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MODULI OF HIGH RANK VECTOR
BUNDLES OVER SURFACES
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0. Introduction

The purpose of this work is to apply the degeneration theory developed in [GL]
to study the moduli space of stable vector bundles of arbitrary rank on any smooth
algebraic surface (over C). We will show that most of the recent progress in un-
derstanding moduli of rank two vector bundles can be carried over to high rank
cases.

After introducing the notion of stable vector bundles, the first author constructed
the moduli schemes of vector bundles on surfaces. He showed that for any smooth
algebraic surface X with ample divisor H and line bundle I on X , there is a coarse

moduli scheme M
r,d
X (I,H) parameterizing (modulo equivalence relation) the set of

all H-semistable rank r torsion free sheaves E on X with detE = I and c2(E) = d.
Since then, many mathematicians have studied the geometry of this moduli space,
especially for the rank two case. To cite a few, Maruyama, Taubes and the first

author showed that the moduli space M
2,d
X (= M

r,d
X (I,H)) is non-empty when d is

large. Moduli spaces of vector bundles of some special surfaces have been studied
also.

The deep understanding of M
r,d
X for arbitrary X and r = 2 begins with Don-

aldson’s generic smoothness result. Roughly speaking, Donaldson [Do] (later gen-
eralized by Friedman [Fr] and K. Zhu [Zh]) showed that when d is large enough,

then the singular locus Sing
(
M

2,d
X

)
of M

2,d
X is a proper subset of M

2,d
X and its codi-

mension in M
2,d
X increases linearly in d. This theorem indicates that the moduli

M
2,d
X behaves as expected when the second Chern class d is large. Later, using

general deformation theory, the second author proved that M
2,d
X is normal, and has

local complete intersection (l.c.i.) singularities at stable sheaves provided d is large
[L2]. He also showed that when X is a surface of general type satisfying some mild

technical conditions, then M
2,d
X is of general type for d� 0 [L2]. In our paper [GL],

we also proved that M
2,d
X is irreducible if d is large.

In this and subsequent papers, we shall show that the geometry of M
2,d
X and the

geometry of M
r,d
X , r ≥ 3, is rather similar. The main obstacle in doing so is the

lack of an analogy of the generic smoothness result in high rank case. In this paper,
we will use the degeneration of moduli developed in [GL] to establish the following
main technical theorem.
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Theorem 0.1. Let X be a smooth algebraic surface, H an ample line bundle and
I a line bundle on X. Let r ≥ 2 be any integer. Then for any constant C1 and any
divisor D ⊆ X, there is an N such that whenever d ≥ N , then we have

dim
{
E ∈M

r,d
X | Ext0(E,E(D))0 6= {0}

}
≤ η(r, d, I) − C1,

where η(r, d, I) = 2rd− (r−1)I2− (r2−1)χ(OX) is the expected dimension of M
r,d
X

(= M
r,d
X (I,H)) and the superscript 0 stands for the traceless part of Exti(·, ·).

According to [Ar], [Mu], M
r,d
X is regular at E if E is stable and Ext2(E,E)0

= {0}. As to the subset of strictly semistable sheaves in M
r,d
X , it is easy to show

that its dimension is much less than η(r, d, I)−C1 when d is large. After applying
Theorem 0.1 to the divisor D = KX and using the Serre duality, we conclude that
for d sufficiently large,

dim Sing
(
M
r,d
X

)
≤ η(r, d, I)− C1.

On the other hand, based on deformation theory, each component of M
r,d
X has

dimension at least η(r, d, I). Thus, we have proved the following theorem.

Theorem 0.2. Let X be a smooth algebraic surface, H an ample line bundle and
I a line bundle on X. Let r ≥ 2 be any integer. Then for any constant C1, there

is an N such that whenever d ≥ N , then M
r,d
X has pure dimension η(r, d, I) and

further,

codim
(
Sing

(
M
r,d
X

)
,Mr,d

X

)
≥ C1.

Once we have settled the generic smoothness result, we can generalize some other

properties of M
2,d
X to high rank case. In this paper, we will prove

Theorem 0.3. With the notation as in Theorem 0.2, there is an N such that
whenever d ≥ N , then:

(1) M
r,d
X is normal. Further, if s ∈ M

r,d
X is a closed point corresponding to a

stable sheaf, then M
r,d
X is a local complete intersection at s.

(2) The set of locally free µ-stable sheaves
(
M
r,d
X

)µ ⊆M
r,d
X is dense in M

r,d
X .

(3) For any polarizations H1 and H2 of X, the moduli M
r,d
X (I,H1) is birational

to M
r,d
X (I,H2). (In this case, N depends on both H1 and H2.)

To illustrate the idea of the proof of our main theorem (Theorem 0.1), let us first

recall the degeneration of moduli M
r,d
X constructed in [GL]. Let 0 ∈ C ⊆ Spec C[t]

be a smooth curve that functions as a parameter space and let Z → C be a family
of surfaces that is the result of blowing-up X ×C along Σ× {0}, where Σ ∈ |H| is
a smooth very ample divisor. Clearly, Zt = π−1(t) is X and Z0 = X ∪∆, where ∆

is a ruled surface over Σ. Over C∗ = C \{0}, we have a constant family M
r,d
X ×C∗.

In [GL], we have constructed completions of M
r,d
X ×C∗ over C. These completions

depend on the choice of ample divisors on Z. The ample divisor which we will use is
a multiple of the Q-divisor p∗XH(−(1−ε)∆) that depends on the rational ε ∈ (0, 1

2 ).

We denote this completion by Md,ε. There is a nice description of closed points of

the special fiber M
d,ε
0 : Any point of M

d,ε
0 corresponds uniquely to an equivalence

class of semistable sheaves on Z0.
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Now let D ⊆ X be any divisor and N ⊆M
r,d
X be the set of sheaves E such that

(0.1) Hom(E,E(D))0 6= {0}.

Put Nd,ε ⊆Md,ε as the closure of N ×C∗ in Md,ε. To show that for any constant
C1 and large d we have

dimN ≤ η(r, d, I) − C1,

it suffices to show

(0.2) dim N
d,ε
0 ≤ η(r, d, I)− C1.

Now let E ∈ N
d,ε
0 be any sheaf. Note that E is a limit of sheaves in N and that

sheaves in N satisfy (0.1). So by the semicontinuity theorem, for any invertible
sheaf L on Z such that L|Zt ∼= OX(D), we have

HomZ0(E,E ⊗LZ0)0 6= {0}.

In particular, if we choose L to be p∗XOX(D)(−k∆), where pX : Z → X is the
projection, we get

(0.3) Ext0
Z0

(E,E ⊗ p∗XOX(D)(−k∆))0 6= {0}, ∀k ∈ Z, E ∈ N
d,ε
0 .

Since E is semistable, E|X and E|∆ as sheaves on X and ∆ respectively will satisfy
some weak stability conditions. (For simplicity, here we assume E is locally free.)
On the other hand, for large k, the non-vanishing of

(0.4) Ext0
X(E|X , E|X(D − kΣ))0

will force E|X to be very unstable. Therefore, we can choose a k > 0 (independent
of d, ε and N ) such that (0.4) is always trivial. Thus (0.3) will force

(0.5) Ext0
∆(E|∆, E|∆ ⊗ p∗XOX(D)(kΣ))0 6= {0}.

(0.5) certainly is possible for sheaves over ∆. However, if we can show that the
number of moduli of the set of sheaves F (over ∆) satisfying (0.5) is strictly less
than

the number of moduli of {E∆ | E ∈M
d,ε
0 } − C1,

then codim(Nd,ε
0 ,Md,ε

0 ) ≥ C1, which is exactly what we need. Therefore, the proof
of Theorem 0.1 is reduced to the proof of the following theorem.

Theorem 0.4. Let X be any ruled surface and let H and I be as in Theorem 0.1.
Then for any integer r, any divisor D ⊆ X and any constant C1, there is a constant
N such that for d ≥ N ,

dim
{
E ∈M

r,d
X | Ext0(E,E(D))0 6= {0}

}
≤ η(r, d, I) − C1.

The advantage of working with a ruled surface lies in the fact that every vector
bundle on a ruled surface can be constructed explicitly as follows: Let X = ∆ and
let E be a vector bundle on ∆. For simplicity, we assume for the general fiber Pξ of
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π :∆ → Σ, the restriction sheaf E|Pξ
∼= O⊕rPξ . Then there is a unique rank r vector

bundle V on Σ and a sheaf F supported on a finite number of fibers of π such that

0 −→ E −→ π∗V
ϕ−→F −→ 0

is exact. When E is general, F is of the form
⊕
OPi(1), where Pi are fibers of π.

Thus the condition under which E admits a traceless homomorphism E → E(D)
can be interpreted in terms of the location of Pi’s and the choice of homomorphism
ϕ. The argument to carry out this approach is rather straightforward though quite
technical and will occupy the first section of this paper. In §2, we will review the
degeneration construction and use it to prove Theorem 0.1. Theorems 0.2–0.4 will
be proved in §3. We remark that after the completion of the initial version of this
work, O’Grady has improved our results in his paper [OG].

Conventions and preliminaries. All schemes are defined over the field of com-
plex numbers C and are of finite type. All points are closed points unless otherwise
mentioned. We shall always identify a vector bundle with its sheaf of sections. If
I and J are two line bundles on a surface, then we denote by I · J the intersection
c1(I) · c1(J) and by I2 the self-intersection c1(I) · c1(I). We will use ∼ to denote
the numerical equivalence of divisors (line bundles). For the coherent sheaf F , we
denote by rk(F ) the rank of F . In case F is supported on a finite number of points
on X , we denote by `(F ) the length of F . If p and q are two polynomials with real
coefficients, we say p � q (resp. p � q) if p(n) > q(n) (resp. p(n) ≥ q(n)) for all
n� 0.

In the following, X will always denote a smooth projective surface. Let H be a
very ample line bundle on X . For any sheaf E on X , we denote by χE the Poincaré
polynomial of E, namely, χE(n) = χ(E(n)), E(n) = E⊗H⊗n, and denote by pE
the polynomial 1

rk(E)χE when rk(E) 6= 0. Unless the contrary is mentioned, the

degree of a sheaf E is c1(E) ·H. We recall the notion of stability:

Definition 0.5. A sheaf E on X is said to be stable (resp. semistable) with
respect to H if E is coherent, torsion free and if one of the following two equivalent
conditions hold:

(1) Whenever F ⊂ E is a proper subsheaf, then pF ≺ pE (resp. pF � pE).
(2) Whenever E → Q is a quotient sheaf, rk(Q) > 0, then pE ≺ pQ (resp.

pE � pQ).
When E is a torsion free coherent sheaf on X , we define the slope µ(E) =

1
rk(E) degE.

Definition 0.6. Let e be a constant. The sheaf E is said to be e-stable if one of
the following two equivalent conditions holds:

(1) Whenever F ⊂ E is a subsheaf with 0 < rk(F ) < rk(E), then µ(F ) <

µ(E) + 1
rk(F )

√
H2 · e.

(2) Whenever E → Q is a quotient sheaf with 0 < rk(Q) < rk(E), then µ(E) <

µ(Q) + 1
rk(Q)

√
H2 · e.

We call E µ-stable if E is e-stable with e = 0. When the strict inequality is
replaced by ≤, then we call E e-semistable.

Let W → S be a flat morphism and let E → W be any sheaf on W . For
any closed s ∈ S, we will use Ws to denote the fiber of W over s and use Es
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to denote the restriction of E to Ws. For any subscheme T ⊆ W , we denote by
E|T the restriction of E to T . We shall adopt the following convention: If R is
a set of sheaves on X , then the number of moduli of R is the smallest integer m
so that there are countably many schemes (of finite types) of dimension at most
m, say S1, S2, · · · , and flat families of sheaves ES1 , ES2 , · · · on X×S1, X×S2, · · ·
respectively of which the following holds: For any F ∈ R, there is a closed s ∈ Sk
for some k such that F ∼= ESk,s. We will denote by #mod(R) the number of
moduli of R. In case R is a scheme parameterizing a family of sheaves and t ∈ R,
then we denote by #loc

mod(R, [t]) the number of moduli of sheaves parameterized by
the germ of R at r. In particular, we write #loc

mod(E), where E is any sheaf, for
#loc

mod(Q, [E]) (= the number of moduli of the set of all “small” deformations of E),
where Q is Grothendieck’s Quot-scheme [Gr] that contains all deformations of E
as quotient sheaves of some appropriate locally free sheaf. Another notion we use
frequently is #aut(E) = dim Aut(E), where Aut(E) is the group of automorphisms
of E. Note #aut(E) = h0(End(E)). When R is a set of sheaves, then #aut(R) =
max{#aut(E) | E ∈ R}.

1. Vector bundles on a ruled surface

The purpose of this section is to prove an analogy of Theorem 0.1 for a ruled
surface ∆. Before giving the precise statement of the theorem, we first introduce
some notation. Let Σ be a smooth curve and let π :∆→ Σ be a ruled surface. For
simplicity, we assume ∆ is the projective bundle of a direct sum of a trivial line
bundle with a very ample line bundle (over Σ). Hence π : ∆ → Σ has a unique
section Σ− with Σ− ·Σ− < 0 and has many sections with positive self-intersection.
We choose one such section and denote it by Σ+. By assumption, |Σ+| is base
point free. Let H be an ample line bundle on ∆ that is numerically equivalent to
(denoted by ∼) aΣ+ + bPξ, where Pξ is a general fiber of π. Let e be a constant,
let I be a line bundle on ∆ and let D be any divisor on ∆. In this section, we

will study the set A
r,d
e,I,H of all e-semistable (with respect to H) rank r locally free

sheaves E with detE = I and c2(E) = d and the set

A
r,d
e,I,H(D) = {E ∈ A

r,d
e,I,H | Hom(E,E(D))0 6= {0}}.

Here and in the following, the superscript 0 always stands for the traceless part
of the group or sheaf. For technical reasons, we will choose H to be very close
to Σ+ in the sense that b/a is very small. With the choice of H understood, we

will not build H into the notation and will write A
r,d
e,I (resp. A

r,d
e,I(D)) for A

r,d
e,I,H

(resp. A
r,d
e,I,H(D)). We will also use η∆(E) = η∆(rk(E), c2(E), c1(E)) to denote the

number

(1.1) η∆(r, d, I) = 2rd− (r − 1)I2 − (r2 − 1)χ(O∆).

η∆(r, d, I) is the expected dimension of A
r,d
e,I . Because in this section we work solely

with the surface ∆, we will simply write η for η∆. The theorem we will prove in
this section is the following.

Theorem 1.1. Given r and ∆, there is an ε0 > 0 depending on r and ∆ for which
the following holds: For any ample divisor H ∼ aΣ+ + bPξ with b/a < ε0 and for
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any choice of constants e, C and divisor D ⊆ ∆, I ∈ Pic(∆), there is an integer N
such that whenever d ≥ N , then we have

(1.2) #mod

(
A
r,d
e,I(D)

)
≤ η(r, d, I) − C.

The advantage of working with ruled surfaces lies in having a powerful structure
theorem of torsion free sheaves on ∆. Let E be any torsion free sheaf of rank r. By
Grothendieck’s splitting theorem, its restriction to a generic fiber Pξ has the form

(1.3) E|Pξ
∼=

n⊕
i=1

OPξ(αi)⊕ri , α1 > · · · > αn.

In the following, we call α = (α⊕r11 , · · · , α⊕rnn ) the generic fiber type of E. (The
integer sequence {αi} is always assumed to be strictly decreasing.) We let `(α) =∑n
i=1 riαi. Clearly, r =

∑n
i=1 ri and further, when detE = I and deg I|Pξ = m,

then m = `(α). A
r,d
e,I can be divided into strata according to the generic fiber types

of individual vector bundles. Let r ∈ N and I ∈ Pic(∆) be fixed. Without loss of
generality, we can assume 0 ≤ deg I|Pξ ≤ r− 1. Let m = deg I|Pξ and let 1m be the

fiber type (1⊕m, 0⊕(r−m)). For any fiber type α with `(α) = m, we let

A
r,d
e,I(α) = {E ∈ A

r,d
e,I | E has generic fiber type α}.

The first observation we have is that except for α = 1m, none of #mod

(
A
r,d
e,I(α)

)
are close to η(r, d, I). More precisely, we have

Theorem 1.2. Let m = deg I|Pξ . There are constants C1 and ε0 depending on

(r,∆) such that for any ample divisor H ∼ aΣ+ + bPξ with b/a < ε0 and any fiber
type α 6= 1m, we have

#modA
r,d
e,I(α) ≤ (2r − 1)d+ C1.

The proof of Theorem 1.2 goes as follows: Let α = (α⊕r11 , · · · , α⊕rnn ) be any fiber

type. Then each E ∈ A
r,d
e,I(α) admits a relative Hardar-Narasimhan filtration

(1.4) 0 = E0 ⊆ E1 ⊆ · · · ⊆ En = E

of which the quotient sheaves Fi = Ei/Ei−1 are torsion free with generic fiber

types (α⊕rii ) respectively. Clearly, the deformation of E within A
r,d
e,I(α) depends on

deformation of individual Fi and the extension Ei → Ei+1 → Fi+1. The contribu-

tion of these data to the number of moduli of A
r,d
e,I(α) can be estimated by using

Riemann-Roch. The details of the proof will be provided shortly.
In light of Theorem 1.2, to prove Theorem 1.1 we only need to study the stratum

A
r,d
e,I(1m) and

(1.5) A
r,d
e,I(1m, D) = {E ∈ A

r,d
e,I(1m) | Hom(E,E(D))0 6= 0}.

In this section, we will first establish Theorem 1.1 for the stratum A
r,d
e,I(10, D) and

derive the remainder by induction on m.
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Let E be any vector bundle of generic fiber type 10=(0⊕r). Let x ∈ Σ be any
point, let Px be the fiber of π over x ∈ Σ and let βx(E) = (β⊕r11 , · · · , β⊕rnn ) be the
fiber type of E|Px . In case βx(E) 6= 10, we call Px a jumping line of E. Let Px be a
jumping line of E. We then perform semistable reduction on E along Px by taking
F to be the kernel of the (unique surjective) homomorphism E → OPx(βn)⊕rn . For
convenience, we will use Υx to denote this operation and denote F = Υx(E) and
ωx(E) = β⊕rnn . Clearly, F belongs to the exact sequence

(1.6) 0 −→ F −→ E
ϕ−→OPx(βn)⊕rn −→ 0.

An easy calculation based on Riemann-Roch yields

Lemma 1.3. Let F = Υx(E) with ωx(E) = t⊕s. Then c1(F ) = c1(E)− s[Px] and
c2(F ) = c2(E) + s·t. In particular, η(r, c2(F ), c1(F )) = η(r, c2(E), c1(E)) + 2rs·t.
Proof. See [Br, p. 166].

In case F still has a jumping line, say Py of type (· · · , γ⊕sll ), then we can further
perform semistable reduction on F to get F2 = Υy(F ). We can iterate this process
as long as the resulting vector bundle Fk still admits jumping lines. In general, if
Fk is derived by successively performing this type of elementary transformations,
namely, F0 = E and Fi+1 = Υxi(Fi) with ωxi(Fi) = t⊕sii for i = 0, · · · , k − 1, then
we will write

Fk = ΥΛ(E), Λ = 〈x1, · · · , xk〉
and define ωΛ(E) = 〈t⊕s11 , · · · , t⊕skk 〉. We call k the length of Λ.

Lemma 1.4. For any vector bundle E of generic fiber type 10, there is a finite
length Λ = 〈x1, · · · , xk〉 such that ΥΛ(E) has no jumping lines.

Proof. By Lemma 1.3, the second Chern class of Υx(E) is strictly less than c2(E)
because βn < 0 when βx(E) 6= 10. Thus Lemma 1.4 follows if we can show that
any vector bundle of generic fiber type 10 has non-negative second Chern class.
Indeed, let E be any vector bundle of generic fiber type 10. We choose a divisor
D supported on fibers of π such that OD is a subsheaf of E with E/O(D) torsion
free. Since E/OD has generic fiber type 10, we can assume c2(E/O(D)) ≥ 0 by the
induction hypothesis on the rank of E. Hence,

c2(E) = c2
(
E/O(D)

)
+D · (c1(E)−D) = c2

(
E/O(D)

)
≥ 0.

This completes the proof of Lemma 1.4.

Let E be a vector bundle of generic fiber type 10 and let Λ = 〈x1, · · · , xk〉 be
such that F = ΥΛ(E) has no jumping lines. Then F is a pull-back vector bundle
π∗V whose dual belongs to the exact sequence

(1.7) 0 −→ E∨ −→ π∗V ∨ −→ J −→ 0,

where J is a torsion sheaf supported on the union of fibers Pxi . Usually, the sheaf
J near some fiber Pxi can be very complicated. The case that is easy to understand
and will be dealt with extensively in the subsequent discussion is when J ∼= OPxi (1)

near Pxi . The following theorem says that when the number of moduli of A
r,d
e,I(10)

is close to η(r, d, I), then for general E ∈ A
r,d
e,I(10) with the exact sequence (1.7),

J ∼= OPxi (1) near Pxi for all xi ∈ {x1 · · ·xk} except for a bounded number of fibers.
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Theorem 1.5. For any constant e, there is a constant C2 such that

(1.8) #modA
r,d
e,I ≤ η(r, d, I) + C2.

Further, for any constant C, there are integers l, l1, l2 and N1 of which the following

holds: Assume d ≥ N1 and that S is a variety parameterizing a subset of A
r,d
e,I(10)

satisfying #mod(S) ≥ η(r, d, I) − C. Then there is a line bundle L on Σ of degree
[(d− c)/r] + l1, where c = I ·Σ+, so that for general E ∈ S, there are

(1) d− l distinct points x1, · · · , xd−l ∈ Σ in general position, a surjective homo-

morphism τ1 :π∗L⊕r →
⊕d−l

i=1OPxi (1) and

(2) a zero-dimensional scheme (divisor) z0 ⊆ Σ away from {x1, · · · , xd−l} with
`(z0) ≤ l2 and a sheaf of Oπ−1(z0)-modules J with a quotient homomorphism
τ0 :π∗L⊕r → J so that E∨ belongs to the exact sequence

(1.9) 0 −→ E∨ −→ π∗(L⊕r)
τ0⊕τ1−→ J ⊕

(d−l⊕
i=1

OPxi (1)
)
−→ 0.

This theorem holds for a very simple reason: To maximize the number of moduli
of the set of those E in (1.9), we need to maximize the number of moduli of the
set of homomorphisms τ0 ⊕ τ1 and the quotient sheaves in (1.9). This can only be

achieved by letting J = {0} and xi general. Hence, if #modA
r,d
e,I(10) is close to the

expected dimension η(r, d, I), then the number of fibers in supp(J) cannot be too
large.

Now we sketch how this structure theorem of A
r,d
e,I(10) leads to the proof of Theo-

rem 1.1. We first prove the case m = 0 by contradiction. Assume #modA
r,d
e,I(10, D)

≥ η(r, d, I)−C. Then by Theorem 1.5, the general element E ∈ A
r,d
e,I(10, D) fits into

the exact sequence (1.9) with {x1, · · · , xd−l} and τ1 :π∗L⊕r →
⊕
OPxi (1) general.

Now let F = ker{π∗L⊕r τ0−→J} and let f : E → E(D) be a non-trivial traceless
homomorphism. Then f induces a non-trivial traceless homomorphism

f̃ : F −→ F (D + π−1(z0)),

where z0 is a divisor of Σ as in Theorem 1.5(2). Because the position of x1, · · · , xd−l
and the homomorphism τ1 are general, we will see by degeneration theoretic meth-
ods that Hom(F ′, F ′(D + π−1(z0))) 6= 0 for the torsion free sheaf

F ′ = ker
(
π∗L⊕r →

⊕
(OPxi ⊕ kpi)

)
,

where pi ∈ Pxi . Because of the special choice of F ′, the non-vanishing of the
previous group amounts to saying that for any choice of pi ∈ ∆, there are sections
of H0(O(D+π−1(z0))) that vanish on [(d−l)/r] of p1, · · · , pd−l. On the other hand,
since D is fixed and π−1(z0) is bounded, this is impossible if {pi} are generic and
d is sufficiently large. This leads to a contradiction which ensures that η(r, d, I) −
#modA

r,d
e,I(10, D) can be arbitrarily large.

For the general case, we use induction on m (with r ≥ m fixed). Assume the

theorem holds for m− 1 ≥ 0 and assume #modA
r,d
e,I(1m, D) ≥ η(r, d, I) − C. Then

for general E ∈ A
r,d
e,I(1m, D), we can perform an elementary transformation on E

along a section Σ+ to get a new vector bundle Ẽ ∈ R
r,d′

e′,I′(1m−1, D̃). By carefully



MODULI OF HIGH RANK VECTOR BUNDLES OVER SURFACES 115

studying this correspondence, we will get the desired estimate of #modA
r,d
e,I(1m, D)

from the known estimate of #modR
r,d′

e′,I′(1m−1, D̃), thus establishing Theorem 1.1.
In the following, we will fill in the details of the above sketch. We continue to

use the notation introduced before Lemma 1.4. We begin with the estimate of the

number of moduli of vector bundles of generic fiber type 10. Let E0 ∈ A
r,d
e,I(10)

be any vector bundle of generic fiber type 10 and Λ = 〈x1, · · · , xk〉 be such that
F = ΥΛ(E0) has no jumping line. Then F is a pull-back vector bundle π∗V . Let
ω be ωΛ(E0) = 〈t⊕s11 , · · · , t⊕skk 〉 and let

SΛ,ω(F ) = {E ∈ A
r,d
e,I(10) | ωΛ(E) = ω and ΥΛ(E) = F}.

In the following, we will estimate the number of moduli of this set. We first study
the case where Λ = 〈x〉 and ω = 〈t⊕s〉. Let βx(F ) = (· · · , β⊕rll ). Because of the
following lemma, either t < βl or t = βl.

Lemma 1.6. Suppose E|Px has fiber type (· · · , γ⊕snn ) and that Υx(E) has fiber type

(· · · , β⊕rll ) at x. Then either γn < βl or γn = βl and rl ≤ sn.

Proof. Since F = Υx(E) is the kernel of E → OPx(γn)⊕sn , F|Px belongs to the
exact sequence

0 −→ OPx(γn)⊕sn −→ F|Px −→
n−1⊕
i=1

OPx(γi)
⊕si −→ 0.

Then the lemma follows because γn < γn−1 < · · · < γ1.

Let E ∈ Sx,ω(F ). By dualizing the sequence (1.6), we get

(1.10) 0 −→ E∨ −→ F∨ −→ OPx(−t)⊕s −→ 0.

Clearly, all possible E∨ that fit into (1.10) are parameterized by a subset of Ξ
that is the total space of Hom(F∨,OPx(−t)⊕s). Now let Θ ⊆ Ξ be the subset
consisting of γ : F∨ → OPx(−t)⊕s such that ker(γ)∨ ∈ Sx,ω(F ). Θ admits a left
GL(s,C) action and a right Aut(F∨) action as follows: Let ϕ1 ∈ Aut(F∨) and let
ϕ2 ∈ GL(s) = Aut(OPx(−t)⊕s). Then

ϕ2 · γ · ϕ1 = ϕ2 ◦ γ ◦ ϕ1 ∈ Hom(F∨,OPx(−t)⊕s).

Geometrically, ϕ · γ · ϕ1 corresponds to a locally free sheaf E′ defined by

0 −→ E′∨ −→ F∨
ϕ2·γ·ϕ1−→ OPx(−t)⊕s −→ 0.

Clearly, E′ is isomorphic to E = ker(γ)∨. Conversely, suppose E1 and E2 are two
isomorphic locally free sheaves associated to γ1, γ2 ∈ Θ. Then the isomorphism
ϕ :E1 → E2 induces an isomorphism between Υx(E1) and Υx(E2). Hence, there is
an automorphism ϕ1 :F∨ → F∨ fitting into the (commutative) diagram

0 −−−−→ E∨2 −−−−→ F∨
γ1−−−−→ OPx(−t)⊕s −−−−→ 0yϕ∨ yϕ1

0 −−−−→ E∨1 −−−−→ F∨
γ2−−−−→ OPx(−t)⊕s −−−−→ 0
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In particular, there is a ϕ2 :OPx(−t)⊕s → OPx(−t)⊕s such that ϕ2 ◦ γ1 = γ2 ◦ ϕ1.
Therefore those points in Θ that give rise to isomorphic sheaves form an Aut(F∨)×
GL(s) orbit. Next, we will determine the size of the stabilizer in Aut(F∨)×GL(s)
of any γ ∈ Θ. Suppose ϕ1 ∈ Aut(F∨) and ϕ2 ∈ GL(s) are such that the right
rectangle below is commutative:

0 −−−−→ E∨ −−−−→ F∨
γ−−−−→ OPx(−t)⊕s −−−−→ 0yϕ1

yϕ−1
2

0 −−−−→ E∨ −−−−→ F∨
γ−−−−→ OPx(−t)⊕s −−−−→ 0

Then it induces a ϕ ∈ Aut(E∨). One sees that such a map Stabγ → Aut(E∨) is
injective. Thus, if we let Θk ⊆ Θ be the set of γ’s such that #aut(ker(γ)) = k (for
a set R of sheaves, we define #aut(R) = maxE∈R{dim Hom(E,E)}), then
(1.11)

dim
(

GL(s)\Θk/Aut(F∨)
)
≤ dim Hom(F∨,OPx(−t)⊕s)− (s2 + #aut(F

∨)) + k.

Finally, let (β⊕r11 , · · · , β⊕rnn ) be the fiber type of F|Pz . Then by Lemma 1.6, t ≤ βi.
Because

∑
riβi = 0, we have

(1.12) dim Hom
(
F∨,OPx(−t)

)
=

n∑
i=1

ri dimH0(OPx(βi − t)) = r(−t+ 1).

Returning to the general case Λ = 〈x1, · · · , xk〉 and ω = 〈t⊕s11 , · · · , t⊕snn 〉, we will
prove:

Lemma 1.7. With the notation as above and let E ∈ SΛ,ω(F ), then

(1.13)

(#mod −#aut)
(
SΛ,ω(F )

)
≤ η(E)−

(
r

n∑
i=1

si(−ti − 1) +
n∑
i=1

s2
i

)
−#aut(F )− (r2 − 1)(g − 1).

Proof. We only need to prove the inequality

(1.14) (#mod −#aut)
(
SΛ,ω(F )

)
≤

n∑
i=1

(
rsi(−ti + 1)− s2

i

)
−#aut(F )

because then (1.13) follows from c2(E) = −
∑n
i=1 siti and η(E) = −2r

∑n
i=1 siti

+ (r2 − 1)(g − 1). We prove (1.14) by induction on n. When n = 1, (1.14) follows
from (1.11) and (1.12) because #aut(SΛ,ω(F )) = sup{k|Θk 6= ∅}. Now assume

(1.14) is true for n − 1. We divide Sx1,ω1(F ), ω1 = (t⊕s11 ), into subsets Wk such

that F ′ ∈ Wk if #aut(F
′) = k. Let Λ2 = 〈x2, · · · , xk〉 and ω2 = 〈t⊕s22 , · · · , t⊕snn 〉.

Then by the induction hypothesis, for F ′ ∈Wk,

(#mod −#aut)
(
SΛ2,ω2(F ′)

)
≤

n∑
i=2

(
rsi(−ti + 1)− s2

i

)
− k
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and therefore,

(#mod −#aut)(SΛ,ω(F )) ≤ sup
k

{ n∑
i=2

(
rsi(−ti + 1)− s2

i

)
− k + #mod(Wk)

}

≤
n∑
i=2

(
rsi(−ti + 1)− s2

i

)
+
(
rs1(−t1 + 1)− s2

1 −#aut(F )
)

=
n∑
i=1

(
rsi(−ti + 1)− s2

i

)
−#aut(F ).

Now we are ready to prove our structure theorem for subsets of A
r,d
e,I(0r).

Proof of Theorem 1.5. Inequality (1.8) follows directly from Riemann-Roch and the

fact that there is a constant C2 depending on (∆, H, e) such that for any E ∈ A
r,d
e,I ,

#aut(E) ≤ C2. We now prove the second part of the theorem. Let S ⊆ A
r,d
e,I(10) be

any (irreducible) algebraic set and let E ∈ S be a generic element. By Lemma 1.4,
after performing a sequence of semistable reduction at y1, · · · , yn, we get a vector
bundle with no jumping line, say π∗F with F a vector bundle over Σ. Clearly,
n = n(E) depends on E. We let S0 ⊆ S be the open set of E′ ∈ S with n(E′) = E
and let n0 be the integer so that when E varies in S0, the number of moduli of the
(unordered) set y1, · · · , yn is n0. In other words, n0 of (y1, · · · yn) are in generic
position. We know that the number of moduli of rank r vector bundles on Σ is
r2(g − 1) + 1. Also, since E is e-stable, #aut(E) is bounded by a constant C′3
independent of d and I (see Lemma 1.10). Combining these with (1.13), we get

(1.15) #mod(S) ≤ η(E)− r
n∑
i=1

si(−ti − 1)−
n∑
i=1

s2
i + n0 −#aut(F ) + g + C′3.

Since we have assumed #mod(S) ≥ η(r, d, I)− C, for C3 = C + C′3 + g, we get

(1.16) C3 ≥ r
n∑
i=1

si(−ti − 1) +
( n∑
i=1

s2
i − n0

)
+ #aut(F ).

Because ti < 0, all terms in (1.16) are non-negative. This immediately gives us
n − n0 ≤ C3. Next, we define the multiplicity m(yi) of yi to be the number of
appearances of the point yi in (y1, · · · , yn). Then by (1.16),

1

2
#{yi | m(yi) ≥ 2} ≤

n∑
i=1

s2
i − n0 ≤ C3.

So the total multiplicity of multiple points is bounded. Without loss of generality,
we can assume y1, · · · , yn0 are in general position for general E ∈ S. For conve-
nience, we call yi ∈ (y1, · · · , yn) a simple point if m(yi) = 1 and ωyi(E) = t⊕sii is
(−1)⊕1. We claim that then

(1.17)

∑
yi 6=simple

(−siti) ≤ 2
n∑
i=1

si(−ti − 1) +

(
n∑
i=1

s2
i − n0

)
+ #{yi | m(yi) ≥ 2}

≤
(

2

r
+ 2

)
C3.
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Indeed, when ti ≤ −2, then the term si(−ti) is bounded from above by the term
2si(−ti − 1) in the middle of (1.17), and when ti = −1 and si ≥ 2, then we have
−siti ≤ s2

i − 1. The only remaining situation is when m(yi) ≥ 2, ti = 1 and si = 1.
But in this case, (−ti)si = 1 can be absorbed by the term #{yi | m(yi) ≥ 2}.
Hence, (1.17) holds. Finally, since d =

∑n
i=1(−ti)si,

#{yi | yi simple} = d+
∑

yi 6=simple

siti ≥ d− 4C3.

Therefore, combined with n− n0 ≤ C3, we get

(1.18) d ≥ n ≥ n1 = #{yi | yi simple, 1 ≤ i ≤ n0} ≥ d− 5C3.

Now we let l = [5C3] + 1. Without loss of generality, we can assume {y1, · · · ,
yd−l} are simple points in {y1, · · · , yn0}. Then the sheaf E must belong to the
exact sequence

(1.19) 0 −→ π∗F −→ E −→
(d−l⊕
i=1

OPyi (−1)
)
⊕ J ′ −→ 0.

To prove the proposition, we need to have an estimate on F and J ′. By definition,
J ′ admits a filtration

0 = Jd−l ⊆ Jd−l+1 ⊆ · · · ⊆ Jn = J ′

such that Ji+1/Ji ∼= OPyi (ti)
⊕si . Thus there is a zero scheme z′ ⊆ Σ supported on

{yd−l+1, · · · , yn} of length `(z′) ≤ n− (d − l) ≤ 5C3 (because of (1.18)) such that
J ′ is an Oπ−1(z′)-module and further,

(1.20)

0 ≤ c1(E) · Σ+ − (degF + d− l) = c1(J ′) · Σ+

=
n∑

i=d−l+1

si ≤
n∑

i=d−l+1

(−ti)si ≤ 5C3.

Here, the last inequality holds because of (1.17) and n − n0 ≤ C3. Also, since
#aut(F ) ≤ C3 (from (1.16)), there is a constant C4 such that F is C4-stable.

It remains to show that we can find an integer l1 (independent of d) and find a
single line bundle L of degree [(d − c)/r] + l1 (c = I · Σ+) so that for any E ∈ S0,
E belongs to the exact sequence

(1.21) 0 −→ E∨ −→ π∗(L⊕r) −→
(d−l⊕
i=1

OPyi (1)
)
⊕ J −→ 0

specified in Theorem 1.5. First, there is a constant l1 and a line bundle L of degree
[(d− c)/r] + l1 such that for any C4-stable rank r vector bundle F on Σ satisfying
(1.20), L⊗F is generated by H0(L⊗F ). Now for any E ∈ S0 with the data given by
(1.19), we choose π∗F∨ → π∗L⊕r so that the support of π∗(L⊕r)/π∗F∨ is disjoint
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from
⋃d−l
i=1 Pyi . Then by dualizing (1.19) and coupled with π∗F∨ → π∗(L⊕r), we

get

0 −→ E∨ −→ π∗(L⊕r) −→ J ⊕
(d−l⊕
i=1

OPyi (1)
)
−→ 0.

Finally, it is easy to see that there is an integer l2 depending only on C3 and l1 such
that for some subscheme z ⊆ Σ of length `(z) ≤ l2, J is a sheaf of Oπ−1(z)-modules.
This completes the proof of the theorem.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. We begin with a general vector bundle E ∈ A
r,d
e,I(α), α =

(α⊕r11 , · · · , α⊕rnn ) 6= 1m. Let

(1.22) 0 = E0 ⊆ E1 ⊆ · · · ⊆ En = E

be the relative Harder-Narasimhan filtration such that Fi = Ei/Ei−1 are torsion
free of generic fiber types (α⊕rii ) respectively. We call this the relative filtration of
E. ((1.22) can be derived by using the usual Harder-Narasimhan filtration of E
with respect to the divisor kPξ + Σ+ with k � 0.)

We fix Fi = Ei/Ei−1 and let W ({Fi}n1 ) be the set of all vector bundles V whose
relative filtrations 0 ⊆ V1 ⊆ · · · ⊆ Vn = V satisfy Vi/Vi−1

∼= Fi. Our first step is to
estimate the number of local moduli #loc

mod

(
W ({Fi}n1 ) at [E]

)
. Let Ai = 1

ri
ci(Fi)

and di = c2(Fi) − ( r2 )A2
i . Note that by the proof of Lemma 1.4, di ≥ 0. Now an

easy calculation shows that

(1.23) d = c2(E) =
1

2

n∑
i=1

ri(I −Ai)·Ai +
n∑
i=1

di =
1

2
I2 − 1

2

n∑
i=1

riA
2
i +

n∑
i=1

di.

From the exact sequence

0 −→ En−1 −→ E −→ Fn −→ 0

and the argument similar to (1.11), we have

(1.24)

#loc
mod

(
W ({Fi}n1 ) at [E]

)
≤ #loc

mod

(
W ({Fi}n−1

1 ) at [En−1]
)

+ dim Ext1(Fn, En−1)

−#aut(Fn)−#aut(En−1) + #aut(E)− dim Hom(Fn, En−1).

Further, because E∨n−1 ⊗ Fn has generic fiber type ((αn − α1)⊕r1 , · · · ,
(αn − α⊕rn−1

n−1 )) and αi+1 < αi, Ext2(Fn, En−1) = 0 by Serre duality. Hence

(1.25) dim Hom(Fn, En−1)− dim Ext1(Fn, En−1) = χ(Fn, En−1),

where the right-hand side of (1.25) is the abbreviation of χ(Ext·(Fn, En−1)). Fi-
nally, by using the filtration (1.22), we have

(1.26)

#loc
mod

(
W ({Fi}n1 ) at [E]

)
−#aut(E)

≤ #loc
mod

(
W ({Fi}n−1

1 ) at [En−1]
)

−
n−1∑
i=1

χ(Fn, En−1)−#aut(En−1)−#aut(Fn)

≤
∑
i>j

χ(Fi, Fj)−
n∑
i=1

#aut(Fi).
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The last inequality is derived by iterating the first part of (1.26). Therefore,

(1.27)
#modA

r,d
e,I(α) ≤ sup

{∑
i>j

χ(Fi, Fj) +
n∑
i=1

(
#mod(Fi)−#aut(Fi)

)}
+ max{#aut(E) | E ∈ A

r,d
e,I(α)},

where the sup is taken over all possible relative filtrations (1.22) of E’s in A
r,d
e,I(α).

We now calculate the right-hand side of (1.27) by Riemann-Roch. First,

χ(Fi, Fj) = rirj
(1

2
(Aj −Ai)2 − 1

2
(Aj −Ai) ·K∆ + (1− g)

)
− ridj − rjdi.

For simplicity, in the following we will group all terms that are bounded indepen-
dently of ri, di, Ai and αm 6= 1m into O(1). We have

(1.28)

∑
i>j

χ(Fi, Fj)

= −
∑
i>j

rirj
(1

2
(Aj −Ai)2 − 1

2
(Aj −Ai) ·K∆ +

di
ri

+
dj
rj

)
+O(1).

Further, one calculates

(1.29)
η(Fi) = 2ri

(
di +

(ri
2

)
A2
i

)
− (ri − 1)r2

iA
2
i − (r2

i − 1)(1− g)

= 2ridi − (r2
i − 1)(1− g).

Thus by combining (1.23), (1.27)–(1.29) and the fact that #mod(Fi)−#aut(Fi) ≤
χ(Fi, Fi), we obtain

(1.30)

(#mod(E) −#aut(E))
(
A
r,d
e,I(α)

)
− (2r − 1)d

≤ −
∑
i>j

rirj
(1

2
(Aj −Ai)2 − 1

2
(Aj −Ai)·K∆ +

di
ri

+
dj
rj

)
+

n∑
i=1

2ridi − (2r − 1)
( n∑
i=1

di −
1

2

n∑
i=1

riA
2
i

)
+O(1).

To analyze (1.30), we first note that∑
i>j

rirj(Aj −Ai)2 = r
n∑
i=1

riA
2
i − I2;

∑
i>j

rirj
(di
ri

+
dj
rj

)
=

n∑
i=1

(r − ri)di.

Now if we let Ai ∼ αiΣ
− + ciPξ and let δ = Σ+ ·Σ+, then the right-hand side of

(1.30) is equal to

n∑
i=1

(1

2
(r − 1)riA

2
i − (r − ri − 1)di

)
+

1

2

∑
i>j

rirj(Aj −Ai) ·K∆ +O(1)

=
n∑
i=1

1

2
(r − 1)ri(−δα2

i + 2αici)−
n∑
i=1

(r − ri − 1)di

+
1

2

∑
i>j

rirj(αj − αi)Σ− ·K∆ +
1

2

∑
i>j

rirj(cj − ci)Pξ ·K∆ +O(1)
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which is bounded from above by (note di ≥ 0)

(1.31)

− 1

4
δ

n∑
i=1

α2
i + (r − 1)

n∑
i=1

riαici −
∑
i>j

rirj(cj − ci) +O(1)

= −1

4
δ

n∑
i=1

α2
i +

n∑
k=1

(
rkck

(
(r − 1)αk +

k−1∑
i=1

ri −
n∑

i=k+1

ri

))
+O(1).

Let pk = (r − 1)αk +
∑k−1
i=1 ri −

∑n
i=k+1 ri. Then when α 6= 1m, or equivalently

when n ≥ 2 or n = 2 and α1 − α2 ≥ 2, we will always have

pk − pk+1 = (r − 1)(αk − αk+1)− (rk + rk+1) ≥ 0, k ≤ n− 1.

We rewrite
n∑
k=1

(
rkck

(
(r−1)αk+

k−1∑
i=1

ri−
n∑

i=k+1

ri

))
=
n−1∑
k=1

(
(pk−pk+1)

( k∑
i=1

rici
))

+pn

n∑
i=1

rici.

Finally, we shall make use of the fact that E is e-stable. If H ∼ aΣ+ + bPξ, then
for any k,

deg(Ek) = a
k∑
i=1

rici + b
k∑
i=1

riαi ≤
rk(Ek)

r
H ·I + e

√
H2.

Therefore, for k ≤ n− 1,
k∑
i=1

rici ≤ 1 +
b

a
+ e

√
δ + 2

b

a
− b

a

k∑
i=1

riαi.

Thus we get

(1.32)

n∑
k=1

(
(pk − pk+1)(

k∑
i=1

rici)
)

≤
n−1∑
k=1

(pk − pk+1)
(a+ b+ e

√
a2δ + 2ab

a
− b

a

k∑
i=1

riαi
)

+ pnm

≤ b

a
· r2(

n∑
i=1

|αi|)2 + 4r2(2 + eδ)(1 +
b

a
)(

n∑
i=1

|αi|) +O(1).

Here we have used the fact that pk − pk+1 ≤
∑n
i=1 |αi| + r and pn ≤ 0 because

α 6= 1m and
∑n
i=1 rici = m ≥ 0. Now if we assume

b

a
r2 <

1

16
δ,

then everything in (1.32) can be absorbed by the quadratic term − 1
4δ
∑n
i=1 α

2
i (in

(1.31)) with the help of some constant C1. Thus combined with (1.31), we have
proved

#modA
r,d
e,I(α) ≤ (2r − 1)d+ C1 + max{#aut(E) | E ∈ A

r,d
e,I(α)}.

Theorem 1.2 will be proved if we can bound Hom(E,E) for E ∈ A
r,d
e,I . Since E

is e-stable, E∨ ⊗ E must be (2|e| + 1)-stable. (This can be proved by using the
fact that the Harder-Narasimhan filtration of E will induce the Harder-Narasimhan
filtration of E∨⊗E.) Thus #aut(E) is bounded independently of d by the following
lemma.
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Lemma 1.8. For constants e1, e2 and integer r, there is a constant C′ such that
whenever V is a rank r e1-stable vector bundle on ∆ such that | deg(V )| ≤ e2, then
we have dimH0(V ) ≤ C′.
Proof. We prove the lemma by induction on r. The case r = 1 is obvious. Assume
the lemma is true for vector bundles of rank ≤ r−1 and assume V hasH0(V ) 6= {0}.
Then there is a line bundle L, degL ≥ 0, such that V belongs to the exact sequence

0 −→ L −→ V −→ V/L −→ 0

with V/L torsion free. Since V is e1-stable and | deg(V )| ≤ e2, there are constants
e′1 and e′2 such that | degL|, | degV/L| ≤ e′2 and V/L is e′1-stable. Thus by the
induction hypothesis, there is a constant C′ such that h0(L) ≤ C′ and h0(V/L) ≤
C′. The lemma then follows.

We now prove Theorem 1.1 by induction on m. We first establish the case
m = 0. Let e and C be any constants, r ≥ 2 be an integer and D ⊆ ∆ be any
divisor. We assume H is an ample divisor satisfying the condition of Theorem 1.2.
To prove the theorem, we need to show that there is a constant N depending only
on (X,H, r, I, e,D) so that if for some d we have

(1.33) #modA
r,d
e,I(D) ≥ η(r, d, I) − C,

then d ≤ N . Now assume (1.33) does hold. Thanks to Theorem 1.2, there is an

N1 ≥ 0 such that if d ≥ N1, then the set A
r,d
e,I(D, 10) satisfies

(1.34) #modA
r,d
e,I(D, 10) = #modA

r,d
e,I(D) ≥ η(r, d, I) − C.

Of course, A
r,d
e,I(D, 10) is a constructible set. Let S be an irreducible variety param-

eterizing a subset of A
r,d
e,I(D, 10) such that #modS ≥ η(r, d, I) − C. By Theorem

1.5, there are constants l, l1, l2 (independent of d) and a line bundle L of degree
[(d− c)/r] + l1 such that associated to a general E ∈ S, there are x1, · · · , xd−l ∈ Σ
in general position and a quotient sheaf JE of π∗(L⊕r) such that E belongs to the
exact sequence

(1.35) 0 −→ E∨
i−→π∗(L⊕r)

τ0⊕τ1−→ JE ⊕
(d−l⊕
i=1

OPxi (1)
)
−→ 0.

Clearly, E is determined by the surjective homomorphisms

π∗
(
L⊕r

) τ0−→JE and π∗
(
L⊕r

) τ1−→
⊕
OPxi (1).

Hence the combined number of moduli of the sets of these quotient sheaves that
come from E ∈ S is no less than η(r, d, I)− C. Let

Ξ0 =
{
τ0 : π∗

(
L⊕r

)
→ JE | E ∈ S

}
,

Ξ1 =
{
τ1 : π∗

(
L⊕r

)
→

d−l⊕
OPxi (1) | E ∈ S

}
.

Because of the following lemma, the information contained in Ξ0 is minimal.
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Lemma 1.9. There is a constant C5 independent of d such that #mod

(
Ξ0

)
≤ C5.

Proof. We first calculate the Hilbert polynomials of the sheaves JE . Let JE(n)
= JE ⊗H⊗n. Then

χ(JE(n)) = χ(π∗L⊕r(n))− χ(E(n))− (d− l)χ(OPξ(1)⊗H⊗n) = a1(d)n+ a0(d),

where a1(d) = (r[(d − c)/r] − d + rl1 + l) · (H · Pξ) − I · H and a0(d) =
(r[(d − c)/r] − d) + rl1 − 1

2I
2 + 1

2I ·K + 2l. Since r[(d − c)/r] − d can only at-
tain integer values between −c− r and −c for integers d, the function a1(d) (resp.
a0(d)) can only attain r values. Hence, {χ

(
JE(·)

)
| E ∈ S} is a finite set (indepen-

dent of d) and by [Gr, p. 12], the set Ξ0 is bounded. Thus, there is a constant C5

such that #modΞ0 ≤ C5.

Since #modS ≤ #modΞ0 + #modΞ1, we have

#modΞ1 ≥ η(r, d, I)− (C + C5).

Let τ1 ∈ Ξ1 and F = ker{τ1}. In the following, we seek to relate the non-vanishing
of Hom(E,E(D))0 to the non-vanishing of Hom(F, F (D′))0 for some divisor D′.
First of all, by (2) of Theorem 1.5, there is a divisor z ∈ Σ (of degree ≤ l2) such
that the composition

(1.36) F (−π−1(z)) ↪→ π∗L(−π−1(z))⊕r −→ π∗L⊕r
τ0−→JE

is trivial. Because of (1.35), F (−π−1(z)) is a subsheaf of E∨. Therefore, any non-
trivial traceless homomorphism ϕ :E → E(D) will provide us a non-trivial traceless
homomorphism

F (−π−1(z)) −→ E∨
ϕ−→E∨(D) −→ F (D).

Further, let z̄ be a fixed divisor on Σ of degree l2 + 2g. Since

h0(Σ,OΣ(z̄ − z)) 6= 0,

Hom
(
F, F (D+π−1(z))

)
6= 0 implies Hom

(
F, F (D+π−1(z̄))

)
6= 0. Thus we have

proved:

Lemma 1.10. With the notation as before, there is a divisor z ⊂ Σ independent
of d and D such that for any sheaf F = ker{τ1}, where τ1 ∈ Ξ1, and for D1 =
D + π−1(z), we have Hom

(
F, F (D1)

)
6= {0}. �

Our next step is to investigate the set Ξ1 by utilizing this non-vanishing property.
We first fix d− l general points x1, · · · , xd−l ∈ Σ and let U be the set of all quotient
homomorphisms

(1.37) σ : π∗
(
L⊕r

)
−→

d−l⊕
i=1

OPxi (1).

U is (canonically) parameterized by an open subset of the product of d − l copies
of projective space P2r−1 after fixing the basis of each H0(OPxi (1)). In the fol-

lowing, for any u ∈ Πd−lP2r−1 we denote by σu the associated homomorphism

σu :π∗(L⊕r)→
⊕d−l

i=1OPxi (1). Let

Ξ1(x) = {u ∈ Πd−lP2r−1 | σu ∈ Ξ1}.
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Since the points of (x) = (x1, · · · , xd−l) are general,

(1.38)
dim Ξ1(x) ≥ #modΞ1 − (d− l)

≥ η(r, d, I)− (C + C5)− (d− l) ≥ (2r − 1)d− C6

for some integer C6. Now let l3 = l+C6 +1. Possibly after rearranging the order of
(x1, · · · , xd−l), we can further assume that the restriction to Ξ1(x) of the projection
from Πd−lP2r−1 to the first d− l3 factors,

Ξ1(x) ⊆ Πd−lP2r−1 −→ Πd−l3P2r−1,

is dominant. That is, for general v ∈ Πd−l3P2r−1 with the associated homomor-

phism σ′v :π∗L⊕r →
⊕d−l3

i=1 OPxi (1), there is at least one

ξ :π∗L⊕r →
d−l⊕

i=d−l3+1

OPxi (1)

such that σ′v ⊕ ξ considered as a quotient sheaf belongs to Ξ1(x). Thus if we let
V = ker{σ′v ⊕ ξ} and let Vv = ker{σ′v}, V and Vv fit into the exact sequence

0 −→ V −→ Vv −→
d−l⊕

i=d−l3+1

OPxi (1) −→ 0.

Let A =
⋃d−l
i=d−l3+1 Pxi be a divisor in ∆. Following the argument in Lemma 1.10,

the non-trivial homomorphism φ in Lemma 1.10 induces a non-trivial homomor-
phism

φ′ :Vv −→ Vv(D1 +A).

Therefore for general v ∈ Πd−l3
i=1 P2r−1, Hom∆(Vv, Vv(D1 +A))0 6= {0}. Finally, as

in Lemma 1.9, for any fixed divisor A0 ⊆ ∆ that consists of l3 + 2g fibers of ∆,

we must have Hom
(
Vv, Vv(D1 + A0)

)0 6= 0 as well. Therefore, Theorem 1.1 (when
m = 0) follows from

Proposition 1.11. For any divisor D ⊆ ∆ and any integer l0, there is a constant
N for which the following holds: Assume d ≥ N , that L is a line bundle on Σ of
degL = [d/r] + l0 and that x1, · · · , xd are general points in Σ. Then for general
v ∈ ΠdP2r−1, the sheaf Ev = ker{σv}, where σv is the associated homomorphism

π∗L⊕r →
⊕d

i=1OPxi (1), satisfies Hom(Ev, Ev(D))0 = {0}.

Proof. We prove it by contradiction. The trick is to first prove the vanishing of this
homomorphism group for a special quotient sheaf and then apply the semicontinuity
theorem to derive the general case. Let pi ∈ Pxi be a general closed point and let U
be a small disk containing 0. There is a torsion free sheaf Ji on Pxi×U flat over U
such that Ji|Pxi×{0}

∼= OPxi ⊕Cpi (Cpi is the skyscraper sheaf supported on pi) and

for t 6= 0, Ji|Pxi×{t}
∼= OPxi (1). It is easy to see that any surjective homomorphism

(1.39) fi :
(
OPxi

)⊕r −→ OPxi ⊕ Cpi
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can be extended to a (surjective) homomorphism

Fi :
(
OPxi×U

)⊕r −→ Ji.

In general, we can extend any surjective homomorphism

(1.40) f : π∗(L⊕r) −→
d⊕
i=1

π∗(L⊕r)|Pxi −→
d⊕
i=1

(
OPxi ⊕ Cpi

)
to a (surjective) homomorphism

F : π∗(L⊕r)⊗O∆ O∆×U −→
d⊕
i=1

Ji.

Let
Vt = ker{F|∆×{t}}.

Then Vt is a flat family of torsion free sheaves on ∆ parameterized by U . As-

suming, for general σv :π∗(L⊕r) →
⊕d

i=1OPxi (1), Hom(Ev, Ev(D))0 6= 0, then by

the semicontinuity theorem, Hom(Vt, Vt(D))0 6= {0} for t 6= 0 and consequently,
Hom(V0, V0(D))0 6= {0}.

Now we seek to find a contradiction by choosing V0 (i.e. f in (1.40)) carefully.
We first divide the set {x1, · · · , xd} into 2r subsets, say Λ1, · · · ,Λ2r, such that each
contains either [d/2r] or [d/2r] + 1 points. We write fi = f1

i ⊕ f2
i according to

(1.39). For xi ∈ Λ2k−1, we define f1
i to be the composition

(1.41) f1
i : π∗(L⊕r)

rest−→π∗(L⊕r)|Pxi
prk−→π∗(L)|Pxi ,

where prk is the projection onto the kth component, and define f2
i to be the com-

position
f2
i : π∗(L⊕r)

rest−→π∗(L⊕r)|Pxi
prk+1−→ π∗(L)|Pxi

ev−→Cpi ,

where ev : π∗(L)|Pxi → Cpi is the evaluation map. (Here we agree prr+1 = pr1.)

For i ∈ Λ2k, we define f1
i as in (1.41) while we let f2

i be

f2
i : π∗(L⊕r)

rest−→π∗(L⊕r)|Pxi
prk+1⊕prk+2−→ π∗(L)|Pxi ⊕ π

∗(L)|Pxi
ev+ev−→ Cxi .

(prr+2 = pr2.) We claim that when d is sufficiently large, the sheaf E ⊆ π∗(L⊕r)

that is the kernel of
⊕d

i=1(f1
i ⊕ f2

i ) has Hom(E,E(D))0 = 0. Indeed, let

L̃k = L(−
∑

i∈Λ2k−1∪Λ2k

xi)

be the line bundle on Σ of degree between l0 − 2 and l0 + 1 and let Lk = π∗L̃k.

Then, E is a subsheaf of
⊕r

i=1 Lh with cokernel
⊕d

i=1Cpi . Let s ∈ Hom(E,E(D)).
Then s induces a homomorphism

(sij)r×r :
r⊕

h=1

Lh −→
r⊕

h=1

lh(D)
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with sij ∈ H0(L−1
i ⊗ Lj(D)). Since L−1

i ⊗ Lj is a pull back of the line bundle

on Σ that has degree −1, 0 or 1, h0(L−1
i ⊗ Lj(D)) is bounded by a constant C6

independent of d. On the other hand, by our construction of E, when i ∈ Λ2k−1,
the composition

r⊕
h=1

Lh
(s∗∗)−→

r⊕
h=1

Lh
prk+1−→ Lk+1

ev−→Cpi

is trivial. Hence for j 6= k + 1, sjk+1 vanishes on pi for all i ∈ Λ2k−1. Now we let
N = 2r([C6] + 3) and assume d ≥ N . Because pi are general and

(1.42) #(Λ2k−1) ≥ [d/2r] > C6 + 2 > h0(L−1
j ⊗ Lk+1) + 1,

sjk+1 must be 0 for j 6= k + 1.
It remains to show that s = g0 · id for some g0 ∈ H0(O(D)). Let gj ∈ H0(O(D))

be sections so that sjj = gj · id :Lj → Lj(D). Let i ∈ Λ2k and let

vi 6= 0 ∈ ker
{
{Lk+1 ⊕ Lk+2}|pi

(ev,ev)−→ Cpi
}
.

Then because (sij) = diag{s11, · · · , srr} is induced from s ∈ Hom(E,E(D)), we
must have

(ev, ev) ◦ (prk+1 ⊕ prk+2) ◦ (s∗∗)vi = 0.

It is straightforward to check that this is equivalent to (gk+1−gk+2)(pi) = 0. Hence,
because pi are general and #(Λ2k) > h0(O(D)) + 1, we must have gk+1 = gk+2.
Therefore, Hom(E,E(D))0 = 0. This completes the proof of the theorem for m = 0.

Now we use induction on m to establish the remaining cases. The strategy is as
follows: We first fix a section Σ+ ⊆ ∆ of π : ∆ → Σ of positive self-intersection δ.

Let E ∈ A
r,d
e,I(D, 1m) be any sheaf. We choose a quotient sheaf E|Σ+ → LE with

LE a locally free sheaf of OΣ+ -modules and define Ẽ = ker{E → LE}. Ẽ is locally
free with Chern classes

(1.43) I ′ = det(Ẽ) = I(−Σ+), r0 = rankL;

(1.44) d′ = c2(Ẽ) = d+ degLE +
1

2
r0(r0 − 1)δ − r0(I ·Σ+).

Moreover, Ẽ ∈ A
r,d′

e′,I′(D + Σ+) for a constant e′ independent of L and d. Hence

by applying the induction hypothesis to A
r,d′

e′,I′(D + Σ+), we get an upper bound

of #mod{Ẽ | E ∈ A
r,d
e,I(D)}. Thus if we understand the correspondence E → Ẽ

well, we can translate the estimate of #mod{Ẽ | E ∈ A
r,d
e,I(D)} to the estimate of

#modA
r,d
e,I(D). We now give the details of this argument.

First, we choose e0 > 0 so that h1(Σ, F ) = 0 holds for all semistable vector
bundles F on Σ with rk(F ) ≤ r2 and µ(F ) ≥ e0. Put e1 = r(e0 + δ). There is

a decomposition of A
r,d
e,I(D, 1m) according to whether the restriction of an element

E ∈ A
r,d
e,I(D, 1m) to Σ+ is e1-stable or not. We denote these sets by W+ and W−

respectively. Let L0 be a line bundle on Σ+ such that H0
Σ+(F∨ ⊗ L0) generates

F∨ ⊗L0 for any e1-stable rank r vector bundle F on Σ+ of degree I ·Σ+. Then for
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any E ∈ W+, we let LE = L0 and fix a surjective homomorphism σ :E → LE. In
case E ∈W−, we let

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fk = E|Σ+

be the Harder-Narasimhan filtration of E|Σ+ . That is, Fi+1/Fi are semistable and
µ(Fi/Fi−1) > µ(Fi+1/Fi). We let i0 be the largest integer so that

µ(Fi0/Fi0−1) ≥ µ(Fi0+1/Fi0) + e0.

Such i0 exists because E|Σ+ is not e1-stable and e1 > re0. Then by our choice of
e0,

E|Σ+
∼= ME ⊕ LE , ME = Fi0 and LE = E|Σ+/Fi0 .

We choose our quotient sheaf to be σ :E → LE . Note that LE is re0-stable and
has degree ≤ r0

r I ·Σ+.

Now let Ẽ be the kernel of E → LE. Then Ẽ is locally free whose first and
second Chern classes are given in (1.43) and (1.44). It can easily be checked that

Ẽ is e′-stable, e′ = e1 + r(H · Σ+), and Hom∆(Ẽ, Ẽ(D + Σ+))0 6= {0}. Therefore,
we have obtained a map

(1.45) Ψ : A
r,d
e,I(D, 1m) −→

⋃
d′,I′

A
r,d′

e′,I′(D + Σ+),

where d′ can be any integer and I ′ can possibly be I(−Σ+), · · · , I(−(r − 1)Σ+).
We wish to find an upper bound on

#modΨ−1
(
A
r,d′

e′,I′(D + Σ+)
)

that is independent of (d′, I ′). We begin with an estimate of #modΨ−1(Ψ(E)) for

any E ∈ A
r,d
e,I(D, 1m). Because E belongs to the exact sequence

(1.46) 0 −→ F −→ E −→ L −→ 0

(L = LE as before) for M = E|Σ+/L, F|Σ+ fits into the exact sequence

(1.47) 0 −→ L(−Σ+) −→ F|Σ+ −→M −→ 0.

On the other hand, elements of Ψ−1(F ) are parameterized by Ext1
∆(L,F ), a subset

of P. Since F is locally free,

dim Ext1
∆(L,F ) = dim Ext1

∆(F,L⊗K∆) = dimH1
Σ+(Hom(F,L)⊗K∆)

= dimH0
Σ+(L∨ ⊗ F|Σ+(Σ+)) ≤ h0(L∨ ⊗ L) + h0(L∨ ⊗M(Σ+)).

Here the last inequality follows from (1.47). Since L is re0-stable, h0(L∨ ⊗ L) is
bounded from above by a constant. In case E ∈ W+, because E|Σ+ is e1-stable,

h0(L∨⊗M(Σ+)) is also bounded from above. Hence for some constant C3 depending
only on e1, r and I, we have

(1.48) #modΨ−1(Ψ(E)) ≤ C3, ∀E ∈W+.
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When E ∈W−, h1(L∨ ⊗M(Σ+)) = 0 because of our choice of e0. Thus

h0(L∨ ⊗M(Σ+)) = χ(L∨ ⊗M(Σ+))

= − degL · rk(M) + degM · rk(L) + rk(M) · rk(L)(δ + 1− g).

Combined with degL+ degM = I ·Σ+, we get

(1.49) #modΨ−1
(
Ψ(E)

)
≤ −r degL+ C4

for some constant C4 ≥ 0 independent of E ∈W−.
Now we use the induction hypothesis. Because rkL = r0 < r, for any E ∈

A
r,d
e,I(D, 1m), either the generic fiber type of Ẽ is 1m−r0 or it is not of the form

(α⊕r11 , α⊕r22 ). Hence, with I ′ = I(−r0Σ+), 1 ≤ r0 ≤ r, and

C5 = C + C4 + 2r2δ + 2r|I · Σ+|,

we can use Theorem 1.2 and the induction hypothesis to conclude that there is an
N1 and a constant C6 so that when d′ ≥ N1, we have

(1.50) #modA
r,d′

e′,I′(D + Σ+) ≤ η(r, d′, I ′)− C5

and when d′ ≤ N1, we have

(1.51) #modA
r,d′

e′,I′(D + Σ+) ≤ η(r, d′, I ′) + C6.

We claim that when

(1.52) d ≥ N = N1 + rδ + (2 + r)|I · Σ+|+ C + C4 + C6,

then
#modW

− ≤ η(r, d, I)− C.
We break the estimate into two cases. In the case d′ = c2(Ẽ) ≥ N1, by (1.49) and
(1.50),

#modΨ−1
(
A
r,d′

e′,I′(D + Σ+)
)
≤
(
η(r, d′, I ′)− C5

)
+
(
−r degL+ C4

)
= η(r, d, I) − 2r0I · Σ+ +

(
−r2

0(r − 1) +
1

2
r0(r0 − 1)

)
+ r degL− C5 + C4

≤ η(r, d, I) − C.

The last inequality holds because degL ≤ r0
r I ·Σ+. Now assume d′ = c2(Ẽ) < N1.

Then

#modΨ−1
(
A
r,d′

e′,I′(D + Σ+)
)
≤
(
η(r, d′, I ′) + C6

)
+
(
−r degL+ C4

)
≤ η(r, d, I) + r degL+ 2r|I ·Σ+|+ r2δ + C6 + C4 ≤ η(r, d, I)− C.

Here we have used the fact that degL ≤ −2|I · Σ+| − rδ − C6 − C4 − C which
follows from (1.44), (1.52) and d′ < N1. Now we consider E ∈ W+. Since

#modΨ−1(Ψ(E)) ≤ C3 from (1.48) and c2(Ẽ) = d + η with η a fixed integer
independent of d, an argument similar to that of W− shows that there is an N ′

such that for d ≥ N ′, we have #modW
− ≤ η(r, d, I)−C. This establishes Theorem

1.1.
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2. Degeneration of moduli space

We now recall briefly the construction of degeneration of moduli and refer the
details of this construction to [GL]. We first fix a very ample line bundle H and a
line bundle I on X . Let C be a Zariski neighborhood of 0 ∈ Spec C[t]. By choosing
a smooth divisor Σ ∈ |H| we can form a threefold Z over C by blowing up X × C
along Σ× {0}. Clearly, Zt ∼= X , t 6= 0, and Z0 consists of two smooth components
X and a ruled surface ∆ that intersect normally along Σ ⊆ X and Σ− ⊆ ∆. For

any line bundle I on X and integers r and d, let M
r,d
X be the moduli space of rank

r H-semistable sheaves over X of detE = I and c2(E) = d. Let M
r,d
X × C∗ → C∗,

C∗ = C \ {0}, be the constant family over C∗. The degeneration we construct will

be a flat family Md (over C) extending the family M
r,d
X × C∗ such that the closed

points of the special fiber Md
0 = Md ×C Spec C[0] are in one-one correspondence

with the semistable sheaves on Z0 that will be defined shortly.
We first introduce the notion of torsion free sheaves on the surface Z0:

Definition 2.1. A sheaf E on Z0 is said to be torsion free at z ∈ Z0 if whenever
f ∈ OZ0,z is a zero divisor of the OZ0,z-modules Ez, then f is a zero divisor of
the OZ0,z-modules OZ0,z. The sheaf E is said to be torsion free if E is torsion free
everywhere.

Let E be any coherent sheaf on Z0. We denote by E(1) (resp. E(2)) the torsion
free part of E|X (resp. E|∆). We define the rank of E to be a pair of integers,

rk(E) = (rk(E(1)), rk(E(2))). When rk(E) = (r, r), we simply call E a rank r
sheaf.

Let ε ∈ (0, 1
2 ) be a rational number. We define a Q-ample divisor H(ε) on Z as

follows: Let pX :Z → X be the projection and put

H(ε) = p∗XH(−(1− ε)∆).

Clearly, for integer n0 so that n0 · ε ∈ Z,

H(ε)⊗n0 = p∗XH
⊗n0(−(n0 − n0ε)∆)

is an ample divisor. In the sequel, we will constantly use the tensor power H(ε)⊗n.
We agree without further mentioning that in such cases, n is always divisible by
n0.

Let α = (α1, α2) be a pair of rational numbers:

α1 =
(
H(ε)|X ·H(ε)|X

)
/(H ·H), α2 =

(
H(ε)|∆ ·H(ε)|∆

)
/(H ·H).

Note that α1 + α2 = 1. For any sheaf E on Z0 with rk(E) 6= (0, 0), we define pE
to be the polynomial

(2.1) pE =
1

rk(E) · α χE .

We remark that since χE(n) = χ(E ⊗ H⊗n) is well defined for those n divisible
by n0 and is a restriction of a polynomial in n, we can define χE to be that poly-
nomial. Once we have the polynomial pE , we can define the H(ε)-stability (or
H(ε)-semistability) of E by mimicking Definition 0.5 word for word.
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Definition 2.2. A torsion free sheaf E on Z0 is said to be H(ε)-stable (resp. H(ε)-
semistable) if whenever F ⊆ E is a proper subsheaf, then pF ≺ pE (resp. �).

We fix a line bundle I on X and an integer r ≥ 2. We let χ(n) be the polynomial
that depends on (r, d, I,H,X):

(2.2) χ(n) =
r

2
n2(H ·H) + n

(
(H · I)− r

2
(H ·KX)

)
+ (r − 1)χ(OX) + χ(I)− d.

χ(·) is the Hilbert polynomial of a rank r sheaf of c1 = I and c2 = d. We also fix a
rational ε ∈ (0, 1

2 ) momentarily and the Q-ample line bundle H(ε). For convenience,
we will denote by E(n) the sheaf E ⊗ p∗ZH(ε)⊗n for any sheaf E over ZS. (Here S
is any scheme over C and ZS = Z ×C S.)

We now construct the degeneration Md promised at the beginning of this section.

Recall that the moduli space M
d,r
X was constructed as a GIT quotient of Grothen-

dieck’s Quot-scheme. Here, we shall adopt the same approach to construct Md. We
first fix a sufficiently large n and let ρ = χ(n). Following A. Grothendieck [Gr], we

define Quotχ,O
ρ

Z/C
to be the functor sending any scheme S of finite type over C to the

set of all quotient sheaves E(n) of O⊕ρZS on ZS flat over S so that χEs(m) = χ(n+m)

for any closed s ∈ S. Quotχ,O
ρ

Z/C
is represented by a scheme Quotχ,O

ρ

Z/C that is projec-

tive over C, called Grothendieck’s Quot-scheme. Similarly, we have Grothendieck’s

Quot-scheme Quotχ,O
ρ

X parameterizing all quotient sheaves O⊕ρX → E(n) on X

with χE ≡ χ(· + n). Let UI,dX ⊆ Quotχ,O
ρ

X be the subset of all H-semistable quo-

tient sheaves E(n) obeying one further restriction: detE = I. UI,dX is locally closed.

We define Quotχ,O
ρ,I

Z/C,H(ε) to be the closure of UI,dX ×C∗ ⊆ Quotχ,O
ρ

Z/C endowed with

the reduced scheme structure and denote by Q̃uot
χ,Oρ,I
Z/C,H(ε) the normalization of

Quotχ,O
ρ,I

Z/C,H(ε). Q̃uot
χ,Oρ,I
Z/C,H(ε) has the property that it is normal, projective and

flat over C. Finally, we define Q̃uot
χ,Oρ,I,ss
Z/C,H(ε) ⊆ Q̃uot

χ,Oρ,I
Z/C,H(ε) to be the subset of

all closed points whose associated quotient sheaves are H(ε)-semistable.

Clearly, Q̃uot
χ,Oρ,I,ss
Z/C,H(ε) depends on the choice of (r, d, n, I,H, ε). In the sequel,

r, I and H will be fixed once and for all. Of course, d should be viewed as a
variable. For technical reasons, the choice of ε will depend on d. After this, we will
choose n sufficiently large (the exact value of n is irrelevant to our discussion as
long as it meets the requirement of [Gi, Corollary 1.3], [GL, Corollary 1.11]). If all

of these are understood, then we will abbreviate Q̃uot
χ,Oρ,I,ss
Z/C,H(ε) to Ud,ε. By abuse

of notation, we will call E the universal family of Ud,ε, where E(n) is the pullback

of the universal quotient family on Z×CQuotχ,O
ρ

Z/C .

Let SLC = SL(ρ,C) ⊗C C be the special linear group scheme over C. Clearly,

Quotχ,O
ρ

Z/C is an SLC-scheme. By our construction, this action lifts to Ud,ε. Further,

we have

Theorem 2.3 ([GL, Theorems 2.10 and 2.11]). The good quotient Md,ε =
Ud,ε//SLC exists. Md,ε is normal, projective and flat over C. Further, for any

closed t 6= 0, M
d,ε
t is isomorphic to the normalization of the moduli scheme M

r,d
X .

To make use of this degeneration, we need to analyze the closed points of M
d,ε
0 .

Since M
d,ε
0 is a GIT quotient of Ud,ε0 , each point of M

d,ε
0 associates to an equivalent
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class of sheaves E(n) in Ud,ε0 . In the following, we will find bounds on c1(E(1)),

c1(E(2)) and c2(E(2)) that are independent of the choice of ε and E(n) ∈ Ud,ε0 .

First we study c1(E(1)) and c1(E(2)). Following [GL, Lemma 1.6], there is a sheaf
of OΣ-modules E(0) (of rank r0) such that E belongs to the exact sequence

(2.3) 0 −→ E −→ E(1) ⊕E(2) −→ ι∗E
(0) −→ 0,

where ι :Σ ↪→ X . Because Ud,ε is flat over C, there are integers a1, a2 with

(2.4) a1 + a2 = r0 − r

such that detE(1) = I(a1H), detE(2) = I0|∆(a2Σ−), where I0 = p∗XI|Z0
[GL, §4].

Then since both E(1) and E(2) are quotient sheaves of E, by the H(ε)-stability of
E, we have

a1 ≥ (1− ε)H · (rKX − 2I)

2(H ·H)
; a2 ≥ −(1− ε)H · (rKX − 2I)

2(H ·H)
− r.

Since H is a very ample divisor on X , we may and will assume that r divides H · I
and

(2.5) (H ·H) ≥ 18|KX ·H|+ 18|I ·H|.

Therefore, r ≥ a1 ≥ 0 and 0 ≥ a2 ≥ −r.
The bound of c2(E(2)) is achieved by applying Bogomolov’s argument which

shows that when V is an H-stable vector bundle on X , then the restriction of V to
a high degree hyperplane curve is semistable. We follow the argument in [GL, §4]
and indicate the necessary changes needed in the higher rank case.

Lemma 2.4 (cf. [GL, Lemma 4.3]). There is a constant e1 independent of d and
ε such that the sheaf E(1) (on X) is e1-stable.

Lemma 2.5. For any constant e1 and integer r, there is a constant C1 such that
whenever V is an e1-stable torsion free sheaf of rank ≤ r, then

(2.6) c2(V )− rk(V )− 1

2 rk(V )
c1(V )2 ≥ C1.

Proof. Lemma 2.4 is true because any quotient sheaf Q of E(1) is also a quotient
sheaf of E. Hence the degree of Q has to satisfy an inequality, which combined with
(2.4) gives us the desired inequality. The details of the argument can be found in
[GL, Lemma 4.3]. Now we prove Lemma 2.5 following the suggestion of the referee.
By Riemann-Roch,

χ(V, V ) = χ(Ext·(V, V )) = −2r
(
c2(V )− r − 1

2r
c1(V )2

)
+ r2χ(OX).

Since V is e1-stable, by Lemma 1.8, there is a constant C1 such that
dim Hom(V, V ) and dim Hom(E,E ⊗KX) are bounded from above by C1. Hence

c2(V )− r − 1

2r
c1(V )2 =

1

2r
χ(OX)− 1

2r
χ(V, V ) ≥ 1

2r
χ(OX)− 2C1. �
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Lemma 2.6 (cf. [GL, Lemma 4.4]). For any constant e1, there is a constant C2

such that whenever V is an e1-stable, rank r vector bundle on X with detV =
I(aH), |a| ≤ r, and that Q is an OΣ-module that is a quotient sheaf of V|Σ, then
we have χ(Q) ≥ −c2(V ) + C2.

Proof. Let W be the kernel of V → Q. By Riemann-Roch, c1(W ) = I +
(a− c)[Σ] and

c2(W ) = c2(V ) + χ(Q) +
1

2
c(KX + cH)·H − c(I + aH)·H.

Thus
χ(Q) ≥ −c2(V ) + c2(W )− 2r2H2.

On the other hand, since V is e1-stable, W is (e1 + 1)-stable. So by Lemma 2.5,
there is a constant C1 so that c2(W ) ≥ C1. This completes the proof of Lemma
2.6.

Proposition 2.7. There is a constant C3 independent of ε and d such that for any

E(n) ∈ Ud,ε0 ,

c2(E(2)) ≤ d+ C3.

Proof. By (2.3), we have

χE(2)(·) = χE(·) +
(
χE(0)(·)− χE(1)(·)

)
.

Hence the proposition follows if we can show that the constant term of χE(0)(·) −
χE(1)(·) is bounded from below but this follows from Lemma 2.6. The details of
the proof are given in [GL, Proposition 4.6].

Our next goal is to construct Donaldson’s line bundle L on Md,ε and to establish

the following key property of L: Whenever W0 ⊆M
d,ε
0 is a dimension c subvariety

such that [L]c(W0) > 0, then

(2.7) #mod

{
E(2) | E(n) ∈W0

}
= c.

We first sketch the construction of L. The full account of this construction
appeared in [GL, §5]. For any integer h ≥ 1, let Dh ⊆ Z be a smooth divisor such
that π :Dh → C is smooth, that Dh

t = π−1(t) ∈ |hH| for t 6= 0 and that Dh
0 ⊆ ∆\Σ.

We call such Dh good divisors in |hHC(−h∆)|, where HC = p∗XH. Since H is very
ample, the set of good divisors in |hHC(−h∆)| is base point free. Associated to

each Dh we can find an étale covering C̃ → C such that on Dh
C̃

= Dh×C C̃ there

is a line bundle θ̃h satisfying (θ̃hv )⊗2r = K⊗r
Dhv
⊗ p∗XI

⊗(−2)

|Dhv
for all closed v ∈ C̃,

where KDhv
is the canonical divisor of Dh

v . We remark that such θ̃h exist because

[Dh
v ] · I = H · I is divisible by r.

We first construct a line bundle on Ud,ε
C̃

= Ud,ε×C C̃ as follows: Let E(n) be the

universal quotient family on Z×CUd,ε. Since E is a family of torsion free sheaves flat
over Ud,ε, E admits length two locally free resolution near Dh. Thus the restriction
of E to Dh ×C Ud,ε (denoted by E|Dh) has a length two locally free resolution also
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(see [L1]). Let p12 (resp. p13; resp. p23) be the projection from Dh×CUd,εC̃ to Dh
C̃

(resp. to Dh×CUd,ε; resp. to Ud,ε
C̃

). Note that p23 is smooth. Hence

(2.8) R·p23∗
(
p∗13(E|Dh)⊗ p∗12θ̃

h
)

is a perfect complex on Ud,ε
C̃

[KM]. Following [KM], we can define a determinant
line bundle

(2.9) det
(
R·p23∗

(
p∗13(E|Dh)⊗ p∗12θ̃

h
))

on Ud,ε
C̃

whose inverse we call LU (Dh). If we choose another good divisor Dh′ ∈
|hHC(−h∆)| and form the corresponding line bundle LU (Dh′) on Ud,ε

C̃′
, then since

the set of good divisors in |hHC(−h∆)| is an irreducible set, for any v ∈ C̃ and

v′ ∈ C̃′ which lie over the same closed point t ∈ C, the line bundles LU (Dh)|Ud,εv
and LU (Dh′)|Ud,εv′ are algebraic equivalent.

Remark. Indeed, more is true. There is a single line bundle LU (h) on Ud,ε such

that the line bundles LU (Dh) on Ud,ε
C̃

are pullback of LU (h) via Ud,ε
C̃
→ Ud,ε.

Our next task is to show that under favorable conditions, these line bundles
descend to line bundles on Md,ε. We need the following result of Kempf:

Lemma 2.8 (Descent lemma [DN, Theorem 2.3]). Let L be an SLC line bundle on
Ud,ε. L descends to Md,ε if and only if for every closed point w ∈ Ud,ε with closed
orbit SLC ·{w}, the stabilizer stab(w) ⊆ SLC of w acts trivially on Lw = L⊗k(w).

We have

Proposition 2.9. There is a function κ :Z+ → (0, 1
2 ) for which the following holds:

For any d, there is a large h such that when ε ∈ (0, κ(d))∩Q and Dh ∈ |hHC(−h∆)|
is a good divisor, then the line bundle LU (Dh) (on Ud,ε

C̃
) descends to a line bundle

on M
d,ε

C̃
= Md,ε×C C̃. We denote the descent by LM(Dh).

Proof. It is straightforward to check that w = E(n) ∈ Ud,ε
C̃

(over t ∈ C̃) has closed
orbit if and only if E splits into a direct sum of stable sheaves F1, · · · , Fk. Then
following [L1, p. 426], the stabilizer stab(w) acts trivially on LU (Dh)w if and only
if

1

rk(F1)
c1(F1) ·Dh

t = · · · = 1

rk(Fk)
c1(Fk) ·Dh

t .

These identities follow if we can prove

Proposition 2.10. There is a function κ :Z+ → (0, 1
2 ) and a constant N for which

the following holds: Given d0, there is an h ≥ 1 such that for any ε ∈ (0, κ(d0)),
whenever d ≤ d0, and that E(n) ∈ Ud,ε is an H(ε)-semistable sheaf over t ∈ C,
then for a generic good divisor Dh ∈ |hHC(−h∆)|, E|Dht is semistable.

Completion of the proof of Proposition 2.9. Assume E = F1⊕· · ·⊕Fk. By Proposi-
tion 2.10, there is a good divisor D′h ∈ |hHC(−h∆)| such that E|D′ht is semistable.

Then the value 1
rk(Fi)

c1(Fi) ·Dh
t = 1

rk(Fi)
c1(Fi) ·D′ht is identical for all i.

Proposition 2.10 will be proved shortly.
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Remark. Let t 6= 0 ∈ C be any closed point. Then the line bundle LU (Dh)t on Ud,εt
descends regardless of the choice of d and ε [L1, p. 426]. In particular, LM(Dh)t
always exists on M

d,ε
t .

Now we explain how to construct global sections of LM(Dh)⊗mv on Md,ε
v , v ∈

C̃. All we need to know about the line bundle LM(Dh) is how to calculate its
intersection numbers on various subvarieties of Md,ε. So in the following, we will
not distinguish between the line bundles LM(Dh)v and LM(Dh)v′ (resp. LU (Dh)v
and LU (Dh)v′) when v and v′ ∈ C̃ lie over the same closed point t ∈ C. By abuse
of notation, we will denote both of them by LM(Dh)t (resp. LU (Dh)t).

For any good Dh ∈ |hHC(−h∆)| and any closed t ∈ C, let Ud,εt [Dh
t ] ⊆ Ud,εt be

the open set of all s ∈ Ud,εt such that Es|Dht is semistable. In the following, we

abbreviate D = Dh
t . By restricting E(n) ∈ Ud,εt [D] to D, we obtain a morphism

(2.10) ΦD : Ud,εt [D] −→Mr,I(D),

where Mr,I(D) is the moduli scheme of rank r semistable vector bundles V on D
with detV = p∗XI|D. If we view Mr,I(D) as an SL(ρ,C) scheme with trivial group
action, the morphism ΦD is SL(ρ,C)-equivalent.

Proposition 2.11 [Donaldson]. There is an ample line bundle LD on Mr,I(D) so

that its pull back under ΦD is canonically isomorphic to the restriction to Ud,εt [D]
of LU . Further, this isomorphism is SL(ρ,C)-equivariant.

Proof. For the details of the proof, the readers are advised to look at [L2, p. 31].
Though the author only treated the case r = 2 in the proof, the proof of the higher
rank case is similar.

Now let m be a large positive integer. Since the isomorphism

(2.11) Φ∗D(LD) ∼= LU |Ud,εt [D]

is SL(ρ)-equivalent, for any ξ ∈ H0(Mr,I(D),L⊗mD ), Φ∗D(ξ) is an SL(ρ)-invariant

section of LU (D)⊗mt on Ud,εt [D].

Lemma 2.12. Let Dh ∈ |hHC(−h∆)| be any good divisor and for any t ∈ C with
D = Dh

t , let ξ ∈ H0(Mr,I(D),L⊗mD ) be any section. Then the pullback section

Φ∗D(ξ) (on Ud,εt [D]) extends canonically over Ud,εt to an SL(ρ,C)-invariant section.

We shall denote this extension (and its descent to M
d,ε
t if no confusion is possible)

by Φ∗D(ξ)ex. Furthermore,

(2.12) Φ∗D(ξ)−1
ex (0) =

(
Ud,εt \ Ud,εt [D]

)
∪
{
F (n) ∈ Ud,εt [D] | ξ(F|D) = 0

}
.

Proof. In case Ud,εt is normal, we can apply [GL, Lemma 5.6], [GL, Proposition 5.7]
and [L2, Lemma 4.10] to our situation. In general, we need to use GIT to prove
this lemma [L1, p. 435].

In the following, we seek to estimate the self-intersection numbers of LM(Dh)

on subvarieties W ⊆M
d,ε
t and to relate the non-vanishing of such numbers to the

estimate of the numbers (2.7). Our immediate goal is to prove
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Proposition 2.13. Let t 6= 0 ∈ C be any closed point and let Wt ⊆ M
d,ε
t be an

irreducible variety of dimension c. Then for sufficiently large h and for any good
Dh ∈ |hHC(−h∆)|,

(2.13) [LM(Dh)]c(Wt) ≥ 0.

Further, if we assume that the general points of Wt are locally free H-µ-stable
sheaves, then the strict inequality holds.

Proof. To prove (2.13), it suffices to find divisors D1, · · · , Dc ∈ |hH| and sections
ϕ1, · · · , ϕc of LM (Dh)t such that

⋂c
i=1 ϕ

−1
i (0) is a finite set. But this is obvious

because for sufficiently large h, the restriction of each E ∈M
d,ε
t to generalD ⊂ |hH|

is semistable (Proposition 2.10). Now we prove the second part of the proposition.

Let h be large so that for any locally free E ∈ M
d,ε
t , H1(End0(E)(−hH)) = 0.

Then for any D ∈ |hH| and any locally free stable E1, E2 ∈ Wt, E1|D = E2|D
implies E1

∼= E2. We can also assume that the restriction of any E ∈ M
d,ε
t to a

general D ∈ |hH| is semistable.

Choose D ∈ |hH| so that Ud,εt [D] ∩Wt is non-empty. Then because the line
bundle LD is ample on Mr,I(D) and because

ΨD : M
d,ε
t [D] ∩Wt −→Mr,I(D)

(Md,ε
t [D] is the image of Ud,εt [D] under the projection) is generically one-to-one,

there is a section ξ ∈ H0(Mr,I(D),L⊗mD ), m large, such that the extension of the

pullback section Φ∗D(ξ)ex (over M
d,ε
t ) is non-trivial over Wt and

dim
(

Φ∗D(ξ)−1
ex (0) ∩Wt

)
= dimWt − 1.

Since being locally free and stable are open conditions, we can assume that general
points of at least one irreducible component of Φ∗D(ξ)−1

ex (0) ∩Wt are still locally
free and H-µ-stable. Therefore, we can use induction on dimWt to conclude that
[LM (Dh)]c−1(W ′t ) ≥ 0 for any irreducible component W ′t of Φ∗D(ξ)−1

ex (0) ∩Wt, and
for at least one of these component, this number is positive. Therefore, the strict
inequality (2.13) holds.

The converse to the proposition is that if a set Wt ⊆M
d,ε
t with dimWt = c has

the property that
[LM(Dh)]c(Wt) > 0,

then #mod(W ) ≥ c. But this is a tautology since M
d,ε
t is the normalization of the

moduli scheme. What we need is a similar result in t = 0. We will prove

Proposition 2.14. Let W0 ⊆ M
d,ε
0 be any (complete) subvariety of dimension c.

Assume for some large h (given by Proposition 2.10) and good Dh ∈ |hHC(−h∆)|
we have

[LM(Dh)]c(W0) > 0.

Then #mod{E(2) | E(n) ∈W0} = c.

Proof. We prove it by contradiction. Assume #mod{E(2) | E(n) ∈ W0} < c.
Then {E(2) | E(n) ∈ W0} can be parameterized by finite irreducible varieties
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of dimension at most c − 1. Let them be S1, · · · , Sk and let E1, · · · , Ek be the
corresponding families. Thanks to Proposition 2.10, there is a large h such that for
any F ∈ {E(2) | E(n) ∈ W0}, F|Dh0 is semistable for generic Dh ∈ |hHC(−h∆)|.
We fix such an h. We choose a Dh ∈ |hHC(−h∆)| so that Ei,si|Dh0 are semistable
for some closed si ∈ Si, i = 1, · · · , k. Since LDh0 is ample, we can further choose

ξ ∈ H0(Mr,I(Dh
0 ),L⊗m

Dh0
), m ≥ 1, so that ξ(Ei,si|Dh0 ) 6= 0 for all i.

Let Ψ∗
Dh0

(ξ)ex be the extension of the pullback of ξ in H0(Md,ε
0 ,LM(Dh)⊗m0 ). Put

W ′0 = W0 ∩Ψ∗
Dh0

(ξ)−1
ex (0). By our construction, dimW ′0 ≤ dimW0 − 1 and

#mod{E(2) | E(n) ∈W ′0} ≤ max
i=1,··· ,k

{dimSi − 1} ≤ #mod{E(2) | E(n) ∈W0} − 1.

Note that [LM(Dh)]c−1(W ′0) = m[LM(Dh)0]c(W0) > 0. So by the induction hy-
pothesis, we have #mod{E(2) | E(n) ∈W ′0} ≥ c− 1. Therefore,

#mod{E(2) | E(n) ∈W0} ≥ #mod{E(2) | E(n) ∈W ′0}+ 1 ≥ c.

The proposition follows because #mod{E(2) | E(n) ∈W0} ≤ dimW0 = c.

In the remainder of this section, we will give the proof of Proposition 2.10 that
is parallel to the treatment for the rank two situation given in [GL, 5.13]. Let

E(n) ∈ Ud,εt be any H(ε)-semistable sheaf over t ∈ C. When t 6= 0, then E is an
H-semistable sheaf over X and [MR] tells us that for large h and generic D ∈ |hH|,
E|D is semistable. In case t = 0, namely when E is an H(ε)-semistable sheaf on Z0,

the situation is quite tricky because Z0 is reducible and the divisorial ray R·[Dh
0 ] is

different from R·H(ε)|∆. However, it is essential that R·[Dh
0 ] and R·H(ε)|∆ become

very close when ε becomes small. Before going into the details of the proof, let us
state the following stability criterion of E(2).

Lemma 2.15. There is a constant e2 such that for any d, ε and any E(n) ∈ Ud,ε0 ,
E(2) is εe2-stable with respect to H(ε)|∆.

Proof. See [GL, 5.14].

Proof of Proposition 2.10. Let V be the double dual of E(2). By (2.4) and Propo-
sition 2.7, detV = I0(a2Σ−), −r ≤ a2 ≤ 0, and c2(V ) ≤ c2(E) + C3, where C3 is
a constant independent of E and d. Since I0 · Σ− is divisible by r, by tensoring
V with some line bundle, we can assume c1(V ) ∼ a2[Σ−]. Note that c2(V ) is still
bounded by d0 + C3 possibly with a new constant C3. Clearly, the proposition
will be established if we can show that there is an ε0 and an integer h such that
whenever ε < ε0 and V is e2ε-stable with respect to H(ε)|∆ as before, then for
generic D ∈ |hΣ+|, V|D is semistable.

The argument we adopt is a direct generalization of Bogomolov’s theorem show-
ing that the restriction of any µ-stable rank two vector bundle E to any smooth
hyperplane section of degree ≥ 2c2(E) + 1 is stable. We prove it by contradiction.
Assume otherwise. Then there is a rank s (1 ≤ s ≤ r − 1) quotient vector bundle
Q of V|D such that 0 = µ(V|D) > µ(Q). Let W be the kernel of V → Q. Then W
is a locally free sheaf on ∆ with c1(W ) ∼ a2[Σ−]− sh[Σ+] and

c2(W ) = c2(V ) +
1

2
s(s− 1)h2H2 + degQ < c2(V ) +

1

2
s(s− 1)h2H2.
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Thus a simple calculation gives us

(2.14) 2rc2(W )− (r − 1)c1(W )2 < 2rc2(V )−
(
s(r − s)h2 − (r − 1)a2

2

)
H2.

Because c2(V ) ≤ d0 + C3, when

h2 ≥ r2 +
2r

r − 1

d0 + C3

H2

the right-hand side of (2.14) is negative. Therefore, Bogomolov’s inequality shows
that W is unstable. Let

(2.15) 0 = W0 ⊂W1 ⊂ · · · ⊂Wn = W

be the Harder-Narasimhan filtration of W such that the sheaves Fi = Wi/Wi−1

are µ-semistable and µ(Fi) > µ(Fi+1). Let ri = rk(Fi) and let Γi be the Q-divisor
supported on fibers of ∆→ Σ such that

c1(Fi) ∼ ri(biΣ− + Γi).

We let ci = Γi · Σ+/H2. Then bi and ci satisfy the following inequalities:

(2.16) (e2 +
a2

r
)ε ≥ εb1 + (1− ε)c1 > · · · > εbn + (1− ε)cn.

The first inequality holds because E(2) is e2ε-stable and the remainder inequalities
come from µ(Fi) > µ(Fi+1). On the other hand, we have

∑n
i=1 c1(Fi) = c1(W ). So

(2.17)
n∑
i=1

ribi = a2 − sh,
n∑
i=1

rici = −sh.

Finally, we calculate

(2.18)

c2(W ) =
∑
i<j

c1(Fi) · c1(Fj) +
n∑
i=1

c2(Fi)

≥ 1

2

(( n∑
i=1

c1(Fi)
)2

−
n∑
i=1

c1(Fi)
2

)
+

n∑
i=1

ri − 1

2ri
c1(Fi)

2

=
1

2
(s2h2 − a2

2)H2 +
n∑
i=1

ri
2

(b2i − 2bici)H
2.

Here we have used Bogomolov’s inequalities 2ric2(Fi)− (ri − 1)c1(Fi)
2 ≥ 0. Com-

bining (2.18) with c2(W ) ≤ c2(V ), we have

(2.19) (s2h2 − a2
2) +

n∑
i=1

(
ri(bi − ci)2 − ric2i

)
≤ 2(d0 + C3)

H2
.

In the following, we will argue that there are h and ε0 so that whenever 0 < ε < ε0,
then the only tuples (bi, ci) that satisfy (2.16)–(2.19) must have ci = 0 for i =
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1, · · · , n− 1. First of all, let Λ be the set of indices i so that ci > 0. Then for those
i ∈ Λ, ci ≥ 1/rH2 and by (2.16), for small ε, we have

(2.20) bi − ci ≤ (e2 +
a2

r
) +

1

ε
(−ci) <

1

2ε
(−ci).

Thus
n∑
i=1

(
ri(bi − ci)2 − ric2i

)
≥
∑
i∈Λ

ri
( 1

4ε2
− 1
)
c2i −

∑
i6∈Λ

ric
2
i .

On the other hand, since
∑
i6∈Λ ricr = −(sh +

∑
i∈Λ rici) and ci ≤ 0 for i 6∈ Λ,∑

i6∈Λ ric
2
i is bounded from above by (sh +

∑
i∈Λ rici)

2 which in turn is no more

than 2s2h2 + 2(
∑
i∈Λ rici)

2. Combined with (2.19), we must have

(2.21)
∑
i∈Λ

ri(
1

4ε2
− 1)c2i −

(
2s2h2 + 2

(∑
i∈Λ

rici
)2)

+ (s2h2 − a2
2) ≤ 2(d0 + C3)

H2
.

(2.21) is impossible if we assume

(2.22)
1

4ε2
≥ r2(r2h2 + r2) ·H2 + 2r(d0 + C3) + 4.

Thus under the assumption (2.22), we must have ci ≤ 0 for all i.
It remains to show that we can choose h large enough so that c1 = · · · = cn−1 = 0.

Suppose there are ci0 < ci1 < 0. Then
∑
i6=i0 rici = −sh−ri0ci0 . Again since ci ≤ 0,

we have
n∑
i=1

ric
2
i = ri0c

2
i0 +

∑
i6=i0

ric
2
i ≤ ri0c2i0 + (sh+ ri0ci0)2.

Therefore, from (2.19), we have

(2.23)

2(d0 + C3)

H2
≥ (s2h2 − a2

2) +
n∑
i=1

ri(bi − ci)2 −
n∑
i=1

ric
2
i

≥ (s2h2 − a2
2)−

(
(sh+ ri0ci0)2 + ri0c

2
i0

)
≥ (s2h2 − a2

2)−
(

(sh− 1

rH2
)2 + (

1

rH2
)2
)

=
2sh

rH2
− (a2

2 +
2

r2H2
).

Clearly (2.23) is impossible if we choose

(2.24) h ≥ 2r(d0 + C3 + r2H2) + 5.

Now, we can choose h large according to (2.24) and then choose ε0 small so that
ε0 ≤ 1/2r and (2.22) holds with ε replaced by ε0. Thus by our previous argument, if
V|D is not semistable, then in the filtration (2.15) all but one c1(Wi/Wi−1)·[Σ+] = 0.
We claim that c1(Wn/Wn−1) · [Σ+] 6= 0. Indeed, assume cj 6= 0, j < n. Then
cj = −sh/rj and then by (2.19),

(2.25)
(∑
i6=j

rib
2
i

)
+ rj(bj − cj)2 + (1− 1

rj
)s2h2 − a2

2 ≤
2(d0 + C3)

H2
.
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Thus |bi| ≤ 2
√
d0 + C3/

√
H2 for i 6= j and |bj − cj | < 2

√
d0 + C3/

√
H2. In partic-

ular, we will have

µ(Fj) = (bjε−
(1− ε)sh

rj
)H2 ≤ bnεH2 = µ(Fn).

This contradicts µ(Fj) > µ(Fn). Thus we have proved the claim.
The next step is to reconstruct V from the filtration {Wi}. We first construct

a filtration of V out of the filtration {Wi} by letting Vi ⊇ Wi be the subsheaf of
V so that V/Vi is torsion free and rk(Wi) = rk(Vi). We claim that Wi = Vi for
all i ≤ n− 1. Indeed, let Vi be the first among which Vi 6= Wi. Since Vi = Wi on
∆ \D, we must have

c1(Vi) = c1(Wi) + α[D], α ≥ 1.

On the other hand, c1(Wi) = (
∑i
j=1 rjbj)[Σ

−] and |bj | ≤ 2
√
d0 + C3/

√
H2 because

of (2.25). Thus

µ(Vi) =
1

rk(Vi)
c1(Vi) ·H(ε)|∆

=
1

rk(Vi)

(( i∑
j=1

rjbjε
)

+ αh
)
H2 > µ(V ) +

1

rk(Vi)
e2ε
√
H2,

which violates the e2ε-stability of V . Therefore, Vi = Wi for all i ≤ n − 1. In
particular, the filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

has the property that for i ≤ n − 1, Vi/Vi−1 are µ-semistable and c1(Vi/Vi−1) ∼
ribi[Σ

−]. Let Fi = Vi/Vi−1. We intend to use induction on the rank r to complete
the proof of the proposition. In order to do this, we need to show that Fn is
µ-semistable and

(2.26) c2(Vi/Vi−1)− ri − 1

2ri
ci(Vi/Vi−1)2 ≤ d0 + C3

for all i ≤ n. We show Fn is µ-semistable by showing that rn = 1. Indeed, a
combination of (2.25) (with j = n) and (2.24) guarantees rn = 1. Thus Fn is
stable. Next, we have

c2(V )− r − 1

2r
c1(V )2 =

n∑
i=1

c2(Fi) +
∑
i<j

c1(Fi)·c1(Fj) + (−1

2
+

1

2r
)
( n∑
i=1

c1(Fi)
)2

=
n∑
i=1

(
c2(Fi)−

ri − 1

2ri
c1(Fi)

2 − 1

2ri
c1(Fi)

2
)

+
1

2r

( n∑
i=1

c1(Fi)
)2

=
n∑
i=1

(
c2(Fi)−

ri − 1

2ri
c1(Fi)

2
)

+
1

2r
c1(V )2 +

1

2

n∑
i=1

1

ri
r2
i b

2
iH

2.

Because each c2(Fi)− ri−1
2ri

c1(Fi)
2 is non-negative, (2.26) must be true. Therefore,

we can apply the induction argument to Vi/Vi−1 to conclude that we can find large
h and small ε0 so that for any ε < ε0, we must have (Vi/Vi−1)|D semistable for
generic D ∈ |hΣ+|. Since deg(Vi/Vi−1)|D = 0, V|D must be semistable also. This
completes the proof of Proposition 2.10.
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3. Main theorems

In this section, we will prove our main theorems. We will show that when the

second Chern class d is large enough, then the moduli scheme M
r,d
X (= M

r,d
X (I,H))

is smooth at a dense open subset. We shall further show that M
r,d
X is normal and

for any constant C, there is an N depending on (X, I,H, r, C) such that whenever
d ≥ N , then

codim
(
Sing M

r,d
X ,Mr,d

X

)
≥ C.

Finally, we will investigate the dependence of the moduli scheme M
r,d
X (I,H) on

the polarization H. In case r = 2, Qin’s work [Qi] shows that for any two polar-

izations H1 and H2, the corresponding moduli spaces M
r,d
X (I,H1) and M

r,d
X (I,H2)

are birational when d is sufficiently large. Here, we shall demonstrate that similar
phenomena also occur in high rank cases. But first, we shall continue our discussion
of the degeneration to finish the proof our main technical theorem, Theorem 0.1.

For the moment, we shall keep the notation developed in §2. For any divisor

D ⊆ X , we define Sr,de,I be the set of all e-stable (with respect to the fixed H) rank

r sheaves E of detE = I and c2(E) = d and define

Sr,de,I (D) = {E ∈ Sr,de,I | Hom(E,E(D))0 6= {0}}.

Similarly, we define Vr,de,I and Vr,de,I (D) to be the subsets of locally free sheaves in Sr,de,I
and Sr,de,I (D) respectively. For technical reasons, we will first attack the set Vr,dµ,I(D)
which is the set of µ-stable locally free sheaves E with the mentioned constraint on

c1, c2 and h0. Namely, Vr,dµ,I(D) = Vr,d0,I (D). We shall prove

Theorem 3.1. For any choice of r, I and D, and any constant C1, there is a
constant N such that whenever d ≥ N , we have

#modVr,dµ,I(D) ≤ ηX(r, d, I)− C1.

Proof. Clearly, Vr,dµ,I(D) is a subset of M
r,d
X . Since being locally free and µ-stable are

open conditions and having non-vanishing Hom(E,E(D))0 is a closed condition,

Vr,dµ,I(D) is a locally closed subset of M
r,d
X . Let A ⊆ M

r,d
X be the closure of any

irreducible component of Vr,dµ,I(D).

In the following, we seek to utilize the degeneration Md,ε → C (of the nor-

malization of M
r,d
X ) constructed in Theorem 2.3. When t 6= 0, M

d,ε
t is just the

normalization of M
r,d
X . For such t, we let Wt ⊆M

d,ε
t be the preimage of A ⊆M

r,d
X .⋃

t6=0Wt is a constant family over C∗. We then let W be the closure of
⋃
t6=0Wt in

Md,ε and let W0 be the special fiber of W over 0 ∈ C.
Here is our strategy: Take a large h and a good Dh ∈ |hHC(−h∆)|. By

Proposition 2.13, for any t 6= 0 and c = dimWt, the top self-intersection num-
ber [LDh ]c(Wt) > 0. Then since W is flat and proper over C, [LDh ]c(W0) > 0.
Therefore, according to Proposition 2.14,

(3.1) #mod{E(2)|E ∈W0} = c.
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On the other hand, since every sheaf E ∈ Wt, t 6= 0, has non-vanishing
Hom(E,E(D))0, the upper-semicontinuity theorem tells us that there is a divi-
sor D′ ⊆ ∆ (we can make it independent of the choice of W0) such that for any
E ∈W0,

(3.2) Hom∆(E(2), E(2)(D′))0 6= {0}.

Thus, by applying Theorem 1.1, we get an upper bound of (3.1) and hence an upper
bound of c. We now fill in the details of this approach.

To establish (3.2) for some D′ ⊆ ∆, we argue as follows: First of all, let E ∈W0

be any point. Since W is flat over C, there is a smooth affine curve S over C
and a flat family of torsion free sheaves ES on ZS = Z×S S such that for any
closed s ∈ S over t 6= 0 ∈ C, Es ∈ Wt and further, there is a closed s0 ∈ S
over 0 ∈ C so that Es0 = E. For any integer k, we consider the divisor DC −
k∆ on Z, where DC = p−1

X (D), and the pullback divisor (of DC − k∆) on ZS
which we denote by Dk. Clearly, the restriction of Dk ⊗ k(s0) to X ⊆ Z0 is
D−kH. Now consider the vector space HomZS (ES , ES(Dk))0. By assumption, for
general s ∈ S, HomZs(Es, Es(Dk))0 6= 0. Thus HomZS (ES , ES(Dk)) 6= {0}. Let
w ∈ HomZS (ES , ES(Dk))0 be a non-trivial section and let ξ be the uniformizing
parameter of S at s0. Then because ES is flat over S, there is an n ≥ 0 such that
the restriction of w/ξn to Zs0 gives rise to a non-trivial homomorphism ϕ :Es0 →
Es0(Dk).

Next, because E(1) is a quotient sheaf of E, ϕ induces a homomorphism E →
E(1)(Dk) and further because E(1) is torsion free, it comes from ϕ1 : E(1) →
E(1)(Dk). Similarly, we have ϕ2 : E(2) → E(2)(Dk). Because E is torsion free,
at least one ϕi is non-trivial. Now we claim that we can choose a k (indepen-
dent of d and ε) so that ϕ1 is always trivial. Indeed, we first choose k so that
H · (D−kH) < 0. Then since detϕ1 ∈ H0(OX(rD−rkH)) = {0}, detϕ1 is trivial.
If we let A ⊂ E(1) be the kernel of ϕ1, then E(1)/A is torsion free and further, there
is a ψ making the following diagram commutative

(3.3)

A −−−−→ E(1) −−−−→ E(1)/A −−−−→ 0yϕ1 ψ

y
E(1)(Dk) E(1)(Dk)

On the other hand, by Lemma 2.4, there is a constant e1 independent of d and ε
such that E(1) is e1-stable. Thus if ϕ1 6= 0, then 0 < rk(E(1)/A) < rk(E(1)) and
E(1)/A is both a subsheaf of E(1)(Dk) and a quotient sheaf of E(1). Therefore,

µ(E(1)(Dk)) +
1

rk(E(1)/A)

√
H2 · e1 > µ(E(1)/A) > µ(E(1))− 1

rk(E(1)/A)

√
H2 · e1.

A straightforward calculation shows that this is impossible if we let

(3.4) k >
1

H2
(D ·H + 2

√
H2 · e1).

Hence ϕ1 must be trivial.
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From now on, we fix such a k. Then our previous argument shows that all
V ∈ Θ = {E(2) | E ∈W0} have non-vanishing Hom∆(V, V (Dk))0. As we explained,
our intention is to apply Theorem 1.1 to the set Θ to get the bound:

(3.5) #modΘ ≤ ηX(r, d, I)− C1, d� 0.

First of all, all V ∈ Θ are e2-stable by Lemma 2.15 and have detV = I2, I2 ∈
Λ = {I0(−rΣ−), · · · , I0}. Next, for each I2 ∈ Λ, there is an ε0(I2) > 0 specified by
Theorem 1.1. We let ε0 = minI2∈Λ{ε0(I2)}. Then for any ε smaller than the ε0,
the ample divisor H(ε)|∆ on ∆ satisfies the condition of Theorem 1.1. In order to
apply Theorem 1.1, we need to know that the general element of Θ is locally free,
which certainly is quite delicate in general. The solution we propose is to use the
double dual operation to relate any sheaf F ∈ Θ to its double dual F(F ) = F∨∨.
F∨∨ is always locally free because ∆ is a smooth surface. Assume d2 = c2(F(F ));
then d2 ≤ c2(F ) and the equality holds if and only if F is locally free. Following
the notation introduced at the beginning of §1, we have

F : Θ −→
⋃

d2∈Z ;I2∈Λ

A
r,d2

e2,I2
(Dk|∆).

(We use A·· to denote sets related to ∆ and use V ·· to denote sets related to X .) Here

we have used the fact that Hom
(
F, F (Dk|∆)

)0 6= 0 implies Hom
(
F∨, F∨(Dk|∆)

)0 6=
0. Next, we divide Θ into subsets Θd1 according to the value of the second Chern
class of F ∈ Θ. Then, Θ =

⋃
Θd1 . We have the following estimate which will be

proved shortly.

Lemma 3.2. For any V ∈ A
r,d2

e2,I2
, #mod

(
F−1(V ) ∩Θd1

)
≤ (r + 1)(d1 − d2).

Now we are ready to complete the proof of the theorem. First of all, by applying

Theorem 1.1 to the set A
r,d2

e2,I2
(Dk|∆), we know that for any constant C2, there is an

N2 such that whenever d2 ≥ N2, we have

(3.6) #modA
r,d2

e2,I2
(Dk|∆) ≤ η∆(r, d2, I2)− C2, I2 ∈ Λ.

To control the left-hand side of (3.6) for small d2, we invoke Theorem 1.5 to get

(3.7) #modA
r,d2

e2,I2
≤ η∆(r, d2, I2) + C3, I2 ∈ Λ,

where C3 is a constant. Another estimate we need was established in Proposition
2.7,

(3.8) c2(F ) ≤ d+ C4, ∀F ∈ Θ.

The proof of (3.5) then goes as follows: For any constant C1, we let C2 be such
that

(3.9) C2 ≥ C + η∆(r, C4, I2)− ηX(r, 0, I), ∀I2 ∈ Λ,

and let N2 be the constant that makes (3.6) hold. We then let N be so that

(3.10) (r + 1)(N −N2) + η∆(r,N2, I2) + C3 ≤ ηX(r,N, I)− C1.
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We claim that when d ≥ N and ε < ε0, then (3.5) holds. Indeed, let d1 ≤ d + C4

be any integer. Then for d2 ≤ N2, by (3.7) and (3.10),

#mod

(
Θd1∩F−1

(
A
r,d2

e2,I2
(Dk|∆)

))
≤ (r + 1)(d1 − d2) + #mod

(
F(Θd1) ∩ A

r,d2

e2,I2
(Dk|∆)

)
≤ (r + 1)(d1 − d2) + η∆(r, d2, I2) + C3 ≤ ηX(r, d, I) − C1.

Assume d2 ≥ N2. By (3.6) and (3.9), we have

#mod

(
Θd1∩F−1

(
A
r,d2

e2,I2
(Dk|∆)

))
≤ #modA

r,d2

e2,I2
(Dk|∆) + (r + 1)(d1 − d2)

≤ η∆(r, d2, I2)− C2 + (r + 1)(d1 − d2) ≤ ηX(r, d, I)− C1.

Thus we have established (3.5).
To finish the proof of the theorem, it suffices to show that #modΘ = #modWt.

For this, we will use Donaldson’s line bundle LDh . First of all, for any d, we
choose ε < min(ε0, κ(d)). (κ(d) was specified in Proposition 2.10.) We then apply
Proposition 2.13 to the setWt, t 6= 0. Proposition 2.13 asserts that with c = dimWt,
[LDh ]c(Wt) > 0. Since W is flat and proper over C, we have

[LDh ]c(W0) = [LDh ]c(Wt) > 0.

In particular, Proposition 2.14 tells us that then

#mod{E(2) | E ∈W0} = c.

Therefore, combined with inequality (3.5), we have that for d ≥ N ,

dim{E ∈M
r,d
X | HomX(E,E(D))0 6= 0} ≤ ηX(r, d, I)− C.

This completes the proof of Theorem 3.1.

Before we go any further, let us finish the proof of Lemma 3.2.

Proof of Lemma 3.2. The situation when r = 2 was proved in [L1, p. 461]. In
general, let E be any rank r torsion free sheaf and let V = F(E). Then E is uniquely
determined by the quotient sheaf V → V/E, where V/E is supported on a discrete
set and of length `(V/E) = c2(E) − c2(V ). Therefore, F−1(V ) ∩ {sheaves of c2 =
c2(V )+c} is exactly the set of all quotient sheaves V → A such that A is supported
on a discrete set and `(A) = c. Let QuotcV be Grothendieck’s Quot-scheme of all
quotient sheaves A of V with `(A) = c. QuotcV is projective by [Gr, p. 13]. Observe
also that when A is supported on c distinct points, then by [Gr, p. 21],

(3.11) dimTAQuotcV = (r + 1)c.

Thus the lemma will be established if we can show that for any quotient sheaf
A0 ∈ QuotcV , there is a deformationAt ofA0 such that for generic t, At is supported
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on c distinct points [L1, p. 461]. In the following, we will demonstrate how to
construct such a deformation.

Clearly, this is a local problem. Let U be a classical neighborhood of 0 ∈ C2 with
coordinate z = (z1, z2). Assume A0 is a quotient sheaf of O⊕rU of length c supported
at the origin 0. Let E = ker{O⊕rU → A0}. Along the lines of the argument given
in [L1, p. 462], we can show that there are f1, · · · , fn ∈ O⊕rU such that {fi}ni=r+1

are divisible by z1 and {fi}n1 generate the submodule E.
Next, we define

(3.12) fi(z, t) =

{
fi(z), 1 ≤ i ≤ r;
(z1 − t)fi(z)z1

, r + 1 ≤ i ≤ n.

We then define a submodule ED ⊂ O⊕rU×D, where D is a small disk with parameter
t, by

(3.13) ED = (f1(z, t), · · · , fn(z, t)) · OU×D ⊂ O⊕rU×D.

Let AD = O⊕rU×D/ED. ED and AD can be viewed as families of sheaves parameter-
ized by D. It is easy to see that when ED⊗k(0) is torsion free, then AD⊗k(0) = A0

and for t small, AD is a (flat) deformation of A0. Now we check that ED ⊗ k(0) is
torsion free. Suppose there are h ∈ ED and f ∈ OU such that f · h = th′ for some
h′ ∈ ED. Let

h =
n∑
i=1

g1(z, t) · fi(z, t).

Then the fact that f(z) · h ≡ 0 mod(t) in O⊕rU×D and that f1(z)/(z1), · · · ,
fr(z)/(z1) generate a rank r OU/(z1)-module implies

(3.14) z1 | gi(z, 0), i = 1, · · · , r;

(3.15)
r∑
i=1

gi(z, 0)

z1
· fi(z) +

n∑
i=r+1

gi(z, 0) · fi(z)

z1
≡ 0.

Further, if we write gi(z, t) = αi(z) + tβi(z, t), then the following identities hold in
O⊕rU×D:

h =
r∑
i=1

(
αi(z)fi(z) + tβi(z, t)fi(z)

)
+

n∑
i=r+1

(
αi(z)(z1 − t)

fi(z)

z1
+ tβi(z, t)(z1 − t)

fi(z)

z1

)
= (z1 − t)

( r∑
i=1

αi(z)

z1
fi(z) +

n∑
i=r+1

αi(z)
fi(z)

z1

)
+ t
( r∑
i=1

(αi(z)

z1
+ βi(z, t)

)
fi(z) +

n∑
i=r+1

βi(z, t)(z1 − t)
fi(z)

z1

)
= th′′,
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where h′′ obviously belongs to ED. Since ED is a submodule of O⊕rU×D, h must be
equal to th′′ in ED. Therefore, f · h|t=0 = 0 implies h|t=0 = 0 in ED ⊗ k(0) or that
FD ⊗ k(0) is torsion free.

In general, At is not supported on c distinct points. But at least we expect
that At is simpler than A0, say Supp(At) has at least two distinct points. In the
following, we will show that this is indeed the case. Without loss of generality, we
can assume that fi(z) all vanish at the origin. (Since otherwise, A0 is essentially

a quotient sheaf of O⊕(r−1)
U and we can use induction on r to take care of this

situation.) For small t, the equation

(3.16) f1(t, z2) ∧ · · · ∧ fr(t, z2) = 0

has solutions, say z2 = wt, because f1(0) ∧ · · · ∧ fr(0) = 0 and f1(0, z2) ∧ · · · ∧
fr(0, z2) 6= 0 for generic z2. Note that (t, wt) ∈ Supp(At). If Supp(At) is a single
point, then fr+1(z)/z1, · · · fn(z)/z1 must generate O⊕rU at the origin. Thus by
discarding some extra terms, we will have n = 2r and further, by eliminating terms
in f1, · · · , fr that involve z1 by using combinations of fr+1, · · · , fn, we can assume
z2|f1(z), · · · , z2|fr(z). Therefore, we can consider the deformation of A0 derived
from

E′D =
(

(z2 − t)
f1(z)

z2
, · · · , (z2 − t)

fr(z)

z2
, fr+1(z), · · · , fn(z)

)
.

In case Supp(A′t) is still a single point for generic t, then
(
f1(z)
z2

, · · · , fr(z)
z2

)
will

generate O⊕rU at 0 also. In particular, A0 =
⊕r C and then the desired deformation

can be written by hand.

In the remainder of this section, we will complete the proof of the theorems

stated at the beginning of this paper. We first investigate the sets Sr,de,I and Sr,de,I (D)
introduced at the beginning of this section. We shall prove

Theorem 3.3. For any choice of r, I and D and any choice of constants e and
C, there is an integer N such that whenever d ≥ N , then we have

(3.17) #modSr,de,I = η(r, d, I),

(3.18) #modSr,de,I (D) ≤ ηX(r, d, I)− C.

Proof of (3.17). Let Vr,de,I = Sr,de,I ∩ {locally free sheaves} and let Vr,de,I (D) = Vr,de,I ∩
Sr,de,I (D). Clearly, (3.17) is a stronger statement than

(3.19) #modVr,de,I = ηX(r, d, I),

which in turn is stronger (in case e > 0) than

(3.20) #modVr,dµ,I = ηX(r, d, I).

Our strategy is first to prove statement (3.20) and then prove (3.19) and (3.17).
We proceed by induction on the rank r. (3.17) and (3.20) are trivial when r = 1.
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For r ≥ 2 and E ∈ Vr,dµ,I , the Kodaira-Spencer-Kuranishi deformation theory tells
us that there is a holomorphic map

f : U ⊂ H1(X, End0(E)) −→ H2(X, End0(E)),

where U is an (analytic) neighborhood of the origin, such that f−1(0) is the versal
deformation space of E. Since h0(End0(E)) = 0 (since E is µ-stable),

#mod

(
Vr,dµ,I , [E]

)
≥ h1(End0(E)) − h2(End0(E)),

and when h2(End0(E)) = 0, #mod

(
Vr,dµ,I , [E]

)
= h1(End0(E)). Next, by Riemann-

Roch, one calculates χ(End0(E)) = ηX(r, d, I). Thus one gets

(3.21) #mod

(
Vr,dµ,I , [E]

)
≥ ηX(r, d, I).

On the other hand, since h2(End0(E)) = h0(End0(E)⊗KX), by Theorem 3.1, there
is an N such that whenever d ≥ N , we have

#mod{E ∈ Vr,dµ,I | h0(End0(E)⊗KX) > 0} ≤ ηX(r, d, I)− 1.

Therefore, for generic E ∈ Vr,dµ,I , #mod

(
Vr,dµ,I , [E]

)
= ηX(r, d, I). Thus we have

proved (3.20) provided d ≥ N . To further attack (3.19) and (3.17), we need the
following estimate which is interesting in its own right.

Theorem 3.4. For any choice of r, I and two constants e1 > e2, there is a constant
C′ such that

(3.22) #mod

(
Sr,de1,I \ S

r,d
e2,I

)
≤ (2r − 1)d+ C′.

Proof. Let E be any torsion free sheaf in Sr,de1,I \ S
r,d
e2,I

. Since E is not e2-stable,

there is a torsion free subsheaf F1 ⊆ E such that E/F1 is torsion free and that

µ(F1) ≥ µ(E) + e2

√
H2/ rk(F1). Because E is e1-stable, µ(F1) is bounded from

above by µ(E) + e1

√
H2/ rk(F1). Combined, we get

(3.23)
1

r
I ·H +

1

r1
e1

√
H2 <

1

ri
Ii ·H <

1

r
I ·H +

1

ri
e
√
H2,

where ri = rkFi, di = c2(Fi) and Ii = detFi with F2 = E/F1. Note that E belongs
to the exact sequence

(3.24) 0 −→ F1 −→ E −→ F2 −→ 0.

We call (ri, di, Ii) admissible if they do come from (3.24) with E ∈ Sr,de1,I \S
r,d
e2,I

. We

claim that Fi are e3-stable with e3 = e1 + |e2|. Indeed, let L ⊂ F1 be any subsheaf.
Because L is also a subsheaf of E,

µ(L) < µ(E) +
1

rk(L)
e1

√
H2 ≤ µ(F1)− 1

r1
e2

√
H2 +

1

rk(L)
e1

√
H2.

Thus, F1 is e3-stable. F2 is e3-stable for the same reason. Therefore, Fi ∈ Sri,die3,Ii
.

Finally, because of (3.24),

(3.25)
#mod

(
Sr,de1,I \ S

r,d
e2,I

)
≤ sup

(ri,di,Ii)

{
#mod

(
Sr1,d1

e3,I1

)
+ #mod

(
Sr2,d2

e3,I2

)
+ sup{dim Ext1(F2, F1) | Fi ∈ Sri,die3,Ii

}
}
,

where the supremum is taken over all admissible tuples (ri, di, Ii). Note that we
only have numerical restriction on Ii (cf. (3.23)) and di can be small, thus we

cannot expect an estimate of type (3.17) to hold for all Sri,die3,Ii
. Nevertheless, we

have
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Lemma 3.5. There is a constant C1 depending only on r, e3 > 0 and deg I ′,
I ′ ∈ Pic(X), such that for r′ ≤ r, we have

#modSr
′,d′

es,I′
≤ ηX(r′, d′, I ′) + C1.

Proof. It suffices to show that there is a constant C1 such that for any E ∈ Sr
′,d′

e3,I′
,

dim Ext1(E,E)0 ≤ 2r′d′ − (r′ − 1)I ′2 + C1.

First, since E is e3-stable and e3 > 0, End0(E) is 2re3-stable. Hence by Lemma 1.8,
both h0(End0(E)) and h0(End0(E)⊗KX) are bounded from above by a constant,
say C1. By Serre duality, Ext2(E,E)0 = H0(End0(E)⊗KX). Therefore,

dim Ext1(E,E)0 = 2r′d′ − (r′ − 1)I ′2 − (r′ − 1)2χ(OX)

+ dim Ext0(E,E)0 + dim Ext2(E,E)0

≤ 2r′d′ − (r′ − 1)I ′2 +
(
2C1 − (r′ − 1)2χ(OX)

)
.

This completes the proof of the lemma.

Returning to the proof of Theorem 3.4, we need to estimate the term
dim Ext1(F1, F2) in (3.25). First of all, by Riemann-Roch, for Fi ∈ Sri,die3,Ii

,

dim Ext1(F1, F2)

= dim Ext0(F1, F2) + dim Ext2(F1, F2)

−
(r2

2
I2
1 +

r1
2
I2
2 − (

r1
2
I2 −

r2
2
I1) ·KX − I1 · I2 + r1r2χ(OX)− r1d2 − r2d1

)
.

Because F1 and F2 are e3-stable, F∨1 ⊗ F2 and F∨2 ⊗ F1 are 2re3-stable. Also,
the degree of F∨1 ⊗ F2 and F∨2 ⊗ F1 are bounded (from both sides) by constants
depending on r, e and I · H. Thus, there is a constant C2 depending on these
parameters only so that

dim Ext0(F1, F2), dim Ext2(F1, F2) ≤ C2.

Therefore, for any admissible (ri, di, Ii),

#modSr1,d1

e3,I1
+ #modSr2,d2

e3,I2
+ sup

{
dim Ext1(F1, F2) | Fi ∈ Sri,die3,Ii

}
≤ 2r1d1 − (r1 − 1)I2

1 + 2r2d2 − (r2 − 1)I2
2 + 2C1

+
(
−r2I

2
1 − r1I2

2

2
+
r1I2 − r2I1

2
·KX

+ I1 · I2 − r1r2χ(OX) + r1d2 + r2d1

)
+ 2C2

≤ (2r − 1)d+ (1− r2)d1 + (1− r1)d2 − (r1 +
r2
2
− 1)I2

1 − (r2 +
r1
2
− 1)I2

2

+ I1 · I2 + (
r1
2
− r2

2
I1) ·KX − r1r2χ(OX) + 2C1 + 2C2.
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Thanks to Lemma 2.5, there is a constant C3 ≤ 0 depending on r, e and I ·H only
such that di − ri−1

2ri
I2
i ≥ C3. Thus combined with d = c2(E) = I1 · I2 + d1 + d2 and

I2 = I − I1, the right-hand side of the above inequality is

≤(2r − 1)d− (r +
1− r2

2r1
− 3

2
)I2

1 − (r +
1− r1

2r2
− 3

2
)I2

2

(3.26)

− (2r − 2)I1 · I2 + (
r1
2
I2 −

r2
2
I1) ·KX + r2|χ(OX)|+ C1 + 2C2 − rC3

=(2r − 1)d+
(

(1 +
r1 − 1

2r2
+
r2 − 1

2r1
)I2

1 +
r2 + 1− r1

2r2
I · I1 −

r

2
I1 ·KX

)
+ C4.

Finally, because |I1 ·H| ≤ |I ·H| + e
√
H2, the Hodge index theorem tells us that

the sum of three middle terms in the last line of (3.26) is bounded from above by
a constant C5. Therefore, combined with (3.25), we have

#mod

(
Sr,de,I \ S

r,d
µ,I

)
≤ (2r − 1)d+ C′.

Proof of (3.18). We shall only consider the case where e ≥ 0. The case e < 0 can be
proved similarly. First of all, by letting e1 = e and e2 = 0 in Theorem 3.4, we know

that there is a constant C1 such that #mod

(
Sr,de,I \ S

r,d
µ,I

)
≤ (2r− 1)d+C1. Then by

choosing N large, we have #modVr,dµ,I = ηX(r, d, I) and (2r− 1)d+C1 ≤ ηX(r, d, I)
whenever d ≥ N . Thus

#modVr,de,I ≤ max
{

#modVr,dµ,I ,#mod

(
Vr,de,I \ V

r,d
µ,I

)}
= ηX(r, d, I).

To prove (3.17), we will use the double dual operation F . Let

(3.27) F : Sr,de,I −→
⋃
d′≤d
Vr,d

′

e,I

be the map sending E to E∨∨. Thanks to Lemma 3.2, we have

#modSr,de,I ≤ sup
d′≤d

{
#modVr,d

′

e,I + (r + 1)(d− d′)
}
.

Further, let C1 ≥ 0 be a constant such that

#modVr,d
′

e,I ≤ η(r, d′, I) + C1.

Then, for d ≥ N + C1, #modSr,de,I is no more than either

sup
d′<N

{η(r, d′, I) + C1 + (r + 1)(d− d′)} ≤ η(r,N, I) + C1 ≤ ηX(r, d, I)

or
sup

N≤d′≤d
{ηX(r, d′, I) + (r + 1)(d− d′)} ≤ ηX(r, d, I).

This establishes (3.17). (3.18) can be proved similarly based on Theorem 3.1. We
shall omit it.
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In light of Theorem 3.3, the proofs of Theorems 0.2 and 0.3 are now quite easy.
Recall that for the data (r, d, I) and sufficiently large n, we can form Grothendieck’s

Quot-scheme Quotr,dρ,I of all quotient sheaves O⊕ρX → E with rkE = r, detE = I,

c2(E) = d and ρ = h0(E(n)). If we let U ⊆ Quotr,dn,I be the open subset of all

semistable (with respect to H) quotient sheaves, then U is SL(ρ,C)-invariant and
the good quotient U//SL(ρ,C), which does exist, is exactly the moduli scheme

M
r,d
X (I,H) of rank r semistable sheaves of c1 = I and c2 = d. Further, if we let

Us ⊆ U be the subset of strictly stable sheaves, then π :Us → π(Us) ⊆M
r,d
X (I,H)

is a principal SL(ρ,C)-bundle. With this set-up in mind, one sees that in order to
prove Theorem 0.2, it suffices to classify the singular locus of U .

Proposition 3.6. With the notation as before and for any constant C, there is a
constant N such that whenever d ≥ N , then dimU = ηX(r, d, I) + (ρ2 − 1) and the
codimension

codim
(
Sing(U),U

)
≥ C.

Further, when the codimension is at least 1, then U locally is a complete intersection,
and when the codimension is at least 2, then U is normal.

Proof. Let E ∈ U be any quotient sheaf, let q2 = h0(End0(E) ⊗ KX) and let
q1 = ηX(r, d, I) + (ρ2− 1) + q2. Then the argument in [L2, p. 8] demonstrates that
the completion of the local ring of U at E is of the form k[[t1,· · ·,tq1 ]]/J, where J
is an ideal generated by at most q2 elements. In particular, for each component
U ⊆ U , we always have

(3.28) dim U ≥ ηX(r, d, I) + (ρ2 − 1).

Next, by [Ar], [Mu], [Ma, p. 594], the singular locus Sing(U) is exactly the set of
all quotient sheaves E with Ext2(E,E)0 6= 0. By Theorem 3.3, for any constant C,
there is an N such that whenever d ≥ N , the set

U ∩ Sr,d1,I (KX) =
{
E ∈ U | h0(End0(E)⊗KX) 6= 0

}
obeys #mod

(
U ∩ Sr,d1,I (KX)

)
≤ ηX(r, d, I)− C. Therefore,

dim Sing
(
U
)
≤ #mod

(
U ∩ Sr,d1,I (KX)

)
+ dimSL(ρ) ≤ ηX(r, d, I) + (ρ2 − 1)− C.

When C ≥ 1, this inequality and (3.28) imply that U has pure dimension ηX(r, d, I)
+ (ρ2 − 1) and codim

(
Sing(U),U)

)
≥ C. Because the completion of the local rings

of U are of the form k[[t1, · · · , tq1 ]]/J with J = (f1, · · · , fq2), U is a local complete
intersection. U will be normal if we further assume codim

(
Sing(U),U

)
≥ 2.

Corollary 3.7. Let X be a smooth algebraic surface, H an ample divisor and I a
line bundle on X. Let r ≥ 2 be an integer. Then for any constant C, there is an

N such that whenever d ≥ N , then M
r,d
X (I,H) has pure dimension ηX(r, d, I) and

further, codim
(
Sing(Mr,d

X ),Mr,d
X

)
≥ C.

Proof. Since π : Us → π(Us) ⊆ M
r,d
X is a principal bundle, the singular locus

Sing(Mr,d
X ) is contained in

π
(
Sing(Us)

)
∩ π
(
U \ Us

)
.
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By Proposition 3.6, we know that for d large, we can arrange

codim
(
π
(
Sing(Us)

)
,Mr,d

X

)
≥ C.

Therefore, to prove the corollary, we only need to find an upper bound of the
dimension of π

(
U \ Us

)
.

Let E ∈ U \ Us. Then E admits a filtration 0 = E0 ⊆ E1 ⊆ · · · ⊆ Ek = E such
that Fi = Ei/Ei−1 are strictly stable. According to [Gi], E and gr(E) =

⊕
Fi

have the same image in M
r,d
X under π. Thus dimπ(U \ Us) can be bounded easily

in terms of the dimension of moduli of lower rank stable sheaves. Similar to the
proof of Theorem 3.4, we can show that there is a constant C1 such that

(3.29) dimπ(U \ Us) ≤ (2r − 1)d+ C1.

(If we let Sr,de,I be the set introduced in §2, π(U \Us) ⊆ Sr,d−1,I \ S
r,d
µ,I and then (3.29)

follows directly from Theorem 3.4.) Thus for large N , we will have for d ≥ N ,
dimπ(U \ Us) ≤ ηX(r, d, I) − C. This completes the proof of the corollary and
Theorem 0.2.

Corollary 3.8. With the notation as before, there exists N such that whenever
d ≥ N , then

(1) M
r,d
X is normal. Further, if s ∈ M

r,d
X is any closed point corresponding to a

stable sheaf, then M
r,d
X is a local complete intersection at s.

(2) The set of locally free µ-stable sheaves
(
M
r,d
X

)vb ⊆M
r,d
X is dense in M

r,d
X .

Proof. Let N be given by Proposition 3.6 so that whenever d ≥ N , U has pure
dimension ηX(r, d, I)+(ρ2−1) and codim

(
Sing(U),U

)
≥ 2. Then since U is normal,

M
r,d
X must be normal and since Us is a local complete intersection, π(Us) ⊆ M

r,d
X

must be a local complete intersection. Here we have used the fact that U →M
r,d
X

is a good quotient and Us → π(Us) is a principal bundle. The last statement can
be proved easily similar to that of Theorem 3.1. We shall omit it here.

The last subject we will study is the dependence of the moduli spaces on the
choice of the polarizations. We prove

Theorem 3.9. For any choice (r, I) and polarizations H1 and H2, there is a con-

stant N so that whenever d ≥ N , then M
r,d
X (I,H1) and M

r,d
X (I,H2) are birational

to each other.

Proof. Let W ⊆M
r,d
X (I,H1) be the set of quotient sheaves E such that E are not

H2-stable. Then every E ∈W belongs to the exact sequence

0 −→ F1 −→ E −→ F2 −→ 0

such that µ(F1) ≥ µ(E) (with respect to H2). Then by repeating the argument
in Theorem 3.4, we can find a constant C1 (depending on H1 and H2) such that
dimW ≤ (2r − 1)d+ C1. Therefore, by letting N be large, we will have

dim M
r,d
X (I,H1) = dim M

r,d
X (I,H2) = ηX(r, d, I)

and dimW ≤ ηX(r, d, I)− 1 provided d ≥ N . Therefore, by the universality of the
moduli scheme, there is a morphism

Φ : M
r,d
X (I,H1) \W −→M

r,d
X (I,H2)

which is generically one-one and onto. Thus M
r,d
X (I,H1) is birational to M

r,d
X (I,H2).
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