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AND COMPACTIFICATIONS OF HOMOGENEOUS VARIETIES

FRIEDRICH KNOP

1. Introduction

Let G be a complex semisimple group and let H ⊆ G be the group of fixed points
of an involutive automorphism of G. Then X = G/H is called a symmetric variety.
In [CP], De Concini and Procesi have constructed an equivariant compactification
X which has a number of remarkable properties, some of them being:

i) The boundary is the union of divisors D1, . . . , Dr.
ii) There are exactly 2r orbits. Their closures are the intersections Di1∩. . .∩Dis

(even schematically). In particular, there is only one closed orbit.
iii) In case G is of adjoint type, all orbit closures are smooth.

It is called the wonderful embedding of X or a complete symmetric variety and is
the foundation for most deeper results about X .

Independently, Luna and Vust developed in [LV] a general theory of equivariant
compactifications of homogeneous varieties under a connected reductive group G.
In particular, they realized the reason which makes symmetric varieties behave so
nicely: A Borel subgroup B has an open dense orbit in G/H. Varieties with this
property are called spherical. Luna and Vust were able to describe all equivariant
compactifications of them in terms of combinatorial data, very similar to torus
embeddings which are actually a special case. They obtained in particular that
every spherical embedding has only finitely many orbits. Nevertheless, the reason
for the existence of a compactification with properties i)-iii) remained mysterious.

Then Brion and Pauer established a relation with the automorphism group.
They proved in [BP]: A spherical variety X = G/H possesses an equivariant com-

pactification with exactly one closed orbit if and only if AutGX = NG(H)/H is
finite. In this case there is a unique one which dominates all others: the wonder-
ful compactification X. They also showed that the orbits of X correspond to the
faces of a strictly convex polyhedral cone Z. Then properties i) and ii) above are
equivalent to Z being simplicial.

This fact is much deeper and was proved by Brion in [Br1]. In fact he showed
much more. Let Γ be the set of characters of B which are the characters of a rational
B-eigenfunction on X . This is a finitely generated free abelian group. Then the
cone Z is a subset of the real vector space Hom(Γ,R). Brion showed that there is
a finite reflection group WX acting on Γ such that Z is one of its Weyl chambers.
In case of a symmetric variety, WX is its little Weyl group.
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There remains property iii). In the same paper, Brion stated the following

1.1. Conjecture. If the automorphism group of X is trivial, then all orbit closures
in X are smooth.

(Actually, this is only part of his conjecture.) The main purpose of this paper is
to prove this conjecture. Unlike i) and ii), where only the combinatorial structure
of Z matters, this is now a subtle problem of integrality. Each extremal ray of the
dual cone Z∨ ⊆ Γ⊗R is spanned by a unique primitive element of the lattice Γ. Let
Σ be the set of these elements. Then one can show that X is smooth if and only if Σ
generates the lattice Γ as a group (in which case, it is even a basis). Hence, Brion’s
conjecture follows from our main result which establishes a connection between Γ,
WX and the automorphism group of X :

1.2. Theorem. There is a canonical inclusion Hom(Γ/〈Σ〉Z, k∗) ↪→ AutGX.

There is a slightly different way to see this result which is closer to the theory of
symmetric varieties. It is well known that the set ∆ = WXΣ ⊆ Γ is a root system
with Σ as a set of simple roots. Therefore, the theorem says that if AutGX is
trivial, then Γ is the root lattice of a root system and WX is its Weyl group. Hence
we obtain almost a generalization of the restricted root system of a symmetric
variety. I say “almost” because our root system is always reduced and doesn’t have
multiplicities.

For simplicity, we restricted ourself so far to spherical varieties. But all concepts
generalize to arbitrary G-varieties. The trick is to put everything in relation to
the field k(X)B of B-invariant rational functions, which is just k in the spherical

case. For example, instead of taking all of AutGX one considers only the subgroup
A(X) of those automorphisms which induce the identity on k(X)B. Therefore, we
are able to attach a root system and a Weyl group to any variety with G-action.

Let me mention that for quasi-affine varieties X there is a very simple construc-
tion of its root system. For this, consider the isotypic decomposition of its algebra
of global functions, k[X ] =

⊕
χRχ, where χ runs through all dominant weights.

This decomposition is usually not a gradation. To measure the deviation we define

M′ := {α ∈ X (B) | ∃χ, η ∈ X (B) : 〈RχRη〉k ∩Rχ+η−α 6= 0}.

LetM be the saturated monoid generated byM′, i.e., the intersection of the cone
spanned by M′ and the group generated by M′.
1.3. Theorem. The commutative monoid M is free and the set of free generators
is the basis Σ of ∆X .

The proof of Theorem 1.2 is very indirect. Therefore, I give a brief synopsis.
For every homomorphism a : Γ → k∗ which vanishes on Σ we want to construct
an automorphism ϕ of X . Consider the cotangent bundle T ∗X → X . This bundle

contains a certain open subset T 0
X which possesses a Galois covering T̂X with group

WX . Thus we get

T̂X→→T 0
X ↪→ T ∗X→→X.

We construct ϕ in several steps by starting at T̂X . There the whole torus A =
Hom(Γ, k∗) acts in a natural way. Hence, AWX acts on T 0

X . By embedding AWX

into a connected smooth group scheme we can show that the action of a extends to
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T ∗X in codimension one. The crucial condition here is that a is trivial on Σ. This
step is the most technical part of the paper. Then it is fairly easy to show that the
automorphism actually extends to all of T ∗X and can be pushed down to X .

Notation. All varieties are defined over an algebraically closed field k of charac-
teristic zero. The group G is always reductive and connected. We choose a Borel
subgroup B ⊆ G with unipotent radical U and maximal torus T . If G acts on
a variety X , then we denote the multiplicative group of B-semi-invariant ratio-
nal functions by k(X)(B). For f ∈ k(X)(B) let χf ∈ X (B) be the corresponding
character.

2. Group schemes

The purpose of this section is to construct certain group schemes. For this, recall
some facts about the Weil restriction. Let ϕ : S′ → S be a morphism of varieties.
Then any coherent sheaf on S′ can be pushed down to a sheaf on S. A similar
process exists sometimes for schemes over S′.

Definition. Let Z ′/S′ be an S′-scheme. Then the Weil restriction of Z ′ along ϕ
is an S-scheme Z together with an S′-morphism Φ : Z ×S S′ → Z ′ such that

MorS(X,Z) −→ MorS′(X ×S S′, Z ′) : ψ 7→ Φ ◦ (ψ × idS′)

is bijective for all S-schemes X .

The universal property characterizes Z uniquely. If it exists it is denoted by∏
S′/S Z

′ := Z. We need only a quite easy existence theorem (see [DG], I,§1,6.6;

I,§4,4.8):

2.1. Lemma. Assume S′/S is finite, flat, and let Z ′/S′ be affine, smooth, and of
finite type. Then

∏
S′/S Z

′ exists and has the same properties.

Let Z ′/S′ be an S′-group scheme. Then it is easy to see that
∏
S′/S Z

′/S is an

S-group scheme.
Now we apply this to the following situation: Let S′ be an affine space and W

a finite group acting linearly on S′. We assume that W is generated by reflections.
Then S := S′/W is also an affine space and S′/S is finite and flat ([Bou], Chap. 5,
§5, Thm. 4). Assume W acts also on a finitely generated free Abelian group Γ. Let
A := Spec k[Γ] be the torus with character group X (A) = Γ. Then we know that

Z :=
∏
S′/S

(A× S′)

exists and is a smooth, commutative S-group scheme. In particular, Z is smooth
as a k-variety.

We let W act on A × S′ diagonally. Let X/S be any S-scheme. Then W
acts on MorS′(X ×S S′, A × S′) by wψ(x, s′) := wψ(x,w−1s′). Hence, W acts on
MorS(X,Z) and therefore on the S-group scheme Z. Now define

A = A(W,S′,Γ) := ZW

as the set of fixed points.
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2.2. Lemma. A/S is a smooth commutative affine group scheme.

Proof. Only the first property needs a proof. By the lemma, Z is smooth over S,
hence smooth over k. Let z ∈ ZW be in the fiber of s ∈ S. Then the tangent space
TzA equals (TzZ)W . Because TzZ → TsS is surjective and W acts trivially on TsS,
also TzA → TsS is surjective, i.e., A → S is smooth in z. �

Also A has a universal property:

2.3. Lemma. For every scheme X/S there is a bijection

MorS(X,A)
∼→MorW (X ×S S′, A).

Proof. We have

MorS(X,A) = MorS(X,ZW ) = MorS(X,Z)W
∼→MorWS′ (X ×S S′, A× S′)

= MorW (X ×S S′, A). �

Next I want to investigate the fibers As := π−1(s) ⊆ A. It is an affine commu-
tative group, hence decomposes uniquely into its unipotent and semisimple part:
As = Aus ×Ass.
2.4. Lemma. Let s ∈ S. Then for every s′ ∈ S′ in its preimage there is a
homomorphism ιs′ : As → A with kernel Aus and image AWs′ ∼= Ass.
Proof. Let ŝ ⊆ S′ be the schematic preimage of s and ŝ ′ its component containing
s′. Then the inclusion X = As ↪→ A induces a morphism

ιs′ : As = As × {s′} ↪→ As × ŝ→ A

which is easily verified to be a homomorphism. On the level of k-valued points we
get

As(k) = MorS({s},A) = MorW (ŝ, A)

= MorWs′ (ŝ ′, A)→MorWs′ ({s′}, A) = A(k)Ws′ .

The map is surjective because the projection ŝ ′ → {s′} induces a section. This
shows that the image is as claimed.

The ring k[ŝ ′] is local, Artinian. Let U be its group of 1-units, which is, via
logarithm, isomorphic to the maximal ideal considered as an additive group. Sup-
pose A ∼= Gr

m. Then the kernel of ιs′ is contained in the group of those morphisms
ŝ ′ → A, such that the closed point is mapped to 1. Hence it is a subgroup of Ur,
hence torsionfree. This implies that the kernel is unipotent. Because A is a torus,
we have ker ιs′ ⊇ Aus , hence equality. �
2.5. Lemma. The set of global sections of A/S equals AW . Furthermore, σ(s) ∈
As is semisimple for every section σ and all s ∈ S.

Proof. We have MorS(S,A) = MorW (S′, A) = AW . The last equality holds because
all units in k[S′] and therefore all morphisms S′ → A are constant. The second
assertion follows from AW ⊆ AWs′ = Ass. �

Next let S′1 ⊆ S′ be the open subset where W acts freely. Let S1 = S′1/W ⊆ S.
Because Ws′ = 1 for s′ ∈ S′, we have As ∼= A for any s ∈ S1. The following lemma
gives precise information about how this family of tori is twisted:
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2.6. Lemma. The restricted group scheme A×S S1 is isomorphic to (A×S′1)/W .

Proof. Let s′ ∈ S′1 and s ∈ S1 its image. Then there is an isomorphism ιs′ : As ∼→ A.

These glue together to an isomorphism A×S S′1
∼→ A×S′1. Taking the quotient by

W gives the result. �

Next we determine the Lie algebra of A. It is a locally free sheaf on S. Because
S is affine it suffices to consider its set LieA of global sections. Let a = Hom(Γ, k)
be the Lie algebra of A.

2.7. Lemma. There is a canonical isomorphism LieA = MorW (S′,LieA) =
(k[S′]⊗k a)W .

Proof. Let D := Spec k[ε]/(ε2). Then LieA equals

MorS(D × S,A)1 := ker
[

MorS(D × S,A)→MorS(S,A)
]
.

Hence, LieA = MorS(D×S,A)1 = MorW (D×S′, A)1 = MorW (S′,Mor(D,A)1) =

MorW (S′, a) = (k[S′]⊗k a)W . �

Now we specialize further and assume that Γ is a lattice in the vector space S′,
i.e., there is a W -isomorphism

S′ = Γ⊗
Z
k.

Then we can identify S′ with a∗. Hence we have for the module of Kähler differen-
tials

Ω(S′) = k[S′]⊗
k

a = LieS′(A× S′).

One of the main points is now the next

2.8. Theorem. Assume S′ = Γ⊗Z k. Then the equality above induces an isomor-
phism Ω(S) = LieA.

Proof. There is a canonical homomorphism Ω(S)⊗k[S] k[S′]→ Ω(S′). The induced

homomorphism between W -invariants δ : Ω(S) → Ω(S′)W is an isomorphism by
[So]. Hence, the assertion follows from Lemma 2.7. �

Note that W can no longer be an arbitrary reflection group. It is induced by a
root system. There is a canonical choice for such a root system. Observe that for
any reflection w ∈W the group Rw := {γ ∈ Γ | wγ = −γ} is free of rank one.

Definition. The minimal root system ∆ = ∆(W,Γ) ⊆ Γ is the set of generators of
all Rw where w ∈W runs through all reflections.

It is easily verified that ∆ is indeed a root system whose Weyl group is W .
Because Γ is the character group of A, one can identify A with Hom(Γ, k∗) by

evaluation. Hence to every W -invariant homomorphism a : Γ→ k∗ corresponds an
element of AW and therefore, by Lemma 2.5, a section σa of A/S.

In the next theorem let S′2 := {s′ ∈ S′ | |Ws′ | ≤ 2} and S2 = S′2/W ⊆ S. These
are open subsets whose complements have codimension at least two. Furthermore,
by [SGA], IVB, 4.4, there exists a minimal open subgroup scheme A0 ⊆ A. It is
characterized by the property that all fibers A0

s are connected.
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2.9. Theorem. For a homomorphism a : Γ→ k∗ the following are equivalent:
1. a(∆) = 1.
2. a is W -invariant and for the corresponding section σa : S → A it holds that

σa(S2) ⊆ A0.

Proof. Let w ∈W be a reflection and αw a generator of Rw. Then wγ − γ ∈ Rw is
an integral multiple of αw. Hence, a(∆) = 1 implies that a is W -invariant.

Now assume a to be W -invariant. Let s′ ∈ S′2 and let s ∈ S2 be its image. We
may assume s 6∈ S1. Hence Ws′ = {1, w} where w is a reflection. By Lemma 2.4, Ass
is the fixed point set Aw. Hence X (As) = Γ/Γw where Γw := Im(w − 1). Observe
Rw = QΓw ∩ Γ (inside a∗). Thus the torsion subgroup of X (As) is Rw/Γw. This
implies that σa(s) is in the connected component of As if and only if a(Rw) = 1.
This shows the assertion. �

For the next section we need a more technical property of A concerning local
sections.

2.10. Lemma. For every s ∈ S and α ∈ A0
s there is a rational section a : S 99K A0

defined in s and with a(s) = α.

Proof. Let V ⊆ A be the maximal open subset such that every α ∈ V is contained
in the image of a rational section. First, we show A0

0 ⊆ V .
Let ô ⊆ S′ be the schematic fiber of 0 ∈ S. Then the homomorphism ψ0 : A0 ↪→

A is induced by a morphism ψ′0 : A0× ô→ A which is W -equivariant in the second
factor and multiplicative in the first. In particular ψ′0(αm, s) = ψ′0(α, s)m for every
m ∈ Z.

Because A is an open subset of an affine space, ψ′0 can be extended to a rational

morphism ψ
′

: A0 × S′ 99K A which is defined in A0 × ô. Now define

ψ′ : A0 × S′ 99K A : (α, s′) 7→
∏
w∈W

w−1ψ
′
(α,ws′).

This rational morphism is W -equivariant and therefore induces a rational S-
morphism ψ : A0 × S 99K A, which is defined in A0 × 0. Let m be the order
of W . Then ψ(α, 0) = αm. This shows that ψ is étale in A0×0. Therefore, there is
U ⊆ A0 × S open, containing A0 × 0 such that ψ is defined and étale in U . Hence
A0

0 ⊆ ψ(U) ⊆ V .
Now we show A0 ⊆ V . The k∗-action on the vector space S′ induces one on A

and S. Clearly, V is k∗-stable. Its image in S is open and contains 0, hence V → S
is surjective. Furthermore, V is closed under multiplication and taking inverses,
hence an open subgroup scheme of A. This shows the claim. �

3. Integration of Lie algebra actions

In this section we present some theorems on the integration of actions of Lie
algebras. The results are just an extension of the first section of [LV] from groups
to group schemes. Because the proofs are very similar, we will be very sketchy.

The setup is as follows: Let S be an affine base variety, A → S a smooth group
scheme with connected fibers, and LA = LieA the Lie algebra of A/S considered as
a k[S]-module. Furthermore, we assume that Lemma 2.10 is valid for A. Later on,
the theorems below are only applied to group schemes constructed in the preceding
section.
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Let X → S be an S-variety equipped with a Lie algebra homomorphism of LA
into the Lie algebra of global vector fields T (X/S). Any group action µ : A×SX →
X induces a homomorphism like that. We are interested in the converse. To get
things started we furthermore assume that this action exists already generically,
i.e., there is an open subset U ⊆ A×S X with (1A ×X) ∩ U 6= ∅ and a morphism
U → X , satisfying some obvious axioms, which induces LA → T (X/S).

First we define some universal S-scheme on which A acts: Let X be the set of
all local rings P ⊆ k(X) satisfying the following conditions:

a) The field of fractions of P is k(X).
b) P is the localization of a finitely generated subalgebra at a prime ideal.
c) k[S] ⊆ P .

Then X is a scheme (cf. [LV], 1.1). The open affine subsets are of the form SpecR,
where R is a finitely generated subalgebra of k(X) which generates it as a field
and which contains k[S]. The scheme X is integral and locally of finite type but in
general not separated. Because of c), it is an S-scheme.

By assumption there is an action of LA on k(X). Hence we can define the subset
X0 ⊆ X of those local algebras which are LA-stable. It is easily verified that X0 is
an open subscheme. By assumption, X ⊆ X0, hence X0 is non-empty. There is an
action of LA on X0. The main point is now:

3.1. Theorem. There is a unique morphism µ : A×S X0 → X0 which is a group
scheme action and which induces the action of LA.

Proof. There is already a rational map µ : A×S X0 99K X0, i.e., a field homomor-
phism µ∗ : k(X0)→ k(A×S X). We first show that µ is defined in a neighborhood
of the 1-section. For that, we have to show that for any x ∈ X0, the local ring

R1 := OX0,x is mapped by µ∗ into R2 := OA×SX0,(1,x). Let R̂2 be the completion
of R2 for the topology defined by the ideal of the 1-section. By assumption, R1 is
LA-stable. This implies as in [LV], 1.3, 1.4, that µ∗ restricts to a homomorphism

R1 → R̂2. Now, the equality R2 = R̂2 ∩ k(A ×S X0) implies the claim, i.e., µ is
defined on an open neighborhood U of the 1-section.

Next we show that µ is defined everywhere. For this assume that a : S 99K A
is a rational section, such that the image of a × idX0 in A ×S X0 meets U . Then
a defines an automorphism of k(X) and hence of X0. This implies that µ is also
defined in a neighborhood of a. By Lemma 2.10, µ is defined everywhere. �
3.2. Theorem. There is an A-variety X, which contains X/S as an open subset.

Proof. Let Φ be the automorphism of A ×S X0, which sends (a, x) to (a, a−1x).
Then µ ◦ Φ is the projection to X0. Because A → S is smooth and surjective, the
same is true for µ. In particular, it is open. Therefore, X := µ(A×S X) is an open
subset of X0. As the image of a variety it is quasicompact, hence of finite type.

It remains to show that X is separated, i.e., that the diagonal ∆X in X ×S X is
closed. First I claim that

δ : A×S X ×S X → X ×S X : (a, x1, x2) 7→ (ax1, ax2)

is surjective. For this let s ∈ S and x1, x2 ∈ Xs. Then Ui := {a ∈ As | axi ∈ X} is
non-empty and open in As. Because As is irreducible, there is a ∈ U1 ∩ U2. Then
δ(a−1, ax1, ax2) = (x1, x2) proves the claim. As above, δ is also flat. Hence ∆X is
closed because its preimage δ−1(∆X) = A×S ∆X is closed. �
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3.3. Corollary. The rational action A×S X 99K X is defined on an open subset
containing 1A ×X.

Proof. The closed subset µ−1(X \X) ∩ (A×S X) does not meet the 1-section. �
3.4. Corollary. Let X be proper over S. Then A acts on X.

The next statement shows that the existence of an A-action is a property which
can be checked pointwise.

3.5. Corollary. Assume that for all s ∈ S and x ∈ Xs there is an orbit morphism
As → Xs : a 7→ ax which is compatible with the LAs-action. Then A acts on X.

Proof. The condition implies that X is A-stable in X . �
We will also need the following

3.6. Theorem. Let Y/S be an A-scheme and ϕ : X → Y an LA-equivariant S-
morphism. Assume that ϕ is affine and that ϕ∗OX is generated as an OY -algebra
by an LA-stable coherent subsheaf E. Then A acts on X.

Proof. Let X ↪→ X be as in Theorem 3.2. Because A acts on Y , the morphism ϕ
extends to an A-morphism X → Y . Let D be an irreducible component of X \X ,
which is not A-stable. Because ϕ is affine, D is of codimension one. Let D′ be the
closure of Im(D → S). If D′ 6= S, then D would be an irreducible component of
the preimage of D′ and therefore A-invariant, because A/S has connected fibers.

Hence, D → S is dominant. Again because D is not A-stable, it cannot be
contained in the singular locus of X . Hence it defines a valuation vD of k(X) over
k(S). Choose h ∈ k(X) with vD(h) = 1. Because D is not A-stable, there is ξ ∈ LA
with vD(ξh) = 0.

Because ϕ∗OX is generated by E there is Y0 ⊆ Y affine open and f ∈ E(Y0) such
that −n = vD(f) < 0. Writing f = ah−n implies vD(ξf) = −n − 1. This shows
that vD is on E(Y0) not bounded from below, which contradicts the assumption
that E is coherent. Hence D cannot exist, i.e., A acts on X = X. �

4. Integration of the invariant collective motion

Let G be a connected reductive group acting on a smooth variety X . Consider
the cotangent bundle π : T ∗X → X . The G-action induces the moment map

Φ : T ∗X −→ g∗ := (LieG)∗ : α 7→ lα where lα(ξ) = α(ξπ(α)).

Recall that T ∗X carries a symplectic structure ω. Therefore, each function f on T ∗X
induces a Hamiltonian vector field Hf . This defines the Poisson product {f, g} =
ω(Hf , Hg), which gives k[T ∗X ] the structure of a Lie algebra. Also k[g∗] has the
structure of a Poisson algebra, and Φ being a moment map means that Φ∗ : k[g∗]→
k[T ∗X ] is a Poisson homomorphism. We denote its image by R0.

The Poisson center of R0 is exactly the algebra RG0 of invariants. To describe it,
let t ⊆ g be a Cartan subalgebra. Because of the Killing form one could identify
g∗ with g as a G-variety. Hence, by Chevalley’s restriction theorem, we have an
isomorphism k[g∗]G

∼→ k[t∗]W = k[t∗/W ], where W is the Weyl group of G. Thus
we get a morphism

Ψ : T ∗X −→ t∗/W
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such that RG0 is the image of Ψ∗. The elements of R0 are called collective Hamilto-
nians. Accordingly, the image RG0 of Ψ∗ consists of the invariant collective Hamil-
tonians.

The elements in RG0 Poisson-commute pairwise. Our problem is roughly whether
there is a commutative algebraic group action on T ∗X which integrates the Hamil-
tonian vector fields for RG0 . More precisely, let s ∈ t∗/W , f ∈ k[t∗/W ] and
f0 = f ◦Ψ ∈ RG0 . Then Hf0 is parallel to the fiber T ∗s := Ψ−1(s) and its restriction
depends only on (df)s ∈ Ωs(t

∗/W ). Hence we get a Lie algebra homomorphism
Ωs(t

∗/W ) → T (T ∗s ) and the problem is, whether there is a group As integrating
this Lie algebra action. The group will depend on s, hence we will get a group
scheme over t∗/W .

Actually, we want to integrate an algebra which is a little bit larger than RG0 ,
namely RG, where R is the integral closure ofR0 inside k[T ∗X ]. With LX := SpecRG

we get a morphism T ∗X → LX which is a kind of Stein factorization of Ψ. One of
our main results is now:

4.1. Theorem. Let X be a smooth G-variety. Then, there is finite reflection group
WX acting on a vector space a∗X and a WX -stable lattice ΓX ⊆ a∗X such that for
the group scheme A0

X = A(WX , a
∗
X ,ΓX)0 the following hold:

a) There is an identification a∗X/WX = LX.
b) There is an action of A0

X on T ∗X over LX .
c) There is a commutative diagram

Ω(LX)
Ψ∗→ Ω(T ∗X)

1 ↓ ∼ 2 ↓ ∼
LieA0

X → T (T ∗X)

where arrow 1 denotes the homomorphism from Theorem 2.8, arrow 2 is the
identification via the symplectic structure of T ∗X and the bottom arrow is in-
duced by the A0

X -action.

Proof. Let me recall some constructions from [Kn1] and [Kn5]: Let B ⊆ G be a
Borel subgroup. Then k(X)(B) denotes the multiplicative group of B-semi-invariant
rational functions on X . For f ∈ k(X)(B) let χf ∈ X (B) be its character. Then
f 7→ χf defines a homomorphism into X (B) whose image is ΓX . Because ΓX ⊆
X (B), it is a free Abelian group of finite rank. Let AX = Spec k[ΓX ] be the torus
with character group ΓX , and a∗X = (LieAX)∗ = ΓX ⊗Z k. Let T ⊆ B be a maximal
torus. Then we have a projection T→→AX which induces for the Lie algebras t→→aX ,
hence a∗X ↪→ t∗. The main result of [Kn1] was that there is a finite reflection group

WX acting on a∗X and a canonical isomorphism a∗X/WX
∼→ LX ( [Kn1], p. 12 and

Satz 6.6). This shows a).
We take c) as a definition of the action of LA0

X
on T ∗X . Now, we show that the

A0
X -action exists. Because this is most easily done for non-degenerate varieties (see

[Kn5], §3 for a definition) we need a reduction lemma.

4.2. Lemma. Let H ∼= Gm be contained in the center of G. Assume that the orbit
space Y = X/H exists and that Theorem 4.1 is true for X. Then it is true for Y .

Proof. We have ΓY = {χ ∈ ΓX | χ|H = 1}. Hence a∗Y is a hyperplane in a∗X .
Furthermore, WY = WX by [Kn5], 5.1 and 7.5. This shows that LY is a hyperplane
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of LX . Let A′Y be the restriction of A0
X to LY . Then H × LY ⊆ A′Y and A0

Y =
A′Y /H. Hence, if A0

X acts on T ∗X then A′Y acts on T ′Y := T ∗Y ×Y X and A0
Y acts

on T ∗Y = T ′Y /H. �
To apply this lemma, we use a well-known construction: Let X0 ⊆ X be a G-

stable, open, quasi-projective subset. Then there exists an ample G-linearized line
bundle L0 on X0. Because X is smooth, it can be extended to a line bundle L on

X . Let X̃ be the geometric realization of L minus zero-section. Then the preimage

of X0 in X̃ is quasi-affine, hence non-degenerate ( [Kn5], Lemma 3.1).

Thus, by replacingG, X byG×Gm, X̃, we may assume thatX is non-degenerate.
Let ar ⊆ a∗X be the open subset of points where a∗X → t∗/W is unramified. The
restriction of A0

X to ar/WX is isomorphic to (AX × ar)/WX . Hence an action of

A0
X on Ψ−1(ar) is the same as an action of WX n AX on T̂X := T ∗X ×LX ar. The

latter has been constructed in [Kn5], Thm. 4.2. That this action is compatible with
the action of LA0

X
follows from [Kn5], Thm. 4.1.

Next, I reduce to the case where X is homogeneous. Let Y ⊆ X be an orbit.
Then consider the following commutative diagram:

T ′ := T ∗X |Y ↪→ T ∗X
ϕ ↓ ↓

T := T ∗Y → g∗

Each ξ ∈ g induces a linear function on g∗ and via Φ a function lξ on T ∗X . It follows
from the properties of the moment map that the Hamiltonian vector field of lξ
equals the vector field ξ∗ induced by the G-action. Because T ′ is G-stable, all Hf

are parallel to T ′ where f ∈ R0. The same is true for R, since it is algebraic over
R0. By Corollary 3.3 there is a rational action of A0

X on T ′. Hence Corollary 3.5
implies that it is sufficient to show that this action is actually regular on T ′ (where
Y runs through all orbits).

The projection ϕ is affine. Let E ⊆ ϕ∗OT ′ be the coherent subsheaf generated by
the functions of degree one (with respect to the obvious Gm-action on T ′). Then
ϕ∗OT ′ is generated by E . Let Y0 ⊆ Y be open and f a linear function on T ∗X |Y0 ⊆ T ′.
Because the Poisson product decreases the degree by one, deg{lξ, f} = 1. Then the
formula

{lξ1 . . . lξs , f} =
∑
i

lξ1 . . . lξi−1{lξi , f}lξi+1 . . . lξs

shows {R0, E} ⊆ E . Every h ∈ R satisfies an equation p(h) = 0 where p ∈ R0[t] is
monic. Then p′(h){h, f} ∈ E . Because E is a locally freeOT -module and p′(h) ∈ OY
this implies {h, f} ∈ E , i.e., {R, E} ⊆ E . Therefore, Theorem 3.6 is applicable, and
we are left to show that A0

Y acts on T ∗Y .
Hence we may assume that X is homogeneous. Now I will use the theory devel-

oped in [Kn5]. Let G denote the Graßmannian of all linear subspaces of g∗. For any
x ∈ X let g⊥x ⊆ g∗ be the annihilator of the isotropy subalgebra of x. This defines
an equivariant morphism ψ : X → G. Let X ↪→ X be any smooth equivariant com-
pactification such that ψ extends to ψ : X → G. In the terminology of [Kn4], 3.4,
this X is called pseudo-free. Let V ⊆ G × g∗ be the tautological vector bundle over

G and T̃X = ψ
∗V ⊆ X × g∗ its pullback to X . It contains T ∗X as an open subset.

The morphism T̃X → g∗ is proper and its restriction to T ∗X is the moment map,
i.e., we have compactified the moment map.
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Let DX be the sheaf of differential operators on X and UX its subsheaf of OX -
algebras which is generated by the vector fields coming from g. Because it carries a
natural filtration by the order of differential operators, we can look at the associated
graded sheaf of (commutative) algebras gr UX . Then by [Kn4], 3.7, its spectrum

(relative toX) is just T̃X . Hence the commutator in UX induces on T̃X the structure
of a Poisson variety.

BecauseR is integral over R0, all f ∈ R extend to functions on T̃X . In particular,

this implies that the LA0
X

-action extends to T̃X . With MX := SpecR we get

T̃X → MX → g∗ which is now a true Stein factorization. The Poisson center of R
is RG. This implies that the Hamiltonian vector field Hf for f ∈ RG is tangent to

the fibers of T̃X → MX , i.e., the action of LA0
X

over LX extends to an action of

LÃX over MX where ÃX = A0
X ×LX MX . Also the generic action of A0

X induces a

generic action of ÃX . Because T̃X →MX is proper we get a regular action on T̃X
( Corollary 3.4). But then there is a morphism A0

X ×LX T̃X = ÃX ×MX T̃X → T̃X ,

i.e., A0
X acts on T̃X .

Finally, by the interpretation of T̃X as associated graded of UX it follows that

all Hamiltonian vector fields are parallel to subvarieties of the form T̃X |Y , where

Y ∈ X is G-stable. This implies that the complement of T ∗X in T̃X is A0
X -stable,

i.e., A0
X acts on T ∗X . This finishes the proof of Theorem 4.1. �

5. The central automorphism group

Let X be a normal variety. The main application of the preceding theory is to
the group of central automorphisms of X :

A(X) := {ϕ ∈ AutGX | ϕ(f) ∈ k∗f for all f ∈ k(X)(B)}.

Note, that if X is spherical, i.e. k(X)B = k, this is the full automorphism group,
otherwise it may be only a small part of it.

5.1. Theorem. Let X be a G-variety.
1. A(X) stabilizes every G-stable subset of X.
2. Let Y ⊆ X be a G-stable subvariety and ϕ ∈ A(X). Then ϕ|Y ∈ A(Y ).

Proof. 1. It suffices to show that ϕ stabilizes every G-orbit Y . By induction on
dimY , we may assume that the boundary Y \Y is A(X)-stable. Therefore, it suffices
to show that Y is stable. Choose a G-invariant valuation v of k(X) with center Y .
Because it is uniquely determined by its restriction on k(X)(B) ( [Kn3], 4.2), we
get v = v ◦ ϕ for all ϕ ∈ A(X). Hence Y = ϕ(Y ).

2. It follows from [Kn3], 2.2, that every f ∈ k(Y )(B) can be extended to an

element in O(B)
X,Y ⊆ k(X)(B). This implies the claim. �

For technical reasons, we need another concept: Let D ⊆ X be a B-stable, but
not G-stable irreducible divisor (a so-called color). Then D is called undetermined
if there is a different color D′ such that the restrictions of the valuations vD, vD′
to k(X)(B) coincide.
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5.2. Lemma. Every G-variety contains only a finite number of undetermined
divisors.

Proof. Let X0 ⊆ X be open, B-stable such that the orbit space Y = X0/B ex-
ists. Then the B-stable divisors in X0 are already separated by k(Y ). Hence an
undetermined divisor is either a component of the boundary X \X0 or one of the
finitely many colors D in X0 such that the restriction of vD to k(Y ) coincides with
restriction of a valuation of a boundary component. �

The main application of the concept of undetermined divisors is that all other
colors are A(X)-stable. The easiest example of an undetermined divisor is X =
SL2(k)/T , which has two B-stable divisors which are in fact interchanged by
A(X) = Z/2Z.

5.3. Theorem. Let X be a normal G-variety and X0 ⊆ X open, G-stable. Assume
that no undetermined divisor of X contains a G-orbit. Then A(X)

∼→ A(X0).

Proof. The mapping is obviously injective. We show that every ϕ ∈ A(X0) extends
to X . Let Y ⊆ X be closed, G-stable. Then the local ring OX,Y is uniquely
determined by the set of B-stable divisors of X containing Y ( [Kn3], 3.8). By
assumption, this set, hence OX,Y , is ϕ-stable. This means that ϕ is defined in Y .
Hence ϕ extends to X because this works for every Y . �
5.4. Corollary. There is an open, G-stable subset X0 of X such that A(X0) =
A(X1) for every open, G-stable subset X1 of X0.

Proof. Let D be the union of undetermined divisors of X . Then remove from X
all singularities and

⋂
g∈G gD to obtain X0.

Definition. The group A(X0) (which does not depend on the choice of X0) is
denoted by AX .

5.5. Theorem. Let X be a G-variety. Then there is a unique homomorphism

λ : A(X)→ AX = Hom(ΓX , k
∗) : ϕ 7→ λϕ

such that
ϕ(f) = λϕ(χf )f for all f ∈ k(X)(B).

This homomorphism is injective and if X is normal, then its image is closed. In
particular, AX is realized as a closed subgroup of AX .

Proof. For every χ ∈ ΓX consider the vector space

Vχ = {f ∈ k(X) | bf = χ(b)f for all b ∈ B}.

Then ϕ ∈ A(X) acts linearly on it such that every element is an eigenvector. This
implies that ϕ acts by multiplication with a scalar. This establishes the existence
of λ (unicity is clear anyway).

Assume first that X supports a G-linearized ample line bundle (call X then G-
linear). Because only finitely many B-stable colors are moved by A(X), we then
may find a A(X)- and B-stable very ample Cartier divisor D such that L := OX(D)
carries a G-linearization. Furthermore, there is a unique action of A(X) on L such
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that the canonical section σD is fixed. Let V := H0(X,L). For σ ∈ V (B) we have
f := σ/σD ∈ k(X)(B). Then σ(f) = λϕ(χf )f and ϕ(σD) = σD for ϕ ∈ A(X) imply

ϕ(σ) = λϕ(χσχ
−1
σD )σ.

In particular, if λϕ ≡ 1, then ϕ acts as identity on V . Hence, since X ↪→ P(V ∗),
we get ϕ = idX , i.e., λ is injective.

Furthermore, for every t ∈ Hom(X (B), k∗) = T we can define a G-homorphism
of V by t · σ := t(χσχ

−1
σD )σ for every highest weight vector σ ∈ V . Clearly, the

set A′ of t which stabilizes X in P(V ∗) is a closed subgroup. Then λ(A(X)) is the
image of A′ in AX , hence closed.

Now assume that X is arbitrary. Then one can always find an open G-stable G-
linear subset X0. Hence λ is injective, because A(X)→ A(X0) is injective. Finally,
if X is normal, then it can be covered by open subsets X0 like this and λ(AX) is
the intersection of closed subgroups, hence closed. �
Remark. The proof shows that normality can be (as usual) relaxed to the assump-
tion that X is locally G-linear. Probably, even that is unnecessary.

5.6. Corollary. The group A(X) is in the center of AutG(X).

Proof. Let ψ ∈ AutG(X) and ϕ ∈ A(X). If f ∈ k(X)(B), then ψ(f) ∈ k(X)(B)

with χψ(f) = χf . This implies ψ−1ϕψ(f) = λϕ(χf )f . Hence, ψ−1ϕψ ∈ A(X) with
λψ−1ϕψ = λϕ. �
5.7. Corollary. If X is normal, then AX contains A(X) as a closed subgroup of
finite index.

Proof. Let X0 ⊆ X be as in Theorem 5.3. Let A′ ⊆ A(X0) be the subgroup of all
elements which act trivially on the set of (undetermined) colors. It is closed and of
finite index. The same proof as for Theorem 5.3 shows A′ ⊆ A(X). �

For some reduction argument we need later:

5.8. Lemma. Let X be homogeneous. There is a quasi-affine homogeneous G̃ =

G×Gm-variety X̃ with X = X̃/Gm and a split exact sequence

1→ Gm → A(X̃)→ A(X)→ 1,

where A(X̃) is defined with respect to G̃.

Proof. This is actually a corollary of the proof of Theorem 5.5. With the notation

there we choose X̃ ⊂ V ∗ to be the affine cone over X ⊆ P(V ∗). The construction

comes with a splitting A(X) → A(X̃). The other parts of the exact sequence are
clear. �

Finally, there is a comparison theorem with generic orbits.

5.9. Theorem. Any G-variety X contains a non-empty open G-stable subset X0

such that AX
∼→ A(Gx) for every x ∈ X0.

Proof. By shrinking X , we may assume that the G-orbit space π : X → Y exists.
The automorphism group of a homogeneous variety G/H is NG(H)/H, hence also
linear algebraic. Therefore, the automorphism groups of the fibers of π form an
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affine group scheme AutG(X/Y ) with the set of central automorphisms A(X/Y ) as
a closed subgroup scheme. The homomorphism λ gives an embedding of A(X/Y ) ↪→
AX × Y . We may assume that A(X/Y ) is smooth over Y . Then A(X/Y ) must be
the trivial multiplicative group scheme A(Gx) × Y . Hence, the constant sections
define a homorphism A(Gx)→ A(X) inverse to the restriction. �

6. The root system

In this section we establish a relation between AX and AX . For this we may
assume throughout that A(X) = AX . Let a1

X ⊆ a∗X be the set of points with trivial
WX -isotropy group. Then, as already employed, the group scheme AX ×LX a1

X is
trivial with fiber AX . Hence AX acts on T ∗X ×LX a1

X .

6.1. Lemma. The following diagram commutes:

AX ⊆ AutG(X)
↓ ↓
AX → Aut(T ∗X ×LX a1

X)

Proof. By Theorem 5.9, we may assume that X is homogeneous. In view of Lemma
5.8, we may furthermore assume that X is quasi-affine, hence non-degenerate.

It suffices to consider the variety T̂X of [Kn5], §3, because it is an open subset
of T ∗X ×LX a1

X . Now recall the definition of the AX -action (see [Kn5], §4): There

is a Levi subgroup L ⊆ G and an isomorphism T̂X = G×L Σ̂, such that L acts on

Σ̂ only through its quotient AX . Then AX acts on T̂X just by the action on Σ̂.

Furthermore, there is an open subset of Σ̂ which is L-isomorphic to X0/Pu ×As
r.

Choose ϕ ∈ AX and let a = λϕ ∈ AX . From k(X)U = k(X0/Pu), it follows that ϕ
acts on X0/Pu, hence on Σ by multiplication with a. This proves the assertion. �

6.2. Corollary. AX ⊆ AWX

X .

Proof. There is an action of ϕ ∈ AX on both T ∗X and T ∗X ×LX a1
X . This implies

that the corresponding a ∈ AX is WX -invariant. �
Definition. The root lattice ΛX of X is the kernel of X (AX)→→X (AX).

Corollary 6.2 means exactly that WX acts trivially on ΓX/ΛX . This implies that
WX acts also as a reflection group on the root lattice.

Definition. The root system ∆X of X is the minimal root system attached to
(ΛX ,WX) as in section 2.

The root lattice is an isogeny invariant:

6.3. Theorem. Let β : X → X ′ be a quasi-finite G-morphism between normal G-
varieties. Then β∗ : ΛX′

∼→ ΛX or, equivalently, there is a canonical short exact
sequence

1→ Hom(ΓX/ΓX′ , k
∗)→ AX → AX′ → 1.

Proof. We may assume that β is finite. The local structure theorem ([BLV], [Kn5],
2.3, 2.4) tells us that there is a parabolic subgroup PX with Levi part L and an affine
locally closed subvariety Σ ⊆ X , such that P ×L Σ → X is an open embedding.
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Moreover, L acts on Σ only through its quotient AX . Then every ϕ ∈ AX acts
on P ×L Σ by (p, σ) 7→ (p, aσ), where a is the image of ϕ in AX . Analogously,
Σ′ = β(Σ) ⊆ X ′ will have the same properties. Because AX → AX′ is surjective,
we can lift any ϕ′ ∈ A(X ′) to a birational automorphism ϕ of X , where the set
of lifts is determined by Hom(ΓX/ΓX′ , k

∗). The finiteness of β implies that ϕ is
regular and commutes with G. Conversely, in the same manner every ϕ ∈ AX can
be pushed down. �

The next theorem is our main application of the theory of group schemes which
we have developed in the first sections.

6.4. Theorem. Let ∆ be the minimal root system attached to (ΓX ,WX). Then
ΛX ⊆ 〈∆〉Z or, equivalently,

⋂
α∈∆

kerAX α ⊆ AX .

Proof. The little Weyl group of X coincides with that of its generic orbits ( [Kn1],

6.5.4). Hence, we may assume that X is homogeneous. Let X̃ → X as in Lemma
5.8. Then we have the exact sequence

0→ ΓX → Γ
X̃
→ Z→ 0

with ΛX
∼→ Λ

X̃
. Furthermore, WX = W

X̃
(see [Kn5], 5.1, 7.5) implies that ∆ is

also the minimal root system of (Γ
X̃
,W

X̃
). Hence, we may replace X by X̃ and

therefore may assume that X is quasi-affine.
Let a ∈ AX with α(a) = 1 for all α ∈ ∆. Then by Lemma 6.1 we have to show

that the action of a on T ∗X ×LX a1
X comes from an automorphism of X . We do

this in several steps. Let L2 ⊆ LX be the open subset over which the WX -isotropy
group has at most two elements. By assumption we have α(a) = 1 for all α ∈ ∆.
Hence, Theorem 2.9 implies that a induces a section σa : L2 → A0

X . Because A0
X

acts on T ∗X , we obtain an automorphism ϕ̃ : τ 7→ σa(Ψ(τ))τ of T2 := T ∗X ×LX L2.
The next step is to show that ϕ̃ extends to all of T ∗X . Consider the Gm-action

on T ∗X by scalar multiplication on the fibers. There is a compatible action on LX
and A0

X . The section σa is induced by a point of AX on which Gm acts trivially.
This implies that σa is Gm-equivariant. Therefore, ϕ̃ commutes with Gm, i.e., ϕ̃
is a birational automorphism of T ∗X of degree zero. Therefore, it acts also on the
image PT2 of T2 in the projectivized cotangent bundle PT ∗X .

The morphism Ψ : T ∗X → LX is equidimensional ( [Kn1], 6.6). Therefore, the
complements of T2 and PT2 have codimension two. Consider the fiber PT2,x ⊆ PT2

over x ∈ X . Also its complement in the projective space PT ∗X,x has codimension

two (remember that X is homogeneous). In particular, all global regular functions
on PT2,x are constant. Because X is quasi-affine, also the morphism

PT2,x
ϕ̃−→ PT2→→X

is constant. This implies that ϕ̃ maps fibers into fibers. Therefore, it induces first a
birational and then by homogeneity a global automorphism ϕ of X . Furthermore,
it extends to all of T ∗X .

We show that ϕ has the desired properties. Let ϕ∗ be the automorphism of T ∗X
which is induced by ϕ. Then ϕ∗◦ϕ̃−1 is a vector bundle automorphism of T ∗X . Being
a symplectomorphism and because it acts trivially on the tangent spaces of the zero
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section, it acts trivially on each fiber, i.e., ϕ̃ = ϕ∗. Finally, the explicit description

of the AX -action on T̂X in the proof of Lemma 6.1 shows that ϕ ∈ A(X). �
Now we can justify the term “root lattice”:

6.5. Corollary. For every G-variety X the root system ∆X has the following
properties:

a) The root lattice ΛX is generated by ∆X .
b) AX =

⋂
α∈∆X

kerAX α.

c) The Weyl group of ∆X is WX and it acts trivially on ΓX/〈∆X〉Z.

d) Every quasi-finite G-morphism X → X ′ induces ΓX′ ↪→ ΓX with ∆X′
∼→ ∆X .

Proof. a) and b) are clearly equivalent. Let E ⊆ AX be a finite subgroup such
that AX/E is connected and let X0 := X/E. Then AX0 = AX/E by Theorem
6.3. This implies that ΛX0 is a direct summand of ΓX0 . In particular, ∆X is also
the minimal root system for ΓX . Then by Theorem 6.4 and Corollary 6.2, we get⋂
α∈∆X

kerAX0
α ⊆ AX0 ⊆ AWX0

which implies b). Finally, c) follows from Corollary

6.2 and d) is Theorem 6.3. �
One can also arrange the data a bit differently: For any α ∈ ∆X let sα ∈ WX

be the reflection at α. Then Corollary 6.5c) implies that there is a unique α∨ ∈
Γ∨X := Hom(ΓX ,Z) with

sα(χ) = χ− α∨(χ)α for all χ ∈ ΓX .

Let ∆∨X := {α∨ | α ∈ ∆X}. Then (ΓX ,∆X ,Γ
∨
X ,∆

∨
X) forms a root datum in the

sense of [Sp], 9.1.6. It also determines WX and AX .
IfX is quasi-affine there is a much simpler construction of ∆X which is mentioned

in the introduction. Let k[X ] =
⊕

χRχ be the isotypic decomposition of k[X ] and
define

M′ := {α ∈ X (B) | ∃χ, η ∈ X (B) : 〈RχRη〉k ∩Rχ+η−α 6= 0}.

6.6. Lemma. Let X be quasi-affine. Then
i) ΓX = 〈χ | Rχ 6= 0〉Z,
ii) ΛX = 〈M′〉Z and
iii) Z(X) = {v ∈ Hom(ΓX ,Q) | v(M′) ≥ 0}.

Proof. i) If Rχ 6= 0, then k[X ] contains a heighest weight vector with weight χ.

This shows “⊇”. Conversely, let f ∈ k(X)(B). Since X is quasi-affine, V = {h ∈
k[X ] | hf ∈ k[X ]} is a non-trivial G-module. Hence, it contains a highest weight
vector s. Then sf ∈ k[X ](B) and χf = χsf − χs show “⊆”.

ii) It suffices to prove AX = Hom(ΓX/〈M′〉Z, k∗). For that let a : ΓX → k∗ be a
homomorphism with a(M′) = 1. Define a G-module automorphism ϕa of k[X ] by
ϕa(f) = a(χ)f for f ∈ Rχ. I claim that ϕa is an algebra automorphism. For this let
f ∈ Rχ, h ∈ Rη. Then fh has components in Rχ+η−α with α ∈ M′. Because a is
trivial onM′, all components of fh are multiplied by the same factor a(χ+η). This
shows ϕa(fh) = a(χ+ η)fh = ϕa(f)ϕa(h) and the claim follows. Now choose a G-
equivariant embedding X ↪→ X where X is affine. The automorphism ϕa leaves
every G-submodule of k[X ] stable. In particular, it induces an automorphism of
k[X] hence of X. Then ϕa ∈ A(X) ⊆ A(X) (see Theorem 5.1) proves “⊇”.



AUTOMORPHISMS, ROOT SYSTEMS, AND COMPACTIFICATIONS 169

Conversely, let ϕ ∈ AX . Then ϕ is an automorphism of an open subset X0 of X
and acts on the χ-isotypic component of k[X0] by multiplication with λϕ(χ). Hence
it does the same on Rχ. For α ∈ M′ there exist f ∈ Rχ and h ∈ Rη such that fh
has a non-zero (χ + η − α)-component. Then ϕ(fh) = ϕ(f)ϕ(h) = λϕ(χ + η)fh
implies λϕ(α) = 1. This shows “⊆”.

iii) We follow the argument of [Pau]. Let v be a G-invariant Q-valued valuation
of k[X ] which is trivial on k(X)B. Then it is constant on Rχ \ {0}. For Rχ 6= 0
let v(χ) be this constant value. Since this is an additive map on the submonoid
{χ | Rχ 6= 0}, it can be extended uniquely to a homomorphism v : ΓX → Q.
Conversely, v can be recovered from v by v(f) = min{v(χ) | fχ 6= 0}.

Let α ∈ M′ and choose f ∈ Rχ, h ∈ Rη such that fh has a non-zero (χ+η−α)-
component. Then v(fh) ≥ v(χ+ η − α). This shows that v is multiplicative if and
only if v(α) ≥ 0 for all α ∈ M′. �
Remark. The proof in ii) showed A(X) = AX for X quasi-affine (not necessarily
normal).

Proof of Theorem 1.3. The monoid M is by the preceding lemma the intersection
of the root lattice ΛX and the dual cone to the dominant Weyl chamber of ∆X .
Hence it is freely generated by the simple roots of ∆X . �
Remark. Using Lemma 5.8, one can give an analoguous description of ∆X for every
G-quasi-projective variety.

Now assume that X is a symmetric variety, i.e., X = G/H where G is semisimple
and H is the fixed point set of an involution ϑ ∈ Aut(G). Then there exist maximal
tori T of G which are ϑ-stable. Choose one such that T ϑ = T ∩ H has minimal
dimension. Let a ⊆ t = LieT be the (−1)-eigenspace of ϑ and let ρ : t∗ → a∗ be the
restriction map. Then ∆r

X := ρ(∆) \ {0} is the restricted root system of X , where
∆ ⊆ t∗ is the root system of G. It is well known that ∆r

X is indeed a root system.
It may be non-reduced, i.e., with α it may also contain α/2. The set of roots α for
which α/2 6∈ ∆r

X is its associated reduced root system. Now we show that our root
system ∆X is compatible with this classical construction:

6.7. Theorem. Let X be a symmetric variety. Then ∆X is the reduced root system
associated to 2∆r

X .

Proof. There is a Borel subgroup B containing T such that BH is dense in G. This
implies AX = T/(T ∩H). From T ∩H = T ϑ we get ΓX = X (AX) = (1− ϑ)X (T ).
We may assume that G is of adjoint type. Then X (T ) is generated by ∆. Because
1
2 (1 − ϑ) is the projection to a∗, we conclude that ΓX is the root lattice of 2∆r

X .
On the other hand NG(H) = H (see [Vu], 2.2, Lemme 1). Therefore, ΓX = ΛX is
also the root lattice of ∆X . Furthermore, is is known ( [Kn1], pp. 17–18) that ∆X

and ∆r
X have the same Weyl group. This implies the claim. �

It would be nice to have a true generalization of ∆r
X which works for all X . Also

there should be a generalization of multiplicities, i.e., the number of roots in ∆
which restrict to a given root in ∆r

X .

7. Applications and amplifications

The research for the present paper was motivated by the following applications
to the compactification theory of X . For this let Z(X) be the set of G-invariant Q-
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valued valuations of k(X) which restrict to the trivial valuation on k(X)B. Each
v ∈ Z(X) induces a homomorphism ΓX → Q : χf 7→ v(f). It is known that the
map Z(X) → Q(X) := Hom(ΓX ,Q) is injective and identifies Z(X) with a Weyl
chamber of WX in Q(X) ( [Kn3], 9.2, or [Kn5], 7.4).

7.1. Corollary. Assume that AX is connected (e.g. trivial). Then Z(X) is defined
by inequalities v(α1) ≥ 0, . . . , v(αs) ≥ 0, where the α1, . . . , αs are part of a basis
of ΓX .

Proof. The condition implies that the root lattice ΛX is a direct summand of ΓX .
Hence every Weyl chamber is defined by equations of the form above, where the αi
run through a system of simple roots of ∆X . �

The most important case is that of a spherical variety. For this let me sketch the
classification of their equivariant embeddings (see [LV], [Kn2] for details): They are
determined by a finite family of pairs (C,F) (one for each orbit), where C ⊆ Q(X)
is a finitely generated strictly convex cone and F is a set of B-stable divisors.
This family is subject to various conditions. If the F-parts are empty, then the
conditions mean that the C-parts form a fan supported in Z(X). Hence C = Z(X)

is admissible, if and only if Z(X) is strictly convex, if and only if AutGX = AX

is finite. In this case, the family (C,∅), where C runs through all faces of Z(X),
defines an embedding which is complete and has 2r orbits (r = rk ΓX) exactly one
of which is closed. It is called the wonderful or standard embedding of X .

7.2. Corollary. Let X = G/H be spherical with NG(H) = H. Then its standard
embedding is smooth.

Proof. Let X be this completion. Then X has exactly one closed orbit Y . It is
known (see [BP], 3.4) that Y has a transversal slice isomorphic to A, where A is
the AX -embedding corresponding to the cone Z(X). That this cone is defined by
a basis of ΓX = X (AX) is equivalent to A being smooth. �

Remark. It follows easily from the local structure theorem [BLV], that a smooth
wonderful embedding is a regular embedding in the sense of [Gi], 4.3.1, or [BCP],
Def. 5, which means that all orbit closures are transversal intersections of the di-
visors containing it and that the normal bundle of each orbit contains an open
orbit.

The corollary settles half of a conjecture of Brion: Let X = G/H be spherical,
where H is self-normalizing. Then G/H is isomorphic to the orbit of LieH con-

sidered as a point in a Graßmannian of LieG. Let X̃ be the closure of this orbit

(the Demazure embedding). Then Brion conjectured that X̃ is smooth ( [Br1],

p. 141, Conj. A). Because, as he showed, X above is the normalization of X̃, we

have reduced the problem to the normality of X̃.
Actually, it is possible to improve Corollaries 7.1 and 7.2 slightly. Following an

idea of Luna, we define the subgroup A
]
X ⊆ AX consisting of those automorphisms

which stabilize every B-stable divisor of X . By Lemma 5.2, it is of finite index.

7.3. Lemma. Let X be smooth. Then for ϕ ∈ AX the following are equivalent:

i) ϕ ∈ A
]
X;

ii) ϕ acts trivially on PicX;

iii) ϕ acts trivially on PicGX.
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Proof. i)⇒ii): For every line bundle L there is a B-stable divisor D in X with
L ∼= OX(D) (see [Br2], 1.3).

ii)⇒iii): Let L be a G-linearized line bundle. Then ϕ∗L⊗L−1 ∼= OX ⊗k kχ for
some character χ of G. Let m > 0 such that ϕm ∈ A0

X . As A0
X is connected it acts

trivially on PicGX . Therefore, mχ = 0 and χ = 0.
iii)⇒i): Let D ⊆ X be an irreducible B-stable divisor. Replacing it by a multiple

we may assume that L = OX(D) carries a G-linearization. Hence ϕ(D) − D is a
principal divisor. If D 6= ϕ(D), this shows that D is determined, which contradicts

ϕ ∈ A
]
X . Hence D is stable under ϕ. �

7.4. Corollary. Let X = G/H be homogeneous and let N ]
G(H) ⊆ NG(H) consist

of all elements which act trivially on X (H). Then A
]
X = AX ∩N ]

G(H)/H.

Proof. There is a canonical isomorphism PicGX = X (H). �

7.5. Theorem. Let X be a normal G-variety. Then there is a root system ∆]
X ⊆

ΓX such that A
]
X =

⋂
α∈∆]

X

kerAX α.

Proof. Let E ⊆ A
]
X be finite such that A

]
X/E is connected and let X0 = X/E. By

Theorem 6.3, AX0 = AX/E. By choice of E, the sets of B-stable divisors of X and

X0 are in bijection. This implies A
]
X0

= A
]
X/E. Hence, we can replace X by X0

and may thus assume that A
]
X is connected. Then we define ∆]

X to be the minimal

root system of (ΓX ,WX). It suffices to show A
]
X ⊇

⋂
α∈∆]

X

kerAX α.

For that let D ⊆ X be an irreducible B-stable divisor. Replacing D by a multiple
we may assume that OX(D) carries a G-linearization. Then

π : X̃ := SpecX ⊕n∈ZOX(nD)→ X

is a Gm-principal fiber bundle. We may replace G by G ×Gm. Then W
X̃

= WX

and
0→ ΓX → Γ

X̃
→ Z→ 0

is exact. This implies that ∆ := ∆]
X is also the minimal root system of (Γ

X̃
,W

X̃
).

Let A1
X =

⋂
α∈∆

kerAX α. Then every a ∈ A1
X can be lifted to ã ∈ A1

X̃
. By Theo-

rem 6.4, ã ∈ A
X̃

. The divisor π−1(D) is principal by construction and therefore

determined. Thus ã stabilizes π−1(D) which implies that a stabilizes D. �

7.6. Corollary. Assume X = G/H is spherical with N ]
G(H) = H. Then the

standard embedding of G/H is smooth.

Remarks. 1. Let X = G/H be a symmetric variety where G is simple. Then one

easily checks using the classification that ∆]
X = ∆X unless X is one of SL2n/

S(GLn ×GLn), n ≥ 1, SOn/SO2 × SOn−2, n ≥ 5, SO4n/GL2n, n ≥ 2, Sp2n/GLn,

n ≥ 2, and E7/Gm · E6. In all these cases, ∆r
X and ∆]

X is of type C∗ and B∗,
respectively.

2. The importance of the condition N ]
G(H) = H has been first observed by

Luna. He calls spherical subgroups satisfying it very sober. For G = PGLn(k),
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Corollary 7.6 has been first proved by him. In that case, he even showed that very
soberness is also necessary (not yet published).

Finally, I would like to extend Theorem 4.1 a little bit. There we have constructed
the action of a connected group scheme A0

X on the cotangent bundle T ∗X . We want
to extend this action to a larger group scheme. For this we need a result which
does not involve G-varieties.

7.7. Theorem. Let W be a reflection group acting on the lattice Γ. Put S′ = Γ⊗ k
and consider the group scheme A = A(Γ, S′,W ). Then the set of open affine
subgroup schemes A′ of A is in bijection with the set of root data (Γ,∆,Γ∨,∆∨).
Furthermore,

i) The set A′(S) of global sections is Hom(Γ/〈∆〉Z, k∗).
ii) A′ is generated by A′(S) and A0.

Proof. Let C be the set of conjugacy classes of reflections in W . For every reflection
s we have (s− 1)Γ ⊆ kerΓ(s+ 1) and the index is either one or two. Let C ⊆ C be
those conjugacy classes where it is two. To any C0 ⊆ C we can assign a root system
∆ in the following way: For every reflection s ∈ W we adjoin the generators of
(s− 1)Γ for ∆ unless the conjugacy class of s is in C0 when we take the generators
of kerΓ(s+ 1). Conversely every root system is obtained this way.

Now observe that the elements of C correspond to the irreducible components
of the ramification divisor of S′ → S. Then the proof of Theorem 2.9 shows
that the elements of C correspond exactly to those components Z over which A is
disconnected. In that case A×S Z has two irreducible components exactly one of
which, denoted by DZ , does not contain the zero-section.

Therefore, starting from a subset of C we get a set of divisors DZ of A. Let A′ ⊆
A be the complement of the union of these divisors. As A is smooth, hence locally
factorial, this is an affine open subset. Furthermore, by construction, multiplication
defines a rational morphism A′ ×S A′ 99K A′ which is defined in codimension one.
As both sides are normal (even smooth) and affine it is regular on all of A′, i.e., A′
is a subgroup scheme.

Conversely, let A′ ⊆ A be an open affine subgroup scheme. Then every compo-
nent D of the complement A \ A′ is pure of codimesion one. As A is connected
generically, the image of D in S must be a divisor. More precisely, it is a component
of the ramification divisor. As D does not contain the zero-section it must be of the
form DZ . This shows there corresponds uniquely a subset of C to A′ which proves
the first half of the theorem.

Let a ∈ HomW (Γ, k∗) be a global section of A. Then the same reasoning as
for Theorem 2.9 shows that a is a section of A′ in codimension one if and only if
a(∆) = 1. As S and A′ are affine this holds if and only if a is a global section of
A′. This shows i).

Finally, for any point s′ ∈ S′ let ∆(s′) = {α ∈ ∆ | α∨(s′) = 0}. Let s ∈ S be
the image of s′. Then X (A′s) = Γ/〈∆(s′)〉Z. As ∆(s′) is a subroot system of ∆, the
group 〈∆(s′)〉Z is a direct summand of 〈∆〉Z. This implies that A′(S)→ A′s has a
connected cokernel which shows ii). �

Remark. Let (Γ,W ) be the root lattice of type Bn where n ≥ 1. Then the conjugacy
class of reflections along short roots is in C. Conversely, one can show that every
such conjugacy class comes from a direct summand of this type.
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Now we return to our G-variety X . Then to ∆X ⊆ ΓX we can assign a unique
open affine subgroup scheme AX of A := A(ΓX , a

∗
X ,WX) which satisfies AX(LX) =

AX and AX = AXA0.

7.8. Theorem. The affine open group scheme AX is the largest open subgroup
scheme of A to which the action of A0 on T ∗X can be extended.

Proof. Let A′ ⊆ A be the largest subgroup scheme extending the A0-action. Let
D1, . . . , Dq be the codimension-1-components of A\A′ and A′′ := A\

⋃
iDi. Then

A′′ is an affine group scheme as in the proof of Theorem 7.7. Let σ ∈ A′′(LX).
Then σ induces a birational automorphism of T ∗X which is regular in codimension
one. The same proof as for Theorem 6.4 works to show that σ is induced by an
element of AX . This shows

A′′ = A′′(LX)A0 ⊆ AXA0 = AX ⊆ A′ ⊆ A′′. �
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