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CYCLIC HOMOLOGY AND NONSINGULARITY 

JOACHIM CUNTZ AND DANIEL QUILLEN 

From the pioneering work of Connes [Col] one knows that periodic cyclic 
homology can be regarded as a natural extension of de Rham cohomology to 
the realm of noncommutative geometry. Our aim in this paper is to present 
the noncommutative analogue of the approach of Deligne [D] and Hartshorne 
[H] to de Rham cohomology in algebraic geometry. In this approach de Rham 
cohomology is first obtained for a nonsingular algebraic variety by means of the 
de Rham complex of differential forms. An arbitrary variety is then treated by 
embedding it in a nonsingular variety and completing the de Rham complex of 
the latter along the subvariety. 

In our noncommutative version algebraic varieties are replaced by associative 
unital algebras over the complex numbers, and nonsingular varieties become al-
gebras which are quasi-free [CQ1]. Indeed, nonsingular varieties are described 
locally by commutative algebras which behave like free commutative algebras 
with respect to nilpotent extensions of commutative algebras, while quasi-free 
algebras are those algebras behaving like free algebras relative to nilpotent alge-
bra extensions. Like a free algebra, a quasi-free algebra R has cohomological 
dimension::; I with respect to Hochschild cohomology, and this implies that its 
periodic cyclic homology H PIJR, v E Z/2 , is calculated by the supercomplex 

(1) 

discussed for free algebras and co algebras in [Ql]. This means that X(R) for R 
quasi-free plays the role in the noncommutative setting of the de Rham complex 
of a nonsingular variety. Our version of the way de Rham cohomology can be 
obtained by embedding into a nonsingular variety says that for any algebra 
extension A = R/ I with R quasi-free we have a canonical isomorphism 

(2) HP*A = H* (~X(R/ln)) . 
As an immediate consequence we deduce Goodwillie's theorem [G] that a 

nilpotent extension A' -+ A gives rise to an isomorphism on periodic cyclic 
homology. In fact, as we show in § 10, our methods yield a refinement of this 
theorem in which an inverse with respect to cup product for the homomorphism 
A' -+ A is constructed in bivariant periodic cyclic cohomology. For this result 
to be valid, it is necessary to define bivariant periodic cyclic cohomology in a 
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slightly different way from Jones-Kassel [JK], since the inverse class need not 
come from HC2n (A, A') for large n. 

In order to extend (2) to include Hochschild and cyclic homology, we con-
sider towers of supercomplexes. On one hand, an ideal I in R gives rise to 
a decreasing filtration Fj X(R) and a corresponding tower i!I!'(R, I) of quo-
tient supercomplexes of X(R). On the other hand, an algebra A determines a 
mixed complex nA consisting of noncommutative differential forms with the 
operators band B, and this in tum gives rise to a tower of supercomplexes 
enA from which the Hochschild, cyclic, and periodic cyclic homology associ-
ated to A can be obtained. Our main result says that for a quasi-free extension 
A = Rj I, i.e., R quasi-free, one has a homotopy equivalence of towers 
(3) i!I!'(R, I) rv enA. 

Besides (2) one can derive from (3) the main results of [Q2] in improved 
form. For instance we find that any class in HC2n A or HC2n+1 A is repre-
sented by a trace or cyclic l-cocycle respectively on Rjl n+l. Moreover, when 
R is free, since any cyclic l-cocycle on Rj I n+1 comes from a trace on I n+1 

via a connecting homomorphism, we conclude that any class in H C 2n+ 1 A is 
represented by a trace on I n+1 • 

The proof of (3) breaks into two parts, the first being to construct explicitly 
the desired homotopy equivalence in the case of the universal extension A = 
RAjIA. In §5 we identify X(RA) with nA as Zj2-graded vector spaces and 
calculate the differential in X(RA) in terms of the canonical operators d, b, K 

on nA studied in [CQ2]. This differential is similar to b + B, and we can 
relate the two by means of the spectral decomposition associated to the Karoubi 
operator K. The spectral projection associated to the eigenvalue 1 then yields 
canonical special deformation retractions of both X(RA) and (nA, b + B) 
onto subcomplexes which are isomorphic. In this way we obtain in §6 an explicit 
homotopy equivalence between these two supercomplexes as well as between the 
towers i!I!'(RA, I A) and enA. 

This part of the proof can be understood as a variation on the basic theme 
of representing cyclic cohomology classes on A by traces of the appropriate 
type on algebras constructed from A such as nA, RA, and QA; cf. [Col], 
[Co2], [CC], [CuI], [Cu2]. To be more specific, recall that Connes [Co2] has 
established an equivalence between supertraces on QA and b + B cocycles on 
A fixed under K; cf. [CQ2] for this formulation. We in effect prove a similar 
assertion with QA replaced by X(RA) , namely, that if contributions from the 
eigenvalues i= 1, -1 of K are ignored, then traces and cyclic l-cocycles on 
RA are equivalent to even and odd b + B cocycles on A respectively. 

The second part of the proof corresponds to Deligne's result that de Rham co-
homology defined by an embedding into a nonsingular variety is independent 
of the choice of embedding. It involves showing for a quasi-free extension 
A = Rj I that up to homotopy equivalence the tower i!I!'(R, I) depends only 
on A. This is done in §§8-9 by following the construction of derived functors, 
with the extension A = Rj I playing the role of a projective resolution of A and 
the tower i!I!'(R, I) corresponding to a functor applied to this resolution. Given 
another extension A = R' j I' , we use the lifting property of R with respect to 
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nilpotent extensions to construct a homomorphism u of inverse systems of 
algebras from (R j I n+' ) to (R' j I'n+') , which then induces a map u * from 
J!e(R, I) to J!e(R' , I'). Moreover, two choices for u can be joined by a one-
parameter family ut depending on t in a polynomial way. The key point is 
that (Utt modulo (chain) homotopy is independent of t, and this is established 
with the aid of a suitable Cartan homotopy formula for the X complex which 
is derived in §7. 

This paper is organized as follows. In the first section we recall from [CQ2] 
how to handle cyclic type homology by means of towers of supercomplexes, 
and then in §2 we extend this to include bivariant cyclic cohomology. The third 
section is an account of the canonical operators on QA and their properties 
[CQ2], including the spectral decomposition associated to the Karoubi operator. 
In §4 we introduce the basic objects X(R) and J!e(R, I) and explain the dual 
interpretation of X(R) in terms of traces and the homotopy relation on traces. 
The next five sections are devoted to the proof of the main result (3) and some 
applications, while § 10 contains the refinement of Goodwillie's theorem we have 
mentioned. § 11 is devoted to a simple construction of Nistor's bivariant Chern 
character [N] in our framework. 

In §12 we apply our description (2) to construct the Chern character from 
KoA and K, A to H P*A by lifting idempotent and invertible matrices in nilpo-
tent extensions. § 13 concerns special features in the case of commutative alge-
bras due to the fact that one has the ordinary de Rham complex Q A in addition 
to QA. One of the purposes of these two sections is to make a link with index 
theory, especially to point out the relation of our work to basic ideas going back 
to Fedosov's version of the index theorem [F]. In the last section we study the 
X complex of the tensor product of two algebras, and then apply this to derive 
a higher homotopy result for the X complex. 

Throughout this paper we work over the complex numbers C, however, with 
minor modifications which will be pointed out at the appropriate places, the 
arguments are easily seen to hold over an arbitrary groundfield of characteristic 
zero. 

1. TOWERS OF SUPERCOMPLEXES AND CYCLIC TYPE HOMOLOGY 

The cyclic homology of an algebra A is usually defined with the aid of a 
suitable mixed complex of chains on the algebra. From the bicomplex associated 
to the mixed complex one obtains an S-module (i.e., a complex equipped with 
an endomorphism S of degree -2), and the cyclic homology is defined as the 
homology of this S-module. The S-module associated to an algebra in this 
way serves also to define periodic cyclic and negative cyclic homology, as well 
as bivariant cyclic cohomology [JK] in the cases of two algebras. 

For our purposes we require another approach to this cyclic type homology 
and cohomology which utilizes supercomplexes instead of complexes. Recall 
that a supercomplex K is a Zj2-graded vector space equipped with an odd 
operator d of square zero, and that it has homology groups HvK, v E Zj2. 
In this paper it will be convenient to write an element of Zj2 as a coset n + 2Z , 
and also, depending on the context, to use the standard abbreviations + and 
- for even and odd respectively. 
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As motivation we begin with the periodic cyclic homology arising from a 
mixed complex. We recall [Kl] that a mixed complex M is a Z-graded complex 
EBn Mn , bounded below, whose differential (denoted b by tradition) has degree 
-1 , which is equipped with an operator B of degree + 1 satisfying [b, B] = 
B2 = o. The homology of M as a complex, i.e., with respect to b, is by 
definition the Hochschild homology of M: 

(1) 

Associated to M is the supercomplex given by 

(2) 
n 

equipped with the usual even-odd grading and the differential b + B. The 
periodic cyclic homology is then the homology of this supercomplex: 

(3) v E Z/2. 

We shall need a similar description involving supercomplexes of the cyclic ho-
mology HCnM attached to M. As periodic cyclic homology is the inverse 
limit of cyclic homology in a certain sense, it is reasonable to introduce the 
following object. 

Bya tower of supercomplexes, or tower for brevity, we mean an inverse system 
of supercomplexes :Jl7 = (:Jl7n) indexed by the integers such that the maps 
:Jl7n -+ :Jl7n- 1 are all surjective, and such that :Jl7 is bounded below in the sense 
that :Jl7n = 0 for n « o. We associate to :Jl7 the filtered supercomplex given 
by the inverse limit equipped with the induced filtration 

....-..... n n-- ..-. n (4) :Jl7 = lim:Jl7, F :Jl7 = Ker(:Jl7 -+:Jl7 ). 
<---

....-..... n- n As :Jl7 / F :Jl7 =:Jl7 ,the tower can be recovered from this filtered supercomplex. 
Furthermore, we obtain in this wayan equivalence between towers and super-
complexes K equipped with a decreasing filtration (Fn K) by subcomplexes 
such that F n K = K for n « 0, and such that K is complete for the topology 
defined by the filtration. 

We call :Jl7n the nth level and 

(5) 

the nth layer of the tower :Jl7 . 
For example, consider the mixed complex M as a supercomplex with the 

usual even-odd grading and the differential b + B. Define the Hodge filtration 
of M by 

(6) F n M = bMn+1 EEl E9 Mk • 
k>n 

This is a decreasing filtration such that Fn M = M for n « o. As F n M is 
closed under band B, it is a subcomplex of M, so we obtain a tower 

(7) 
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which will be called the Hodge tower associated to M. We have 
--- n---(8) ()M = lim M/F M = M 

;--

so the inverse limit of this tower is the supercomplex if giving the periodic 
cyclic homology of M. The nth layer is 

n-l n n i!-F M/F M: M /bMn+1_bMn 
b 

where Mn/bMn+1 is in degree n + 2Z. Thus we have 
n-l n Hn+2Z(F M/F M)=HnM=HHnM, 

n-l n Hn_1+2Z(F M/F M) = 0 
(9) 

so the layers of the Hodge tower give the Hochschild homology of M. 
The Hodge tower () M is an example of a special tower, by which we mean a 

tower :Jr such that the homology of the nth layer is supported in degree n + 2Z 
for all n: 

(10) 

Let us define Hochschild, cyclic, and de Rham homology for a special tower :Jr 
by 

HHn:Jr = Hn+2z(grn:Jr) , 
(11) HCn:Jr = Hn+2Z(:Jrn) , 

HDn_1:Jr = Hn_l+2z(:Jrn) , 
respectively. From the short exact sequence of supercomplexes 

n n n-l o --+ gr :Jr --+:Jr --+:Jr --+ 0 

we obtain a circular six term exact sequence on passing to homology. By the 
condition (10) the homology sequence can be written as a five term exact se-
quence 

0--+ HDn_1:Jrn --+ HCn_1:Jr --+ HHn:Jr --+ HCn:Jr --+ HDn_2:Jr --+ O. 

Splicing these together for different n yields the Connes exact sequence 
s s (12) --+ HCn+1:Jr --+ HCn_1:Jr --+ HHn:Jr --+ HCn:Jr --+ HCn_2:Jr --+ 

where S: HCn:Jr --+ HCn_2:Jr is the map on homology of degree n + 2Z in-
duced by the canonical surjection :Jrn --+ :Jrn- 2 . In addition we have 

(13) HDn:Jr = Im{S: HCn+2:Jr --+ HCn:Jr} 
expressing de Rham homology in terms of cyclic homology .. This formula jus-
tifies the terminology 'de Rham homology' by virtue of the Connes-Karoubi 
theorem [Col, 11.33], [Ka, 2.15]. 

We define periodic cyclic homology for special towers by 

( 14) 
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It is clear from (8) and (9) that the Hodge tower OM has the same Hochschild 
homology and periodic cyclic homology as M. Our next task will be to extend 
this result to cyclic homology, and for this purpose we need to consider S-
modules [JK], [K2]. 

An S-module is a complex Q = EB Qn bounded below, with differential d 
of degree -1 , which is equipped with an operator S of degree - 2 commuting 
with d. A mixed complex M determines an S-module !$ M, which is the 
total complex of the b, B bicomplex of M in the right half plane: 

( 15) (!$ M)n = E9 M n_2p , d=b+B, 
p>O 

where S: (!$ M)n -+ (!$ M)n-2 is the evident projection killing the summand 
for p = O. By definition the cyclic homology of M is 

( 16) 

The S-module !$ M is an example of a divisible S-module, by which we 
mean that the S operator is surjective. Let Q be any divisible S-module Q, 
let sQ be the kernel of S on Q, and let 

(17) Qn+2z = ~ Qn+2k 

where the inverse limit is taken with respect to S. Then sQ is a complex and 
Q is a supercomplex. Let the Hochschild, cyclic, and periodic cyclic homology 
of Q be defined by 

(18) 
HHn Q = Hn(SQ) , 
HCnQ = HnQ, 

HPyQ=HyQ, 

respectively. In the case Q =!$ M we have 

( 19) s(!$M) = M, 

so it is clear from the definitions that !$ M and M have the same Hochschild, 
cyclic, and periodic cyclic homology. 

By the definition of divisible we have an exact sequence of complexes 

(20) 

On passing to homology we obtain a Connes exact sequence relating the 
Hochschild and cyclic homology of Q. When Q = !$ M this is the usual 
Connes exact sequence for the mixed complex M. 

We next present a construction going from a divisible S-module Q to a 
special tower, which yields the Hodge tower OM in the case of !$ M . 

Let (nQ)n be the supercomplex given by 

(21 ) 

where half of the differential is induced by d: Qn -+ Qn-l and the other half is 
given by lifting with respect to S: Qn+1 -+ Qn-l and then applying d: Qn+1 -+ 
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Qn. We have 

Ker{d: Qn/d(SQn+l) --t Qn-I} = ZnQ/d(SQn+I) , 
Im{d: Qn-I --t Qn/d(sQn+1n = dQn+l/d(SQn+l) 

where ZnQ denotes the space of cycles of degree n. Thus 

(22) Hn+2Z(aQ)n = HnQ = HCnQ. 

For each n there is a surjection of supercomplexes 

(aQ)n : Qn/d(SQn+l) !::; Qn-I 

! ! 
(aQ)n-1 : 

379 

induced by S: Qn --t Qn-2 and the identity on Qn-I. We thus have a tower 
aQ consisting of the (aQ)n and these surjections. 

Clearly the inverse limit of this tower is the supercomplex Q giving the 
periodic cyclic homology of Q. On the other hand the nth layer is 

(23) 

hence 

(24) 

Thus we conclude that aQ is a special tower having the same Hochschild, 
cyclic, and periodic cyclic homology as Q. 

Finally we observe that when Q = $ M, then aQ is the Hodge tower of 
M, i.e., there is a canonical isomorphism 

(25) OM = a$M. 

Indeed, in this case sQ is M with the differential b, so d(sQn+l ) = bMn+1 
and 

(aQ)n = (E9 Mn_2P ) / bMn+1 EB E9 Mn_ I_2p = M/ F n M 
p~O p~O 

as claimed. Therefore we have established that the Hodge tower OM has the 
same Hochschild, cyclic, and periodic cyclic homology as M. 

For each of the three types of algebraic objects we have been discussing, 
namely, mixed complexes, S-modules, and towers, there is a natural notion of 
map respecting the structure. Thus we have the following categories: 

~A: the category of mixed complexes, 
~: the category of S-modules, 
~d : the full subcategory of divisible S-modules, 
g-: the category of towers, 
g-s : the full subcategory of special towers. 
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Moreover ~ and a are functors 

(26) = $ =d a c;rS 
fOA-->fOS -->./ 

and we have Hochschild, cyclic, and periodic cyclic homology functors from 
each of these three categories to vector spaces. The main point of the above 
discussion, apart from all the definitions, is the following. 

Proposition 1.1. The functors ~, a, and their composition (), which sends a 
mixed complex to its Hodge tower, are compatible up to canonical isomorphism 
with Hochschild, cyclic, and periodic cyclic homology. 

We record for later reference the following formulas which we have estab-
lished for various homology groups attached to the Hodge tower () M : 

(27) 

v = n + 2Z, 
v = n - 1 + 2Z, 

v = n +2Z, 
v = n - 1+ 2Z, 

Remarks. (1) It is worth mentioning for the sake of completeness the following 
addition to the above formulas: 

n-I~ {HC;;M, 
(28) Hv(F M) = S(HC- M) 

n+1 ' 

v = n + 2Z, 
v = n - 1 + 2Z, 

involving the negative cyclic homology; cf. [Q3, §4 (15)]. 
(2) So far we have considered M / F n M only as a supercomplex, but it is in 

fact a quotient mixed complex of M having the same Hochschild homology in 
degrees ::; n and zero Hochschild homology in degrees > n. The inverse system 
of these quotient mixed complexes can be viewed as a kind of Postnikov system, 
where M / F n M is the nth order approximation to the cyclic homology type 
of the mixed complex M. When the Hochschild homology vanishes in degrees 
> n, this nth order approximation is exact in the sense that the canonical 
surjection M --> M / F n M induces an isomorphism on the cyclic type homology 
associated to these mixed complexes. In particular, the periodic cyclic homology 
is given by the supercomplex M / F n M . 

We tum next to the mixed complexes which will be important later. 
Let A be an (associative unital) algebra, and let Q = QA be the graded 

vector space of noncommutative differential forms on A. Then n is a mixed 
complex in a canonical way; we refer to §3 for the operators b, B, and to 
3.1(f) for the basic identity bB + Bb = O. The cyclic type homology of the alge-
bra A: H HnA , H CnA , H PvA , etc. may be defined as the cyclic type homology 
arising from this mixed complex. In fact Q is the smallest of three 'standard' 
mixed complexes which yield the cyclic type homology of A. The S-modules 
corresponding to these mixed complexes are usually denoted CC(A) , ~(A), 
and ~(A) as in [L, 2.1], and ~(A) is the S-module corresponding to n. 
Explicit homotopy equivalences between these S-modules are constructed in 
[K3]. 
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From 0 and its Hodge filtration Fnn we can construct various supercom-
plexes with the differential b + B. We now describe the homology of some of 
these supercomplexes. 

For instance we have from (27) the following homology associated to the 
Hodge tower en: 

Hv(Fn-lnjFno) = {~HnA, v = n+2Z, 

(29) H)Oj FnO) = { HCnA, 
HDn_IA, 

v = n - 1 + 2Z, 
v = n +2Z, 
v = n - 1 + 2Z, 

HvO=HPvA. 

We next consider the homology of FnO with respect to b + B. This will 
involve the reduced cyclic type homology of A: HHnA, HCnA, etc. which is 
defined by means of the mixed complex 0 = Oje; cf. [LQ, §4). 

The following is proved in [CQ2] and an independent proof will be given 
below in §6. 
Proposition 1.2. The inclusion e c 0 induces an isomorphism on homology with 
respect to the differential b + B , so that H+ (0) = e, H_ (0) = o. Equivalently, 
o is acyclic with respect to b + B . 

As 0 is acyclic, we have 

(30) H (FnO) = H (OJ FnO) = { HCnA, 
v-I v HD A 

n-I ' 

v = n+2Z, 
v = n - 1 + 2Z, 

where we have used the analogue of (29) for the mixed complex O. 
We now compute the homology of FnO with respect to b + B . 
First note that if n < 0, then F n 0 = 0 and the homology is given by 1.2. 
Next, if n ~ 1, then the surjection FnO ----> FnO is an isomorphism, so the 

homology of FnO is given by (30). 
Finally, if n = 0, then OJ FOO is AQ concentrated in even degree, so from 

the exact sequence 
° ° o ----> F 0 ----> 0 ----> OJ F 0 ----> 0 

we obtain the exact sequence 

° ° 0----> H+(F 0.) ----> e ----> AQ ----> H_(F 0.) ----> 0 

on passing to homology. Using this we find H_(FoO) = HCoA, and H_(Fon) 
= 0 or e according to whether 1 ¢ [A ,A] holds or not. 

In particular we have the formula 

(31) Hn_1+2z(FnO) = HCnA, n ~ O. 

2. BIVARIANT CYCLIC COHOMOLOGY 

Our aim in this section is to include bivariant cyclic cohomology in the picture 
presented in § 1. We begin with divisible S-modules, where bivariant cyclic 
cohomology may be defined as the cohomology of a suitable mapping complex. 



382 JOACHIM CUNTZ AND DANIEL QUILLEN 

Let Q, Q' be divisible S-modules. Let Homs(Q, Q') be the mapping com-
plex such that 

k, , 
Homs(Q, Q) = Homs(Q, Q )-k 

consists of operators f: Q -+ Q' of degree -k commuting with S, where the 
differential is f ~ [d, f]. We define bivariant cyclic cohomology for divisible 
S-modules by 

(1) 
k , k , 

HC (Q, Q) = H (Homs(Q, Q )). 
For three divisible S-modules there is a cup product 

HCi (Q', Q") Q9 HCk(Q, Q') -+ HCi+k(Q, Q") 

induced by the pairing 

Homs(Q' , Q") Q9 Homs(Q, Q') .~ Homs(Q, Q") 

given by composing operators. 
According to [JK, 2.2, 5.1], when we pull back this bivariant cyclic coho-

mology and cup product via M ~ ~ M , we obtain the Jones-Kassel bivariant 
cyclic cohomology for mixed complexes 

(2) HCk(M, M') = HCk(~ M, ~ M') 

and its cup product. 
It is useful to interpret the structure on divisible S-modules, which is pro-

vided by bivariant cyclic cohomology equipped with the cup product opera-
tion, in terms of a homotopy category. Note that a map f: Q -+ Q' of S-
modules (i.e., respecting the S-module structure) is the same as an element 
of ZOHoms(Q, Q'), where ZO denotes the subspace of elements killed by 
the differential. We say f is homotopic to zero when f = [d, h] for some 
h E Hom~l(Q, Q'). Then elements of 

° , ° , -1' HC (Q, Q) = Z Homs(Q, Q )/[d, Horns (Q, Q)] 

are homotopy classes of maps of S-modules Q -+ Q' . 
Let H o~/ denote the homotopy category of divisible S-modules, in which 

the morphisms are homotopy classes of maps. Then this homotopy category 
incorporates the information in HCo together with the cup product. 

In order to handle HCk we use the 'suspension' operation Q ~ Q[l], whose 
kth power for any integer k is Q ~ Q[k] , where 

Q[k]n = Qn-k 

with d, S on Q[k] given by (-l{d, S on Q. Clearly 

Homs(Q, Q') = Homs(Q[k] , Q'[k]) , 

hence 
HCO(Q, Q') = HCo(Q[k] , Q'[k]) 

showing that suspension determines an automorphism of the homotopy category 
HO~d. 
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On the other hand we have 

Hom~(Q, Q'[k]) = Hom~+k(Q, Q') 

where the differential on the left is (_I)k times the differential on the the right, 
so 

(3) 

Thus an element of HCk(Q, Q') can be identified with a map Q ----> Q'[k] in 
H o~; . With respect to this identification the cup product is easily seen to be 

(4) (g: Q' ----> Q"[j])(f: Q ----> Q'[k]) = (g[k]· f: Q ----> Q"[j + k]). 

In this way we can recover bivariant cyclic cohomology for divisible S-modules 
and its cup product from the homotopy category of divisible S-modules and 
the suspension automorphism. 

We next want to treat bivariant cyclic cohomology for special towers, but 
before doing so it will be convenient to introduce homotopy for maps of towers 
and the corresponding homotopy category HoY. 

Let 2',2" be arbitrary towers (of supercomplexes) and let 
-- -, -- -, n -- m -, (5) Home (2' ,2' ) = {f: 2' ----> 2' J'v'm ::In, f(P 2') c P 2' } 

be the supercomplex of continuous linear maps with respect to the natural 
topologies. Sitting inside this is the subcomplex 

(6) Homk(2' , 2") = {f: fii ----> fii'J'v'm, f(p m+k fii) c pm 2"} 

of maps of order :::; k. Thus f: fii ----> fii' has order :::; k iff it induces 
maps of the quotient spaces 2'm+k ----> 2',m for all m. In this wayan element 
of Homk(2' , 2") can be identified with a map of inverse systems (2'n) ----> 

(2'In-k) , which is linear but might not respect the supercomplex structure. 
Consequently, a map 2' ----> 2" in Y (Le., respecting the supercomplex 

structure) can be identified with an element f E Z+Homo(2' , 2"), where 
Z+ denotes the subspace of even cycles. We say that f is homotopic to zero 
when f = [d, h] for some h E Homo (2' ,2"L. Then elements of the set 
H+(Homo(2',2")) are homotopy classes of maps from 2' to 2", and we 
have the homotopy category of towers HoY, in which homotopy classes are 
the morphisms. It should be clear what is meant by a homotopy equivalence of 
towers, and in particular, by a contractible tower. 

We now restrict attention to special towers and let H oys c HoY be the full 
subcategory consisting of special towers. We define bivariant cyclic cohomology 
for special towers by 

k, k, (7) HC (2',2') = Hk+2Z(Hom (2',2' )). 

In the case of three special towers we have a cup product on H C* induced by 
the pairing 

Hom j (2" , 2''') ~ Homk (2' ,2") ----> Hom j +k (2' ,2''') 
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given by composition. We note that HCO(2" , 2"') is the set of maps 2" ~ 2'" 
in the homotopy category H oyS and the cup product on H CO is composition 
of maps in this category. 

We define suspension 2" 1-+ 2"[1] for special towers so that its kth power is 

(8) 2"[k]n = 2"n-k v v-k 

with d on the left given by (-ll d on the right. We have 

Hom) (2"[k] , 2"'[kD = Hom} (2",2"'), 

HCo(2"[k] , 2"'[kD = HCO(2" , 2"') 

so suspension determines an automorphism of H oyS . It is clear that 
p' p+k' (9) Hom (2",2" [kDv = Hom (2" ,2" )v+k 

with d on the left corresponding to (_l)k d on the right, so 

( 10) 

Thus, as in the case of divisible S-modules, we conclude that HC* for special 
towers together with its cup product operation can be recovered from H oyS 
and the suspension automorphism. 

We next examine the behavior of the functor a with respect to bivariant 
cyclic cohomology. Let Q, Q' be divisible S-modules and 2" = aQ , 2'" = aQ' 
the corresponding special towers. We are going to compare 

(11) ° , ° , -1' HC (Q, Q) = Z Homs(Q, Q )/[d, Horns (Q, Q )], 

( 12) 0' 0' ° , HC (2",2") = Z+Hom (2",2" )/[d, Hom (2",2" L]. 

We have seen that Q=fi', and similarly with primes. Recall that Homk(2",2"') 
is a subcomplex of the supercomplex 

( 13) 

by definition. On the other hand, because Q is divisible, Qn is a quotient 
space of Qn+2z' and similarly for Q' . Moreover, an element of Hom;(Q, Q') 
can be identified with a map f: Q ~ Q' of degree k + 2Z, which induces 
maps Qn ~ Q:-k for all n. Thus we can regard both Hom;(Q, Q') and 
Homk (2" ,2"') as subspaces ofthe supercomplex (13). Note that the differential 
f 1-+ [d, f] on (13) restricts to the differential on the complex Homs(Q, Q') 
in an evident sense. 

With this understood we have the inclusion 
° , 0' Hom (2",2")+ c Homs(Q, Q ). 

Indeed, the latter consists of f: Q ~ Q' which induce maps Qn ~ Q: for all 
n, while the former consists of such f which in addition induce maps from 
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Qn/d(SQn+l) to Q~/d(sQ~+I). Notice that when f commutes with d this 
additional condition is automatic, hence we have 

° , ° , (14) Z+Hom (2",2") =Z Homs(Q, Q). 

Lemma 2.1. Homo(2", 2"'L = Hom~1 (Q, Q') + [d, Homo (2" , 2"'L]. 
Proof. First of all we have 

° , -I' Hom (2",2" L ::) Horns (Q, Q) 

since if f: Q -+ Q' induces Qn -+ Q~+I for all n, then it induces Qn-I -+ 

Q~/d(sQ~+I) and Qn/d(SQn+l) -+ Qn-2 -+ Q~_I . Thus the inclusion::) holds 
between the subspaces cited in the lemma. 

To show the opposite inclusion, let f E Homo (2" , 2"'L. Write 2"n for 
grn 2" and similarly with primes, and consider the induced map r: 2"n -+ 
-In. -In -'n . .. -n -n 
2" . Smce d: 2"n+2Z -+ 2"n-I+2Z IS surJectIve, we can choose g : 2"n+2z -+ 

2"~n+2Z such that dgn = r on 2":+2Z. Extending gn to an even map 
2"n -+ 2"1n vanishing on 2":-1+2Z' we then have that rand [d, gn] agree 
on 2":+2Z. We choose gn in this way for each n and then choose g E 

Homo (2" ' 2")+ inducing gn on the nth layer for all n. This is possible be-
cause we are working over a field, hence if the differentials are ignored we can 
suppose the towers are split, i.e., 

2"n = EB 2"m 
m~n 

and similarly for 2"'. If we put r = f - [d, g], then r kills 2":+2Z = 
sQn/d(SQn+l ) for all n. Thus the map Qn/d(SQn+l) -+ Q~_I induced by r descends to a map Qn-2 -+ Q~_I for all n, which means that r lies in 
Hom~ 1 (Q, Q'). As f = r + [d , g] , this shows the inclusion c holds between 
the subspaces cited in the lemma. 0 

This lemma implies [d, Homo (2" , 2"'L] = [d, ·Hom~1 (Q, Q')], which to-
gether with (11), (12), (14) yields a canonical isomorphism 

( 15) 

The isomorphisms (14) and (15) have the following interpretations in cate-
gory terms. We note that the two sides of (14) can be viewed as Hom sets in 
the categories g-s and ~d respectively. We can interpret (14) as saying that 
a induces isomorphisms 

° , ~ ° , Z Homs(Q, Q) -+ Z+Hom (aQ, aQ ), 

for every pair Q, Q' , in other words, the functor 

a: ~d -+ g-s 

f 1-+ a(f) 
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is fully faithful. Similarly (15) means that a induces isomorphisms 

( 16) ° , ~ ° , a*: HC (Q, Q) -> HC (aQ, aQ) 

and so we also have a fully faithful functor 

(17) 

on the level of homotopy categories. 
We have now established the degree zero part of the following. 

Proposition 2.2. One has canonical isomorphisms 
k , ~ k , 

a*: HC (Q, Q) -> HC (aQ, aQ) 

compatible with cup product. 

The isomorphism a* for arbitrary k is obtained as follows: 

HCk(Q, Q') = HCo(Q, Q'[k]) 

= HCo(aQ, a(Q'[k])) 

= HCo(aQ, (aQ')[k]) 
k , 

= HC (aQ, aQ) 

using (3), (10), and the fact that the functor a commutes with the suspen-
sion automorphisms in H o~/ and H oYs. Thus a* sends the element of 
HCk(Q, Q') given by a map f: Q -> Q'[k] in Ho~d to the element of 
HCk(aQ, aQ') given by the map a(f): aQ --t a(Q'[k]) = (aQ')[k] in HoYs. 
It follows easily using (4) that a* is compatible with cup product. 0 

Having treated divisible S-modules and special towers, it remains to consider 
mixed complexes and the lones-Kassel bivariant cyclic cohomology (2). Again 
we introduce a category to handle the structure on mixed complexes given by 
this cohomology and its cup product. 

Let us define the derived category of mixed complexes D~A to be the category 
having mixed complexes for objects, in which a map M --t M' is an element 
of HCo(M, M') and composition is given by the cup product on HCo. We 
then have a tautological functor 

d (18) D~A -> Ho~ , M I-+,[B M 

which is fully faithful. We define suspension for mixed complexes by M[k]n = 
Mn_k,with b, B on M[k] given by (_I)kb, (_I)kB on M. Since,[B(M[k]) 
= (,[B M)[k] , one sees easily that suspension is an automorphism of D~, and 
that elements of HCk(M, N) can be identified with maps M --t N[k] in this 
category, with cup product described in a way similar to (4). 

Let us use ,[B to denote the functor (18). Combining these remarks about 
this functor, 2.2 about the functor a of (17), and 1.1, we obtain the following 
result summarizing the results of §§ 1 and 2. 
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Theorem 2.3. One has fully faithful functors 

(19) D~A !! Ho~: ~ HoYs 

which are compatible up to canonical isomorphism with Hochschild, cyclic, and 
periodic cyclic homology, and with bivariant cyclic cohomology. 
Remarks. Since cyclic type homology and cohomology are functors on each of 
the categories D~A' H o~: ' and H oYs , it follows that an isomorphism be-
tween two objects in any of these categories induces isomorphisms on cyclic type 
homology and cohomology involving these objects. For instance, an isomor-
phism M ~ M' in D~A gives rise to an isomorphism of functors H C* ( - , M) 
~ HC*( -, M'), and the converse even holds by Yoneda's lemma. In this situa-
tion M and M' are equivalent from the viewpoint of cyclic homology theory, 
in other words, they have the same cyclic homology type. 

It is thus appropriate to interpret D~A' H o~: s, and H oYs as the cate-
gories of cyclic homology types (or cyclic 'motives') arising from mixed com-
plexes, divisible S-modules, and special towers respectively. Moreover, as the 
functors (19) are fully faithful, each category can be viewed as a full subcate-
gory of the following one. It turns out that both functors are equivalences of 
categories [Q3], so that all cyclic homology types arising from special towers 
already come from mixed complexes. 

Let us define the cyclic homology type of an algebra A to be OA considered 
as an object of D~A. Borrowing the terminology 'represent' as in representing a 
functor, we say that a mixed complex M (resp. divisible S-module Q, special 
tower 2') represents the cyclic homology type of A when an isomorphism OA ~ 
M in D~A (resp. 9JOA ~ Q in Ho~:, OOA ~ 2' in HoYs) is specified. 
In this case we can use M (resp. Q, 2') to calculate cyclic type homology 
and cohomology involving A. For example, if 2', 2" represent the cyclic 
homology types of A, A' , then we have 

k I k I k I (20) HC (A, A ) = H (Horns (9JOA , 9JOA )) = Hk+2Z(Hom (2',2' )). 

3. OPERATORS ON DIFFERENTIAL FORMS 

In this section we review basic facts about (noncommutative) differential 
forms; for a more thorough treatment see [CQ2]. 

Let A be an (associative unital) algebra and let OA = EBn On A be the DG 
algebra of differential forms over A. One has the following identification of 
n-forms with tensors: 

OnA =A@~n, 
aoda, ... dan ...... ao @ ... @ an 

(1) 

where A = Ale. Furthermore, OA is the universal DG algebra generated by 
A in degree zero; cf. [CAl, §1]. As A is fixed in this section, we put 0 = OA, 
On = OnA for brevity. 

We now consider various operators on O. First of all there is the operator 
d which has degree + 1 and satisfies d 2 = o. Next we have the Hochschild 
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boundary operator b, which may be defined on homogeneous forms of degree 
> 0 by 

(2) b(wda) = (_1)iw i(wa - aw) 

where Iwl denotes the degree of w, and by zero on O-forms. Then b has 
degree -1 and satisfies b2 = 0 . 

Using b, d we define the Karoubi operator K by 
(3) bd + db = 1 - K. 

Then K has degree zero, and it commutes with band d : 
[K, b] = [K, d] = 0 

since d 2 = b2 = O. It is easy to show from (2) that K is given in degrees> 0 
by 

(4) 

and by the identity in degree zero. 
Finally we define Connes' operator B by 

(5) 
j=o 

Then B has degree + 1 and we have 

(6) 2 
Bd = dB = B = O. 

Moreover, from (4) we have 

(7) Kj(daoda l ·· ·dan) = (-I)njdan_HI' ·.dandao···dan_j 

for 0::; j::; n + 1, hence Kn+1d = d on On and 

(8) KB = BK = B. 

Proposition 3.1. On elements of on we have the following identities: 
(a) Kn+1d = d. 
(b) Kn=I+bKnd. 
(c) Knb = b. 
(d) Kn+1 = I-db. 
(e) (Kn - I)(Kn+1 - 1) = O. 
(f) Kn(n+l) - 1 = bB = -Bb. 

Proof. We have already established (a). 
Iterating (4) n times we obtain 

Kn(a da . ··da ) = da .. ·da a o I n I n 0 

= aodal ... dan + [da l ... dan' ao] 

= ada ···da + (-I)nb(da ···da da ) o I n I n 0 

= (I + bKn d)(aoda l ... dan) 

proving (b). 
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Next, by applying b to both sides of (b) and using the fact that K and b 
commute we obtain (c). 

Applying K to (b) and using (a) and (3) we have 

K n+! = K + bKn+! d = K + bd = 1 - db 

whence (d). 
(e) is a consequence of (b) and (d). 
Finally (f) is proved by means of geometric series: 

n n 
Kn(n+!) _ 1 = LKnj(Kn - 1) = LKnjbKnd = bB, 

j=O j=O 
n-! n-! 

Kn(n+!) _ 1 = LK(n+!)j(Kn+! - 1) = - LK(n+!)jdb = -Bb 

j=O j=O 

and the formulas (a)-(d). 0 

Remarks. Since the polynomial in 3.1 (e) has constant term 1, the Karoubi op-
erator K is invertible on O. It is thus a symmetry of the structure consisting 
of 0 and the operators d, b, B . 

One can view K as an operator on the space A 0 ~n of normalized chains 
which replaces the operator A given by cyclic permutation with sign on the 
space A~·M+! of unnormalized chains. The polynomial relation 3.1 (e) is then 
the appropriate analogue of the fact that A has finite order in each degree. 
As we shall see, this relation gives rise to a spectral decomposition of n with 
respect to K. The spectral projection corresponding to the eigenvalue 1 is then 
analogous to averaging over the cyclic group generated by A. 

Spectral decomposition with respect to K. Let q K] be the algebra of polyno-
mials in the indeterminate K, and consider 0 as a module over q K] , where 
multiplication by the indeterminate K is given by the operator K. As On is 
killed by (Kn - 1)(Kn+! - 1), and by K - 1 when n = 0, we see that n is 
a torsion module over qK]. We recall that this means we have a spectral 
decomposition into generalized eigenspaces 

(9) 0= ffiO W z' Oz = UKer((K - z)n; 0) 
zEC n 

where Ker(f; 0) denotes the annihilator of f on n. The operator K - z is 
invertible on OZI for z =1= z' . 

The projection operator Pz with image Oz given by this decomposition is 
the spectral projection for the operator K and the eigenvalue z. It commutes 
with any operator commuting with K, and if P; = 1-Pz is the complementary 
projection, then we have a splitting 

( 10) 

where K - z is locally nilpotent on pzn and invertible on p;n. 
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So far only the fact that 0 is a torsion C[K]-module has been used, but we 
now examine the polynomial (Kn - 1)(Kn+1 - 1) for n 2: 1 which kills On. 
The roots of this polynomial are roots of unity, and since nand n + 1 are 
relatively prime, this polynomial has 1 as a double root and all the other roots 
are simple. Consequently, if Poo is the set of roots of unity, then we have 

{ 
Ker((K _1)2; 0), Z = 1, 

(11) PzO= Ker(K-z;O), zEPoo ,z#l, 

0, Z rt Poo ' 
in degree n, i.e., with 0 replaced by On . As it obviously holds in degree zero 
where K = 1 , we then deduce (11) by taking the direct sum. 

Writing P = PI for the spectral projection associated to the eigenvalue 1, we 
have the splitting 

(12) 

such that (K - 1)2 = 0 on PO and such that K - 1 is invertible on P.l.O. In 
particular, on PO we have Km = (1 + (K - 1))m = 1 + m(K - 1) , so using 3.1 (f) 
we find that K on PO is given by 

(13) K = 1 - n(n 1+ I)Bb on POn 

for n 2: 1 , and by 1 for n = 0 . 
This implies that Kd = d on PO, hence B = (n + l)d on POn by the 

definition of B. Letting N be the degree operator on 0, i.e., Nw = Iwlw, 
we thus have B = Nd on PO. On the other hand B = 0 on p.l.O, because 
K - 1 is invertible on this space and B(K - 1) = O. Thus we have the formula 

( 14) B = NPd. 

The spectral decomposition (9) holds for any torsion module over C[K] in 
place of 0, so for any subspace V c 0 closed under K we have similar de-
compositions of V and OjV which are compatible with (9). Consequently 
the spectral projection Pz on 0 carries V into V, and it induces the corre-
sponding spectral projections for V and OJ V . 

We now apply this to the subspaces pnO in the Hodge filtration § 1 (6). Since 
pnO is closed under d, b, it is closed under K. Thus P yields splittings of 
pnO and OjpnO having the same properties as (12). As these splittings are 
compatible for different n, we obtain a splitting of inverse systems 

(15) 

such that (K - 1)2 = 0 on P~~ and such that 1 - K is invertible on p.l.OO. 
Note that P commutes with b + B, so (12) is a splitting of supercomplexes 
and (15) is a splitting of towers of supercomplexes. 

Before continuing with these splittings we need some terminology. Let K be 
a supercomplex with differential d . By a special contraction on K we mean an 
odd operator h such that [d, h] = 1 and h2 = O. If such an operator exists, 
then K is contractible, i.e., homotopy equivalent to zero. Conversely, if K is 
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contractible, so that there is an odd operator h with [d, h] = 1, then hdh is 
easily seen to be a special contraction. 

By a special deformation retraction on K we mean a pair (e, h) , where e 
and h are even and odd operators respectively on K satisfying 

( 16) 
2 e = e, [d, e] = 0, 

h2 = he = eh = O. [d, h] = 1 - e, 
The first line means that we have a splitting K = eK EBe.l K into subcomplexes, 
and the second means that h is a special contraction on e.l K extended to K 
so as to be zero on eK. A special deformation retraction may therefore be 
viewed as a splitting into two subcomplexes together with a special contraction 
on the second subcomplex. 

In this situation the inclusion eK ---> K and projection e: K ---> eK are 
inverse up to homotopy, so that K and eK are homotopy equivalent. As 
the sub complex e K tends to be important, we sometimes say that (e, h) is a 
special deformation retraction of K onto eK. 

We remark that h determines e since e = 1 - [d, h]. One can verify that 
with e defined this way the identities (17) are equivalent to 

(17) hdh = h, h2 = O. 
Finally we note that the notions of special contraction and special deforma-

tion retraction carry over to inverse systems of supercomplexes in an obvious 
way. 

With this terminology understood, let us return to the supercomplex 0. and 
the inverse systems (Fnn) and en. We then have the splitting 0. = PQEBp.ln 
into subcomplexes, such that 1 - K = [b, d] is invertible on p.l n. If G is 
the inverse, then G commutes with operators commuting with K, so we have 
(Gd)2=0 and 

[b + B , Gd] = G[ b + B , d] = G( 1 - K) = 1 

showing that Gd is a special contraction on p.ln. Extending G to 0. so as 
to vanish on po., we then obtain a special deformation retraction (P, Gd) on 
n. 

The same argument applies verbatim to Fnn and nj Fnn. Moreover, the 
operator G on 0. induces the corresponding operator on each of these super-
complexes. Thus we have proved 
Proposition 3.2. The pair (P, Gd) induces special deformation retractions on 
the supercomplex 0. and on the inverse systems of supercomplexes (Fnn) , en. 

In §6 we will consider P_ I in addition to P = PI· Writing PI -I = P+P_ I ' 
we then have the splitting , 

.1 (18) 0. = Po. EB p_In EB PI _In 

such that (K-l)2=0 on po., K=-1 on p_In,andsuchthatboth K-1 and 
K + 1 are invertible on Pt -I n. Furthermore we have corresponding splittings 
of (Fnn) and en with the same properties. 



392 JOACHIM CUNTZ AND DANIEL QUILLEN 

Remarks. (1) One has the following explicit formulas [CQ2, §2]: 

( 19) 1 2:n (n 0) j n Gd = -- - - ] "d on 0 n + 1 2 ' j=O 
(20) 1 - P = (Gd)b + b(Gd). 

(2) Although we have been working over the complex numbers, we would like 
to point out that the foregoing discussion can be carried out over any groundfield 
of characteristic zero with one minor change. The spectral decomposition (9) 
must include contributions from all monic irreducible polynomials over the 
groundfield, not only the linear ones. This does not affect what we have said 
about the spectral projections P and P -I ' which is all we use in the rest of the 
paper. On the other hand the characteristic zero hypothesis is required in order 
that "n - 1 have simple roots, and this is essential for (11). 

4. THE SUPERCOMPLEX X(R) AND TOWER Jl"(R, l) 

Let R be an algebra. If M is an R-bimodule, let 

(1) MQ=M/[M,R] 

be its commutator quotient space, and let Q: M --+ MQ denote the canonical 
surjection. We recall that a trace on the bimodule M with values in a vector 
space V is a linear map r: M --+ V satisfying r(mx) = r(xm) for m EM, 
x E R. Clearly traces M --+ V are equivalent to linear maps MQ --+ V , in other 
words, MQ is the universal target for traces on M. 

We now consider the bottom two levels of the Hodge tower associated to 
OR. As b(On+1 R) = [On R , R] by §3 (2), the ground level is 

o OR/F OR = RQ 

where by abuse of notation we also write RQ for the supercomplex given by RQ 
in even degree and by 0 in odd degree. The next level plays an important role 
in this paper, so we introduce the special notation: 

(2) 

It is the supercomplex 

(3) R b OIRQ 
Qd 

where b is defined by b(Q(xdy)) = b(xdy) = [x, y]. The canonical surjection 
between these levels is the map of supercomplexes 

(4) 

given by Q: R --+ RQ • We note that there are bilinear maps 

(x, y) I---' xy E R, 1 (x, y) I---' Q(xdy) E 0 RQ 
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from R to the even and odd subspaces of X(R) , where the latter satisfies the 
Hochschild l-cocycle condition: 
(5) q(xd(yz)) = q(xydz) + q(zxdy). 

The importance of X(R) is due to the fact that it is a noncommutative 
analogue of the ordinary de Rham complex OR for commutative algebras. To 
explain this we recall that OR calculates the periodic cyclic homology when 
R is a smooth (commutative) algebra. Now smooth algebras are defined via 
the lifting property with respect to nilpotent extensions in the commutative 
algebra category. When this lifting property is carried over to the category of 
all algebras, we obtain the class of quasi-free algebras studied in [CQ 1]; cf. 
also 7.1 below for the definition. Quasi-free algebras may also be described as 
the algebras having Hochschild cohomological dimension ~ 1. Hence by the 
second remark following 1.1, the periodic cyclic homology for such an algebra R 
is calculated by X(R) . Thus the X supercomplex is analogous to the ordinary 
de Rham complex in the sense that it computes the periodic cyclic homology in 
the 'nonsingular' case. 

We next consider the homology of the two levels under discussion. For the 
ground level the odd homology is trivial, and the even homology is the vector 
space 
(6) 

which is universal for traces on R. By § 1 (29) the homology of X(R) is , 
H+(X(R)) = HDoR = Ker{d: RQ --+ 0 R Q}, 

(7) 
H_ (X(R)) = He, R. 

We would like to give a similar dual interpretation of this homology. 
We first interpret 0' RQ in terms of Hochschild l-cocycles. 

Proposition 4.1. There is a one-one correspondence T(xdy) = f(x, y) between 
traces T: 0' R --+ V and bilinear maps f(x, y) from R to V satisfying 

(8) f(xy, z) - f(x, yz) + f(zx, y) = o. 
Equivalently, 0' RQ equipped with q(xdy) is the universal vector space for 
Hochschild l-cocycles on R. 
Proof. It is clear that if T isa trace on n'R, then T(xdy) satisfies (8). 
Conversely, let f be a bilinear map from R to V satisfying (8), and note 
that f(x, 1) = 0 for all x. Since n'R = R (8) R , we then have a linear map 
T: 0' R --+ V given by T(xdy) = f(x, y). Applying T to 

-[xdy, z] = xydz - xd(yz) + zxdy 
we obtain T([xdy, z]) = 0, showing that T is a trace. 0 

Traces on 0' R arise in connection with homotopy for traces on R. Two 
traces .0' ., on R will be called homotopic (or cobordant [Col, II]) when 
., -.0 = Td for some trace T on 0' R. This terminology is motivated by the 
following situation. 
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Let Ut : R ---+ R', 0::; t ::; 1 , be a one-parameter family of homomorphisms, , ,. " and let. be a trace on the algebra R . We clalm that the traces. Uo and. u1 
on R are then homotopic in the above sense, provided that we can differentiate 
and integrate with respect to t as usual. In order to avoid analytical consid-
erations we present the argument when ut is a polynomial family in the sense 
that utx is a polynomial function of t with values in R' for each x E R. 
Proposition 4.2. The traces .0' .1 on R are homotopic iff there is an algebra 
R' , a one-parameter polynomial family of homomorphisms ut : R ---+ R' , and a 

, 'hh 'd ' trace. on R suc t at .0 = • Uo an .1 = • u1 . 

Proof. ( =» Suppose T is a trace on 0 1 R such that .1 - .0 = T d. Let R' 
be the semi-direct product algebra REB 0 1 R, let ut : R ---+ R' be the family of 
homomorphisms given by utx = x + tdx, and let .' be the trace on R' given 
b ' '( d) (d " y • x = .ox, • x y = T x y). Then we have .0 = • uO' .1 = • u1 . 

( <=) Let ut : R ---+ R' and .' have the indicated properties, and let itt be 
the derivative of ut with respect to t. Then 

(9) T(xdy) = 101 
.' (utxitty) dt 

defines a trace T on 0 1 R, since the right side is a Hochschild l-cocycle. Alter-
natively, the integrand is the trace on 0 1 R obtained by pulling .' back by the 
R-bimodule homomorphism 0 1 R ---+ R' induced by the derivation itt relative 
to ut . Finally we have T(dy)=.'ul(y)-.'uo(y),hencethetraces .'UO,.'u l 
on R are homotopic. 0 

We can now proceed to the dual interpretation of X(R). Consider the su-
percomplex X* = Hom(X(R) , V) of linear functions on X(R) with values in 
V. Even elements of this supercomplex are linear functions g(x) on R, and 
odd elements can be viewed either as traces T on 0 1 R, or as Hochschild 1-
cocycles f(x, y) . The transpose of b sends g(x) to g([x, y]), hence an even 
cocycle in X* is the same as a trace on R. The transpose of qd is T I--> T d , 
or f(x, y) I--> f( 1 , x), hence the even coboundaries are just the traces on R 
which are nullhomotopic. Thus the even cohomology 
(10) H+(X*) = Hom(H+(X(R» , V) 
is the space of homotopy classes of traces on R with values in V, and this 
implies that H+(X(R)) = HDoR is the universal space for homotopy classes of 
traces on R. Moreover, the canonical surjection X(R} ---+ Rq can be interpreted 
dually as the map sending a trace to its homotopy class. 

An odd cocycle in X* can be viewed either as a trace T on 0 1 R such that 
Td = 0, or as a Hochschild l-cocycle f(x, y) satisfying f( 1, y) = O. Now 
(8) implies f(l,yz) = fey, z)+f(z,y), so the condition f(l,y) = 0 is 
equivalent to f being a cyclic l-cocycle. Furthermore, odd coboundaries are 
of the form g([x, y]), and these are the same as cyclic l-coboundaries. Thus 
H- (X*) is the cyclic cohomology of degree one with values in V in agreement 
with (7). 
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On the other hand, a trace T on .QI R such that Td = 0 can be viewed as a 
homotopy from the zero trace on R to itself. Thus a cyclic l-cocycle on R is 
analogous to a loop in the space of traces on R with respect to the homotopy 
relation for traces defined above. 

We next recall from [Ql] an important example of the supercomplex X(R). 
Let R be a free algebra, i.e., the tensor algebra T(V) = EBn>O V~M on a vector 
space V. In this case we have a canonical isomorphism of-R-bimodules 

( 11) ~ n l R (9 V (9 R -+ ~'" R, X(9v(9Yl-+xdvy. 

Passing to commutator quotient spaces yields a canonical isomorphism of vector 
spaces 

x (9 V 1-+ q(xdv) 

thereby identifying .QI Rq and EBn~1 V0n . 

Let (J on V 0n be the forward shift cyclic permutation operator and define 
Nu on V 0n to be ~;:d (Jj • Then X(R) is the direct sum of C regarded as a 
supercomplex concentrated in even degree and 

Since we are in characteristic zero, the kernels of 1 - (J and Nu equal the 
images of Nu and 1 - (J respectively, so we have 

( 12) 

for a free algebra. 

I-adic filtration of X(R). Let I be an ideal in the algebra R. By the universal 
property of 0 1 with respect to derivations we have 

0 1 (R/ l) = 0 1 R/ 101 R + 0 1 RI + dl = 0 1 R/ IdR + dRI + dl 

since 0 1 R = RdR = dRR. Passing to commutator quotient spaces yields 

( 13) 0 I (R/ l)~ = 0 I R/[O I R, R] + I d R + d I = 0 IRq /q (I d R + d l). 

Consider the I-adic inverse system of algebras (R / IrH I ). We then have a 
tower of quotient complexes of X(R) given by 

(14) X(R/In+1): R/In+l =+OIRq/q(ln+ldR+d(ln+I)). 

It is better, however, to work with slightly different quotient complexes having 
nicer properties. 

We define the I-adicfi/tration of X(R) to be the decreasing filtration given 
by the subcomplexes 

( 15) 
F,2ntl X(R): Inti =+ q(Intl d R + In dl), 

F,2n X(R): Inti + [In, R] =+ ~(ln d R) 
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for n 2:: 0 and Fi X(R) = X(R) for p < o. These are closed under the differen-
tials b, qd because bq(IndI) = [In, I] c In+1 and qd(In+l) c L.~ q(/j dIIn- j ) 
c q(Indl). Since IdR c dl + dlR we have 

(16) q(In+ldR) C q(lndl) 

so we can shorten the formula for F/n+1 X(R) if we want. In practice it is 
usually easier to work with (15). 

Corresponding to this filtration is a tower of supercomplexes JC'(R, I) = 
(JC'P (R, I)) where 

( 17) JC'P(R, I) =X(R)/FJX(R). 

Thus we have 
JC'2n+1 (R, I): R/ln+1 401 RQ/q(In+1 dR + In dI) , 

JC'2n (R, I): R/ln+1 + [In, R] 4 0 1 RQ/q(ln dR) 
( 18) 

for n 2:: 0, and JC'P(R, I) = 0 for p < O. The ground level JC'°(R, I) is (R/I)Q 
as a supercomplex concentrated in even degree. Since q(RdI) c q(IdR + dI) 
we have 

( 19) 

and the surjection JC'I (R, I) -> JC'0 (R, I) can be identified with the surjection 
(4) for the algebra R/ I. In particular, even when I = 0 the tower JC'(R, I) 
can have two nontrivial layers. 

Comparing (14), (18) we have maps of quotient complexes of X(R) as fol-
lows: 
(20) -> X(R/ln+l) -> JC'2n+I(R, I) ->JC'2n(R, I) -> X(R/ln) ->. 

Thus the towers JC'(R, I) = (JC'P(R, l)) and (X(R/ln)) have the same inverse 
limit which we denote 

(21 ) 

and call the I-adic completion of X(R). This completion is naturally a topo-
logical supercomplex. 

We next establish some functorial properties of the I -adic filtration FiX (R) 
and tower JC'(R, I). These are clearly functors of the pair (R, I) . 

Lemma 4.3. One has JC'P(R, I) .:::. JC'P (R/ In+1 , 1/ In+l) for p :::; 2n + 1. 
Proof. In general if re: R -> R' is a surjective homomorphism, I is an ideal in 
R, and I' = reI, then re*: X(R) -> X(R') is surjective, and it maps Fi X(R) 
onto Fj,X(R') , so that we have the identification 

JC'P(R', 1') = X(R)/FJ X(R) + Kerre •. 

f · , / n+1 2n+I X (R I) In the case 0 the quotlent algebra R = R I we have Ker 7r. C FI ' 
by (20), hence JC'P (R' , I') = JC'P (R, l) for p :::; 2n + 1. 0 
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This lemma implies that the tower 2"(R, I) can be obtained from the in-
verse system of algebras (RjIn+!). Consequently there is a map 2"(R, I) --+ 

2"(S, J) induced by any homomorphism (RjIn+!) --+ (SjJn+!) , not only ho-
momorphisms (R, I) --+ (S, J). 

Given algebras R, S there is a canonical surjection of supercomplexes 

(22) 

given by a(r 18> s) = ~(r) 18> sand 

(23) 

For background we mention that a is induced by the canonical DG algebra 
surjection 

Q(R 18> S) --+ QR(R 18> S) = R 18> QS 

from differential forms to relative differential forms with respect to R (cf. 
[CQl, 2.8]), and that when R is the matrix algebra MnC it is the natural trace 
map X(MnS) --+ X(S) . 

Lemma 4.4. Let I c R, J c S be ideals, and let M denote the ideal I I8>S + RI8>J 
in R 18> S. ~For all p one has 

a(F~X(R 18> S)) C L ~(i) 18> FJ-2i X(S). 
i;?:O 

Proof. We can suppose p ~ O. Let P = 2n be even. Since 

one has 

n 
M n = Li 18> I n- i 

i=O 

n+! n 
F~n X(R 18> S)+ = L Ii 18> I n+1- i + L[i 18> I n- i , R 18> S], 

i=O i=O 
n 

F~nX(RI8>SL = L~((iI8>Jn-i)d(RI8>S)). 
i=O 

n+l n 
a(F~nX(R 18> S)+) c L ~(t) 18> In-i+l + L ~(i) 18> [In- i , S] 

i;?:O 
n 

a(Fi: X(R 18> SL) c L ~(i) 18> ~(Jn-i dS) c L q(i) 18> F}n-2i X(SL· 
i=O i;?:O 

This proves the lemma when p is even, and the odd case is similar. D 
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5. IDENTIFICATION OF X(RA) 

Let RA be the algebra given by the space n+ A of even forms equipped with 
the Fedosov product 

(1) wo~=w~-dwd~. 

Note that A = nO A is a subspace of RA but not a subalgebra. This subspace 
generates RA by virtue of the identities 

(2) 

(3) aOda 1 •· ·da2n = ao 0 (da1da2) 0···0 (da2n_lda2n). 

The algebra RA has the following universal property [CQ1]. 

Proposition 5.1. Given an algebra R and a linear map p: A --; R such that 
p ( 1) = 1, there exists a unique homomorphism p.: RA --; R such that p. a = pa 
for all a EA. 
Proof. The uniqueness of P. follows from (2) and (3), because one must have 

(4) p. (aOda1 ••• da2n ) = p(aO)w(a1 ' a2)··· w(a2n _1 ' a2n ) 

where w(a1 , a2) = p(a]a2) - p(a])p(a2) is the curvature of p. 
To prove the existence, we define p * by (4) and note that it is well defined 

because the right side is multilinear and vanishes when ai = 1 for some i 2: 1 . 
To show P * is a homomorphism, consider the subset SeRA consisting of x 
satisfying the condition 

p*(x 0 y) = p*(x)p*(y) Vy ERA. 

We have to show S = RA. Now it is easily checked that S is a subalgebra of 
RA , so it suffices to verify this condition when x is an element a of A, since 
A generates RA. We can suppose y has the form aow, w = da1 ••• da2n . 
Then 

p*{a 0 aow) = p*{aaow - dadaow) 
= p(aao)p*{w) - w(a, ao)p*(w) 
= p(a)p(ao)p*(w) 

= p * ( a ) p * ( ao w ) , 
concluding the proof. 0 

Corollary 5.2. RA is a free algebra. 

Indeed, if we choose a lifting of A into A, then this lifting extends to a 
homomorphism T(1) --; RA, which is easily seen to be an isomorphism by 
considering universal mapping properties. 0 

We note that there is a canonical surjective homomorphism RA --; A sending 
an even form to its component of degree zero. If 1 A is the kernel, then 

( 5) 
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and A = RA j I A is a functorial way of presenting A as the quotient of a free 
algebra. We call A = RAJ I A the universal extension of A, because by 5.1 it 
is universal with respect to algebra extensions A = Rj I equipped with a linear 
lifting p: A --+ R such that p(l) = 1. In the same manner RAjIAn+l appears 
as the universal nilpotent extension of order ~ n of A. 

We next study X(RA). As RA is a free algebra, the homology of X(RA) 
is essentially trivial' as we have seen. However, this reflects the fact that RA 
only depends on the underlying vector space of A and the identity element. It 
is necessary to bring in the ideal I A to take account of the product in A, and 
our aim is to describe X(RA) in a way suitable for determining the homology 
of the quotient complexes g>P(RA, IA). 

Consider the RA-bimodule Ql(RA) and its commutator quotient space. In 
order to avoid confusion with the differential d on QA, we use J to denote 
the canonical derivation from RA to Ql (RA). Since a derivation RA --+ M 
is equivalent to a lifting homomorphism from RA into the semidirect product 
RA EB M, it follows immediately from the universal property of RA that one 
has an equivalence between derivations D: RA --+ M and linear maps A --+ M 
vanishing on J given by restricting D to A. Using the universal property of 
0 1 (RA) we thus obtain a canonical isomorphism of RA-bimodules 

(6) RA (2) A (2) RA 2', Ql(RA), x (2) a (2) x' 1--+ xJax'. 

This gives rise to an isomorphism on commutator quotient spaces 
- ~ 1 

RA (2) A --+ Q (RA)Q' x (2) a 1--+ q(xJa) 

which can be written 

(7) xda 1--+ q(xJa). 

From now on we identify Ql (RA)Q with the space of odd forms by means of 
this isomorphism. We then have 

(8) q(xJa) = xda 

for x an even form and a EA. 
Combining this identification with RA = Q+ A we can identify X(RA) and 

QA as (Zj2)-graded vector spaces. We are now going to compute the differen-
tials in X(RA) in terms of this identification. 

To avoid confusion with b on QA, let P denote the differential in X(RA) 
from odd degree to even: pq(xdy) = x 0 y - yo x. Then 

p(xda) = x 0 a - a 0 x = xa - ax - dxda + dadx = b(xda) - (1 + K)d(xda) 

where K is the Karoubi operator §3 (4). In other words, 

(9) 

To obtain the other differential qJ we calculate the 1-cocycle q(xJy) on RA. 
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Lemma 5.3. If y E n2n A, then 
n-t 2n-t 

2" "2 q(xt5y) = - L K J b(x 0 y) + L KJ d(xy) + K n(xdy). 
j=O j=O 

Proof. We proceed by induction on n starting from n = 0, where the formula 
is simply (8). Suppose n > o. To prove the formula we can assume y has the 
form y = y' d at d a2 with y' E n2n- 2 A. Then 

q(xt5y) = q(xt5(y' 0 datda2)) = q((x 0 y')t5(datda2)) + q((dat da2x)t5y') 
where we use the fact that the Fedosov product of two forms is the ordinary 
product when one of the forms is closed. By the induction hypothesis the second 
term on the right is 

n-2 2n-3 
- LK2jb((datda2x)oy') + L Kjd(datda2xy')+K2n-2(datda2xdy'). 

j=O j=O 

As (da tda2x) 0 y' = da tda2(x 0 y') = K2((X 0 y')datda2) = K2(X 0 y) and 
similarly da tda2xy' = K2(XY) , da tda2xdy' = K2(xdy), this is 

n-t 2n-t 
2" . 2 

- L K J b (x 0 y) + L KJ d (x y) + K n (x d y). 
j=t j=2 

Writing x' = x 0 y' the first term is 

q(x't5(datda2)) = q(x't5(ata2 - at 0 a2» 
= q{x' t5(a t a2) - (x' 0 at )t5a2 - (a2 0 x')t5at } 
= x' d(at a2) - (x' 0 at )da2 - (a2 0 x')dat 
= x'd(ata2) - x'atda2 - a2x'dat + dx'da tda2 + da2dx'da t 
= [x'da t , a2l + (1 + K)(dx'da t da2) 
= -b(x'dat da2) + (1 + K)d(x'da t da2) 
= -b(x 0 y) + (1 + K)d(xy) 

where we have used d(x 0 y) = d(xy) . Adding the above expressions gives the 
desired formula. 0 

Setting x = 1 in the formula of the lemma gives 

Q(Jy) ~ - (~K2J) by + ('~ KJ) dy 

whence the differential in X(RA) from even to odd is given by 

(10) qc5 = -N,,2b + B: Q+ A -+ Q-A 

where Nk 2b is a suggestive notation for the operator given by E;~~ K 2j b on 
Q2n A. 
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IA-adic filtration. We now show that the IA-adic filtration FI~X(RA) coin-
cides with the Hodge filtration FnOA under our identification. To save writing 
we put 0 = OA, R = RA, I = I A. Let In denote the nth power of I in R, 
i.e., with respect to the Fedosov product. 
Lemma 5.4. For n 2: 0, we have 

k>n 
~(In+lt5R + InM) = b02n+2 EB EB.o2k+l . 

k>n 
Proof. Let I n = EBk>n 02k . From the definition of Fedosov product we have 
Jp 0 Jq C Jp+q • As J1-= I, it follows that In C I n . The other inclusion I n C In 
follows from (3), proving the first formula. 

Using this description of In and (8) we have Q(Int5A) = EBk>n 02k+1 . Simi-
larly 5.3 yields Q(In M) C EBk~n 02k+1 . Adding these yields the ;econd formula. 

Using this formula for Q(In t5R) we have 

[In, R] = pQ(Int5R) = (b - (I + K)d)EB02k+1. 

Modulo In+1 = EBbn 02k , this is b02n+ 1 , which proves the third formula. 
Finally using 5.3 we see that modulo Q(In+1 t5R) = ffibn 02k+1 the space 

Q(InM) is spanned by the elements Q(xt5y) with x E 02n and y E 0 2 . As 
q(xt5y) = -b(xy) plus higher order terms, we find that q(Int5I) is congruent to 
b02n+2 modulo EBbn 02k+1 , proving the last formula. 0 

We summarize the above calculations as follows. 
Theorem 5.5. There is a natural identification of X(RA) with OA compatible 
with the (Zj2)-grading such that the canonical I-cocycle Q(xt5y) on RA with 
values in 0 1 (RA)Q is given by 5.2, and such that the differential in X(RA) 
is given by (9) and (10). Furthermore, the filtration FI~X(RA) of X(RA) 
coincides with the Hodge filtration FnOA of OA. 

6. HOMOTOPY TYPE OF X(RA) AND ~(RA, IA) 

Let X = X(RA) , F P X = FjAX(RA) , ~ = ~(RA, IA), and 0 = OA. In 
the preceding section we identified X with 0 as (Zj2)-graded vector spaces 
in such a way that the differential in X is P EB t5 where 

P = b - (1 + K)d: n- ~ .0+, 
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Here N,,2b means E;:d K2j b on elements of 02n and qJ has been shortened 
to J to simplify the notation. Furthermore, we have F P X = F P 0 under this 
identification. 

Now P EB J is similar to b + B in the respect that it is a linear combination 
of band d multiplied by polynomials in K. In order to compare these dif-
ferentials we bring in the spectral decomposition associated to the operator K, 

which was discussed in §3. 
Let P and P_ I be the spectral projections corresponding to the eigenvalues 

1 and -1 respectively, and set PI -I = P+P_ I , P/"- -I = I-PI -I' We then 
have the splitting , " 

(1) 

where (K_l)2 = 0 on PO, K = -Ion P_IO, and both K-l and K+ 1 are 
invertible on Pt -I O. This splitting is respected by d, b, B , P ,J since these 
operators commute with K. Furthermore, we have corresponding splittings 
with the same properties when n is replaced by either of the inverse systems 
(FPO) , (01 FPO) . 

Lemma 6.1. (i) Let c be the scaling operator which is multiplication by cq 

on oq, where c2n = C2n+1 = (-I)nn!. Then on PO and P_10 we have 
c(PEBJ)c- 1 =b+B. 

(ii) On P_10 the operator J is an isomorphism from even degree to odd. 
(iii) On pl.L -I 0 the operator P is an isomorphism from odd degree to even. 

Furthermore. the corresponding assertions hold when 0 is replaced by either of 
the inverse systems (FPO) , (OIFPO). 
Proof. (i) We know that Kb = band Kd = d on PO by §3 (13), and that 
K = -Ion P_10. Hence on PO and p_1n we have K2b = band K2d = d. 
Thus 

(2) 
1 2n+ 1 j 1 

P = b - (1 + K)d = b - -- L K d = b - --B 
n+l n+l j=O 

on elements of degree 2n + 1 and 
n-I 

(3) 
2-

J = - L K J b + B = -nb + B 
j=O 

on elements of degree 2n. Conjugating by the scaling operator c removes these 
numerical constants, proving (i). 

(ii) On P_10 we have K = -1, B = 0, and P and J after rescaling 
become b from odd to even and even to odd respectively. Using 3.I(a), (c) 
we also have (-1 t b = band (-I )n+1 d = d on elements of degree n, so 
b = 0 on elements of odd degree and d = 0 on elements of even degree. Since 
bd + db = 1 - K = 2, it then follows that b on P _lOis an isomorphism from 
even degree to odd with inverse !d, proving (ii). 
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(iii) On P~ -I 0 the operator 

(b - (1 + K)d)2 = K2 - 1 

is invertible, hence so is b = (I + K)d. Thus p, which is b - (1 + K)d from 
odd degree to even, is an isomorphism. 

These arguments in the case of 0 apply verbatim to pPO, 0./ pPO, and 
the inverse systems of these spaces. 0 

Let us now regard 0 as a supercomplex with differential b + B . Thus X, 0 
can be viewed as supercomplexes having the same underlying (Z/2)-graded 
vector space, but with different differentials p ffi tJ, b + B. We can interpret 
(1) both as a splitting of the supercomplex X 

-L 
( 4) X = P X ffi P -I X ffi PI , -I X 

into subcomplexes and as a splitting of the supercomplex O. Similar assertions 
hold for the inverse systems of supercomplexes (Pp X), (pPn) and for the 
towers 2" = (X/pP X), on = (O/pPO). 

By 6.1 (i) we have isomorphisms 

(5) c: PX':::' PO, 

compatible with differentials. Hence we have maps of supercomplexes cP: X --+ 

0, C -I P: 0 --+ X , and also with P here replaced by P _lor PI, -I . 

Theorem 6.2. The maps 

(6) cP: X --+ 0, 

are inverse modulo homotopy, so X and 0 are homotopy equivalent supercom-
plexes. The corresponding assertions hold when X, 0 are replaced by the inverse 
systems of supercomplexes (Pp X), (PPO) and by the towers 2", 00. 
Proof. Since the differential tJ in P -I X from even degree to odd is an iso-
morphism by 6.1(ii), the odd operator on P_IX which is the inverse of tJ on 
odd elements and zero on even elements is a special contraction. Similarly by 
6.1(iii) there is a special contraction on PI-L _IX, so on combining these we 
obtain a canonical special contraction on P_;x ffi Pt _IX. Consequently there 
is a canonical special deformation retraction (P, h) of X onto P X associated 
to the splitting (4). In particular P: X --+ PX and the inclusion PX c X are 
inverses modulo homotopy. 

On the other hand, we have from 3.2 a canonical special deformation re-
traction (P, Gd) of 0 onto PO. It follows from these special deformation 
retractions and the first isomorphism in (5) that cP, which is the composition 
of the homotopy equivalences 

x.!...px~pncn, 

is a homotopy equivalence, and that c -I P is a homotopy inverse for cP. 
The same arguments apply verbatim to the inverse systems (Pp X), 2". 0 
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Remark. This theorem holds with PI -I instead of P in (6). Indeed, the map 
CPI -I: X -t n is homotopic to cP, because the difference factors through 
P _I n which is contractible. 

As a first application, we combine the result that X and n are homotopy 
equivalent with the fact that RA is a free algebra by 5.1 and the computation 
in §4 of X(R) for a free algebra R. This yields 

(7) Hv(nA) = Hv(X(RA)) = { ~: v = +, 
v =-, 

for the homology of nA with respect to b + B. Using the functoriality of this 
formula in the case of the homomorphism C -t A we deduce 1.2. 

Secondly, because pP X and pPn are homotopy equivalent, the homology 
of pP X is given by the computations at the end of § 1. In particular we mention 

(8) HCnA = Hn_I+2z(PI~X(RA)), n ~ 0, 
for later reference. 

Next, the result that the towers fl" and on are homotopy equivalent implies 
that fl" is a special tower whose associated homology can be expressed in terms 
of the cyclic type homology of A as in § 1 (29). Conversely, fl" may be used 
instead of on to calculate the cyclic type homology and cohomology associated 
to A. 

The tower fl" is a functor of the algebra A, and to take account of this 
it is convenient to introduce the notation ~ = fl"(RA, I A). The maps (6) 
determine a canonical isomorphism 
(9) 

in the homotopy category of towers H 03', so that ~ represents the cyclic 
homology type of A in the sense of the discussion at the end of §2. In particular 
we have the following formulas: 

( 10) 

(11 ) 

( 12) 

HCnA = Hn+2Z(~n), 
~ 

HPvA = Hv(~)' 
k k 

HC (A, B) = Hk+2Z(Hom (~, ~)). 

We next discuss in more detail the meaning of (10) in the case of cyclic 
homology of even degree. 

Let R = RA, 1= IA. From (10) we have 

HC2n A = H+ (fl"2n (R , I)) 

(13) = H+(R/ln+1 + [In, R]!::; nIRQ/~(IndR)) 

= Ker(R/ln+1 + [R, R] ~ nIRQ/~(IndR)). 

Thus we have an exact sequence 

(14) 0 -t HC2n A -2:. R/ln+1 + [R, R] ~ nIRQ/~(In~R) 

where y is the map on even homology induced by c -I P: n/ p2n n -t fl"2n . 
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Let us now examine the result that y is injective more closely. On the level 
of dual spaces this means that any cyclic cohomology class in H C 2n A can be 
represented by a trace on Rj I n+1 • We are going to prove this dual assertion by 
essentially the same methods used above, but in the dual setting of cochains and 
traces. Our purpose is to give some insight into the proof of Theorem 6.2 as 
well as to link our methods to the dual viewpoint of Connes and Cuntz [Co2], 
[CC], [CuI], [Cu2], which played an important role in the development of the 
present paper. 

We begin with some terminology. By a cacha in on A we will mean a linear 
functional f on Q. A cochain f can be identified with a sequence (fn)n?o' 
where 

( 15) 

can be any (n + 1 )-multilinear functional on A which is simplicially normalized 
in the sense that it vanishes whenever aj = 1 for some i 2: 1 . The support of 
f is the set of n such that In =I- O. Any operator T on differential forms gives 
rise to a transpose operator f 1-+ fT on cochains. 

We next describe the traces on Rj /n+1 in cochain terms. Note that a linear 
functional r on R = Q+ can be identified with an even cochain, i.e., with 
support contained in the set of even integers. Let c be the scaling operator of 
6.1(i), so that rc-1 has the components 

( 16) 

Proposition 6.3. With this notation r is a trace on R iff rc-1(b + B) = 0 and 
rc- 1(K2 - 1) = o. 
Proof. Since [R, R] is the image of the differential p, we see that r is a trace 
iff 

( 17) rp=r(b-(I+K)d)=O 

in which case we have 0 = r(b - (1 + K)d)2 = r(K2 - 1). But when rK2 = r the 
condition (17) may be rewritten rc -1 (b + B) = 0 as in the proof of 6.1 (i). 0 

Since /n+1 = EBbn Q2k by 5.4, it is clear that r(/n+1) = 0 iff r has support 
contained in [0, 2n]. Hence this proposition yields an equivalence f = rc- 1 

between traces r on Rj /n+ 1 and even b + B cocycles f supported in [0, 2n] 
and fixed by K2 . 

Since y in (14) is induced by c -1 P , its transpose sends a trace r on Rj /n+1 
to the cohomology class represented by the cocycle rc-1 P. To see this map is 
surjective, let ~ E HC2n A and represent ~ by an even cocycle f supported 
in [0, 2n]. Now 1 - P = [b + B, Gd] as (P, Gd) is a special deformation 
retraction, so we have f - fP = fGd(b + B), where fGd is an odd cochain 
supported in [1, 2n - 1]. But fP(b +B) = 0 implies fPBb = 0, whence 
fP(K - 1) = 0 by §3 (13). Hence ~ is represented by the cocycle fP which 
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is fixed by 1(; (compare Connes' process [Co2] of replacing a cocycle by a 'nor-
malized' cocycle in his sense). In particular, IP is fixed by 1(;2 , so T = IPc 
is a trace on R/ [n+ 1 such that TC -I P = I p2 = I P , which proves the desired 
surjectivity. 

Finally we mention that besides the homology groups associated to the tower 
Je our methods can also be used to determine the homology of X(R/[n+I). 
This supercomplex is slightly larger than X 2n+ 1 in odd degree because one 
divides by 

q([n+1 c5R + c5(ln+l)) = NK 2bQn+2 EB EB Q2k+1 
k>n 

instead ofthe last subspace described in 5.4. Only the image of PIJ.. -I is affected 
by this change, and one readily calculates the homology: ' 

HDo(R/ln+l) = H+(X(R/[n+I)) = HD2nA, 

HC1(R/[n+l) = H_(X(R/[n+I)) = HC2n+IA EB (1 _1(;2)Q:n+2. 
( 18) 

In particular any class in H C 2n+ 1 A is represented by a cyclic l-cocycle on 
R/[n+l. 

7. CART AN HOMOTOPY FORMULA 

Let U: R ---> S be a homomorphism of algebras. Then u extends uniquely 
to a DG algebra homomorphism u.: QR ---> OS given by 

u.(xodxl ... dxn ) = uxod(uxl)'" d(uxn )· 

Moreover, u. commutes with b as well as d , hence it commutes with operators 
generated by b, d ,e.g. 1(;, B , P . 

Let u: R ---> S be a derivation relative to u, i.e., u(xy) = uxuy + uxuy. We 
view u as a first order variation of u and define the Lie derivative L( u, u): OR 
---> QS to be the induced variation of u. in the following sense. 

Let q e] = C EB Ce, e2 = 0 be the algebra of dual numbers. The tensor 
product algebra qe]~QS = QSEBeQS is naturally a DG algebra such that e has 
degree zero and de = O. One has a homomorphism u+eu from R to the degree 
zero subalgebra qe]~S . By the universal property of QR this homomorphism 
extends uniquely to a DG algebra homomorphism QR ---> q e] ~ OS , which we 
can write I + eg where I, g: QR ---> OS. Clearly I = u.' and we define 
L(u, u) to be the map g. Thus L(u, u) is the map such that 

u. + eL(u, u): QR ---> qe] ~ QS 

is the unique DG algebra homomorphism extending u + eu in degree zero. 
One sees easily from this definition that L = L(u, u) is a derivation relative 

to u. which commutes with d and restricts to u on elements of R. Hence 
one has 

n 
L(xodxl ... dxn ) = uxod(uxl )··· d(uxn ) + I: uxod(uxl)'" d(ux) ... d(uxn )· 

j=1 
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Moreover, these properties and§3 (2) imply that L commutes with b, hence 
it commutes with operators generated from b, d such as K, B, P . 

As a consequence the Lie derivative on differential forms descends to a map 
of supercomplexes L = L(u, u): X(R) -+ XeS) which on elements is given by 

L(x) = ux, L(q(xdy)) = q(uxd(uy) + uxd(uy)). 

Our aim now is to derive an analogue for the X complex of the Cartan 
homotopy formula, namely to show that the Lie derivative L: X(R) -+ XeS) 
is homotopic to zero in an explicit way. For this purpose we need two more 
ingredients, the first being an appropriate interior product operation. 

The derivation u extends uniquely to an R-bimodule map v: nl R -+ S 
given by v(xdy) = uxuy. We define the interior product i = i(u, u): nR -+ 
ns to be the map of degree -1 given by the composition 

nnR = nlR Q9R nn-I R v~ S Q9s nn-I S = nn-I S. 

One thus has the formula 

i(xodxl ... dxn ) = uxoux1d(ux2)··· d(uxn )· 

From the definition given one sees that i is a map of R-bimodules: i(wx) = 
i(w)ux and similarly for left multiplication. This implies that i and b anti-
commute: 

ib + bi = O. 
The other ingredient needed for our homotopy formula requires that R is 

quasi-free in the sense of [CQ1]. This means that R satisfies the conditions of 

Proposition 7.1. The following conditions are equivalent: 
(a) R has the lifting property with respect to square-zero extensions, i.e., any 

homomorphism v: R -+ S / J, where J is an ideal in S such that J2 = 0, 
lifts to a homomorphism u: R -+ S. Notice that this means R has the lifting 
property with respect to all nilpotent extensions. 

(b) There exists a linear map ¢: R -+ n2 R satisfying the identity 

(1) ¢(xy) = x¢y + ¢xy + dxdy. 
Proof. We consider the square-zero extension RR/ I R2 of R, which may be 
identified with REB n 2 R equipped with the Fedosov product modulo forms 
of degree > 2. A map ¢ as in (b) is equivalent to a lifting homomorphism 
I: R -+ RR/IR2 via the relation I(x) = x - ¢x. To prove (a) implies (b), let 
S = RR/ I R2 , J = I R/ I R2 , and let v be the obvious isomorphism of R with 
S/ J. The homomorphism u given by (a) is then a lifting homomorphism 
I, proving (b). Conversely, given a homomorphism v: R -+ S/J, J2 = 0 
as in (a), choose a linear lifting p: R -+ S of v such that p(l) = 1, and 
let p *: RR -+ S be the induced homomorphism 5.1. Then p * lies over v, 
hence it carries I R into J, so it kills I R2 , thereby giving a homomorphism 
fJ: RR/ I R2 -+ S lying over v . Assuming (b), we have a lifting homomorphism 
I: R -+ RR / I R2 , and then fJ I is the desired homomorphism u in (a). 0 
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We can now present our Cartan homotopy formula. Let cP be as above and 
let h = h1>(u, u) be the linear map of odd degree from X(R) to X(S) given 
by 

hox = qicPx, 
hlq(xdy) = i(xdy + b(xcPy)). 

(2) 

To see hi is well defined we verify that xdy+b(xcPY) is a Hochschild l-cocycle 
and apply 4.1: 

xd(yz) + b(xcP(Yz)) = xydz + xdyz + b(xycPz + xcPyz + xdydz) 
= xydz + xdyz + b(xycPz) + b(zxcPY) - [xdy, z] 
= (xydz + b(xycPz)) + (zxdy + b(zxcPy)). 

Here we use that b kills [xcPy, z], which follows from b2 = O. 
Let a stand for the differential (5, qd) in the X complex. 

Proposition 7.2. One has L = a h + ha . 
Proof. We have 

(5ho + hi qd)x = bicPx + i(dx + bcPx) = i(dx) = ux = L(x) 

establishing the formula in even degree. 
Next we have 

(qdhl)q(xdy) = qdi(xdy + b(xcPY)) = qd(uxuy) = q(d(ux)uy + uxd(uy)) 

where qdib = -qdbi = 0, since qdb = 0 on 0 1 S. Also we have 

(hob)q(xdy) = hob(xdy) 
= qicP(xy - yx) 
= qi{[x, cPy] + [cPx, y] + dxdy - dydx} 
= q{[ux, icPY] + [icPx, uy] + uxd(uy) - uyd(ux)} 
= q(uxd(uy) - uyd(ux)) 

as i is a bimodule map over R. Combining these gives 

(qdhl + hob)q(xdy) = q(uxd(uy) + uxd(uy)) = L(q(xdy)) 

completing the proof. 0 

We record for later reference the formula 

(3) hob(xdy) = q(uxd(uy) - uyd(ux)) 

established in the course of this proof. 

Adic behavior. Let I c R, J c S be ideals and consider the corresponding 
adic filtrations of the X complexes §4 (15). We recall that if u(l) c J, then 
u* maps F{ X(R) into FJ X(S) for all p. We next examine the adic behavior 
of the Lie derivative L = L(u, u) . 



CYCLIC HOMOLOGY AND NONSINGULARITY 409 

Proposition 7.3. Assume u(l) c J. ThenJor all p one has 

L(FP X(R» c { Fj-2 X(S) , 
I Fj X(S) if u(l) c J. 

Proof. One may verify this directly from the definition of the adic filtration 
using the derivation property of the Lie derivative, but a less computational 
proof with other uses goes as follows. 

Let us return to the definition of the Lie derivative on differential forms as the 
coefficient of e in the DG algebra homomorphism nR -+ C[ e] 0 ns extending 
u + eu: R -+ C[e] 0 S. We note that this DG algebra homomorphism is the 
composition 

QR (U~. n(C[e] 0 S) ~ C[e] 0 ns 

where Q is the canonical surjection extending the identity in degree zero. It 
follows that L: X(R) -+ X(S) is the coefficient of e in the composition 

(4) X(R) (u~. X(C[e] 0 S) ~ C[e] 0 X(S) 

where Q: is induced by Q. We note also that Q: is a case of the map Q: in 4.4. 
Now u + eu carries I into the ideal M = K 0 S + C[e] 0 J of C[e] 0 S, 

where K = Ce in general and K = ° in case u(l) c J. Hence (u + eu). 
carries Fj X(R) into FtX(C[e] 0 S) , which by 4.4 is carried by Q: into 

whence the result. 0 

K = Ce, 

K=O, 

The next proposition describes the adic behavior of the Cartan homotopy 
h=hq,(u,u). 

Proposition 7.4. Assume u(l) c J. ThenJor all p 

{ 
Fj-2X(S), 

h(FJ X(R» c Fj-I X(S) , 

FjX(S) , 

u(l) c J, 
u(R) c J. 

Proof. Let n 2: 0. By induction we obtain the following iterated version of (I): 

¢(Xo ... xn) = L xo··· x j _ 1 ¢(x)Xj+1 ... xn 
05,j5,n 

+ L Xo ... x j _ 1 dxjxj + 1 ... Xk - 1 dxkxk+ 1 ... x n • 
05,j<k5,n 
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Since ho = ~i¢ and i¢(R) c i(RdRdR) c Su(R)dS , we have 

ho(ln+l) c ~i ( L Ii ¢(l)In- i + L Ii dIIk- I- i dIIn- k) 
O~i~n O~i<k~n 

Thus 

(5) 

C ~ ( L Jiu(R)dSJn- i + L JiU(I)Jk-I-idJJn-k) 
O~i~n O~i<k~n 

C ~ (JnU(R)dS + L In-I-iU(I)/ dJ) . 
O~i<n 

{ 
~(JndS+Jn-IdJ), 

ho(ln+l) c ~(JndS), 

~(Jn+ldS + JndJ) , 
u(l) c J, 

u(R) c J. 

Using (3) we have 

ho([In , R]) c hob(IndR) c ~(u(ln)dS + u(R)d(Jn)) 

Thus 

(6) 

c~ (L In-I-iU(I)JidS+ L In-I-iU(R)JidJ). 
O~i<n O~i<n 

U(I) c J, 
u(R) c J. 

Since b(ln¢R) c b(lndRdR) c [IndR, R], one has 

Thus 

(7) 

Finally 

hi ~(In dR) c i(In dR + b(In ¢R)) c i(In dR) c Jnu(R). 

u(I) c J, 

u(R) c J. 

hl~(lndI) C i(IndI + b(ln¢I)) c i(lndI + [IndR, R]) c Jnu(l) + [Jnu(R) , S] 

so 

(8) 

The proposition follows from (5)-(8). 0 

u(I) c J, 

u(R) c J. 
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Finally we would like to point out that by means of the argument used to 
prove 7.3 one can deduce the case of the preceding proposition in which there 
is no restriction on it from the case it(l) c J. We first give the argument in a 
general situation. 

Proposition 7.5. Let T = E9n>o Tn be a graded algebra, and let v: R --+ T 0 S 
be a homomorphism. Write v-= L vn' where vn: R --+ Tn 0 S, and let Dv be 
the derivation L nVn relative to v. Suppose Ie R, J c S are ideals such that 
vo(l) c To 0 J. Then both maps aL(v, Dv), ah<P(v, Dv): X(R) --+ Tq 0 XeS) 
carry Ff X(R) into E9n~o(Tq)n 0 Fj-2n X (S) Jor all p. 

Proof. Let M be the ideal T>,0S+T0J of T0S, where T>, = T, EBT2EB··· . 
Then v(l) eM, Dv(R) c Ai, so by the last cases of 7.3 and-7.4 we know that 
L(v, Dv), h<P(v, Dv) send Ff X(R) into FftX(T0S). This in tum by 4.4 is 
mapped by a into 

i~O 

whence the result. 0 

We apply this when T = C[e] with e of degree one and v = u+eit: R --+ T0 
S. In this case Dv = eit and one has aL(v, Dv) = eL(u, it), ah<P(v, Dv) = 
eh<P(u, it) , and this proposition yields the first cases of 7.3 and 7.4. 

8. HOMOTOPY PROPERTIES 

The Cartan homotopy formula concerns an infinitesimal change in a ho-
momorphism. We now integrate this formula in the case of a suitable one-
parameter family of homomorphisms ut : R --+ S in order to show that the 
maps uto: X(R) --+ XeS) for different t are homotopic. In keeping with our 
algebraic setting we restrict to families depending on t in a polynomial manner, 
so that we can differentiate and integrate with the usual rules. By introducing 
topologies and suitable differentiability hypotheses one can handle more general 
families by means of the same formulas. 

We begin with some preliminaries on polynomial families. 
Let W be a vector space, and let W[t] = W 0 C[t] be the space of polyno-

mials in the indeterminate t with coefficients in W. We may interpret t as 
a complex variable and identify elements of W[t] with polynomial functions 
from C to W. 

A family of maps 1;: V --+ W, tEe, will be called a polynomial family 
when 1; v is a polynomial in t for all v E V . Such a family is equivalent to a 
map V --+ W[t] . 

Since the operations of differentiation and integration on polynomials are 
given algebraically by suitably rescaling the coefficients, it is clear that these 
operations make sense for polynomial families, and moreover they satisfy the 
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usual properties such as 

It - fa = 10 1 
(:/;) dt. 

Suppose given a polynomial family of homomorphisms ut : R ---+ S, tEe, 
i.e., a homomorphism R ---+ S[t). The derivative 

. d 
ut = dt Ut 

is defined, and it is a polynomial family such that ilt is a derivation relative to 
ut . Moreover the maps ut*' L(ut , ilt) from X(R) to X(S) form polynomial 
families such that 

Assuming ¢ given for R as in 7.1 (hence R must be quasi-free), we have 
l(up ilt) = [8, htP(up ilt)) by 7.2. Now htP(up ilt) is easily seen to be a poly-
nomial family, so the integral 

(1) tP {I tP . 
H (ut) = 10 h (Ut ' ut)dt 

is a well-defined map of odd degree from X(R) to X(S). We have 

(2) tP t tP. {I (d ) [8, H (u t») = 10 [8, h (up ut»)dt = 10 dt Ut* dt = Ut. - uo* 

which proves the following homotopy property for the X complex. 

Proposition S.l. The map HtP(ut): X(R) ---+ X(S) is a (chain) homotopy be-
tween the induced maps ut*: X(R) ---+ X(S) for t = 0, 1. Consequently ut* is 
independent of t modulo homotopy. 

We next consider the situation where ideals are present. Associated to a 
pair (R, I) there is the inverse system (F! X(R» of subcomplexes of X(R) , 
the corresponding tower fC'(R, I) of quotient complexes, and the comple-
tion 27(R, I). These objects are functorial with respect to homomorphisms 
u: (R, /) ---+ (S, J). 

Assume ¢ given for R and consider a polynomial family of homomorphisms 
ut : (R, I) ---+ (S, J) , or equivalently a homomorphism (R, /) ---+ (S[t) , J[t)) . 
Define e to be the number 0 in the restricted case where ut is constant modulo 
J, and put e = 1 in general. By 7.3 we have for each p a polynomial family 
of maps 

hence we obtain 

Lemma S.2. The map HtP(ut): X(R) ---+ X(S) carries F! X(R) into Ff-e X(S) 
for all p. 

Combining this with 6.2 we derive the following homotopy property for H D n 
and HPv ; cf. [G). Recall that HDn = SHCn+2 c HCn . 
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Proposition 8.3. If v t : A ---. B is a polynomial family of homomorphisms, then 
the induced maps vh : HDnA ---. HDnB and vh : HPvA ---. HPvB are indepen-
dent of t. 
Proof. The family of homomorphisms ut = Rvt : (RA, IA) ---. (RB, IB) in-
duced by vt is easily seen to be a polynomial family. Using 8.2 we see that 
H4>(ut ) induces a map %n+2(RA, IA) ---. %n(RB, IB), which is a homotopy 
between the maps 

%n+2 (RA, I A) ---. %n (RA , I A) ~ %n (RB , I B) 

for t = 0, 1 . It follows by passing to homology of degree n + 21£ that the maps 

HCn+2A .& HCnA ~ HCnB 

coincide for t = 0, 1 . 
We also have a map of completions 2(RA, I A) ---. %(RB, I B) induced 

by H4>(uJ, which is a homotopy between the maps between these completions 
induced by uo' ul • Consequently vO' VI induce the same map on periodic 
cyclic homology. 0 

Let us return to the homomorphism ut : (R, I) ---. (S[t] , J[t]) and consider 
the inverse system (Ff X(R)) of supercomplexes and similarly for (S, J). The 
following is clear from 8.2. 

Proposition 8.4. The map H4>(u t ): X(R) ---. XeS) induces a map of inverse sys-
tems H4>(u t ): (Ff X(R)) -t (FJ-e XeS)) which is a homotopy between the in-
duced maps ut*: (Ff X(R)) ---. (FJ-e XeS)) for t = 0, 1. 

A similar result holds for the tower %(R, I), but one can do better. The 
following is immediate from 4.3. 

Lemma 8.5. Let Rn = Rj In+1 ,In = I j In+l. Then the canonical surjections 
R ---. Rn induce an isomorphism of inverse systems 

(3) %(R, I) .:::. lim %(Rn ' I ), +-- n 

i.e., a corresponding isomorphism at each level. 

As In is the kernel of the surjection Rn ---. R o' this shows that the tower 
%(R, I) can be obtained from the tower of algebras (Rn). Consequently, 
if (S, J) is another pair and Sn = SjJn+1 , then we have an induced map 
%(R, I) ---. %(S , J) associated not only to a homomorphism (R, I) ---. (S, J) 
but to any homomorphism (Rn) ---. (Sn) . 

It will be useful to give some equivalent descriptions of homomorphisms 
(R ) ---. (S ). Let R = lim R , f = lim I be the I-adic completions of n n +-- n +-- n 
R, I, and define S, J similarly. These completions have natural topologies, 
e.g., a neighborhood basis of zero in R is given by the completions pn , m ;::: 0 . 
The following is easily verified. 
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Proposition 8.6. The following data are equivalent: 
(i) A homomorphism u: (Rn) --+ (S n) of towers of algebras. 
(ii) A compatible family of homomorphisms un: R --+ Sn such that uO(1) = o. 

Note that in this situation un is a homomorphism (R, 1) --+ (Sn' I n). 
(iii) A homomorphism (R, 1) --+ (8, J) . 
(iv) A continuous homomorphism (R, I) --+ (8, J). 
The next proposition gives the functorial and homotopy behavior of %' (R, 1) 

with respect to (Rn). 

Proposition 8.7. (a) A homomorphism u: (Rn) --+ (Sn) induces a map u*: 
%,(R, 1) --+ %'(S, J) of towers of supercomplexes, and in this way %,(R, 1) 
becomes a functor of (Rn)· 

(b) Assuming ¢ given for R, a homomorphism ut : (Rn) --+ (Sn[t]) deter-
mines a map HrP (u t ): (%'P (R, 1)) --+ (%,p-e (S , J)) which is a homotopy be-
tween the induced maps ut*: (%'P (R, 1)) --+ (%,p-e (S, J)) for t = 0, 1 . 
Proof. We have already established (a) by observing that u gives compatible ho-
momorphisms (Rn' In) --+ (Sn' I n), which give compatible maps %,(Rn' In) --+ 

%'(Sn' I n) , which in tum yield the desired map u*: %,(R, 1) --+ %'(S , J) by 
8.5. However, for the homotopy assertion (b) we want a different construction 
of u* because Rn need not be quasi-free when R is quasi-free. Instead we 
observe that u is equivalent by 8.6 to a compatible family of homomorphisms 
un: (R, 1) --+ (Sn ' I n) , so we have compatible maps u:: %,(R, 1) --+ %'(Sn ' I n) 
which yield u* by 8.5. Similarly if u7: (R, 1) --+ (Sn[t] , In[t]) is the compat-
ible family of homomorphisms corresponding to ut ' then we have compatible 
maps of towers 

rP n p p-e H (u t ): (%' (R, 1)) --+ (%' (Sn' I n)) 
so using 8.5 we obtain a map 

HrP(ut ): (%,P(R, 1)) --+ (%'P-\S, J)) 

which is easily seen to have the properties asserted in (b). 0 

Finally we consider the completion 

i9(R, 1) = lim %,P (R, 1) = lim X(Rj In). 
+--- +---

In the first place this is naturally a topological supercomplex with the inverse 
limit topology. Secondly, if I, J are two ideals defining the same adic topology, 
i.e., I c J m , J c 1m for some m, then the inverse systems (Rj In), (Rj In) 
are isomorphic as pro-objects and hence we have a canonical isomorphism - -%,(R, 1) = %,(R, J). 

The following proposition describes the functorial and homotopy properties 
of the completion. 

Proposition 8.8. (a) A continuous homomorphism u: Ii. --+ 8 induces a continu-
ous map u*: i9(R, 1) --+ i9(S, J) of topological supercomplexes. 
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(b) Assuming tjJ given for R, a continuous homomorphism ut : R -+ S[tr" 
determines a continuous map JtP(u t ): 27(R, I) -+ ~(S, J) of odd degree which 
is a homotopy between the induced maps uo*' u h . 

Proof. (a) If u: R -+ S is a continuous homomorphism, then u -I I is open, 
hence it contains ? for some m. Replacing 1 by 1m does not change the 
completions, so we can suppose u is a continuous homomorphism (R, I) -+ 

(S, J). In this case u is equivalent by 8.6 to a homomorphism (Rn) -+ (Sn) , 
and we have an induced map of towers te(R, I) -+ te(S, J), hence a contin-
uous map on completions by taking the inverse limit. 

(b) Here S[tr" = ~ Sn[t] is the algebra of formal power series in t whose 
coefficients form a sequence in S tending to zero. As in the proof of (a), 
we can suppose after replacing I by some power that ut corresponds to a 
homomorphism (Rn) -+ (Sn[t]). The desired continuous map H<P(ut ) is then 
obtained from the corresponding map in 8.7(b) by taking the induced map on 
inverse limits. 0 

9. DERIVED FUNCTOR ANALOGY 

In this section we apply our homotopy results to develop an analogy with 
the construction of derived functors, in which an extension A = R/ I with R 
quasi-free plays the role of a projective resolution of A, and the tower te(R, I) 
corresponds to a functor applied to this resolution. In this way we establish that 
up to homotopy equivalence this tower is independent of the choice of quasi-
free extension. 

Consider an algebra R and an algebra extension B = S / J. If R is a free 
algebra, then any homomorphism v: R -+ B can be lifted to a homomorphism 
u: R -+ S. The same is true by 7.1 if R is quasi-free and S is a nilpotent 
extension of B. 

Lemma 9.1. Assume either that R is free or that R is quasi-free and S is a nilpo-
tent extension of B. Given homomorphisms vt : R -+ B[t] and uo' u1 : R -+ S 
lifting vO ' VI' there exists a homomorphism ut : R -+ S[t] which lifts vt and 
joins uO' u l • 

We consider the diagram with exact rows 
o --+ J[t] --+ S[t] --+ B[t] --+ 0 

1 1 1 
0--+ JxJ --+ SxS --+ BxB --+ 0 

where the vertical arrows evaluate a polynomial at 0, 1. These arrows are 
surjective, hence we obtain a surjective algebra homomorphism 

S[t] -+ (S x S) x(BXB) B[t] 

whose kernel is contained in J[t]. Now the homomorphism ut : R -+ S[t] 
we seek is a lifting of the homomorphism (( uO' U I), V t) from R to this fibre 
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product algebra. This lifting exists when R is free by the surjectivity. When J 
is nilpotent, so is J[t], hence S[t] is a nilpotent extension of the fibre product, 
and the lifting exists if R is quasi-free. 0 

We next establish similar lifting properties for the towers of algebras (Rn)' 
(Sn) associated to pairs (R, l), (S, J) . 

Proposition 9.2. Assume R is quasi-free. 
(i) Given a homomorphism v: Ro --+ So' there is a homomorphism u: (Rn) --+ 

(Sn) which lifts v, i.e., is such that u at level zero is equal to v. 
(ii) Given a homomorphism vt : Ro --+ So[t] and liftings uo' ul : (Rn) --+ (Sn) 

of VO' VI respectively, there is a homomorphism ut : (Rn) --+ (Sn[tD which lifts 
ut and joins uO' u l . 
Proof. (i) The desired homomorphism u is equivalent to a compatible family 
of homomorphisms un: R --+ Sn for n ~ 0 such that UO is the canonical 
surjection R --+ Ro followed by v. As R is quasi-free and Sn --+ Sn_1 are 
square-zero extensions, such a family can be constructed inductively by choosing 
un to be a lifting of un-I . 

(ii) Let u~, u7: R --+ Sn be the families corresponding to uO' ul . The de-
sired homomorphism ut is equivalent to a compatible family of homomor-
phisms u;: R --+ Sn[t] such that u; joins u~, u7 ' and such that u~ is R --+ Ro 
followed by vt • Such a family can be constructed inductively by applying the 
preceding lemma successively to the square-zero extensions Sn --+ Sn_l. 0 

The following is analogous to the key step in the construction of derived 
functors. 

Theorem 9.3. Let A = RjI, B = SjJ be algebra extensions with R quasi-
free. Then any homomorphism v: A --+ B can be lifted to a homomorphism 
u: (Rn) --+ (Sn) , and the induced map u*: 2"(R, l) --+ 2"(S, J) modulo homo-
topy depends only on v. 
Proof. This is a consequence of 8.7 and 9.2. Observe that if uO ' ul are two 
liftings of v, then by applying 9.2(ii) in the case of the constant homotopy vt = 
v we see that uO' ul are joined by a restricted family ut • Thus 8. 7(b) applies 
with e = 0, and we have an odd degree map of towers H"'(u t ): 2"(R, l) --+ 

2"(S, J) which is a homotopy between uO*' uh • 0 

This result implies by well-known arguments that for any quasi-free exten-
sion A = Rj I, i.e., with R quasi-free, the tower 2"(R, l) is determined up 
to homotopy equivalence by A, and moreover that modulo homotopy it is a 
functor of A. We can express this idea in the following way using the universal 
extension. Let RnA = RAj I An+1 , and recall that ~ = 2"(RA, I A) . 

Corollary 9.4. (a) For any extension A = Rj I there is a canonical map 

(1) ~.!!!. 2"(R, l) 

in the homotopy category of towers H 0!T, which is obtained by choosing any 
homomorphism (RnA) --+ (Rn) lifting the identity map A --+ Rj I and taking 
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the induced map on 2' towers. When R is quasi-free w is an isomorphism in 
HoY. 

(b) Given extensions A' = R' j I', A = Rj I, a homomorphism v: A' -+ A, 
and a homomorphism u: (R~) -+ (Rn) lifting v , we have a commutative square 
in HoY: 

(2) 

~ ~ 2'(R,I) 
This is a straightforward consequence of the theorem. 
Combining (a) with §6 (9) we obtain for any quasi-free extension A = Rj I 

a canonical isomorphism 
(3) enA ~ 2'(R, I) 
in the homotopy category of towers HoY. Thus 2'(R, I) is a special tower 
which represents the cyclic homology type of A in the sense of the discussion 
at the end of §2. In particular the homology associated to this tower is given by 
the cyclic type homology of A. 

We next apply 9.4 to derive some key results in [Q2] which were originally 
obtained by means of spectral sequences. 

Consider an arbitrary extension A = Rj I, and following the Hochschild 
tradition choose a linear lifting p: A -+ R respecting identity elements. By the 
universal property of RA the lifting p gives rise to a homomorphism (RnA) -+ 
(Rn) lifting the identity map of A. Hence by 9.4 we get a map of towers 
~ = 2'(RA, I A) -+ 2'(R, I) whose homotopy class w is independent of the 
choice of p. From 

(4) 

0}?2n 
HC2n A = H+(a A ) 

.!!!. H+(2'2n(R , I)) 

= H+(Rjln+1 + [In, R]!:t QIRqj~(IndR)) 

= Ker(Rj In+1 + [R, R] -+ 0.1 Rqj~(In dR)) 

where the first line comes from §6 (10), we obtain a canonical map 
n+1 j n+1 (5) y:HC2n A-+RjI +[R,R]=HCo(R I ). 

In terms of the cochain notation of §6 this map can be described dually as car-
rying a trace r on Rj In+1 to the class of the even cochain f with components 

( _1)n 
(6) hn(ao' ... , a2n ) = ~r(p(ao)w(al ' a2)··· w(a2n _1 ' a2n )) 

where (j) is the curvature § 5 (4). Thus we find that f is a b + B cocycle whose 
cohomology class is independent of the choice of p. Previous versions of this 
type of result can be found in [Ql; Theorem 2, p. 148], [Q2, Theorem 1, p. 
225]. 

When R is quasi-free the arrow w in (4) is an isomorphism, so we obtain 
the first exact sequence of the following proposition; cf. [Q2, I, 5.14]. 
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Proposition 9.5. Given an extension A = R/ I, then if R is quasi-free we have 
an exact sequence 

(7) 

and if R is free we have exact sequences 

(8) 

(9) 

n+l/ n / 0-+ HC2n+1A -+ I [I, I] -+ R [R, R], 
- n+l/ n / 0-+HC2n+IA-+I [I ,I]-+R C+[R,R]. 

We note that the exact sequences (8) and (9) have the following dual interpre-
tations. Define an I-adic trace on In+1 to be a linear functional which vanishes 
on [Ii, Ik] for i + k = n + 1 . From the identity 

k 

[x, YI ... Yk] = 2)Yi+1 ... hXYI ... Yi- I ' Yi] 
i=1 

obtained by iterating the Hochschild l-cocycle identity §4 (8) for f(x, y) = 
[x, Y], we deduce [Ii, Ik] C [Ii+k-I , I] for k ~ 1. Hence a linear functional 
on In+1 is an I-adic trace iff it vanishes on [In, I]. Then (8) and (9) identify 
elements of HC2n+1 A and HC2n+1 A with I-adic traces on In+1 modulo the 
restrictions of traces and reduced traces on R respectively. 

To prove (8) we consider for an arbitrary extension the composition of canon-
ical maps 

0l?'2n+1 HC2n+IA = H_(a A ) 

.!!!. H_(fC'2n+I(R, l)) 

= H_ (R/ In+1 ~ 0 1 R q/Q(In+1 dR + In d/)) 

= Ker(OIRq/Q(ln+1 dR + In dI + dR) -+ R/In+l) 
(10) 

L Ker([ R, R]/[In , I] -+ R/ I n+ I) 

= ([R, R] n In+I)/[In , I] 

where the arrow labeled b is induced by the surjection 

(11 ) - I b: 0 Rq/Q(dR) -+ [R, R], Q(xdy) I-t [x, y] 

and we have used the inclusion [In+ I , R] c [In, I]. When R is free, (11) is 
an isomorphism since the odd degree homology of X(R) vanishes. Thus both 
the arrows wand b in (10) are isomorphisms, yielding the exact sequence (8). 

In deriving 9.3 and 9.4 we used the homotopy property 8.7 of the tower 
fC'(R, l) and the homotopy lifting property 9.2 for quasi-free algebras. How-
ever, a simpler version of our arguments using instead 8.4 and 9.1 shows that 
for an arbitrary extension A = R/ I there is a canonical map modulo homotopy 

( 12) 
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which is a homotopy equivalence when R is free. Consequently we have a 
canonical map 

-- 2n+1 
HC2n+I A = H+(FIA X(RA)) 

.!!!. H+(F}n+1 X(R)) 

= H+(ln+1 =+ q(ln+l dR + IndI)) 

= Ker(ln+1 j[In , I] !! 0 1 Rq) 

where the first line comes from §6 (8). When R is free this map is an isomor-
phism, yielding the exact sequence [Q2, I, 5.12] 

-- n+1 n qd n.1 (13) 0 -> HC2n+I A -> 1 j[/, I] -> u R q• 

Moreover, as R is free we have H+ (X(R)) = C, so the kernel of qd: R -> 0 1 Rq 
is C+[R, R]. This gives the exact sequence (9), concluding the proof of 9.5. 0 

Finally we mention that the formula §6 (18) for the homology of X(Rjln+l) 
in the case of the universal extension generalizes to an arbitrary quasi-free ex-
tension A = Rj 1 in the form 

HD (Rj1n+l) = HD A o 2n ' 
n+1 HC1(Rjl )=HC2n+I AEB(I-a)W 

( 14) 

where W = [(I j 12)0 A](n+l) is the circular tensor product of order n + 1 of 
the A-bimodule 1 j 12 , and a is the forward shift cyclic permutation. This is 
proved in the last section of [Q3]. 

10. GOODWILLlE'S THEOREM AND BIVARIANT PERIODIC CYCLIC HOMOLOGY 

As another application of 9.4 we derive a strong form of the theorem of 
Goodwillie [G] about the invariance of periodic cyclic homology under nilpotent 
extensions. 

Let A' -> A be a nilpotent extension, and let R be any quasi-free algebra 
mapping onto A'. Then we have A' = Rj J , A = Rj I where J, I are ideals 
in R such that 1m C J c I for some m. Let v: A' -> A and u: (RjJn+I )-> 
(Rjln+l) be the obvious maps. 

From 9.4 we obtain a homotopy commutative square of towers 
~I ------> Z(R, J) 

(1) 

~ ------> Z(R, I) 

where the horizontal arrows are homotopy equivalences. Applying the inverse 
limit functor we obtain a homotopy commutative square of topological super-
complexes such that both horizontal arrows are homotopy equivalence of topo-
logical supercomplexes, by which we mean that the homotopy inverse map and 
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the homotopy operators joining the two compositions to the identity are con-
tinuous. 

Now i?(R, J) is the completion of X(R) for the topology defined by the 
filtration Ker{X(R) ---+ X(RjJnn, and similarly for i?(R, I). As the ideals 
I, J contain powers of each other, the topologies coincide, so the map on 
inverse limits induced by u. is an isomorphism of topological supercomplexes. 

From these observations we deduce at once 

Theorem 10.1. If A' ---+ A is a nilpotent extension, then the induced map ~, ---+ 

~ is a homotopy equivalence of topological supercomplexes. In particular, we 
have HPvA' ~HPvA. 

We tum next to bivariant groups associated to periodic cyclic homology. 
There are two natural candidates for bivariant periodic cyclic cohomology we 
might consider. On one hand, one can follow Jones and Kasse [JK] and make 
bivariant cyclic cohomology periodic by inverting the S operation. On the 
other hand, one can consider the supercomplexes calculating periodic cyclic 
homology, form an appropriate mapping supercomplex, and use this to obtain 
bivariant groups. We will take the latter for our definition, since it is better 
from the standpoint of Goodwillie's theorem, as we will see. 

Given algebras A, B , we define the associated bivariant periodic cyclic coho-
mology groups by 

(2) v - -HP (A, B) = H)Homc(~' ~)) 

where Homc(~'~) is the space of continuous linear maps §2 (5). Thus 
an element of H p+ (A, B) is a homotopy class of continuous maps ~ ---+ ~ 
respecting the gradings and differentials, where the homotopy relation is defined 
using continuous homotopy operators. In particular a homomorphism A ---+ B 
determines a class [A ---+ B] in H p+ (A, B). There is an obvious cup product 
operation 

Hpv (A, B) ® Hpv' (B, e) ---+ Hpv+V' (A, e) 

given by composition. 
Using bivariant periodic cyclic cohomology we may formulate 10.1 as follows. 

Corollary 10.2. Given a nilpotent extension A' ---+ A, there is a class in 
H P+(A, A') which is the inverse of the class [A' ---+ A] E H p+ (A' , A) with respect 
to cup product. Equivalently, A' ---+ A induces isomorphisms on H p. ( -, -) 
with respect to either variable. 

The inverse class in H p+ (A, A') will be called the Goodwillie class of the 
nilpotent extension. 

We next consider the bivariant groups defined by making bivariant cyclic 
cohomology periodic. We have seen in §2 that the bivariant cyclic cohomology 
groups of Jones-Kassel may be expressed as 

k k He (A, B) = H k+2Z (Hom (~, ~)) 
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where Homk(~,~) is the subcomplex of Homc<-~,~) consisting of the 
maps f: ~ -+ ~ of order ::::; k , i.e., such that f induces f: fl"] -+ fl":-k 
for all p. The inclusion of this subcomplex gives rise to a canonical map 
(3) HCk(A, B) -+ HPk+2Z(A, B) 

compatible with cup product. 
Jones and Kassel consider the inductive limit of the bivariant cyclic coho-

mology under the S operation. This yields the bivariant groups 
(4) S-IHCv(A, B) = H)Homoo(~,~)) 

where Homoo is the union of the Homk. 
We now ask whether the analogue of 10.2 holds with S-I HC* in place of 

H p* , in other words, whether for any nilpotent extension A' -+ A there exists 
a class in S-I HC+ (A, A') inverse to the class of the homomorphism A' -+ A . 
In order to investigate this question we introduce the following terminology. 

We will say that the nilpotent extension A' -+ A has size::::; n, where n is an 
integer ~ 0, if there exists a homotopy inverse for the induced map ~f -+ ~ 
having order ::::; 2n. This is equivalent to the Goodwillie class being in the 
image of the map HC2n (A, A') -+ HP+(A, A'). Define the size S(A' -+ A) to 
be the least such n if one exists, and set S(A' -+ A) = 00 otherwise. 

It is clear that if a class exists inS-1HC(A, A') inverse to the class of the 
homomorphisms A' -+ A, then the size is necessarily finite. We are going to 
prove the existence of nilpotent extensions of infinite size, thereby showing that 
the analogue of 10.2 does not hold for S-I HC* . 

We begin by showing the size of a nilpotent extension can be as big as its 
order. Recall that RnA = RA/IAn+1 is the universal nilpotent extension of A 
of order::::; n. 
Lemma 10.3. For any n ~ 0 there exists an algebra A such that s(RnA -+ A) ~ 
n. 
Proof. Consider an arbitrary algebra A ,put R = RA, I = I A, Rn = RnA, and 
let m = s(Rn -+ A). There is nothing to prove if m ~ n, so suppose m < n. 
By the definition of size the induced map ~ -+ ~ has a homotopy inverse 
of order::::; 2m. The proof of 10.1 shows thatnup to homotopy equivalence we 
can identify this induced map with the isomorphism 

i?(R, In+l) ..:::. i?(R, l) 

of completions of X(R). Thus if g denotes the inverse isomorphism, we know 
that g is homotopic to a map f of order ::::; 2m . 

Note that F/n X(R) C FI~+lX(R), hence we obtain the commutative square 
on the left 

1 1 1 1 
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where the vertical arrows are the canonical surjections. Taking homology of 
even degree yields the square on the right, where the vertical arrows are the 
canonical maps from periodic cyclic to cyclic homology. The bottom arrow is 
easily seen to be the map y' of §9 (7), hence it is injective. 

On the other hand, because f has order :::; 2m we get similar commutative 
squares: 

i?(R, I) f i?(R,In+1) HP+A HP+Rn ~ 

1 1 1 1 
fC'2m(R, I) ~ fC'0(R, In+l) HC2mA ~ HCORn 

Now the two squares on the right have the same top and right arrows. Using 
the injectivity of y we see that 

Ker(HP+A ---+ HC2n A) = Ker(HP+A ---+ HC2m A). 

But it is easy to produce algebras A such that this is false, for example, the 
Weyl algebra with 2n generators, which has HP+A = HC2k A = C for k 2: n 
and HC2kA = 0 for k < n. One also has a smooth commutative example 
given by the tensor product of 2n copies of the Laurent polynomial algebra 
qz, z-l]. For such an A the size of the extension Rn is 2: n, which proves 
the lemma. 0 

The next two lemmas establish some formal properties of the size. 

Lemma 10.4. (i) If A' ---+ A and A" ---+ A are nilpotent extensions and there 
exists a homomorphism A' ---+ A" over A, then s(A' ---+ A) 2: s(A" ---+ A) . 

(ii) If A" ---+ A' and A' ---+ A are nilpotent extensions, then 

s(A" ---+ A) :::; s(A" ---+ A') + s(A' ---+ A). 
Proof. This is straightforward from the definition. 0 

Lemma 10.5. Let p: B ---+ A be a homomorphism of unital algebras, and let 
i: A ---+ B be a homomorphism of the underlying nonunital algebras such that pi 
is the identity map on A. Then S(RIA ---+ A) :::; S(RIB ---+ B). 
Proof. Let 7r A: Rl A ---+ A denote the canonical surjection, and similarly for B . 
We can assume n = S(RIB ---+ B) is finite, whence there exists a homotopy 
inverse f for 7r B* : ~ B ---+ ~ having order :::; 2n . 

I 

We consider first the case where i: A ---+ B is a unital homomorphism. The 
composition 

~ i ~ f ~ (Rp) ~ 
~-='~---+~B -.!.-+~A 

I I 

has order :::;2n and satisfies 7rA*(R1Ptfi*=p*7rB*fi*",p*i* = 1. Since 7rA* 
is a homotopy equivalence, this composition is necessarily a homotopy inverse 
for 7rA*. Thus we have S(RIA ---+ A) :::; n, which was to be proved. 

The same argument works in general because cyclic homology theory can 
be defined on the category of nonunital algebras; cf. [K2]. Thus a nonunital 
homomorphism i: A ---+ B determines an induced map ~ ---+ ~ defined 



CYCLIC HOMOLOGY AND NONSINGULARITY 423 

modulo homotopy, or equivalently, a class in HCo(A, B). To be more specific, 
we note tha: i: A -+ B is equivalent to a unital algebra homomorphism i#: A -+ 

B , where A is the algebra obtained by regarding A as a nonunital algebra and 
adjoining an identity element. Moreover we can identify A with the product 
algebra C x A. Thus we have maps 

0¥7 (0, I) 0¥7 0¥7 0¥7 i#. 0¥7 
a A ------; a C X a A +- a CxA ------; a B 

where the middle arrow is a homotopy equivalence by the additivity of cyclic 
homology for a product of two algebras. Using this we obtain a map i.: ~ -+ 
~ defined modulo homotopy, which satisfies p.i. rv 1 as one easily checks. 
Then the induced map on the inverse limits i.: ~ -+ ~ also satisfies p.i. rv 

1 , permitting the argument given above in the unital case to proceed. 0 

Proposition 10.6. There exists an algebra A such that s(RIA -+ A) = 00, 

i.e., such that the Goodwillie class in HP+(A, RIA) does not come from 
S-I HC+(A, RIA). 
Proof. Put 

m = sups(RIA -+ A). 
A 

Since RI A -+ A maps to any square-zero extension of A, it follows from 
10.4(i) that any square-zero extension has size ~ m. Then 10.4(ii) implies for 
any extension A = R/ I and integer p ~ 0 that 

2P p 2j 2j - 1 

s(R/I -+ A) ~ Ls(R/I -+ R/I ) -.5, pm. 
j=1 

Combining this with 10.3 in the case n = 2P - 1, we obtain for each p an 
algebra A such that 

P 2P 
2 - 1 ~ s(RA/IA -+ A) ~pm. 

This implies m = 00, i.e., there exists a sequence of algebras An such that 
s(RIAn -+ An) tends to infinity. 

Let B be any algebra such that 

C EB E9 An c B c II An 
n n 

and let Pn: B -+ An and in: An -+ B denote the obvious projections and injec-
tions. Note that Pn is a homomorphism of unital algebras and in is a homomor-
phism of the underlying nonunital algebras such that Pnin is the identity. By 
10.5 we have s(RI B -+ B) ~ s(RIAn -+ An) for all n, so s(RIB -+ B) = 00. 0 

11. NISTOR'S BIVARIANT CHERN CHARACTER 

The problem of associating a bivariant Chern character in HC·(A, B) with 
certain (" p-summable") cycles for the bivariant K-theory KK(A, B) has been 
studied by several authors including Wang and Kassel. The most useful and 
elegant results in this direction have been obtained by Nistor [N]. We now apply 



424 JOACHIM CUNTZ AND DANIEL QUILLEN 

our framework to construct in a simple way a bivariant Chern character of the 
same type as Nistor's but with better bounds. One can show our construction 
is essentially equivalent to Nistor's, but this point will not be discussed here. 

Let A, B , L be algebras and let J c L be an ideal. Let r be a J-adic trace 
on JP , that is, a linear functional vanishing on [f, Jj] for i + j = p. In appli-
cations to Fredholm modules L, J , r are respectively the algebra of bounded 
operators on Hilbert space, the Schatten ideal of p-summable operators, and 
the canonical trace on trace class operators. 

Suppose given a quasi-homomorphism from A to B consisting of two ho-
momorphisms rp, 7p: A --+ L 0 B which are congruent modulo the ideal J 0 B . 
Improving on Nistor's result slightly, we will construct elements 

(1) h2m - 2m C (rp, rp, r) E HC (A, B) 

for 2m 2': p - 1 (rather than m 2': p - 1) such that C h2m+2 ( rp, 7p, r) 
SCh2m (rp, 7p, r). 

We begin with some preliminary constructions. Let 
n 

J: = In / '2)i , In-i] 
i=O 

and let # n: In --+ J#n be the canonical surjection. Then # n is the universal J 
adic trace on In with values in a vector space. 

Let S be the graded algebra 

S = E9 tn In c qt] 0 L 
n~O 

where t is an indeterminate. Then 

(2) 

so that a J -adic trace on In is equivalent to a homogeneous trace of degree n 
on S. 

We next define certain inhomogeneous traces Ilm: S --+ J;m+l for m 2': o. 
Let 

and define Ilm by 

Ilm(tn X) = !(1- (-1)n)Pm(n)#2m+l(X) , 

This is well defined since the numerical function of n vanishes for 0 :::; n :::; 2m . 

Lemma 11.1. (i) Ilm is a trace on S. 
(ii) Ilm vanishes on K m+1 , where K is the idea lin S generated by (1_t2 )J2 . 
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(iii) One has a commutative square 

where D = t 1t is the degree operator on Sand i is the map induced by the 
inclusion J 2m+3 C J 2m+1 . 
Proof. It is clear from (2) that 11m descends to SQ' so (i) holds. 

We can also describe 11m as the composition of the map 

1(£>1 - £>_I)Pm(D): S -> J 2m+1 

where £>±I evaluates a polynomial in t at ±1 , followed by #2m+1 . The asser-
tion (iii) follows immediately from this description. 

Finally as D is a derivation of Sand Pm(D) has degree m in D, we see 
that Pm(D) maps K m+1 into K = Ln>O(l- t2)tn J2+n , which is killed by £>±1' 
proving (ii). 0 -

Consider now the quasi-homomorphism rp, 7p: A -> L ® B and set 

p = t (rp + 7p): A -> L ® H , 
q = t (rp - 7p): A -> J ® H. 

Then p + tq: A -> S ® B is a linear map respecting identity elements, whose 
curvature is 

2 ---:02 2 2 a l ®a2 ....... (1-t)qa1qa2 : A ->(l-t)J ®BcK®B. 

By the universal property 5.1 of RA there is a unique homomorphism u: RA 
-> S ® RB such that 

UPA = (1 ® PB)(P + tq) 
where P A denotes the canonical inclusion of A as a subspace of RA and 
similarly for PB' Since p + tq: A -> (SjK) ® B is a homomorphism, we have 

u(IA)cK®RB+S®IB. 

Let Xm denote the composition 

X(RA) ~ X(S ® RB) ~ SQ ® X(RB) ~ J;m+1 ® X(RB) 

where 11m strictly speaking is 11m ® 1. We now examine the behavior of Xm 
with respect to the canonical filtration FiA= FiAX(RA) and similarly for B. 

Proposition 11.2. The map Xm: X(RA) -> J;m+1 ® X(RB) respects the super-
complex structure and has order ~ 2m, i.e., it maps FiA to J;m+1 ® FiB- 2m for 
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all p. There exists an odd map h: X (RA) ....... J;m+ 1 0 X (RB) of order :-::; 2m + 2 
such that [8, h] = Xm - iXm+l . 
Proof. The first assertion is clear from 

F p u. F P 
IA....... K®RB+S®IB 
~ L Q(Ki) 0 FiB-2i (4.4) 

i~O 

11m 12m+l FP-2m 
....... # 0 IB 

For the second assertion we extend D to S 0 RB and SQ 0 X (RB) as D 0 1 . 
Then 

Du: RA ....... S0RB ....... S0RB 

is a derivation with respect to u, and one has a Lie derivative L(u, Du) fitting 
into a commutative diagram: 

X(RA) ~ XeS 0 RB) ~ SQ 0 X(RB) 

~ lL(I.D) lD 
xes 0 RB) ~SQ 0 X(RB) 

By 7.2 there is an odd map hq,(u, Du): X(RA) ....... xes 0 RB) such that 

L(u, Du) = [8, hq,(u, Du)]. 

The existence of ¢ as in 7.1 (b) follows from the fact that RA is a free algebra. 
In fact there is a canonical choice for ¢, characterized by ¢p A = O. 

Using 11.1 (iii) we have 

Xm - iXm+l = (f.1m - if.1m+l)QU* 
1 -:;:----,- f.1 DQU 

2m + 1 m * 
1 

2m + 1 f.1mQL(u, Du) 

= [8 , h] 

where h = 2~+1 f.1mQhq,(u, Du). By the first case of 7.4 we see that hq,(u, Du) 
maps FiA to Fi;~B+S®IB' which we have already seen is mapped by f.1mQ to 
l;m+l 0 FiB-2- 2m . Thus h has order :-::; 2m + 2. 0 

Let r be a l-adic trace on 12m+l , and let r· Xm: X(RA) ....... X(RB) be Xm 
followed by the map from l;m+l 0 X(RB) to X(RB) induced by r. By the 
first statement of the preceding proposition r· Xm is a map of supercomplexes 
having order :-::; 2m with respect to the canonical filtrations. Thus it determines 
a map of special towers ~ ....... ~[2m], whose class in HC2m (A, B) is defined 
to be Ch 2m (rp, 7p, r). 
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By the second statement the difference r· Xm - r· Xm+1 ' where the latter map 
is defined using the restriction of r to J 2m+3 , has the form [8, r· h], where 
r·h has order::; 2m+2. This shows that SCh2m (rp, 7if, r) = Ch2m+2(rp, 7if, r). 

12. CHERN CHARACTER 

In this section we use the description of periodic cyclic homology as the 
homology of 27(RA, I A) in order to construct the canonical Chern character 
maps from KjA to H Pi+2ZA for i = 0, 1. Given an extension A = Rj I, 
one knows that idempotent and invertible matrices over A can be lifted to the 
nilpotent extension Rj In , and more generally to the I-adic completion R. We 
exploit this fact to define canonical maps from KoA and KI A to the homology 
of 27(R, I) generalizing the familiar 'index' pairings, in which elements of 
KoA pair with traces on RjIn , and elements of KIA pair with traces on In; 
cf. [Q2, II, §2]. In the case of the universal extension A = RAJ I A we obtain the 
Chern character maps from K-theory to periodic cyclic homology. The material 
in this section is a natural development of ideas introduced by Fedosov [F] in 
his version of the index theorem. 

We begin by constructing canonical additive maps 

(1) 

(2) 

d I KoR ~ Ker{R~ ~ 0 R~} = HDoR, [e] 1--+ qtr(e) , 

I b I KIR ~ Ker{O R~ ~ R} = HHIR, [g] 1--+ qtr(g- dg). 

For any vector space V let Mk V be the vector space of k x k matrices 
with entries in V, and for x E Mk V let tr(x) E V be the sum of its diagonal 
entries. If R is an algebra, then the maps 

I I qtr: MkR ~ R~ , qtr: MkO R ~ 0 R~ 

are traces on the matrix algebra MkR and the MkR bimodule of matrix 1-
forms respectively. 

The Grothendieck group KoR may be defined as the abelian group with 
generators [e] for each idempotent matrix e over R, subject to the relations: 

(1) [e] = [e'] if e' = geg- I in MkR. 
(2) [e ffi e'] = [e] + [e'] . 
(3) [e] = 0 if e is the zero matrix in MkR. 

Using this definition we obtain easily an additive map KoR ~ R~ sending [e] 
to qtr(e). 

Upon applying d to e2 = e we obtain ede = de(l - e), dee = (1 - e)de, 
hence 

qtr(ede) = qtr(e2de) = qtr(ede(l - e)) = qtr«1 - e)ede) = O. 

Similarly qtr«1 - e)de) = 0, whence qtr(de) = O. This shows that qtr(e) IS 

killed by d: RQ ~ 0 1 RQ ' so we obtain the map (1). 
Next recall that K\ R is the inductive limit of the groups of invertible matrices 

GLkR made abelian. If g E GLkR, then we have a corresponding class [g] E 
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K,R and a matrix I-form g-'dg E Mkn'R. Since 

qtr((g,g2)-'d(g,g2)) = qtr(g;' g;' dg,g2 + g;' dg2) -, -, 
= Qtr(g, d g,) + qtr(g2 d g2) 

we obtain easily an additive map K,R-+n'RQ sending [g] to Qtr(g-'dg). As 

b(Qtr(g -'dg)) = tr(g -, g) - tr(gg -I) = 0 

this yields the map (2). 
Lifting idempotents and invertibles. Let us consider an extension A = R/ I, and 
let R, j be the I -adic completions of R, I. We propose to construct canonical 
additive maps 

(3) i = 0, 1, 

by lifting idempotent and invertible matrices over A to R, and then using the 
maps (1), (2) for R. 

We begin with KoA. The following is well known, but we give a proof in 
order to obtain a useful formula. 
Lemma 12.1. An idempotent matrix e over A lifts to an idempotent matrix over 
R which is unique up to conjugation. 
Proof. If e E MkA , then upon replacing the extension A = R/ I by the exten-
sion of matrix algebras Mk = MkR/MkI , we can assume e EA. 

It is easier if instead of the idempotent e we work with the equivalent in-
volution 2e - 1. Let z be any lifting of 2e - 1 to an element of R. Then 
z2 belongs to the group 1 + j under multiplication .. Because the exponential 
map j -+ 1 + j is bijective, this group is uniquely divisible. Hence the inverse 
of z2 has a unique square root (z2)-'/2 in this group. Then s = z(z2)-'/2 is 
a lifting of 2e - I to an involution in R, and e = t (I + s) is a lifting of e to 
an idempotent. 

To prove the uniqueness up to conjugacy, let s' be another involution in 
R lifting 2e - 1. Then s's has a unique square root u in I + j. Since 
(su-'s)2 = su-2s = sss's = u2 , we have su-'s = u by uniqueness. Then 

-, 2 'h· h ' . usu = u s = s ,s owmg t at s, s are conjugate. 0 

Let us now extract a formula for the idempotent e lifting the given idempo-
tent e which is constructed in this proof. We have z = 2x - 1, where x is a 
lifting of e to an element of R. The element (z2)'/2 is given by the binomial 
series 
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This formula clearly holds more generally with matrices, so we obtain the fol-
lowing. 

Lemma 12.2. Given an idempotent matrix e E MkA, let x E MkR lift e. Then 

_ (1),",(2n)!( 2)2n e = x + x - 2" L--( ,)2 x - x 
n2::1 n. 

is a lifting of e to an idempotent matrix in MkR. 

It follows easily from the first lemma that we have an isomorphism KoR ~ 
KoA. Using (1) for R we obtain a canonical map 

KoA ...... HDoR = H+(X(R)) 

sending. [e] to Qtr( e) , where e is a lifting of e to an idempotent matrix over R. 
Composing with the map on H+ induced by the obvious map X(R) ...... fii(R, I) 
then yields the desired map 

We next discuss KI A . 

Lemma 12.3. If g E G LkA, then any lifting of g to a matrix over R is invertible. 
Proof. Let p, q be arbitrary liftings of g, g -I respectively to matrices over 
R, and let x = 1 - qp, y = 1 - pq , so that x, y have entries in i. Then 
pq = 1 - y, qp = 1 - x are invertible with inverses given by geometric series. 
Thus p, q are invertible, and 

(4) -I '"' n '"' n p = L- qy = L- x q 
n2::0 n2::0 

since p -I = q (1 _ y) -I = (1 _ x) -I q. 0 

This lemma implies that 1 + Mki is a group under multiplication and that 

GLKA = GLkR/l + MkI. 
It follows that KIA is the quotient of KIR by the subgroup of classes [1 - x] 
with x a matrix over i. 

We next use the map (2) for the algebra R: 
~ I ~ b ~ 

KI R --t Ker(,Q (R)q --t R). 

In order to obtain a map defined in KI A, we must kill elements of the form 

Qtr((l - xl- 1 d(l -xl) ~ -Qtr ( (~x") dx ) 
where x is a matrix over i. Consider the element of i, 

tr(log(1 - x)) = -tr (2: ::~) . 
n2::0 
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We have 

Qd (tr (::~)) = n ~ 1 taQtr(xidXXn-i) = Qtr(xndx). 

If we could take the infinite sum of these equations, we would have 

Qd (tr(log(1 - x))) = Qtr( (1 - x) -I d (1 - x)) 

which would be surprising in view of the algebraic character of 0 1 CR)Q. How-
ever, what is clearly true is that this identity holds in 0 1 (Rj I n\ for each n, 
since only finite sums are needed in this case. Thus we have a well-defined map 

(5) 

sending [g] to Qtr(p -I d p) , where p is any lifting of g to a matrix over R. 
Upon dividing out by the larger space dR on the right, we obtain the desired 
map 

~ 

(6) KIA -> H_(2'(R, I)). 

Clearly (5) gives a finer invariant for elements of KIA than (6). This is 
related to the fact that the map from algebraic K -theory to periodic cyclic 
theory factors through the negative cyclic theory HC- . 

Pairing of K -classes with traces. Before proceeding to the universal extension, 
we discuss how the canonical maps (3) generalize the index pairings which pair 
elements of KoA and KI A with traces on Rj 1m and traces on 1m respectively; 
cf. [Q2, II, §2]. ~ 

First we note that composing our map KoA -> H+(2'(R, I)) with the map 
on homology induced by the surjection i?(R, I) -> X(R/lm) gives a map 

(7) KoA -> H+(X(Rj 1m)) C HCo(R/lm). 

Now a trace r on the algebra R/lm is the same as a linear functional on 
HCo(Rj 1m). Composing r with (7) gives the linear functional on KoA sending 
[e] to r(tr(e)) , where e is a lift of e to an idempotent over Rj 1m . This 
effectively identifies (7) with the index pairing between elements of KoA and 
traces on R/lm . 

Similarly we have a map 

(8) 

so a cyclic cohomology class of degree one on R/lm determines a linear func-
tionalon KIA. Ifthe class is represented by the cyclic l-cocycle J on R/lm, 
then the linear functional sends [g] E KIA to tr J(p-I ,p), where p is a lift 
of g to Rjlm. 

Let us now consider a trace r on 1m considered as an R-bimodule, that is, 
a linear functional on 1m vanishing on [R, 1m ]. Then r determines a class 
in HC I (Rj 1m) as follows. Extend r to a linear functional i on R. Then 
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(bi)(ro' r l ) = f([ro ' riD is a cyclic l-cocycle on R which vanishes if either ro 
or r l is in 1m . Hence it descends to give a cyclic l-cocycle 

f(ro + 1m , r l + 1m) = f([ro' rd) 

on R/lm . A different choice of extension changes this cyclic cocycle by bh, 
where h is a linear functional on R/lm , so we obtain a well-defined class 
[r] E HC I (R/lm). 

Let us write ([r], [g)) for the value on [g) of the linear functional on KIA 
associated to the class [r]. We now compute this number. 

Let p, q be liftings of g, g -I respectively to matrices over R, and let 
x = 1 - qp, y = 1 - pq , so that x, y have entries in 1. Note that qy = xq , 
hence qyn = xn q for all n. The matrix 

m-I m-I 

qm = L qyn = L xn q 
n=O n=O 

satisfies pqm = L:::oI(1 - y)yn = 1 - ym and similarly qmP = 1 - xm. Thus 
q is an inverse for p mod 1m and we have m 

1 - pqm = (1 _ pq)m , 

Writing p + 1m for the residue class of p modulo matrices of the appropriate 
size over 1m , we have 

m -I m m m ([r],[g))=trf((p+l) ,p+l ) = trf(qm +1 ,p+l) 
= tri([qm' pD = trr(qmP - Pm q ) 
= trr(1 - pqm) - tfT(1 - qmP) 
= tfT((1 _ pq)m) _ trr((1 _ qp)m). 

This shows that up to sign ([r], [g)) is the index of [g) with respect to r in 
analogy with the index theory of pseudo-differential operators. Thus the index 
pairing between elements of KIA and traces on 1m can be obtained from (8). 

In principle the families of maps (7) and (8) for different m contain less 
information than the maps (3) involving fii(R, 1) because of the Milnor exact 
sequence for the homology of a tower of supercomplexes. 

The universal extension. For the universal extension we know that the homology 
of fii(RA, lA) is the periodic cyclic homology, hence (3) yields canonical maps 

(9) KiA -+ HPi+2ZA, i = 0, 1. 

We now apply our discussion to compute these maps and identify them with 
the Chern character maps in cyclic homology theory. 

Let RA be the 1 A-adic completion of RA, and note that it can be identi-
fied with n+ A equipped with the Fedosov product. Similarly we can identify 
MkRA with Mkn+ A equipped with the Fedosov product. 

Given an idempotent matrix e over A, we consider the obvious lifting of 
it to a matrix over RA given by the inclusion A c n+ A , and then apply 12.2 
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to obtain an idempotent matrix. Since e - e 0 e = de2 is closed, and Fedosov 
product coincides with ordinary product when one of the forms is closed, we 
obtain the matrix 

(10) - - '" (2n)! ( 1) d 2n M ;;+A e - e + L..J -( ,)2 e - "2 e E kU 

n~1 n. 
which is idempotent for the Fedosov product and is a lifting of e over A. The 
trace of this matrix 

(11 ) '" (2n)' (( 1) 2n) ~+ tr(e) = tr(e) + L..J ti tr e -"2 de E Q A 
n~1 (n.) 

is then an even cycle in i?(RA, fA), whose homology class represents the image 
of [e] E KoA under (3) in the case of the universal extension. Thus by 6.2 and 
the following remark we know that upon applying the homotopy equivalence 
cP (or cPI -I) to this cycle we obtain the b + B cycle representing the image 
of [e] in HP+A. Now 

since dee = (1 - e)d e. Hence tr( e) is K-invariant, so cP carries (11) to the 
K-invariant b + B cycle 

'" n (2n)' (( 1) 2n) ~+ tr( e) + L..J ( -1 ) (n!) . tr e - "2 de E Q A 
n~1 

( 12) 

representing the class in HP+A corresponding to [e] under (9). 
Given an invertible matrix g over A, we lift it in the obvious way to the 

matrix g over RA, which by 12.3 must be invertible. Let g[-I) denote the 
inverse, that is, the inverse of g with respect to the Fedosov product. We can 
compute this inverse by (4) using p = g and q = g -I considered as matrices 
over RA. As 1 - gog -I = d gd g -I is closed, we find that the inverse of g 
with respect to the Fedosov product is 
(13) g[-I) = Lg-I(dgdg-I)n. 

n~O 

The class in H_(¥(RA, fA)) corresponding to [g] E KIA is represented by 
the odd cycle which is the image of qtr(g[-I)c5g) E QI(RA)Q in 

I n ~ 

~ Q (RAj f A \ ~ Q- A. 

Using q(xc5a) = xda we see that this odd cycle is 

(14) Ltr(g-I(dg-Idg)ndg) = Ltr(g-Idg(dg-Idg)n) 
n~O n~O 

which we know is killed by the differential p. Now 
K(tr(g -I dg(d g -I dg)n)) = tr(d gg -I dg(d g -I dg)n-I dg -I) 

-I -I n 
= -tr(gdg (dgdg )) 
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so (14) is invariant under K2. Applying cP1 _I we obtain the K2 -invariant 
b + B cycle ' 

(15) L( -1)nn!tr(g -I dg(dg -I dg)n) 
n:2:0 

representing the image of [g] in H P _ A . Averaging then gives the homologous 
K-invariant b + B cycle 

(16) ~ L( -1)nn!tr(g -I dg(dg -I dg)n _ gdg -I(dgdg -I)n). 
n:2:0 

We summarize this discussion as follows. 
Proposition 12.4. (1) Given an idempotent matrix e over A, (10) is then an 
idempotent matrix with respect to the Fedosov product which is a lifting of e . 
The even form (12) is a K-invariant b + B cycle representing the image of [e] 
under the canonical map (9) from KoA to HP+A. 

(2) Given an invertible matrix g over A, (13) is then the inverse of g with 
respect to the Fedosov product. The odd forms (15) and (16) are respectively 
K2-invariant and K-invariant cycles which represent the image of [g] under the 
canonical map from KIA to H P _ A . 

This result shows that the maps (9) we have constructed coincide with the 
usual Chern character maps; cf. [K3, §§9, 10]. 

13. COMMUTATIVE ALGEBRAS 

The purpose of this section is to discuss special features of the above theory 
in the case of a commutative algebra. 

Let us recall that for any algebra A we have the space QA of its noncommu-
tative differential forms, which comes equipped with a canonical DG algebra 
structure and operators d, b, K , B , P. In particular, we have the mixed com-
plex (QA, b, B) giving rise to the cyclic type homology of A. Furthermore we 
have the algebra RA and supercomplex X(RA) , which by §5 can be constructed 
from QA and its structure. 

Suppose now that A is commutative. Then we also have the ordinary de 
Rham complex Q A considered in algebraic geometry. This may be defined 
abstractly as the universal (super) commutative DG algebra generated by A, 
and it may be constructed concretely as the exterior algebra over A of the 
module Q~ of Kahler differentials. Let 
( 1 ) f.l: QA ---+ Q A 

be the unique homomorphism of DG algebras extending the identity on A in 
degree zero. Then f.l is surjective and it identifies Q A with the quotient of QA 
by the ideal generated by supercommutators [w, 11] . 

We next observe that the operators d, b, K, B, P on QA descend to QA. 
Indeed, d descends to the differential d of Q A ' and b descends to the zero 
operator by §3 (2). The rest are generated from d and b, so they descend to 
give the operators 
(2) b = 0, K = 1 , B = N d , P = 1 , on Q A 
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as is easily checked. In particular, putting jl = (N!)-I/1, where N! is the 
scaling operator which multiplies by n! on n~, we have a surjection of mixed 
complexes 

(3) jl: (nA, b, B) -+ (nA , 0, d). 

To simplify matters, we will assume 

(4) n: =0, n» 0. 

This holds if A is essentially of finite type, for smooth algebras [L, Appendix 
E] in particular. One can avoid this assumption by working appropriately with 

>n ~ the truncated algebra nAjnA and completion n A. 
From (3) we then obtain a surjection of supercomplexes 

(5) jl: (QA, b + B) -+ (QA , d) 

whence a canonical map 

(6) 

from periodic cyclic homology to (Zj2)-graded de Rham cohomology. When 
A is smooth the theorem of Hochschild-Kostant-Rosenberg [HKR], [L, 3.4.4] 
says that (3) is a quasi-isomorphism of mixed complexes (i.e., with respect 
to the differential b). As a consequence one deduces that the map (6) is an 
isomorphism. 

We turn next to the analogues of RA and X(RA) that arise when we carry 
out the constructions of §5 using nA in place of nA. Let RA be the algebra 
given by the space n~ equipped with the Fedosov product. This algebra was 
originally constructed in the case of differential forms on a manifold by Fedosov 
[F] in his version of the index theorem. There is a surjective homomorphism 

(7) 

given by (I), and RA is a nilpotent extension of A by the assumption (4). 
There are two possible analogues of X(RA). On one hand we have X(RA ) , 

and on the other hand we can mimic the description of X(RA) in terms of nA 
given in 5.5 to obtain the supercomplex (nA , P EB J) where 

Using (2) we see that the Hochschild I-cocycle 5.3 on RA with values in 
n-A descends to the bilinear map 

(8) (x, y) ...... Iyld(xy) + xdy 

from RA to n~ , hence this must be a Hochschild l-cocycle. Furthermore, it 
is clear we have a canonical surjection of supercomplexes 

(9) 

given by the identity in even degree and the map nl (R A)Q -+ n~ corresponding 
to the Hochschild l-cocycle (8). 
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Composing this map with the scaling isomorphisms 
(NI)-' 

(QA,PffiJ)~(nA,Nd) ~ (QA,d) 

where c is as in 6.1, we obtain the bottom arrow 0: of the square 

X(RA) 

( 10) 

cP 
------+ 

" ------+ 

(QA, b +B) 

435 

which is easily seen to be commutative; here X(RA) = i?(RA, IA) and cP is 
a homotopy equivalence by 6.2. 

When A is smooth fl is a quasi-isomorphism, hence J.i: RA ---- R A induces 
an injection HPyA ---- Hy(X(RA)). Formulating this dually we have proved 

Proposition 13.1. If A is smooth, then every periodic cyclic cohomology class of 
A comes from a trace or cycle 1-cocycle on the nilpotent extension R A . 

Remarks. (1) Given an arbitrary nonnegatively graded commutative DG algebra 
0. , let R be the algebra of its even elements under Fedosov product. The pairing 
defined by (8) is then a 1-cocycle on R, and one has a map of supercomplexes 

0:: X(R) ---- (0., d) 

generalizing the map in (10). 
(2) Although it will not be needed, we mention the calculation of nl(RA)Q 

in terms of differential forms. Define the operator 

by 
n 

8(~1" '~n) = L(-1/-1~1"'~" '~n (j?)~j 
j=l 

where the ~j are I-forms. For x, y E Q~ put 
+ 1 If! (x , y) = x8(dy) - dx8y E Q A (j?) A QA' 

One can show that If! is a 1-cocycle with respect to Fedosov product on even 
forms, and that it induces an isomorphism 

0.1 (RA)Q .:'. 0.: (j?)A Q~, Q(xJy) t--> If! (x , y) 

with inverse x (j?) da t--> Q(xJa) . 
Finally we consider the composition of the Chern character from KoA, Kl A 

to periodic cyclic homology with the canonical map (6) from the latter to (Z/2)-
graded de Rham cohomology. Applying fl to the b + B cycles §12 (12) and 
(15) we obtain the closed forms in the de Rham complex 

~ (_l)n 2n 
(11) ~ -,-tr(ede ), n. 

n?:O 
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(12) "" n! « -Id )2n+l) 
L...t (2n + l)!tr g g 
n~O 

where we have used that tr(de2n ) = 0 for n > 0 by virtue of the supercommu-
tativity of 0 A • These agree with the usual Chern character forms associated to 
e, g except for the extra signs (_1)n in (11) and the missing signs (-1 t in 
( 12). 

Ignoring these signs for the moment, let us consider the construction of the 
Chern character given in §12 in light of the square (10). To obtain the Chern 
character in de Rham cohomology it suffices to lift e, g into R A' take the 
corresponding cycles in X(RA ) , then map to the de Rham complex by a. This 
unusual construction goes back to Fedosov's version [F] of the index theorem. 

The signs we have mentioned result from the fact that we use the differential 
b + B in the supercomplex defining periodic cycle homology. If instead we 
use -b + B, the signs (_1)n occurring in §12 (12) and (15) are absent, and 
we obtain the usual Chern character forms in the de Rham complex. This 
observation suggests that it might have been better from the viewpoint of signs 
if from the outset we had defined the supercomplexes associated to a mixed 
complex, e.g., OR/ FnOR and X(R) using the differential B - b . 

14. TENSOR PRODUCTS 

In this section we examine the behavior of the X complex when we form the 
tensor product S 0 T of two algebras Sand T. We wish to compare X (S 0 T) 
with the tensor product of the supercomplexes XeS) and X(T). It turns out 
that XeS) 0 X(T) lies intermediate between X(S#T) and XeS 0 T) , where 
S#T is a certain square-zero extension of S 0 T. 

Let x 's denote elements of S, and let Y 's denote elements of T. Let 
F = S * T be the free product algebra, and let J = F[S, T]F be the ideal 
generated by all commutators [x, y]. The quotient algebra F / J can then be 
identified with the tensor product algebra S 0 T in such a way that x 0 1 and 
10 Y correspond to the congruence classes of x and Y modulo J. We define 
S#T to be the quotient algebra F / J2 . 

In [CQ1, 1.4] we gave a Fedosov type description of F analogous to the ones 
for RA and QA. This description to first order says there is a vector space 
isomorphism 

(1) 

given by x 0 Y ....... xy, xodxl 0 YodY1 ....... xOYO[x1 ,yd. Moreover, the product 
on the left side corresponding to the product in F / J2 is given by 

(2) 

together with the obvious left and right multiplication of S0 T on 0 1 S001 T. 
It is easy to check (2) directly, namely, we have 

(xOYO)(XIYI) = xOX1YOY1 - XO[x1 'Yo]Y1 
= xOX1YOYI - xO[x1 'YOYI] + xOYo[x1 ' Y1] 
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in F I J2 , and the corresponding element in S 0 T EB 0 1 S 0 0 1 T is 

XOXI 0 YOY I - xodxl 0 d(YoYI) + xodxl 0 YodY I = XOXI 0 YOY I - xodxl 0 dYoY I 
as claimed. 

We now consider the tensor product X(S) 0 X(T) of the supercomplexes 
X(S) and X(T). To simplify the notation we suppress the ~ symbol used 
previously for the canonical map to the commutator quotient space, so that 
xodxl now stands for an element of 0 1 S or 0 1 F , or its image in some quotient 
space of either of these, which will be clear from the context. Similarly we 
write b, d instead of b, ~d for the differentials in the X complex. Then 
X(S) 0 X(T) is the supercomplex 

S0T OISQ 0 T 

°1 EB !::; EB 
°0 

OIS 00l r Q Q S001~ 

where 
( d01 -10b) (b01 10b) 

80 = 1 0 d b 0 1 ' 81 = -1 0 d d 0 1 . 

We now show X (S) 0 X (T) is isomorphic to 2'2 (F , J) , which we recall is the 
following quotient of X(F): 

F I J2 + [J , F] !::; 0 1 F 1[01 F , F] + JO I F. 

Proposition 14.1. One has an isomorphism of super complexes ¢: X(S)0X(T) ..:::. 
2'2(F, J) given by 

(3) 

¢(x 0y) = xy, 
¢(xodxl 0 Yody l ) = x OYO[x1 , ytl, 
¢(XOdXl 0 y) = xOdx1y, 
¢(x0YodYI) =xYodYI 

where the elements on the right are to be interpreted as the images in 2'2(F, J) 
of the indicated elements of F and 0 1 F . 
Proof. As (1) gives an isomorphism of 0 1 S 0 0 1 T with J I J2 as bimodules 
over S 0 T = F I J , it induces an isomorphism 

Al Al ~ I 2 S 0 T EB:.l. SQ 0:.l. ~ --+ F J + [J, F]. 

This shows ¢ is an isomorphism in even degree. 
Next, because F is the free product S * T, the inclusion homomorphisms 

from Sand T to F induce a canonical F -bimodule isomorphism 
I Al ~ Al F 0 s 0 S 0 s F EB F 0 T ,l,O!: T 0 T F --+ ,l,O!: F. 

This follows easily from the universal properties of the free product and 0 1 • 

Tensoring on both sides with F I J gives an isomorphism of (S 0 T)-bimodules 

T0 0lS0 TEBS0 01T0S":::' OIFIJOIF + OIFJ 
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such that Yo C?; xOdxI C?; YI I---t YoxodxlY I ' and similarly on the other summand. 
Identifying the commutator quotient spaces as 

(T C?; 121 S C?; T)Q .:::. 121 SQ C?; T, Yo C?; xodxl C?; YI I---t xodxl C?; YIYo' 

(S C?; 121 T C?; S)Q .:::. S C?; 121 Tq, Xo C?; YodYI C?; XI I---t xlXO C?; YodYI ' 

we obtain an isomorphism 

121 SQ C?; T EB S C?; 0 1 TQ .:::. 0 1 F /[121 F , F] + J12I F 

which is the map <p in odd degree. 
Thus <p is an isomorphism, and it remains only to check that it is compatible 

with the differentials. Let p, c5 denote the b, d differentials in fC72(F , J). We 
have 

P<p(xodxl C?; y) = P(xodxIY) = [yxo' xd 
= [xoY' xd = xo[Y, xd + [xo' xdY 
= <p( -xodxl C?; dy + [xo' xd C?; y) 
= <pal (xodxl C?; y) 

where we have used that [[xo' y], xd E [J, F] vanishes in fC72(F, J) . Also 

c5<p(xodxl C?; Yody l ) = d(xoYo[xl, yd) 

where we have 

and 

= xoYo[dxl, yd + XOYo[xl ' dyd 
= xodxl[YI' Yo] + [xo' xdYodYI 
= <p( -xodxl C?; [Yo' YI ] + [xo' xd C?; Yody l ) 
= <pao(xodxl C?; YodYI) 

xoYoYldxl = Yoylxodx l = xodxlYoYI' 
because a differential form containing a factor in [S, T] vanishes in fC72 (F , J) . 
The other cases are easily verified. 0 

Remarks. (1) This result implies the Kunneth formula 
HP(S C?; T) = HP(S) C?; HP(T) 

when Sand T are quasi-free. Indeed, in this situation F is quasi-free [CQ 1, 
5.3], so the tower fC7(F, J) represents the cyclic homology type of S C?; T. On 
the other hand, S C?; T has Hochschild cohomological dimension ~ 2, so the 
canonical surjection of fiJ(F, J) onto fC72(F, J) is a quasi-isomorphism and 
fC72(F, J) calculates HP(SC?;T). Since XeS) calculates HP(S) and similarly 
for T, the desired formula follows from the proposition. 

(2) The isomorphism <p is clearly natural (i.e., a morphism of functors of S 
and T), but it is not completely canonical, as it depends upon the order of the 
pair of algebras S, T in the following way. Let 

<PST: XeS) C?; X(T)':::' fC72(F, J) 
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denote the isomorphism just constructed. One can compare rPST with rPTsa, 
where 

a: X(S) 0X(T) ~ X(T) 0X(S) 

is the commutativity isomorphism for the tensor product of supercomplexes. 
One finds that rP~;'rPTSa is the identity on the subspaces 0 1 SQ 001 ~ , 0 1 SQ 0 T 
and S 0 0 1 TQ ' but on S 0 T one has 

rP~irPTSa(x0Y) =x0y-dx0dy 

so rPST #- aTSa . 
We now use the preceding proposition and the canonical surjections 

X(S#T) = X(F / J2) ___ ~2(F, J) ___ X(F / J) = X(S 0 T) 

to obtain natural surjections 

X(S#T) .£, X(S) 0 X(T) -L X(S 0 T) 

such that g f is the map on X supercomplexes induced by the canonical sur-
jection n: S#T --- S 0 T. Note that g is given by the formulas (3) where the 
expressions on the right are to be interpreted as elements of X(S 0 T) . Like rP 
the map f depends on the ordering of the pair S, T. The map g however is 
canonical, since the order ambiguity is killed by g. 

Let k: X (S 0 T) --- SQ 0 X (T) be the canonical surjection induced by the DG 
algebra homomorphism O(S 0 T) --- S 0 OT extending the identity in degree 
zero, i.e., 

k(x 0 y) = ~(x) 0 y, 
k((xo 0 yo)d(x1 0 YI)) = ~(XOXI) 0 YodYI· 

One easily verifies that 

kg = e 0 1: X(S) 0 X(T) --- Sq 0 X(T) 

where e: X(S) --- SQ is the canonical surjection between levels 1 and 0 of the 
Hodge tower of OS; here SQ is to be regarded as a supercomplex concentrated 
in even degree. 

The following summarizes these facts. 

Proposition 14.2. One has a commutative diagram 

(4) 

where the arrows are natural surjections of supercomplexes. 

We now apply this result to study the homotopy behavior of the X complex. 
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Proposition 14.3. Let A be a quasi-free algebra, and let u: A ---+ S ® T be 
a homomorphism. Then ku*: X(A) ---+ SQ ® X(T) can be lifted to a map of 
supercomplexes X(A) ---+ XeS) ® X(T). 
Proof. As S#T is a square-zero extension of S ® T, we can lift u to a homo-
morphism uo: A ---+ S#T. By 14.2 the composition 

X(A) ~ X(S#T) L XeS) ® X(T) ~ SQ ® X(T) 

gives the desired map. 0 

To understand the significance of this result, consider the mapping super-
complex Hom(X(A) , X(T)) and note that ku* gives rise to a map of super-
complexes 

(5) SQ* ---+ Hom(X(A) , X(T)) 

sending a trace .: SQ ---+ C to (. ® l)ku*. The proposition implies that if we 
regard S; embedded as a subcomplex of X(S)* by the transpose of e, then 
(5) extends to a map of supercomplexes 

(6) X(S)* ---+ Hom(X(A) , X(T)). 

Consequently, if the trace • is nullhomotopic, i.e., • = r'd for some trace .' 
on n 1 S , then the odd operator corresponding to .' under (6) is a nullhomotopy 
for the operator corresponding to •. This proves 

Corollary 14.4. If the trace. is nul/homotopic, then (. ® l)ku*: X(A) ---+ X(T) 
is nul/homotopic. 

As an example, consider S = C[t] with 

.(f(t)) = f(l) - f(O) , r' (f(t)dt) = fol f(t)dt. 

In this situation a homomorphism A ---+ S ® T is a polynomial family of ho-
momorphisms ut : A ---+ T, and the map from X(A) to X(T) associated to • 
is the difference of the induced maps u l *, uo* . The proposition says that these 
induced maps are homotopic when A is quasi-free, which provides another 
proof of the second assertion in 8.1. With some more work one can obtain the 
actual Cartan homotopy formula of §7 by concretely constructing the lifting Uo 
used above. 

Let us now assume S to be commutative. In this case we can think of u as 
a family of homomorphisms from A to T parametrized by the spectrum of 
S. 

We have S = SQ' nl SQ = n~ , and XeS) = ns/n;1 , where n;n denotes the 
ideal in the ordinary de Rham complex consisting of forms of degree > n . 

We shall prove the following higher order version of 14.3. 

Proposition 14.5. With these assumptions the map ku*: X(A) ---+ S ® X(T) can 
be lifted to a map of supercomplexes 

X(A) ---+ ~ «ns/n~n) ® X(T)). 
n 
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Proof. Let Rn be the algebra of even elements of nn = ns/n~n equipped with 
Fedosov product; clearly R2k+1 = R2k and RI = Ro = S. By §13 (9) there is 
a canonical map of supercomplexes 

0:: X(Rn) -+ ns/n;n 
given by the identity in even degree, and Q(xJy) 1-+ Iyld(xy) + xdy in odd 
degree. 

Now Rn is a nilpotent extension of S, hence Rn ® T is a nilpotent extension 
of S ® T, and so Rn#T, which is a square-zero extension of Rn ® T, is also 
a nilpotent extension of S ® T. Thus we have a tower of nilpotent extensions 
Rn#T of S ® T, and as A is quasi-free, there is a compatible family of homo-
morphisms un: A -+ Rn#T lifting u. This gives a compatible family of maps 
of supercomplexes 

which starts with ku* when n = 0, as one sees from the proof of 14.3 and the 
fact that 0: = e for n = O. This proves the proposition. 

As a consequence, we have a map of supercomplexes 

(7) E9(n;)* -+ Hom(X(A) , X(T)) 
n~O 

extending (5), which associates to any (finite dimensional) current" an operator 
il: X(A) -+ X(T) of the same parity such that to the boundary of" corresponds 
the operator [d, ill. In particular, a closed current gives rise to a map of 
supercomplexes of the same parity whose class modulo homotopy depends only 
on the homology class of the current. 
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