then Ft is a sum of forms of degree 2: 1 in the Grassmann variables of 
A(T* B), and so is nilpotent. Therefore the spectra of D t and {} V are iden-
tical. 

Let c> 0 be such that (2.37) holds. Let ~ = ~+ u~_ be the oriented contour 
in c: 

~- ~+ 

-c/2 o +c/2 
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The operator V is skew-adjoint and so its spectrum lies on ilR. Then for 
t > 0, 

(2.44) 

For A E~, 

( v't -I )-1 v't-I 
(2.45) (A-Dt)-I = 1- (A- -fv) Ft (A- -fv) 

By (2;9), Ker(V) ~ B(E, v). As V has purely imaginary spectrum, if 
K c B is compact then there is a C > 0 such that if A E ~ and t ~ 1 , then 

(2.46) I ( 
v't) -I pKer(V) I C 

A - TV - A ~ v't(1 + IAI) on K. 

Also 

(2.47) 

( v't -I ) 2 
+ (A--fV) ~ +"', 

and the expansion in (2.47) terminates after a finite number of terms. From 
(2.43) we know that there is a C > 0 such that for t ~ 1 , 

(2.48) 1Ft - ~ (E, hE)1 ~ ~ on K. 

From (2.46), (2.47) and (2.48), there exist C > 0 and PEN 
t ~ 1 and A E~, 

( PKer(V) )-1 r; -I -I W E 
(1-(A-vtV) Ft ) - 1- A 2(E,h) 

(2.49) 
C 

~ v't(I+ IAll onK. 

such that for 

Using (2.45), (2.46) and (2.49), we have that for t ~ 1 and A E ~, 

(2.50) 

_\ ( pKer(V) WE) -\ pKer(V) 
(A - Dt ) - 1 - A 2 (E, h ) A 

~ ~(1 + IAll on K, 

which is equivalent to 

I(A - Dt)-I - pKer(V) (A _ pKer(V) ~ (E, hE)pKer(V)) -I pKer(V)I 

~ ~(l + IAI)P on K. 
(2.51 ) 
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As pKer(V)!f(E, hE)pKer(V) is a I-form, it is nilpotent, and so its spectrum 
consists of {a} . Then 

(2.52) f (pKer(V) OJ (E, hE)pKer(V)) = _1_. ( f(A.) dA.. 
2 21tl ill. A. _ pKer(v)!f(E, hE)pKer(V) 

Using (2.37), (2.44), (2.51) and (2.52), we find that if t 2: 1, then 

(2.53) If(Dt ) - pKer(V) f (pKer(V) ~ (E, hE)pKer(V)) pKer(V) I :$ ~ on K. 

The first identity in (2.42) now follows from (2.12), (2.31), (2.41) and (2.53). 
Still using (2.31) and proceeding as above, we find that as t -+ +00 , 

(2.54) f"(A' , h~) = f"(VH(E ,v) , hH(E ,V)) + &' (~) . 

Clearly 

(2.55) f"(VH(E,v) , hH(E,v)) = ~9' t(_l)iif'(VHi (E,V) , hHi(E,V)). 
;=0 

Now f' is an even function. Using Proposition 1.3, we deduce from (2.55) 
that 

(2.56) f"(VH(E,v) , hH(E,v)) = t(-l)iirk(Hi(E, V))f'iO). 
i=O 

The second identity in (2.42) now follows from (2.54)-(2.56). This completes 
the proof of Theorem 2.13. 0 

Recall that f(A') (resp. f(VH(E,v))) denotes the cohomology class of 
f(A', hE) (resp. f(VH(E,v) , hH(E,v))). 

Theorem 2.14. As elements of ~d(B; ~), 

(2.57) f(A') = fC'VH(E ,V)). 
Proof. This follows from Theorems 1.11 and 2.13. 0 

(e) The form Sf(A', hE). We now refine Theorem 2.14 to the level of differen-
tial forms. 
Definition 2.15. Let Sf(A', hE) be the real even form on B given by 

(2.58) Sf(A', hE) = - 1+00 (f"(A' , h~) - d(H(E, v))f'iO)) ~t. 
Using (2.42), it is clear that the integrand in (2.58) is integrable. 

Theorem 2.16. The following identity holds: 

(2.59) dSf(A', hE) = f(A', hE) _ f(VH(E,v) , hH(E,v)). 

Proof. This follows from Theorems 2.9 and 2.13. 0 
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Let h~ and hf be two Hermitian metrics on the Z-graded vector bundle 
E, and let h~(E, v) and h~(E, v) be the metrics induced by h~ and hf on 
H(E, v). 

We now use the notation of Section 1 (f). 

Theorem 2.17. The following identity holds in QB /QB,O: 
(2.60) 

S (A' hE) _ S (A' hE) = f~(A' hE hE) _ f~(\1H(E, v) hH(E, v) hH(E, v)) 
f 'I f' 0 ' 0' I '0' I . 

Proof. Clearly both sides of (2.60) vanish when hf = h~ . By (1.29) and (2.59), 
if we apply the operator d to both sides of (2.60) then we get an identity. A 
simple deformation argument then shows that (2.60) holds. 0 

(f) Flat complexes of vector bundles and their torsion forms. In this section we 
consider the special case when the vector bundle E has not only a flat super-
connection, but has a flat ordinary connection. Let 

(2.61 ) 

be a flat complex of complex vector bundles. That is, 

(2.62) 
i=O 

is a flat connection on E = E97=0 Ei and v is a flat chain map, meaning 

(2.63) (\1E)2=0, v 2 =0, \1:v=O. 

Put 

(2.64) I E A =v+\1 . 

Then A' is a flat superconnection of total degree 1. With respect to the decom-
position (2.1), A' is characterized by the fact that 

(2.65) A~ = 0 for j 2:: 2. 

We now use the notation of Sections 2(c)-2(e). In particular, for t> 0, 

All _ * (r7E)* t - tv + v , 

(2.66) I r; E Ct = v tv + \1 , 

C;' = v'tv * + (\1E )* . 
Let f: IC ---+ IC be a real hoI om orphic odd function. By (2.66), we see that 

although h; = E97=0 ti hE; is not a metric for t = 0, A;' , C; ,and C;' still make 
sense for t = O. Therefore the forms f(A ' , h;) = f(C;, hE) and /'(A, h;) = 
f/\ (C; , hE) still make sense for t = 0 , and depend smoothly on t E [0, +00) . 

Let d(E) be the locally constant integer-valued function on B given by 
n 

(2.67) d(E) = 2)-1)iirk(E\ 
i=O 
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As in (2.41), we have 

(2.68) f('\1E, hE) = t( _1)i (2in) 1/2 tp Tr (! ( ~ (E i , hEi)) ] . 
1=0 

Proposition 2.18. As t -> ° , 
(2.69) 

Proof. Clearly 

(2.70) 

Also 

lEE E 
f(A , hI ) = f('\1 ,h ) + &(t) , 

('(A', h~) = d(E)f'iO) +&(t). 

f(C~, hE) = f('\1E , hE), 

f"(C~, hE) = f"('\1E, hE). 

(2.71 ) f"('\1E, hE) = ~ t(_I)iif ' ('\1Ei , h E\ 
i=O 

As f'ea) is even, Proposition 1.3, (2.70) and (2.71) imply that 

(2.72) f' (C~, hE) = d(E)f'iO). 

This completes the proof of Proposition 2.18. 0 

Theorem 2.19. As elements of JtX1d(B; JR) , 

(2.73) 

Proof. If f(a) = aexp(a2 ), then Theorem 2.19 follows from Theorems 1.11 
and 2.13 and Proposition 2.18. Expanding f in a power series, (2.73) extends 
to an arbitrary f. 0 

We now refine Theorem 2.19 to the level of differential forms. Let f: C -> C 
be a real holomorphic odd function such that (2.37) holds. 

Definition 2.20. Put 

(2.74) 
Tf(A' , hE) = - 10+00 [f"(A I , h~) - d(H(E, v))f~O) 

-[deE) - d(H(E, v))]f(t) 1 ~t , 
a differential form on B. 

Remark 2.21. By Theorem 2.13 and Proposition 2.18, the integrand in (2.74) 
is integrable. We will call Tf(A' , hE) a torsion form. 
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Theorem 2.22. The form T/A', hE) is even and real. Moreover, 

(2.75) dTf(A', hE) = f(VE , hE) _ f(VH(E,v) , hH(E,v). 
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Proof. This follows from Theorems 2.9 and 2.13 and Proposition 2.18. 0 

Remark 2.23. Let B' be a smooth manifold and let a: B' -+ B be a smooth 
map. Then 

(2.76) 

We now use the same notation as in Theorem 2.17. 
Theorem 2.24. The following identity holds in QB / QB ,0 : 
(2.77) 

T (A' hE) _ T (A' hE) = f~(VE hE hE) _ f~(VH(E, v) hH(E, v) hH(E, V) 
f 'I f' 0 ' 0' 1 '0' 1 • 

Proof. Using (2.75), the proof is virtually the same as that of Theorem 2.17. 0 

We now consider the O-form component TjO\A', hE) E COO(B) of Tf(A', hE). 
Given b E B, decompose the degree-O operator ~2 with respect to the Z-
grading on E b as 

(2.78) 
i=O 

with (~\ E End(E~). Let (~2)~ denote the quotient action of (~\ on 
. 2 

E~/Ker((~») . 
Theorem 2.25. 

(2.79) T}OI(A', hE)(b) = f'iO) t(-1)iilndet(-(~2)~). 
i=O 

Proof. Let g: IC -+ IC be the holomorphic function such that f'(a) = g(a2 ). 

Let /\[01 (A' ,h;)(b) denote the evaluation of the O-form component of 
f" (A' , h;) at b. From Definition 2.8, Theorem 2.11 and (2.66), 

(2.80) f"[OI(A', h~)(b) = ~ t(-l)iiTr [g (~(~\)]. 
1=0 

Let {Ai, k} ~k~~j) denote the eigenvalues of - (~\ ; they are all nonnegative. 
Substituting (2.80) into (2.74) gives 
(2.81) 

T}OI(A"hE)(b)=-~fo+oot(-l)ii L [g(_tA~kj) -g(-~)l ~t 
1=0 Aj,kj~O 

=g(O)~(_l)ii" In(k ). 2 ~ ~ I,kj 
i=O Aj,kj~O 

The theorem follows. 0 
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Theorem 2.25 states that, up to an overall multiplicative constant, the O-form 
part of the torsion form Tf(A' , hE) is the function which to a point b E B 
assigns the torsion of the chain complex (Eb' vb) [M, RSl]. Thus Tf(A', hE) 
merits being called a "higher" torsion. 
Remark 2.26. One can define a torsion form for a general flat superconnection 
A' of total degree 1 by using zeta-function regularization to control the small-t 
divergence in the analog of (2.74). The only difference in equation (2.75) is 
that fCVE , hE) would be replaced by the to -term in the Laurent expansion of 
f(A' , h;). For simplicity, in this section we have presented the details of the 
case when A' has only terms of degree 0 and 1 in the Grassmann variables of 
A( T* B) , as one does not need zeta-function regularization in this case. In Sec-
tion 3 we will deal with a superconnection, on an infinite-dimensional bundle, 
with terms of degree 0, 1, and 2 in the Grassmann variables of A(T* B). The 
degree-2 term of the superconnection, while apparently singular in the small-t 
limit, will in fact play the role of ensuring that the torsion form will again not 
need zeta-function regularization. 
(g) Duality. We make the assumptions of Sections 2(a)-2(e). Recall that E* 
has the Z-grading given by E*i = E i* . 
Theorem 2.27. Suppose that n = dim(E) is even and there is an isometric iso-
morphism a:E--+E* such that a(Ei)=E*(n-i) and A'*=aA'a- l . Then 

(2.82) f(C;, hE) = 0 
and 

II , En, 
(2.83) f (Ct ' h ) = 4 (rk(E+) - rk(E_))f (0). 

Proof. Equation (2.82) follows from Theorem 1.8(iii). Write D/ for the object 
of (2.29) constructed from A'* and hE' . Then as in the proof of Theorem 
1.8(ii), we have 

(2.84) Trs[N f' (Dt )] = Trs[N f' (-D/)] = Trs[N f' (D/)]. 
Using the even isomorphism a, this gives 
(2.85) Trs[N f' (Dt )] = TrJ(n - N)f' (Dt )]· 

Thus 
(2.86) 

The theorem now follows from Proposition 1.3 and Definition 2.8. 0 

Theorem 2.28. Assume that n is even and a is an isomorphism as in Theorem 
2.27. Then with the notation of Definition 2.15, Sf(A', hE) = O. 

Proof. From Theorem 2.27, fll(C;, hE) is independent of t, and so it equals 
its t --+ +00 limit, which from Theorem 2.13 is d(H(E, v))f'JO). Thus the 
integrand of Definition 2.15 vanishes. 0 
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Theorem 2.29. Assume that n is even and a is an isomorphism as in Theorem 
2.27. Then with the notation of Definition 2.20, Tf(A' , hE) = o. 
Proof. From Theorem 2.27, f"(C;, hE) is independent of t, and so it equals 
its t --+ +00 and t --+ 0 limits, which from Theorem 2.13 and Proposition 
2.18 are d(H(E, v))/JO) and d(E)f'dO) , respectively. Thus the integrand of 
Definition 2.20 vanishes. 0 

We now give a useful way to construct isomorphisms a. Suppose that there 
is a nondegenerate form (.,.) defined on EB7=o(Ei ~ En-i), linear in the first 
factor and antilinear in the second factor, such that for all e1 E Ei and e2 E 
E n- i , 

(2.87) 

Extend (., .) to a COO (B)-valued form on COO (B ; E) , and further to a form on 
o'(B; End(E)) by requiring that for e1 E Coo(Ei ) , e2 E COO(Ej ) , WI E O,k(B) , 
and w2 E O,I(B) , 

(2.88) 

Definition 2.30. We say that (.,.) is compatible with A' if for all e1 E 
COO(B; Ei) and e2 E COO(B; E j ) , 

I i I (2.89) d(e1 , e2) = (A e1 , e2) + (-I) (e1 , A e2). 

Definition 2.31. Given the A' -compatible form (., .) , let the isomorphism j: 
E --+ E* be given by 

(2.90) (j(e1) , e2) = (e1 , e2) for all e1 , e2 E E. 

Define a: E --+ E* by 

(2.91) a(e) = (_I)i(i+l)/2+ni j (e) for e E Ei. 

Extend a to an isomorphism a: o'(B; E) --+ o'(B; E*) by 

(2.92) a(w·e) = (_I)nkw.a(e). 

Theorem 2.32. We have 

(2.93) A'* = (_1)n aA' a-l. 

Proof. As in Section I(c), split A' as V E + S. Then it suffices for us to show 
that V E' = (_1)n aVEa-l and S* = (-ltaSa- 1 • 

Let U be a vector field on B. Then for e, e' E COO(B; E), 

(2.94) U(e, e' ) = U(j(e) , e' ) = (V;' j(e), e' ) + (j(e), V~e'). 
On the other hand, from (2.89), 

(2.95) I E I EI. E I . EI 
U(e, e) = (Vue, e) + (e, Vue) = (J(Vue) , e) + (j(e) , Vue). 
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/f' E /f' E /f' E Thus V' u j = jV' u. It follows that V' u a = aV' u ' and so V' a = (_I)n aV' . 
Consider the degree- k component of S. We may assume that S is a finite 

sum of the form S = E w . a, with a E Coo(B; End(Ei , E i+1- k » and w E 

nk(B). Given e E Coo(Ei) and e' E COO (En-i) , equation (2.89) implies that 

(2.96) 

Thus 
(2.97) 

Put 
(2.98) 

'"' ' i , o = L...,[( w . ae , e ) + ( -1) (e, w . ae )] 

'"' ' i+ik , = L...,[w·(ae,e)+(-I) w'(e,ae)] 

= E[w, (j(ae) , e') + (_l)i+ik w . (j(e) , ae')] 

= E[w, (j(ae) , e') + (_l)i+ik W· (71* j(e), e')]. 

o = E[ w . j (ae) + ( -1) i+ik w . 71* j (e)]. 

c(i) = (-1 )i(i+l)/2+ni. 

It is sufficient to check that for all e E Coo (Ei) , 
(2.99) S*a(e) = (-l)na(Se) , 
or 
(2.100) k(k+l)/2,", _* n '"' (-1) L...,w·a a(e) = (-1) L...,a(w·ae), 
or 
(2.101 ) ( 1 )k(k+l)/2 '"' -* () ( 1 )n+nk '"' () - L..., w . a a e = - L..., w . a ae , 
or 
(2.102) (-1 )k(k+l)/2 c(i) E w ·71* j(e) = (-1 )n+nk c(i + 1 - k) E w . j(ae). 

Equation (2.102) follows from (2.97) and (2.98). 0 

Definition 2.33. Given * E COO (B; End( E» , we say that (E, (', .) , *) defines 
a duality structure on E if 

1. * maps COO(B; Ei) isomorphically to COO(B; En-i). 
2. For all e E Coo(B; E i), *2(e) = (_l)i(n-i)e. 
3. (e1, e2)hE == (e1, *(e2» defines a Hermitian metric on E. 

Lemma 2.34. The map * is an isometry. 
Proof. For e1 , e2 E Coo(B; E i ), we have 

2 i(n-i) ( » (2.103) (*(e1), *(e2»)hE = (*(e1), * (e2» = (-1) (*(e1), e2) = (e2, * e1 
= (e2, e1)hE = (e1, e2)hE. 

The lemma follows. 0 

We say that (E, (', .) , *) is an A' -compatible duality structure on E if 
(', .) is compatible with A' and (E, (', .), *) is a duality structure on E. We 
assume that E has such a structure and we give E the corresponding Hermitian 
metric. 
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Theorem 2.35. The isomorphism a of Definition 2.31 is an isometry. 
Proof. It is enough to show that j is an isometry. For e E COO(B; E), we have 

I( '() ')12 I( ')12 1(' )12 
lIj(e)112-. = sup } e ,e = sup e, e = sup e, e 

hE e'f-O 1Ie'II~E e'f-O Ile'II~E e'f-O Ile'II~E 

_ I(e', * -1(e))hEI2 _ II -I ( )112 _ II 112 -sup , 2 - * e hE - ehE. 
e' f-O lie IlhE 

(2.104) 

The theorem follows. 0 

Thus if E has an A' -compatible duality structure and n is even, we have an 
isomorphism as in Theorem 2.27 and we can apply Theorems 2.28 and 2.29. 

Define v: E ~ E by 

(2.105) 
By (1.16) and (2.93), 

(2.106) A'* = (_1)n v -I A,v. 

Lemma 2.36. For e E COO(B; Ei), 

(2.107) v(e) = (_1)n(n-I)/2(_1)i(i+I)/2+ni * (e). 

Proof. Define c(i) as in (2.98). For all e' E COO(B; En-i), 

(2.108) (hE(e) , e') = (e, *(e')) = (*(e), *2(e')) = (~1)I(n-i)(*(e), e') 
= (_l)l(n-I)(j(*(e)) , e') = (_l)l(n-l)c(n - i)(a(*(e)) , e'), 

from which the lemma follows. 0 

Example 2.37. Let g' be a vector bundle over B with positive-definite Hermi-
tian metric hg and compatible Hermitian connection "g . Take E = EO EEl EI 
with EO = EI = g' . Define a superconnection A' by 

(2.109) A' = (0 0) A' = ("g 0) A' = (0 _("g)2) o I 0' I 0 "g, 2 0 0 ' 

the other terms in A' being zero. Then A' is flat. Define a form (', .) on E 
by saying that for e, f E g' , 
(2.110) 
(eo, 10) = 0, (eo, It) = -ihg(e, f), (e l , 10) = ihg(e, f), (e l , It) = 0, 

where the notation" ei " indicates that e is considered to be an element of Ei . 
One can check that (', .) is compatible with A' . Put 

(2.111) ( 0 i) * = -i 0 . 

Then (E, (', .), *) defines a duality structure. The Hermitian metric on E is 
given by 

(2.112) 
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One has 

(2.113) A'. _ (0 I) o - 0 0 ' 

the other terms in A'* being zero. Then 

(2.114) 

(2.115) 

and 
(2.116) 

Iff 2) vtI +.LY:L VI 
o 

= --Tr f -1 vtI + -.-1 [, (1 . ( (Vg")2)) 1 
2 2 2mvt 

= _! ~ _1 (ivt) -k /k+I) (ivt) Tr [(_ (V~ )2) k] 
2 t'o 4k k! 222m 

S (A', hE) = ! ~ _1 (rX) (ivt)-k /k+I) (ivt) dt) Tr [(_ (V~)2)k]. 
f 2t'o4k k! i , 2 2 t 2m 

We see that Sf(A' , hE) is closed and its de Rham cohomology class is given 
by a sum of Chern classes of ~ , with coefficients that depend on f. Example 
2.37 is a finite-dimensional model of the circle-bundle results of Section 4. 

III. "RIEMANN-RoCH-GROTHENDIECK" FOR FLAT VECTOR BUNDLES 
AND HIGHER ANALYTIC TORSION FORMS 

In this section we extend the finite-dimensional results of Sections 1 and 2 
to the case of fiber bundles, using techniques of local index theory. We prove 
Theorems 0.1 and 0.2 of the Introduction. 

The section is organized as follows. Given a smooth fiber bundle Z --+ M .!; 
B with closed fibers, a horizontal distribution TH M on the fiber bundle, and 
a flat vector bundle F on M, in (a) we describe a certain infinite-dimensional 
Z-graded vector bundle W on B. In (b) we show that exterior differentiation 
on Q(M; F) gives a flat superconnection of total degree 1 on W. In (c) we 
discuss the geometry of fiber bundles with a horizontal distribution and a verti-
cal Riemannian metric. In (d), we compute the adjoint superconnection (dM )* 
and show that !((dM )* +dM ) is essentially a Levi-Civita superconnection in the 
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sense of [B]. Following Section 2(c), in section (e) we construct a rescaled su-
perconnection Ct and an operator D t , and prove a Lichnerowicz-type formula 
for C;t - zD4t . In (f) we describe the flat connection on H(Z; Fl z ) . 

In (g) we show that for all t > 0, the Chern character II' Trs[exp( -C;)] E 

Q(B) equals rk(F)x(Z). In (h) we take J(a) = a exp(a2 ) and construct 
J(C;, hW) E Qodd(B). We calculate the t ---> 0 and t ---> +00 asymptotics 
of J(C~, hW) and prove Theorem 0.1. In (i) we prove a transgression for-
mula for the forms J( C; , h w). In U) we construct an analytic torsion form 
:T(TH M, gTZ , hF) and prove Theorem 0.2. We also compute the dependence 
of :T(TH M, gTZ , hF) on its arguments, and give duality and product theo-
rems. Finally, in (k) we relate the degree-O component of :T(TH M, gTZ, hF) 
to the Ray-Singer analytic torsion [RS1], and show that the results of U) imply 
the anomaly formula of Bismut-Zhang [BZ] concerning Ray-Singer metrics on 
the determinant line bundle. 

In the entire section we use the notation of Sections 1 and 2. 
(a) Smooth fiber bundles. Let Z ---> M ~ B be a smooth fiber bundle with 
connected closed fibers Zb = n-1(b) of dimension n. Let TZ be the vertical 
tangent bundle of the fiber bundle and let T* Z be its dual bundle. 

Let TH M be a horizontal distribution for the fiber bundle, meaning that 
TH M is a subbundle of T M such that 
(3.1) TM = TH M (JJ TZ. 

Let pTZ denote the projection from TM to TZ. We have 

(3.2) 
Then (3.1) and (3.2) give that as bundles of Z-graded algebras over M, 

(3.3) A(T* M) ':::!- n*(A(T* B)) 0 A(T*Z). 

Let F be a flat complex vector bundle on M and let "F denote its flat 
connection. Let W be the smooth infinite-dimensional Z-graded vector bundle 
over B whose fiber over bE B is COO(Zb; (A(T*Z) 0 F)l z ). That is, 

b 

Coo(B; W) ':::!- Coo(M; A(T*Z) 0F). 

Let QV (M; F) denote the subspace of Q(M; F) which is annihilated by in-
terior mUltiplication with horizontal vectors. Then there is an isomorphism 

(3.4) 

where the isomorphism is given by sending an element of QV (M; F) to its 
fiberwise restrictions. From (3.3), 

~ v (3.5) Q(M; F) ':::!- Q(B) 0 Q (M; F). 

Thus we have an isomorphism of Z-graded vector spaces 
(3.6) Q(M; F) ':::!- Q(B; W). 
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(b) A flat superconnection of total degree 1. The exterior differentiation operator 
d M , acting on Q( M; F) , has degree 1 and satisfies (dM ) 2 = O. Furthermore, 
for all 1 E C>O(B) and WE Q(M; F), 

M *1 * B * M (3.7) d «n ),w)=(n d 1)l\w+(n I)·d (w). 

Thus dM defines a flat superconnection of total degree 1 on W. We will 
compute the terms in the decomposition (2.1) of dM . 

Definition 3.1. Let dZ denote exteri(lr differentiation along fibers. We consider 
d Z to be an element of COO(B; Hom(W· , We+'». 

If V is a smooth vector field on B, let V H E Coo(M; TH M) be its 
horizontal lift, so that n* V H = V. As the flow generated by V H sends 
fibers to fibers diffeomorphically, the Lie differentiation operator LuH acts on 
COO(M; A(T*Z) i8l F), and one can easily verify that for 1 E COO(B) and 
a E COO(M; A(T* Z) i8l F), 

(3.8) L(fU)Ha = (n* I) . LuHa 

and 
(3.9) 

Definition 3.2. For S E COO (B; W) and V a vector field on B, put 

(3.10) 

From (3.8) and (3.9), VW is a connection on W which preserves the Z-
grading. 

If V, and V2 are vector fields on B, put 
TZ H H 00 (3.11) T(V" V2) = -P [V" V2 ] E C (M; TZ). 

One easily verifies that T gives a TZ-valued horizontal 2-form on M, which 
one calls the curvature of the fiber bundle. 
Definition 3.3. iT E n,2(B; Hom(W·, W·-'» is the 2-form on B which, to 
vector fields V and V on B, assigns the operation of interior multiplication 
by T(V, V) on W. 

The next proposition essentially appears in [BGV, Proposition 10.1]. 

Proposition 3.4. d M = d Z + VW + iT' 

Proof. We first show that the superconnection d Z + VW + iT is flat. We have 
to show: 

(3.12) 



FLAT VECTOR BUNDLES 325 

Equation (3.12.1) is trivially true. If V is a vector field on B, let {4>t}tER 
denote the flow generated by V H . As 4>; commutes with dZ , it follows that 
LVH commutes with dZ , which implies (3.12.2). If VI and V2 are vector 
fields on B then 

W2 
(V ) (VI' V2) = [LvH , LUH ] - L[V U)H 

I 2 I' 2 (3.13) 
= L[VH UH)_[V U)H = LpTZ[VH UH) = -LT(V U)· 

1 '2 l' 2 1 ' 2 l' 2 

However, 

(3.14) 

which gives (3.12.3). 
Let VB be a torsion-free connection on T B . If VI' V2 ' and V3 are vector 

fields on B then 

(V w iT + iT Vw)( VI ' V2 ' V3 ) 
'("7w. . '("7w. 

- v 1 -l v -I B - VI T(V2'V3) T(V2 ,V3) VI T(V UI V2 ,V3) 

- iT(V VB U) + cyclic permutations 
2' UI 3 

(3.15) = L Hi) - i ( )L H - i ( B ) VI T(V2 , V3 T V2 ' V3 VI TV UI V2 ' V3 

- iT(U VB U) + cyclic permutations 
2' VI 3 

=i H B B ) [VI ' T(V2 , V3))-T(V UI V2 ' V3)-T(V2 , V UI V3 

+ cyclic permutations. 
On the other hand, by the Jacobi identity, 

o = pTZ ([ V~ , [V!/ ' V!j]] + cyclic permutations) 

(3.16) =pTZ([V~, -T(V2' V3)+[V2 ' V3]H]) + cyclic permutations 

= -[V~, T(V2, V3)] - T(VI ' [V2 ' V3 ]) + cyclic permutations. 

Comparing (3.15) and (3.16) gives (3.12.4). Equation (3.12.5) is trivially true. 
Now as the statement of the proposition is local on M, we may assume 

without loss of generality that F is the trivial complex line bundle on M. 
Then letting the superconnection dZ + VW + iT act on n(B; W) ~ n(M) , we 
have (dz + VW + iT)2 = o. It is easy to check that dZ + VW + iT is a derivation 
of n(M) , and that for f E COO(M) , 

(3.17) 

The proposition follows from the standard axiomatic characterization of 
dM . 0 

(c) Vertical metrics on fiber bundles. Hereafter, we assume that we have a ver-
tical Riemannian metric on the fiber bundle Z ---t M ~ B . That is, we have a 
positive-definite metric gTZ on TZ. 
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As for notation, we let lower case Greek indices refer to horizontal directions, 
lower case italic indices refer to vertical directions and upper case italic indices 
refer to either. We let {TJ} denote a local basis of I-forms on M, with dual 
basis {eJ } of tangent vectors. We will always take {eJ~l to be an orthonormal 
framing of TZ . We will assume that the forms {TO} are pulled back from a 
local basis of I-forms on B, which we will also denote by {TO}. Exterior mul-
tiplication by a form </> will be denoted by </>/\ and interior multiplication by a 
vector v will be denoted by iv. Using the horizontal distribution and vertical 
Riemannian metric, we can identify vertical vectors and vertical I-forms. Ex-
terior multiplication by TJ will be denoted by E J and interior multiplication 

J 0 k kOOk 
by eJ will be denoted by I . We have that E J I + I E J = JJ • If X is a 
vertical vector (or I-form), put 
(3.18) c(X) = (X/\) - ix, C(X) = (X/\) + ix . 
Then for vertical vectors X and Y, we have 

c(X)c( Y) + c( Y)c(X) = - 2{X, Y) gTZ , 

(3.19) c(X)c(Y) + c(Y)c(X) = 2{X, Y)gTZ' 
c(X)c(Y) + c(Y)c(X) = O. 

Thus c and c generate two graded-commuting Clifford algebras. Put c i = c(e) 
and ci = c(e) . 

In calculations we will sometimes assume that B has a Riemannian metric 
TB d M h h R· . . ™ TZ * TB 1 h gh 11 g an as t e lemanman metnc g = g EB 7t g ,a t ou a 

final results will be independent of gTB. Let "TM denote the corresponding 
Levi-Civita connection on M and put "TZ = pTZ"TM , a connection on TZ. 
As shown in [B, Theorem 1.9], "TZ is independent of the choice of gTB . The 
restriction on "TZ to a fiber coincides with the Levi-Civita connection of the 
fiber. We will also denote by "TZ the extension to a connection on A(T* Z). 

We will use the Einstein summation convention freely, and write 

(3.20) 

As there is a vertical metric, we may raise and lower vertical indices freely. 
The fundamental geometric tensors of the fiber bundle are its curvature 

(3.11), a TZ-valued horizontal 2-form on M, and the second fundamental 
form of the fibers, a (TH M)* -valued vertical symmetric form on M. These 
tensors are incorporated into a tensor S defined in [B]; the relationship between 
the notation of [B] and the present notation is given by 

(3.21 ) 
(S(ej)!a, fp) = WPaj = -Wapj = -Wajp = W jap = Wpja = -Wjpa ' 

(S(e)ek , fa) = W akj = W ajk = -Wjak = -wkaj" 

The 2-form T of (3.11) is given in terms of the local framing by 
a p (3.22) T. = -w P T /\ T J a J 

Define a horizontal I-form k on M by 
(3.23) 



FLAT VECTOR BUNDLES 327 

the mean curvature I-form to the fibers. 
Let VTZ0F be the tensor product of V TZ and the flat connection V F . 

Proposition 3.5. As operators on COO(B; W), in terms of a local framing we 
have 

d Z = EiVTZ0F ej , 

(3.24) VW = E('(V~Z0F - Wo:ikEi l), 
. EO:EP[i IT = -W o:Pi . 

Proof. The first and third identities in (3.24) are clear. To prove the second 
identity, we use the fact that the difference between Lie differentiation and 
covariant differentiation, acting on n(M; F) , is given by 

TM0F J K (3.25) Le - Ve = wKIJE [ . 
I I 

Acting on nV (M; F) ~ Coo(B; W), we obtain 

(3.26) 

Projecting onto TZ then gives 

(3.27) 

from which the second identity in (3.24) follows. 0 

Remark 3.6. One can rederive Proposition 3.4 using local framings. Suppose 
that B has a Riemannian metric and that M has the induced Riemannian 
metric and Levi-Civita connection. Acting on nV(M; F) ~ COO(B; W), we 
have 

dM = EiVTM0F + EO:V™0F 
ej eO. 

- Ei(VTZ0F EO: l) EO:(VTZ0F + E P [k) - ej + W o:ki + ea W Pko: . 
(3.28) 

Using Proposition 3.5 and the symmetries of (3.21), Proposition 3.4 follows 
when both sides act on COO (B; W), and hence Proposition 3.4 is an equality of 
superconnections. Of course, the conclusion of Proposition 3.4 is independent 
of the choice of the vertical Riemannian metric on the fiber bundle or the 
Riemannian metric on B. 

(d) The adjoint superconnection and the Levi-Civita superconnection. In addition 
to the assumptions of 2(c), suppose that F is equipped with a Hermitian metric 
hF . Let V F ,u denote the unitary connection t(VF + (VF)*) on F and let 
V TZ0F ,u denote the connection on A(T*Z) 1&1 F obtained by ten so ring V TZ 

and VF,u. Let If! be short for w(F, hF) E nl(M; End(E)), defined as in 
(1.31). 

Let * be the fiberwise Hodge duality operator associated to gTZ, which 
we extend from an operator on COO (M; A( T* Z)) to an operator on 
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COO(M; A(T* Z) ® F) ~ COO(B; W). Then W acquires a Hermitian metric 
hW such that for s, s' E COO(B; W) and bE B, 

(3.29) 

Proposition 3.7. The adjoint of the superconnection dM is given by 

(3.30) 

where 

(3.31) 

is the fiberwise formal adjoint of d Z with respect to h W , 

(3.32) 

and T 1\ is exterior multiplication by the T of (3.11) . 
Proof. Let il be as in (1.15), let 1/ be as in (2.107), and let r: Q(M; F) --+ 

Q( M; F*) be given by r = 1/ ® hF . Let dM , F* be exterior differentiation 
on Q( M; r). Following the lines of the proof of (2.106), we have 

(3.33) 

One can easily check that 

(3.34) 

(_1)nr -1 E j r = -Ij , 

(_l)nr~IIjr = -Ej, 

(_1)nr- 1E el r = Eel, 

The proposition now follows from (3.24) and (3.34). 0 

Definition 3.8. Put 

(3.35) 
DZ = dZ + (dz ) * , 

VW,u = !(V w + (V w)*), 
w(W, hW) = (Vw)* _ Vw. 

Clearly D Z is a selfadjoint element of Coo(B; End(W)), VW,U is a Her-
mitian connection on W, and w(W, hW) is an element of Ql(B; End(W)). 
From (3.18) and Propositions 3.5 and 3.7, we obtain 

(3.36) Dz _ jrrTZ®F ,u I ~j 
- C v - IC 1fI· ej J 
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and 

VW,u = E"'(V~Z®F ,u _ tW"'jk(Ej l + Jk E j» 

= E"'(VTZ®F ,u + 1k ) 
eo 2 a ' 

w(W, hW) = E"'(W",jk( -Jj Ek + E j l) + 'If",) 
(3.37) 

E"'( j Ak ) = W"'jkC C + 'If", . 

(Equation (3.36) appears in [BZ, Proposition 4.12], which deals with the case 
when B is a point.) 

In particular, if U is a vector field on B, then 

(3.38) V~,u = V~~®F,U + tk(UH ). 

Following the formalism of Section 1(e), put 

(3.39) 

Proposition 3.9. We have 

(3.40) 

and 
(3.41 ) X __ 1Aj"TZ®F,u 1j +lE"'( jAk+ )_lA(T) 

- 2C Ve + 4 C 'lfj 2 W",jk C C 'If", 2C • 
J 

Proof. Equation (3.40) follows from Propositions 3.4 and 3.7. From (3.37) and 
Propositions 3.5 and 3.7, we obtain 

(3.42) 
t«dz )* _dz ) = t(-cjv~Z®F + t(c-c/'lfj ) 

(3.43) 

and 

(3.44) 

Equation (3.41) follows. 0 

Remark 3.10. For t > 0, put 

_ 1(_ Aj"TZ®F ,u + 1 j ) 
- 2 C ve 2 C 'lfj , 

J 

(3.45) E = ..fi!VTZ®F,u + Vw,u __ 1_ (T) 
t ej 4..fi c , 

the Levi-Civita superconnection associated to the vertical signature operator 
coupled to VF,u [B, Section 3]. By (3.40), 

(3 46) A E 1 Aj 
. = 1/4 - "4 C 'ifF 

Thus A is essentially the same as the Levi-Civita superconnection of parameter 
t = i ; it is precisely the same if hF is covariantly-constant with respect to VF . 
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(e) A Lichnerowicz-type formula. We now develop the formalism of Section 2(c) 
in the present infinite-dimensional setting. 

For t > 0 ,let htW be the Hermitian metric on W associated to the metrics 
gTZ It and hF on TZ and F, respectively. Let (dM ); be the adjoint of the 

. dM . h hW superconnectlon WIt respect to t . 

Let N be the number operator of W; it acts by multiplication by i on 
COO(M; Ai(T*Z) 0 F). As in (2.19), we have 

(3.47) 

As in (2.21), put 

(3.48) 

Then At is a superconnection and X t is an odd element of o'(B; End(W». 
As in Definition 2.10, put 

C' = tN/2 d M t-N/2 
t ' C;' = t-N/2(dM)*tN/2. 

(3.49) 

Then C;' is the adjoint of C; with respect to h W . 
As in (2.29), put 

(3.50) Ct = !(C;' + C;), D t = !(C;' - C;). 

Again, Ct is a superconnection and Dt is an odd element of o'(B; End(W». 
As in Section 2(c), for our purposes one can work equally well with either 
(At' Xt) or (Ct ' Dt ). To make the comparison easier with the local families 
index formalism of [B], we will use (Ct ' D t ). 

As in (1.33), we have 

(3.51) 

Let RF,u be the curvature of V'F,u. From (3.51), 

(3 2) RF, u I 2 
.5 = -4'" . 
Let V' TZ ®F , u '" be the covariant derivative of ",. Explicitly, 

(3 53) TZ®F, u TZ I 
. V'e "'k=V'e "'k+I["'J''''k]' J J 

Let R TZ denote the curvature of V'TZ and put 
TZ TZ (3.54) Rjk =(ej,R ek)gTZ. 

Define k TZ E 0,2(M; End(A(T* Z))) by 

(3.55) R~TZ _ I R TZ .j .k 
- 4 jk C C 

and 9f E 0,2(M; End(A(T*Z) 0 F» by 

(3.56) 
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Let R E COO(M) be the scalar curvature of the fibers. Let z be an auxiliary 
odd Grassmann variable which anticommutes with all of the odd Grassmann 
variables introduced previously. 

For t >0, put 

9 = VTZ®F,u _ _ 1_w . Eal_ ~w .EaEP _ _ 1_zcj 
ej ej 2Vi a;k 4t ap; 2Vi' (3.57) 

We now prove a crucial Lichnerowicz-type identity. 
Theorem 3.11. For t > 0, the following identity holds: 

2 (2 R) t j j C4t - zD4t = t -£g +"4 +"2C C !Jf(ej , e) 

+ Vtc j EO. !Jf(e j , eo.) + ~Ea E P !Jf(ea , ep) 

( 1 2 1 Aj Ak 1 j Ak TZ®F, u ) + t "4 'l'j + SC c ['I'j' 'I'd - "2c c (Vej 'l'k) 
(3.58) 

_ ViEaAj(VTz®F,U )_ zVi j _~Ea 
2 c ea 'l'j 2 c 'l'j 2· '1'0.' 

Proof. We first prove the statement when z = O. From (3.46), we have 

(3 59) C E Vi Aj 
• 4t = t - T C 'l'j' 

Then 

(3.60) C2 E2 t 2 t Aj Ak [ ] Vi [E Aj ] 
4t = t +"4 'l'j + SC C 'l'j' 'l'k - T t' C 'l'j , 

where the last term is a graded commutator. From [B, Theorem 3.6], 

2 ( 2 R) t j j E t = t -£g +"4 +"2C C !Jf(e j , e) 

+ Vic j EO. !Jf(e j , eo.) + ~Ea E P !Jf(ea ' e p). 
(3.61) 

A simple computation using (3.38) and (3.45) gives 

(3.62) [E Aj .]= I( jAk(VTZ®F,u )+EaAj(VTZ®F,u .) t' C '1'; v tC C ej 'l'k C ea '1'; . 

Combining (3.60), (3.61) and (3.62) gives the validity of (3.58) when z = O. 
As z2 = 0, it remains to show that the coefficients of z in the two sides of 

(3.58) are the same. That is, we must show that 

(3 63) D Vi(9 Aj Aj 9 A(VTZ)) zVi ~ z EO. . -z 4t = T j • zc + zc· j - ZC ej e j - 2 'l'j - "2 '1'0.' 

One computes that 

9 j • zcj + zcj . £gj - zc(V~z ej ) 
J 

_ (2 A}r7TZ ®F,U __ 1 EO. jAk _ ~ EaEPAj) - z C vej ViWajk C C 2t WaPj C. 

(3.64) 
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Comparing (3.64) with the expression in (3.41) for X = DI gives (3.63). 0 

Remark 3.12. If hF is covariantly-constant with respect to VF and z = 0, then 
(3.58) is a special case of [B, Theorem 3.5], in which the Dirac-type operator 
is taken to be the vertical signature operator coupled to V F , u • If B is a point 
and z = 0, then (3.58) is equivalent to [BZ, Theorem 4.13]. 

(f) The flat connection on the cohomology bundle of the fibers. 

Definition 3.13. Let H(Z; Fl z ) = ffi1~~(Z) Hi(Z; Fl z ) be the Z-graded vector 
bundle over B whose fiber over b E B is the cohomology H(Zb; Flz ) of the 

b 

complex (Wb' d Zb ) • 

As in Section 2(a), the flat superconnection dM induces a flat connection 
VH(Z;Flz) on H(Z; Fl z ) which preserves the Z-grading. The connection 
VH(Z ; Flz) does not depend on the choice of TH M , and is the canonical flat 
connection on H(Z; Fl z ) . 

Put V = (dz )* - d Z , an element of Coo(B; End(W)). For each bE B, Jb 
extends to a densely-defined skew-adjoint operator acting on the L 2 -completion 
of Wb • By Hodge theory, there is an isomorphism 

(3.65) H(Zb; Flz ) := Ker(Jb). 
b . 

Then there is an isomorphism of smooth Z-graded vector bundles on B: 

(3.66) H(Z; Flz ):= Ker(V). 

As a subbundle of W, Ker( V) inherits a Hermitian metric from the Hermi-
tian metric hW of (3.29). Let hH(Z;Flzl denote the Hermitian metric on 
H(Z; Fl z ) obtained by the isomorphism (3.66). 

Let pKer(V) be the orthogonal projection of W onto Ker( V). It is a smooth 
family of smoothing operators along the fibers. Let (VH(Z; Flz») * be the adjoint 
of VH(Z;Flz ) with respect to the Hermitian metric hH(Z;Flz). Put 

(3.67) VH(Z;Flz),u = !(VH(Z;Flz) + (VH(Z;Flzln, 

a Hermitian connection on H(Z; Fl z ) . 
Now pKer(V)VW and pKer(V)(Vw)* give connections on Ker(V). Using the 

isomorphism (3.66), they can be considered to be connections on H(Z; Fl z ). 
Similarly, pKer(V)w(W, hW)pKer(vl can be considered to be an element of 
nl(B; End(H(Z; Fl z ))). 
Proposition 3.14. The following identities hold: 

VH(Z ;Flz ) = pKer(V)VW , 

(3.68) (VH(Z ;Flzl)* = pKer(V\Vw )* , 
w(H(Z; Fl z )' hH(Z;Flzl) = pKer(V)w(W, hW)pKer(V). 

Proof. The proof is the same as that of Proposition 2.6. 0 
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(g) The Chern character snperconnection forms. Let E be a rank- N complex 
vector bundle on M , let V E be a connection on E and let RE be its curvature. 
If P is an ad-invariant polynomial on gl(N; C) , put 

(3.69) E (_RE) 
P(E, V ) = P 2in . 

Then P(E, V E ) is a closed form, whose de Rham cohomology class will be 
written as P(E). For A E gl(N; C) , put 

(3.70) ch(A) = Tr[exp(A)]. 

The corresponding genus is the Chern character. For N even, let Pf: so(N) --t 

IR denote the Pfaffian and put 

{ [RTZ] TZ Pf -- if dim(Z) is even, 
(3.71) e(TZ, V ) = 0 2n 

if dim(Z) is odd. 
Let o(TZ) be the orientation bundle of TZ, a flat real line bundle on M. 
Then e(TZ, VTZ) is an o(TZ)-valued closed form on M which represents 
the Euler class e(TZ) of TZ , lying in Jtlim(Z) (M; o( TZ)) . 

Let x(Z) E COO(B) be the locally constant integer-valued function on B 
which, to b E B, assigns the Euler characteristic of the fiber Zb. If dim(Z) is 
odd then x(Z) = o. 

By [B, Theorem 3.4], for any t > 0 the form tp TrJexp( _C/2 )] E nCB) is 
closed and its de Rham cohomology class coincides with the Chern character 
ch(H(Z; Fl z )) E H*(B; 1R). As H(Z; Fl z ) is a flat bundle on B, we have 
that ch(H(Z; Fl z )) = rk(F)x(Z). We now refine this statement to the level 
of differential forms. 

Theorem 3.1S. For any t > 0, 
2 (3.72) tp Trs[exp( -C/ )] = rk(F)x(Z). 

Proof. Without loss of generality, assume that B is connected. We first proceed 
as in the proof of Proposition 1.3. By (1.6), we have 

(3.73) 

Also 

%t Trs[exp(D:)] = Trs [[D/, a~/] eXP(D:)] 
[ aD/ 2 ] = Trs D/, at exp(Dt ) = O. 

(3.74) 

Suppose temporarily that dim(Z) is even and TZ is spin. Let S = S+ EB 
S_ be the corresponding vector bundle of (TZ, gTZ) spinors, a Z2-graded 
Hermitian vector bundle on M. Let VS = Vs+ EB Vs - be the Hermitian 
connection on S = S + EB S _ induced from V TZ . Let S* = S: EB S~ be the 
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S' S' S' dual bundle to S and let V = V + ED V - be the dual connection on S* . We 
have an isomorphism of Z2-graded vector bundles: 

A(T*Z) -::= S 0S*. 

Thus we may apply local index theory techniques to the family of vertical Dirac 
operators coupled to VS·®F,u. We could work equally well with the methods 
of [B, Section 4] or [BGV, Chapter 10]. For concreteness, we will follow the 
latter approach here. 

Consider a rescaling in which OJ ____ U- 1/ 20j , cj ____ U- 1/ 2E j - u1/ 2[j, ECl ____ 

U- 1/ 2 ECl and e! ____ cj . One finds from (3.58) that as u ---- 0, in adapted 
coordinates the rescaling of uC; approaches 

(3.75) - (OJ - ~RJkZxkr +9£'. 

Then local index theory techniques give 

(3.76) lim qJ Trs[exp( _C,2)] = f e(TZ, VTZ) ch(F , vF ,u). 
1->0 }z 

As all of the arguments are local on M, (3.76) is also true if TZ is not spin, 
or even orientable. 

From Proposition 1.3 we have 

(3.77) ch(F, VF ,u) = Tr [exp ( _~:'U) 1 = rk(F) , 

a locally constant function on M. Then 

fz e(TZ, VTz)ch(F, VF,u) = fz e(TZ, VTz)rk(F) 
(3.78) 

= rk(F) fz e(TZ , VTZ) = rk(F)x(Z). 

Equation (3.72) now follows from equations (3.73), (3.74), (3.76) and (3.78). 
If dim(Z) is odd, a similar argument can be worked out. In fact, by [BZ, 

Proposition 4.9], c(e1)··· c(en)c(e1)· •• c(en) is the only monomial in the c(eJ's 
and c(eJ 's whose supertrace on A(T* Z) 0 F is nonzero. The implication is 
that the local index techniques can also be used in the odd-dimensional case. 
As t ---- 0, we see that R is the only polynomial in the c(ei ) 's which survives. 
As it is even in the c(e) 's, it follows that 

(3.79) lim qJ Tr [exp( _C/2 )] = 0, 
1->00 S 

which is consistent with (3.72). 0 

(h) A "Riemann-Roch-Grothendieck" theorem for flat vector bundles. We con-
tinue the extension of the formalism of Section 2 to the infinite-dimensional 
setting. Put 

(3.80) 2 j(a) = a exp(a ), 
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a holomorphic real odd function. The inequalities (2.37) hold for f. We have 

(3.81) f'(a) = (1 + 2a2)exp(a\ 
By Definition 1.7, 

f(V F , hF) = (2in) 1/2 qJ Trs [f (~ (F , hF))] E n(M) , 

(3.82) f(VH(Z;Flz) , hH(Z;Flz») 

= (2in)I/2qJTrs [f(~(H(Z; FJz)' hH(Z;Flz»))] E nCB). 

We obtain from (3.41) and (3.50) that for any t > 0, the operator -D; is 
a fiberwise-elliptic differential operator. Then feD;) is a fiberwise trace class 
operator. Following the notation of Sections 1 and 2, put 

(3.83) f(C;, hW) = (2in)I/2qJTrJf(Dt )] E nCB). 

Theorem 3.16. For any t > 0, the form f( C; , h w) is real, odd and closed. Its 
de Rham cohomology class is independent of t, TH M ,gTZ and hF . As t ---+ 0, 
(3.84) 

f(C', hW) = { fze(TZ, VTz)f(VF , hF) +&(t) if dim(Z) is even, 
t &( 0) if dim(Z) is odd. 

As t ---+ +00 , 

(3.85) f(C;, hW) = f(VH(Z;Flz) , hH(Z ;Flz») + & (~) . 

Proof. Proceeding as in the proof of Proposition 1.3 and Theorem 1.8, it fol-
lows that f( C; , h w) is real, odd and closed. Proceeding as in the proof of 
Theorem 2.11, it follows that its de Rham cohomology class is independent of 
t. Proceeding as in the proof of Theorem 1.11, it follows that the de Rham 
cohomology class is independent of TH M, gTZ and hF . 

Let z be an odd Grassmann variable. Given a E nCB) ® C[z] , we can write 
a in the form 
(3.86) 
with ao' a l E n(B). Put 

(3.87) 
2 2 As Ct = -Dt ,we have 

f 2 Z (3.88) TrJ (Dt )] = Trs[exp( -Ct + zDt )] • 

For t > 0, let If/t E End(n(B) ® C[z)) be such that if a E nCB) ® C[z] has 
total degree k, then If/ta = t-k / 2 a. Then 

2 2 (3.89) Trs[exp( -Ct + zDt )] = If/t Trs[exp(t( -CI + zDI))]· 

By standard results on heat kernels, we know that Trs[exp(t(-C~ + zD I ))] has 
an asymptotic expansion in t as t ---+ 0 , which only contains integral powers of 
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t if dim(Z) is even, and only contains half-integral powers of t if dim(Z) is 
odd. From (3.88) and (3.89), we conclude that f(C:, hW) has an asymptotic 
expansion in t of the type just described. 

To calculate the t --+ 0 limit of Trs[exp( -Cit + zD4t )] , we use the Lich-
nerowicz formula of Theorem 3.11. First, assume that dim(Z) is even and 
TZ is spin. We proceed as in the proof of Theorem 3.15. Consider a rescaling 
. h' h 8 -1/28 c! -1/2E } 1/2]} EO -1/2E o ci ci d In w IC } --+ U } , --+ u - u , --+ u ,--+ an 
z --+ u -1/2 z. One finds from (3.58) that as u --+ 0, in adapted coordinates the 
rescaling of u( ci - zD 4) approaches 

(3.90) 

Then local index theory techniques give 

lim(2in)I/2 qJ Trslexp( -Ct2 + zDt)]z 
t-+O 

f TZ ~ [ ( F u Z F )] Z = }z e(TZ, V' )v2l1tqJTrs exp -R ' + '2 w(F, h) . 
(3.92) 

Putting together (3.52), (3.82), (3.88) and (3.92), we find 

(3.93) • I W 1 TZ F F hmf(Ct, h ) = e(TZ, V' )f(V' ,h ). 
t-+O Z 

As all of the arguments are local on M, (3.93) is true in full generality when 
dim(Z) is even. The first identity in (3.84) follows. 

When dim(Z) is odd, the same arguments as in the proof of Theorem 3.15 
give that 

(3.94) 

The second identity in (3.84) follows. 
To establish (3.85), we proceed as in the proof of Theorem 2.13. From 

Propositions 3.4 and 3.7 and Definition 3.8, we have 

(3.95) 

Put 

(3.96) 
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As in the proof of Theorem 2.13, we see that the spectra of D t and 4- V 
coincide. 

Let .:1 = .:1+ U.:1_ be the contour in c: 

.1.+ 

-1 o +1 

Then 

(3.97) 

To study the asymptotics of (3.96) as t --+ +00, we may proceed formally 
as in the proof of Theorem 2.13. A similar problem was considered in [BGV, 
Theorem 9.23] and [BerB, Section 5]. We find that as t --+ +00 , 

J2inrp Trsl(Dt)] 
(3.98) = J2inrp Trs [pKer(v) f (~ (W, hW)) pKer(V)] + (9 (~) . 

Equation (3.85) now follows from Proposition 3.14 and (3.98). 0 

For k a positive odd integer, recall the definition of ck(F) E Hk(M; JR.) 
from Section l(g). Similarly, define ck(H(Z; Fl z )) E Hk(B; JR.). 

Theorem 3.17. For any positive odd integer k , 

(3.99) ck(H(Z; Fl z )) = fz e(TZ)· ck(F) in Hk(B; JR.). 

In particular, if dim(Z) is odd or if F admits a Hermitian metric which is 
covariantly-constant with respect to V'F then 

(3.100) 
Proof. From Theorem 3.16, we have that as cohomology classes, 

(3.101) f(V'H(Z;Fl z ) , h"H(Z;Flzl) = fz e(TZ, V'Tz)f(V'F, hF). 

We have 

(3.102) 
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Equation (3.99) follows from matching terms of equal degree on the two sides 
of (3.101). 

If dim(Z) is odd then e(TZ) = O. If hF is covariantly-constant with 
respect to "F then ck(F) = O. In either case, (3.100) follows from (3.99). 0 

Remark 3.18. As mentioned in the Introduction, Theorem 3.17 is a COO -analog 
of the Riemann-Roch-Grothendieck theorem for holomorphic submersions. 
Remark 3.19. The composition of multiplication by the vertical Euler class and 
integration over the fiber is the Becker-Gottlieb transfer [BG] in rational coho-
mology. 
(i) A transgression formula. Recall that N is the number operator of 
keeping with the notation of Section 2(c), for t > 0 put 

(3.103) /\ , W [N,] f (Ct ' h ) = {OTrs 2 f (Dt ) • 

(3.104) 

W. In 

Theorem 3.20. For any t > 0, the form f/\ (C; , h w) is real and even. Moreover, 

(3.105) :tf(C;, hW) = +df/\(C;, hW). 

Proof. The proof is formally the same as that of Theorem 2.9. See also Remark 
2.12 for a simple direct proof. 0 

Put 
dim(Z) 

(3.106) X'(Z;F)= L (-l)iirk(Hi(Z;Fl z »' 
i=O 

an integer-valued locally constant function on B. 

Theorem 3.21. As t ----> 0, 

/\ ., W {t dim(Z) rk(F)x(Z) + &(t) 
(3.107) f (Ct ' h ) = &( Vi) 

As t ----> +00, 

(3.108) 

if dim(Z) is even, 
if dim(Z) is odd. 

Proof. Put Xi = M x lR: and jj = B x lR:. Define ir: Xi ----> jj by ir(x, s) = 
(1l(x) , s). Let p be the projection Xi ----> M and let p' be the projection 
Ai ----> lR:. 

Let Z be the fiber of ir. Then TZ = p*TZ. Let gTZ be the metric on 
TZ which restricts to p* gTZ Is on M x {s}. Put 

(3.109) 
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One can show that '\lTZ = p*'\lTZ + ds(ts - -is) and RTZ = p* RTZ. In 
particular, RTZ (ts ' .) = O. Clearly (p* F ,p*'\lF) is a flat vector bundle on 
M. 

Using the product structure on M, we can write 
M M 

d = d + dsos' (3.110) 
(dM)* = S -(N-dim(Z)/2) (dM + ds 0s)sN-dim(Z)/2. 

(The dim(Z)-term arises from the dependence of the volume form on s.) Then 

(3.111) (dM)* = (dM ); + ds (os + ~ (N _ din;(Z))). 

Following (3.39), put 

(3.112) iT = ~((dM)* - dM) = Xs + ~; (N _ din;(Z)) . 

Defining Dt as in (3.50), we have 

(3.113) D~ = -N/2D N/2 ds (N _ dim(Z)) 
t s stS + 2s 2' 

We deduce that 
~, tV w ds /\ W 

f( Ct ,h ) = f( Cst' h ) + - f (Cst' h ) s 

- di~;Z) ds rp TrJf' (Dst )]' 
(3.114) 

As in the proof of Theorem 3.15, the fact that f' (a) is an even function implies 
that rp TrJf' (Dt )] is independent of t, and the method of proof of (3.85) shows 
that it equals rk(F)x(Z)f' (0). Thus 

(3.115) 

~, tV w ds /\ W 
f( Ct ,h ) = f( Cst' h ) + - f (Cst' h ) s 

- ds di~;Z) rk(F)x(Z)f' (0). 

Equation (3.84) gives the t --+ 0 asymptotics of the left-hand side of (3.115). 
In particular, using the fact that RTZ (ts ' .) = 0 we see that the t --+ 0 limit of 
the left-hand side of (3.115) has no ds term. As f'(O) = 1, equation (3.107) 
follows from (3.84) and (3.115). 

Let a: Ii --+ B be projection onto the first factor. Letting N now be the 
number operator of H(Z; Fl z ) , we have 

H(Z; p* Flz) = a* H(Z; Fl z )' 

(3.116) 
w(H(Z; p* Flz)' hH(Z;P' Flz:)) 

= w(H(Z; Fl z ), hH(Z;Flz)) + ~s (N _ din;(Z)). 
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Thus 
(3.117) 
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f(VH(Z;pOFlt), hH(Z;pOFlt) 

= f(VH(Z ;Flz) , hH(Z ;Flz ) + ~: (X' (Z; F) - di~(Z) rk(F)X(Z») f' (0). 

Equation (3.85) gives the t -+ +00 asymptotics of the left-hand side of (3.115). 
In particular, the t -+ +00 limit equals the right-hand side of (3.117). Com-
paring the ds-terms, equation (3.108) follows. 0 

U) Higher analytic torsion forms. We now construct analytic torsion forms along 
the lines of Definition 2.20. 
Definition 3.22. The analytic torsion form :T(TH M, gTZ , hF) E nCB) is given 
by 
(3.118) 

:T(TH M TZ hF) , g , 

= _ 10+00 [f'''cC;, hW) _ x'(~; F) f'CO) 

_ (dim(Z) r!(F)X(Z) _ x' (~; F) ) f' (if) 1 ~t. 
It follows from Theorem 3.21 that the integrand of (3.118) is integrable on 

[0,00] . 
Theorem 3.23. Theform :T(TH M, gTZ, hF) is even and real. Moreover, 

d:T(TH M TZ hF) , g , 

(3.119) = fz e(TZ, VTz)f(VF , hF) _ f(VH(Z;Fl z ), hH(Z;Flz ). 

Proof. This follows from Theorems 3.16 and 3.20. 0 

We now describe how :T(TH M, gTZ , hF) depends on its arguments. Let 
(TH M, gTZ , hF) and (TIH M, g'TZ, h'F) be two triples. We will mark the 
objects associated to the second triple with a I • 

Let e(TZ, VTZ, V'TZ) E QM /QM,O be the secondary class associated to 
the Euler class. Its representatives are forms of degree dim(Z) - I such that 
(3.120) de(TZ, VTZ, V'TZ) = e(TZ, V'TZ) _ e(TZ, VTZ). 

If dim(Z) is odd, we take e(TZ, V TZ , V'TZ) to be zero. 

Theorem 3.24. The following identity holds in QB / QB ,0 : 

(3.121) 

:T(T'H M ITZ h'F) _ :T(TH M TZ hF) , g , , g , 

= fz e(TZ , V TZ , V'TZ)f(VF , hF) 

+ fz e(TZ, V'TZ)/(VF , hF, h'F) 

_/(VH(Z;Flz ), hH(Z;Flz ), h'H(Z;Flz). 
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Proof. First, a horizontal distribution on M is simply a splitting of the exact 
sequence 

0--+ TZ --+ TM --+ n*TB --+ O. 
As the space of splitting maps is affine, it follows that any pair of horizontal 
distributions can be connected by a smooth path of horizontal distributions. Let 
s E [0, 1] parametrize a smooth path {TsH M}SE[O, 1) such that T!: M = TH M 
and T~ M = T'H M. Similarly, let g;Z and h: be metrics on TZ and F, 
depending smoothly on s E [0, 1], which coincide with gTZ and hF at s = 0 , 
and with g'TZ and h'F at s = 1. Let fc: Mx[O, 1] --+ Bx[O, 1] be the obvious 
projection, with fiber Z. Let F be the lift of F to M x [0, 1]. 

Now TH(M x [0, 1])(.,s) = TsHM x IR defines a horizontal subbundle 
H - -T (M x [0, 1]) of T(M x [0, 1]), and TZ and Fare naturally equipped 

with metrics gTZ and hE . By Theorem 3.23, 
H TZ E d!T(T (M x [0,1]), g ,h) 

(3.122) 
= fz e( TZ , V TZ )f(VE , hE) - f(VH(Z ;£1'2) , hH(Z ;£1'2»). 

Let a: B x [0, 1] --+ B be projection onto the first factor. Then there is an 
equality of pairs 

(3.123) 

The restriction of !T(TH(Mx[O, 1]), gTZ, hE) to Bx{O} (resp. Bx{I}) co-
incides with !T(TH M, gTZ ,hF) (resp. !T(T'H M, g'TZ ,h'F )). Comparing 
the ds-terms of the two sides of equation (3.122) and integrating with respect 
to s yields equation (3.121). 0 

Corollary 3.25. If dim( Z) is odd or if hF is covariantly-constant with respect 
to V F then the class of !T (TH M , gTZ , hF) in QB / QB, 0 is independent of 
THM. 

If dim(Z) is odd and H(Z; Fl z ) = 0 then !T(TH M, gTZ ,hF) is a closed 
form whose de Rham cohomology class is independent of TH M, gTZ, and hF . 
Proof. This follows from Theorems 3.23 and 3.24. 0 

Theorem 3.26. If hF is covariantly-constant with respect to V F , dim( Z) is even 
and TZ is orientable then !T(TH M, gTZ , hF) = O. 
Proof. Define a form (', .) on W by 

(3.124) (SI' s2)(b) = r (SI (b) 1\ s2(b))hF lZb 
for all SI' S2 E COO(B; W) ~ COO(M; A(T*Z) 0 F). Let * be the fiber-
wise Hodge duality operator associated to gTZ. Then one can check that 
(W, (', .) , *) is a dM -compatible duality structure in the sense of Definition 
2.33. The proof is now formally the same as that of Theorem 2.29. 0 
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Remark 3.27. More generally, if dim(Z) is even, hF is arbitrary, and hF" is 
the induced Hermitian metric on the antiduaI bundle F* then 

(3.125) !T(TH M TZ hF) = _!T(TH M TZ hF") ,g , ,g,. 

Proposition 3.28. For i E {I, 2}, let Zj -+ M j 5. B be a fiber bundle over 
B with connected closed fibers, a horizonal distribution TH M j and a vertical 
Riemannian metric gTZ;. Let Fj be a flat complex vector bundle on Mj' with 
Hermitian metric hF; . Put Z = ZI X Z2' Let Z -+ M ~ B be the product fiber 
bundle, with the product horizontal distribution TH M and the product vertical 
Riemannian metric gTZ. If Pj: M -+ M j denotes the projection map, put 
F = P~ (PI) ® p; (F2) , with the Hermitian metric hF = P~ (h FI ) ® p; (h F2 ). Then 

H TZ F H TZ2 F2 !T(T M, g ,h) = rk(FI)x(ZI)!T(T M 2, g ,h) 
(3.126) 

Proof. We have 

(3.127) 

(3.128) 

+ rk(F2)x(Z2)!T(TH M I , gTZI, hF1). 

O(M; F) = O(MI ; FI) ®O(B) O(M2; F2), 
N = (NI ® 1) + (I ® N2) , 
222 

Dt = (DI t ® I) + (I ® D2 t)' , , 

The method of proof of Theorem 3.15 gives that for i E {I, 2}, 

TrJf(D j t)] = 0, 

Trs[f' (D j t)] = rk(Fj)x(Zj)' 
(3.129) 

The theorem now follows from Definition 3.22. 0 

(k) Relationship to the Ray-Singer torsion and the anomaly formula of Bismut-
Zhang. We now consider the a-form component !T[Ol(TH M, gTZ ,hF) E 
Coo(B) of the form !T(TH M, gTZ , hF). Recall that V = (d z )* - d Z . Let 
(V2)' denote the quotient action of V 2 on W / Ker( V). Clearly -( V 2)' is a 
positive operator. For SEC such that Re(s) > dimjZ) , put 

2 , -s (3.130) O(s) = - TrJN( -(V)) ]. 
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Then O(s) extends to a meromorphic function of SEC which is holomorphic 
near S = 0 [Se]. By definition, the Ray-Singer analytic torsion of the de Rham 
complex (W, d Z ) is ~~ (0) [RS1]. 
Theorem 3.29. We have 

(3.131) g-[OI(TH M, gTZ ,hF) = ~ ~~ (0). 

Proof. From [BZ, Theorem 7.10], we have that as t -> 0, 
(3.132) 

{ 
dim(Z) rk(F)x(Z) Af?() 'f d' (Z)' 

2 2 + (7 t 1 1m IS even, 
Tr [N exp(tV )] = c 

s -.fi + &( VI) if dim(Z) is odd, 

where we will not need the exact value of the constant c. Put g( a) = (1 + 2a )ea • 
We abbreviate dim(Z)r~(F)X(z) - x'(Z; F) by c' . Then 

1 [00 s-J t(V2 )' 
O(s) = - r(s) 10 t Trs[Ne ] dt 

(3.133) 
1 [00 s-J t(V2 ) I I = - r(s) 10 t (Trs[Ne ] - X (Z; F)) dt = -c + sA(s) , 

where the function A(s) is holomorphic around s = O. It follows that 

(3.134) ~ ~~ (0) = ~A(O). 
On the other hand, from Definition 3.22, 
(3.135) 
g-[OI(TH M TZ hF) ,g , 

= - 10+00 ( Trs [~ g C:2) ]_ X' (~; F) g(O) _ ~ g ( _~) ) ~t 

= _ [+00 (Tr [N g(tV2)] _ x'(Z; F) g(O) _ c' g(-t)) dt 10 s 2 2 2 t 

= - 10+00 (Trs [~ g(t(V2)/)] - ~g(-t)) ~t 
[+00 ( [N ((V2)'] d t(V2 )' c' ) dt = - 10 Trs 2"e + t dt TrslNe ] - 2: g (-t) t 

= _ ~I _1_ [+00 {-J (Trs [N /(V 2
)'] +t~ Trs[Ne t(V 2

)']_ c' g( -t)\ dt 
ds s=o r(s) 10 2 dt 2) 

= (!~I (1 - 2S)O(S)) - c' 
2 ds s=o 

1 
= 2: A(O). 

The theorem follows. 0 
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As in [BZ, Section 2a)], if A. is a complex line, let rl denote the dual line. 
If E is a complex vector space, put 

Put 

(3.136) 
dim(Z) . 

detH(Z; Fl z ) = ® (detHi(Z; Flz))(-I)' , 
i=O 

a complex line bundle on B. 
Identifying H(Z; Fl z ) with Ker(V), the line bundle detH(Z; Fl z ) inher-

its a metric Iidet H(Z; Fl z ) which is induced from the restriction of the L 2 -metric 
(3.29) to Ker(V). 

Definition 3.30 [BZ]. The Ray-Singer metric 1I11~H(z;Flz) on detH(Z; Fl z ) 
is given by 

(3.137) RS {180 } II IldetH(z ;Flz ) = I IdetH(z ;Flz ) exp 2 8s (0) . 

The Ray-Singer metric is constructed in analogy to the Quillen metric 
[Q2, BGS3] for holomorphic vector bundles on complex manifolds. One can 
check that the degree-I part of (3.119) is equivalent to a statement about 
detH(Z; Fl z )' namely 
(3.138) 

RS [I] {r TZ F F }[I] 
{J(detH(Z; Fl z )' 1IIIdetH(z;Flz)} = }z e(TZ ,V )J(V, h) . 

Similarly, if (gTZ , hF) and (g'TZ , h'F) are pairs of metrics on TZ and F 
then the degree-O part of (3.121) is equivalent to 

( IIII~~;H(Z;FIZ)) log -nRSn--''---=':' 
IIlIdetH(Z;Flz) 

(3.139) = {fzJ(VF , hF , h'F)e(TZ, VTZ) 

- fz J(VF , h'F )e( TZ , V TZ , V'TZ) rO] , 
which in turn is equivalent to the anomaly formula of [BZ, Theorem 4.7]. In 
fact, by considering a fiber bundle over lR with fiber Z , one sees that (3.138) 
and (3.139) are equivalent. 

IV. COMPACT STRUCTURE GROUPS 

In this section we use equivariant methods to compute the analytic torsion 
form of a fiber bundle with compact structure group. 
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The section is organized as follows. Given a fiberbundle M = P xG Z , with 
G compact, in (a) we give a way to construct flat complex vector bundles on M 
by equivariant means. In (b) we give the equivariant versions of the operators 
of Section 3. In (c) we compute the analytic torsion form of P xGZ and in (d) 
we give explicit formulas when M is a Circle bundle and F is a flat complex 
line bundle. 

(a) Equivariant flat vector bundles. Basic information on fiber bundles with com-
pact structure group can be found in [Be, Chapter 9]. With the assumptions of 
Section 3, suppose that the holonomy group of the bundle Z ~ M ~ B is a 
compact Lie group G. Then there is a principal G-bundle P and an action of 
G on Z such that M = P xG Z = (P x Z)/ "', where the equivalence relation 
'" is given by (p, z) '" (p . y-I , Y . z) for all PEP, z E Z, and y E G. 
Given a connection e on P, we obtain a horizontal distribution TH M on 
M. We can assume that Z has a G-invariant Riemannian metric gZ. This 
gives a vertical Riemannian metric gTZ on M. The fibers of M are then 
totally geodesic, and so the only relevant geometric tensor of the fiber bundle is 
the curvature tensor. 

We now give an equivariant construction of flat complex vector bundles on 
M. That is, we wish to extend flat vector bundles on Z equivariantly to 
flat vector bundles on M. It is clear that this cannot be done in complete 
generality, as not every flat vector bundle on Z extends topologically to a flat 
vector bundle on M. (For example, if Z = Sl , B = S2 and M = S3 then 
only a trivial flat vector bundle on Z will extend to a flat vector bundle on 
M .) Hence our construction will produce a certain class of flat vector bundles 
Fz on Z , namely those of Lemma 4.3, which do extend equivariantly to flat 
vector bundles F on M. 

Let r be the fundamental group of Z and let 1C z: Z ~ Z be the projection 
map from the universal cover of Z to Z . Define a group G' by 

(4.1) G' = {(y, ¢) E G x Diff(Z): 1Cz 0 ¢ = Y ·1CZ }. 

There are homomorphisms a: G' ~ G and p: G' ~ Diff( Z) given by a( (y, ¢)) 
= y and P((y, ¢)) = ¢, and by definition 1CZ O P(Y') = a(y')·1Cz forall y' E G'. 
Define an equivalence relation ~ on P x Z by 

(4.2) (p, i) ~ (p. (a(y,))-I , P(y')· i) 

for all PEP, i E Z, and y' E G' . Put P x G' Z = (P x Z)/ ~. 
Lemma 4.1. There is a diffeomorphism between P x G' Z and M. 

Proof. Define W: P x Z ~ P x Z by W(p, i) = (p, 1Cz (i)). Then 

W(p. (a(y'))-I , P(y')· i) = (p. (a(y,))-I , 1CZ (P(y')· i)) 
(4.3) 

= (p. (a(y,))-I , a(y'). 1Cz (i)) '" W(p, i). 

Thus W descends to a map g: P x G' Z ~ M. Clearly g is onto. To show 
that g is one-to-one, it is enough to show that if W(p, i) '" W(p' , z') then 
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(p, Z) ~ (p', z'). So suppose that g'(p, Z) rv g'(p', z'). Then there exists 
ayE G such that (p. y-I , Y • 7l(z)) = (p', 7l(z')). By the lifting theorem, 
there exists a ¢ E Diff(2) such that tlz 0 ¢ = y . tlz and ¢(z) = z'. Putting 
y' = (y, ¢), it follows that (p, z) ~ (p' , z'). Thus g is a bijection. One can 
check that it is a diffeomorphism. 0 

There is an exact sequence 

(4.4) I-l-G'-G-l 

and a corresponding homotopy exact sequence 

(4.5) 

Let P: 7l0 (G/) - GL(N, C) be a representation of 7l0(G/) and let 

(4.6) I I P 
PG': G - 7lo(G) - GL(N, C) 

be the corresponding representation of G' . 

Definition 4.2. The vector bundle F on M = P X G' 2 is given by F 
- N I I I - N (P X Z x e )jG ,where y E G acts on (p, z, v) E (P x Z x e ) by 

(4.7) y' . (p, z, v) = (p. (a(y'))-I , fi(y')· Z, PG'(Y')· v). 

Lemma 4.3. The restriction Fz of F to a fiber Z is isomorphic to the flat 
bundle on Z given by the representation 1 - 7l0 (G/) ~ GL(N, C). 

Proof. The projection g;: F - B is the map from (P x 2 X eN)jG' to PjG 
induced by (p, z, v) - p. Then for PEP, the preimage g;-I (pG) of pG E B 
is isomorphic to (pG x 2 x eN)jG' ~ (2 x eN)jl. 0 

Definition 4.4. With the notation of Definition 4.2, we say that G acts on 
(Z, Fz ), and write F = P xG Fz and (M, F) = P xG (Z, Fz ). 

Let d Z ' Fz be the exterior derivative on Q( Z ; F z) . Let g be the Lie algebra 
of G. Given x E g, let X be the corresponding vector field on Z , let c(X) = 
(X 1\) - i x and C(X) = (X 1\) + i x be the Clifford multiplications on Q(Z; Fz )' 
and let Lx be Lie differentiation in the X -direction on Q( Z ; Fz ) . 

Proposition 4.5. The vector bundle F is flat. 

Proof. For any x E g, its moment f.lFz(X) E COO(Z; End(Fz )) , relative to 
h fl . F·· b F () L dZ F . . dZ F teat connectlOn on z' IS gIven y f.l z x = x - ' z I X - I X ' z 

[BGV, Definition 7.5]. As the representation 1 - 7l0 (G/) ~ GL(N, C) factors 
through 7lo( G/) , it follows that the moment vanishes. As the curvature of Fz 
also vanishes, the proposition follows from [BGV, Lemma 7.37.2]. 0 

(b) Equivariant computational methods. We use the notation and results of 
[BGV, Chapter 7 and Section 10.7]. Let {xa} be a basis of the Lie algebra 
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g. Let 8 = 8 axa and Q = Qaxa be the connection and curvature forms on 
P, respectively. The space (Q(P) 181 Q(Z ; Fz ) )basic of basic forms is given by 
(4.8) 

(Q(P) 181 Q(Z; FZ»basic = {T E Q(P) 181 Q(Z; Fz ): 
r is G-invariant and for all x E g, i x T = O} , 

where the interior multiplication acts only on the first factor in Q(P) 181 
Q(Z;Fz )· 

There is an identification between Q(B; W) == Q(M; F) and (Q(P) 181 
Q(Z; FZ»basic' The operators dZ , V W , and iT of Section 3(b), when acting 
on Q(B; W), arise as the restrictions (to the basic subspace) of operators on 
Q(P) 181 Q(Z ; Fz ) given by 

(dz)'(rl ®r2) = (_l)deg T 'rl ®dZ ,Fzr2 , 
w, P a (V )(r l ®r2)=d r l ®r2+(8 I\r l )®Lx T2 , 

• 
(4.9) 

(iT)'(r l 181 r 2) = _(Qa 1\ r l ) 181 ix r 2 . • 
Suppose that the vector bundle Fz = Z X eN has a G' -invariant Hermitian 

metric hFz . This passes to a Hermitian metric hFz on Fz ' and a Hermitian 
metric hF on F. Define w(Fz' hFZ) E QI(Z, End(Fz » as in (1.31). 

Lemma 4.6. Theform w(F, hF) E QI(M; End(F» is the pushdown to M of 
the basic form 1181 w(Fz' hFZ) E QO(P) 181 QI(Z, Fz ). 

AF AF AF Proof. Define h z as in (1.15). Then h is induced from the operator 1181 h z 

on Q(P) 181 Q(Z , Fz ). As hFz is G-invariant, i/z commutes with Lx' Now 
as 

( 4.10) 

the lemma follows from Proposition 3.4 and (4.9). 0 

Let Clg] denote the space of complex-valued polynomial functions on the 
Lie algebra g. Recall that the space of G-equivariant differential forms on Z 
is defined to be 

(4.11 ) 

the G-invariant elements of Clg] 181 Q(Z). If fB is a G-vector bundle on Z 
then the space of G-equivariant fB-valued differential forms on Z is defined 
to be 

(4.12) G QG(Z; fB) = (Clg] 181 Q(Z; fB» . 
Writing an element a E QG(Z) as a(x), x E g, the equivariant Chern-Weil 
homomorphism <1>: QG(Z) ---+ (Q(P) 181 Q(Z»basic essentially consists of replac-
ing x by the curvature form Q. 

Proposition 4.7. As forms on B, 

(4.13) h e(TZ, VTz)f(V F , hF) = f(VH(Z;Flzl, hH(Z;Flzl) = O. 
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Proof. The result of the equivariant computation must be a polynomial in the 
curvature form Q. However, any such polynomial is an even form, whereas 
fze(TZ, VTz)fCVF , hF) and f(VH(Z;Flzl, hH(Z;Flzl) are odd forms. 0 

Let (dz , Fz)* be the formal adjoint to dZ ' Fz. Then the operators (dz ) * , 
(Vw)*, and TA of Proposition 3.7, acting on Q(B; W), are the restrictions 
of operators on Q(P) 0 Q(Z ,Fz ) given by 

(dz )*, (T1 0 T2) = (_I)degT1T1 0 (dZ ,Fz)*T2' 

(4.14) W *, w, (V ) (T 1 0 T2) = (V ) (TI 0 T2), 

(TA)'(T 1 0 T2) = _(Qa A T1) 0 (Xa A T2). 

Thus the operators Ct and Dt of (3.50) are the restrictions of operators Ct 

and Dt on Q(P)0Q(Z,Fz) which,whenactingon Q(Z,Fz),canbewritten 
as 

( 4.15) 
Ct = V;[(dZ,Fz)* +dZ,FZ]+(VW)' + 2~C(Q), 

Dt = V; [(dz ,FZ)* - dZ ,FZ] + 2~c(n). 

(c) Analytic torsion form of a fiber bundle with compact structure group. We will 
compute the supertraces of operators on Coo(B; W) by equivariant means. We 
first discuss the formalism in the finite-dimensional case. Let G be a compact 
Lie group and let P be a principal G-bundle. Let ./Y be a finite-dimensional 
Z2-graded G-module. Let W be the vector bundle P xG./Y. Let Q be an 
element of QG(pt.; End(./Y» = (C[g] 0 End('/y»G. Let us write Q as Q(x) , 
with x E g. There is a corresponding element Q' of Q(B; End(W» which is 
represented by the basic form Q(Q) E Q(P) 0 End(./Y). 

We can compute Trs[Q'] E Q(B) as follows. There is a supertrace 

( 4.16) 

where QG(pt.) = C[g]G. Composing with the Chern-Weil homomorphism 
<1>: QG(pt.) ~ Q(B) , one has 

(4.17) Trs[Q'] = <I>(Trs[Q]). 

In the infinite-dimensional case of interest to us, ./Y = Q(Z; Fz ). Our 
supertraces will now be formal power series in x, as opposed to polynomials 
in x. For x E g , put 

(4.18) Dt(x) = V; [(dz ,Fz)* - dZ ,FZ] + 2~C (2~1r) . 
Proposition 4.8. For all t> 0, the form f(C;, hW) E Q(B) vanishes. 

Proof. The same argument as in the proof of Proposition 4.7 applies. 0 
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Proposition 4.9. For all t > 0, the form f'(c;, hW) E Q.(B) is a linear combi-
nation of characteristic forms of the principal G-bundle P, with coefficients that 
only depend on (Z, Fz ' gZ, hFZ) and the G-action thereon. 
Proof. Define Q E Q.G(Pt. ; End(ff)) by 

N , ~ 
(4.19) Q(x) = "2 f (Dt(x)). 

Then f"(C;, hW) = Trs Q'. The above discussion of how to compute super-
traces equivariantly extends to the infinite-dimensional setting. The computa-
tion of the supertrace Trs[Q] E Q.G(Pt.) only involves (Z, Fz ' gZ, hFZ) and 
the G-action thereon. As f"(C;, hW) = cf>(TrJQ]) lies in the image of the 
Chern-Weil homomorphism, the proposition follows. 0 

If (M, F) = P xG (Z ,Fz ) has the horizontal distribution TH M induced 
from the connection e on P, the vertical Riemannian metric gTZ induced 
from the Riemannian metric gZ on Z , and the Hermitian metric hF induced 
from the Hermitian metric hFz on Fz , we will denote the analytic torsion 
form !T(TH M, gTZ, hF) E Q(B) by !T(P xG (Z, Fz )). 

Corollary 4.10. The analytic torsion form !T(P XG (Z, Fz )) E Q.(B) is a linear 
combination of characteristic forms of the principal G-bundle P, with coefficients 
that only depend on (Z, Fz ' gZ, hFZ) and the G-action thereon. 
Proof. This follows from Definition 3.22 and Proposition 4.8. 0 

Corollary 4.11. Let Z -+ M ~ B be a fiber bundle with compact structure 
group G. Let F be a flat bundle on M which is constructed as in Definition 
4.2. Suppose that dim(Z) is odd and H(Z; Fz ) = O. Let (TH M, gTZ, hF) 
be a triplet consisting of a horizontal distribution on M, vertical Riemannian 
metric on M and Hermitian metric on F. Then the de Rham cohomology class 
of !T(TH M, gTZ ,hF) is a linear combination of characteristic classes of the 
principal G-bundle P, with coefficients that only depend on the topological type 
of (Z ,Fz ) and the G-action thereon. 
Proof. This follows from Corollaries 3.25 and 4.10. 0 

(d) Circle bundles. Let P be a principal U(I)-bundle with connection e and 
curvature Q. Take Z to be a circle of length 21l, upon which U ( 1) acts by 
an r-fold covering, Irl > 1. (The case r = 0 can be easily handled separately.) 

I Put M = P X U(I) S 

Lemma 4.12. Defining G' as in (4.1), we have G' = (Zj rZ) x lR . 
Proof. Letting lR act on Z = lR by translation, we have 

, r it (4.20) G = {(w, t) E U(I) x lR: w = e }. 

There is an isomorphism i: G'-+(ZjrZ) xlR given by i(w, t)=(we- it/ r , t). 0 

The sequences (4.4) and (4.5) become 
(4.21) 1 -+ Z -+ (ZjrZ) x lR -+ U(I) -+ 1 
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and 

( 4.22) ... ---- Z ---- Z ---- Z j rZ ---- 0 ---- O. 

Let ,=1= 1 be an rth root of unity and let p: Zj rZ ---- C* be the corresponding 
representation of ZjrZ. Then Fst is the flat complex line bundle on the circle 
with holonomy group generated by , . As ,=1= 1 , we have that H(SI ; Fst) = O. 
Giv~ Fst the Hermitian metric induced from the standard Hermitian metric 
on Z xC. 

Proposition 4.13. The analytic torsion form !T (P x U(I) (Sl , Fst)) E Q(B) is the 
pushdown to B of the basic form on P given by 

( 4.23) !T =! ~ (2j + I)! ('" _1_ m) (rO)i 
2 ~ 22i U!)2 ~ mi Iml ' 4n2 

Proof. Write, = e2inb with rb E Z, b ~ Z. Defining DI(x) as in (4.18), we 
first compute the eigenvalues of n;(x), acting on 0 1 (Sl , Fst). Let /(s) ds E 

0 1 (2) ® C be a r-invariant I-form on lR, i.e., /(s + 2n) = e2inb /(s). Using the 
fact that iy E u( 1) is represented by the vector field ryos on lR, we obtain 

(4.24) ~2 . .,fi 1 r 
( 2 ) DI (ly)(l(S) ds) = (-20s + 2.,fi 2{n) /(s) ds. 

Then a basis of eigenvectors for D;(iy) is given by {ei(n+b)sds}:_oo' with 
eigenvalues {-Hn+b+fIit)2}:_00' Putting g(a) =(1 +2a)ea , we have 

(4.25) 1\ I W t ny 1 ( 00 (( . ) 2) ) f (CI,h )=-2:<1> n~oog -4 n+b+ 2int ' 

where <I> is the Chern-Weil homomorphism which replaces iy by O. 
By the Poisson summation formula, 

(4.26) 
00 2 ff-OO 22 L -i(n+b) n L -4n m /1 2inmb e = - e e. 

t n=-oo m=-oo 

Acting on both sides of (4.26) with 1 + 2tft gives 

(4.27) 
00 2 2 
'" (I ( b)2) _ 16 5/2t -3/2 '" 2 -4n m /1 2inmb ~ g -4 n + - n ~ me e. 
~-oo m~ 

Formally replacing the b of (4.27) by b + flit and using the fact that X(SI) = 
X' (Sl ; Fst) = 0, equation (3.118) becomes 
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g- = ~q, (100 16n5/2t-3/ 2 L m2e-(47t2m2_mriY)/te2i7tmb~t) 
o m~O 

_ 1"", (100 16 5/2 3/2 L 2 -(47t2m2-mriy)u 2i7tmb dU) 
- -'¥ n u m e e-

2 0 u 
m~O 

_1q,(16 5/2r(3)~ 2(4 22 . )-3/2 2i7tmb) - "2 n "2 ~ m n m - mny e 
m~O 

= !q, (~_1 (1 _ ~) -3/2 e2i7tmb) 
2 ~ Iml 4n2m 

m~O 

= !q, (~~ _1 (2j + I)! (~)J m) 
2 ko~lmI22Ju!)2 4n2m ( 

1 00 (2j+l)! ( 1 m) (rQ)J 0 
= "2 L 22J U,)2 L mJlml ( 4n2 

J=O • m~O 
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Let c1 (M) E H2(B; Z) be the first Chern class of a circle bundle M. Let-
ting p: H2(B; Z) -+ H2(B; 1R) be the change-of-coefficients map, P(c1 (M)) is 
represented by the basic form - ;f; on P. For ( E C such that 1(1 ::; 1 and 
( =f:. 1 , let Li J (0 be the polylogarithm function 

. 00 (m 
(4.29) LI·(O = L - .. J mJ 

m=1 

Corollary 4.14. Let M' be an oriented circle bundle over a connected base B. 
Let r be an integer greater than one and let p: Z/rZ -+ Aut(C) be a nontrivial 
representation which is generated by an rth root of unity (. Give M' the 
structure of a principal U ( 1 )-bundle and let M be the quotient of M' by the 
action of the Z/rZ subgroup of U(I). Let F be the flat complex line bundle 
M' x p Cover M. Let (TH M , gTSl , hF) be a triplet consisting of a horizontal 
distribution on M, a vertical Riemannian metric on TSI and a Hermitian 
metric on F. Then g-(TH M, gTSl , hF) is a closed form on B and its de 
Rham cohomology class [g-(TH M, gTSl , hF)] E H*(B; 1R) is given by 

[g-(THM, gTSl, hF)] 

= ~ (_I//2(2n)-J(2 j + I)! Re(Li. (O)(P(c (M)))J 
.~ 22J( .,)2 J+I 1 

J even J. (4.30) 

+ ~ (_I)(J-I)/2(2n)-J (2j+ I)! Im(Li. (())(P(C (M))( 
~ 22J( .,)2 J+I 1 

J odd J. 
Proof. This follows from Corollary 3.25 and Proposition 4.13. 0 
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ApPENDIX I 

(a) An axiomatic characterization of the torsion forms in the acyclic case. We 
make the same assumptions as in Section 2(f). In addition, we assume that the 
complex (E, v) is acyclic, i.e., 

(A1.l) H(E, v) = o. 
We will say that the flat Hermitian complex (E, A' ,hE) splits if there exist 

flat Hermitian vector bundles (F i , V Fi , hFi) such that (E, v) is the complex 

(A1.2) 0 --+ FO --+ FO EB FI --+ FI EB F2 --+ •.. --+ F n- 2 EB F n- I --+ F n- I --+ 0, 

and moreover, for I ~ i ~ n - I, Ei = F i- I EB Fi is equipped with the metric 
Ei Fi- 1 Fi 

h =h EBh. 

Theorem AI.I. (a) The following identity holds: 

(A1.3) dTf(A' , hE) = f(V E , hE). 

(b) If B' is a smooth manifold and a: B' --+ B is a smooth map, then 
*' *E * ,E (AlA) Tf(a A , a h ) = a Tf(A , h ). 

(c) If (E, A' , hE) splits, then Tf(A', hE) = O. 
(d) Tf(A', hE) depends smoothly on A' and hE. 

Proof. Equation (A1.3) follows from Theorem 2.22, and equation (AlA) fol-
lows from Remark 2.23. If E splits then we have 

(A1.5) E [w(E,h ),v]=O, E * [w(E, h ), v ] = 0, vv*+v*v=1. 

From (2.21), we have 

(A1.6) 

From (A1.5) and (A1.6) we obtain 

(A1.7) X t
2 = i(w2(E, hE) - t). 

As f' (a) is an even function, there is a holomorphic function g(a) such that 
f' (a) = g(a2 ). Then 

(A1.8) 

Recalling the definition of d(E) from (2.67), Proposition 1.3 and (A1.8) imply 

(A1.9) 
( t) f'(f.:Li) 

/'(A', h~) = d(E) g ;4 = d(E) / . 
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Part (c) of the theorem now follows from putting (A1.9) into Definition 2.20. 
Finally, Tf(A', hE) depends smoothly on A' and hE by construction, giving 

part (d) of the theorem. 0 

Now we imitate [BGSI, Theorem 1.29), where an axiomatic characterization 
of Bott-Chern classes was given. 

Theorem Al.2. Given a manifold B, let T;(A', hE) be a real even form on B 
verifying the conditions (a)-(d) of Theorem A1.1. Then 

(A1.IO) T;(A', hE) = Tf(A', hE) in QB jQB,O. 

Proof. Suppose first that n = 2. In this case, the complex (E, v) can be 
written in the form 

o ---- L ---- M ---- M j L ---- 0, v v 

with v being the obvious injection or projection map. Let V L , V M , and V M/L 
be the flat connections on L, M and Mj L, respectively. 

As smooth vector bundles, we have an isomorphism 

(A1.II) M=LffiMjL, 

and L is a flat subbundle of M. Let o.VM be the sum connection °VM = 
VL ffi VM / L . Put 

(A1.12) MOM I a = V - V E Q (B; Hom(MjL, L)). 

In matrix form, we can write 

(1' 
0 0 

o ) (A1.13) V M = (~L V~/L ) V E = V L a 0 
0 V M/L o . 
0 0 V M/L 

The flatness of V M implies 

(AI.I4) 'ML 'MM/L 0 v a+av =, 
i.e., a is covariantly-constant. 

The idea of the proof will be to assume first that M has a direct sum Her-
mitian metric, and then effectively deform a linearly to zero, keeping track of 
how T; changes during the deformation process. When a vanishes, we are 
in the split situation. Using the hypotheses on T;, we will derive an explicit 
formula for T;, which will prove the theorem. One must only be careful to 
check that all of the equations make sense as one approaches the split situation. 

More precisely, let hL and hM/L be Hermitian metrics on Land Mj L, 
respectively. In what follows, the parameter s will always lie in (0, 1]. Let 
h~ be the Hermitian metric on M given by 

(A1.15) 
hM/L 

h: = hL ffi --. 
s 
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Let h; = ffi;=o h;i be the Hermitian metric on E which coincides with hL on 
E o . h hM EI d . h hM/L 2 I = L , WIt s on = M an Wit -s- on E = M L. 

By assumption, T~ satisfies conditions (a) and (b) of Theorem ALl, and 
proceeding as in the proof of Theorem 2.17, we find 

(Al.16) T~(A', h~) - T~(A', h;) = lC\lE, h;, h~) in QB IQB,O. 

Let P E End(M) be such that p = 0 on Land p = [MIL on MIL. Let 
q E End(E) be such that q = 0 on EO = L, q = p on EI = M, and q = [MIL 

on E2 = MIL. In matrix form, 

( ~ ~ ~ ~) 
q = 0 0 [MIL 0 . 

o 0 0 [MIL 

(Al.17) 

Let "L* (resp. "MIL*) be the adjoint of "L (resp. "MIL) with respect 
to hL (resp. hMIL ). Then O"M* = "L* EB "MIL* is the adjoint of O"M with 
respect to h~ for any S E (0, 1]. Let ,,~* (resp. ,,;*) be the adjoint of "M 

(resp. "E) with respect to h~ (resp. h;). Let a* be the adjoint of a with 
respect to h~ . Then one can check that 

(Al.IS) 

Put 

(A1.19) 

XL = i("L* _ "L) , 

XMIL = i("Mlh _ "MIL), 

X' = tco"M* _ O"M) , 

Xs = i(";* - "E). 
Using (A1.12) and (Al.IS), we have 

(Al.20) , (XL 0) X = 0 XMIL , 

By Definition 1.12, we have 

~ E E E 11 [q, ] du (Al.21) 1(", hs ' hi ) = - s qJ Trs 2/ (Xu) Ii 
From Proposition l.3, (Al.17), and (Al.20), we obtain 

o 
o ) o 
o . 

XMIL 

[q,] [P , (, 1 *)] 1'(0) (Al.22) Trs 2/ (Xs) = - Tr 2/ X + "2(sa - a) + rk(MI L)-2-' 
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We have the identity 

(A1.23) s -p/2 ( X' + ~(sa * - a)) ?/2 = X' + ,;; (a* - a). 

Using (A1.23), equation (A1.22) becomes 

(A1.24) Trs[~f'(Xs)] =-Tr[~f'(X'+ ';;(a*-a))] +rk(M/L)f'iO). 

Then as s --> 0 , 

(A1.25) 

Thus as s --> 0 , 

(A1.26) - qJTr -f'eX) --->- qJTr -f'(X)-. 11 [q ] du 11 [q ] du 
s S2 u u ° S2 U u 

One computes that 

(A1.27) s -q/2 A' sq/2 = V + (VL EB (oVM + Via) EB VM/L). 

Put 

(A1.28) A' _ (",L O",M ",M/L) o-v+ v EB v EBv • 

From (A1.27), we see that as s --> 0, 

(A1.29) 

Tautologically, 

(A1.30) T~(A', h:) = T~(s-q/2A'sq/2, hE). 

As T~ satisfies condition (d) of Theorem ALl, equations (A1.29) and (A1.30) 
give that as s --> 0 , 

(A1.31) T' (A' hE) T' (A' hE) J 's --> J 0' . 

Clearly (E, A~, hE) splits, and so by condition (c) of Theorem A1.1, 
I I E 

(A1.32) TJ(Ao' h ) = O. 

Taking s --> 0 in (A1.16) and using (A1.21), (A1.26), (A1.31) and (A1.32), 
we obtain 

(A1.33) 

The class of T~(A', h~) in QB /QB,O is uniquely determined by (A1.33). Equa-
tion (A 1.10) follows when hE = h~. If hE is an arbitrary metric on the 
Z-graded vector bundle E, then by using conditions (a), (b) and (c) and pro-
ceeding as in the proof of Theorem 2.17, we get the validity of (A 1.1 0) in full 
generality. 
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We have now proved the theorem in the case n = 2. The proof for arbitrary 
n follows along similar lines, and is left to the reader. 0 

Put 
O~i~n, 

(Al.34) n . 
detE = ®(det(Ei))(-I)'. 

i=O 

As (E, v) is acyclic, detE has a canonical nonzero section T(v) [BGS1, 
Section la)]. To construct T(v), take So E detEO, So =I- O. Take SI E 
AdimE'-dimEoEI such that VSO"SI =I- 0 in AmaxEI , S2 E AdimE2-dimE'+dimEoE2 

such that vSI "S2 =I- 0 in Amax E2 , etc. Put 
-I (-I)" (Al.35) T(v)=so®(vso"sl) ®(vsI "s2)®·,·®(vsn_l "sn) . 

Then T(v) is independent of the choices of the si's. Moreover, T(v) is a flat 
section of det E . 

Let hE be a Hermitian metric on the Z-graded vector bundle E . Let 111I~:tE 
be the induced metric on detE . Let (Tf(A', hE))[O] be the degree-O component 
of Tf(A', hE). 

Theorem Al.3. The following identity holds: 
, E [0]' hE (Al.36) (Tf(A , h)) = f (0) Log(IIT(v)lldetE ). 

Proof. From (Al.3), we have 

(Al.37) 

As T(v) is a flat section of detE , 
hE E 

(A1.38) d(LogClIT(v)lIdetE )) = ! Trs[w(E, h)]. 

Moreover, one easily verifies that if (E, A' , hE) splits then 
hE 

(A1.39) Log(IIT(v)lIdetE ) = O. 
The theorem now follows from Theorem Al.2 and (Al.37)-(A1.39). 0 

(b) Analytic torsion forms of double complexes. We make the same assumptions 
as in Section 2(f). 

Let (E{ , v , v\~i~n. O~j~n' be a flat double complex of complex vector bun-
dles on B. Then v maps E: into E:+I and v' maps E. into E:+ I . Moreover 

,. I h . . ( ')2 0 V + V IS a so a c am map, 1.e., v + v = . 
j E E J 

Put E = EBO<i<n O«n' Ei . Let V' = EBO<i<n O«n' V' ' be the flat con-_ _ • _J _ _ _ • _J_ 
nection on E. Put 

(Al.40) 

, E 
A. = V' + v, 
A,· r;E , 

= v +v, 
,. E , 

A. = V' + v + v . 
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Then A: (resp. A'·) induces corresponding flat superconnections A~ (resp. 
A'j ) E iT'. E j ( E j iT'. i) hE iT'. hEi on i = WO'5.j'5.n' i resp. = WO'5.i'5.n Ei . Let = WO'5.i'5.n, O'5.j'5.n' • 
be a Hermitian metric on E . 

We assume that the (E;, v) complexes and the (E;, v') complexes are 
acyclic. Then (E:, v + v') is also acyclic. Put 

(Al.4l) f(E:, hE) = L (_l)i+j f(VE;, hE;). 
O<i<n 
O~j~n' 

Then there is a form Tf(A:·, hE) associated to the flat Hermitian complex 
I hE (E, v + v, ) which satisfies 

(A1.42) 

For 0 :::; i :::; n (resp. 0:::; j :::; n'), put hE; = EBO'5.j'5.n' hEf (resp. hEi 
Ei I E Ij Ei 

EB09'5.n h '). As before, we can construct the forms Tf(Ai' h .), Tf(A ,h ). 
Now we imitate [BGS 1, Theorem 1.20]. 

Theorem AI.4. The following identities hold: 
n 

Tf(A:· , hE) = L( -l)iTf(A~, hE;) in QB /QB,O , 

(A1.43) 
i=O , 
n . 

Tf(A:·, hE) = L(-l)jTf(A'j , hE}) in QB/QB,O. 
j=O 

Proof. We could use Theorem A1.l to prove the theorem. Instead, we will give 
a direct proof. Let N H E End(E) act on Ef by multiplication by j. For 
s > 0, set 

h; = E9 sj hE; . 
O<i<n 
O~j~n' 

From Definition 1.12 and Theorem 2.24, we have 

(A1.44) 

Then from Proposition 1.3, we have 

(Al.45) 

As the complexes (E;, v') are acyclic, we have 

(A1.46) 

From (A1.44) and (A1.46), we deduce that for s > 0, 

(Al.4?) Tf(A:·, h;) = Tf(A:·, hE) in QB /QB,O. 
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Let A"· be the adjoint of A'.· , with respect to hS
E _ Put .,S 

(AlAS) 

Let v* and v '* be the adjoints of v and v' with respect to hE. Then 

(AlA9) I E r;:; I Cs = V + v sv + v , " E r;:; * 1* Cs = V + v sv + v . 

For any s > 0, we have 

(A1.50) 

Also, C: is well defined for s = O. Using the fact that the (E~, v') complexes 
are acyclic, we find that as s ---+ 0, 

(A1.51) 

Put 

(A1.52) 

Let Di be the restriction of D to Ei . Then 

(AI.53) 

Using Proposition 1.3, (A1.53), and the acyclicity of (E~, v') , we obtain 

(A1.54) qJ Trs [~H f' (D)] = O. 

From (A1.54), we deduce that 

(A1.55) 
I n . 

Tj(C~, hE) = 2)-I)iTj (A'i , hEI ). 
i=O 

The second equality in (A1.43) follows from (Al.47), (A1.50), (A1.51) and 
(AI.55). The first equality follows by exchanging the roles of v and v'. 0 

ApPENDIX II. REIDEMEISTER TORSION AND HIGHER REIDEMEISTER TORSION 

In this appendix we review some facts about the Reidemeister torsion of 
Reidemeister and Franz and the higher Reidemeister torsion of Igusa and Klein. 
The results of this appendix are independent of the rest of the paper. 

The Reidemeister torsion is a classical invariant of non-simply-connected 
manifolds (see [M] for a survey of Whitehead and Reidemeister torsions). Let 
Z be a compact manifold with fundamental group 1C. Let IF be a field. Let 
K J (IF) be the first algebraic K-group of IF; it is isomorphic to IF* = IF - {O}. 
Let p: 1C ---+ GL(N, IF) be a representation. Suppose that H*(Z; Ep), the 
cohomology of Z defined with the local system E p induced from p, vanishes. 
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By means of a cellular decomposition of Z , one can define the Reidemeister 
torsion T(Z, p), an element of 

(A2.l) Whi OF) = Cokemel (± 1 x [n ~ n] ~ Kl OIn) , 
where a(±l x [g]) = ± det(p(g)). One can show that T(Z, p) is a simple-
homotopy invariant of Z , and hence is, in particular, a homeomorphism in-
variant. 

Suppose that IF has a "conjugation" automorphism of order two, and de-
fine the unitary group U(N, IF) accordingly. Suppose that p takes its value 
in U (N , IF). If (J: IF --+ C is a conjugation-preserving homomorphism then 
the map J: IF*(~ Kl(IF)) --+ JR given by J(f) = Inl(J (f) I extends to a map 
~: Whi(IF) --+ JR. Then ~(T(Z, p)) E JR is a topological invariant of Z. An 
analytic version of this real invariant, the analytic torsion, was proposed by Ray 
and Singer [RS1]. The equality between the analytic torsion and ~(T(Z, p)) 
was proven independently by Cheeger [C] and Muller [Mul]. This equality was 
extended to representations with unitary determinant in [Mu2]. See [BZ] for the 
relationship between analytic and combinatorial torsions in the case of general 
representations. 

The Whitehead and Reidemeister torsions are intimately related to the first 
algebraic K-groups of Zn and IF, respectively. J. Wagoner conjectured that 
they can be extended to invariants related to higher algebraic K -groups [WI. 
We will only discuss the extension of the Reidemeister torsion. 

Let us first recall Quillen's definition of higher algebraic K-groups [Q3], when 
applied to IF. Let GL(IF) denote the direct limit of the groups GL(N, IF) 
with respect to inclusion. Let BGL(IF),s be the corresponding classifying space 
(where the J subscript indicates the discrete topology on GL(IF)) and let 
BGL(IF); be the result of applying Quillen's plus construction to BGL(IF),s. 
Put 

(A2.2) K(IF) = Z x BGL(IF);. 

Then by definition, Ki(IF) = ni(K(IF)) . 
There is a homomorphism a: Kk+l (IF) --+ K k+1 (e) induced by (J. Let z be 

a primitive element in degree (k+ 1) of H;(GL(e); JR), the cohomology of the 
complex of Eilenberg-MacLane group cochains which are continuous in their 
entries. By forgetting the continuity of its defining group cocycle, z maps to 
an element z of the group cohomology H k+1 (GL(e); JR). On the other hand, 
the Hurewicz homomorphism gives a map 

(A2.3) K k+1 (e) = nk+1 (BGL(e);) --+ Hk+1 (BGL(e);; JR) 
~ Hk+l (BGL(e),s; JR) ~ H k+1 (GL(e); JR). 

If k is even then by pairing the image of the Hurewicz homomorphism with 
z, we obtain a nonzero map from K k+1 (e) to JR, the Borel regulator [Bo]. Let 
~: Kk+l (IF) --+ JR denote the composition of a and the Borel regulator. 

Now suppose that one has a fiber bundle Z --+ M --+ Sk with compact 
connected fiber Z . Let n' be the fundamental group of M and suppose that 
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one has a representation p': n' --+ U(N, IF) such that the cohomology groups 
of the fibers, defined using the restriction of p', vanish. To such a bundle 
and representation, Wagoner proposed to assign a higher Reidemeister torsion 
!T(M, p'), an element of a certain quotient K~+l (IF) of Kk+1 (IF). If k is 
even, then 11 descends to a map ~: K~+ 1 (IF) --+ 1R, and one would obtain a real 
invariant ~(!T(M, p')) of the fiber bundle. The standard Reidemeister would 
be recovered as the special case k = 0, with SO being a point, 11 = t5 and 
~=~. 

One application envisaged in [W] was the detection of homotopy groups of 
diffeomorphism groups. Let (Z, p) be acyclic as above and let Diff(Z, p) de-
note the group of diffeomorphisms of Z which fix a basepoint and induce 
the identity on 1C / Ker(p). Given a basepoint-preserving map p: Sk-l --+ 

Diff( Z , p) , use the clutching construction to form a fiber bundle Z --+ M --+ Sk 
and extend p to a representation p' of n' . Then one would obtain an invari-
ant of the class of p in 1Ck _ 1 (Diff(Z ,p)) by taking the higher Reidemeister 
torsion of the fiber bundle. 

The construction of the higher Reidemeister torsion of [I, K] uses a "White-
head space". Let Mn(n') be the group of n x n matrices with entries consisting 
of zeros and of elements of n' , with one element of 1C' in each row and each 
column. The direct limit under inclusion is denoted M(1C'). A Barratt-Priddy-
type theorem states 
(A2.4) 

where Q+(Bn') = noo1:00(Bn~) is the application of the stable homotopy func-
tor to the disjoint union of Bn' and a basepoint [Lo]. 

The representation p' gives a homomorphism from Mn(n') to GL(nN, IF), 
and hence a map 
(A2.5) p: Z x BM(n't --+ K(IF). 
The homotopy fiber of p has a delooping, which is called the Whitehead space 
WhP' (IF) . Thus there is a homotopy fibration 

(A2.6) 

By definition, the higher Whitehead group is Wh( (IF) = ni(WhP' (IF)). One sees 
from the homotopy exact sequence of (A2.6) that the definition of Wh( (IF) 
coincides with that of (A2.1). 

Given a fiber bundle Z --+ M ~ B with compact connected fiber Z and 
a representation p': n' --+ U(N, IF) of the fundamental group of M which is 
acyclic on the fibers, Igusa and Klein use parametrized Morse theory to construct 
a homotopy class r E [B, nWhP' (IF)] of maps from B to nWhP' (IF). In the 
special case when B is a point, r E no(nWhP' (IF)) ~ Wh( (IF) coincides with 
the Reidemeister torsion T(Z, p') 

The Becker-Gottlieb transfer of the fiber bundle is a homotopy class of maps 
from B to Q, (M) [BG]. The classifying map M --+ Bn' induces a map 

T 
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Q+(M) --+ Q+(Bn'). It is shown that the compositions B --+ Q+(M) --+ Q+(Bn') 
and B -.:. nWhP' (IF) --+ Q+(Bn') coincide up to homotopy. Thus if the trans-
fer of the fiber bundle is trivial then • can be lifted to a homotopy class 
t E [SB, K(lF)] of maps from the suspension of B to K(lF). The Borel regu-
lator, thought of as an element of Hk+'(K(lF); JR), pulls back under f to give 
an element of Hk (B ; JR) which is independent of the choice of lift of •. This 
is the higher real Reidemeister torsion. In the case k = 0 , one recovers the real 
Reidemeister torsion 'J(T(Z, p)). 

If the fiber Z of the bundle is closed and odd-dimensional then the transfer 
of the fiber bundle is rationally trivial. So in this case one can again define the 
higher real Reidemeister torsion. The reader can compare this with the second 
result of our Corollary 3.25, stating that under the same conditions, the analytic 
torsion form gives a well-defined de Rham cohomology class of B. (In fact, 
Corollary 3.25 does not require unitariness of the representation.) Igusa and 
Klein computed the pairing between the higher Reidemeister torsion and the 
fundamental homology class of B when B = S2 , Z = S' , M is the lens space 
L(r, 1), IF = Q('), the cyclotomic number field generated by a primitive rth 
root' of unity, and p': 7l./r7l. --+ IF is given by p'(n) = ,n. The result was 
a numerical constant times rIm(Li2(,)). The reader can compare this with 
( 4.30). 
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ABSTRACT. We prove a Riemann-Roch-Grothendieck-type theorem concerning 
the direct image of a flat vector bundle under a submersion of smooth manifolds. 
We refine this theorem to the level of differential forms. We construct associated 
secondary invariants, the analytic torsion forms, which coincide in degree 0 with 
the Ray-Singer real analytic torsion. 
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RESUME. On demontre un analogue du theoreme de Riemann-Roch-Grothen-
dieck pour l'image directe d'un fibre plat par une submersion. On raffine ce 
theoreme au niveau des formes differentielles. On construit des invariants sec-
ondaires, les formes de torsion analytique, qui cOIncident, en degre 0, avec la 
torsion de Ray-Singer. 
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