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ALGEBRA EXTENSIONS AND NONSINGULARITY 

JOACHIM CUNTZ AND DANIEL QUILLEN 

This paper is concerned with a notion of nonsingularity for noncommutative 
algebras, which arises naturally in connection with cyclic homology. 

Let us consider associative unital algebras over the complex numbers. We 
call an algebra A quasi-free, when it behaves like a free algebra with respect to 
nilpotent extensions in the sense that any homomorphism A -+ Rj [ , where [ 
is a nilpotent ideal in R, can be lifted to a homomorphism A -+ R. If we re-
strict to the category of finitely generated commutative algebras, then this lifting 
property characterizes smooth algebras, the ones corresponding to nonsingular 
affine varieties. In this way quasi-free algebras appear as noncommutative ana-
logues of smooth algebras. Stretching the analogy, we can even regard quasi-free 
algebras as analogues of manifolds. 

One of the aims of this paper is to develop the analogy further by showing 
that quasi-free algebras provide a natural setting for noncom mutative versions 
of certain aspects of manifolds. To give an example, let us consider the ana-
logue of an embedding: an extension A = Rj [ , where A and R are quasi-free 
algebras playing the role of the submanifold and ambient manifold respectively. 
In the manifold situation, [/[2 is the module of linear functions on the nor-
mal bundle, and the symmetric algebra SA (l / [2) is the algebra of polynomial 
functions. Now in passing from commutative to noncommutative algebras, the 
symmetric algebra of a module is replaced by the tensor algebra of a bimodule. 
Thus the tensor algebra T = TA(l j [2) is the noncommutative analogue of the 
normal bundle. In this situation we prove a formal tubular neighborhood theo-
rem, which asserts that Rand T become isomorphic after adically completing 
with respect to the kernels of the canonical homomorphisms to A. 

Another aspect of manifolds that extends to quasi-free algebras is the concept 
of connection on the tangent bundle. Connes [Co] has defined connections 
on modules using noncommutative differential forms. We extend his idea to 
bimodules so that a connection on a bimodule E over A yields a way to extend 
derivations on A to the tensor algebra TA(E). In the case of the bimodule 
0 1 A, a connection exists exactly when A is quasi-free. For such a connection 
we construct (on a formal level) the geodesic flow and exponential map. 

Quasi-free algebras can be characterized cohomologically as the algebras hav-
ing cohomological dimension ~ 1 with respect to Hochschild cohomology. This 
shows that quasi-free algebras form a very restricted class. The tensor product 
of two quasi-free algebras is not quasi-free in general unless one of the algebras 
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is separable. Smooth commutative algebras, and their deformations such as 
universal enveloping algebras, are not quasi-free when the dimension is > 1 . 

We mention that Shelter [Sh] has discussed this extension of smooth algebras 
to the noncommutative context with emphasis on algebras satisfying a polyno-
mial identity. 

Besides investigating quasi-free algebras, another purpose of this paper is to 
develop tools which will be applied to cyclic homology in a succeeding paper. 
An important role is played by certain algebras generated from an algebra A 
by means of universal mapping properties. The most basic of these is the DG 
algebra aA of noncommutative differential forms [Co], [Ka]. In addition we 
have the algebras RA of [Cu2] and QA = A * A of [CC], [CuI], which are 
useful in studying extensions of A, especially nilpotent extensions of higher 
order. The algebra RA provides a standard way A = RAj I A of writing A 
as a quotient of a free algebra, and the resulting extension of A is universal 
with respect to extensions A = Rj I equipped with a linear lifting p : A --+ R 
respecting identity elements. This universal extension captures the information 
of a functorial nature inherent in the choice of such a lifting p. It is a remark-
able result that RA and QA can be constructed in a simple fashion from nA 
using the Fedosov product: 

woe; = we; - ( -1) Iwl d w de; 

introduced by Fedosov [F] in connection with the index theorem. 
This paper is organized as follows. In § 1 we construct aA and show that RA 

and QA are isomorphic to the algebras of even forms and all forms respectively 
under Fedosov product. We also give a Fedosov type description of a free 
product of two algebras. In §2 we generalize aA to the algebra of relative 
differential forms asA in the case of a homomorphism S --+ A. We establish 
a noncommutative cotangent exact sequence relating a's and a' A to the 
relative differentials a~A. 

The third section begins with the relation between differential forms and 
Hochschild cohomology. We show the bimodule an A is universal with re-
spect to normalized n-cocycles with values in bimodule, where the universal 
n-cocycle is 

(d u· ~. u d)(a, ' ... , an) = da, ... dan EOn A. 

Separable and quasi-free algebras are then introduced using Hochschild coho-
mology. An algebra is quasi-free exactly when the universal 2-cocycle dud is 
a coboundary. We discuss l-cochains <jJ satisfying -f5<jJ = dud, because they 
can be used to describe connections on a' A. 

Separable algebras are the noncommutative analogues of etale commutative 
algebras. An algebra is separable exactly when the universal derivation d is 
inner, and the possible ways of writing it as an inner derivation are relevant to 
the study of connections. In §4 we show there is a canonical way of doing this 
related to the trace on the regular representation. At the same time we review 
various characterizations of separable algebras over the complex numbers. 

The fifth section is devoted to properties and examples of quasi-free algebras. 
In §6 we begin with the lifting properties of separable and quasi-free algebras 
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with respect to nilpotent extensions, and more generally extensions obtained 
by adic completion. We then prove the tubular neighborhood theorem. We 
also describe finite-dimensional quasi-free algebras in terms of path algebras 
associated to quivers. 

In §7 we examine the universal extension A = RAilA when A is quasi-
free. The tubular neighborhood theorem in this case asserts the existence of an 
isomorphism between RA and fiev A (i.e., between even forms with Fedosov 
and ordinary product). Following an idea from Yang-Mills theory, we explicitly 
construct an isomorphism starting from a cochain whose boundary is the uni-
versal 2-cocycle. By a related method we construct, in the case of a separable 
algebra, a conjugacy between the two embeddings of A into QA. 

Finally, in the last section we study connections, first for right modules, next 
for bimodules, and then in the case of 0 1 A, where we define torsion and for-
mally construct the geodesic flow and exponential map. 

1. NONCOMMUTATIVE DIFFERENTIAL FORMS 

If A is an algebra, then we construct the differential graded (DG) algebra 
nA of noncommutative differential forms on A as follows. Let A denote the 
quotient vector space Ale of A by the scalar multiples of the identity; in the 
case of the zero algebra we have A = O. Let 

(1) 

for n :::: 0 and On A = 0 for n < 0, and let the symbol (ao' ... ,an) denote 
the image of ao ~ ... ~ an in On A. We have 0 0 A = A and (a) = a. 

On OA = El1nEz On A we define an operator d of degree one and a product 
by 

(2) d(ao' ... , an) = (1, ao' ... , an), 
n 

(3) (ao' ... , an)(an+1 ' ••• , ak ) = L:) _1)n-i (ao ' ... , aiai+1 ' ••• , ak ). 
i=O 

Proposition 1.1. (1) These formulas determine a DG algebra structure on nA, 
which is the unique one satisfying 

(4) aodal ·· . dan = (ao' ... , an)' 

(2) Given a DG algebra r = El1n ~ and a homomorphism u: A ....... ~, there 
exists a unique homomorphism of DG algebras u* : OA ....... r which extends u. 
Proof. We begin with the uniqueness part of (I). The following identities hold 
in any DG algebra containing A as an even degree subalgebra: 

(5) 

(6) 

d(aoda l ... dan) = daoda l ... dan' 
(aoda l ... dan)(an+1 dan+2'" dak ) 

n 
= (-I)naOalda2" ·dak + 'l)_I)n-iaodal" .d(aiai+ I )·· ·dak • 

i=1 
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Applying these in the case of a DG algebra structure on nA satisfying (4) we 
see that the differential and the product must be given by (2) and (3), proving 
uniqueness. 

To prove the existence we define d on nA by (2). Then d 2 = 0, making 
nA a complex. Let g> = EB g>n , where g>n is the space of linear operators 
of degree n from nA to itself. Then g> is a DG algebra with multiplication 
given by composition and with differential given by 

[d , w] = d . w - ( -1) Iw I . d , 

where Iw I denotes the degree of w . 
Let I : A --+ g>o be the homomorphism which associates to a E A the left 

multiplication operator 

la(ao' ... , an) = (aao' ... , an)· 

We define a map 1* : nA --+ g> by 

(7) I*(ao , ... , an) = lao[d, lad··· [d, Ian]· 

Using the identities (5), (6) in the case of the subalgebra I(A) c g> , we see 
that the image Im(l*) of 1* is a DG subalgebra of g>; it is clearly the DG 
subalgebra generated by I(A). 

Consider next the map g> --+ nA, w t-+ W ( 1). Since 

[d, la i ](1, ai+, ' ... , an) = d(ai , ai+" ... , an) -Iaid(l, ai+" ... , an) 

= (1, ai' ai+, ' ... , an) , 

we find 

(8) 

This shows that the map w t-+ w(1) is a retraction (i.e., left-inverse) for 1*, 
hence 1* is injective. 

We now use the isomorphism 1* : nA .:::. Im(lJ to transport the DG algebra 
structure on the latter to nA. Then (8) gives (4) finishing the proof of (1). 

Given rand u: A --+ ~ as in (2), we define u* : nA --+ r by 

(9) u*(aoda, ... dan) = uaod(ua,)··· d(uan). 

The identities (5), (6) and their counterparts for the elements uai E r show 
that u* is a DG algebra homomorphism. It is clearly the unique DG algebra 
homomorphism extending u, proving (2). 0 

The universal extension. If n is a DG algebra, then the Fedosov product [F] on 
n is defined by 

( 10) 

Here Iwl = n if w is homogeneous of degree n, and the product in general 
is determined by linearity. The Fedosov product is associative, as one easily 
checks. It is compatible with the even-odd Zj2 grading on n and hence makes 
n into a superalgebra. Even when the DG algebra n is (super) commutative, 
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the Fedosov product is usually not commutative, because wand dw have 
opposite parity. 

We now apply this construction to the DG algebra (lA of noncommutative 
differential forms on the algebra A. This gives a superalgebra which we are 
going to relate to certain universal algebras constructed from A. 

By a based linear map p : A --4 R , where R is an algebra, we mean a linear 
map between the underlying vector spaces which carries the identity of A to 
the identity of R. We define the curvature of p to be the bilinear map 
(11) w(a1 , a2) = p(a1a2) - p(a1)p(a2). 
It vanishes if either a1 or a2 is the identity, hence it can be viewed as a linear 

--;-®2 map w: A --4 R . 
We now consider the universal algebra RA generated by a based linear map 

from A. This algebra can be constructed as follows. Let T(A) = EBn>O A~M be 
the tensor algebra of the underlying vector space of A, and define RA to be 
the quotient algebra 
( 12) 
where IT is the identity of T(A) and 1 A is the identity of A regarded as 
a tensor of degree one. Let p : A --4 RA be the based linear map given by 
the inclusion of A into T(A) as tensors of degree one followed by the canon-
ical surjection to RA. It is then clear that RA has the following universal 
mapping property: Given a based linear map p : A --4 R, there is a unique 
homomorphism RA --4 R sending p to p. 

As an algebra RA depends only on the underlying vector space of A and 
the identity element. If we choose a basis for A containing 1 A ' then RA is 
the free algebra with the generators given by the basis elements different from 
the identity. 

To obtain structure on RA reflecting the product on A, we consider the 
canonical homomorphism RA --4 A sending p to the identity map of A, and 
we let I A be its kernel. We then have an algebra extension A = RAJ I A for 
which p is a based linear lifting, i.e., a based linear map which is a section of the 
canonical surjection RA --4 A. It is clear that this is the universal 'extension 
equipped with based linear lifting' of A; we will refer to RA as simply the 
universal extension of A. 

Let w be the curvature of p. 
Proposition 1.2. There is a canonical isomorphism given by 
(13) p(aO)w(a1 , a2)··· w(a2n_1 , a2n ) +-> aOda1 ••• da2n 
between RA and the algebra (lev A of even forms equipped with the Fedosov 
product. Under. this isomorphism the ideal I An corresponds to EBk>n (l2k A . 
The associated graded algebra gr I A RA = EB I An j I A n+ 1 is isomorphic to the 
algebra (lev A of even forms with the ordinary product. 
Proof. We consider the based linear map A --4 (lev A given by the inclusion, 
and note that its curvature is a1 a2 - a1 0 a2 = d a1 d a2 • Let '¥: RA --4 (lev A 
be the corresponding homomorphism given by the universal property of RA. 



256 JOACHIM CUNTZ AND DANIEL QUILLEN 

We have 'l'p(a) = a, 'l'w(a1 , a2) = da1da2 • Since Fedosov product coincides 
with ordinary product when one of the forms is closed, we have 

'I'(p(aO)w(a1 , a2) ... w(a2n _ 1 ' a2n )) = aOdal ... da2n · 

. 2n ~2n On the other hand, smce n A = A I8l A we have a well-defined map <I> : 
n ev A ---+ RA given by 

<I>(aOda l ... da2n ) = p(aO)w(a l ' a2) ... w(a2n _ 1 ' a2n )· 

Clearly <I> is a section of '1', so these maps will be inverse isomorphisms pro-
vided <I> is surjective. Since 

p(a) . p(aO)w(a l ' a2) ... w(a2n _1 ' a2n ) 
= p(aaO)w(a l ' a2)··· w(a2n _ 1 ' a2n ) - w(a, aO)w(al ' a2)··· w(a2n _ 1 ' a2n ) , 

the image of <I> is closed under left multiplication by p(a) for all a EA. Since 
these elements generate RA, the image of <I> is a left ideal containing 1, so <I> 
is surjective and we obtain the desired isomorphism. 

Let us now identify RA and n ev A by means of this isomorphism and com-
pare IAn with F n = EBk>n n 2k A. Since da 1da2 E lA, we have n 2k A clAn 
for k 2: n , hence F n clAn. Now F P F q c FP+q by the definition of Fedosov 
product, and we have IA = Fl , since the quotient of RA by either ideal is A. 
Thus IAn = (Fl)n C F n , which proves IAn = F n as claimed. The assertion 
about the associated graded algebra is clear. 0 

In the sequel it is convenient to identify RA with the space nevA of even 
forms equipped with Fedosov ptoduct. The universal property then says that 
any based linear map p : A ---+ R extends uniquely to a homomorphism p * : 
RA ---+ R. We have 

(14) p*(aOda l ... da2n ) = p(aO)w(a l ' a2)··· w(a2n _1 ' a2n ), 

where w is the curvature of p. 

The algebra QA. We next consider the algebra QA (cf. [CuI], [CC]), which is 
defined to be the free product A * A. There are thus two canonical homomor-
phisms I, ,Y from A to QA which are a universal pair of homomorphisms 
from A to another algebra. The algebra QA has a canonical automorphism 
x t-t x Y of order two which interchanges I and ,Y • 

We recall that a superalgebra is an algebra S equipped with a 7/.,/2 grading 
S = S+ EB S- compatible with multiplication, and that such a grading is equiva-
lent to an automorphism y of order two, where S± are the ± I eigenspaces of 
y. Thus QA is naturally a superalgebra. In fact, QA is the superalgebra gener-
ated by the algebra A in the sense that a homomorphism u : A ---+ S from A to 
the underlying algebra of a superalgebra S induces a superalgebra homomor-
phism QA ---+ S. In effect, the grading automorphism y of S gives a second 
homomorphism uY : A ---+ S , and the pair u, uY determines a homomorphism 
from the free product QA = A * A to S. 
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For a E A, let pa, qa denote the even and odd components of za with 
respect to the Z/2 grading of QA. We have 

za = pa + qa, 
IY a = pa - qa, 

p(ata2 ) = patpa2 + qatqa2 , 

q(at a2 ) = pat qa2 + qatpa2• 

Let qA be the kernel of the 'folding' homomorphism QA ---> A which sends 
za, IY a to a. It is the ideal in QA generated by the elements qa for a EA. 

Proposition 1.3. There is a canonical superalgebra isomorphism given by 

( 15) 

between QA and the superalgebra QA of differential forms under Fedosov prod-
uct. Under this isomorphism qAn corresponds to EBk>n Ok A, and the associated 
graded algebra is isomorphic to QA with the usual multiplication of forms. 
Proof. Since 

(at + da t ) 0 (a2 + da2 ) = ata2 - da tda2 + atda2 + da ta2 + da tda2 

= ata2 + d(a ta2 ) , 

we have a homomorphism from A to QA equipped with Fedosov product given 
by a 1-+ a + d a. By the universal property of QA this extends to a superalgebra 
homomorphism \f: QA ---> QA such that \f(pa) = a, \f(qa) = da, hence 

\f(paoqat ... qan) = aOdat ... dan' 

On the other hand we have a section <1>: QA ---> QA of \f given by 

<I>(aodat ... dan) = paoqat ... qan , 

so <I> and \f will be inverse isomorphisms if we show <I> is surjective. As 
pI = I we see from 

pa . paoqat ... qan = p(aao)qat ... qan - qaqaoqa t ... qan ' 
qa . paoqat ... qan = q(aao)qat ... qan - paqaoqat ... qan 

that the image of <I> is closed under left multiplication by pa, qa. Since the 
elements pa, qa for a E A generate QA, the image of <I> is a left ideal which 
contains I, so <I> is surjective, and we have the desired isomorphism. 

The assertion about ideals and the associated graded algebra follows in the 
same way as in the case of RA. 0 

The free product S * T. Let us consider two algebras S, T, and use x's to 
denote elements of Sand y's for elements of T. We form the free product 
algebra S* T, and let J be the ideal generated by commutators [x, y], XES, 
YET. Then (S * T) / J can be identified with the tensor product algebra S 0 T 
in such a way that x 0 I and I 0 Y correspond respectively to the classes of x 
and y modulo J. 
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We consider the graded algebra 

r = EB On S I8l On T 
n2:0 

with the Fedosov type product defined by 

(<!o I8l no) 0 (<!, I8l n,) = <!o<!, I8l non, - (-I)I~ol<!od<!, I8l dnon,. 

It is straightforward to check the associativity of this product. 

Proposition 1.4. One has an algebra isomorphism S * T ~ r given by 

xoyo[x, ' y,] . .. [xn ' y n] +-+ (xodx, ... dxn) I8l (Yody, ... dy n)' 

Under this isomorphism In corresponds to ffik2:n Oks I8l Ok T . 
Proof. We have homomorphisms x t-+ x I8l 1, y t-+ 1 I8l Y from S, T to r. 
By the universal property of the free product, these extend to a homomorphism 
'P : S * T - r. We have 

'P([x, y]) = (x 18l1) 0 (118l y) - (118l y) 0 (x 18l1) 
= x I8l Y - (x I8l Y - dx I8l dy) = dx I8l dy, 

hence 

'P(xoyo[x, ' yd, .. [xn ' y n]) = (xodx, ... dxn) I8l (Yody, ... dy n)' 

We prove 'P is an isomorphism by showing that the obvious section of 'P: 

(xodx, ... dxn) I8l (Yody, ... dYn) t-+ XOyo[x1 , yd", [xn , Yn] 

is surjective. It suffices to show that the subspace of the free product spanned 
by the elements on the right is closed under left multiplication by any x E R 
and any yES. The former is clear, and the latter follows from the identity 

y . xoyo = xoyyo - [xo ' Y]Yo = xo(yyo) - [xo' yyo] + y[xo' Yo]' 

The assertion about In is proved by the same argument used in the case of 
RA. 0 

2. RELATIVE DIFFERENTIAL FORMS 

Let S be an algebra. By an S-algebra we mean an algebra A equipped with a 
homomorphism S - A. Let A/S denote the cokemel of this homomorphism 
as a map ofbimodules over S. We define the space of relative differential forms 
of degree n with respect to S to be 

(16) O~A = A[l8ls (A/S)](n) = A I8ls (A/S) I8ls " 'l8ls (A/S) , 

where the notation [](n) means the expression inside the brackets is repeated 
n times. Clearly O~A is the quotient space of On A defined by the relations 

( 17) 
(ao'"'' ai_'S, ai ,· .. , an) = (ao' ... , ai-I' sap"" an), 
(ao' ... , ai-I' s, ai+1 ' ... , an) = 0 
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for s in the image of S in A and 1 ::; i ::; n. The formulas (2), (3) for 
the differential and product in nA are easily seen to be compatible with these 
relations, so nsA = EBn n;A is a quotient DG algebra of nA. 

Clearly the DG algebra nsA of relative forms depends only on the image of 
S in A. In order to simplify the notation it is convenient to identify S with 
this image, when this does not lead to confusion. 

With this convention we have the following universal property for the DG 
algebra of relative forms. 

Proposition 2.1. Given a DG algebra r = EB rn and a homomorphism u: A -+ 

rtJ such that d (uS) = 0, there exists a unique DG algebra homomorphism 
u* : nsA -+ r extending u. 
Proof. From 1.1 we know there is a unique DG algebra homomorphism u* : 
nA -+ r extending u given by 

u*(aoda, ... dan) = uaod(ua,)··· d(uan)· 

When deuS) = 0 it is easily seen that u* is compatible with the relations 
(17) defining the relative forms. Hence u* factors through the quotient algebra 
nsA, proving the desired universal property. 0 

Let us call a DG algebra r equipped with a homomorphism S -+ rtJ whose 
image is killed by d a DG S-algebra. Then the universal property says that 
nsA is the universal DG S-algebra generated by the S-algebra A. 

Corollary 2.2. The algebra of relative forms can be identified with the quotient of 
nA by the ideal generated by d S : 

nsA = nA/nAdSnA. 

This is clear since the ideal generated by dS is closed under d, and hence 
the quotient of nA by this ideal is a DG S-algebra with the same universal 
property as nsA. 

We next establish for relative differential forms some basic properties of 
differential forms. 

We recall that if M is an A-bimodule, then one can form its n-th tensor 
product 

T;(M) = M[®AM](n-') = M ®A .~. ®A M 

and tensor algebra TA(M) = EBn>O T;(M) , where ~(M) = A. The tensor 
algebra has the following universaC property: Given an algebra R and a pair of 
maps u: A -+ R, v : M -+ R such that u is an algebra homomorphism and v 
is an A-bimodule map relative to u, then there exists a unique homomorphism 
TA(M) -+ R restricting to u on A and v on M. 

Proposition 2.3. nsA is canonically isomorphic to the tensor algebra of the bi-
module n~A over A. 

Proof. The inclusion homomorphism A -+ nsA and A-bimodule map n~A -+ 

nsA induce a homomorphism of graded algebras w : TA(n~A) -+ nsA. We 
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have 
n-I 1 n-I n-I n Q S A0A QS A=QS A0A (A0s AjS)=QS A0s (AjS)=QsA 

which we can iterate to obtain an isomorphism of Q;A with the n-th tensor 
product of the bimodule Q~A. It is straightforward to check that this isomor-
phism coincides with w in degree n. 0 

The next two results concern the A-bimodule Q~A of relative differentials. 
Let us call a derivation D : A ~ M, where M is an A-bimodule, an S-
derivation when DS = 0 . 

Proposition 2.4. d: A ~ Q~A is a universal S-derivation. 
Proof. We must show that, for any A-bimodule M and S-derivation D : A ~ 
M satisfying DS = 0, there is a unique bimodule map D* : Q~A ~ N such 
that D*d = D. Consider the DG algebra given by the semi-direct product 
algebra A EEl M , graded with A in degree zero and M in degree one, and with 
differential given by D. It is a DG S-algebra, hence the universal property of 
QsA gives a unique DG algebra homomorphism QsA ~ A EEl N extending the 
identity on A. Such a DG algebra homomorphism is clearly equivalent to a 
bimodule map D* : Q~A ~ N such that D*d = D, whence the result. 0 

Proposition 2.5. One has an exact sequence of A-bimodules 
1"'\1 j m o ~ UsA ~ A 0 s A ~ A ~ 0, 

where j(aoda l ) = aoa l 0 1 - ao 0 al and m(ao 0 al) = aoa l . 
Proof. The multiplication map m has the section i (a) = a 0 1. Hence the 
projection operator l-im on A0s A identifies the cokernel of i with the kernel 
of m. By right exactness of tensor product the cokernel of i is A 0 s (AjS) = 
Q~A. Thus we have an isomorphism Q~ ~ Ker(m) given by 

aoda l 1-+ (1 - im)(ao 0 al) = ao 0 al - aoal 0 1 = -j(aodal ) 

which yields the desired short exact sequence. Finally j is an A-bimodule map 
because it is the bimodule map induced by the inner derivation a 1-+ [a, 1 0 1] = 
a01-10a. 0 

We next discuss some examples of algebras of relative differential forms. 
As a first example, we consider the tensor algebra T = Ts(M) of the S-

bimodule M. 

Proposition 2.6. There is a canonical T-bimodule isomorphism T 0 s M 0 s T ~ 
1 QsT. 

Proof. We use the universal property 2.4 of Q~T with respect to S-derivations. 
If N is a T-bimodule, then an S-derivation D : T ~ N is equivalent to an 
S-algebra lifting 1 + D : T ~ T EEl N into the semidirect product. We then have 
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the following natural equivalences: 

{T-bimodule maps Q~T -+ N} 
= {S-derivations T -+ N} 
= is-algebra liftings T -+ T EB N} 
= {S-bimodule maps M -+ N} 
= {T-bimodule maps T 0 s M 0 s T -+ N}, 

whence the result. 0 
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We can also determine nsT by a similar method. Let K(M) be the complex 
of S-bimodules with M in degrees zero and one, and zero in other degrees, 
where the differential from degree zero to degree one is the identity map of N. 
The tensor powers T;(K(N)) are naturally complexes of S-bimodules, and the 
tensor algebra Ts(C(N)) is naturally a DG S-algebra. 

Proposition 2.7. The DG S-algebras QsT and Ts(K(M)) are canonically iso-
morphic. 
Proof. Let r be a DG S-algebra. Using universal properties we have the equiv-
alences 

{DG S-algebra maps Ts(K(M)) -+ r} 
= {DG S-bimodule maps K(M) -+ r} 

= {S-bimodule maps M -+ r>} 
o = is-algebra maps Ts(M) -+ r } 

= {DG S-algebra maps QsT -+ r} 
which yield the result. 0 

As a second example, we consider the tensor product algebra S 0 A of two 
algebras S and A. If we identify S and A with the subalgebras S 0 1 and 
1 0 A of S 0 A respectively, then S 0 A can be regarded as the universal algebra 
generated by S and A such that sa = as for all s E S, a EA. 

Proposition 2.8. There is a canonical isomorphism Qs(S 0 A) ~ S 0 nA of 
DG S-algebras. 
Proof. We first note that S 0 nA is a DG S-algebra with d(sw) =sdw for 
s E S, w E QA. By the universal property of relative forms there is a unique 
DG algebra map Qs (S0A) -+ S0QA extending the identity on S0A. On the 
other hand, in Qs(S 0 A) we have sa = as and sda = d(sa) = d(as) = das, 
hence S commutes with the image of the composition QA -+ Q(S 0 A) -+ 

Qs(S 0 A). Thus we obtain a DG algebra map S 0 QA -+ Qs(S 0 A) which 
extends the identity on S 0 A , and consequently is an inverse for the map we 
have in the opposite direction. 0 

Taking S to be the algebra of matrices Mn C , we find 

(18) QM c<MnA) = Mn(QA). 
n 
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In other words, the relative differential forms for matrices over A with respect 
to scalar matrices are just the matrix differential forms over A. 

Finally suppose S is a commutative algebra, and let A be a noncommutative 
algebra 'over'S considered as ground ring in the sense of algebraic geometry. 
This means that one is given a homomorphism S ---- A whose image is contained 
in the center of A. In this case sda = d(sa) = d(as) = das in QsA, hence S 
maps to the center of QsA, so 0sA is a DG algebra over S. It is clearly the 
universal DG algebra over S generated by A. 

For instance, let us consider S = C xC, and let e, e~ be the idempotents 
(1 , 0), (0, 1). An algebra A over S is a direct product: 

~ ~ A----eAxe A, ~ a ...... (ea, e a) 
and in this way the category of algebras over S is equivalent to the category of 
pairs of algebras. A similar assertion holds for DG algebras, so it is clear that 
we have a canonical DG algebra isomorphism 

(19) 0cxdA, x A2 ) .::. QA, x OA2• 

Cotangent sequence. Given a homomorphism S ---- A, we have the following 
'cotangent' exact sequence relating the relative and absolute differentials. 
Proposition 2.9. One has a canonical exact sequence 

s , " 0---- Tor, (A, A) ---- A Os Q S Os A ---- 0 A ---- 0sA ---- 0 
of bimodules over A. 
Proof. The exact sequence of S-bimodules 

0---- 0' S ---- So S ---- S ---- 0 
splits as a sequence of right modules, so tensoring over S with A on the right 
gives an exact sequence , 
(20) 0 ---- 0 S Os A ---- So A ---- A ---- O. 
We next tensor on the left with A. Since So A is a free left S-module, the 
Tor long exact sequence yields an exact sequence 

s , 
0---- Tor, (A, A) ---- A Os 0 S Os A ---- A ° A ---- A Os A ---- O. 

From this we obtain the desired exact sequence, since 0' A, Q~A are the 
kernels of the multiplication maps from A ° A, A Os A to A respectively. 0 

Corollary 2.10. Let T = Ts(M), where M is an S-bimodule which is flat as 
either a left or right S-module. Then we have an exact sequence of T-bimodules , , 

0---- T Os 0 S Os T ---- 0 T ---- T Os M Os T ---- o. 
Proof. In view of the formula in Proposition 2.6 for O~T, it suffices to show 
that Tor~(T, T) = O. Assuming M is right S-flat, the functor X ...... M Os X 
on the category of S-modules is exact. Hence its n-th iterate 

[M0s ](n) X = T;(M) Os X 
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is exact, which means that the n-th tensor power of the bimodule M is right 
S-flat. Thus T is right S-flat, and Torf (T, T) = O. The case where M is left 
flat is similar. 0 

Corollary 2.11. Let A = R/l, where 1 is an ideal in R. Then we have a short 
exact sequence of A-bimodules 

2 I I 0-+1/1 -+A0R OR0R A-+OA-+0, 
where the injection is induced by the restriction of the canonical derivation d : 
R -+ 0 I R to 1, and the surjection is induced by the canonical surjection R -+ A . 
Proof. This results from cotangent sequence in the case of the surjection R -+ A 
and the canonical isomorphism Torf(A, A) = 1/12 . To be more precise, let us 
consider the map of left R-module resolutions of A 

o ----t 1 ----t R ----t A ----t 0 

1 1= 
o ----t OlR0R A ~ R0A ----t A ----t 0 

where the bottom row is (20) and the vertical arrows are induced by the map 
x ~ x 0 1 from R to R 0 A. We have j(xdy 0 a) = xy 0 a - x 0 ya and 
a z = d z 0 1 for Z E 1. Tensoring with A on the left yields a map of exact 
sequences 

o ------ R ~ 1/12 A ~ A ------ 0 TorI (A, A) ------ ------
1= 1 1 1= 

o ------ R I A0A ------ A ------ 0 TorI (A, A) ------ A0R O R0R A ------
where the bottom row yields the cotangent exact sequence and the top row yields 
the canonical isomorphism just mentioned. The assertions about the maps in 
the exact sequence are now easily checked. 0 

3. HOCHSCHILD COHOMOLOGY 

In this section we discuss the relation between differential forms and Hoch-
schild cohomology, and we define separable and quasi-free algebras. 
The standard resolution. We consider the standard (normalized) resolution of 
A by free bimodules 

(21 ) b' ~2 b' - b' b' -+A0A 0A-+A0A0A-+A0A-+A-+0, 

(22) 

Let us make the identification 
A 0 ~n 0 A = On A 0 A , 

(ao , ... , an+l ) ~ aodal ... dan 0 an+1 
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and calculate the operator on QA 0 A corresponding to b' . Using the identity 
n-I 

(23) 
aoalda2 ·•· dan + 2:)-1/ aodal ... d(aiai+I )··· dan 

i=1 

n-I d d = (-1) a a··· a a o I n-I n 
when n :::: 1, the sum of the terms for 0::; i < n in (22) becomes 

n-I d d (-1) ao al ··· an_Ian 0an+1 

under our identification. Thus b' becomes 
b' d d n-I (ao .al ... an) = (-1) aOdal···dan_Ian 0an+1 

+ (_l)n aodal ... dan_I 0 anan+1 

which we can write simply 

(24) b' (wda 0 a') = (_l)lrol(wa 0 a' - w 0 aa'). 

We can therefore describe the standard resolution as the complex consisting 
of the free bimodules Qn A 0 A for n :::: 0, and 0 for n < 0, equipped 
with the differential b' given by (24). In addition there is the augmentation 
m : A 0 A ---+ A given by multiplication, which should be viewed as a map 
from this complex to A viewed as a complex supported in degree zero. The 
augmentation is a quasi-isomorphism by the exactness of (21). 

In fact the augmentation is a homotopy equivalence if either the left or right 
module structure is ignored. One proves this by means of two standard homo-
topies in which 1 is inserted on the left or on the right with the appropriate 
sign. In our differential form notation the homotopy equivalence compatible 
with right multiplication is given by the section i(a) = 1 0 a of m together 
with the homotopy operator d 0 1 on QA 0 A. More precisely we have 

(25) b'(d 01) + (d 01)b' = 1 

in positive degrees and b'(d 01) + im = 1 in degree zero. These formulas are 
easily verified using (24). 

The homotopy equivalence compatible with left multiplication is given by 
the section a 1-+ a 0 1 of m together with the homotopy operator on OA 0 A 
given by 

w0a 1-+ (-l)lro l+l wda 01. 

A useful alternative method for showing that the augmentation is a quasi-
isomorphism is the following. The basic bimodule exact sequence 2.5 

(26) 

splits as a sequence of left or right A-modules, so tensoring on the left with 
On A yields the bimodule exact sequence 

(27) 

where j(wda) = wa 01 - w 0 a, m(w 0 a) = wa. Comparing with (24) we 
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have 
(28) 
We see therefore that, except for the sign of the differential, the standard reso-
lution is obtained by splicing the short exact sequences (27) together. 
Cochains. Recall that A-bimodules are the same as modules over the enveloping 
algebra Ae = A 0 AOP , and that the Hochschild cohomology groups of A with 
coefficients the bimodule M may be defined as 

Hi(A, M) = Ext~,(A, M). 
These Ext groups can be computed using the standard resolution of A, hence 
this cohomology is computed by the complex of (normalized) Hochschild co-
chains n ~n ~n C (A, M) = HomA ,(A0A 0A,M)=Hom(A ,M) 
with differential 

(~f)(al ' ... , an+l) = a1f(a2, ... , an+l ) 
n 

(29) + l)-l)if(al , ... , aiai+l , ... , an+l ) 
i=1 

n+l f +(-1) (al, ... ,an)an+l . 
From now on all cochains with values in a bimodule will be assumed nor-

malized unless stated otherwise. 
There is the following cup product operation on cochains. Given f E 

cP (A, M) and g E Cq (A, N) and a bimodule map M 0 A N -t L, m 0 n t-+ 

m . n , the cup product f u g E Cp+q (A , L) is defined by 
(30) (f U g)(al ' ... , ap+q ) = f(a l ' ... , ap ) • g(ap+1 ' ... , ap+q ). 

We have 
(31 ) ~ (f u g) = ~ f u g + ( -1) If I f u ~ g , 
so the cup product of cocycles is a cocycle. 

For example, the cochain 
(aI' ... , an) t-+ da l ·· . dan E OnA 

is the n-fold cup product dun of d. Since d is a l-cocycle (= derivation), it 
follows that dun is an n-cocycle. In fact, dun is the universal n-cocycle with 
values in a bimodule in the same way that d is the universal l-cocycle, as we 
now show. 
Proposition 3.1. If f is an n-cocycle with values in M, then there is a unique 
bimodule map 1: : On A -t M such that 1:(dal ... dan) = f(a l ' ... , an). 
Proof. There is a unique left A-module map f. with this property, so it suffices 
to show that f. is compatible with right multiplication if f is a cocycle. Using 
the identity (23) with n replaced by n + 1 we have 
(32) 

1: (aoda l ... dan_I an) - 1: (aoda l ... dan_I )an = (_I)n ao(~ f)(a l ' ... , an+l ), 
so this is clear. 0 
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We next introduce separable and quasi-free algebras using the properties of 
Hochschild cohomology in degrees ::; 2 . 

Given a bimodule M over A, let 

(33) MQ = {x E M I ax = xa, Va E A} 

denote its center. We have 
(34) MQ = HO(A, M) = HomA,(A, M). 

We recall that A is called separable when it has the equivalent properties 
listed in the following proposition. 
Proposition 3.2. The following are equivalent: 

(1) A has cohomological dimension zero with respect to Hochschild cohomol-
ogy. 

(2) A is a projective A-bimodule. 
(3) Any derivation on A with values in a bimodule is inner. 

Proof. We recall that HI (A, M) can be identified with the space of derivations 
D : A --+ M modulo inner derivations. Thus (3) means that Ext~,(A, M) = 0 
for all M, which is equivalent to A being a projective bimodule. In this case 
all the higher Ext groups vanish also, so the result is clear. 0 

It will be useful when we study connections to understand the equivalence 
of (2) and (3) in concrete terms. It is clear by 2.4 that (3) is equivalent to 
the universal derivation d : A --+ 0 1 A being inner, i.e., to the existence of an 
element Y E 0 1 A such that 
(35) da = [a, Y], a E A, 

or equivalently OY = d. 
We consider the basic bimodule exact sequence 

(36) O nol j m 0 --+uA--+AI8lA--+A--+ , 

where j(aoda l ) = ao(a l I8l 1 - 118l a l ), m(a l I8l a2 ) = a l a2 • Since A I8l A is the 
free bimodule with generator 1 I8l 1 , it follows that A is a projective bimodule 
iff this exact sequence splits. 

A splitting is specified by a section s of m which is a bimodule map. By (34) 
s is determined by Z = s( 1) , where Z can be any separability element, i.e., 
element Z E (A I8l A)Q satisfying m(Z) = 1. A splitting is also specified by a 
bimodule map p which is a retraction (or left-inverse) for j. Now a bimodule 
map p : A I8l A --+01 A has the form 

p(ao I8l a l ) = aoYa l ' 

where Y = p(1 I8l 1) , and pj = 1 means 
da = p(a I8l 1 - 1 I8l a) = [a, Y] 

for all a EA. 
We thus see that the following data are equivalent: 
(1) A bimodule splitting of the exact sequence (36). 
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(2) A separability element. 
(3) An element Y E nl A such that t5Y = d. 

In particular (2) and (3) in 3.2 are just different ways of saying that (36) splits. 
We note that the section s and retraction p determine the same splitting 

when jp + sm = 1. This means that the elements Z, Yare related by 

(37) 1 0 1 = Z + j(Y). 

If Z = LXj 0 Yj where Zj' Y j E A, then for Z to be a separability element 
means 

(38) 

and we have Y = LxjdYj. 

Square-zero extensions. By a square-zero extension of A we mean an algebra 
extension A = Rj [ such that [2 = o. In this situation [ is naturally a bimodule 
over A, and we can consider square-zero extensions of A by a fixed bimodule 
M. A basic result about Hochschild cohomology identifies isomorphism classes 
of these extensions with elements of H2(A, M). 

Proposition 3.3. The following conditions are equivalent: 
(1) A has cohomological dimension ::; 1 with respect to Hochschild cohomol-

ogy. 
(2) nl A is a projective bimodule over A. 
(3) For any square-zero extension R of A there is a lifting homomorphism 

A -+R. 
Proof (see [Sh]). If R is a square-zero extension of A by M, then a lifting 
homomorphism I : A -+ R determines an isomorphism of R with the semi-
direct product A EB M such that, relative to this isomorphism, I becomes the 
inclusion of A. Thus (3) means that every square-zero extension is a semi-
direct product, i.e., H2(A, M) = 0 for all bimodules M. From the basic exact 
sequence (26) and the long exact sequence of Ext groups we have 

i+1 j+l i ,."l H (A, M) = ExtAe (A, M) ~ ExtA,(u A, M) 

for i > o. Taking i = 1, we see that H2(A, M) = 0 for all M iff the bimodule 
n 1 A is projective. The rest is clear. 0 

Definition. We call A quasi-free when it satisfies the conditions of the above 
proposition. 

A free algebra is quasi-free, because for any extension of it we obtain a 
lifting homomorphism by lifting the generators and then extending this to a 
homomorphism. A separable algebra is quasi-free by the first conditions in 3.2 
and 3.3. 

For separable algebras one has a uniqueness result for the lifting homomor-
phism. Suppose given a square-zero extension A = Rj M and two lifting ho-
momorphisms I, I' : A -+ R. Using the first we can identify R with A EB M so 
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that la = a. The second is then of the form I' a = a + Da, where D: A --+ M 
is a derivation, which can be arbitrary. From the identity 

(1 + m)-l a (1 + m) = a + [a, m] 

we see that D is an inner derivation iff I ,I' are conjugate by an element of 
1 + M. Thus separable algebras are characterized by the property that any two 
lifting homomorphisms in a square-zero extension are conjugate by an element 
congruent to one modulo the ideal. 

We next wish to understand the equivalence of (2) and (3) in 3.3 on a concrete 
level. We begin by relating (3) to the universal extension RA. 

Let A = Rj M be a square-zero extension, and let p : A --+ R be a based 
linear lifting. By the universal property of RA, P extends to a homomorphism 
RA --+ R of extensions of A. The kernel of this homomorphism contains I A2 , 
hence p extends to a homomorphism RAJ I A2 --+ R of square-zero exten-
sions. In this way we can regard RAJ I A2 as the universal ·square-zero exten-
sion equipped with based linear lifting' of A. Clearly a lifting homomorphism 
for RAJ I A2 gives rise to one for R. Thus (3) is equivalent to the existence of 
a lifting homomorphism for RAJ I A2 . 

Now from 1.2 we have 
RAJ I A2 = A Ef) 0 2 A 

with mUltiplication given by Fedosov product modulo forms of degree > 2. A 
based linear lifting A --+ RAJ I A2 has the form a 1-+ a - cpa with cp: A --+ 0 2 A 
linear. Since 

(a l - cpa l ) 0 (a2 - cpa2) = a1a2 - da1da2 - a l cpa2 - cpa1a2, 

this lifting is a homomorphism iff cp satisfies 
(39) cp(a1a2) = al cpa2 + cpa1a2 + da1da2 
or equivalently -<5cp = dud. Thus (3) is equivalent to the cocycle dud 
being a coboundary. This also can be seen from the fact that dud is the 
universal 2-cocycle. If it is a coboundary, then by functoriality every 2-cocycle 
is a coboundary, so H2(A, M) = 0 for all M. 

Proposition 3.4. The following data are equivalent: 
(1) A l-cochain cp: A --+ 0 2 A such that -<5cp = dud. 
(2) A lifting homomorphism A --+ RAJ I A2 . 
(3) An A-bimodule splitting of the exact sequence 

(40) O--+02ALoIA®A~0IA--+O, 

where j (wd a) = wa ® 1 - w ® a, m( w ® a) = wa . 
(4) An operator V'r : 0 1 A --+ 0 2 A satisfying 

(41) V'r(aw) = aV'rw, V'r(wa) = (V'rw)a + wda. 
Proof. We have already proved the equivalence of (I) and (2). 

A bimodule splitting of (40) is given by a retraction p for j which is a 
bimodule map. Since 0 1 A ® A = A ®"It ® A , a bimodule map p from 0 1 A ® A 
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to ,iA is equivalent to a l-cochain rp: A -+ 02A via p(aOda j ®a2) = aOrpa ja2 . 
We have 

pj(da jda2) = p(da ja2 ® 1 - da j ® a2) 
= p(d(a ja2 ) ® 1 - a jda2 ® 1 - da j ® a2 ) 

= rp(a ja2 ) - a jrpa2 - rpa ja2• 

Thus pj = 1 iff rp satisfies (39), proving the equivalence of (1) and (3). 
A linear operator V'r : 0 j A -+ 0 2 A commuting with left multiplication is 

equivalent to a I-cochain rp: A -+ 0 2 A via Vr(aoda j ) = aorpa j . We have 

V'r(aodaja) = V'r(aod(aja) - aOajda) = aorp(aja) - aOajrpa, 
V'r(aodaj)a + aOdajda = aorpaja + aOdajda, 

so V'r satisfies the Liebniz rule with respect to right multiplication iff rp satisfies 
(39). This proves the equivalence of (1) and (4). 0 

Operators V'r as in (4) will be discussed below in the section on connections. 

Examples. 1. Consider a free algebra A = T( V). In this case there is a canon-
icallifting homomorphism A -+ RAJ I A2 extending the obvious lifting v 1--+ v 
of the vector space of generators. The corresponding l-cochain rp is determined 
by rp( v) = 0 for v E V. We have 

rp(Vj" ·vn ) = V'rd(vj· .. vn ) 

= V'r (t Vj .•. vj_jdvjvj+j ... Vn ) 
I=j 

n-j 

= L Vj •.• V j _ j dvjd(v j+j ... vn )· 
j=j 

2. Suppose A separable and let Y be a I-form such that ~Y = d. The 
l-cochains (Y u d)(a) = Y da and (-Y U d)(a) = -Y da both satisfy -~rp = 
dud, as well as any affine linear combination. 

4. SEPARABLE ALGEBRAS 

Our aim in this section is to show that a separable algebra A has a canonical 
separability element, and hence a canonical I-form Y satisfying da = [a, Y]. 
At the same time we review various more or less standard characterizations of 
separability. 

Let Z be an arbitrary separability element for A, and choose a representa-
tion 

j=j 

with n least. Then x j ' ••• ,xn are linearly independent, and similarly for 
Yj' ... ,Yn • From the first condition of (38) we have LaxJ(yJ = LxJ(yja) 
for any linear functional f on A. Since the Yj are linearly independent, the 
numbers f(yJ can be assigned arbitrarily, so the subspace V spanned by the 
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Xj is a left ideal in A. The condition L xjYj = 1 shows that ifaxj = 0 for all 
i , then a = o. Thus A is faithfully represented by left multiplication on V, 
and so we find that A is finite dimensional as a vector space. 

On the other hand, as a consequence of the fact that the bimodule A is a 
direct summand of A ~ A, we have for any (left) A-module M that M = 
A ~ A M is a direct summand of the free A-module 

A~M = (A~A) ~A M. 
Thus any A-module is projective, and consequently, any left ideal is generated 
by an idempotent. By Wedderburn theory an algebra with this property is a 
finite product of matrix algebras over skewfields. Since A is finite dimensional 
and C is algebraically closed, these skewfields must be C, and we see that A 
is a finite product of matrix algebras over C. 

Let T(a) be the trace of a in the regular representation, i.e., the trace of 
left multiplication by a on the vector space A. In the case of the matrix 
algebra MnC, one can compute that T(a) = n tr(a) , where tr is the usual 
matrix trace, and that tr(a t a2 ) is a nondegenerate bilinear form. Thus T(a t a2 ) 
is nondegenerate in this case (here we use in an essential way the fact that our 
groundfield has characteristic zero). Because A is a product of matrix algebras, 
it follows that the bilinear form T(a t a2) on A is nondegenerate. 

We next use the nondegeneracy of T(at a2 ) to construct a canonical separa-
bility element for A. Choose a basis {xJ of A, and let {YJ be the dual basis 
with respect to the bilinear form T(a1a2 ) , so that T(YjXJ = Ojj. The element 
Z = LXj ~ Yj of A ~ A is independent of the choice of basis. Since the bi-
linear form is symmetric, we have LXj ~ Yj = LYj ~ x j ; in other words Z is 
symmetric in the sense that 

,a(Z) = Z, 
where a is the flipping automorphism of A ~ A . 

Let ajj denote the matrix of left multiplication by a with respect to the 
basis x j • We then have 

hence 

aXj = Lajjxj , 
j 

a (LXi ~ Yj) = Lajjxj ~ Yj = LXj ~ ajjYj = (LXj ~ Yj ) a 

showing Z E (A~A)Q. Using the definition of T and its trace property we have 

T(a) = Lajj = LT(yjaxj) = T (a LXjYj) , 

hence LXjYj = 1 by non degeneracy. This demonstrates the existence of a 
symmetric separability element for A. 

We next want to prove the uniqueness, so we consider an arbitrary symmetric 
separability element Z = LXj ~ Yj • Then we have 

(42) 

in addition to (38). 
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We now use Z to prove for any bimodule N over A that we have an 
isomorphism 

(43) 

given by the inclusion of the center followed by the canonical surjection of 
N onto its commutator quotient space NQ = N/[A, N]. Let T be the linear 
operatoron N given by T(n) = Lxjnyj . The conditions (38) imply T(n) E NQ 
and T(n) = n if n E NQ. The conditions (42) imply T kills [A, N] and that 
T is the identity modulo [A, N], since T(n)-n LYjXj = L[Xj , nyj] E [A, N]. 
Thus the map NQ ---+ NQ induced by T is inverse to the canonical map the other 
way. 

Next, we use (43) to show there is a unique symmetric separability element. 
We first note that A (8) A has, in addition to the outside A-bimodule structure 
considered up to now, the inside bimodule structure given by a(a, (8) a2 ) = 
a,(8)aa2 and (a,(8)a2)a=a,a(8)a2 • We apply (43) to A(8)A equipped with the 
inside bimodule structure and denote the center by A (8)Q A; the commutator 
quotient space can be identified with A via the multiplication m : A (8) A ---+ A . 
Then by our assumption we have an isomorphism 

A(8)Q A ~ A 

induced by m, and this is a bimodule isomorphism with respect to the outside 
structure, since the inside and outside structures commute. Consequently, there 
is a unique Z E A (8)Q A satisfying m(Z) = 1, and Z is also central for the 
outside structure, since m(Z) = 1 is central in A. Thus Z is a separability 
element, and it is the unique one central with respect to the inside structure. 
To show it is symmetric, we consider a(Z). This is central for both inside 
and outside structures, hence by the above isomorphism it is determined by 
ma(Z) E AQ . But AQ ~ AQ and ma(Z) == m(Z) mod commutators, so a(Z) = 
Z and Z is symmetric. 

We have therefore proved 

Proposition 4.1. A separable algebra A has a unique symmetric separability 
element Z. One has Z = L Xj (8) Yj , where {xJ is any basis for A and {Y j } 
is the dual basis with respect to the bilinear form -r(a, a2 ), where -r is the trace 
associated to the regular representation. 

Examples. 1. If A = Mn C , then 

where ejj denotes the matrix with 1 in the (i, j)-th position and zero elsewhere. 
2. If A is the group algebra q G] of the finite group G, then 

1 '" -, Z=TGT~g(8)g . 
gEG 
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We now collect the various properties of separable algebras that we have dis-
cussed. Inspection of the arguments we have given shows that these properties 
are equivalent, so we obtain 
Proposition 4.2. Separable algebras are characterized by any of the folloWing 
properties: 

(1) A is projective as an A-bimodule. 
(2) Any derivation on A with values in an A-bimodule is inner. 
(3) A is a finite product of matrix algebras. 
(4) A is finite dimensional as a vector space, and the bilinear form r(a1a2) 

is nondegenerate, where r is the trace associated to the regular representation. 
(5) One has NQ ~ NQ for all A-bimodules N. 

5. QUASI-FREE ALGEBRAS 

The purpose of this section is to give some idea of the possible types of quasi-
free algebras. We begin by showing that the class of quasi-free algebras is rather 
restricted. 

We recall that A is called (left) hereditary when any submodule of a projec-
tive (left) module over A is projective. This is equivalent to any module having 
a projective resolution of length one. 
Proposition 5.1. A quasi-free algebra is hereditary. 
Proof. Let M be an A-module, and consider the exact sequence 

I O---.Q A0A M---.A0M---.M---.O 
of A-modules obtained by tensoring the basic exact sequence (36) with M. 
If A is quasi-free, then the bimodule QI A is projective, i.e., it is a direct 
summand of the free bimodule A 0 V 0 A for some vector space V. Hence 
QI A 0 A M is a projective module, because it is a direct summand of the free 
module A 0 V 0 M. Thus this exact sequence is a projective resolution of M 
of length one, so A is hereditary. 0 

An important property of hereditary algebras is the following. 
Proposition 5.2. If I is an ideal in a hereditary algebra R, then the associated 
graded algebra gr f R = EB In / I n+ I is the tensor algebra on the bimodule 1/12 
over R/I. 
Proof. In general for a flat module Mover R we have isomorphisms 10 RM ~ 
1M and (1/12) 0 R M ~ 1M /12 M given by multiplication. Since 
222 (I/I )0R M= (I/I ) 0 R/f (R/l)0R M= (1/1 ) 0 R/f (M/IM) , 

we have 
(I/I2) 0 R/f (M/IM) ~ 1M/12M. 

Now in a hereditary algebra any left ideal is a projective module, and hence flat. 
Hence we can apply this isomorphism to In-I to obtain 

(I / 12) 0 R/f (In-I / In) ..:::::. In jIn+l. 
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By induction this implies that In /In+1 is the n-th tensor product of the bimod-
ule 1/12 over R/ I , which proves the assertion. 0 

To illustrate these results, let us consider a finitely generated commutative 
algebra A which is quasi-free. The first proposition says that A is regular of 
dimension ::; 1, and the second implies that the graded algebra associated to 
any maximal ideal is a polynomial algebra of dimension ::; 1. Either of these 
properties means that A is smooth of dimension ::; 1 , i.e., it corresponds to a 
variety whose components are points and nonsingular affine curves. 

In fact, one knows from Koszul complex calculations [HKR] that a smooth 
(commutative) algebra of dimension n has Hochschild cohomological dimen-
sion n, hence it is quasi-free iff n ::; 1. Thus an algebra which is nonsingular 
in the commutative category becomes singular in the noncommutative category 
when the dimension is > 1 . This is closely related to the fact that, in contrast 
to the situation for smooth algebras, the tensor product of two quasi-free al-
gebras need not be quasi-free. The Hochschild cohomological dimension of a 
tensor product is the sum of the dimensions of the factors in general, so the 
tensor product of two quasi-free algebras can have Hochschild cohomological 
dimension 2. 

The following lists ways to produce quasi-free algebras. 
Proposition 5.3. (1) The free product of any family of quasi-free algebras is quasi-
free. 

(2) If 1: is a subset of the quasi-free algebra A, then the algebra A[1:- I ] 

obtained by formally adjoining the inverses of elements of 1: is quasi-free. In 
particular the group algebra of a free group is quasi-free. 

(3) Let A be quasi-free and let N be a projective bimodule over A. Then the 
tensor algebra TA (N) is quasi-free. 

(4) If S is separable and A is quasi-free, then S ~ A is quasi-free. In partic-
ular, MnA = Mn C ~ A is quasi-free. 

(5) The product Al x A2 of two quasi-free algebras is quasi-free. 
Proof. All of these can be proved by showing that any square-zero extension 
has a lifting homomorphism. To prove (3), let R be a square-zero extension 
of TA(N). As A is quasi-free, there is a lifting homomorphism A -+ R, and 
R thereby becomes a bimodule over A. As N is a projective bimodule, we 
can lift the inclusion N -+ TA(N) to an A-bimodule map N -+ R. Then these 
liftings of A, N combined with the universal property of the tensor algebra 
induce the desired lifting homomorphism TA (N) -+ R. Similar arguments yield 
(1) and (2). 

To prove (4), let R be a square-zero extension of S ~ A, and identify S, A 
with the subalgebras S ~ 1, 1 ~ A of A ~ S. As S is separable, hence quasi-
free, there is a lifting homomorphism S -+ R. Let us consider the centralizer 
HO(S, R) of S in R. As the functor HO(S, ?) is exact for a separable algebra, 
it follows that ~(S, R) is a subalgebra of R mapping surjectively onto S~A. 
Since A is quasi-free, there is a lifting homomorphism A -+ ~(S, R). We 
then have homomorphisms from S and A to R whose images commute, and 
these yield the desired lifting homomorphism S ~ A -+ R . 
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A similar argument proves (5); one first lifts the separable subalgebra C x C C 
Al X A2 and considers its centralizer. 

Actually it is quicker to prove (4) and (5) by showing that the algebra con-
sidered as bimodule over itself has a projective resolution of length one. Thus 
for S ® A we tensor the basic exact sequence (36) with S, and for Al x A2 we 
use the direct sum of the sequences (36) for Al and A2 . 0 

We next discuss a somewhat exotic type of quasi-free algebra. 
Proposition 5.4. The inductive limit of a countable system··· -+ An -+ An+1 -+ 
. .. of separable algebras is quasi-free. 

An example of this situation is the unital algebra obtained by adjoining the 
identity matrix to the nonunital algebra Moo C consisting of infinite complex 
matrices (xij)' i, j 2: 1 , with finitely many nonzero entries. Here An is the 
subalgebra Mn C of matrices with support in 1 :=:; i, j :=:; n with the infinite 
identity matrix adjoined. Since MnC is unital, An is isomorphic to ex MnC, 
hence it is separable. 
Proof. We first examine the cotangent sequence 2.9 in the case of a homomor-
phism S -+ A , where S is separable. Since modules over a separable algebra 
are projective, this sequence has the form 

I I I 0-+ A ®s n S ®s A -+ n A -+ nsA -+ O. 

As S is separable, we can choose Y E nl S satisfying ds = [s, Y]. Then 
a 1-+ da - [a, Y] is an S-derivation, which by 2.4 induces a bimodule lifting of 
n~A into QI A. Thus the cotangent sequence splits yielding an A-bimodule 
isomorphism 

I I I Q A ~ A ®s n S ®s A EB nsA. 
We apply this to the homomorphism An_I -+ An and extend from bimodules 

over An to bimodules over the inductive limit Aoo to obtain 
I I 

Aoo ®A Q An ®A Aoo ~ Aoo ®A nAn_I ®A Aoo 
n n n-I n-l 

I 
EB Aoo ® A Q A An ® A Aoo ' 

n n-l n 

whence 

nlA = lim A ®A QIAn ®A A ~ ffiAoo ®A n~ An ®A Aoo' 
00 ~ 00 n n 00 '\:I} n n-I n 

n 

Now bimodules over a separable algebra S, being modules over the separable 
algebra S ® SOP, are automatically projective. Thus the bimodules over Aoo in 
the above direct sum are projective, and so is nl Aoo 0 

6. FORMAL TUBULAR NEIGHBORHOOD THEOREM 

Lifting properties. We have seen that quasi-free algebras have the property that 
any square-zero extension has a lifting homomorphism, and that separable al-
gebras have the additional property that any two lifting homomorphisms in a 
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square-zero extension are conjugate by an element lying over the identity of the 
algebra. 

By virtue of the fact that any nilpotent extension is a composition of square-
zero extensions, these properties extend to nilpotent extensions, and more gen-
erally, to extensions obtained by adic completion, as we now show. 

Let [ be an ideal in the algebra R, and consider R as a filtered algebra with 
the [-adic filtration. The completion 

R = lim Rj [n+! 
+---

n 

is naturally a filtered algebra with the completed I-adic filtration 
(Ik)~ = lim l j [n+!. 

+---
n 

We have R/[n+! = R/(In+!)~, and Rand R have the same associated graded 
algebra. 

Let Rn = R/ [n+! . 

Proposition 6.1. (1) Assume A quasi-free. Then any homomorphism uo : A -+ 

Ro lifts to a homomorphism u: A -+ R . 
(2) Assume A separable. Suppose given homomorphisms u, u' : A -+ Rand 

an invertible element go E Ro such that go Uo g;; ! = u~, where uo' u~ : A -+ Ro 
denote the reduction of u, u' modI. Then there exists a lifting of go to an 
invertible element g E R such that gug -I = U' . 

Proof. (1) It suffices to construct inductively a sequence of homomorphisms 
un : A -+ Rn starting with Uo such that un lifts un_I. As Rn -+ R n_ 1 is a 
square-zero extension, we reduce to proving the assertion in the case [2 = o. 
We form the pull-back of R by Uo 

o ---+ [ ---+ R' A ---+ 0 

1= 1 
o ---+ [ ---+ R ---+ Ro ---+ 0 

and note that a homomorphism u lifting Uo is equivalent to a lifting homomor-
phism A -+ R' . Since R' is a square-zero extension of A and A is quasi-free, 
this lifting homomorphism exists, yielding the desired homomorphism u. 

(2) Let un' u~ : A -+ Rn be the reductions of u, u' modulo (In+I)~. It suf-
fices to construct inductively a sequence of invertible elements gn E Rn starting 
with go such that gn lifts gn-I and gnung;1 = u~. This reduces us to the 
case [2 = o. Let hER be any lifting of go. Then h is invertible, and after 
replacing u by huh-I we can suppose Uo = u~ and go = 1. Next we form 
the pull-back R' of R by Uo as above, and consider the two lifting homomor-
phisms I, I' : A -+ R' corresponding to u, u' . As A is separable, I and I' are 
conjugate by an element of 1 + [ , and hence so are u and u'. 0 
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We now take up the tubular neighborhood theorem. 
We consider an extension A = R/ [ , and let N denote the A-bimodule [/[2 . 

Let T = TA(N) be the tensor algebra of N, let J be the ideal in T generated 
by N, so that A = T / J. We wish to compare the adic completions R, T 
with respect to [ and J respectively. These completions are filtered algebras 
with the completed adic filtrations. Since T is graded, we have 

T= IT T;(N) , jk = IT T;(N) 
n20 n2k 

and the associated graded algebra of T can be identified with T. 

Theorem 1. Assume A is quasi-free and N is a projective A-bimodule. Then 
there is a surjective homomorphism u : T --+ R compatible with the completed 
adic filtrations, such that grO u, grl u are the identity on A, N respectively. 
Moreover, if R is hereditary, then u is an isomorphism. 
Proof. As A is quasi-free, there exists a lifting homomorphism A --+ R by 
6.1. We can then view the canonical surjection f --+ N as a surjection of A-
bimodules. As N is projective, there exists an A-bimodule lifting N --+ f. The 
pair of these liftings then induces a homomorphism T --+ R , which carries the 
ideal J into f, hence this homomorphism extends to the completion to give a 
homomorphism 

n 

of filtered algebras. The map on associated graded algebras gr( u) can be iden-
tified with the homomorphism T --+ gr R which is the identity in degrees 0, 1 . 
Since gr R is generated by degrees 0, 1 , we see that gr( u) is surjective, and a 
standard consequence of this and completeness is that u is surjective. When R 
is hereditary, we know that gr R is a tensor algebra by the lemma above, hence 
gr( u) and u are isomorphisms. 0 

The formal tubular neighborhood theorem is the following variant of this 
result. 

Theorem 2. Assume R and A are quasi-free. Then there is an isomorphism of 
~ ~ 0 1 filtered algebras u : T --+ R such that gr u, gr u are the identity on A, N 

respectively. 
Proof. Since R is hereditary by 5.1, this will follow from Theorem 1 once we 
show that N is a projective bimodule over A. But this is a consequence of the 
cotangent exact sequence 2.11 

1 1 0--+ N --+ A OR a R OR A --+ a A --+ 0 

since aiR and alA are projective bimodules over R and A respectively. 0 

We now give another proof using a construction which has a geometric in-
terpretation. This construction will be applied later in the case of the universal 
extension. 
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As A is quasi-free, we know R/ [2 is isomorphic to the semi-direct product 
A ED N. We choose an isomorphism and consider the derivation on R/ [2 given 
by zero on A and one on [/[2 . This gives a derivation R ----; N which can be 
lifted to a derivation D: R ----; [, since nl R is a projective R-bimodule. Then 
D([n) c [n for all n, hence D induces a derivation on the associated graded 
algebra gr R. Since this derivation is zero on A = R/ [ and one on N = [/[2 , 
it is n on [n / [n+1 . We then have 

(D - n)··· (D - l)D(R) c [n+1 

by induction. It follows that R/ [n+1 decomposes into eigenspaces of D cor-
responding to the eigenvalues 0, 1 , ... , n, and, as D is a derivation, this 
decomposition is a grading compatible with product. Thus we obtain an iso-
morphism of R/ [n+1 with its associated graded algebra by lifting [k / [k+1 to 
the eigenspace of D on [k / [n+ 1 corresponding to the eigenvalue k. Taking 
the inverse limit as n becomes infinite, we obtain an isomorphism of R with 
the completion of gr R. But gr R = TA (N) by 5.1 and 5.2, which finishes the 
proof. 0 

The geometric picture behind this result is the following. The extension 
A = R/ [ with R and A quasi-free should be regarded as a noncommuta-
tive analogue of an embedding Y c X of manifolds or nonsingular affine 
varieties. The tensor algebra T = TA (N) corresponds to the normal bundle 
.IY = (TXI y)/TY of the embedding, where TXI y denotes the restriction of 
the tangent bundle of X to Y, and the isomorphism T ~ Rcan be interpreted 
as an isomorphism between the formal neighborhoods of Y in .IY and X . 

The construction in the second proof has the following geometric interpreta-
tion. The lifting homomorphism A ----; R/ [2 corresponds to a lifting of .IY to 
a subbundle of T XI y complementary to TY. The derivation D corresponds 
to a vector field on X vanishing on Y, whose I-jet along Y, viewed as an 
endomorphism of T XI y' is the projection onto this complement. Such a vec-
tor field gives rise to a tubular neighborhood isomorphism in which the normal 
space at a point of Y is the expanding submanifold for the vector field issuing 
from this point. 
Finite dimensional quasi-free algebras. Let S be a separable algebra, and let N 
be an S-bimodule. Since S is quasi-free and bimodules over a separable algebra 
are automatically projective, we know from 5.3(3) that the tensor algebra Ts(N) 
is quasi-free. 

Let us consider first the case where S is commutative, that is, S = tee 1 ED 
... ED teer , where the ej are orthogonal idempotents. We choose a basis Ai} for 
ejNej , and consider the quiver having the vertices ej and having Ai} as the set 
of arrows from ej to ej • Then Ts(N) can be identified with the path algebra 
of this quiver (cf. [B], Chapter 4). The algebra Ts(N) is finite dimensional (as 
a vector space) iff the quiver has finitely many edges and no oriented cycles. 

In the general case, we can choose a commutative separable algebra S' which 
is Morita equivalent to S, and if N' is the S' -bimodule corresponding to N, 
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the algebras Ts(N) and Ts,(N') are Morita equivalent. In this way algebras 
of the form Ts(N) with S separable are classified up to Morita equivalence 
by quivers (with finitely many vertices). The finite-dimensional algebras of this 
form correspond to quivers with finitely many vertices and arrows having no 
oriented cycles. 

For instance, the algebra of triangular block matrices 

(44) (' : :) 
is of the form Ts(N) , where S is the (block) diagonal subalgebra, and N 
consists of matrices supported in the diagonal just above the main diagonal. In 
this case the algebra Ts' (N') is the triangular matrix algebra of the same shape 
in which all the blocks are I x I , and the quiver is: 

.-t.-t. 

Let R be a finite dimensional algebra, let / be the radical of R, and let 
S = Rj /. One knows that S is separable, and that / is nilpotent. Applying 
Theorem 1, we obtain a surjective homomorphism u: Ts(N) -t R, where it is 
unnecessary to complete the tensor algebra here as / is nilpotent. Furthermore, 
if R is hereditary, then u is an isomorphism, whence R is quasi-free. As 
quasi-free algebras are hereditary, we conclude the following. 
Proposition 6.2. A finite dimensional algebra is quasi-free iff it is hereditary. 
These algebras are the ones of the form Ts(N) with S separable such that the 
associated quiver has finitely many edges and no oriented cycles. 

7. UNIVERSAL LIFTINGS AND CONJUGACIES 

We recall our identification of RA with the algebra of even differential forms 
under Fedosov product. The universal based linear map A -t RA is the inclu-
sion of A as the forms of degree zero. 

Suppose now that A is a quasi-free algebra. We can then construct induc-
tively a compatible family of lifting homomorphisms A -t RAj/An, and hence 
a lifting homomorphism 

(45) I: A -t RA = lim RAJ/An. 
+-- . 

n 

We can view I as a universal lifting homomorphism in the following sense. 
Let A = Rj / be any nilpotent extension and choose a based linear lifting 
p : A -t R. Then p extends uniquely to a homomorphism p * : RA -t R, 
whose composition with I gives a lifting homomorphism A -t R . 

The first step in the construction of I is to choose a lifting homomorphism 
A -t RAj/ A2 . We have seen this is of the form a 1---+ a - </Ja, where 

- 2 
(46) </J:A-tnA, -~</J=dud. 

The succeeding steps seem at first glance to involve lots of choice. However, as 
we shall see, there is a systematic procedure motivated by Yang-Mills theory to 
construct I starting from a choice of </J. 
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We begin by noting that a homomorphism RAj f An -+ R is equivalent to a 
based linear map p: A -+ R , whose curvature w satisfies wn = 0, where 

wn(a l , ... , a2n ) = w(a l , a2)··· w(a2n _1 ' a2n )· 

A lifting homomorphism A -+ RAj f An is thus equivalent to a transformation 
p I--T p' , natural in R, from such linear maps to homomorphisms p' : A -+ R , 
such that p = p' when p is already a homomorphism. Therefore I can 
be interpreted as a natural retraction which flattens based linear maps with 
nilpotent curvature into homomorphisms. 

A flattening process of this sort is suggested by Yang-Mills theory. The gradi-
ent of the Yang-Mills functional is a vector field X on the space of connections 
such that -X decreases curvature. In good cases the associated flow exp(tX) , 
in the limit as t -+ -00, yields a retraction onto the subspace of flat connections. 

We now look for an analogue of the Yang-Mills flow in our situation. A 
natural vector field on the space of based linear maps p: A -+ R for any R is 
equivalent to a derivation D: RA -+ RA. Because RA is a free algebra, D is 
determined by its restriction to A, which can be any linear map A -+ RA such 
that Dl = o. Let us write 

Da = loa + i; a + ... 
with the l-cochains In: A -+ Q2nA to be determined. We take fa = 0, so that 
D(RA) c fA, and hence homomorphisms A -+ R are fixed under the flow. 
Next, the effect of D on the universal curvature is 

D(dal da2) = D(a l a2 - al 0 a2) 
= D(al a2) - al 0 Da2 - Dal 0 a2 
= D(a l a2) - a lDa2 - Dal a2 + da l dDa2 + dDal da2· 

To first order, i.e., modulo fA2 , this is i; (a l a2) - ali; (a2) - i; (a l )a2 . If we 
take II = cp , then we have 

2 D(dal da2) = da l da2 (mod fA ) 

which shows that - D decreases the curvature when terms of second order and 
higher are ignored. Finally, we put In = 0 for n ;::: 2. There are many other 
possibilities which can be constructed from cp, for example, we might take h 
to be cp followed by aOda l da2 I--T aOcpa2cpa l , but this choice is the simplest 
from the present viewpoint. 

Thus our analogue of the Yang-Mills vector field is the derivation D on RA 
defined by 

(47) Da = cpa. 

We have D(RA) c fA and 

D(da1da2) = da1da2 + da1dcpa2 + dcpa1da2, 

so D = 1 on f Aj f A2. As in the second proof of the tubular neighborhood 
+1 2n ~ theorem, D = n on fAn j fAn = Q A, and the eigenspaces of D on RA 
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provide an isomorphism of filtered algebras 

(48) Qev A = II n2n A ~ RA. 
n 

In particular the kernel of D is a subalgebra of RA which is mapped isomor-
phically onto A by the canonical surjection RA -+ A , so we obtain the desired 
universal lifting homomorphism A -+ RA . 

If P : A -+ R has nilpotent curvature, and p * : RA -+ R is the induced 
homomorphism, then 

tD pta = p*e a 
gives the trajectory of p under the Yang-Mills flow. It is clear that as t -+ -00 

the map Pt becomes the homomorphism A -+ R given by composing p* with 
the lifting homomorphism from A. 

We can give a formula for the isomorphism (48) as follows. Let H denote 
the degree zero operator on even forms which is multiplication by n on n2n A , 
and let L denote the operator of degree 2 given by 

2n 
L(aodal ... da2n ) = cpaOda l ... da2n + L aOdal ... daj_l dcpajdaj+l ... da2n • 

j=l 

Then ~ev [H,L]=L and D=H+L,henceon n A we have 

-L L -L L (l -tL tL 
e He = H + e [H, e ] = H + 10 e [H, L]e dt = D. 

Consequently the isomorphism (48) is given by the operator e -L , and the uni-
versallifting homomorphism is 

(49) la=e-La=a-cpa+!Lcpa- .... 
We next show that the derivation D on RA extends to a derivation on 

QA commuting with the canonical involution y. We identify QA with the 
superalgebra of all differential forms under Fedosov product. The two canonical 
embeddings of A in QA are then ea = a + da, eYa = a - da . 

Since QA = A * A , a derivation D on QA is specified by giving a derivation 
De : A -+ QA relative to e together with a derivation DeY: A -+ QA relative 
to eY • This means that 

De(ala2 ) = eal 0 Dea2 + Deal 0 ea2 

and similarly for DeY. It is straightforward to check that 

Dea = !da + cpa + dcpa, DeYa = -!da + cpa - dcpa 
are derivations relative to e and eY respectively. Thus we obtain a derivation 
on QA defined by 

Da = cpa, 
(50) 

D(da) = !da + dcpa 
and it clearly commutes with y. 
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Writing J for the canonical ideal qA, we have D = 0 on QAj J = A, 
and D = ! on JjJ2 = alA. Thus D = tn on JnjJn+1 = nnA, and the 
eigenspaces of D on QA provide an isomorphism of filtered algebras 

(51 ) 
n n 

extending (48). 
Suppose now that A is a separable algebra. In this case we know that any two 

liftings of A in a nilpotent extension are conjugate. The universal version of 
this fact says that there is an invertible element U E QA such that u(Ju -I = (Jr • 
We are going to construct such an element u in a fashion similar to the one 
used above to construct a lifting homomorphism A --+ RA . 

Because A is separable, there is an element Y E nl A satisfying da = 
[a, Y], and, as we have seen, there is even a canonical choice for Y. Let D' 
be the derivation on QA such that 

(52) D' (J = [(J, Y], 

where the bracket is with respect to the product on QA. As these are derivations 
relative to (J and (Jr respectively, D' is well defined. Adding and subtracting, 
and using the fact that Y is odd, we obtain 

D' a = d a 0 Y - Y 0 d a = daY - Y d a , 
D'(da) = a 0 Y - Yoa = (aY -dadY) - (Ya+dYda) 

= da + d(daY - Y da). 

Now the l-cochains daY and -Yda both have coboundary -da l da2 , hence 
so does ¢a = t(daY - Y da) . Thus D' is the derivation on QA given by 

D'a = 2¢a, D' (da) = da + 2d¢a. 

Thus for this choice of ¢ we have D' = 2D, where D is the derivation con-
sidered above. The eigenvalues of D' on QA are nonnegative integers. 

We now construct the desired invertible element in QA by solving a dif-
ferential equation. The following calculations take place inside QA, so that 
products and inverses are meant with respect to Fedosov product; one can use 
the isomorphism (51) to work inside QA with the ordinary product if one 
wants. 

Let Y = L:yn , D'Yn = nYn be the eigenvector decomposition of Y with 
respect to D'; we have Yo = 0 since Y E J. Let g = L: gn' D' gn = ngn be 
the element of QA satisfying 

(53) 
, 

D g = -Yg 

and go = 1. The components gn are determined by the recursion relation 
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so g is a well-defined invertible element of QA. We have 

D' (g -lOg) = (-g -ID, gg -1)Og + g -I D' Og + g -I OD' g 

= g -I (YO + [Y , 0] - OY)g = 0 

and similarly D' (gOY g -I) = O. Hence g -lOg and gOY g -I are both homomor-
phisms from A to the kernel of D' . Since go = 1 , these two homomorphisms 
coincide with the lifting homomorphism A ----> RA , and we obtain the desired 
conjugacy: 

-20 2 Or g g = . 
Finally, we note that the derivation D, or D', on QA has a geometric 

interpretation similar to the one discussed in the case of RA. It corresponds 
to a natural vector field X on the space of pairs of homomorphisms 0', 0" 
from A to a variable algebra R such that -X decreases the difference 0' - 0" . 
The associated flow in the limit carries 0' and 0" to the same homomorphism 
00 , In the separable case the infinitesimal changes in 0' and 0" are given by 
infinitesimal inner automorphisms by (52). Solving the differential equation 
(53) amounts to integrating these infinitesimal inner automorphisms to inner 
automorphisms conjugating 0' and 0" to 00 , 

8. CONNECTIONS 

Connections in right modules. Let E be a right A-module, and consider the 
space E 0 A nA of E-valued forms. This is naturally a graded right module 
over nA, and by means of this structure we can write the element ~ 0 w of 
E 0 A QA as simply ~w. 

Following Connes [Co] we define a connection on E to be an operator V : 
E ----> E 0 A nl A satisfying the Leibniz rule 

V(~a) = V(~)a + ~da 
for ~ E E, a EA. The operator V then extends uniquely to an operator of 
degree one on E 0 A nA satisfying 

V('1w) = (V'1)w+ (_l)l'1I'1dw 

for '1 E E 0 A nA, w E nA . 
Consider for example a free right module V 0 A ,where V is a vector space, 

and identify the forms having values in V 0 A by means of the canonical 
isomorphism 

V 0 nA = (V 0 A) 0 AnA. 
Then we have a canonical conneCtion given by the operator V = 1 0 d on 
V0nA. 

As another example, suppose that the right module E is a direct summand 
of V 0 A, and let i : E ----> V 0 A and p : V 0 A ----> E be the inclusion 
and projection maps. Then on E we have an induced connection, called the 
Grassmannian connection, which is given by the composition 

no i no I®d no P no E 0 A uA ----> V 0 uA ----> V 0 uA ----> E 0 A uA , 
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where we also use i, p to denote the natural extensions to module-valued forms. 
Thus with this notation the Grassmannian connection is 
(54) V =p(10d)i. 

We now consider E as a quotient of a free right module in the standard way 
by means of the multiplication map m: E 0 A -+ E, m(e 0 a) = ea. A right 
module map s: E -+ E 0 A such that ms = 1 then identifies E with a direct 
summand of E 0 A , so it determines a connection on E. 

Proposition 8.1. By associating to s the Grassmannian connection V = 
m( 1 0 d)s we obtain a one-one correspondence between right A-module maps 
s : E -+ E 0 A which are sections of m and connections V on E. 

Since sections s of this sort exist iff E is projective, we obtain 
Corollary 8.2. A right module has a connection iff it is projective. 

The proposition implies in particular that any connection occurs as a Grass-
mannian connection. This result can be viewed as a noncommutative analogue 
of the theorem of Narasimhan-Ramanan on universal connections [NR]. 

To prove the proposition we consider the exact sequence of right A-modules 
nol j m O-+E0Au A-+E0A-+E-+O, 

where j(eda) = ea 01 - e ° a. Ignoring the right module structure, this exact 
sequence of vector spaces has a splitting given by the section e t-+ e 0 1 of m. 
Now the splittings of a short exact sequence form an affine space which can 
be identified with the space of maps from the quotient space to the subspace 
once one has chosen a basepoint. In our case this means that there is a one-one 
correspondence between linear sections s : E -+ E 0 A of m and linear maps 
V : E -+ E 0 A 0 1 A given by 
(55) s(e) = e 01 - j(Ve). 
But 

s(ea) - s(e)a = ea 0 1 - e ° a - j{V(ea)} + j{V(e)a} 
= j{ -V(ea) + V(e)a + eda} 

and j is injective, so s is a right A-module map iff V is a connection. 0 

Connections on bimodules. Let E be a bimodule over A. By a right connection 
on E we mean an operator V, : E -+ E 0 A 0 1 A satisfying 

(56) V,(a1ea2) = a l (V,e)a2 + a1eda2. 
In other words, a right connection is a connection on the right module E which 
commutes with left multiplication. 

Let V be a connection on E as right module, and let s be the corresponding 
section (55). Since 

s(ae) - as(e) = j{ -V(ae) + aVe}, 
V commutes with left multiplication iff s does. Thus a right connection V, 
is equivalent to a bimodule map s, : E -+ E 0 A which is a section of the right 
multiplication map m,: E 0 A -+ E . 
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Similarly a left connection on E is an operator '\II : E ---+ Q' A 0 A E com-
muting with right multiplication and satisfying the Leibniz rule with respect to 
the left multiplication: 

(57) '\I1(a,c;a2 ) = a, ('\IIc;)a2 + da,C;a2• 

It is equivalent to a bimodule map sl : E ---+ A 0 E which is a section of the left 
multiplication map mi. 

Definition. A connection on the bimodule E is a pair ('\II' '\I r) consisting of a 
left and a right connection. 

To understand this concept better, let us consider the commutative square of 
bimodule surjections: 

'®m,l 
A0E ~ E 

Given a connection ('\II' '\I r) on E, let sl' sr be the corresponding sections as 
above. Then (1 0 sr)sl is a lifting of the bimodule E into A 0 E 0 A, showing 
that E is a projective bimodule over A. Conversely, if E is a projective 
bimodule, we can lift it into A 0 E 0 A and then follow with 1 0 mr , ml 0 1 
to get the liftings sl' sr corresponding to a connection on E. This proves 
Proposition 8.3. A connection on E exists iff E is a projective bimodule over 
A. 

Now a lifting E into A0E0A is equivalent to a connection on E considered 
as a right module over Ae . In order to clarify the relation of these Ae -module 
connections to connections on the bimodule E in our sense, we observe that 
the above square is part of the 3 x 3 diagram of short exact sequences obtained 
by tensoring the basic exact sequence (36) on both the left and right of E. This 
diagram yields in a well-known wayan exact sequence of bimodules , , o ---+ Q A 0 A E 0 A Q A ---+ A 0 E 0 A ---+ (A 0 E) x E (E 0 A) ---+ O. 
Since a connection on the bimodule E is equivalent to a lifting of E into 
the fibre product on the right, any connection of this type comes from an Ae _ 
module connection on E. Moreover two Ae -module connections which give 
the same connection on E differ by a bimodule map E ---+ Q' A 0 A E 0 A Q' A. 
We see therefore that Ae -module connection is a finer concept than connection 
in our sense. 
Example. Suppose the algebra A is separable, and let Z = E Xi 0 Yi be a 
separability element. We then have a bimodule direct sum decomposition 

,p s 
Q At:;A0At:;A, 

j m 

where s(a)=aZ=Za, p(ao0a,) =aoYa, , and Y=Exidyi . 
On the free bimodule A 0 A we have the canonical connection given by 

'\II = d 0 1 and '\I r = 1 0 d. By virtue of this decomposition we obtain induced 
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connections on A and nl A. Now according to 4.1 there is in fact a canonical 
choice for the separability element Z . Consequently we find that/or a separable 
algebra there are canonical connections on A and 0 1 A. 

Let us now compute these connections for an arbitrary separability element 
Z. We first consider the case of A, where the induced connection is "I = 
m(d 0 l)s, ", = m(1 0 d)s. We have 

"Ia = m(d (1) LXj 0yja = Ldxjyja = -Ya 

as LXjYj = 1. A similar calculation holds for ", yielding the formulas 

"Ia = -Ya, 
",a = Y a + d a = a Y. 

(58) 

We next consider nlA, where the induced connection is "I = p(d 0 l)j, 
", = p(1 0 d)j. Using j(aodal ) = aoal 0 1 - ao 0 ai' we find 

(59) 
"/(aodal ) = aodal Y + daoda l , 
",(aodat ) = -aoYdal· 

Extending derivations to TA(E). A connection on a vector bundle over a man-
ifold provides a way to lift vector fields on the base to vector fields on the total 
space. We now derive a noncommutative version of this fact. 

We consider an A-bimodule E equipped with a connection ("I' ",), and 
let T = TA(E). Given a derivation D : A -+ M, where M is a T-bimodule, 
we propose to extend D to a derivation T -+ M. It suffices to define a linear 
map c; 1--+ DC; from E to M satisfying 

(60) 

To see this recall that the derivation D : T -+ M we seek is equivalent to a 
lifting homomorphism 1 + D : T -+ T EEl M into the semi-direct product. We 
are given this lifting homomorphism on A, hence by the universal property it 
suffices to arrange that c; 1--+ DC; is a bimodule map relative to a 1--+ a + Da . 
This means 

alc;a2 + D(alc;a2 ) = (a l + Dal)(c; + Dc;)(a2 + Da2 ) 

which is equivalent to (60). 
We define D on E to be the composition 

E (V'/,V'r)j n l A0A EEElE0A ni A ~M, 

where D*(dac;) = Dac; and D*(c;da) = C;Da. Thus 

(61 ) 

and (60) follows immediately from the properties (57), (56) of "I' "r. We 
have therefore proved the first part of 
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Proposition 8.4. Any derivation D : A -t M, where M is a bimodule over 
T = TA(E) , extends to a derivation D: T -t M given by (61). Consequently, 
the connection determines a bimodule splitting of the cotangent exact sequence 

1 1 o -t T ~ A 0 A ~ A T -t 0 T -t T ~ A E ~ A T -t O. 
To obtain the second statement we consider the universal derivation from A 

to a T -bimodule: 
d 1 1 A-tQ Ac T~AO A~AT 

and extend it to T; the bimodule map defined on 0 1 T associated to this 
extension is then a retraction which splits the sequence. 0 

Connections on 0 1 A. Let us next take the bimodule E to be 0 1 A. Since 
0 1 A ~ A Q 1 A = 0 2 A, a left connection V I on 0 1 A, a right connection V" 
and d can be viewed as operators from 0 1 A to Q2 A having the properties 

V /(a l<!a2) = al V /<!a2 + dal<!a2 , 
d(a l<!a2) = a2d<!a2 + da l<!a2 - al<!da2, 

V,(al~a2) = alV,<!a2 +al<!da2, 
It is clear that if V, is a right connection, then d + V, is a left connection. 
Conversely if VI is a left connection, then VI - d is a right connection. Thus 
we have 
Proposition 8.5. There is a one-one correspondence between left and right con-
nections on 0 1 A given by VI = d + V,. 

Consequently, if a right connection exists, then a left connection exists and 
conversely. In this case a connection exists, so 0 1 A is a projective bimodule 
by 8.3, and A is quasi-free. Conversely, if A is quasi-free, then connections 
on 0 1 A exist. If (VI' V,) is a connection, then 

(62) 1 2 r = VI - d - V, : 0 A -t 0 A 
is a bimodule map which will be called the torsion of the connection. It vanishes 
when V I corresponds to V, as in the proposition. 

We next describe connections on 0 1 A by cochains. 

Proposition 8.6. (1) A right connection V, has the form 

V,(aoda l ) = ao¢al , 

where ¢a = V,(da) can be any l-cochain with values in 0 2 A satisfying -o¢ = 
dud. 

(2) A left connection VI has the form 

V/(aoda l ) = aolflal + daodal ' 

where lfIa = V/(da) can be any l-cochain with values in 0 2 A satisfying -Olfl = 
dud. 
Proof. (1) follows from 3.4. (2) follows by applying (1) to the right connection 
V, = VI - d corresponding to VI in the sense of 8.5. 0 
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A connection (\1[, \1r ) on nl A is therefore described by the pair of 1-
coohains lfIa = \1[(da) , ¢a = \1r (da) which can be arbitrary satisfying -~¢ = 
-~1fI = dud. The torsion is the bimodule map from 0 1 A to n2 A correspond-
ing to the derivation a!--7 (1fI- ¢)(a). Thus the connection is torsion-free when 
¢ = 1fI, and by 3.4 the torsion-free connections are in one-one correspondence 
with lifting homomorphisms A ---- RAJ I A2 . 

One can always associate a torsion-free connection to a connection by aver-
aging ¢ and 1fI. This process has the virtue of preserVing the geodesic flow, as 
we will see. 
Examples. 1. Consider a free algebra A = T( V). In this case 0 1 A = A 0 
V 0 A is the free bimodule generated by the vector space of differentials dv 
for v E V, and there is a canonical torsion-free connection with \1[(dv) = 
\1r (dv) = ¢v = O. The corresponding lifting homomorphism A ---- RAjIA2 is 
the homomorphism extending the obvious lifting v !--7 v of the vector space of 
generators. A formula for ¢ is given at the end of §3. 

2. Suppose A separable and consider the connection (59) on 0 1 A. We 
have ¢a = \1r (da) = -Yda and lfIa = \1[(da) = daY, and the torsion is 
the bimodule map corresponding to the derivation a !--7 daY + Y da. Thus 
the canonical connection on nl A for a separable algebra is not torsion-free in 
general. 

Geodesic flow and exponential map. We now discuss a noncommutative version 
of geodesic flow on the tangent bundle. Recall that a connection on the tangent 
bundle T M of a manifold M determines a vector field X on T M whose 
trajectories give the geodesics associated to the connection. At a point v of 
T M lying over the point m E M the vector Xv is the horizontal tangent 
vector given by the connection which lifts v regarded as a tangent vector to M 
at the point m. Notice that the projection of X to M is tautological, more 
precisely, for a function a coming from M we have that X a is the linear 
function on T M corresponding to d a. Thus we have a canonical derivation 
from functions on M to functions on T M, which is then extended to all 
functions on T M by means of the connection. 

As noncommutative analogue of the tangent bundle for an algebra A we take 
the algebra TA (n I A) = nA. Thus nn A corresponds to the space of functions 
of degree n on the tangent bundle, and we have the canonical derivation d : 
A ---- nl A with values in the space of linear functions. Suppose now that a 
connection (\11, \1 r) on nl A is given, and let 1fI, ¢ be the associated cochains 
as above. We then use the connection as in 8.4 to extend d to the geodesic flow 
derivation X: nA ---- nA defined by 

Xa = da, 
X(da) = (\1[ + \1r )(da) = (Ifl + ¢)(a). 

We note that the geodesic flow derivation is the same if we replace our con-
nection by the torsion-free connection obtained by averaging IfI and ¢. 

The derivation X is of degree one relative to the grading on nA, so X can 
be exponentiated to a one-parameter group of automorphisms etX on nA. 



288 JOACHIM CUNTZ AND DANIEL QUILLEN 

~ X Let u : QA ---+ nA be the homomorphism such that za 1-+ a, zl' a 1-+ ea. 
We consider the qA-adic filtration on QA and the filtration by order on OA. 
We have 

pa 1-+ !(1 + eX)a = a + !da + 2nd order, 

qa 1-+ !(1 - eX)a = -!da + 2nd order, 
so u is a homomorphism of filtered algebras. Identifying the associated graded 
algebra of QA with nA, the induced map of associated graded algebras is 
given by a 1-+ a, da 1-+ -!da. As this induced map is an isomorphism, we 
obtain an isomorphism of the qA-adic completion QA with QA. Thus we 
have proved 

Proposition 8.7. There is an isomorphism QA':::' QA given by za 1-+ a, zl' a 1-+ 
X e a. 

We call this isomorphism the formal exponential map associated to the con-
nection, since it is analogous to the map T M ---+ M x M sending a tangent 
vector v at mE M to the pair (m, eXPm v). 

Connections on On A. Our analysis of connections on nl A generalizes in a 
straightforward way to connections on On A. In this case V I' V r ' d are opera-
tors from On A to On+1 A, the torsion is the bimodule map V 1- d + (-I )nV r ' 
and the one-one correspondence between left and right connections is given by 
VI = d - (-I)nVr . 

Proposition 8.8. (I) A right connection V r on nn A has the form 

(63) Vr(aOda l ... dan) = ao¢>(a l , ... , an)' 

where ¢>(al , ... , an) = V r(da l ... dan) can be any n-cochain with values in 
nn+1 A satisfying (_I)n t5¢> = dU(n+l) . 

(2) A left connection V on On A has the form 

V/(aoda l ... dan) = ao'l/(a l ' ... , an) + dao··· dan' 

where 'I/(a l , ... , an) = V/(da l ... dan) can be any n-cochain with values in 
nn+1 A satisfying -t5'1/ = dU(n+l) . 

Proof. The formula (63) gives an equivalence between linear maps Vr : On A ---+ 

nn+1 A compatible with left multiplication and n-cochains ¢> with values in 
nn+1 A. Using the identity (32) we have 

Vr(aOda l · .. danan+l ) - Vr(aOda l · ··dan)an+1 = (-I)nao(t5¢»(a l , ... , an+I )· 

This shows V r satisfies the Leibniz rule with respect to right multiplication iff 
(-I)nt5¢> = dU(n+l) , proving (1). 

(2) follows by applying (1) to the right connection (-I)n+I(V/ - d). 0 

A connection (VI' V r) on nnA is thus described by the pair of n-cochains 
'1/ = V Idun, ¢> = V rdun which can be arbitrary satisfying -t5¢> = (_I)n t5 '1/ = 
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dU(n+l) . The torsion is the bimodule map 

"il l - d + (_l)n"il,: OnA -+ On+IA 

corresponding to the n-cocycle '" + (_I)n ¢. 
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For example, suppose n = 0 in which case A must be separable for connec-
tions to exist. A connection is described by elements '" = "ill 1 and ¢ = "ill 1 in 
0 1 A satisfying d a = - [a, "'] = [a, ¢]. The torsion '" + ¢ is a central element 
of 0 1 A. In the example (58), and in particular for the canonical connection 
on A, the torsion is zero. 
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