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MODULI OF HIGH RANK VECTOR
BUNDLES OVER SURFACES
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0. INTRODUCTION

The purpose of this work is to apply the degeneration theory developed in [GL]
to study the moduli space of stable vector bundles of arbitrary rank on any smooth
algebraic surface (over C). We will show that most of the recent progress in un-
derstanding moduli of rank two vector bundles can be carried over to high rank
cases.

After introducing the notion of stable vector bundles, the first author constructed
the moduli schemes of vector bundles on surfaces. He showed that for any smooth
algebraic surface X with ample divisor H and line bundle I on X, there is a coarse
moduli scheme Dﬁr)'{i(I , H) parameterizing (modulo equivalence relation) the set of
all H-semistable rank r torsion free sheaves F on X with det F = I and c3(F) = d.
Since then, many mathematicians have studied the geometry of this moduli space,
especially for the rank two case. To cite a few, Maruyama, Taubes and the first
author showed that the moduli space smi;d (= Dﬁr)'{i(I , H)) is non-empty when d is
large. Moduli spaces of vector bundles of some special surfaces have been studied
also.

The deep understanding of sm;;d for arbitrary X and r = 2 begins with Don-
aldson’s generic smoothness result. Roughly speaking, Donaldson [Do] (later gen-
eralized by Friedman [Fr] and K. Zhu [Zh]) showed that when d is large enough,
then the singular locus Sing (M%) of M3 is a proper subset of M3 and its codi-
mension in Zmigd increases linearly in d. This theorem indicates that the moduli
zmi;d behaves as expected when the second Chern class d is large. Later, using
general deformation theory, the second author proved that Dﬁi(’d is normal, and has
local complete intersection (l.c.i.) singularities at stable sheaves provided d is large
[L2]. He also showed that when X is a surface of general type satisfying some mild
technical conditions, then Sﬁigd is of general type for d > 0 [L2]. In our paper [GL],
we also proved that fmi’d is irreducible if d is large.

In this and subsequent papers, we shall show that the geometry of fmﬁ(’d and the
geometry of Dﬁ}d, r > 3, is rather similar. The main obstacle in doing so is the
lack of an analogy of the generic smoothness result in high rank case. In this paper,
we will use the degeneration of moduli developed in [GL] to establish the following
main technical theorem.
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Theorem 0.1. Let X be a smooth algebraic surface, H an ample line bundle and
I a line bundle on X. Let r > 2 be any integer. Then for any constant Cy and any
divisor D C X, there is an N such that whenever d > N, then we have

dim{E € My | Ext’(E, B(D))® # {0}} < n(r,d,I) - Ci,

where n(r,d, I) = 2rd— (r—1)I? — (r? —1)x(Ox) is the expected dimension ofimg’(d
(= zm;;d(L H)) and the superscript 0 stands for the traceless part of Ext'(-,-).

According to [Ar], [Mu], DJT}d is regular at E if E is stable and Ext?(FE, E)°
= {0}. As to the subset of strictly semistable sheaves in 931;{1, it is easy to show
that its dimension is much less than 7n(r,d, I) — C; when d is large. After applying
Theorem 0.1 to the divisor D = Kx and using the Serre duality, we conclude that
for d sufficiently large,

dim Sing(fmgéd) <n(r,d,I)— Cj.

On the other hand, based on deformation theory, each component of Dﬁ’;{i has
dimension at least n(r,d, I). Thus, we have proved the following theorem.

Theorem 0.2. Let X be a smooth algebraic surface, H an ample line bundle and
I a line bundle on X. Let r > 2 be any integer. Then for any constant Cy, there
is an N such that whenever d > N, then zmggd has pure dimension n(r,d,I) and
further,

codim (Sing (M%), My?) > O

Once we have settled the generic smoothness result, we can generalize some other
properties of EDT?X’d to high rank case. In this paper, we will prove

Theorem 0.3. With the notation as in Theorem 0.2, there is an N such that
whenever d > N, then:
(1) 931;;‘1 is normal. Further, if s € 931;;‘1 is a closed point corresponding to a
stable sheaf, then DJT}d is a local complete intersection at s.
(2) The set of locally free p-stable sheaves (Dﬁggi)“ C Dﬁg'{i is dense in Dﬁ’;;d.
(3) For any polarizations Hy and Ha of X, the moduli Dﬁr)’(d(I, H,) is birational
to fmgéd(l, Hs). (In this case, N depends on both Hy and Hs.)

To illustrate the idea of the proof of our main theorem (Theorem 0.1), let us first
recall the degeneration of moduli zmggd constructed in [GL]. Let 0 € C' C Spec CJt]
be a smooth curve that functions as a parameter space and let Z — C be a family
of surfaces that is the result of blowing-up X x C along ¥ x {0}, where ¥ € |H| is
a smooth very ample divisor. Clearly, Z; = 7=1(t) is X and Zy = X UA, where A
is a ruled surface over . Over C* = C'\ {0}, we have a constant family DJT}d x C*.
In [GL], we have constructed completions of M? x C* over C. These completions
depend on the choice of ample divisors on Z. The ample divisor which we will use is
a multiple of the Q-divisor p% H(—(1—¢)A) that depends on the rational € (0, ).
We denote this completion by 9t%2. There is a nice description of closed points of
the special fiber 9M>°: Any point of ML® corresponds uniquely to an equivalence
class of semistable sheaves on Z.
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Now let D C X be any divisor and N C DJT}d be the set of sheaves F such that
(0.1) Hom(E, E(D))? # {0}.

Put 91% C M= as the closure of N x C* in M=, To show that for any constant
C1 and large d we have
dim N < n(r,d, I) — Cy,

it suffices to show
(0.2) dimNPe < n(r,d, I) — Cy.

Now let E € M3 be any sheaf. Note that E is a limit of sheaves in A" and that
sheaves in N satisfy (0.1). So by the semicontinuity theorem, for any invertible
sheaf £ on Z such that £z, = Ox(D), we have

Homy, (E,E ® L,)° # {0}.

In particular, if we choose £ to be p%Ox(D)(—kA), where px : Z — X is the
projection, we get

(0.3) Exty, (B, E @ pxOx(D)(—kA))° # {0}, Vke€Z, EcNg".

Since E is semistable, E|x and E|a as sheaves on X and A respectively will satisfy
some weak stability conditions. (For simplicity, here we assume F is locally free.)
On the other hand, for large k, the non-vanishing of

(0.4) Ext (E|x, E|x(D — k¥))°

will force Ejx to be very unstable. Therefore, we can choose a k > 0 (independent
of d, e and ) such that (0.4) is always trivial. Thus (0.3) will force

(0.5) Exti (Eja, Eja ® pxOx (D) (k%))° # {0}.

(0.5) certainly is possible for sheaves over A. However, if we can show that the
number of moduli of the set of sheaves F' (over A) satisfying (0.5) is strictly less
than

the number of moduli of {Ea | E € M} — O,

then codim(M$<, MP<) > €1, which is exactly what we need. Therefore, the proof
of Theorem 0.1 is reduced to the proof of the following theorem.

Theorem 0.4. Let X be any ruled surface and let H and I be as in Theorem 0.1.
Then for any integer v, any divisor D C X and any constant C, there is a constant
N such that for d > N,

dim{E € My | Ext’(E, B(D))° # {0}} < n(r,d,I) - Ci.
The advantage of working with a ruled surface lies in the fact that every vector

bundle on a ruled surface can be constructed explicitly as follows: Let X = A and
let E be a vector bundle on A. For simplicity, we assume for the general fiber P of
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m:A — ¥, the restriction sheaf F|p, & O%:. Then there is a unique rank r vector
bundle V on ¥ and a sheaf F' supported on a finite number of fibers of 7 such that

0—FE—m1V--35F—0

is exact. When F is general, F is of the form @ Op, (1), where P; are fibers of .
Thus the condition under which E admits a traceless homomorphism E — FE(D)
can be interpreted in terms of the location of P;’s and the choice of homomorphism
. The argument to carry out this approach is rather straightforward though quite
technical and will occupy the first section of this paper. In §2, we will review the
degeneration construction and use it to prove Theorem 0.1. Theorems 0.2-0.4 will
be proved in §3. We remark that after the completion of the initial version of this
work, O’Grady has improved our results in his paper [OG].

Conventions and preliminaries. All schemes are defined over the field of com-
plex numbers C and are of finite type. All points are closed points unless otherwise
mentioned. We shall always identify a vector bundle with its sheaf of sections. If
I and J are two line bundles on a surface, then we denote by I - J the intersection
c1(I) - e1(J) and by I? the self-intersection c;(I) - ¢1(I). We will use ~ to denote
the numerical equivalence of divisors (line bundles). For the coherent sheaf F', we
denote by rk(F') the rank of F'. In case F' is supported on a finite number of points
on X, we denote by ¢(F) the length of F. If p and ¢ are two polynomials with real
coefficients, we say p > ¢ (resp. p = q) if p(n) > g(n) (resp. p(n) > q(n)) for all
n > 0.

In the following, X will always denote a smooth projective surface. Let H be a
very ample line bundle on X. For any sheaf E on X, we denote by x g the Poincaré
polynomial of E, namely, xg(n) = x(E(n)), E(n) = EQ H®™, and denote by pg

the polynomial ﬁx g when rk(F) # 0. Unless the contrary is mentioned, the

degree of a sheaf E is ¢;(E) - H. We recall the notion of stability:

Definition 0.5. A sheaf F on X is said to be stable (resp. semistable) with
respect to H if E is coherent, torsion free and if one of the following two equivalent
conditions hold:

(1) Whenever F' C E is a proper subsheaf, then pr < pg  (resp. pr < pg).

(2) Whenever E — @ is a quotient sheaf, rk(Q) > 0, then pr < pg (resp.

pE = DQ)-
When FE is a torsion free coherent sheaf on X, we define the slope u(E) =
—L_degE.

rk(E)

Definition 0.6. Let e be a constant. The sheaf F is said to be e-stable if one of
the following two equivalent conditions holds:
(1) Whenever FF C FE is a subsheaf with 0 < rk(F) < rk(E), then u(F) <
w(E) + ﬁ\/H2 “e.
(2) Whenever E — @Q is a quotient sheaf with 0 < rk(Q) < rk(E), then pu(F) <
1(Q) + gy VH? - e.
We call E p-stable if F is e-stable with e = 0. When the strict inequality is
replaced by <, then we call E e-semistable.

Let W — S be a flat morphism and let £ — W be any sheaf on W. For
any closed s € S, we will use W to denote the fiber of W over s and use Ej,
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to denote the restriction of E to W,. For any subscheme T C W, we denote by
Er the restriction of E to T'. We shall adopt the following convention: If R is
a set of sheaves on X, then the number of moduli of R is the smallest integer m
so that there are countably many schemes (of finite types) of dimension at most
m, say S1,5%2,---, and flat families of sheaves Fg,, Fg,, -+ on X x51,X x Sa,--
respectively of which the following holds: For any F' € R, there is a closed s € S
for some k such that F = Eg, ;. We will denote by #moa(R) the number of
moduli of R. In case R is a scheme parameterizing a family of sheaves and ¢t € R,
then we denote by #19¢ (R, [t]) the number of moduli of sheaves parameterized by
the germ of R at r. In particular, we write #.°¢ (E), where E is any sheaf, for

loc (Q,[E]) (= the number of moduli of the set of all “small” deformations of E),
where Q is Grothendieck’s Quot-scheme [Gr] that contains all deformations of E
as quotient sheaves of some appropriate locally free sheaf. Another notion we use
frequently is #aus(FE) = dim Aut(E), where Aut(FE) is the group of automorphisms
of E. Note #aut(E) = h%(End(E)). When R is a set of sheaves, then #,,(R) =
max{#.u(E) | E € R}.

1. VECTOR BUNDLES ON A RULED SURFACE

The purpose of this section is to prove an analogy of Theorem 0.1 for a ruled
surface A. Before giving the precise statement of the theorem, we first introduce
some notation. Let ¥ be a smooth curve and let 7: A — X be a ruled surface. For
simplicity, we assume A is the projective bundle of a direct sum of a trivial line
bundle with a very ample line bundle (over ¥). Hence 7 : A — X has a unique
section ¥~ with ¥7-X7 < 0 and has many sections with positive self-intersection.
We choose one such section and denote it by 7. By assumption, |[XT]| is base
point free. Let H be an ample line bundle on A that is numerically equivalent to
(denoted by ~) aXt + bPe, where P is a general fiber of . Let e be a constant,
let I be a line bundle on A and let D be any divisor on A. In this section, we
will study the set ng';  of all e-semistable (with respect to H) rank r locally free
sheaves F with det E = I and c3(F) = d and the set

ALY (D) = {E € AT, | Hom(E, E(D))° # {0}}.

Here and in the following, the superscript 0 always stands for the traceless part
of the group or sheaf. For technical reasons, we will choose H to be very close
to 3T in the sense that b/a is very small. With the choice of H understood, we
will not build H into the notation and will write 2[2? (resp. QlZ}i(D)) for 2[2? I
(resp. QlZ‘IiH(D)) We will also use na (E) = na(tk(E), ca(E), c1(F)) to denote the
number

(1.1) na(r,d,I) = 2rd — (r — 1)I* — (r> = 1)x(On).

na(r,d, I) is the expected dimension of Ql’;‘; Because in this section we work solely
with the surface A, we will simply write n for na. The theorem we will prove in
this section is the following.

Theorem 1.1. Given r and A, there is an €9 > 0 depending on r and A for which
the following holds: For any ample divisor H ~ aX* + bPe with b/a < g9 and for
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any choice of constants e, C' and divisor D C A, I € Pic(A), there is an integer N
such that whenever d > N, then we have

(1.2) #moa (ALT(D)) < n(r.d, 1) — C.

The advantage of working with ruled surfaces lies in having a powerful structure
theorem of torsion free sheaves on A. Let F be any torsion free sheaf of rank r. By
Grothendieck’s splitting theorem, its restriction to a generic fiber P¢ has the form

(1.3) E|pE = @Opg(ai)ea”, Qap > > Qn.
i=1
In the following, we call a = (af"™, - ,a®™) the generic fiber type of E. (The

integer sequence {a;} is always assumed to be strictly decreasing.) We let £(«) =
Yoy rici. Clearly, r = 371" | r; and further, when det E = I and degIjp, = m,
then m = £(«). ng? can be divided into strata according to the generic fiber types

of individual vector bundles. Let » € N and I € Pic(A) be fixed. Without loss of
generality, we can assume 0 < deg I|p, <7 —1. Let m = deg | p, and let 1,, be the

fiber type (19™,09("=™)), For any fiber type o with £(a) = m, we let
Q(Z‘;(oz) ={FE ¢ 212? | E has generic fiber type a}.

The first observation we have is that except for a = 1,,, none of #y,04q (2[2';(04))
are close to n(r,d, I). More precisely, we have

Theorem 1.2. Let m = degl|p,. There are constants C1 and g9 depending on
(r, A) such that for any ample divisor H ~ aXt + bPe with b/a < €y and any fiber
type o # 1., we have

Fmoal ] (@) < (2r — 1)d + C1.

The proof of Theorem 1.2 goes as follows: Let a = (o™, -+ ,a®™) be any fiber
type. Then each E € Q(Z‘;(oz) admits a relative Hardar-Narasimhan filtration

(1.4) 0=FE,CE C---CE,=E

of which the quotient sheaves F; = E;/E;_1 are torsion free with generic fiber
types (") respectively. Clearly, the deformation of E within ng’?(a) depends on
deformation of individual F; and the extension F; — E; 11 — F¢+)1. The contribu-
tion of these data to the number of moduli of lez';(a) can be estimated by using
Riemann-Roch. The details of the proof will be provided shortly.

In light of Theorem 1.2, to prove Theorem 1.1 we only need to study the stratum

2[2’)';(1,”) and
(1.5) A (L, D) = {E € A (L) | Hom(E, B(D))° # 0}.

In this section, we will first establish Theorem 1.1 for the stratum 212:?(10, D) and
derive the remainder by induction on m.
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Let E be any vector bundle of generic fiber type 10=(0%"). Let x € ¥ be any
point, let P, be the fiber of m over € ¥ and let 3, (E) = (37", -+, 82") be the
fiber type of Ejp,. In case (3,(F) # 1o, we call P, a jumping line of F. Let P, be a
jumping line of E. We then perform semistable reduction on E along P, by taking
F to be the kernel of the (unique surjective) homomorphism E — Op, (3,)®™. For
convenience, we will use T, to denote this operation and denote F' = T, (FE) and
wy(E) = g, Clearly, F belongs to the exact sequence

(1.6) 0— F — E-0p (3, — 0.

An easy calculation based on Riemann-Roch yields

Lemma 1.3. Let F = T, (E) with w,(E) =t®%. Then c1(F) = c¢1(E) — s[P:] and
c2(F) = ca(E) + s-t. In particular, n(r,ca(F),c1(F)) = n(r,ca(E),c1(E)) + 2rs-t.

Proof. See [Br, p. 166].

In case F still has a jumping line, say P, of type (---,7;>""), then we can further
perform semistable reduction on F' to get F» = T, (F'). We can iterate this process
as long as the resulting vector bundle Fj still admits jumping lines. In general, if
Fy, is derived by successively performing this type of elementary transformations,
namely, Fp = FE and F;11 = T, (F;) with w,, (F}) = t?si fori=0,---,k— 1, then
we will write

Fy =Tx(E), A=(z1,,zx)
and define wp (E) = (7%, ,t7°*). We call k the length of A.

Lemma 1.4. For any vector bundle E of generic fiber type 1o, there is a finite
length A = (x1,- -+ ,xi) such that To(FE) has no jumping lines.

Proof. By Lemma 1.3, the second Chern class of Y, (E) is strictly less than co(E)
because 3, < 0 when 3,(E) # 1p. Thus Lemma 1.4 follows if we can show that
any vector bundle of generic fiber type 1y has non-negative second Chern class.
Indeed, let E be any vector bundle of generic fiber type 15. We choose a divisor
D supported on fibers of 7w such that Op is a subsheaf of F with E/O(D) torsion
free. Since E/Op has generic fiber type 1o, we can assume c2(E/O(D)) > 0 by the
induction hypothesis on the rank of E. Hence,

c2(E) = c2(E/O(D)) + D - (c1(E) — D) = c2(E/O(D)) > 0.
This completes the proof of Lemma 1.4.

Let E be a vector bundle of generic fiber type 1o and let A = (x1,--- ,zx) be
such that F' = T (F) has no jumping lines. Then F is a pull-back vector bundle
7*V whose dual belongs to the exact sequence

(1.7) 0— EY —71'VY — J—0,

where J is a torsion sheaf supported on the union of fibers P,,. Usually, the sheaf
J near some fiber P,, can be very complicated. The case that is easy to understand
and will be dealt with extensively in the subsequent discussion is when J = Op, (1)
near P,,. The following theorem says that when the number of moduli of 2[2’51(10)
is close to n(r,d, I), then for general E € 2[2’7?(10) with the exact sequence (1.7),
J = Op,, (1) near Py, for all z; € {x1 - -~ 21} except for a bounded number of fibers.
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Theorem 1.5. For any constant e, there is a constant Cy such that
(1.8) #mod%’;‘; <n(r,d,I)+ Cs.

Further, for any constant C, there are integersl, l1, lo and N1 of which the following
holds: Assume d > N1 and that S is a variety parameterizing a subset of 2[2’51(10)

satisfying #moda(S) > n(r,d,I) — C. Then there is a line bundle L on ¥ of degree
[(d—c)/r] + 1, where c =1 - X7, so that for general E € S, there are

(1) d—1 distinct points x1,--- , 24— € ¥ in general position, a surjective homo-
morphism 11 :w* L — @;1:—11 Op, (1) and
(2) a zero-dimensional scheme (divisor) zo C ¥ away from {x1, - ,xq4-} with

U(z0) < lo and a sheaf of Or-1(.,)-modules J with a quotient homomorphism
70:m*LO" — J so that EY belongs to the exact sequence

d—1
19 0B ) e (@ on, (1) —0.
=1

This theorem holds for a very simple reason: To maximize the number of moduli
of the set of those E in (1.9), we need to maximize the number of moduli of the
set of homomorphisms 79 @ 71 and the quotient sheaves in (1.9). This can only be
achieved by letting J = {0} and z; general. Hence, if #monl;?(lo) is close to the
expected dimension n(r,d, I), then the number of fibers in supp(J) cannot be too
large.

Now we sketch how this structure theorem of 2[2:’;(10) leads to the proof of Theo-

rem 1.1. We first prove the case m = 0 by contradiction. Assume #mod%;c[l(lo, D)
> n(r,d,I)—C. Then by Theorem 1.5, the general element E € Q(Zﬁ}i(lo, D) fits into
the exact sequence (1.9) with {z1, -, 24—} and 7 :7*LE" — GB/OPM (1) general.
Now let F = ker{n*L®" "% J} and let f: E — E(D) be a non-trivial traceless
homomorphism. Then f induces a non-trivial traceless homomorphism

f :F — F(D+ 71 (20)),

where zj is a divisor of ¥ as in Theorem 1.5(2). Because the position of z1, -+ , x4
and the homomorphism 77 are general, we will see by degeneration theoretic meth-
ods that Hom(F', F'(D + 7~ 1(z0))) # 0 for the torsion free sheaf

F' =ker(n*L®" — P (Op,, @ ky,)),

where p; € P,,. Because of the special choice of F’, the non-vanishing of the
previous group amounts to saying that for any choice of p; € A, there are sections
of H(O(D+m~1(20))) that vanish on [(d—1)/r] of p1, -+, pa—;. On the other hand,
since D is fixed and 771(2¢) is bounded, this is impossible if {p;} are generic and
d is sufficiently large. This leads to a contradiction which ensures that n(r,d, I) —
#monl;?(lo, D) can be arbitrarily large.

For the general case, we use induction on m (with r > m fixed). Assume the
theorem holds for m — 1 > 0 and assume #modﬂgiﬁl(lm, D) > n(r,d,I) — C. Then

for general £ € Ql;?(lm, D), we can perform an elementary transformation on E

along a section ¥ T to get a new vector bundle E e mg;?;,(lm_l, E) By carefully
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studying this correspondence, we will get the desired estimate of #modﬂgiﬁl(lm, D)

from the known estimate of #modi)‘{z;'f;,(lm_l, D), thus establishing Theorem 1.1.

In the following, we will fill in the details of the above sketch. We continue to
use the notation introduced before Lemma 1.4. We begin with the estimate of the
number of moduli of vector bundles of generic fiber type 1. Let Ey € ngj(lo)
be any vector bundle of generic fiber type 19 and A = (z1,--- ,xx) be such that
F = T (Fy) has no jumping line. Then F is a pull-back vector bundle 7*V. Let
w be wp(Ep) = (7%, -+, t7°%) and let

Saw(F) ={E € A27(1o) | wa(E) = w and TA(E) = F}.

In the following, we will estimate the number of moduli of this set. We first study
the case where A = (z) and w = (¢t®%). Let 3,(F) = (---,5"). Because of the
following lemma, either ¢t < §; or t = ;.

Lemma 1.6. Suppose E|p, has fiber type (--- ,v°) and that Y .(E) has fiber type
(- l@”) at x. Then either v, < B or v, = B and r; < sy,.

Proof. Since F' = Y.(FE) is the kernel of E — Op, (y,)®*", Fp, belongs to the
exact sequence

n—1
0 — Op, (12)®"" — Fip, — @) Op, (v)¥ — 0.
i=1
Then the lemma follows because v, < yp—1 < -+ < 71-
Let E € S, ,(F). By dualizing the sequence (1.6), we get

(1.10) 0— EY — FY — O0p, (-)% — 0.

Clearly, all possible EV that fit into (1.10) are parameterized by a subset of =
that is the total space of Hom(FY,Op (—t)®%). Now let © C = be the subset
consisting of v: FV — Op, (—t)®* such that ker(y)Y € S, o(F). © admits a left
GL(s,C) action and a right Aut(F") action as follows: Let ¢1 € Aut(F") and let
2 € GL(s) = Aut(Op, (—t)®%). Then

@27 1= p2 070 € Hom(FY, Op, (—1)%°).
Geometrically, ¢ - v - ¢1 corresponds to a locally free sheaf E’ defined by
0 — EVV — pv¥s Opm(—t)®s — 0.

Clearly, E’ is isomorphic to F = ker(y)Y. Conversely, suppose F; and Fs are two
isomorphic locally free sheaves associated to 71, 72 € ©. Then the isomorphism
¢:F1 — F5 induces an isomorphism between Y, (FE) and T, (E3). Hence, there is
an automorphism o1 : F¥ — FV fitting into the (commutative) diagram

0 —— By FY -2 Op (—1)® — 0

[ [

0 —— EY FV 2 Op (-t)® —— 0

x
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In particular, there is a @2 :Op, (—t)%* — Op, (—t)®* such that @2 0y = 2 0 ¢;.
Therefore those points in © that give rise to isomorphic sheaves form an Aut(FV) x
GL(s) orbit. Next, we will determine the size of the stabilizer in Aut(F"Y) x GL(s)
of any v € ©. Suppose @1 € Aut(FY) and ¢y € GL(s) are such that the right
rectangle below is commutative:

0 —— EVY FV — Op (-t)® —— 0
ltpl J/ngl
0 —— EVY FV — Op (-t)® —— 0

Then it induces a ¢ € Aut(EY). One sees that such a map Stab, — Aut(EY) is
injective. Thus, if we let ©) C © be the set of v’s such that #.us(ker(y)) = k (for
a set R of sheaves, we define #ayt(R) = maxpep{dim Hom(E, E)}), then

(1.11)

dim(GL(s)\@k/Aut(FV)> < dim Hom(FY, Op, (—£)®*) — (2 + #aut (FY)) + k.

Finally, let (87", ,3%7") be the fiber type of F|p_. Then by Lemma 1.6, t < f3;.
Because Y r;3; = 0, we have

(1.12) dimHom(FY,Op, (-t)) = En:ri dim H°(Op, (8; — t)) = r(—t + 1).
i=1

Returning to the general case A = (1, -+ ,xx) and w = P51, .. [ tDsn) we will
prove:

Lemma 1.7. With the notation as above and let E € Sp ,(F), then

(#mod - #aut)(SA,w (F))

(1.13) <n(E) - (rz si(—ti—1)+ Y s?) — #aut(F) = (= 1)(g — 1).

i=1 =1

Proof. We only need to prove the inequality

n

(114) (#mod - #aut)(SA,w(F>) S Z(TSZ(_t’L + 1) - Sg) - #aut(F)

i=1

because then (1.13) follows from co(E) = — > | s;t; and n(E) = —=2r) i sit;
+(r? —1)(g — 1). We prove (1.14) by induction on n. When n = 1, (1.14) follows
from (1.11) and (1.12) because #aut(Saw(F)) = sup{k|© # 0}. Now assume
(1.14) is true for n — 1. We divide S, o, (F), w1 = (t7°'), into subsets W}, such
that F’ S Wk if #aut(F/> = k. Let A2 = <$2,"~ ,$k> and Wo = <t§982,~'~ ,tg?s”>.
Then by the induction hypothesis, for F/ € Wy,

n

(Fmod — Faut) (Shrwoa (F)) <Y (rsi(—ti +1) — s7) — k

=2
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and therefore,

(F#mod — Faut) (Saw(F)) < S%P{Z(?“Si(—ti +1)—s7) —k+ #mod(Wk>}

=2

S

<) (rsi(—t; +1) —s7) + (Tsl(—fl +1)— 57— #aut(F>>

N
I|
N

[
NE

(rsi(—ti +1) = 57) — #aus(F).

1

.
Il

Now we are ready to prove our structure theorem for subsets of mg‘j(or)

Proof of Theorem 1.5. Inequality (1.8) follows directly from Riemann-Roch and the
fact that there is a constant Cy depending on (A, H, e) such that for any F € 212?,

#aut(E) < Cy. We now prove the second part of the theorem. Let S C 2[2’)’;(10) be
any (irreducible) algebraic set and let E € S be a generic element. By Lemma 1.4,
after performing a sequence of semistable reduction at y1,--- ,y,, we get a vector
bundle with no jumping line, say 7*F with F' a vector bundle over ¥. Clearly,
n = n(FE) depends on E. We let Sy C S be the open set of E' € S with n(E') = E
and let ng be the integer so that when E varies in Sp, the number of moduli of the
(unordered) set y1,--- ,yn i8 no. In other words, ng of (y1,---y,) are in generic
position. We know that the number of moduli of rank r vector bundles on ¥ is
r?(g — 1) + 1. Also, since FE is e-stable, #au(F) is bounded by a constant C%
independent of d and I (see Lemma 1.10). Combining these with (1.13), we get

n

(1.15)  #moa(S) < n(E) — rZsi(—ti -1)— ZS? +no — #aut(F) + g + C5.
i=1

=1

Since we have assumed #p,04(S) > n(r,d, I) — C, for C3 = C + C% + g, we get
(1.16) O >3 si(—ti = 1)+ (3057 = o) + Haun (F),
i=1 i=1

Because t; < 0, all terms in (1.16) are non-negative. This immediately gives us
n —ng < Cs. Next, we define the multiplicity m(y;) of y; to be the number of
appearances of the point y; in (y1,- - ,¥n). Then by (1.16),

1 n
Sy I mly:) 22} < D s —ng < Cs.

i=1
So the total multiplicity of multiple points is bounded. Without loss of generality,
we can assume yi,- - ,Yn, are in general position for general £ € S. For conve-
nience, we call y; € (y1,--- ,yn) a simple point if m(y;) = 1 and wy, (F) = tP% is
(—1)®1. We claim that then

Z (—siti) < 22 i(—ti—1)+ (Z s; — ”0> + #{yi | m(y:) > 2}
<

S
(117) yi#simple i=1 =1
2
< (; + 2) Cs.
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Indeed, when t; < —2, then the term s;(—t;) is bounded from above by the term
2s;(—t; — 1) in the middle of (1.17), and when t; = —1 and s; > 2, then we have
—sit; < 82 — 1. The only remaining situation is when m(y;) > 2, ¢; = 1 and s; = 1.
But in this case, (—t;)s; = 1 can be absorbed by the term #{y; | m(y;) > 2}.
Hence, (1.17) holds. Finally, since d = > | (—t;)s;,

#{yi | yi simple} =d+ Y sit; > d—4Cs.

yi#simple

Therefore, combined with n — ng < C3, we get
(1.18) d>n>ny =#{y; | y; simple,1 <i <ng} >d—5Cs.

Now we let | = [5C3] + 1. Without loss of generality, we can assume {yq,---
Ya—1} are simple points in {y1, -+ ,Yn, - Then the sheaf F must belong to the
exact sequence

d—1
(1.19) 0—m'F—E— (@ Op, (—1)) ®J — 0.
=1

To prove the proposition, we need to have an estimate on F and .J'. By definition,
J' admits a filtration

0=J41 CJa—1C--CJp=J

such that Jiy1/J; = Op, (t;)%. Thus there is a zero scheme 2’ C ¥ supported on
{Yd—i+1," "+ sYyn} of length (z") <n—(d—1) <5Cs (because of (1.18)) such that
J'is an Or-1(,y-module and further,

0<cr(B)-SF — (deg F+d—1) = cy(J) - S+

(1.20) _ En: s < 2": (—t;)s; < 5Cs.

i=d—1+1 i=d—I1+1

Here, the last inequality holds because of (1.17) and n — ng < Cs. Also, since
#Haut(F) < C3 (from (1.16)), there is a constant Cy such that F' is Cy-stable.

It remains to show that we can find an integer I; (independent of d) and find a
single line bundle L of degree [(d —¢)/r] +11 (¢ =1-%X") so that for any E € S,
E belongs to the exact sequence

(1.21) 0 — BY — 7*(L®") — (@Opy )) @ —0

specified in Theorem 1.5. First, there is a constant /; and a line bundle L of degree
[(d — ¢)/r] + 1 such that for any Cy-stable rank r vector bundle F' on ¥ satisfying
(1.20), L& F is generated by HO(L® F). Now for any E € Sy with the data given by
(1.19), we choose m* FV — 7*L®" 5o that the support of #*(L®")/m*FV is disjoint
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from U’j:_ll P,,. Then by dualizing (1.19) and coupled with 7*FV — 7*(L®"), we

get
d—1

5 —r1) — 7 (Bon,0) —0

i=1
Finally, it is easy to see that there is an integer lo depending only on C3 and [; such
that for some subscheme z C ¥ of length £(z) < Iz, J is a sheaf of O -1(,)-modules.
This completes the proof of the theorem.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. We begin with a general vector bundle E € ﬂg:?(a), o=
(@, a®m) £ 1,,. Let

(1.22) 0=FCFE,C---CE,=F

be the relative Harder-Narasimhan filtration such that F; = E;/F;_; are torsion

free of generic fiber types (aP") respectively. We call this the relative filtration of

K3

E. ((1.22) can be derived by using the usual Harder-Narasimhan filtration of F
with respect to the divisor kP: + X+ with k£ > 0.)

We fix F; = E;/E;_1 and let W({F;}}) be the set of all vector bundles V' whose
relative filtrations 0 C V4 C --- CV,, = V satisfy V;/V;_1 = F;. Our first step is to
estimate the number of local moduli #1°¢, (W ({F;}7) at [E]). Let 4; = %CZ(FZ)

and d; = c2(F;) — (5)AZ. Note that by the proof of Lemma 1.4, d; > 0. Now an
easy calculation shows that

_ 1 VAL =i IS e
(1.23) d_cg(E)_2;n(I Al)Al+;dz—2I anAm;dz.

From the exact sequence
0—F,1—FEF—F,—0
and the argument similar to (1.11), we have
e J(W({F D) at [B])
(1.24) <o (W{FI Y at[Ep_1]) + dimExt' (F,, E,—1)
— #aut(Fn) — #aut (Fn—1) + #aut(F) — dim Hom(F,,, E,_1).
Further, because EY ; ® F, has generic fiber type ((a, — ap)®, .-,
Em-1y) and iy < g, Ext?(F,, E,_1) = 0 by Serre duality. Hence
(1.25) dim Hom(F,, En_1) — dim Ext! (Fy, En_1) = X(Fp, En_1),
where the right-hand side of (1.25) is the abbreviation of x(Ext (F,, F,—1)). Fi-
nally, by using the filtration (1.22), we have
wod (W{F}) at [E]) — #aui(E)
< #mod(WHFNT T at [En])

(an —

n—1
(126) - ZX(FTH En—l) - #aut(En—1> - #aut(Fn)
=1

< ZX(Fi7Fj) - Z#aut(Fi>'

i>j
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The last inequality is derived by iterating the first part of (1.26). Therefore,

#modm;?(a) < SUP{Z X(Fi7 Fj) + Z(#mod(Fi> - #aut(Fi>)}

i>j i=1

(1.27)
+ max{#au(E) | E € AL (a)},
where the sup is taken over all possible relative filtrations (1.22) of E’s in 2[2’31(@).
We now calculate the right-hand side of (1.27) by Riemann-Roch. First,
1 1
X(Fi, Fj) = rir; (5(143‘ —A)° = (A = Ai) - Ka+ (1 - 9)) —ridj —rjd;.

For simplicity, in the following we will group all terms that are bounded indepen-
dently of r;, d;, A; and ayy, # 1, into O(1). We have

ZX(Fi7Fj>
(128) o
= =Yy (54— A — 5(4; — A Ka+ Ly G s o).

L Ty Ty
1>7
Further, one calculates
n(F;) = 2r; (di + (;Z)Af) —(ri = Dr?A? — (r2 = 1)(1 — g)
=2r;d; — (r? — 1)(1 — g).
Thus by combining (1.23), (1.27)—(1.29) and the fact that #mod(F;) — #aut(Fi) <
X(Flv FZ), we obtain
(#moa(E) — #aut (B)) (A7 () — (2r — 1)d

(1.30) > Ty T

(1.29)

n

+ zn: 2rid; — (2r — 1) (Z di — % Xn:riAf) +0(1).

i=1 =1

To analyze (1.30), we first note that

Z’Fﬂ"j (AJ — Al)z = 7”2”:7”1'1412 - 12; Z’I‘ﬂ"j (% + ’Crl—J> = En:(’l” — Tz)dl
i=1 ' 7

i>j i>j i=1
Now if we let A; ~ ;37 + ¢;P¢ and let § = X137, then the right-hand side of
(1.30) is equal to

n

1 1
D o(50 D = =) 45 3 (4 4 K+ 01

(’F — 1)7”1'(—60512 =+ 2051'01') — Z(T —r; — 1)d1

1 i=1

1 _ 1
+ 527‘1'7“]‘((1]‘ — CYZ>E KA+ 527‘1'7“]‘(%‘ —Ci)Pg -Ka +O(1)

i>j i>j
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which is bounded from above by (note d; > 0)

——62@ + 7'_1 Zrzazcz ZTzr] +O( )

i>]

:__6Za +Z<rkck(r—lak+2n Z -)>+O(1)'

1=k+1

(1.31)

Let pp = (r — 1oy + ZZ 1 Ti = Y pe1 Ti- Then when oo # 1, or equivalently
when n > 2 or n = 2 and a; — g > 2, we will always have
pr = Pi1 = (r = (o — agq1) = (re +7541) 20, k<n-—1

We rewrite
n

Z<rkck((r_1)ak+k§n— Xn: r)> _S((pk_pkﬂ)(zk:m))+pnzn:w,

k=1 i=1 i=k+1 k=1 i=1 i=1
Finally, we shall make use of the fact that E is e-stable. If H ~ aX + bP¢, then
for any k,

k(E
deg(FEk) —CLZHCH-bZTzOQ_ k)H I+evH

Therefore, for k <n — 1,

ul b [T b b
ZZ:;?"c_ —|—a—|—e + a a;ra

Thus we get
n k
Z( Pr — pk+1 ZTM))
k=1 =1
n—1 k
a+b+eva2d6+2ab b
(1.32) < Z(pk —pk+1)( a - Zh‘%‘) + P
1 i=1

IN
@I@ ﬁ

Z|az| +4r2(2 + e8)( 1+ Z|az| )+ 0(1

i=1
Here we have used the fact that py — prr1 < >y |ai| +r and p,, < 0 because

a# 1y and Y rie; =m > 0. Now if we assume

b 2

< —6

a 16
then everything in (1.32) can be absorbed by the quadratic term —18>7" | a? (in
(1.31)) with the help of some constant C;. Thus combined with (1.31), we have
proved

#moaL (@) < (2r — 1)d + C1 + max{#au(E) | E € AL (a)}.

Theorem 1.2 will be proved if we can bound Hom(E, E) for E € 212? Since E
is e-stable, £V ® FE must be (2|e| + 1)-stable. (This can be proved by using the
fact that the Harder-Narasimhan filtration of F will induce the Harder-Narasimhan
filtration of EV ® FE.) Thus #.ut(F) is bounded independently of d by the following
lemma.
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Lemma 1.8. For constants e, es and integer r, there is a constant C' such that
whenever V' is a rank r e1-stable vector bundle on A such that | deg(V)| < ea, then
we have dim HO(V) < C’.

Proof. We prove the lemma by induction on r. The case r = 1 is obvious. Assume
the lemma is true for vector bundles of rank < r—1 and assume V has H°(V') # {0}.
Then there is a line bundle L, deg L > 0, such that V belongs to the exact sequence

0—L—V-—V/L—0

with V/L torsion free. Since V is e1-stable and | deg(V)| < eq, there are constants
e} and e} such that |deg L], |degV/L| < e}, and V/L is e}-stable. Thus by the
induction hypothesis, there is a constant C’ such that h°(L) < C” and R°(V/L) <
C’. The lemma then follows.

We now prove Theorem 1.1 by induction on m. We first establish the case
m = 0. Let e and C be any constants, 7 > 2 be an integer and D C A be any
divisor. We assume H is an ample divisor satisfying the condition of Theorem 1.2.
To prove the theorem, we need to show that there is a constant NV depending only
on (X, H,r I, e, D) so that if for some d we have

(1.33) Hmod U F(D) > n(r.d, 1) - C,

then d < N. Now assume (1.33) does hold. Thanks to Theorem 1.2, there is an
Ni > 0 such that if d > Ny, then the set ng’j(D, 1p) satisfies

(1.34) #Fmoa07 (D, 10) = Hmod AL T (D) > n(r,d, ) — C.

Of course, ngz’;(D, 1p) is a constructible set. Let S be an irreducible variety param-

eterizing a subset of %ZZ?(D, 1o) such that #moaS > n(r,d,I) — C. By Theorem
1.5, there are constants [, Iy, I (independent of d) and a line bundle L of degree
[(d—c¢)/r] + l1 such that associated to a general E € S, there are x1,- -+ ,z4—; €
in general position and a quotient sheaf Jg of 7*(L®") such that E belongs to the
exact sequence

d—1
13) 0 B 1) o (PO, (1) — 0

i=1
Clearly, E is determined by the surjective homomorphisms
™ (L%") =5 Jp and 7*(L®7) @ Op,.(1).

Hence the combined number of moduli of the sets of these quotient sheaves that
come from E € S is no less than n(r,d, I) — C. Let

Zo = {Toiﬂ*(L@T) —Jg|E€ S},

d—1
E1={n:m" (L) > 0p, (1) | E€ S}.

Because of the following lemma, the information contained in =g is minimal.
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Lemma 1.9. There is a constant Cs independent of d such that #mod (EO) < (5.

Proof. We first calculate the Hilbert polynomials of the sheaves Jg. Let Jg(n)
= Jg ® H®". Then

X(Jg(n)) = x(7* L7 (n)) — x(E(n)) — (d — )x(Op.(1) ® H®") = ay(d)n + ao(d),
where ai(d) = (rl[(d —¢)/r] —d+rly +1)- (H-P:) — I-H and aog(d) =
(rl(d —c)/r] —d) +rly — 31> + 31-K + 2l. Since r[(d — ¢)/r] — d can only at-
tain integer values between —c — r and —c for integers d, the function a;(d) (resp.
ao(d)) can only attain r values. Hence, {x(Je()) | E € S} is a finite set (indepen-

dent of d) and by [Gr, p. 12], the set Zg is bounded. Thus, there is a constant Cs
such that #0420 < Cs.

Since #modS < #modZ0 + Fmod=1, We have
#modal > 7’](7“, d7 I) - (C + C5)

Let 7 € E1 and F = ker{7 }. In the following, we seek to relate the non-vanishing
of Hom(E, E(D))? to the non-vanishing of Hom(F, F(D'))? for some divisor D’.
First of all, by (2) of Theorem 1.5, there is a divisor z € ¥ (of degree < l3) such
that the composition

(1.36) F(—Tr_l(z)) N ﬂ.*L(_ﬂ.—l(Z))@r g Ler &JE

is trivial. Because of (1.35), F'(—7~!(z)) is a subsheaf of EV. Therefore, any non-
trivial traceless homomorphism ¢: E — E(D) will provide us a non-trivial traceless
homomorphism

F(—n"Y(2)) — EV % EY(D) — F(D).
Further, let Z be a fixed divisor on ¥ of degree l5 + 2g. Since
(2,05 (2 - 2)) # 0,
Hom (F, F(D+n~!(2))) # 0 implies Hom(F, F(D+7n~'(2))) # 0. Thus we have
proved:

Lemma 1.10. With the notation as before, there is a divisor z C ¥ independent
of d and D such that for any sheaf F = ker{r}, where 7 € 2y, and for Dy =
D + 771(z), we have Hom(F, F(D1)) # {0}. O

Our next step is to investigate the set =1 by utilizing this non-vanishing property.
We first fix d — [ general points x1,--- ,24—; € X and let U be the set of all quotient
homomorphisms

d—1
(1.37) o (LY) — @Opzi (1).

U is (canonically) parameterized by an open subset of the product of d — I copies
of projective space P*"~! after fixing the basis of each H°(Op, (1)). In the fol-

lowing, for any u € TI4"'P2"~! we denote by o, the associated homomorphism
Ou: T (LOT) — @f;ll Op, (1). Let

E1(x) = {u e I"P> 1 |5, € 51}
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Since the points of (r) = (x1,--- ,24—;) are general,

(1.38) dim Z;(r) > #moa=1 — (d — 1)
' >n(r,d, 1) — (C+C5)—(d—1)> (2r —1)d — Cs

for some integer Cs. Now let I3 = [+ Cs+ 1. Possibly after rearranging the order of
(21, ,x4—1), we can further assume that the restriction to = (z) of the projection
from IT4—'P27~1 t0o the first d — I3 factors,

El (x) g Hd—lP2r—1 . Hd_l3P2T_1,

is dominant. That is, for general v € I~ P?"~! with the associated homomor-
phism o/ :7* L — @f;ll?’ Op, (1), there is at least one

d—1
&L — @ Opxi(l)

i=d—Il3+1

such that o] @ & considered as a quotient sheaf belongs to Z1(r). Thus if we let
V = ker{o] @ &} and let V,, = ker{o] }, V and V, fit into the exact sequence

d—1
0—V—V,— @ Op, (1) — 0.
i=d—I3+1

Let A= Uf:_all—13+1 P,, be a divisor in A. Following the argument in Lemma 1.10,
the non-trivial homomorphism ¢ in Lemma 1.10 induces a non-trivial homomor-
phism

¢V, — V(D1 + A).

Therefore for general v € TI{=/*P?" =1, Homa (V,, Vi (D14 A))° # {0}. Finally, as
in Lemma 1.9, for any fixed divisor A9 C A that consists of I3 + 2g fibers of A,
we must have Hom(Vv, Vo(D1 + AO))O # 0 as well. Therefore, Theorem 1.1 (when
m = 0) follows from

Proposition 1.11. For any divisor D C A and any integer lg, there is a constant
N for which the following holds: Assume d > N, that L is a line bundle on ¥ of
degL = [d/r] + Iy and that xy,--- ,xq are general points in X. Then for general
v € P21 the sheaf E, = ker{o,}, where o, is the associated homomorphism
LE — @@L, Op, (1), satisfies Hom(E,, E,(D))° = {0}.

Proof. We prove it by contradiction. The trick is to first prove the vanishing of this
homomorphism group for a special quotient sheaf and then apply the semicontinuity
theorem to derive the general case. Let p; € P,, be a general closed point and let U
be a small disk containing 0. There is a torsion free sheaf J; on P, xU flat over U
such that J; p, x{o} = Op,, ®Cp, (C,, is the skyscraper sheaf supported on p;) and
for t # 0, Jilp, x{t} = Op,, (1). Tt is easy to see that any surjective homomorphism

(1.39) fi: (0p,)"" — Op, ®C,,
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can be extended to a (surjective) homomorphism
Br
Fi : (OPziXU) — Jl

In general, we can extend any surjective homomorphism

d d
(1.40) fimt (L) — @@ (L) p,, — EP(Ok,, ©C,,)
=1 =1
to a (surjective) homomorphism
d
F ' (L%) @0, Onwr — €D Ji-
=1

Let

Vi = ker{Fjax}}-
Then V; is a flat family of torsion free sheaves on A parameterized by U. As-
suming, for general o, : 7*(L®") — @?:1 Op,, (1), Hom(E,, E,(D))% # 0, then by
the semicontinuity theorem, Hom(V;, V;(D))? # {0} for ¢t # 0 and consequently,
Hom(Vp, Vo(D))" # {0}.

Now we seek to find a contradiction by choosing Vj (i.e. f in (1.40)) carefully.
We first divide the set {z1,--- , x4} into 2r subsets, say A1, - - - , A, such that each
contains either [d/2r] or [d/2r] + 1 points. We write f; = f} & f? according to
(1.39). For x; € Agk_1, we define f} to be the composition
(1.41) flam (L8 B a (L) p, 57t (L)p,,

K2

where pry, is the projection onto the k*® component, and define f? to be the com-
position . .
f12 : F*(L@T‘) rest W*(LGBT)\PM Prk+1 W*(L)|Pxi &y, Cp;,
where ev:7*(L)p, — Cp, is the evaluation map. (Here we agree pry41 = pri.)
For i € Ao, we define f} as in (1.41) while we let fZ be
J (L7 S (L), TR (D), @ 7 (L), T

(pry12 = pra.) We claim that when d is sufficiently large, the sheaf E C 7*(L®")
that is the kernel of @le(fil ® f?) has Hom(E, E(D))? = 0. Indeed, let

Ek = L(— Z xz)

1€ N2k —1UA2g

be the line bundle on ¥ of degree between Iy — 2 and Iy + 1 and let Ly = 7 L.
Then, E is a subsheaf of @;_, Lj, with cokernel @le C,,. Let s € Hom(E, E(D)).
Then s induces a homomorphism

(Sij)rxr : @Lh — @lh(D)
h=1 h=1
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with s;; € H(L;' ® L;(D)). Since L;' ® L; is a pull back of the line bundle
on ¥ that has degree —1, 0 or 1, h°(L;' ® L;(D)) is bounded by a constant Cg
independent of d. On the other hand, by our construction of F, when i € Agg_1,
the composition

T T
(84x) Pri+1 ev
PBLn == PLn = Lig1 =5C,,
h=1 h=1

is trivial. Hence for j # k + 1, sji+1 vanishes on p; for all i € Agp—1. Now we let
N = 2r([Cs] + 3) and assume d > N. Because p; are general and

(1.42) #(Aak—1) > [d/2r] > Cs +2> hO(L; ' @ Lyy1) + 1,

sjk+1 must be 0 for j # k + 1.
It remains to show that s = go -id for some go € H(O(D)). Let g; € H°(O(D))
be sections so that s;; = g; -id:L; — L;(D). Let i € Ay and let

(ev,ev

v; 0 € ker{{Lk_H D Lk+2}\pi —>) (sz}

Then because (s;;) = diag{si1,---, sy} is induced from s € Hom(E, E(D)), we
must have
(ev,ev) o (prrr1 @ priya) © (8w )v; = 0.

It is straightforward to check that this is equivalent to (gx+1—gr+2)(pi) = 0. Hence,
because p; are general and #(Agx) > h°(O(D)) + 1, we must have gyy1 = grro-
Therefore, Hom(E, E(D))? = 0. This completes the proof of the theorem for m = 0.

Now we use induction on m to establish the remaining cases. The strategy is as
follows: We first fix a section ¥+ C A of 7: A — X of positive self-intersection 6.
Let F € ﬂg:?(D, 1,,) be any sheaf. We choose a quotient sheaf Ejx+ — Lg with
L a locally free sheaf of Ox;4-modules and define E = ker{E — Lg}. E is locally
free with Chern classes

(1.43) I' = det(E) = I(-%%), 79 = rankL;

~ 1
(144) d/ = CQ(E) =d+ deg LE + 57‘0(7‘0 — 1)6 — T0(1'2+).

Moreover, E € ngfl}/(D + X71) for a constant €’ independent of L and d. Hence
by applying the induction hypothesis to Ql:}‘)ill, (D + XT), we get an upper bound
of #mod{E | E € ng?(D)} Thus if we understand the correspondence E — E
well, we can translate the estimate of #mea{E | E € ng?(D)} to the estimate of

#monlg’j(D). We now give the details of this argument.

First, we choose ey > 0 so that h'(X,F) = 0 holds for all semistable vector
bundles F on ¥ with tk(F) < r? and p(F) > eg. Put e; = r(eg + ). There is
a decomposition of ﬂg:?(D, 1,,) according to whether the restriction of an element
E € ﬂg:?(D, 1) to X7 is ej-stable or not. We denote these sets by W+ and W~
respectively. Let Lg be a line bundle on ¥ such that Hg+ (FY ® Ly) generates
FV ® Lg for any e;-stable rank r vector bundle F' on ¥ of degree I->7. Then for
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any E € W+, welet Lg = Lo and fix a surjective homomorphism o: £ — Lg. In
case K € W, we let
0=F CF C--CF,=FEs+

be the Harder-Narasimhan filtration of Ejx+. That is, Fi4q /F; are semistable and
w(F;/Fi—1) > uw(Fiy1/F;). We let ig be the largest integer so that

N(Eo/ﬂo—l) > M(Fio—i-l/Fio) + eo.

Such g exists because Ejs+ is not er-stable and e; > reg. Then by our choice of

€0,
E|E+%ME@LE7 ME:FiU and LEZE‘EJr/EO.

We choose our quotient sheaf to be 0: F — Lg. Note that Lg is reg-stable and
has degree < o7 - X+,

Now let E be the kernel of E — Lg. Then E is locally free whose first and
second Chern classes are given in (1.43) and (1.44). It can easily be checked that
E is e/-stable, ¢/ = e; +r(H - ©1), and Homa (E, E(D + £1))° # {0}. Therefore,
we have obtained a map

(1.45) Ve AHD, ) — | A (D +57),
a1’

where d’ can be any integer and I’ can possibly be I(—X%),--- [ I(—(r — 1)XT).
We wish to find an upper bound on

Hmoa U (AL ,,(D +3H)

that is independent of (d’,I’). We begin with an estimate of #y,0q¥ "1 (¥(E)) for
any FE € %ZZ?(D, 1,,). Because E belongs to the exact sequence

(1.46) 0—F—FE—L—0
(L = Lg as before) for M = Ejs;+ /L, Fis+ fits into the exact sequence
(1.47) 0— L(-X%) — Fg+ — M — 0.

On the other hand, elements of ¥~!(F) are parameterized by Ext}h (L, F), a subset
of P. Since F is locally free,
dim Ext} (L, F) = dim Extj (F, L ® Ka) = dim Hy, (Hom(F, L) @ Ka)
=dim HY. (LY @ Fis+ (51)) < A°(LY @ L) + hO(LY @ M(ET)).
Here the last inequality follows from (1.47). Since L is reg-stable, h°(LY @ L) is
bounded from above by a constant. In case £ € W, because Ejs+ is ep-stable,

hP(LY®@M (X)) is also bounded from above. Hence for some constant C5 depending
only on ey, r and I, we have

(1.48) H#moaV H(U(E)) < C3, VEcWT.
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When E € W, h}(LY ® M(X+)) = 0 because of our choice of eg. Thus
(LY @ M(ST)) = x(LY @ M(ET))
= —degL-rk(M) + deg M - k(L) + k(M) - tk(L)(6 + 1 — g).
Combined with deg L +deg M = I-XT, we get
(1.49) H#moa ¥ (U(E)) < —rdeg L+ Cy

for some constant Cy > 0 independent of £ € W ™.
Now we use the induction hypothesis. Because rtkL = ro < r, for any E €
QlZi’;(D, 1,,,), either the generic fiber type of F is 1,,_,, or it is not of the form

(P a$™). Hence, with I’ = I(—ro¥XF), 1 < rg < r, and
Cs =C+Cy+2r%6 +2r|T - X7,

we can use Theorem 1.2 and the induction hypothesis to conclude that there is an
N1 and a constant Cg so that when d’ > Ny, we have

(1.50) Fuod (D + £F) <n(r,d, I') - Cs

and when d’ < Ny, we have

(1.51) Hmoa %, (D + £F) < n(r,d', T') + Cs.

We claim that when

(1.52) d>N=N;+r5+ 2+ -2+ C+ Cy + Cs,

then
#modW_ < 7’](7“, d, I) - C.

We break the estimate into two cases. In the case d’' = c2(E) > Ny, by (1.49) and
(1.50),

Fnoa UL (ALY (D + 1)) < (n(r,d' I') — Cs) + (—rdeg L+ C)
=n(r,d,I) —2rol - ST + (—r§(r —1) + %ro(ro —1)) +rdegL — Cs + Cy

The last inequality holds because deg L < 1 -%*. Now assume d’ = cp(E) < Ni.
Then

<n(r,d,I)+rdeg L +2r|I -S|+ 726+ Cs + Cy < n(r,d, I) — C.

Fanoa U (ALY (D + 1)) < (n(r,d', I') + Cs) + (—rdeg L+ C)

Here we have used the fact that deg L < —2|I - ¥*| — r6 — Cs — Cy — C which
follows from (1.44), (1.52) and d’ < N;. Now we consider E € W*. Since
H00a¥ N (W(E)) < C3 from (1.48) and co(E) = d + 1 with 7 a fixed integer
independent of d, an argument similar to that of W~ shows that there is an N’
such that for d > N’ we have #,6aW~ < n(r,d,I) — C. This establishes Theorem
1.1.



MODULI OF HIGH RANK VECTOR BUNDLES OVER SURFACES 129

2. DEGENERATION OF MODULI SPACE

We now recall briefly the construction of degeneration of moduli and refer the
details of this construction to [GL]. We first fix a very ample line bundle H and a
line bundle I on X. Let C be a Zariski neighborhood of 0 € Spec C[t]. By choosing
a smooth divisor ¥ € |H| we can form a threefold Z over C' by blowing up X x C
along ¥ x {0}. Clearly, Z; = X, t # 0, and Z; consists of two smooth components
X and a ruled surface A that intersect normally along ¥ C X and ¥~ C A. For
any line bundle I on X and integers r and d, let z):rt;;d be the moduli space of rank
r H-semistable sheaves over X of det E = I and co(F) = d. Let sm;;d x C* — C*,
C* = C'\ {0}, be the constant family over C*. The degeneration we construct will
be a flat family 97 (over C)) extending the family E)JT}d x C* such that the closed
points of the special fiber Md = M? x - Spec C[0] are in one-one correspondence
with the semistable sheaves on Zy that will be defined shortly.

We first introduce the notion of torsion free sheaves on the surface Zy:

Definition 2.1. A sheaf F on Zj is said to be torsion free at z € Z if whenever
f € Og, . is a zero divisor of the Oy, .-modules E,, then f is a zero divisor of
the Oz, .-modules Oy, .. The sheaf E is said to be torsion free if E is torsion free
everywhere.

Let E be any coherent sheaf on Zy. We denote by E() (resp. E(Q)) the torsion
free part of E|x (resp. E|a). We define the rank of E to be a pair of integers,
rk(E) = (tk(EW),1k(E®)). When rk(E) = (r,r), we simply call E a rank r
sheaf.

Let € € (0, 1) be a rational number. We define a Q-ample divisor H(¢) on Z as
follows: Let px:Z — X be the projection and put

H(e) =pxH(=(1-¢£)A).
Clearly, for integer ng so that ng - ¢ € Z,
H(e)®™ = pyx HE"(—(no — noe)A)

is an ample divisor. In the sequel, we will constantly use the tensor power H(g)®".
We agree without further mentioning that in such cases, n is always divisible by
no.

Let @ = (@1, a2) be a pair of rational numbers:

on = (H(e)x - H(e)x)/(H-H), az=(H(e)a H(e)a)/(H - H).

Note that oy + az = 1. For any sheaf E on Z, with rk(F) # (0,0), we define pg
to be the polynomial

1

(2-1) PE = m

XE-
We remark that since yg(n) = x(E @ H®") is well defined for those n divisible
by ng and is a restriction of a polynomial in n, we can define xg to be that poly-

nomial. Once we have the polynomial pg, we can define the H(e)-stability (or
H (g)-semistability) of E by mimicking Definition 0.5 word for word.
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Definition 2.2. A torsion free sheaf F on Zj is said to be H (¢)-stable (resp. H(¢)-
semistable) if whenever F' C F is a proper subsheaf, then pr < pg (resp. X).

We fix a line bundle I on X and an integer r > 2. We let x(n) be the polynomial
that depends on (r,d, I, H, X):

(2:2) x(n) = 5nP(H - H) +n((H - 1) = 2(H - Kx)) + (r = Dx(Ox) +x(I) ~ d.

x(+) is the Hilbert polynomial of a rank r sheaf of ¢; = I and ¢o = d. We also fix a
rational e € (0, 3) momentarily and the Q-ample line bundle H (). For convenience,
we will denote by £(n) the sheaf £ ® p H()®™ for any sheaf £ over Zg. (Here S
is any scheme over C and Zg = Z x¢ S.)

We now construct the degeneration ¢ promised at the beginning of this section.
Recall that the moduli space 93??{ was constructed as a GIT quotient of Grothen-
dieck’s Quot-scheme. Here, we shall adopt the same approach to construct 9¢. We
first fix a suﬂiciently large n and let p = x(n). Following A. Grothendieck [Gr], we
define QuotX 70 ” to be the functor sending any scheme S of finite type over C' to the
set of all quotient sheaves F(n ) of O?p on Zg flat over S so that XE ( ) = x(n+m)
for any closed s € S. Quot’“ s represented by a scheme Quot 7/ ’ that is projec-
tive over C, called Grothendleck s Quot-scheme. Similarly, we have Grothendieck’s
Quot-scheme Quot?op parameterizing all quotient sheaves (’)?ép — E(n) on X
with xg = x(- +n). Let L{)I(’d - Quot§(’op be the subset of all H-semistable quo-
tient sheaves E(n) obeying one further restriction: det £ = I. Uy L g locally closed.
We define Quot’“op’l to be the closure of L{_§<d x C* C QuotZ/C endowed with

Z/C,H((e)
x,0°,1
the reduced scheme structure and denote by Quot 7/c,H(e) the normalization of
x,0°,I
Quot} /OC H(e . Quoty, ¢y has the property that it is normal, projective and
x,0",1,ss x,0°,I

flat over C. Fmally7 we define C/Ql\lécz/c He) S Quotz/c H(e) to be the subset of

all closed points whose associated quotient sheaves are H(e)-semistable.
——x,0",1,ss
Clearly, QuOtZ/C,H(s) depends on the choice of (r,d,n,I, H,c). In the sequel,

r, I and H will be fixed once and for all. Of course, d should be viewed as a
variable. For technical reasons, the choice of € will depend on d. After this, we will
choose n sufficiently large (the exact value of n is irrelevant to our discussion as

long as it meets the requirement of [Gi, Corollary 1.3], [GL, Corollary 1.11]). If all
O I,ss
of these are understood, then we will abbreviate Quotz /C,H(s) O U%e. By abuse

of notation, we will call £ the universal family of %<, where £(n) is the pullback
of the universal quotient family on Z chuot’é’/OCp.

Let Sﬁc = SL(p,C) ®c C be the special linear group scheme over C. Clearly,
Quot?} ’/C is an SLc-scheme. By our construction, this action lifts to &/%<. Further,
we have
Theorem 2.3 ([GL, Theorems 2.10 and 2.11]). The good quotient IMMLE =
U JISLe exists. IMPE is normal, projective and flat over C. Further, for any
closed t # 0, 93??’5 is isomorphic to the normalization of the moduli scheme DJT}d

To make use of this degeneration, we need to analyze the closed points of zmg’f.
Since M© is a GIT quotient of Uy, each point of MT* associates to an equivalent
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class of sheaves E(n) in U, In the following, we will find bounds on ¢;(EM),
c1(E®) and cy(E®) that are independent of the choice of e and E(n) € U™
First we study ¢;(EM) and ¢;(E®). Following [GL, Lemma 1.6], there is a sheaf
of Og-modules E(© (of rank r() such that E belongs to the exact sequence

(2.3) 0—E—EWoE® —  EO 0,
where ¢:¥ < X. Because U%¢ is flat over C, there are integers a;, as with
(2.4) a1 +ax=19—r

such that det E®) = I(a1 H), det E® = Ija(a2¥7), where Iy = p Iz, [GL, §4].
Then since both EM and E®) are quotient sheaves of E, by the H (e)-stability of
E, we have

H-(rKx —2I) H-(rKx —2I)

R VR, S > (l-g)—— =X =/ 4
cr-m ¢ 22 smm "

Since H is a very ample divisor on X, we may and will assume that r divides H - I

and

alz(l—e)

(2.5) (H-H)>18|Kx - H| + 18|I - H|.

Therefore, r > a; > 0and 0 > ay > —r.

The bound of ¢y(E®) is achieved by applying Bogomolov’s argument which
shows that when V is an H-stable vector bundle on X, then the restriction of V' to
a high degree hyperplane curve is semistable. We follow the argument in [GL, §4]
and indicate the necessary changes needed in the higher rank case.

Lemma 2.4 (cf. [GL, Lemma 4.3]). There is a constant ey independent of d and
e such that the sheaf EM) (on X) is e-stable.

Lemma 2.5. For any constant e; and integer r, there is a constant C7 such that
whenever V is an ey-stable torsion free sheaf of rank < r, then

rk(V) —1

(26) CQ(V) — ) rk(V)

C1 (V)2 Z Cl.

Proof. Lemma 2.4 is true because any quotient sheaf Q of E() is also a quotient
sheaf of E. Hence the degree of Q has to satisfy an inequality, which combined with
(2.4) gives us the desired inequality. The details of the argument can be found in
[GL, Lemma 4.3]. Now we prove Lemma 2.5 following the suggestion of the referee.
By Riemann-Roch,

r—1

X(V,V) = X(Bxt (V.V)) = =2r(ex(V) = "

Cc1 (V)Q) + TQX(O)().

Since V is ej-stable, by Lemma 1.8, there is a constant C; such that
dim Hom(V, V) and dim Hom(E, F ® Kx) are bounded from above by C;. Hence

a(V)? = 5-x(Ox)

r—1

(V) = 2r

1
i > — .
2T)((V7 V) > QTX(OX) 20 O
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Lemma 2.6 (cf. [GL, Lemma 4.4]). For any constant e1, there is a constant Cy
such that whenever V' is an ej-stable, rank r vector bundle on X with detV =
I(aH), |a| <7, and that Q is an Os-module that is a quotient sheaf of Vis, then
we have x(Q) > —co(V) + Cs.

Proof. Let W be the kernel of V. — @. By Riemann-Roch, ¢;(W) = I +
(a — ¢)[X] and

(W) = ea(V) + x(Q) + %C(KX +eH)-H — (I + aH)-H.

Thus
X(Q) > —co(V) + co(W) — 2r2 H?.

On the other hand, since V' is ej-stable, W is (e; + 1)-stable. So by Lemma 2.5,
there is a constant C; so that co(W) > C;. This completes the proof of Lemma
2.6.

Proposition 2.7. There is a constant C3 independent of € and d such that for any
E(n) € Ug*,
c2(E@) < d+ Cs.

Proof. By (2.3), we have

X () = xe() + (xpo () = xpo ().

Hence the proposition follows if we can show that the constant term of x g () —
Xe (+) is bounded from below but this follows from Lemma 2.6. The details of
the proof are given in [GL, Proposition 4.6].

Our next goal is to construct Donaldson’s line bundle £ on 9% and to establish
the following key property of £: Whenever Wy C smgf is a dimension ¢ subvariety
such that [£]°(Wy) > 0, then

(2.7) H#mod {E® | E(n) e Wy} =c.

We first sketch the construction of £. The full account of this construction
appeared in [GL, §5]. For any integer h > 1, let D" C Z be a smooth divisor such
that 7: D" — C'is smooth, that D' = 7=1(¢) € |hH| for t # 0 and that D} C A\X.
We call such D" good divisors in |hHc(—hA)|, where Ho = p H. Since H is very
ample, the set of good divisors in |hHo(—hA)| is base point free. Associated to
each D" we can find an étale covering C' — C such that on DY = D" x ¢ C there

is a line bundle " satisfying (97)®?" = K%g ® p}]%{z) for all closed v € C,
where K is the canonical divisor of D!, We remark that such 6" exist because
[DM] - T = H - I is divisible by 7.

We first construct a line bundle on Z/{g’a = U xoC as follows: Let £(n) be the

universal quotient family on Zx 14%¢. Since £ is a family of torsion free sheaves flat
over U2, € admits length two locally free resolution near D”. Thus the restriction
of £ to D" xc U (denoted by & pr) has a length two locally free resolution also
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(see [L1]). Let pi2 (resp. pis; resp. pas) be the projection from D" ><(;Z/{g’E to Dg
(resp. to D" x cU%; resp. to L{g’s). Note that pes is smooth. Hence

(2.8) R pas« (pi3(Epn) ®pi25h)

is a perfect complex on L{g’s [KM]. Following [KM], we can define a determinant
line bundle

(2.9) det (R 'pas« (pi3(E pn) ®p729h))

on L{g’s whose inverse we call £y(D"). If we choose another good divisor D" €

|hHc(—hA)| and form the corresponding line bundle £y, (D") on Z/{g’f, then since
the set of good divisors in [hHc(—hA)| is an irreducible set, for any v € C and
v' € " which lie over the same closed point ¢ € C, the line bundles Ly, (D")|U%<

and Ly (D" )|Z/{;i/€ are algebraic equivalent.

Remark. Indeed, more is true. There is a single line bundle Ly(h) on U%¢ such
that the line bundles £y, (D") on Z/{g’E are pullback of Ly (h) via Z/{gE — Ude.

Our next task is to show that under favorable conditions, these line bundles
descend to line bundles on M%<, We need the following result of Kempf:

Lemma 2.8 (Descent lemma [DN, Theorem 2.3]). Let £ be an SL¢ line bundle on
Ube. L descends to M if and only if for every closed point w € U with closed
orbit SLc-{w}, the stabilizer stab(w) C SLe of w acts trivially on L, = LRk(w).

We have

Proposition 2.9. There is a function r:ZT — (0, %) for which the following holds:
For any d, there is a large h such that when ¢ € (0, 1(d))NQ and D" € |hHo(—hA)|
is a good divisor, then the line bundle Ly(D") (on Z/{g’g) descends to a line bundle

on Dﬁé’s =M xC. We denote the descent by Lag(D").

Proof. Tt is straightforward to check that w = E(n) € Z/{g’E (over ¢ € C) has closed

orbit if and only if F splits into a direct sum of stable sheaves Fi,--- , F;. Then

following [L1, p. 426], the stabilizer stab(w) acts trivially on Ly (D"),, if and only

if

| Falf) D ==
rk(Fy) PV R T

These identities follow if we can prove

1

rk(Fk)c1 (Fk) .Df.

Proposition 2.10. There is a function r:Z+ — (0, %) and a constant N for which
the following holds: Given dy, there is an h > 1 such that for any € € (0, k(dp)),
whenever d < dy, and that £(n) € U% is an H(e)-semistable sheaf over t € C,

then for a generic good divisor D" € |hHc(—hA)], E\pn is semistable.

Completion of the proof of Proposition 2.9. Assume E = F1 ®---@ Fy. By Proposi-
tion 2.10, there is a good divisor D'* € |hHc(—hA)| such that E|pyn is semistable.

Then the value ﬁcl (F;)- Df = @cl(ﬂ-) . D,’fh is identical for all i.

Proposition 2.10 will be proved shortly.
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Remark. Let t # 0 € C be any closed point. Then the line bundle £, (D"); on Z/{f’E
descends regardless of the choice of d and e [L1, p. 426]. In particular, Ly (D"),
always exists on M%<,

Now we explain how to construct global sections of Ly (D")2™ on M=, v €
C. All we need to know about the line bundle Ly(D"™) is how to calculate its
intersection numbers on various subvarieties of 9M%¢. So in the following, we will
not distinguish between the line bundles Ly (D"), and Ly (D), (vesp. Ly(D"),
and Ly/(D"),) when v and v' € C lie over the same closed point ¢ € C. By abuse
of notation, we will denote both of them by Lyi(D"); (resp. Ly(D")y).

For any good D" € |hHg(—hA)| and any closed t € C, let U [D}] C UM be
the open set of all s € Z/{td € such that &y pr 1s semistable. In the following, we

abbreviate D = DI'. By restricting E(n) € U*°[D] to D, we obtain a morphism
(2.10) ®p : UM [D] — M (D),

where 9™ (D) is the moduli scheme of rank r semistable vector bundles V on D
with det V' = piI|p. If we view "/ (D) as an SL(p,C) scheme with trivial group
action, the morphism ®p is SL(p, C)-equivalent.

Proposition 2.11 [Donaldson]. There is an ample line bundle Lp on "1 (D) so
that its pull back under ®p is canonically isomorphic to the restriction to Z/{td’E[D]
of Ly. Further, this isomorphism is SL(p, C)-equivariant.

Proof. For the details of the proof, the readers are advised to look at [L2, p. 31].
Though the author only treated the case r = 2 in the proof, the proof of the higher
rank case is similar.

Now let m be a large positive integer. Since the isomorphism
(2.11) (I)E(ED) = LM|M§“[D]

is SL(p)-equivalent, for any & € HO(OM™ (D), LT™), &% (€) is an SL(p)-invariant
section of Ly4(D)®™ on UM [D].

Lemma 2.12. Let D" € |hHc(—hA)| be any good divisor and for any t € C with
D = D}, let ¢ € HO(OM™I(D), L5™) be any section. Then the pullback section
O1,(6) (on U [D]) extends canonically over U™S to an SL(p, C)-invariant section.
We shall denote this extension (and its descent to zmg“f if no confusion is possible)

by ©%(§)ew. Furthermore,
(2.12) 5 (E)a (0) = U\ U [D]) U{F(n) € U[D] | £(Fip) = 0}.

exr

Proof. In case U{"* is normal, we can apply [GL, Lemma 5.6], [GL, Proposition 5.7]
and [L2, Lemma 4.10] to our situation. In general, we need to use GIT to prove
this lemma [L1, p. 435].

In the following, we seek to estimate the self-intersection numbers of Ly(D")
on subvarieties W C 9% and to relate the non-vanishing of such numbers to the
estimate of the numbers (2.7). Our immediate goal is to prove
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Proposition 2.13. Lett # 0 € C be any closed point and let W; C sz*f be an
irreducible variety of dimension c. Then for sufficiently large h and for any good
D" e |th(—hA)|,

(2.13) [Lav (DM (W) > 0.

Further, if we assume that the general points of Wy are locally free H-p-stable
sheaves, then the strict inequality holds.

Proof. To prove (2.13), it suffices to find divisors Dy,--- , D, € |hH| and sections
@1, ¢ of Lar(D"), such that N;_, ¢; '(0) is a finite set. But this is obvious
because for sufficiently large h, the restriction of each £/ € 93??’5 to general D C |hH |
is semistable (Proposition 2.10). Now we prove the second part of the proposition.
Let h be large so that for any locally free E € M* H(End(E)(—hH)) = 0.
Then for any D € |hH| and any locally free stable £y, Ey € Wy, Eyp = Eyp
implies E; =2 F5. We can also assume that the restriction of any E € 931?’5 to a
general D € |hH]| is semistable.

Choose D € |hH| so that U{"**[D] N W, is non-empty. Then because the line
bundle £p is ample on 9M"™! (D) and because

Up : MEE[D] N W, — M-I(D)

(M%[D] is the image of U °[D] under the projection) is generically one-to-one,
there is a section ¢ € HO(OM™! (D), L5™), m large, such that the extension of the
pullback section ®%(€)e, (over IMPS) is non-trivial over W; and

dim(@g(g);; (0)N Wt> = dimW, — 1.
Since being locally free and stable are open conditions, we can assume that general
points of at least one irreducible component of ®% (£)_,1(0) N W; are still locally
free and H-p-stable. Therefore, we can use induction on dim W; to conclude that
[Lar(DM)]e=Y(W/) > 0 for any irreducible component W of ®% (¢)21(0) N W4, and
for at least one of these component, this number is positive. Therefore, the strict

inequality (2.13) holds.

The converse to the proposition is that if a set W; C sz*f with dim W; = ¢ has
the property that
[Lam(DM)]“(We) > 0,

then #m,04(W) > ¢. But this is a tautology since Dﬁf’s is the normalization of the
moduli scheme. What we need is a similar result in t = 0. We will prove

Proposition 2.14. Let Wy C Dﬁg’s be any (complete) subvariety of dimension c.
Assume for some large h (given by Proposition 2.10) and good D" € |hHc(—hA)|

we have
[Laa(DM)](Wo) > 0.

Then #moa{E® | E(n) € Wy} =c.

Proof. We prove it by contradiction. Assume #moa{E?® | E(n) € Wy} < e
Then {E®?) | E(n) € Wy} can be parameterized by finite irreducible varieties
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of dimension at most ¢ — 1. Let them be Sy,---,S; and let &, -+ ,& be the
corresponding families. Thanks to Proposition 2.10, there is a large h such that for
any F € {E®? | E(n) € Wy}, Fpn is semistable for generic D" € |hHo(—hA)|.
We fix such an h. We choose a D" € |hHc(—hA)| so that &i s, \pp are semistable
for some closed s; € S;, i =1,--- , k. Since EDSL is ample, we can further choose
e HO(WTT’I(DS)’E%?)’ m > 1, so that {(&; , pn) # 0 for all 4.

Let U7}, (§)ex e the extension of the pullback of ¢ in HO(IMIE, Ly (DME™). Put
Wi =Won W%, (€)1 (0). By our construction, dim Wy < dim Wy — 1 and

0

H#moad{EP® | E(n) e W} < _max {dimS; —1} < #moad{EP | E(n) e Wy} — 1.

Note that [Ly(D")]*~HW{) = m[La(D")o]¢(Wp) > 0. So by the induction hy-
pothesis, we have #moa{ E? | E(n) € W}} > ¢ — 1. Therefore,

#moa [E@ | B(n) € Wol > #moa{E® | E(n) e W} +1>c.

The proposition follows because #moa{ E? | E(n) € Wy} < dim W, = c.

In the remainder of this section, we will give the proof of Proposition 2.10 that
is parallel to the treatment for the rank two situation given in [GL, 5.13]. Let
E(n) € U be any H (¢)-semistable sheaf over t € C. When t # 0, then E is an
H-semistable sheaf over X and [MR] tells us that for large h and generic D € |hH|,
E)p is semistable. In case t = 0, namely when £ is an H (¢)-semistable sheaf on Z,
the situation is quite tricky because Z is reducible and the divisorial ray R-[D}] is
different from R-H (¢)|a. However, it is essential that R-[D{}] and R-H (¢)|a become
very close when ¢ becomes small. Before going into the details of the proof, let us
state the following stability criterion of E(®).

Lemma 2.15. There is a constant ea such that for any d, € and any E(n) € L{g’s,
E®@) s gey-stable with respect to H(e)a-

Proof. See [GL, 5.14].

Proof of Proposition 2.10. Let V be the double dual of E(). By (2.4) and Propo-
sition 2.7, det V = Ip(a2X™), —r < az < 0, and c2(V) < ¢o(E) 4+ Cs, where Cjs is
a constant independent of E and d. Since Iy - ¥~ is divisible by r, by tensoring
V with some line bundle, we can assume ¢; (V) ~ a3[X7]. Note that co(V) is still
bounded by dy + C3 possibly with a new constant Cs. Clearly, the proposition
will be established if we can show that there is an €9 and an integer h such that
whenever ¢ < g9 and V' is ege-stable with respect to H(¢)|a as before, then for
generic D € [hXY], V|p is semistable.

The argument we adopt is a direct generalization of Bogomolov’s theorem show-
ing that the restriction of any u-stable rank two vector bundle E to any smooth
hyperplane section of degree > 2¢3(F) + 1 is stable. We prove it by contradiction.
Assume otherwise. Then there is a rank s (1 < s < r — 1) quotient vector bundle
Q of Vip such that 0 = u(Vp) > u(Q). Let W be the kernel of V' — Q. Then W
is a locally free sheaf on A with ¢y (W) ~ a2[27] — sh[E7] and

1 1
co(W) =co(V) + 55(5 —DA*H? 4 degQ < co(V) + 55(5 — 1)h?H?.
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Thus a simple calculation gives us
(2.14) 2rea(W) — (r — 1)er (W)? < 2rea (V) — (s(r — s)h® — (r — 1)a3) H>.
Because c2(V) < dy + C3, when

2r do + Cs

h2>2
7

the right-hand side of (2.14) is negative. Therefore, Bogomolov’s inequality shows
that W is unstable. Let

(2.15) O=WoCcWiC---CW,=W

be the Harder-Narasimhan filtration of W such that the sheaves F; = W;/W,;_1
are p-semistable and p(F;) > p(Fiy1). Let r; = rk(F;) and let T'; be the Q-divisor
supported on fibers of A — ¥ such that

Cl(Fi) ~ ri(biE_ + Fz)
We let ¢; =T - X7 /H 2. Then b; and ¢; satisfy the following inequalities:

(2.16) (82+%)€26b1+(1—6)01 > >eby, 4+ (1 —€)ep.

The first inequality holds because E(?) is epe-stable and the remainder inequalities
come from p(F;) > p(Fy41). On the other hand, we have > | ¢1(F;) = ¢1(W). So

n

(2.17) Zn:nbi = ag — sh, Zrici = —sh.

=1 =1

Finally, we calculate

co(W) = ZCl(F7,> -1 (Fy) + ZCQ(E’)
(2.18) > %<(ch(Fi)>2—ch(Fi)2> +Zn2;1cl(Fi)2
1

_ 272 21\ 172 7 2 N2
= 5(s*h? —a3)H +Z;§(bi — 2bc;)H?.

Here we have used Bogomolov’s inequalities 2r;co(F;) — (r; — 1)e1(F;)? > 0. Com-
bining (2.18) with co(W) < ¢2(V), we have

(2.19) (s%h? —a3) + Z(?‘i(bi —c)? - T‘iczz) < 72(%};—2 03)'
i=1

In the following, we will argue that there are h and g so that whenever 0 < € < ¢,
then the only tuples (b;,¢;) that satisfy (2.16)—(2.19) must have ¢; = 0 for ¢ =
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1,---,n—1. First of all, let A be the set of indices i so that ¢; > 0. Then for those
i € A, ¢; > 1/rH? and by (2.16), for small &, we have

(220) b —¢; < (62 + 7) + g(—ci) < —E(—Ci).

Thus

n

Z(Ti(bi — )’ — Ticf) > Zn(é - l)cz2 — Zricf.

i=1 ieA igA
On the other hand, since ), g TiCr = —(sh + > ,carici) and ¢; < 0 for i € A,
D igh ri¢? is bounded from above by (sh 4+ Y., 7i¢;)? which in turn is no more
than 252h2 +2(3";ea mici)?. Combined with (2.19), we must have

1 2(do + C:
(2.21) Zri(@ —1)c? - (252112 + 2(2 rici)2) + (s*h? —a3) < %.
ieA i€
(2.21) is impossible if we assume
1
(2.22) 4—6227‘(7“ R +12) - H* + 2r(do + C3) + 4

Thus under the assumption (2.22), we must have ¢; < 0 for all <.

It remains to show that we can choose h large enough so thatc; = -+ =¢,—1 =0.
Suppose there are ¢;, < ¢;; < 0. Then Z#ig ric; = —sh—ri,ci,. Again since ¢; <0,
we have

2
E ric3 —rlocm—k E ric3 rloc + (sh 4+ riyciy)”-
i#i0

Therefore, from (2.19)7 we have

2(do + C3) 22 2, N\
TZ(Sh —a2)+;nb—cz Zrz
> (52h2 CL2) ((Sh + Tig ng) + TiOngo)

(2.23)
> (0 —a3) — ((sh — —2)” + (35 )?)

=2t )
Clearly (2.23) is impossible if we choose
(2.24) h > 2r(dy + C3 + r*H?) + 5.

Now, we can choose h large according to (2.24) and then choose €¢ small so that
€0 < 1/2r and (2.22) holds with ¢ replaced by £9. Thus by our previous argument, if
Vip is not semistable, then in the filtration (2.15) all but one (Wi /[Wi—1)-[E1] = 0.
We claim that ¢1(W,,/W,,—1) - [ET] # 0. Indeed, assume ¢; # 0, j < n. Then
¢; = —sh/rj and then by (2.19),

1 2(do + C3)
(2.25) (gr 2) sy = e)* + (1= T—j)s2h2 —aj < SR
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Thus |b;| < 2v/do + C3/VH? for i # j and |b; — ¢;j| < 2v/do + C3/V H?. In partic-
ular, we will have
(1—¢)sh

Ty

u(Fy) = (bje — VH? < bpeH? = u(Fy).
This contradicts p(Fj) > pu(F,). Thus we have proved the claim.

The next step is to reconstruct V from the filtration {W;}. We first construct
a filtration of V' out of the filtration {W;} by letting V; O W; be the subsheaf of
V so that V/V; is torsion free and rk(W;) = rk(V;). We claim that W; = V; for
all i < n — 1. Indeed, let V; be the first among which V; # W;. Since V; = W; on
A\ D, we must have

Cl(‘/i) = Cl(VVi) —|—CY[D], a>1.

On the other hand, ¢; (W;) = (Z;":l r;b;)[X7] and |b;| < 2v/do + C3/vV H? because
of (2.25). Thus

HV) = S (V) - HE)a
1 : 1
= 5 ((; ribje) + ah)H2 > (V) + rk(%)ega\/ﬁ,

which violates the ese-stability of V. Therefore, V; = W; for all t < n —1. In
particular, the filtration

0O=VWwcwc---CcV,=V

has the property that for ¢ < n — 1, V;/V;_1 are p-semistable and ¢1(V;/Vi_1) ~
r;b;[X7]. Let F; = V;/V;_1. We intend to use induction on the rank r to complete
the proof of the proposition. In order to do this, we need to show that Fj, is
p-semistable and

T —

1
(2.26) c2(Vi/Vica) — i(Vi/Vic1)? < do + Cs

for all ¢ < n. We show F,, is p-semistable by showing that r, = 1. Indeed, a
combination of (2.25) (with ;7 = n) and (2.24) guarantees r, = 1. Thus F, is
stable. Next, we have

r—1 . I 1 /e 2
(V)= =a(V)? = Y aF) + Y alF)-aE) + (-5 + 5 (X am)
i=1 i<j i=1

. r—1 1 1< 2

= Z(CQ(FZ) - o Cl(Fi>2 — %cl(Fl’f) + Z(Z Cl(Fl>)
i=1 ¢ ¢ i=1
- ri —1 1 I -1

= (e(F) = 5 —a(F)*) + -a(V)* + 5 Y —ribfH*.
i=1 ! i=1""

Because each co(F;) — Té';l c1(F;)? is non-negative, (2.26) must be true. Therefore,

we can apply the induction argument to V;/V;_1 to conclude that we can find large
h and small gy so that for any € < eg, we must have (V;/V;_1) p semistable for
generic D € |hX™|. Since deg(V;/Vi—1)|p = 0, V|p must be semistable also. This
completes the proof of Proposition 2.10.
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3. MAIN THEOREMS

In this section, we will prove our main theorems. We will show that when the
second Chern class d is large enough, then the moduli scheme sm;;d (= Sﬁggd(l ,H))
is smooth at a dense open subset. We shall further show that DJT}d is normal and
for any constant C, there is an N depending on (X, I, H,r,C) such that whenever
d > N, then

codim(Sing m}{m}d) > C.

Finally, we will investigate the dependence of the moduli scheme fmgéd(l ,H) on
the polarization H. In case r = 2, Qin’s work [Qi] shows that for any two polar-
izations H; and Ha, the corresponding moduli spaces 9y (I, Hy) and 9y (I, Hy)
are birational when d is sufficiently large. Here, we shall demonstrate that similar
phenomena also occur in high rank cases. But first, we shall continue our discussion
of the degeneration to finish the proof our main technical theorem, Theorem 0.1.

For the moment, we shall keep the notation developed in §2. For any divisor
D C X, we define S;’? be the set of all e-stable (with respect to the fixed H) rank
r sheaves E of det F = I and c3(F) = d and define

SPH(D) ={E € 8] | Hom(E, E(D))® # {0}}.

Similarly, we define V:;"Ii and VZ?(D) to be the subsets of locally free sheaves in S;’?

and SGT:?(D) respectively. For technical reasons, we will first attack the set V;‘;(D)
which is the set of p-stable locally free sheaves E with the mentioned constraint on
c1, cg and hY. Namely, V;‘;(D) = Vg:?(D). We shall prove

Theorem 3.1. For any choice of r, I and D, and any constant Cy, there is a
constant N such that whenever d > N, we have

#modV;ﬁ (D) < nx (Tv da I) - Ch.

Proof. Clearly, V;:gll (D) is a subset of zmggd. Since being locally free and p-stable are
open conditions and having non-vanishing Hom(E, E(D))? is a closed condition,

V;‘;(D) is a locally closed subset of MMy, Let A C MMy? be the closure of any

irreducible component of V;‘;(D)

In the following, we seek to utilize the degeneration 9MM%¢ — C (of the nor-
malization of M5?) constructed in Theorem 2.3. When  # 0, 9> is just the
normalization of zm}d. For such t, we let W; C zmg“f be the preimage of A C zm}d.
Uizo We is a constant family over C*. We then let W be the closure of J, ., Wi in
M%< and let Wy be the special fiber of W over 0 € C.

Here is our strategy: Take a large h and a good D" € |hHc(—hA)|. By
Proposition 2.13, for any ¢ # 0 and ¢ = dim Wy, the top self-intersection num-
ber [Lpr]¢(W;) > 0. Then since W is flat and proper over C, [Lpr]¢(Wy) > 0.
Therefore, according to Proposition 2.14,

(3.1) #moad{EP|E e Wy} =c.
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On the other hand, since every sheaf E € W;, t # 0, has non-vanishing
Hom(E, E(D))°, the upper-semicontinuity theorem tells us that there is a divi-
sor D' C A (we can make it independent of the choice of Wy) such that for any
E e Wy,

(3.2) Homa (E®), E®(D")" # {0}.

Thus, by applying Theorem 1.1, we get an upper bound of (3.1) and hence an upper
bound of ¢. We now fill in the details of this approach.

To establish (3.2) for some D' C A, we argue as follows: First of all, let £ € W)
be any point. Since W is flat over C, there is a smooth affine curve S over C
and a flat family of torsion free sheaves Eg on Zg = Z xg.S such that for any
closed s € S overt # 0 € C, Es € W; and further, there is a closed sy € S
over 0 € C so that E;, = E. For any integer k, we consider the divisor D¢ —
kA on Z, where Dc = py'(D), and the pullback divisor (of Dc — kA) on Zg
which we denote by Dj. Clearly, the restriction of Dy ® k(sg) to X C Zy is
D —kH. Now consider the vector space Homz, (Eg, Es(Dy))?. By assumption, for
general s € S, Homy_(Es, Es(Dy))? # 0. Thus Homz,(Es, Es(Dy)) # {0}. Let
w € Homg,(Eg, Es(Dy))? be a non-trivial section and let ¢ be the uniformizing
parameter of S at sg. Then because Eg is flat over S, there is an n > 0 such that
the restriction of w/&™ to Zs, gives rise to a non-trivial homomorphism ¢: Es, —
Es, (Dy).

Next, because E() is a quotient sheaf of E, ¢ induces a homomorphism E —
EM(Dy) and further because E(!) is torsion free, it comes from ¢; : B —
EM(Dy). Similarly, we have @o : E®? — E®)(D,). Because E is torsion free,
at least one (; is non-trivial. Now we claim that we can choose a k (indepen-
dent of d and €) so that ¢ is always trivial. Indeed, we first choose k so that
H-(D—kH) < 0. Then since det 1 € H(Ox(rD —rkH)) = {0}, det 1 is trivial.
If we let A ¢ E™ be the kernel of ¢, then E(l)/A is torsion free and further, there
is a 1 making the following diagram commutative

A—— EO . BOM —

(3.3) lm ‘”l
EM(Dy) EM(Dy)

On the other hand, by Lemma 2.4, there is a constant e; independent of d and ¢
such that E() is ej-stable. Thus if ¢; # 0, then 0 < tk(EM /A) < rk(E™M) and
EM /A is both a subsheaf of E(V)(D;,) and a quotient sheaf of E(1). Therefore,

WED (Dr)) + ———rm VH? - e1 > w(BW /A) > w(BY) — s VH? - 1.

rk(E 1>/A)

A straightforward calculation shows that this is impossible if we let

ET

1
(3.4) k> (D-H+2VH? e).

Hence ¢; must be trivial.
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From now on, we fix such a k. Then our previous argument shows that all
V € © = {E® | E € Wy} have non-vanishing Homa (V, V(Dy))°. As we explained,
our intention is to apply Theorem 1.1 to the set © to get the bound:

(3.5) H#mod® < nx (7‘7 d, I) —Ci, d>0.

First of all, all V € © are es-stable by Lemma 2.15 and have detV = I, I, €
A={Iy(—rX7), -, Io}. Next, for each I € A, there is an £¢(I2) > 0 specified by
Theorem 1.1. We let 9 = ming,ea{eo(l2)}. Then for any € smaller than the o,
the ample divisor H(e)ja on A satisfies the condition of Theorem 1.1. In order to
apply Theorem 1.1, we need to know that the general element of © is locally free,
which certainly is quite delicate in general. The solution we propose is to use the
double dual operation to relate any sheaf F' € © to its double dual F(F) = FVV.
FVYV is always locally free because A is a smooth surface. Assume do = co(F(F));
then dy < ¢o(F) and the equality holds if and only if F' is locally free. Following
the notation introduced at the beginning of §1, we have
F:0 — U Q[T’dz (Dk|A)-

e2,l2
do€Z;I2€N
(We use 2. to denote sets related to A and use V. to denote sets related to X.) Here
we have used the fact that Hom(F, F(ka))o # 0 implies Hom(F", FV(DHA))O £
0. Next, we divide O into subsets 4, according to the value of the second Chern

class of ' € ©. Then, © = |J©4,. We have the following estimate which will be
proved shortly.
Lemma 3.2. For any V € 2[2’2”%2, #mod(}"_l(V) N @dl) < (r+1)(d; —da).

Now we are ready to complete the proof of the theorem. First of all, by applying

Theorem 1.1 to the set Ql;diz (Dyja), we know that for any constant C, there is an

Ny such that whenever dy > No, we have

(36) #modg’[z;dj2 (Dk‘A) S T]A(Ta d2) 12) - 027 12 S A

To control the left-hand side of (3.6) for small da, we invoke Theorem 1.5 to get
(37) #modmgjﬁz < 77A(T’7 d2712> + 037 12 € A7

where Cj3 is a constant. Another estimate we need was established in Proposition
2.7,

(3.8) c2(F)<d+C4, VFe€O.

The proof of (3.5) then goes as follows: For any constant Cj, we let Cy be such
that

(39) Cy > C—FT]A(’I”, 04,12) —77)((7",0,]), VI € A,
and let N2 be the constant that makes (3.6) hold. We then let N be so that

(310) (’I“ + 1)(N — NQ) + 77A(7“7 NQ,IQ) + 03 S nx(n ]\77 I) — Cl.
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We claim that when d > N and ¢ < &g, then (3.5) holds. Indeed, let dy < d+ Cy
be any integer. Then for do < Na, by (3.7) and (3.10),

#mod (6(11 mf_l (Q[Z;dz (DkA)))

< (r+1)(d1 — da) + #mod (F(@dl) naAst (ka))
< (r+1)(d1 — da) +na(r,dz, I2) + C3 < nx(r,d, I) — Ci.

Assume dy > No. By (3.6) and (3.9), we have

Fmod (@dlmf—l(at’;;‘fz (ka))) < Hmoal 3 (Dyja) + (r+1)(dy — da)
<na(r,dz, Iz) — Co + (r + 1)(dy — d2) < nx(r,d, 1) — Cy.

Thus we have established (3.5).

To finish the proof of the theorem, it suffices to show that #0640 = #modaWs.
For this, we will use Donaldson’s line bundle Lpn. First of all, for any d, we
choose ¢ < min(eo, k(d)). (k(d) was specified in Proposition 2.10.) We then apply
Proposition 2.13 to the set Wy, t # 0. Proposition 2.13 asserts that with ¢ = dim Wy,
[Lpn]¢(W:) > 0. Since W is flat and proper over C, we have

[£pr]“(Wo) = [Lpn]*(W:) > 0.
In particular, Proposition 2.14 tells us that then
H#moalEP | E€ Wy} =c.
Therefore, combined with inequality (3.5), we have that for d > N,
dim{E € My | Homx (E, E(D))° # 0} < nx(r,d, I) - C.

This completes the proof of Theorem 3.1.
Before we go any further, let us finish the proof of Lemma 3.2.

Proof of Lemma 3.2. The situation when r = 2 was proved in [L1, p. 461]. In
general, let E be any rank r torsion free sheaf and let V' = F(E). Then F is uniquely
determined by the quotient sheaf V' — V/E, where V/E is supported on a discrete
set and of length ¢(V/E) = ca(E) — ca(V). Therefore, F~1(V) N {sheaves of ca =
c2(V)+c} is exactly the set of all quotient sheaves V' — A such that A is supported
on a discrete set and £(A) = c¢. Let Quotj, be Grothendieck’s Quot-scheme of all
quotient sheaves A of V with £(A) = ¢. Quoty, is projective by [Gr, p. 13]. Observe
also that when A is supported on ¢ distinct points, then by [Gr, p. 21],

(3.11) dim T4 Quoty, = (r + 1)c.

Thus the lemma will be established if we can show that for any quotient sheaf
Ap € Quoty,, there is a deformation A; of Ay such that for generic ¢, A; is supported
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on ¢ distinct points [L1, p. 461]. In the following, we will demonstrate how to
construct such a deformation.

Clearly, this is a local problem. Let U be a classical neighborhood of 0 € C? with
coordinate z = (21, z2). Assume Ay is a quotient sheaf of O,SBT of length ¢ supported
at the origin 0. Let E = ker{Og" — Ao}. Along the lines of the argument given
in [L1, p. 462, we can show that there are f1, -+, f, € OF" such that {f;}1,
are divisible by z; and {f;}7 generate the submodule E.

Next, we define

i(2), 1<i<r
(3.12) fi(z,t) = { - (2)

(1 —t)L=2, r+1<i<n

We then define a submodule Ep C (’)UX p»> Where D is a small disk with parameter
t, by

(3.13) Ep = (fi(z,t), -, fau(2,1)) - Ouxp C OIGJBQD'

Let Ap = Og; p/Ep. Ep and Ap can be viewed as families of sheaves parameter-
ized by D. Tt is easy to see that when Ep ®k(0) is torsion free, then Ap ®k(0) = Ay
and for ¢ small, Ap is a (flat) deformation of Ag. Now we check that Ep ® k(0) is
torsion free. Suppose there are h € Ep and f € Oy such that f-h = th' for some
h' € Ep. Let

h = Zgl(zat) ) fi(zvt)'
=1

Then the fact that f(z) - h = Omod(t) in O, and that fi(z)/(z1), -,
fr(2)/(21) generate a rank r Oy /(z1)-module implies

(3.14) z1 ] 9i(2,0), i=1,---,1;
—~ gi(2,0) - filz) _
(3.15) §T~fi(z)+i;19i(z,0)- - =0.

Further, if we write g;(z,t) = a;(2) + t0;(z,t), then the following identities hold in
Opkp:

h= Z(az 2) + 16 0 fi(2)

+ Z (ai(z)(zl - t)%lz) +tBi(z, 1) (21 — t)M)

i=r+1 Z1
= G- e+ 3 m(z)fff))
i=1 i=r+1
—|—t(Z(aZ( )—|—ﬂlzt ) fi(z Z Bi(z,t)(z )fl(1>)
=1 i=r+1

— thl/
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where h” obviously belongs to Ep. Since Ep is a submodule of Og; > h must be
equal to th” in Ep. Therefore, f - hj;—o = 0 implies hj;—o = 0 in Ep ® k(0) or that
Fp ® k(0) is torsion free.

In general, A; is not supported on ¢ distinct points. But at least we expect
that A; is simpler than Ay, say Supp(A;) has at least two distinct points. In the
following, we will show that this is indeed the case. Without loss of generality, we
can assume that f;(z) all vanish at the origin. (Since otherwise, Ay is essentially
a quotient sheaf of O[SB(T_D and we can use induction on r to take care of this
situation.) For small ¢, the equation

(316) fl(t,ZQ)/\"'/\fr(t,Zz) =0

has solutions, say zo = wy, because f1(0) A -+ A f.(0) = 0 and f1(0,22) A -+ A
fr(0,22) # 0 for generic z3. Note that (¢,w;) € Supp(A¢). If Supp(4;) is a single
point, then fr11(2)/21, - fa(2)/21 must generate OF" at the origin. Thus by
discarding some extra terms, we will have n = 2r and further, by eliminating terms

in fy,---, fr that involve z; by using combinations of f,41,---, fn, we can assume
zo|f1(2), -, 22| fr(2). Therefore, we can consider the deformation of Ay derived
o f1(2) 5 (2)
z (2
Bp= (=) 22 (2 =22 fri (2 ful2)).
Z9 Z9
In case Supp(A4}) is still a single point for generic ¢, then (flz—(;), e ,f;—(;)> will

generate O,SBT at 0 also. In particular, Ag = @" C and then the desired deformation
can be written by hand.

In the remainder of this section, we will complete the proof of the theorems
stated at the beginning of this paper. We first investigate the sets Sg‘[i and S;?(D)
introduced at the beginning of this section. We shall prove

Theorem 3.3. For any choice of r, I and D and any choice of constants e and
C, there is an integer N such that whenever d > N, then we have

(3.17) #moaSy'] =n(r,d,I),

(3.18) #moaS,' (D) < nx(r.d, 1) - C.

Proof of (3.17). Let V;’}i = S;’? N {locally free sheaves} and let V;’?(D) = V;’}i N
SZ';(D) Clearly, (3.17) is a stronger statement than

(3.19) #moa VL] = nx(r.d, I),
which in turn is stronger (in case e > 0) than
(320) #modV;’j =T"Nx (Ta da I)

Our strategy is first to prove statement (3.20) and then prove (3.19) and (3.17).
We proceed by induction on the rank r. (3.17) and (3.20) are trivial when r =1
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For r > 2 and FE € V;'}, the Kodaira-Spencer-Kuranishi deformation theory tells

us that there is a holomorphic map
f:UcC HY(X,End(E)) — H*(X,End(E)),
where U is an (analytic) neighborhood of the origin, such that f~1(0) is the versal
deformation space of E. Since h%(End°(E)) = 0 (since E is u-stable),
#moa (V.1 [E]) > 1 (End®(E)) — h*(End’ (E)),
and when h?(End®(E)) = 0, #moa (V' [E]) = h'(End®(E)). Next, by Riemann-

>
Roch, one calculates x(End’(E)) = nx(r d,I). Thus one gets

(3.21) H#moa (V7. [E]) = nx (r, d, 1).
On the other hand, since h?(End®(E)) = h°(End®(E)® Kx ), by Theorem 3.1, there
is an N such that whenever d > N, we have

Hmoal{E € V'] | h(End"(E) ® Kx) > 0} < nx (r,d, 1) — 1.

Therefore, for generic E € V“I, #mod(V;ﬁ,[E]) = nx(r,d,I). Thus we have
proved (3.20) provided d > N. To further attack (3.19) and (3.17), we need the

following estimate which is interesting in its own right.

Theorem 3.4. For any choice of r, I and two constants ey > ez, there is a constant
C' such that

(3.22) Hamod (S \SIY) < (25 — 1)d + O

Proof. Let E be any torsion free sheaf in S dI \ SZ;‘?I. Since E is not eg-stable,
there is a torsion free subsheaf F; C FE such that E/Fj is torsion free and that
w(F1) > pu(E) + eavVH?/1k(F1). Because F is ej-stable, u(Fy) is bounded from
above by u(E) + e;vVH?/1k(Fy). Combined, we get

1 1 1 1 1
(323) —I'H+—€1VH2<—Ii-H<—I-H+—6VH2,

T T1 T T T
where r; = 1k F;, d; = co(F;) and I; = det F; with F, = E/F;. Note that E belongs
to the exact sequence

(3.24) 0—F —FE— F,—0.

We call (r;, d;, I;) admissible if they do come from (3.24) with E € S \S - We
claim that F; are es-stable with es = e1 + |e2|. Indeed, let L C Fy be any subsheaf
Because L is also a subsheaf of F,

u(L) < p(E) + erVH? < u(Fy)

1 1
— VH2,
k(L) k(L)
Thus, Fj is ez-stable. Fy is ez-stable for the same reason. Therefore, F; € S(:;’IZ
Finally, because of (3 24),
#mod( 61 I \Sgéd]) S sup {#mod (S;I:Idll) + #mod (5;2:?22)
(3.25) (risds, 1)

+ sup{dimExt"(Fy, Fy) | F; € S;; 71}
where the supremum is taken over all admissible tuples (r;,d;, I;). Note that we
only have numerical restriction on I; (cf. (3.23)) and d; can be small, thus we
cannot expect an estimate of type (3.17) to hold for all S:Si Nevertheless, we
have
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Lemma 3.5. There is a constant Cy depending only on r, e3 > 0 and degl’,
I’ € Pic(X), such that for ' <r, we have

#mOdSZ;;(;: S Tlx('r'/,d/,l/) =+ Cl.

Proof. Tt suffices to show that there is a constant C; such that for any F € S

es, I’
dimExt"(E, E)° < 27'd' — (' — 1)I”* + C).

First, since E is ez-stable and ez > 0, End’(E) is 2res-stable. Hence by Lemma 1.8,
both h%(End®(E)) and h°(End’(E) ® Kx) are bounded from above by a constant,
say C1. By Serre duality, Ext*(F, E)° = H(End°(E) ® Kx). Therefore,

dimExt'(E, E)? = 2¢/'d’ — (' — 1)I"* — (' —1)*x(Ox)
+dim Ext’(E, E)° + dim Ext*(E, E)°
<2'd — (r = 1) + (2C1 — (r' —1)*x(Ox)).

This completes the proof of the lemma.

Returning to the proof of Theorem 3.4, we need to estimate the term
dim Ext! (Fy, Fy) in (3.25). First of all, by Riemann-Roch, for F; € S™%

es,I;?

dim Ext! (Fy, F)
= dim Ext®(Fy, Fp) + dim Ext®(Fy, Fy)

r r r r
— (72]12 + 31[22 — (?112 — 32[1) . KX — Il . IQ +T17‘2X(Ox) — T‘1d2 — T2d1>.

Because F; and Fy are es-stable, F)Y ® I, and Fy ® F) are 2res-stable. Also,
the degree of F)Y ® F» and Fy ® F; are bounded (from both sides) by constants
depending on r, e and I - H. Thus, there is a constant Cy depending on these
parameters only so that

dim Ext’(Fy, Fy), dimExt*(Fy, Fp) < Cs.
Therefore, for any admissible (r;, d;, I;),

HmoaSiL 1t + HmoaSL2 12 + sup{dim Ext' (Fy, Fy) | Fi € SL'f"
< 2rid; — (7"1 — 1)]12 + 2rady — (7"2 — 1)]22 +2C;
(_Tz[lz —7‘1]22 Tlfg —T‘gIl
2 2

+ Il ~IQ — 7"17”2)((0)() + ’I”ldz +T2d1> + 202

- Kx

<@r—1)d+ (1 —ro)ds + (1 —11)do — (11 + %2 S~ (o + %1 1)

T T
+ 1 - Iy + (?1 — ?2]1) - Kx —7"17”2)((0)() +2C7 + 205.
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Thanks to Lemma 2.5, there is a constant C's < 0 depending on r, e and I - H only
such that d; — “_1]2 > C5. Thus combined with d = ¢o(E) = I - Is + d1 + d2 and
I, =1-1I, the rlght hand side of the above inequality is

(3.26)
1—7“2 3 2 1—T1 3 2
<(2r —1)d — — 22— - )I
7(7“ ) (T+ 2 )1 (T+ 2 2)2
—(2r—2)I - 12+(212—511) Kx + 72 |x(0Ox)| + C1 +2C5 — rC5
rmn—1 ro—1 ro+1—11 T
—(2r —1)d (1 I —I~I——I~K) Ci.
(2r )+(+2r2+2r1)1 9y 1—5h x|+ Cy

Finally, because |I; - H| < |I - H| 4+ eV H?, the Hodge index theorem tells us that
the sum of three middle terms in the last line of (3.26) is bounded from above by
a constant Cs. Therefore, combined with (3.25), we have

Hmod (SITNS) < (2r —1)d +C".

Proof of (3.18). We shall only consider the case where e > 0. The case e < 0 can be
proved similarly. First of all, by letting e; = e and ez = 0 in Theorem 3.4, we know
that there is a constant C; such that #.,04q (S‘:? \SP d) < (2r —1)d+ C;. Then by

choosing N large, we have #mOdVy,I =nx(r,d,I) and (2r — 1)d+ C1 < nx(r,d,I)
whenever d > N. Thus

3‘%‘51000111)6 I < max {#mod ]7 #mod (Ver}i \ V;ﬁ)} =nx (T, d7 I)

To prove (3.17), we will use the double dual operation F. Let

(3.27) Fisit— Jvod
d'<d

be the map sending E to EVV. Thanks to Lemma 3.2, we have
HmoaSL] < up {fhmodVI + (r +1)(d — &)}
Further, let C; > 0 be a constant such that
HmoaVL'] <n(r,d 1)+ C1.
Then, for d > N + C4, #modS ’7 is no more than either

sup {n(r,d', 1)+ C1+ (r + 1)(d —d")} <n(r,N,I)+ C1 <nx(r,d,I)
d'<N

or

sup {nx(r,d',I)+ (r+1)(d—d")} <nx(r,d,I).
N<d'<d

This establishes (3.17). (3.18) can be proved similarly based on Theorem 3.1. We
shall omit it.
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In light of Theorem 3.3, the proofs of Theorems 0.2 and 0.3 are now quite easy.
Recall that for the data (r, d, I') and sufficiently large n, we can form Grothendieck’s
Quot-scheme Quot;’j of all quotient sheaves O??p — FwithrtkE=r,detE =1,
c2(E) = d and p = h°(E(n)). If we let U C Quotfl’_dj be the open subset of all
semistable (with respect to H) quotient sheaves, then U is SL(p, C)-invariant and
the good quotient U//SL(p,C), which does exist, is exactly the moduli scheme
fmg’(d(I , H) of rank r semistable sheaves of ¢; = I and ¢a = d. Further, if we let
U*® C U be the subset of strictly stable sheaves, then m:U* — w(U?®) C sm;;d(f, H)
is a principal SL(p, C)-bundle. With this set-up in mind, one sees that in order to
prove Theorem 0.2, it suffices to classify the singular locus of .

Proposition 3.6. With the notation as before and for any constant C, there is a
constant N such that whenever d > N, then dimU = nx (r,d, I) + (p* — 1) and the
codimension

codim (Sing(U),U) > C.

Further, when the codimension is at least 1, then U locally is a complete intersection,
and when the codimension is at least 2, then U is normal.

Proof. Let E € U be any quotient sheaf, let go = h°(End®(E) ® Kx) and let
q1 = nx(r,d, I) + (p?> — 1) + q2. Then the argument in [L2, p. 8] demonstrates that
the completion of the local ring of U at E is of the form k[[t1,- - -,tq,]]/J, where J
is an ideal generated by at most ¢ elements. In particular, for each component
U C U, we always have

(3.28) dim U > nx(r,d, I) + (p*> — 1).

Next, by [Ar], [Mu], [Ma, p. 594], the singular locus Sing(l{) is exactly the set of
all quotient sheaves F with Ext? (E, E)° # 0. By Theorem 3.3, for any constant C,
there is an NV such that whenever d > N, the set

UNSTI(Kx)={E €U |h’(End(E)® Kx) #0}
obeys #mod (U N SI?(KX)) < nx(r,d,I) — C. Therefore,
dim Sing(U) < Fmoa (u N S{;?(KX)) +dim SL(p) < nx(rd, 1)+ (p? —1) — C.

When C' > 1, this inequality and (3.28) imply that &/ has pure dimension nx (r,d, I)
+ (p* — 1) and codim(Sing(U),U)) > C. Because the completion of the local rings
of U are of the form k[[t1,--- ,tq4,]]/J with J = (f1,---, fg.), U is a local complete
intersection. ¢ will be normal if we further assume codim (Sing(U),U) > 2.

Corollary 3.7. Let X be a smooth algebraic surface, H an ample divisor and I a
line bundle on X. Let r > 2 be an integer. Then for any constant C, there is an
N such that whenever d > N, then fmg&d(I,H) has pure dimension nx(r,d,I) and

further, codim(Sing(DﬁTXd),Sﬁg’(d) > (.

Proof. Since 7 : U* — w(U*) C sm;;d is a principal bundle, the singular locus
. rydy . .
Sing(M'y") is contained in

7 (Sing(U®)) N (U \U?).
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By Proposition 3.6, we know that for d large, we can arrange
codim ( (Sing(U*) ), M) > C.
Therefore, to prove the corollary, we only need to find an upper bound of the
dimension of 7 (U \ U*).
Let E € U\ U*. Then E admits a filtration 0 = Ey C E; C --- C Ey, = E such
that F; = F;/E;_; are strictly stable. According to [Gi], E and gr(FE) = @ F;
have the same image in Sﬁ}d under 7. Thus dim7(U \ U*) can be bounded easily

in terms of the dimension of moduli of lower rank stable sheaves. Similar to the
proof of Theorem 3.4, we can show that there is a constant C; such that

(3.29) dim7(U\U?) < (2r — 1)d + C;.
(If we let S)°7 be the set introduced in §2, (U \U*) C S™{ ;\ S and then (3.29)

, u,
follows directly from Theorem 3.4.) Thus for large N, we will have for d > N,

dim7(U \ U*) < nx(r,d,I) — C. This completes the proof of the corollary and
Theorem 0.2.

Corollary 3.8. With the notation as before, there exists N such that whenever
d> N, then

(1) 9313;‘1 is normal. Further, if s € Dﬁr)'{i is any closed point corresponding to a

stable sheaf, then DJT}d is a local complete intersection at s.

(2) The set of locally free p-stable sheaves (zm’;{i)"b C MY is dense in MY
Proof. Let N be given by Proposition 3.6 so that whenever d > N, U has pure
dimension nx (r,d, I)+(p*—1) and Codim(Sing(L{),Z/{) > 2. Then since I/ is normal,
zmggd must be normal and since U? is a local complete intersection, m(U*) C zmggd

must be a local complete intersection. Here we have used the fact that U — Sﬁ}d
is a good quotient and U* — w(U*) is a principal bundle. The last statement can
be proved easily similar to that of Theorem 3.1. We shall omit it here.

The last subject we will study is the dependence of the moduli spaces on the
choice of the polarizations. We prove

Theorem 3.9. For any choice (r,I) and polarizations Hy and Hs, there is a con-

stant N so that whenever d > N, then I (1, Hy) and M5 (I, Hy) are birational
to each other.

Proof. Let W C fm}d(l ,H1) be the set of quotient sheaves E such that E are not
Hy-stable. Then every E € W belongs to the exact sequence

0—F —FE—F,—0

such that p(Fy) > u(E) (with respect to Hz). Then by repeating the argument
in Theorem 3.4, we can find a constant C; (depending on H; and Hj) such that
dim W < (2r — 1)d + C;. Therefore, by letting N be large, we will have

dim M5Y(1, Hy) = dim MY (1, Ha) = nx (r,d, I)

and dim W < nx(r,d,I) — 1 provided d > N. Therefore, by the universality of the
moduli scheme, there is a morphism

@ M, Hy) \ W — YT, Hy)

which is generically one-one and onto. Thus DJT}d(I , Hy) is birational to fmgéd(f , Ha).
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